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Robust attitude control of spacecraft using sliding mode control
and productive networks

J. C. CHIOUt, M.-C. HWANGt, s. D. Wut and J. Y. YANGt

A new robust attitude control design of spacecraft is proposed by combining sliding
mode control (SMC) and productive networks (PN). Essentially, the sliding mode control
uses discontinuous control action to drive state trajectories toward a specific hyperplane
in the state space, and to maintain the state trajectories sliding on the specific
hyperplane. This principle provides a guideline to design a robust controller. Productive
networks, which are a special type ofartificial neural network, are then used to implement
reaching and sliding conditions, and tackle the drawbacks of SMC such as chattering
and high control gains. Attractive features of the proposed method include a systematic
procedure of controller design, a reduction in chattering, robustness against model
uncertainties and external disturbances. An inverted pendulum and a spacecraft attitude
control problem are given to deomonstrate the effectiveness of the proposed method.

1. Introduction

Nonlinear control design has been studied for the last
two decades (DeCarlo et al. 1988, Li and Slotine 1987,
Sira-Ramirez and Dwyer 1987,Mamdani 1974,Narendra
and Parthasatathy 1990). The aim of this research was
to develop an analysis and design methodology that can
possess robustness properties even in presence of
parameter or structure uncertainties and disturbances. In
the past, the application of nonlinear control methods
was limited by the computational difficulty associated
with nonlinear control design and analysis, such as the
necessity of high speed and high precision. In recent years,
however, advances in computer technology have greatly
relieved this problem. Therefore, there is now consider­
able enthusiasm for the research and applications of
nonlinear control methods.

The sliding mode control was originally developed
based on the variable structure system (VSS) control
(Utkin 1977, DeCarlo 1988). It is known as a robust
control to deal with confined uncertainties due to the
modelling error and disturbances. The sliding mode
control has been applied to many practical systems, such
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as flight control systems, robotics manipulator (Slotine
and Sestry 1983, Bailey and Arapostathis 1987), and
spacecraft attitude control (Singh and Iyer, 1989, Elmali
and Olgac 1992).

The principal objective of sliding mode control is to
force the trajectory of the system to a desired surface,
which is known as the sliding surface. The control laws
are designed so that the system state trajectory will reach
the sliding surface. Once the state trajectory is on the
sliding surface, it is well-known that the system is
insensitive to certain parameter variations and external
disturbances.

Although sliding mode control theoretically shows
excellent robustness properties in dealing with parameter
uncertainty and disturbances, classical sliding mode
control however, presents several undesired drawbacks
that limit its practical implementation. First, the most
serious problem is the phenomenon of chattering, which
is caused by practical switching limits, i.e. the components
cannot operate at an infinite frequency. Since the method
involves extremely high control activity, it may thus excite
high frequency dynamics that are neglected in the course
of modelling. Secondly, the sliding mode control laws are
always chosen to be large enough in order to suppress
those uncertainties caused by the parameter variations
and external disturbances. Thus, it always makes the
sliding mode control (SMC) hard to physically imple­
ment. Finally, the control design procedure and the online
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436 J. C. Chiou et al.

If the following condition is satisfied with the designed
control input, a sliding mode does exist:

In Li and Slotine (1987), the MIMO sliding condition
is given by

where the state vector x(t) E R", and the control vector
u(t) E R": In particular, for each coordinate of the control
vector u, we associate a collection of real-valued
continuous functions {ut(t, x), ui-(t, x), slx)}, i = I,
2, ... , m, such that the control U is given by

(2)

(5)

(3)

(4)

i= 1,2, ... ,m,

for all time.

i= 1,2, ... ,mSi(X) = 0,

{
ut (t,x) for Si(X) > 0,

u{t x) =
, , Ui- (t, x) for slx) < 0,

where

is the ith switching surface.
Since a sliding mode is a motion constrained on a

sliding surface, the sliding surface is designed such that
the system response restricted to sex) = 0 has the desired
behaviour, such as stability and tracking. With this in
mind, let us assume that the output of (I) is of the form
yet) = h(x(t» and that the problem at hand now is to
find a feedback control law to force the output to track
a desired signal y.(t). According to the previous
discussion, the synthesis problem involves two steps: first,
the selection of a switching function s whose zeros
comprise a surface on which the restriction of the
dynamics has the tendency to drive the error yet) - y.(t)
asymptotically to zero; secondly, the design of a switching
control (corresponding to the choice of s) that makes the
state trajectory reach and slide on the sliding surface. A
key issue in SMC design is decided by the existence of
sliding mode on the switching surface. Thus, designing
the proper switching surface is the complementary key
problem in SMC design.

Although general nonlinear sliding surfaces are
possible, linear ones are more prevalent in SMC design.
After the switching surface has been designed, the next
important aspect of SMC design is guaranteeing the
existence of a sliding mode. The Lyapunov stability
criterion is then used to derive a sliding condition so that
the sliding surface can be reached within a finite time. A
suitable Lyapunov function, D, can be chosen as

calculation are tedious and complicated, especially when
the dimension of system is increased or the structure of
the system is highly nonlinear.

In order to overcome these drawbacks, we introduce
productive networks into the sliding mode controller
design. Productive networks (PN) are artificial neural
networks which employ fuzzy logic inference mechanisms.
Problems requiring inferencing with Boolean logic have
been implemented in perceptrons or feedforward net­
works (Bulsari and Saxen 1991 a). However, feedforward
neural networks with sigmoidal activation functions
cannot accurately evaluate fuzzy logic expressions using
the T-norm. Productive networks proposed by Bulsari
(1992) and Bulsari and Saxen (1991 b) can accurately
perform elementary fuzzy logic operations. The pro­
ductive network is much simpler than a feedforward
neural network since the architecture of the PN was
desired to avoid extensive training; in fact, it requires no
training. It was shown that fuzzy logic inferencing could
be performed in productive networks by manually setting
the offsets. Thus, it is reliable since the function of each
of the nodes in the network is known and understood.

The objective of the present paper is to report
a new robust control algorithm combined with sliding
mode control and productive networks. The pro­
posed method is aimed at effectively reducing the
phenomenon of chattering and the high control gain
effect due to nonlinear compensation. It can easily be
implemented without a tedious design procedure and
calculation.

This paper is organized as follows. Section 2 presents
a review of the sliding mode control for a general
nonlinear system. An introduction to productive net­
works is given in § 3, including the derivation of
productive networks and how to perform the three basic
logical operations, AND, OR and NOT. Section 4
presents a new robust control method based on the
sliding mode control and productive networks. In this
section, we first apply the SMC principle to the dynamic
systems so that the robustness of uncertainties and
disturbances will be obtained once the systems are on
the sliding surface. Secondly, by defining the increase or
decrease of control inputs using productive networks, a
control law can be determined. Section 5 presents a
single-input single-output (SISO) inverted pendulum
problem and a multi-input multi-output (MIMO)
spacecraft attitude control problem that illustrate the
performance of the present control algorithm. Section 6
gives the final conclusions. '

which guarantees the transient time from the initial state
to the sliding manifold. Equation (6) is more restrictive

2. Sliding mode control

Consider a control system of the form

x(t) = f(t, x, U), (I)

tT > 0 i = 1,2, ... , m (6)
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Robust attitude control of spacecraft 437

That is, all sliding subconditions in (6) with respect to
sliding variables s,(x). i = I, 2, ... , m, are required to be
strictly satisfied at any time instant.

From the above derivations, sliding mode control
algorithms have been successfully developed. However,
there exist the following drawbacks. First, the sliding
mode controllers inherently contain a high frequency
behaviour, i.e. chattering, which may excite high
frequency dynamics neglected in the course of modelling.
Secondly, the magnitudes of the SMC control laws are
always chosen to be large enough in order to suppress
those uncertainties caused by the parameter variations
and external disturbances. Thirdly, the control design
procedure of the system and the online calculation are
tedious and complicated, especially, when the dimension
of the system is increased or the behaviour of system is
highly nonlinear.

Figure I. A node in a productive network.

node

X,X,

Bias (node offset)

[;]-~

t(A 1\ B 1\ C) = t(A)t(B)t(C) }

t(A v B v C) = I - (I - t(A»)(1 - t(B»)(1 - t(C)

(14)

for three operands. These operations contribute toward
building the productive networks.

A productive network, as defined here, collects an offset
product of inputs and a further offset by a bias. This can
be illustrated by activation of the node as shown in Fig.
I, which can be written as

which is equivalent to the operation shown in (10).
Similarly, we obtain the following operations:

(8)

(7)

for i == I, 2, ... , m.

m

• T' '" • 0v = s s = L. SiSj < .
i= 1

Note that (6) is a special case where

than (5) which only requires

where the weights (WI' w20 w 3 ) and bias(wo) are zero or
one, Xi' i = 1,2, 3 are the inputs of the node. The output
ofthe node is the absolute value of the activation, a, i.e.

In general, one can express the activation in the following
abbreviated form:

a = W o -I I) (wj - xjl +(1/2)Wj(I-Wj)) I· (17)

The productive network has multiple nodes with one
or more inputs which should be positive numbers equal
to or less than I. Each of the nodes has a bias
(alternatively called the offset of the node). Obviously,
the output is decided by the number between 0 and I.
Productive networks are so named because of the
multiplication of inputs at each node.

To show that the productive networks can be
organized to compute any complicated logical operation,
it is sufficient to show that the three basic logical
operations can be implemented in this framework.

The simplest operation, NOT, can be represented by
the networks shown in Fig. 2.

The AND operation as given in Fig. 3 is also
implemented in a facile manner in this framework. Its

3. Productive networks

Since the aforementioned SMC algorithm suffers various
drawbacks in computer implementation, these have
motivated us to look for an alternative procedure that
overcomes these difficulties. This alternative uses the
productive networks to implement reaching and sliding
conditions of SMC, and thus reduces the above­
mentioned drawbacks. In productive networks, if we
assume all logical operations can be represented as the
combinations of AND (1\), OR (v) and NOT (-)
operations, and the truth value of events A, Band Care
represented by t(A), t(B) and t(C) respectively, then the
truth values of AND, OR and NOT can be carried out
as follows:

t(A 1\ B) = t(A)t(B) (9)

t(A v B) = t(A) + t(B) - t(A)t(B) (10)

t( - A) = 1 - t(A). (II)

The OR operation can be modified to a suitable form by

A vB = -(-A 1\ -B) (12)

t(A v B) = 1 - (I - t(A»)(1 - t(B», (13)

y = [n]. (16)
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438 J. C. Chiou et al.

o

node node

x x

(a) NOT (b) NOT

Figure 2. Inverting an input in a productive network (NOT): (a) has the same function as (b).

where xl(t) E R'", X2(t) E Ro-m are the plant state vectors,
and u(t) E Rm,y E Rmare system input and output vectors
respectively. The desired output is Yd(t) E R".

As described in § 2, the first step of SMC design entails
sliding surfaces so that the system dynamics follow a
desired performance once the system state trajectory is
on the sliding surfaces. It can easily be accomplished by
choosing

o

, c, > 0,
o

o
s = e+ ce = 0, c =Figure 3. AND.

o 0 Cm

i = 1, ... , m (19)

where e =Y - Yd is the tracking error and c E Rm
x m is a

diagonal positive matrix. Once the state trajectory is on
the sliding surface, the desired output will be satisfied.
Next, the objective of the sliding mode control is to design
a control law such that the sliding condition is satisfied
i.e. equation (7) is satisfied. In this regard, we differentiate
(19) with respect to time onceand introduce (1) to obtain

Figure 4. OR. s= e+ ce

value of y is the product of the truth values of its
arguments; i.e. both the weights and the bias have values
of zero.

On the other hand, the OR operation requires all
weights and bias equal to I. Figure 4 illustrates an OR
operation with n inputs in a productive network. (20)

where
4. Proposed nonlinear control algorithm

A M IMO nonlinear control system is taken as:

X, = flex"~ x 2, t) 1
X2 = f2(x l, X2' t) + G(x l, X2' t)u

Y = hex,)

(18)

B(x" x 2, t) = (~). (Ofl )'G(X" x 2, t)
oXI OX2

and [O.T] denotes the other terms. In the present
development, equation (8) is used to perform a reaching
and sliding condition because with equation (8) it is easier
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Robust attitude control of spacecraft 439

to obtain the control rules than with equation (7), i.e.
the condition

The final value of /iUj is obtained by the total
summation of /iUij with respect to each sliding surface, i.e.

i = 1,2, ... , m,
m

su, = L so;
i=l

j= 1,2, ... ,m (26)

(21)

should be satisfied for each sliding surface. Now we can
discuss the causal nexus between u) and S;, 5;to construct
control laws.

In equation (20), it is assumed that 5; increases as u)

increases and vice versa. Assuming Bu is greater than
zero, equation (21) provides the information that if s, is
greater than zero and 5; is greater than zero, then
decreasing u) will result in decreasing S;5;. If s, is less than
zero and 5i is less than zero, then increasing u) will result
in decreasing S;5i' The inputs of the proposed productive
networks controller with respect to the ith sliding surface
are s,and 5;.The output in this development is tJ.ui) which
is the change of u) with respect to the ith sliding surface.
In implementation, 5;is approximated with (:I - :I-, )IT
where Tis the sampling time. If we define the truth values
of s, > 0, 5; > 0 as in Fig. 5, then the truth value of
(increasing MJu) is equal to tees; < 0) ("\ (5i < 0)] and the
truth value of (decreasing tJ.Uu) is equal to t[(Si > 0) ("\
(5i > 0)]. It is natural to choose the difference between
t(increasing tJ.U;) and t(decreasing /iUi) as actual output
/iUij. In mathematical descriptions, we have

t(decreasing /iU;j) = tees; > 0) ("\ (5; > 0)]

= tees; > 0)] . t[(5; > 0)] (22)

t(increasing /iU,j) = t[(s, < 0) ("\ (5i < 0)]

= t[ ~ (s, :> 0)] . t[ ~ (5; > 0)] (23)

/iUij = t(increasing /iUij) _. t(decreasing /iU;). (24)

If Bij is less than zero, according to the above
discussion, the sign of /iUu should be changed. Then we
come to the conclusion that

/iUu = sign (Bu)' [t(increasing /iUu)

- t(decreasing /iUu)]. (25)

Figure 5. Trutb value of A > O.

and

Su, = k3j · /i Uj j = 1,2, ... , m (27)

where kjs are prescribed given constants.
A systematic procedure is now available for robust

control of nonlinear dynamic systems. The proposed
nonlinear control algorithm is summarized as follows.

Step I. Design sliding surfaces, s, which are given in (19),
such that the system response is restricted to
s = 0, which guarantees a desired behaviour such
as stability or tracking. Initially, SO = 0 and
UO = 0 where upper index 0 denotes the initial
time step.

Step 2. At a time step tp, compute sP, and sp.

Step 3. Evaluate these truth values of sP > 0, sP > 0 with
two factor vectors k ; k 2 respectively.

Step 4. Use equations (25) and (26) to compute the value
of change of the ith control input with respect to
each sliding surface.

Step 5. To evaluate the output ofthe controller, equation
(27) is used and the control action is updated by

tI = tI-, + Su.

Step 6. Add control action in Step 5 to the nonlinear
dynamic system (1).

Step 7. Return to Step 2.

5. Numerical examples

5.1. S1S0 Systems

An inverted pendulum system shown in Fig. 6 is used
as a SISO example. A movable pole is joined to a vehicle
by a pivot. The pole, which serves as an inverted
pendulum, can be kept standing by moving the vehicle
appropriately. Let wo, Xl and y, denote the coordinates
of the pole, and 8 is the angular position of the pole
deviated from the equilibrium position. The pendulum
has mass m and length 2L, and the moment of inertia is
1 = mL 213. Let X 2 and Y2 denote the coordinates of the
vehicle with mass M. The control force, u, is applied to
the vehicle. The equation of motion is:

[

m2 L 2
.' mL cos 8 ]mgL sin (J - --- cos 8 Sin 8.82 - ·u

.. M+m M+m
8= .

[

m2L2 ]
1 + mL 2

- ---cos2 8
M+m
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440 J. C. Chiou et aJ.

of-----------=::::::=~-----~

- 3.5g, 15em pendulum
------ 50g, 50cm pendulum

20

60

50

10

e 40

(deg)
30

Mg (x"Y,)
/

u

Figure 6. Diagram of an inverted pendulum.
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time (sec)

Figure 7. Time responses of Ott) of two different pendulums.

-- 3.5g, I Scm pendulum

---------. 50g, 50em pendulum

Since the goal of an inverted pendulum is to keep the
pole standing, the actual output of the system and the
desired output, Yd' are chosen to be

y(t) = 0,

Yit) = O.

The sliding surface, s, is chosen to be

S = 0+ JOO = O.

These two factors for t(s > 0) and t(s > 0) are k, and k2

respectively.
Two pendulums with different lengths and weights are

used for simulation. Their specifications are as follows:

pendulum No. I: 3·5 g, IS cm,

pendulum No.2: 50 g, 50 ern.

12

10 II
\

8 r\
6 \

S \

4
\

2

0

-2
0 0.2 0.4

Time (sec)

0.6 0.8 1.0

Td = 10 sin (200t).

The mass of the vehicle is I kg, which is the same for the
two different pendulums. The resulting control was
simulated for the following parameter values:

Time responses of the angular position for both
pendulums, from the given initial condition of 60° from
the equilibrium position, are shown in Fig. 7. The two
response are almost identical in spite of the difference in
system parameters, i.e. the system uncertainties. Note that
there is no overshooting observed for both cases. The
simulation results in Fig. 8 show the time responses of s.

In order to demonstrate the external disturbance
rejection capability of the proposed method, a sinusoidal
external force is applied on the vehicle in the horizontal
direction. It is chosen as

Figure 8. Time responses of s(t) of two different pendulums.

Figures 9-11 show the simulation results. Pendulum No.
2 is used for both cases in order to make a comparison.
The angular position response shown in Fig. 9 is almost
unaffected by the external disturbance, although the time
response of S as shown in Fig. 10 exhibits a severe
oscillation along the sliding surface.

Chattering is a serious drawback of sliding mode
control and has been an important problem in the field
of SMC. Figure 12 shows the state trajectory. It is clear
that the phenomenon of chattering is greatly reduced.

In order to show how the proposed method performs
better than that of SMC combined with fuzzy logic
control (FSMC), we compare it with the method
proposed by Hwang and Lin (1992). The system
parameters are the same. Figures 13 and 14 show the
simulation results. FSMC uses a 'two-degree nested
control window' structure, in which the same set of
control rules is used recursively and different scaling

k, = 10,c = 10,

k2 = 300,
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Robust attitude control of spacecraft 441

70,---~--------------~-

.-- without disturbance
-.. ------. with disturbance

1.21.00.80.2o

- ... ---. sliding surface -
~- 50g, 50cm pendulum

I

I~
II

-, /
"\::-1/ .

o

0.4 0.6

e (rad)

Figure 12. State trajectory of pendulum No.2.

-2

-8

-6

e
(rad/sec)

-4

0.90.80.6 0.70.4 0.5
Time (sec)

0.30.20.1

o

10

20

40
a

(deg) 30

Figure 9. Time response of Ott) with disturbance.

4

2

12,---~-~-~~-~.-~-~~-~-

0.90.80.7

-- proposed method
--- ••••• FSMC

~
"": t-:......::::.",

.5 0.6 0.7 O.

0.2 0.3 0.4. Q.5) 0.6
Time (sec

0.1

50

e 40

(deg)30

20

10

o
- I.~___::__:__-::-:___::-=---=--:--___::-=--__::_:____::-=-__::_:_----::--,-----o

-- without disturbance
--------- with disturbance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Time (sec)

~ , '\" '\ '\ '\ ,. " I '\ 1\" { 1\ "\ '\ "\ r. f (. I. ( f.1\ .'\
J oJ v 'J 'I . '/ \' v 1} \: " .... J J \,I' V", \f", C t 'oJo

-
2

."------;:-:---::'-:'-::--:------::-=--=-::---:e--:-----:!-::-----:--:--........,----,o

8

6

10

Figure 10. Time response of s(t) with disturbance. Figure 13. Time responses of Ott) of two different methods.

300 ,---~-~--.---~--~~-~-~-~---,

-100L-~_~_~~__~_~~_~_~_

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Timetsec)

Figure 11. Time response of u with disturhance.

proposedmethod
FSMC

0.7 0.8 0.90.3

100

50

o

-50o,L-~~___::-=-___::_=_____:-,----::_=_====---:-::---=::::--:

Figure 14. Control inputs of two different methods.

350
300

........ with disturbance

--without disturbance200

o
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442 J. C. Chiou et al.

For numerical simulation, the following values of the
parameters of the spacecraft are assumed. The orbital
angular speed, Wo, is 7·29 X 10- 5 rad S2. The modelling

Yd = [1 - e- o'353'(sin 0·353t + cos 0'353t)]r

where r = [180°,45°, 900]T.

The sliding surface is chosen to be

[
10 0] [0,]

Y = 0 1 0 °= h(O) = O2

o 0 1 03

o

o
~ «-»: + [~
=0.

s=e+ce

The two factors required for t(s > 0) and t(5 > 0) are

k, = [k ll k 12 k'3]T

k2 = [k2, k22 k 23]T

. (B) . (af li )sign ij = sign aW
j

[

0 cos 03 sec O2 - sin 03 sec 02]

LlU = 0 sin 03 cos 03

1 - tan O2 cos 03 tan O2 sin 03

[

t[(s, < 0) 1'1 (5, < 0)] - t[(s, > 0)1'1 (51 > 0)]]

. t[(S2 < 0) 1'1 (52 < 0)] - t[(S2 > 0) 1'1 (52 > 0)]

t[(S3 < 0) 1'1 (53 < 0)] - t[(S3 > 0) 1'1 (53 > 0)]

u is the control torque vector and Td is the external
disturbance vector. 0= [01 O2 03]T denotes the roll,
pitch and yaw angles about the body fixed axes
respectively. w[w, W2 W2]T is the angular velocity with
respect to the inertial frame, and W o, a constant, denotes
the orbital angular velocity of the mass centre of the
spacecraft. (J, /2 /3) are the moments of inertia about
the body fixed axes. The objective of this control strategy
is to track Yd = [Old 02d 03d]T in the presence of
modelling uncertainties and external disturbances. From
Singh and Iyer (1989 and Elmali and Olgac (1992) we get

respectively. Note that B cannot be exactly obtained
because the modelling uncertainties appear in the
moments of inertia, {Ii' i = 1,2, 3}. Since we know the
values of {Ii> i = 1,2, 3} are all positive, it means that the
sign of Bij remains unchanged, i.e.

0 0
Td,
-

/, /,

G= 0 0 Td =
Td2

/2 /2

0 0 'ld3

/3 /3

(.{:] [ -",0. 00' 0, ]
= cos 0, sin 03 + sin 0, sin O2 cos 03 .

cos 0, cos 03 - sin 0, sin O2 sin 03

5.2. M/MO systems

The attitude control problem of a spacecraft is
considered to be an exampie of MI M0 nonlinear systems.
Typically, dynamics and associated characteristics are
taken from Singh and Iyer (1989) and Elmali and Olgac
(1992). Assume the spacecraft is on a circular orbit in an
inverse square gravitational field, and the attitude of the
space vehicle has no effect on the orbit. The equations
of motion of the system are

[

f ' l] [COS 03 sec ~2W2 - sin 03 sec 02W3 - wo]
f, = f'2 = sm 03W2 + cos 03W3

f'3 W, + tan 02(sin 03W3 - cos 03W2)

/2 - /3 2
--- (W2W3 - 3WO~2~3)

/,

/3 - /, 2
f2 = --(W3W, - 3WO~3~')

/2

t, - /2 2
--(W'W2 - 3WO~'~2)

/3

factors are used for each degree of nest. The scaling factors
for the first degree of nest are chosen as the same as the
proposed method: k , = 10, k2 = 300 and k3 = 40; the
scaling factors for the second degree of nest are k, = 0'5,
k2 = 20 and k3 = 4. It is more tedious than the proposed
method which only needs one set of the scaling factors.
In order to avoid the time consumption on defuzzification
of FSMC, it needs a look-up table which directly relates
the controller inputs sand 5 with the controller output
change Llu. This will cause control input to oscillate as,
shown in Fig. 14. On the other hand, the control input
of the proposed method yields no oscillatory effect at the
closing stage of the simulation.

x, = f,(x)

X 2 = fix) + Gu + Td

where x = [x, X2] = [OT W T] is the state vector, and
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where

sat (Bij ) = J~ij
1-1

40353010 15 20 25
Time(sec)

Figure 15. Time responses of 9.
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Figure 16. Time responses of roo
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Figure 17. Time responses of S.

[

MI] [VIII]
M 2 = 0·5[1 + sin (O·lt)]- v2 I 2

flJ.I3 v3I3

where VI = 0·1, V2= 0·2, V3 = 0·3. The external dis­
turbances are chosen as

Td l = 40 sin (2m)

T.s2 = 40 cos (2m)

Td3 = 20 sin (2m).

Bound.j = III

Boundv, = [cos 83 sec 82 1

Bound.j = [sin 03 sec 82 1

Boundy, = III

Boundy; = [sin 03 1

Boundy, = [cos 83 1

Boundj , = III

Boundy, = [tan 82 cos 83 1

Boundj , = [tan 82 sin 83 1.

Simulation results on the attitude tracking manoeuvres
are shown in Figs 21 and 22. In accordance with the
sliding-mode theory, Figs 23 and 24 illustrate that the
sliding vectors sand S are driven to the sliding surface
and then stayed oscillatory because of the desired
tracking variables Yd. All of the control torques applied
in Figs 19, 20, 25 and 26 show that the present scheme
requires lesser torques in comparison with both Singh

uncertainties appear in the form of I, + flJ.I" i = 1, 2, 3,
where I I = 874·6, 12 = 888·2 and 13 = 97·6 kg m2

. The
variations in the inertia are taken as

The initial orientation of the spacecraft is taken as
80 = [- 3 3 5]T degrees. Simulation of the closed-loop
system with control design parameters is chosen
as follows: c = diag (I, I, I), k , = [0·1 0·1 O·lY, k 2 =
[0·1 0·1 O·lY and k 3 = [I I I]T. The responses of
spacecraft are shown in Figs 15 and 16. The transition
of the error functions with tracking conditions are
stabilized in nearly 20 s, as shown in Figs 19 and 20,
whereas, the time differentiation of sliding surfaces, S,
experienced high frequency chattering behaviour as
illustrated in Figs 17 and 18. In order to improve the
behaviour, we further choose saturation function Bij as

if Bi j > Bound.,

if Bij < Bound.,

if Bij < - Bound.,
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Figure 18. Time responses of s.
Time(sec)

Figure 21. Time responses of O.
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Figure 19. Time responses of u.
Figure 22. Time responses of ro.
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Figure 20. Time responses of e. Figure 23. Time responses of S.
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\,.
~ 6. Conclusions

In this paper, a robust control scheme has been developed
to overcome some of the difficulties encountered in the
design and implementation of sliding mode control. It
has been shown that the proposed scheme possesses the
following attractive features.

and Elmali's results. The successful trace of the roll,
pitch and yaw angles to the corresponding desired angles
can be seen from Figs 19, 20, 25 and 26. Hence, the
robustness of unmodelled dynamics and external dis­
turbances can be justified. In view of the simulation
results, the present scheme outperforms both Singh and
Elmali's schemes.
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Figure 24. Time responses of s.
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