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Abstract. We study the linearized stability of stationary solutions of gaseous stars which are
in spherically symmetric and isentropic motion. If viscosity is ignored, we have following three types
of problems: (EC), Euler equation with a solid core; (EP), Euler–Poisson equation without a solid
core; (EPC), Euler–Poisson equation with a solid core. In Lagrangian formulation, we prove that
any solution of (EC) is neutrally stable. Any solution of (EP) and (EPC) is also neutrally stable
when the adiabatic index γ ∈ ( 4

3
, 2) and unstable for (EP) when γ ∈ (1, 4

3
). Moreover, for (EPC)

and γ ∈ (1, 2), any solution with small total mass is also neutrally stable. When viscosity is present
(ν > 0), the velocity disturbance on the outer surface of gas is important. For ν > 0, we prove that
the neutrally stable solution (when ν = 0) is now stable with respect to positive-type disturbances,
which include Dirichlet and Neumann boundary conditions. The solution can be unstable with
respect to disturbances of some other types. The problems were studied through spectral analysis of
the linearized operators with singularities at the endpoints of intervals.
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1. Introduction. In this paper, we shall study the stability problem of gaseous
stars which are in spherically symmetric and isentropic motion. The problem orig-
inated in Newtonian (nonrelativistic) astrophysical theory. A model equation for
describing such motion is shown below:

∂ρ

∂t
+ v

∂ρ
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+
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ρv = 0,(1.1)
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+
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r

∂v

∂r
− 2

r2
v

}
,(1.2)

p = Aργ ,(1.3)

where t ≥ 0 and 0 ≤ R0 < r < ∞; see, e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14, 20]. Here
the unknown variable ρ is the density of the gas and v is the outward velocity. p is
the pressure, A is a positive constant which is related to entropy, and γ ∈ (1,2) is the
adiabatic exponent.

The explanation of the physical parameters δ,M0, R0, and ν is as follows:
δ is the effect of self-gravitating of gas, the mutual graviational attraction among

gas molecules, and is assumed to be either 0 or 1. If δ = 0, we ignore the effect of
self-gravitating. This may happen when the total amount of gas is relatively small.
If δ = 1, we then consider the self-gravitating of gas to be important.
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540 SONG-SUN LIN

M0 is the total mass of the solid core surrounded by the gas. If M0 = 0, then
we assume that R0 = 0. This is the case when there is no solid core and also no
vacuum in the central part of the gaseous body. If M0 > 0, we assume that there is
a stationary, spherical solid core surrounded by the gas. In this case, we normalize
the radius of the solid core with R0 = 1. We also assume that the gas is in contact
the surface of the solid core, i.e., no vacuum exists between the core and the gas. A
nonslip condition is now imposed at the interface, i.e.,

v(t, 1) = 0 for t ≥ 0.(1.4)

We note that astrophysicists consider the solid core to be made of condensed gases in
which there may be complicated activity that influences the surrounding gas. How-
ever, for mathematical simplicity, we will consider these condensed gases to be a solid
core and ignore their influence on the surface gas.

ν is viscosity coefficient. We are mainly concered with inviscid flow, i.e., ν = 0.
After presenting a detailed study of inviscid flow, we will discuss the effect of viscosity
on the stability of stationary solutions.

If viscosity is ignored, then according to the different combinations of parameters
δ,M0, and R0, we have following three types of problems:

(EC): Euler equation with solid core (δ = 0, M0 > 0, R0 = 1, ν = 0);
(EP): Euler–Poisson equation without solid core (δ = 1, M0 = 0, R0 = 0, ν = 0);
(EPC): Euler–Poisson equation with solid core (δ = 1, M0 > 0, R0 = 1, ν = 0).

If viscosity is present, i.e., ν > 0, then the Euler equation will be replaced by a Navier–
Stokes equation and we have problems (NSC), (NSP), and (NSPC), respectively.

The stationary solution (ρ(r), 0) of (1.1)–(1.3) satisfies

dp

dr
= − ρ

r2

{
M0 + 4πδ

∫ r

R0

ρ(s)s2

}
.(1.5)

If we introduce the variable u(r) and the parameter µ > 0 in

ρ = Cγu
q and µ = dγM0,

where

q =
1

γ − 1
, Cγ =

{
Aγ

4π(γ − 1)

} 1
2−γ

, and dγ =

{
(4π)γ−1 γ − 1

Aγ

} 1
2−γ

,

then (1.5) and (1.4) can be studied by considering the following initial-value problems:
for (EC),

u′′ +
2

r
u′= 0, r > 1,

u(1, α, µ) = α and u′(1, α, µ) = −µ

}
;(1.6)

for (EP),

u′′ +
2

r
u′ + uq = 0, r > 0,

u(0, α) = α and u′(0, α) = 0

}
;(1.7)

and for (EPC),

u′′ +
2

r
u′ + uq = 0, r > 1,

u(1, α, µ) = α and u′(1, α, µ) = −µ

}
.(1.8)
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STABILITY OF GASEOUS STARS 541

Here α > 0 is taken as a shooting parameter.
The total mass of the stationary solution u is given by

M̃(u) = 4πCγ

∫ R

R0

uq(r)r2dr,(1.9)

where R ∈ (R0,∞] is the first zero of u, i.e.,

u(R) = 0 and u(r) > 0 in (R0, R).

From a physical point of view, we are only interested in a stationary solution with
finite total mass.

The solution of (1.6) with finite total mass can be written explicitly as

u = µ

(
1

r
− 1

R

)
(1.10)

for some R ∈ (1,∞].
The solution of (1.7) has been studied extensively by Lane et al.; see, e.g., [1].

Their solutions include the ball type (R <∞), the ground-state type (R = +∞), and
the singularity type, i.e., limr→0+ u(r) =∞.

Equation (1.8) has recently been studied in [5] and may have multiple solutions
for certain µ and M̃ when q > 3.

The multiplicity results of these problems will be given in section 2.
In this paper, we mainly study the stability of stationary solutions obtained from

(1.6), (1.7), and (1.8) since only the local existence and not the global-existance of
the initial-value problem in (1.1)–(1.3) is known (see, e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14]).
We therefore need only study the linearized stability of these stationary solutions.

The linearized stability problem of the stationary solution ρ(r) will be studied in
Lagrangian formulation. Indeed, equations (1.1)–(1.3) can be written in Lagrangian
coordinates as

ρt + 4πρ(r2v)x = 0,(1.11)

vt + 4πr2px +
1

r2
(M0 + x) = 16π2ν(r2ρvx)x − 2νv(r2ρ)−1,(1.12)

r =

{
R0 +

3

4π

∫ x

0

1

ρ(t, y)
dy

} 1
3

and x = 4π

∫ r

R0

ρ(s, t)s2ds,

where t ≥ 0 and x ∈ (0, M̃). We assume that the perturbation of (ρ(x), 0) is in a
radial direction only and write

ρ(t, x) = ρ(x){1 + εeλtΦ(x)} and v(t, x) = εeλtΨ(x)(1.13)

in (1.11) and (1.12), where |ε| is small. Let

φ(x) =

∫ x

0

Φ(y)

ρ(y)
dy.
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542 SONG-SUN LIN

Then the linear equations for Φ and Ψ can be simplified as follows:

(ρpφx)x −
1

πγr3 pxφ =
λ2

γ(4πr2)2
φ

− λν

4πγr2

{
16π2

[
r4ρ

(
1

4πr2φ

)
x

]
x

− 2

r2ρ

1

4πr2φ

}
(1.14)

with boundary condition

φ(0) = 0,(1.15)

where

r =

{
1 +

3

4π

∫ x

0

1

ρ(y)
dy

}
.

Transforming (1.14) into r-coordinates and writting φ(x) = ψ(r), we obtain

Lψ ≡ (r−2pψ′)′ − 4

γ
r−3p′ψ =

λ2

γ
r−2ρψ − λν

γ
(r−2ψ′)′(1.16)

with ψ(R0) = 0, where p is the pressure in r-coordinates. Since ρ(R) = 0, if ν = 0,
then (1.16) is singular at r = R. We can prove that the singularity at R is a limit-
point type and so L is self-adjoint. Therefore, λ2 is real for any eigenvalue λ when
ν = 0. Now ρ is called neutrally stable if λ2 < 0 for any eigenvalue λ and unstable if
λ2

1 > 0 for some eigenvalue λ1. Hence if ν = 0, then neutrally stable is the best we
can hope for. Indeed, when ν = 0, we have our stability results for ball-type solutions
as follows.

Theorem 1.1. Assume that ν = 0 and ball-type solutions have been considered.
Then

(I) any solution of (EC) is neutrally stable;
(II) any solution of (EP) is neutrally stable if q ∈ (1, 3) and unstable if q > 3;

and
(III) for (EPC), we have the following:
(i) any solution is neutrally stable if q ∈ (1, 3],
(ii) for any q > 1, u(·, α, µ) is neutrally stable if α ∈ (0, µ], and
(iii) if |R− 1| is sufficiently small, then it is neutrally stable.
Some stability results concerning ground-state-type and singularity-type solutions

are also presented in section 4.
When viscosity is present and λ /∈ [−γν p(R0), 0], then (1.16) is regular atR. In this

case, the viscosity term plays the dominant role in studying the eigenvalue problems.
Now ρ is called stable if Reλ < 0 for any eigenvalue λ and unstable if Reλ1 > 0 for some
eigenvalue λ1. Note that (1.16) is genuinely quadratic in λ (linear in λ2 when ν = 0)
and λ is complex in general. Hence when ν > 0, we may have better than the neutral
stability that we have when ν = 0. Since the outer surface of gas is a free surface,
the velocity disturbance Ψ on it will play an important role. For example, we have
stability results for (EC), (EP), and (EPC) as follows.

Theorem 1.2. Let u be a neutrally stable, ball-type stationary solution of (EC),
(EP), or (EPC) when ν = 0. Then for any ν > 0, u is stable with respect to Ψ =
ψ1 + iψ2 if ψj(M̃)ψ′j(M̃) ≤ 0 for both j = 1 and 2 on the gas surface. On the other
hand, there is a positive constant κ∗ depending on u such that u is unstable with
respect to Ψ = ψ1 + iψ2 if ψ′1(M̃)/ψ1(M̃) ≥ κ∗ and some ψ2.
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STABILITY OF GASEOUS STARS 543

The precise definition of stability with respect to the boundary disturbance Ψ is
given in section 5.

The paper is organized as follows. In section 2, we recall some useful multiplic-
ity results for stationary solutions with finite total masses. Their stabilities will be
investigated in subsequent sections. In section 3, we study the linearized operators
L and prove that they have limit-point-type singularities at their endpoints. We also
provide a useful comparison lemma to test for stability. In section 4, we prove various
stability results, which include Theorem 1.1. The solutions for other types of stability
problems are also studied. In section 5, we study the effect of viscosity on stability
problems and prove some results, including Theorem 1.2. In Appendix A, we study
the asymptotic behavior of solutions of (1.16) at R when ν = 0, which is very useful
for studying ball-type solutions. In Appendix B, we recall Friedrichs’ criteria for the
spectrum discreteness of differential operators that have singular endpoints. These
criteria are very useful in studying ground-state-type and singularity-type solutions.

2. Stationary solutions. In this section, we recall some multiplicity results
for stationary solutions without interior vacuums and with finite total masses. Let
R ≤ ∞ be the first zero of solution u and M̃(u) be the total mass given in (1.9). For
notational simplicity, we omit the constant 4πCγ in (1.9) and then define

M(u) =

∫ R

R0

u(r)qr2dr,(2.1)

where R0 = 0 for (EP) and R0 = 1 for (EC) and (EPC).
Since the total mass of a gas remains constant while it is in motion and it may tend

to a stationary state as time goes by, it is useful to know the numbers of stationary
solutions for the same total mass. Hence we try to answer the following questions.

Questions. Given M > 0, how many solutions u are there for (EP) with M(u) =
M? Given µ > 0 and M > 0, how many solutions u are there for (EC) or (EPC) with
M(u) = M?

Complete answers of (EC) and (EP) can be provided; see, e.g., [1]. However,
(EPC) has only recently been studied and the result is complete for 1 < q ≤ 3 but
partial when q > 3; see [5].

First, for (EC), the solution of (1.6) is given by

u(r, α, µ) = α− µ+ µ
1

r
.(2.2)

If α ∈ (0, µ), then u(R(α, µ), α, µ) = 0 with

R(α, µ) =

(
1− α

µ

)−1

.

In this case, we may write u(·, α, µ) = uR,µ with

uR,µ(r) = µ

(
1

r
− 1

R

)
.

It is clear that M(uR,µ) is strictly increasing in R and tends to

M∗q =


+∞ if 1 < q ≤ 3,

1

q − 3
· µq if q > 3.
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544 SONG-SUN LIN

If α = µ, then R(µ, µ) = +∞ and

u(r, µ, µ) =
µ

r

with

M(u(·, µ, µ)) = M∗q .

If α > µ, then M(u(·, α, µ)) = ∞, which is not of physical interest. Hence we have
the following unique result for (EC).

Proposition 2.1. For any q > 1, µ > 0, and M ∈ (0,M∗q ), there is a unique
solution uR,µ for (EC) such that M(uR,µ) = M .

Next, for (EP), we consider the initial-value problem

u′′ +
2

r
u′ + uq = 0, r > 0,(2.3)

u′(0, α) = 0 and u(0, α) = α > 0.(2.4)

It is known that solutions of (2.3) have similar properties. Indeed, if u(r) is a
solution of (2.3), then for any β > 0,

uβ(r) = βσu(βr)(2.5)

is also a solution, where σ = 2
q−1 . The total mass of uβ is

M(uβ) = β
3−q
q−1M(u).(2.6)

The property (2.5) is related to the following classical Lane–Emden–Fowler trans-
formations:

Let

r = e−τ and z(τ) = rσu(r).(2.7)

(2.3) can then be transformed into the autonomous equation

z′′ + (2σ − 1)z′ + σ(σ − 1)z + zq = 0(2.8)

or, equivalently, the dynamic system{
z′ = y,
y′= −{2σ − 1)y + σ(σ − 1)z + zq}.(2.9)

If q ∈ (1, 3], then 0 = (0, 0) is the only equilibrium for (2.9) on the right half-plane
R2

+ = {(z, y) : z ≥ 0}. If q > 3, then there is another equilibrium S = (zσ, 0), where

zσ = {σ(1− σ)} 2
σ .(2.10)

0 is always a saddle point with the unstable manifold Γ, which is leaving in the
direction (1, 1 − σ)t, and the stable manifold Γ̃, which is arriving for the direction
(1,−σ), where (a, b)t is the transpose of vector (a, b) in R2. Let

q+ = 1 +
2

σ+
and σ+ =

√
2− 1

2
.
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STABILITY OF GASEOUS STARS 545

It is than easy to verify that q+ ∈ (3, 5).
We now list some useful properties of the equilibrium S and system (2.9) on the

phase plane R2
+.

Proposition 2.2.

(I)
(i) If q ∈ (3, q+), then S is a stable improper node.

(ii) If q = q+, then S is a stable proper node.
(iii) If q ∈ (q+, 5), then S is stable spiral.
(iv) If q = 5, then S is a center.
(v) If q > 5, then S is an unstable spiral.

(II)
(i) For q ∈ (3, 5), the unstable manifold Γ of 0 is a heteroclinic orbit connecting

0 and S. There is no nontrivial periodic orbit on R2
+.

(ii) For q = 5, Γ = Γ̃, i.e., Γ is a homoclinic orbit of 0. The inside of Γ is
covered by a family of concentric periodic orbits centered around 0.

(iii) For q > 5, the stable manifold Γ̃ of 0 is a heteroclinic orbit connecting 0 and
S.

The proofs are elementary and omitted; see [1] for details.
Every trajectory in the phase plane of (2.9) represents a family of self-similar

solutions in (2.5). After carefully investigating the trajectories in the phase plane, we
have exactly four types of solutions for (EP) with finite total mass for (EP):

(i) B-type solutions: ball-type solutions that lie on Γ̃ and appear when q ∈
(1, 5);

(ii) G-type solutions: ground-state solutions that also lie on Γ̃ and only appear
when q ≥ 5; they also have fast decay rates as r → +∞, i.e.,

lim
r→+∞

ru(r) ∈ (0,∞);(2.11)

(iii) SB-type solutions: ball-type solutions with a singularity at r = 0 that appear
when q ∈ (3, 5) and are trajectories between Γ and Γ̃ that have a weak singularity,
i.e., u satisfies

lim
r→0+

rσu(r) ∈ (0,∞);(2.12)

(iv) SG-type solutions: ground-state solutions with a singularity at r = 0 that
lie on Γ and satisfy (2.12); they also appear when q ∈ (3, 5);

Note that if the singularity at r = 0 is strong, i.e.,

lim
r→0+

ru(r) > 0,(2.13)

then u has an infinite total mass: for example, the SB-type solution when q ∈ (1, 3).
If the ground-state solution has a slow-decay rate at ∞, i.e.,

lim
r→∞

rσu(r) > 0,(2.14)

then u also has an infinite total mass, which includes the following cases:
(i) qσr

−σ for q > 3; this corresponds to the equilibrium S = (zσ, 0);
(ii) when q = 5, all trajectories lie on homoclinic orbit Γ;

(iii) when q > 5, all trajectories spiral out from S;
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546 SONG-SUN LIN

With this preparation complete, we can now state our unique results for (EP).
Proposition 2.3. For (EP), we have the following:

(i) If q ∈ (1, 3) and any M > 0, there is a unique—B-type—solution u such
that M(u) = M .

(ii) If q = 3, only a special M̂ of a stationary solution u—a B-type solution—
admits. (All similar solutions of u also have the same total mass M̂ .)

(iii) If q ∈ (3, 5) and any M > 0, there are unique B-type, SB-type, and SG-type
solutions with the same total mass M .

(iv) If q = 5 and any M > 0, there is a unique—G-type—solution u such that
M(u) = M .

(v) If q > 5, there is no stationary solution with finite total mass.
Proof. The proofs are based on the phase-plane analysis in (2.9) and the use of

(2.6), and they are elementary. Thus the details are omitted.
As for (EPC), there are two types of solutions with finite total mass:

(i) BC-type solutions: ball-type solutions with solid cores;
(ii) GC-type solutions: ground-state solutions with solid cores that satisfy (2.11).

We recall some results from [5].
Proposition 2.4. For (EPC), we have the following:

(i) When q ∈ (1, 3], for any µ > 0 and M > 0, there is a unique—BC-type—
solution u that satisfies M(u) = M .

(ii) When q > 3, for any µ > 0, the solution set is the disjoint union of N
many connected components Ck = {u(·, α, µ) : α ∈ (α̃k, α̂k)}, k = 1, 2, . . . , N , where
N = N(µ, q) is a positive integer or infinity.

At Ck with k ≥ 2, M((u(·, α, µ)) tends to infinity at at least one end. At
C1, α̃1 = 0 and α̂1 > µ.

For detailed statements of Proposition 2.4(ii), see Theorems 3.5, 3.7, 3.9, and 3.13
in [5].

Remark 2.5. When there is a vaccum in the central part of the gaseous body
that is also stationary, then u satisfies

u′′(r) +
2

r
u′(r) + uq(r) = 0, R1 < r < R2,(2.15)

u(R1) = 0 = u(R2),(2.16)

where 0 < R1 < R2 ≤ ∞. For any q > 1 and 0 < R1 < R2 < ∞, Ni and Nussbaum
[17] proved that there is a unique positive solution of (2.15) and (2.16). In contrast
to Proposition 2.3(v), for any q > 1, the solution u of (2.15) and (2.16) with R2 <∞
has a finite total mass. We can then ask the following questions: Given q > 1 and
M > 0, how many solutions u are there for (2.15) and (2.16) with M(u) = M? What
is the stability of these annular-type solutions? These problems will be studied later.

3. Linearizations. In this section, we will use a Lagrangian formulation to
study the stability of the stationary solutions obtained in last section. Since we
want to know the stability result when the outer surface of the gas is also perturbed,
it is convenient to work in Lagrangian coordinates. We study only the inviscid flow
in this section and defer study of the the viscous flow to section 5.

For notational simplicity, we replace r with r in (1.16) with ν = 0. We then
obtain

Lψ = −`Wψ in (R0, R),(3.1)
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STABILITY OF GASEOUS STARS 547

where

Lψ ≡ (r−2pψ′)′ − 4

γ
r−3p′ψ, W (r) ≡ ρ(r)

γr2
, and ` = −λ2.

ψ also satisfies the boundary condition

ψ(R0) = 0.(3.2)

In terms of u, (3.1) can also be written as

L0ψ ≡ ψ′′ +
{

(1 + q)
u′

u
− 2

r

}
ψ′ − 4q

r

u′

u
ψ = −`(γACγ−1

γ )−1ψ

u
.(3.3)

Since u(R) = 0, L is singular at R. Furthermore, L is also singular at r = 0 for (EP).
When R <∞, we first study the asymptotic behavior of solution ψ of (3.1) at R.

Indeed, we have the following result. (The proof is given in Appendix A.)
Lemma 3.1. Let R <∞. If ` is real and ψ is a (real) solution of (3.1) in (R0, R),

then either ψ is bounded at r = R or ψ(r) = (R − r)−qψ̂(r) for r close to R, with

ψ̂(R) 6= 0, and ψ̂ is continuous at R. Furthermore, in the former case, ψ is C2 at R,
and in the latter case,

ψ′(r) = q(R− r)−q−1ψ̂(R) + o((R− r)−q−1)(3.4)

as r → R−.
Similarly, if R0 = 0, then either ψ(0) 6= 0 or |ψ(r)| ≤ Cr3 for r close to 0 and

some C > 0.
To study the singularity type at R, it is convenient to remove the weight function

W from right-hand side of (3.1). Indeed, if R0 = 1, let r0 = 1, and if R0 = 0, choose
any r0 ∈ (0, R) and fix it. Then define

s = s(r) =

∫ r

r0

W (τ)dτ =
1

γ

∫ r

r0

τ−2ρ(τ)dτ(3.5)

and

S0 =

∫ R0

r0

W (τ)dτ and S =

∫ R

r0

W (τ)dτ.

It is clear that S0 = 0 when R0 = 1 and S0 = −∞ when R0 = 0. Furthermore, W > 0
in (R0, R) implies that the inverse function of s(r) exists. We may denote it by

r = r(s)

for s ∈ (S0, S). Let

χ(s) = ψ(r(s)).

Then (3.1) is transformed into

L̃χ = −`χ in (S0, S),(3.6)

where

L̃χ =
1

γ

d

ds

(
r−4pρ

dχ

ds

)
− 4

p′

rρ
χ.
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548 SONG-SUN LIN

Let L2(S0, S) be the complex-valued L2-space on (S0, S) with the standard inner
product

(χ, χ̃) ≡
∫ S

S0

χχ̃ds.(3.7)

It is clear that

(χ, χ̃) =

∫ R

R0

ψψ̃W (r)dr ≡ (ψ, ψ̃)w.(3.8)

Here ( , )w defines an inner product in space L2
w(R0, R) by (3.8).

Now we can prove L̃ has limit-point-type singularity at S.
Lemma 3.2. If S < ∞, then L̃ is limit-point type at S. Furthermore, for (EP),

L̃ is also limit-point type at −∞.
Proof. From [2], it is known that L̃ is the limit-point-type singularity at S if we

can find a solution pair {`, χ} for (3.6) in a neighborhood of S such that χ is not L2.
This can be done as follows:

Since

p = ACγγu
q+1(3.9)

and

p′ = A(q + 1)Cγγu
qu′,

we have

p′(r)

rρ(r)
= A(q + 1)Cγ−1

γ

u′(r)

r
.(3.10)

Hence (3.10) implies

lim
r→R

p′(r)

rρ(r)
= A(q + 1)Cγ−1

γ

u′(R)

R
.(3.11)

Fix Ŝ ∈ (S0, S). For any real `, let χ be the real solution of the following initial-
value problem:

L̃χ = −`χ in (Ŝ, S),(3.12)

χ(Ŝ) = 0 and χ′(Ŝ) = 1.(3.13)

Denote R̂ = r(Ŝ). Now (3.11) implies that there exists `0 < 0 such that

`0rρ(r)− 4p′(r) ≤ 0(3.14)

in [R̂, R]. We claim that χ /∈ L2(Ŝ, S) if ` ≤ `0.
Indeed, if χ ∈ L2(Ŝ, S), then Lemma 3.1 and (3.8) imply that χ is bounded at S.

From (3.12) and (3.13), we obtain

1

γ

∫ S

Ŝ

r−4pρ

(
dχ

ds

)2

ds = `

∫ S

Ŝ

χ2ds− 4

∫ S

Ŝ

p′

rρ
χ2ds.(3.15)
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STABILITY OF GASEOUS STARS 549

Now the left-hand side of (3.15) is positive and the right-hand side of (3.15) is non-
positive when ` ≤ `0, a contradication. This implies that χ /∈ L2(Ŝ, S) for ` ≤ `0.
Therefore, L̃ is limit-point type at S.

For (EP), (3.10) and (1.7) imply that

lim
r→0+

p′(r)

rρ(r)
= −A

3
(q + 1)Cγ−1

γ uq(0).(3.16)

Now using (3.11) and (3.16), we can choose `0 < 0 such that (3.14) holds in (0, R̂).
Let ψ(r) = χ(s(r)); then Lemma 3.1 implies either

ψ(0) 6= 0(3.17)

or

|ψ(r)| ≤ Cr3 and |ψ′(r)| ≤ Cr2(3.18)

for some C > 0. Now we can rule out the possibility of (3.18) when ` ≤ `0. Indeed,
if (3.18) holds, then

0 <
1

γ

∫ Ŝ

−∞
r−4pρ

(
dχ

ds

)2

ds =

∫ Ŝ

−∞

(
`− 4p′

rρ

)
χ2ds < 0,

a contradication.
Hence we must have (3.17) when ` ≤ `0, i.e., χ /∈ L2(−∞, Ŝ). Therefore, L̃ is a

limit-point-type at −∞. The proof is complete.
An immediate consequence of Lemma 3.2 is that L̃ is self-adjoint. Indeed, we

have the following result (for the proof, see [2]).
Corollary 3.3. For (EC) and (EPC), if R < ∞, let D1 be the set of all

functions χ such that
(i) χ is differentiable and χ′ is absolutely continuous on [0, Ŝ] for any Ŝ < S,
(ii) χ and L̃χ ∈ L2(0, S), and
(iii) χ(0) = 0.

Then L̃ is self-adjoint, i.e.,

(L̃χ, χ̂) = (χ, L̃χ̂)(3.19)

for all χ and χ̂ in D1.
Similarly, for (EP), let D0 be the set of all functions χ such that
(i)′ χ is differentiable and χ′ is absolutely continuous over (−∞, Ŝ] for any Ŝ ∈

(−∞, S) and
(ii)′ χ and L̃χ ∈ L2(−∞, S).

Then L̃ is self-adjoint.
Furthermore, using Friedrichs’ criteria, we can prove that L̃ has only a discrete

spectrum.
Theorem 3.4. Let u be a stationary solution of (EC), (EP), or (EPC) with

R < ∞. The spectra of L̃ consist of sequences of strictly increasing eigenvalues
{`j}j=1 with associated eigenfunctions {χj}∞j=1 in D1 (or D0).

Proof. We first claim that no continuous spectrum comes out of S. Indeed, using
(3.5), it can be verified that

s(r) = S − c1(R− r)q+1 + o((R− r)q+1)(3.20)
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550 SONG-SUN LIN

for r close to R, where c1 > 0 depends on R, u′(R), and γ.
Let

a(s) =
1

γ
r−4p(r)ρ(r), b(s) =

4p′

rρ
, and c(s) = 1.

(3.20) then implies

a(s) = c2(S − s)2−ε + o((S − s)2−ε),(3.21)

where ε = 1
q+1 and c2 > 0. Let

h(s) =

∫ s

0

1

a(τ)
dτ.

Then (3.21) implies

h(s) = c3(S − s)ε−1 + o((S − s)ε−1)(3.22)

for s close to S, where c3 > 0.
Hence (3.21) and (3.22) imply that

4ah2 = c4(S − s)ε + o((S − s)ε),(3.23)

where c4 > 0. (3.11) now implies that b(s) is bounded at S. Therefore, (3.23) implies
that

Z(s) =
1

c

{
b+

1

4ah2

}
→ +∞(3.24)

as s → S. By Proposition B.3 in Appendix B, no continuous spectrum comes out of
S, and L̃ is totally descrete in R1. In particular, for (EC) and (EPC), the spectrum
of L̃ is a sequence of eigenvalues {`j}∞j=1 such that

lim
j→∞

`j = +∞.(3.25)

For (EP), we also need to prove that (3.24) holds when s→ −∞. From (3.5), we have

s = −c0r−1 + o(r−1)(3.26)

for r → 0+, where c0 > 0. Therefore,

a(s) = c5s
4 + o(s4)(3.27)

as s→ −∞, where c5 > 0. Let

h(s) =

∫ 0

s

1

a(τ)
dτ.

Then (3.27) implies

h(s) = c6(−s)−3 + o(s−3)(3.28)

as s→ −∞, where c6 > 0. Hence (3.27) and (3.28) imply

4ah2 = c7s
−2 + o(s−2)
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STABILITY OF GASEOUS STARS 551

as s→ −∞. (3.24) then follows from last equation and (3.16). Hence no continuous
spectrum comes out from −∞ for (EP). The proof is complete.

From Lemma 3.4, L̃ has only the real eigenvalue `. Therefore, λ is either real or
purely imaginary for any eigenvalue λ.

From these observations, we then introduce the following notion of stability.
Definition 3.5. Let u be a ball-type stationary solution of (EC), (EP), or (EPC),

and let {`j}∞j=1 be the associated eigenvalues of L̃ given in Theorem 3.4. u is then

called neutrally stable if `1 > 0 (i.e., λ1 = ±i
√
`1 is purely imaginary), is called

unstable if `1 < 0 (i.e., λ1 = ±
√
|`1| is real), and is called marginally stable if

`1 = 0.
A similar definition can also be given for ground-state- and singularity-type solu-

tions.
Remark 3.6. From Lemma 3.1 and Theorem 3.4, if ψ is an eigenfunction, then

ψ(R) is bounded. Furthermore, for (EP), ψ(r) = O(r3) as r → 0+. Moreover, the
least eigenvalue `1 can be obtained by a variational method; see, e.g., [3]. Indeed, for
(EC) or (EPC), we have

`1 = inf

{
Q(ψ)

I(ψ)
: ψ(1) = 0 and ψ ∈ C1[1, R]

}
,

where

Q(ψ) =

∫ R

1

{
r−2p(r)ψ′2(r) +

4

γ
r−3p′(r)ψ2(r)

}
dr

and

I(ψ) =
1

γ

∫ R

1

r−2ρ(r)ψ2(r)dr.

A similar formulation also holds for (EP) with ψ(r) = O(r3) as r → 0+.
The following comparison lemma is very useful for testing the stability of station-

ary solutions.
Lemma 3.7. Let u be a BC-type stationary solution for (EC) or (EPC). Then

the following hold:
(i) If there exists a ψ̃ ∈ C2([1, R]) with ψ̃(1) = 0, ψ̃ > 0 in (1, R], that satisfies

L0ψ̃ ≤ 0 (but not ≡) in (1, R),

then u is neutrally stable.
(ii) If there exists a ψ ∈ C2([1, R]) with ψ(1) = 0, ψ > 0 in (1, R], that satisfies

L0ψ ≥ 0 (but not ≡) in (1, R),

then u is unstable.
A similar result also holds for a B-type stationary solution u for (EP) provided

the comparison function ψ̃ (or ψ) satisfies ψ̃ (or ψ) ∈ L2
w(0, R) and Lψ̃ (or Lψ) ∈

L2
w(0, R).

Proof. Let ψ1 > 0 in (R0, R) be the associated eigenfunction with respect to `1
in (3.20). If there is a ψ̃ that satisfies all conditions in (i), then it is easy to see that
Lψ̃ ≤ 0 in (1, R), which implies that

0 =

∫ R

1

(ψ̃Lψ1 − ψ1Lψ̃)dr > −`1
∫ R

1

Wψ̃ψ1dr.
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552 SONG-SUN LIN

Therefore, `1 > 0. This proves (i). (ii) and the cases for (EP) can be proved analo-
gously. The proof is complete.

4. Stability results. In this section, we shall use the methods developed in the
preceding section to study the stability of various stationary solutions. We begin
with ball-type solutions, proceed to ground-state solutions, and finally conclude with
singular solutions.

4.1. Ball-type solutions. We first introduce an auxiliary operator L̃, defined
as

L̃ψ ≡ ψ′′ − (q + 3)

r
ψ′ +

4q

r2
ψ.(4.1)

L̃ is closed related to L0, as can be seen from the following:

L0ψ = L̃ψ +

{
(1 + q)ψ′ − 4q

r
ψ

}(
u′

u
+

1

r

)
.(4.2)

The following results for operator L̃ are very useful in constructing the comparison
functions ψ̃ and ψ according to Lemma 3.7.

Lemma 4.1. For any q > 1, we have L̃(r4) = 0 and L̃(rq) = 0. Moreover, if
q = 4, we also have L̃(r4 log r) = 0.

Furthermore, if we let (i) ψ̃ = r4 − rq if q ∈ (1, 4), (ii) ψ̃ = r4 log r if q = 4, and
(iii) ψ̃ = rq − r4 if q ∈ (4,∞), then we have (a) L̃ψ̃ = 0 for r > 1, (b) ψ̃(1) = 0, and
(c) the following:

(1 + q)ψ̃′ − 4q

r
ψ̃ > 0 for r > 1.(4.3)

Proof. The computations are straightforward, so we verify only the last inequality
and omit the others. Indeed, for q 6= 4,

(1 + q)(rq − r4)′ − 4q

r
(rq − r4) = q(q − 3)rq−1 − 4r3,

and for q = 4,

(1 + q)(r4 log r)′ − 4q

r
(r4 log r) = 4r3 log r + 5r3.

The result follows.
Next, it is easy to verify the following lemma, so we omit the proof.
Lemma 4.2. If u > 0 in (1, R) and satisfies the equation

u′′ +
2

r
u′ + f(u) = 0 for r > 1,

then

d

dr

(
u′

u
+

1

r

)
= − 1

r2u2
{(ru′ + u)2 + r2uf(u)}.

In particular, if u(·, α, µ) is a solution of (1.6) or (1.8), then α ≤ µ implies(
u′

u
+

1

r

)
< 0 in (1, R).(4.4)

We can now establish the stability results for (EC) and (EPC) when α ≤ µ.
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STABILITY OF GASEOUS STARS 553

Theorem 4.3.

(i) For any q > 1, µ > 0, and R > 1, the solution uR,µ of (EC) is neutrally
stable.

(ii) For any q > 1, let u(·, α, µ) be the solution of (EPC). Then u(·, α, µ) is
neutrally stable if α ≤ µ.

Proof. It is not difficult to verify R(α, µ) <∞ when α ≤ µ in (ii). Let ψ̃ be given
as in Lemma 4.1. Then for both (i) and (ii), Lemmas 4.1 and 4.2 imply Lψ̃ < 0 in
(1, R).

Thus Lemma 3.7 implies that uR,µ and u(·, α, µ) with 0 < α ≤ µ are neutrally
stable. The proof is complete.

We can also establish other stability results for (EPC) by choosing appropriate
comparison functions and applying Lemma 3.7. For example, we can prove the fol-
lowing theorem.

Theorem 4.4. For (EPC), we have the following:

(i) If q ∈ (1, 3], then all BC-type solutions are neutrally stable.
(ii) For any q > 1, there is Rq > 1 such that u is neutrally stable whenever the

first zero R of u is less than Rq.

Proof. (i) It is known that R(α, µ) <∞ for any α > 0 and µ > 0 when q ∈ (1, 3];
see, e.g., [18]. Let ψ̃ = r3 − 1. Then ψ̃(1) = 0, ψ̃ > 0 in (0,∞), and

L0ψ̃ =

{
u′

u
(3− q)r2 +

4q

r

}
,

which is negative in (0,∞) if q ∈ (1, 3]. Thus by Lemma 3.7(i), u is neutrally stable.

(ii) Let ψ̃ = log r. Then ψ̃(1) = 0, ψ̃ > 0 in (1,∞), and

L0ψ̃ = −3r−2 +
1

r

u′

u
{(1 + q)− 4q log r}.

Therefore, L0ψ̃ < 0 in (1, R) if R ≤ Rq ≡ exp(1+q
4q ). The result also follows from

Lemma 3.7(i). The proof is complete.

Remark 4.5. By picking a comparison function ψ̃ different from log r in Theorem
4.4(ii), we can also obtain another R̃q, which ensures that u is neutrally stable when

R ≤ R̃q.
By choosing an appropriate comparison function, we obtain the following stability

results for (EP).

Theorem 4.6. For (EP), we have the following:

(i) If q ∈ (1, 3), then any B-type solution is neutrally stable.
(ii) If q = 3, then any B-type solution is marginally stable.

(iii) If q ∈ (3, 5), then any B-type solution is unstable.

Proof. Let ψ̃ = r3. Then ψ̃(0) = ψ̃′(0) = 0 and ψ̃ > 0 in (0,∞). Furthermore,
we have

L0ψ̃ = (3− q)r2u
′

u
.

Hence the result follows by Lemma 3.7. The proof is complete.

Proof of Theorem 1.1. Combining the results from Theorems 4.3, 4.4, and 4.6, we
obtain Theorem 1.1.
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554 SONG-SUN LIN

4.2. Ground-state solutions. From section 2, we know that if a ground-state-
type solution u has a finite total mass, then it is necessary that u have a fast decay
rate, i.e.,

lim
r→∞

ru(r) = m ∈ (0,∞).(4.5)

In this section, we will prove that the linearized operator L associated with u has a
continuous spectrum (0,∞). Therefore, u cannot be neutrally stable. In fact, it is
either marginally stable or unstable.

Lemma 4.7. If u is a G- or GC-type solution and satisfies (4.5), then the lin-
earized operator L of u is discrete below 0 and has a continuous spectrum (0,∞).

Proof. In Lemma 3.4, we have shown that no continuous spectrum comes from
r = 0 for L in (EP). Therefore, we need only study L as r → ∞. We may assume
that m = 1 in (4.5). We then have

p(r) = Ãr−1−q + o(r−1−q)

and

p′(r) = −(1 + q)Ãr−q + o(r−q)

as r →∞, where Ã = ACγγ . As before, we have the following asymptotic expansions
for the coefficients of L as r →∞:

a(r) = r−2p(r) = Ãr−3−q + o(r−3−q),

b(r) =
4

γ
r−3p′(r) = −4qÃr−5−q + o(r−5−q),

and

c(r) =
1

γ
r−2ρ(r) = Âr−2−q + o(r−2−q)

as r →∞, where Â > 0 is a constant. Therefore, for large fixed r̂, we have

h(r) =

∫ r

r̂

dτ

a(τ)
= {Ã(4 + q)}−1r4+q + o(r4+q)

as r →∞.
We claim that

Z(r) =
1

c(r)

{
b(r) +

1

4a(r)h2(r)

}
→ 0 as r →∞.(4.6)

Indeed, it is clear that

4a(r)h2(r) = 4Ã−1(4 + q)−2rq+5 + o(r5+q) as r →∞.

Therefore, we have

b(r) +
1

4a(r)h2(r)
= Ã

{
(4 + q)2

4
− 4q

}
r−5−q + o(r−5−q)

=
Ã

4
(q − 4)2r−5−q + o(r−5−q).
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STABILITY OF GASEOUS STARS 555

Hence

Z(r) = A∗r−3(q − 4)2 + o(r−3)

for some A∗ > 0. (4.6) follows. Now by Proposition B.3 (II)–(III) in Appendix B, the
linearized operator L of u has a continuous spectrum (0,∞) and is descrete below 0.
The proof is complete.

An immediate consequence of Lemma 4.7 is the following theorem for ground-
state-type stationary solutions.

Theorem 4.8. Any ground-state-type solution of (EC), (EP), or (EPC) is either
marginally stable or unstable.

4.3. Singular solutions. In this section, we will continuously apply Friedrichs’
criteria to study the stability of singularity-type solutions. We know that if q ∈ (3, 5)
and u is a singular solution of (EP) with finite total mass, then u has a weak singularity
at r = 0, i.e.,

lim
r→o+

rσu(r) = m ∈ (0,∞).(4.7)

As in section 4.2, we are interested in the limit of Z(r) as r → 0+. (4.7) now implies
the following expansions:

a(r) = r−2p(r) = Ãr−σ(q+1)−2 + o(r−σ(q+1)−2),

b(r) =
4

γ
r−3p′(r) = −4σqÃr−σ(q+1)−4 + o(r−σ(q+1)−4),

and

c(r) = Âr−2−σq + o(r−2−σq)

as r → 0+ for some positive constants Ã and Â.
Therefore,

h(r) =

∫ r

0

ds

a(s)
= Ã−1{3 + σ(q + 1)}−1rσ(q+1)+3,

with h(0) = 0.
It is straightfoward to compute

Z(r) = A∗r−σ−2

{
1

4
[3 + σ(q + 1)]

2 − 4σq

}
+ o(r−σ−2)

=
A∗

4
r−σ−2{4σ2 + 4σ − 7}+ o(r−σ−2)

for some positive constant A∗.
Hence we obtain the following lemma.
Lemma 4.9. Let u be a singular solution of (EP) satisfying (4.7). Then we have

the following:
(i) if q ∈ (3, q+), then limr→0+ Z(r) = +∞;
(ii) if q = q+, then limr→0+ Z(r) = 0;
(iii) if q ∈ (q+, 5), then limr→0+ Z(r) = −∞;
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556 SONG-SUN LIN

and

Ω0 =

∫ r̂

0

{
c(r)

−a(r)Z(r)

} 1
2

dr <∞.

Therefore, by applying Theorem 4.6(iii), Lemma 4.9, and Proposition B.3, we
obtain the following theorem for singularity-type solutions.

Theorem 4.10. For problem (EP), we have the following:
(i) If q ∈ (3, q+), then any SB-type solution is unstable and has no continuous

spectrum. Any SG-type solution is also unstable but has a continuous spectrum (0,∞).
(ii) If q = q+, then any SB-type and SG-type solution is unstable and has a

continuous spectrum (0,∞).
(iii) If q ∈ (q+, 5), then any SB-type and SG-type solution is unstable, and there

is a sequence of pure imaginary eigenvalues {λk} such that limk→∞ λ2
k = −∞.

Proof. For any q ∈ (3, 5) and for an SB-type solution u, choose ψ̃ = r3. Then we
have

Lψ̃ = (3− q)r2u
′

u
> 0.

Therefore, by modifying the proof of Lemma 3.5, we can prove that u is unstable.
The remaining results follow from Lemma 4.9 and Proposition B.3. The details of the
proof are omitted and the proof is complete.

5. Effects of viscosity. In this section, we shall study the effect of viscosity
on the stability problem of stationary solutions. From equation (1.2), it is clear
that stationary solutions for inviscid flow are also solutions for viscous flow. As we
have seen in the previous sections, the best possibilities for stationary solutions are
neutrally stable in the inviscid case. It is known that neutral stability is very sensitive
to disturbances. Therefore, we need to know what effect viscosity has on neutrally
stable stationary solutions.

Since the gaseous mass is not confined from outside, its outer surface is a free
surface maintained by the attraction of the core and its own gravitational forces.
Presumably, the surface of the gas should be very sensitive to a direct disturbance of
it. In this section, we show that this is the case, as mentioned in Theorem 1.2.

When viscosity its present, the linearized equation is

Lψ = λ2Wψ − λνL̂ψ,(5.1)

where

L̂ψ ≡ 1

γ
(r−2ψ′)′(5.2)

or, equivalently,{
r−2

(
p(r) + λ

ν

γ

)
ψ′
}′
− 1

γ
{4r−3p′(r) + λ2r−2}ψ = 0.(5.3)

When ν > 0, the eigenvlaue equation (5.1) is linear for ψ but quadratic for λ,
which is different from ordinary eigenvalue problems. Indeed, if ν = 0 in (5.1), then
(5.1) is linear for ` = −λ2. Since the coefficients of L, L̂, and W are real, it is easy
to see that if {λ, ψ} is a solution of (5.1), then its conjugate {λ, ψ} is also a solution.
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STABILITY OF GASEOUS STARS 557

This property does not affect the stability, which depends on the sign of Reλ in the
stationary solution.

In this section, we concentrate on the effects of viscosity and boundary distur-
bances. Therefore, we restrict our study to ball-type solutions which are neutrally
stable. The problems of unstable stationary solutions, ground-state solutions, and
singularity-type solutions will be left for future study.

We first consider (EC) and (EPC) and then continue by studying (EP).
Let

λ∗ =
γ

ν
P (R0).(5.4)

When R0 = 1, we will prove that (5.1) is regular on [1, R] when λ /∈ [−λ∗, 0]. Indeed,
for λ 6= −λ∗, let ψ(·, λ) = ψ(·, λ, ν) be the solution of (5.3) that satisfies the initial
conditions

ψ(1, 0) = 0(5.5)

and

ψ′(1, λ) = 1.(5.6)

We can then prove the following result.
Lemma 5.1. Let u be a BC-type stationary solution of (EC) or (EPC). If λ /∈

[−λ∗, 0], then ψ(·, λ) is C2 on [1, R] and is analytic in λ ∈ C− [−λ∗, 0]. Furthermore,
if λ ∈ (−λ∗, 0), then either ψ(·, λ) is bounded at r = r̂ or |ψ(r, λ)| grows like | log |r−r̂||
as r → r̂, where r̂ ∈ (1, R) satisfies p(r̂) + λ νγ = 0. If λ = −λ∗, then any nontrivial

solution ψ of (5.3) is unbounded in a neighborhood of r = 1. The case in which λ = 0
was studied in Lemma 3.1.

Proof. Let λ = λ1 + iλ2 and ψ = ψ1 + iψ2 in (5.3) and denote

a = r−2
(
p+ λ1

ν
γ

)
, b = λ2

ν

γ
r−2,

c =
1

γ
{4r−3p′ + r−2(λ2

1 − λ2
2)}, d =

2

γ
λ1λ2r

−2.

Then it is clear that a2(r̂) + b2 = 0 for some r̂ ∈ [1, R] if and only if λ2 = 0 and
λ1 ∈ [−λ∗, 0]. In this case, p(r̂) + λ1

ν
γ = 0.

Now (5.3) can be written as the following system of equations:

(aψ′1 − bψ′2)′ = cψ1 − dψ2,
(bψ′1 + aψ′2)′ = dψ1 + cψ2.

(5.7)

For λ /∈ [−λ∗, 0], denote

ψ̃1 = aψ1 − bψ2 and ψ̃2 = bψ1 + aψ2.(5.8)

We then have

ψ1 = (aψ̃1 + bψ̃2)(a2 + b2)−1,

ψ2 = (−bψ̃1 + aψ̃2)(a2 + b2)−1.
(5.9)
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558 SONG-SUN LIN

By a straightforward but lengthy computation on (5.7), we obtain the following system
of equations for ψ̃1 and ψ̃2:

ψ̃′′1 = Ãψ̃′1 + B̃ψ̃1 + C̃ψ̃′2 + D̃ψ̃2,

ψ̃′′2 = Ãψ̃′2 + B̃ψ̃2 − C̃ψ̃′1 − D̃ψ̃2,
(5.10)

where

ã = a(a2 + b2)−1, b̃ = b(a2 + b2)−1,(5.11)

and

Ã = a′ã+ b′b̃,

B̃ = (a′′ + c)ã+ (b′′ + d)b̃+ a′ã′ + b′b̃′,

C̃ = a′b̃− b′ã,
D̃ = (a′′ + c)b̃− (b′′ + d)s̃+ a′b̃′ − b′ã′.

(5.12)

Since the coefficients of (5.10) are continuous on [1, R], then ψ̃′1 and ψ̃′2 are C2 on
[1, R] and analytic in λ ∈ C− [−λ∗, 0]. Hence ψ1 and ψ2 have the same properties as
ψ̃1 and ψ̃2. This proves the first part of the lemma.

To study λ ∈ (−λ∗, 0), we write (5.3) as

ψ′′ +

{
1

r − r̂ + g(r)

}
ψ′ +

1

r − r̂ f(r)ψ = 0 for r < r̂,

where g and f are analytic at r̂. Hence r̂ is a regular singular point. Therefore, by a
standard theorem (see, e.g., [2]), this implies that ψ either is bounded at r̂ or grows
logarithmically at r̂.

Finally, if λ = −λ∗, then p(1) = λ∗ νγ . Let s = r− 1; then (5.3) can be written as

ψ′′ +

(
2

s
+ g

)
ψ′ +

( c2
s2

+
c1
s

+ f
)
ψ = 0 for s > 0,

where g and f are continuous at s = 0 and c2 > 0.
Let

µ1 =
1

2
(−1 +

√
1− 4c2) and µ2 =

1

2
(−1−

√
1− 4c2).

If µ1 6= µ2, then ψ behaves asymptotially like sµ1 or sµ2 as s→ 0+. If µ1 = µ2 = − 1
2 ,

then |ψ(s)| behaves asymptotically like s−
1
2 or s−

1
2 | log s| as s → 0+. In any case, ψ

is unbounded at s = 0. The case in which λ = 0 was studied in Lemma 3.1. The
proof is complete.

Considering (1.13) and Lemma 5.1, we introduce the following notion.
Definition 5.2. For λ /∈ [−λ∗, 0], ψ(·, λ) is called a stable mode if Reλ < 0, an

unstable mode if Reλ > 0, and a marginally stable mode if Reλ = 0.
In the following, we shall study the relationship between the sign of Reλ and

ψ(R, λ), i.e., how the disturbance of the gas surface influences the stability of the
stationary solution u.

Since ψ(·, λ) is C2 in [1, R] for λ /∈ [−λ∗, 0], ψ(R, λ) and ψ′(R, λ) satisfies homo-
geneous boundary conditions at R, i.e.,

ajψ
′
j(R) + bjψj(R) = 0,(5.13)
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STABILITY OF GASEOUS STARS 559

where ψ1 = Reψ and ψ2 = Imψ, aj = aj(λ) and bj = bj(λ) are analytic in λ /∈ [−λ∗, 0]
for j = 1, 2.

When aj 6= 0, denote

κj(λ) =
bj(λ)

aj(λ)
.(5.14)

Then (5.13) can be written as

ψ′j(R)

ψj(R)
= −κj .(5.15)

When aj = 0, i.e., ψj satisfies the Dirichlet boundary condition ψj(R) = 0, we adopt
the convention κj = +∞.

We can now introduce the notion of the stability of stationary solutions with
respect to the boundary conditions (5.5) and (5.15) (or (5.13)).

Definition 5.3. Let u be a BC-type stationary solution for (EC) or (EPC).
Then u is called stable with respect to (5.5) and (5.15) if any eigenvalue λ of (5.1),
(5.5), and (5.15) satisfies Reλ < 0. u is called unstable if there is an eigenvalue λ̃
of (5.1), (5.5), and (5.15) such that Reλ̃ > 0. u is called marginally stable if any
eigenvalue λ of (5.1), (5.5), and (5.15) satisfies Reλ ≤ 0 and equality holds for some
λ̃.

The stability problem with respect to boundary condition (5.15) can also be
studied by making the following observation:

Denote

C+ = {λ ∈ C : Reλ > 0}, C− = {λ ∈ C : Reλ < 0},
and C0 = {λ ∈ C : Reλ = 0}.

For any stationary solution u and any

(κ1, κ2) ∈ R
2 ≡ R2 ∪ {(k1,∞) : κ1 ∈ R1} ∪ {(∞, k2) : κ2 ∈ R1} ∪ {(∞,∞)},

denote by σ(κ1, κ2) the set of eigenvalues of (5.1), (5.5), and (5.15). Then define

Ks = Ks(u) ≡ {(κ1, κ2) : σ(κ1, κ2) ⊂ C−},

Ku = Ku(u) ≡ {(κ1, κ2) : σ(κ1, κ2) ∩C+ 6= φ},

and

Km = Km(u) = {(κ1, κ2) : σ(κ1, κ2) ∩C+ = φ and σ(κ1, κ2) ∩C0 6= φ}.

From Lemma 5.1, we know that any one of Ks,Ku, and Km is nonempty. Hence
the stability of u with respect to a given (κ1, κ2) is equivalent to deciding to which
set—Ks,Ku, or Km—(κ1, κ2) belongs. In general, for a given u, it is not easy to
completely identify Ks, Ku, and Km. However, we shall find some subsets of Ks and
Ku that will give us sufficient conditions to determine whether u is stable or unstable
with respect to given (κ1, κ2).

We first prove the following stability result.
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560 SONG-SUN LIN

Theorem 5.4. Let u be a neutrally stable BC-type stationary solution of (EC)
or (EPC) when ν = 0. Then for any ν > 0, we have

{(κ1, κ2) : κ1 ≥ 0, κ2 ≥ 0} ⊂ Ks(u),(5.16)

i.e., u is stable if

κ1 ≥ 0 and κ2 ≥ 0(5.17)

or, equivalently, if

ψ′j(R)ψj(R) ≤ 0(5.18)

for j = 1, 2.
Proof. Since u is assumed to be neutrally stable when ν = 0, 0 is not an eigenvalue

of (5.1), (5.5), and (5.15). If λ ∈ (−λ∗, 0), then there is nothing to prove. Hence we
consider the case where λ /∈ [−λ∗, 0) and is an eigenvalue with respect to (5.15) such
that (κ1(λ), κ2(λ)) satisfies (5.17). We must prove that

Reλ < 0.(5.19)

Indeed, multiply (5.1) by ψ and then integrate from 1 to R; λ satisfies

aλ2 + bλ+ c = 0,(5.20)

where

a =
1

γ

∫ R

1

r−2ρ(r)(ψ2
1 + ψ2

2)dr > 0,(5.21)

b = −ν
∫ R

1

ψL̂ψdr, and c = −
∫ R

1

ψLψdr.

Since u is assumed to be neutrally stable when ν = 0, we have `1 > 0 in (3.1).
Moreover, ψ is C2 on [1, R]. Hence Remark 3.6 implies that

c > 0.(5.22)

Now let

b = b1 + ib2,(5.23)

where

b1 = −ν
∫ R

1

(ψ1L̂ψ1 + ψ2L̂ψ2)

= ν


2∑
j=1

∫ R

1

r−2(ψ′j)
2 −

2∑
j=1

R−2ψ′j(R)ψj(R)


and

b2 = −ν
∫ R

1

(ψ1L̂ψ2 − ψ2L̂ψ1)

=
ν

γ
R−2(ψ2(R)ψ′1(R)− ψ1(R)ψ′2(R)).
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STABILITY OF GASEOUS STARS 561

Assumption (5.18) implies that

b1 > 0.(5.24)

Now we are going to show that the root λ of (5.20) satisfies (5.19) provided the
coefficients satisfy (5.21)–(5.24). It is clear that the roots λ of (5.20) are given by

λ± =
1

2a
{−(b1 + ib2)± (b2 − 4ac)

1
2 }.(5.25)

Let

X = b21 − b22 − 4ac and Y = b1b2.

Then

b2 − 4ac = X + 2iY.

Moreover, if x and y are real numbers such that

(x+ iy)2 = X + iY,

then

x2 =
1

2
{X + (X2 + 4Y 2)

1
2 }.

To show (5.19), it suffices to prove that b1 > |x|, i.e.,

b21 > x2.(5.26)

By (5.21) and (5.22), we have

2b21 −X = b21 + b22 + 4ac > 0.(5.27)

It is easy to check that

(2b21 −X)2 − (X2 + 4Y 2) = 16ac.(5.28)

Hence (5.26) follows from (5.21), (5.22), (5.27), and (5.28). The proof is com-
plete.

Next, we prove the following instability results.
Lemma 5.5. Let u be a neutrally stable BC-type stationary solution of (EC) or

(EPC) when ν = 0. For any ν > 0, if λ is real and λ > 0, we have

ψ(R, λ) > 0 and ψ′(R, λ) > 0.(5.29)

Furthermore, we have

lim
λ→0+

ψ′(R, λ)

ψ(R, λ)
= +∞(5.30)

and

lim
λ→∞

ψ′(R, λ)

ψ(R, λ)
= +∞.(5.31)
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562 SONG-SUN LIN

Proof. If λ > 0, then p(r) + λ νγ > 0 in [1, R]. Integrating (5.3) from 1 to r and

using (5.5) and (5.6), we obtain

(5.32)

r−2

(
p(r) + λ

ν

γ

)
ψ′(r) =

(
p(1) + λ

ν

γ

)
+

1

γ

∫ r

1

{4s−3p′(s) + λ2s−2}ψ(s, λ)ds.

If λ2 is large enough that

λ2 + 4s−1p′(s) ≥ 0 in [1, R],(5.33)

then (5.5), (5.6), and (5.32) imply

ψ(r, λ) > 0 and ψ′(r, λ) > 0 in [1, R].(5.34)

In particular, (5.29) holds.
Now by applying Theorem 5.4, we claim that (5.29) also holds for any λ >

0. Otherwise, by the continuous dependence of ψ(R, λ) with respect to λ, we have
ψ′(R, λ1) = 0 or ψ(R, λ1) = 0 for some λ1 > 0. Since (5.18) is satisfied by this λ1,
Theorem 5.4 implies λ1 < 0, a contradiction. Hence (5.29) holds for any λ > 0.

To show (5.30), we note that u is neutrally stable and by Proposition A.1 in
Appendix A, we have

lim
r→R−

(R− r)qψ(r, 0) = c0 > 0(5.35)

and

lim
r→R−

(R− r)q+1ψ′(r, 0) = c1 > 0.(5.36)

From (5.35), (5.36), and (5.29), it is not difficult to prove that (5.30) holds. The
details of the proof are omitted.

Finally, it remains to prove (5.31). If λ > 0 and is large enough, then (5.3), (5.33),
and (5.34) imply that

ψ′′(r, λ) > 0 in [1, R].(5.37)

Moreover, by (5.32), there is a positive constant c2 that is independent on λ such
that for a large λ, we have

ψ′(R, λ) ≥ λc2
∫ R

r

ψ(s, λ)ds(5.38)

for r ∈ [ 1
2R,R]. Now for any s ∈ [ 1

2R,R], write

ψ(s, λ) = ψ(R, λ) + ψ′(R, λ)(s−R) +
1

2
ψ′′(r̃, λ)(s−R)2(5.39)

for some r̃ ∈ (s,R). Subsituting (5.39) into (5.38) and using (5.37), we obtain

ψ′(R, λ)

{
1 +

1

2
λc2(R− r)2

}
≥ λc2ψ(R, λ)(R− r).(5.40)
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STABILITY OF GASEOUS STARS 563

If we choose r such that (R−r)λ 1
2 = 1, then (5.40) implies that for a large λ, we have

ψ′(R, λ) ≥ c3λ
1
2ψ(R, λ),

where the positive constant c3 is independent of λ. Hence (5.31) follows. The proof
is complete.

For any real λ /∈ [−λ∗, 0], ψ(r, λ) is a real function, i.e., ψ2 = Imψ ≡ 0. κ2(λ) is
then undetermined for all real λ /∈ [−λ∗, 0]. However, we can define κ2(λ) for these λ
by going through the following limiting process.

Let λ1 and λ2 be real numbers such that λ1 /∈ [−λ∗, 0] and |λ2| 6= 0 and is
sufficiently small. We then have

ψ(r, λ1 + iλ2) = ψ(r, λ1) + iλ2
∂ψ

∂λ
(r, λ1) + o(|λ2|2)(5.41)

as λ2 → 0. Therefore, for any real λ1 /∈ [−λ∗, 0], we can define

κ2(λ1) =
∂2ψ

∂r∂λ
(R, λ1)/

∂ψ

∂λ
(R, λ1).(5.42)

It is not difficult to prove that κ2(λ) is well defined and is continuous for λ ∈ C −
[−λ∗, 0].

Now by applying Lemma 5.5, we have that following instability result.
Theorem 5.6. Let u be a neutrally stable BC-type stationary solution of (EC)

or (EPC) when ν = 0. Then for any ν > 0, there is a positive constant κ∗ = κ∗(ν, u)
such that for any κ1 < −κ∗, there is a nonempty open set U(κ1, ν, u) such that u is
unstable with respect to (5.5) and (5.15) for (κ1, κ2) with κ2 ∈ U(κ1, ν, u).

Proof. For any ν > 0, let

κ∗(ν, u) = min

{
ψ′(R, λ, ν)

ψ(R, λ, ν)
: λ ∈ (0,∞)

}
.

By (5.30) and (5.31), we have κ∗(ν, u) > 0. If κ1 < −κ∗, then there is λ1 > 0 such
that

ψ′(R, λ1)

ψ(R, λ1)
= −κ1.

Let

U(κ1, ν, u) = {κ2 ∈ (−∞,∞] : (κ1, κ2) ∈ Ku}.

Then (5.42) implies that

κ2(λ1) ∈ U(κ1, ν, u).

Thus U(κ1, ν, u) is nonempty. It is clear that U(κ1, ν, u) is open, and the result follows.
The proof is complete.

Proof of Theorem 1.2. Theorem 1.2 follows from Theorems 5.4 and 5.6.
We now come to (EP). In this case, (5.3) has a singularity at r = 0 even for

λ /∈ [−λ∗, 0). Therefore, we need to modify our argument to obtain a result as in
Lemma 5.1. Indeed, the initial conditions (5.5) and (5.6) will be replaced with

r−2ψ(r, λ) = 0 at r = 0(5.43)
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564 SONG-SUN LIN

and

(r−2ψ(r, λ))′ = 1 at r = 0.(5.44)

We then have the following result.
Lemma 5.7. Let u be a B-type solution of (EP). Then the solution ψ(r, λ) of

(5.3), (5.43), and (5.44) exists in a neighborhood of r = 0 if λ 6= −λ∗ ≡ γ
ν p(0).

Furthermore, ψ(·, λ) has the same property as in Lemma 5.1.
Proof. Following the same argument as in the proof of Lemma 5.1, we have

equation (5.9) for ψ̃1 and ψ̃2 in r > 0. For λ 6= −λ∗, after a careful computation,
(5.9) can be written as

ψ̃′′1 =

(
−2

r
+ g1

)
ψ̃′1 +

(
2

r2
+ f1

)
ψ̃1 + g2ψ̃

′
2 + f2ψ̃2(5.45)

and

ψ̃′′2 =

(
−2

r
+ g1

)
ψ̃′2 +

(
2

r2
+ f1

)
ψ̃2 − g2ψ̃

′
1 − f2ψ̃1,(5.46)

where gj(r) and rfj(r) are continuous (in fact, C2) at r = 0 for j = 1, 2. Now r = 0 is
a regular singular point in (5.45) and (5.46). By a standard argument, we can prove
that there is bounded solution {ψ̃1, ψ̃2} of (5.45) and (5.46). Moreover, they satisfy

ψ̃1(r) = a0r + o(r),

ψ̃2(r) = b0r + o(r)
(5.47)

as r → 0+. The details of the proof are omitted. Now the initial conditions (5.43)
and (5.44) imply that a0 and b0 satisfy

a0 = p(0) + λ1
ν

γ
and b0 = λ2

ν

γ
.(5.48)

Subsituting (5.47) into (5.9), we obtain

ψ1(r) = r3 + o(r3),
ψ2(r) = O(r3)

(5.49)

as r → 0+.
The other properties of ψ(·, λ) can also be obtained as in proving Lemma 5.1; the

details are omitted. The proof is complete.
By arguing as in Theorems 5.4 and 5.6, we can obtain the following stability result

for problem (EP).
Theorem 5.8. Let u be a neutrally stable B-type stationary solution of (EP)

when ν = 0. Then for any ν > 0, u is stable with respect to (5.43) and (5.15) if
κ1 ≥ 0 and κ2 ≥ 0. On the other hand, there is a positive constant κ∗ = κ∗(ν, u)
such that for any κ1 < −κ∗, there is a nonempty open set U(κ1, ν, u) such that u is
unstable with respect to (5.43) and (5.15) for (κ1, κ2) with κ2 ∈ U(κ1, ν, u).

Proof. The proof is the same as was used for Theorems 5.4 and 5.6. Therefore,
the details are omitted.

Remark 5.9. In their recent work on (EC), Makino et al. [15, 16, 19] showed that
when γ > 4

3 and ν > 0, uR,µ is nonlinearly asymptotically stable with respect to small
perturbations. Their result is consistent with ours.
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STABILITY OF GASEOUS STARS 565

Appendix A. Asymptotic behavior at R. In this section, we shall study the
asymptotic behavior of a real solution ψ at R for (3.3) with real `. Let

τ = R− r and ψ̃(τ) = ψ(r).

Then ψ̃ satisfies

ψ̃′′ + {(1 + q)τ−1 + g(τ)}ψ̃′ + τ−1f(τ)ψ̃ = 0.

For simplicity, we omit the ∼’s and write the last equation as

ψ′′ + {(1 + q)τ−1 + g(τ)}ψ′ + τ−1f(τ)ψ = 0, τ > 0,(A.1)

where g and f are continuous at τ = 0.
Then we have the following result concerning the behavior of ψ at 0.
Proposition A.1. For any q > 1, let ψ be a solution of (A.1). Then either ψ is

bounded at 0 or

ψ(τ) = τ−qψ̂(τ)(A.2)

with ψ̂ continuous at 0 and ψ̂(0) 6= 0. Furthermore, in the former case, ψ is C2 at 0,
and in the latter case, we have

ψ′(τ) = −qτ−q−1ψ̂(0) + o(τ−q−1)(A.3)

as τ → 0+.
Proof. If g and f are analytic in a neighborhood of τ = 0, then the result is well

known; see, e.g., [2]. For completeness, we provide a proof here that assumes only
that g and f are continuous at τ = 0. Since the proof is elementary, some details are
omitted.

For τ > 0, let

ψ(τ) = τ−qω(τ).(A.4)

ω then satisfies

ω′′ + {(1− q)τ−1 + g}ω′ + (f − qg)τ−1ω = 0, τ > 0.(A.5)

Let G(0) = 0 and G′(τ) = g(τ), (A.5) can then be written as

(τ1−qeGω′)′ + τ−qeG(f − qg)ω = 0.(A.6)

Fix τ1 > 0 and let τ0 ∈ (0, τ1) be chosen later. After integrating (A.6) from τ to τ0,
we have

ω′(τ) = τ q−1E(τ)C0 + τ q−1E(τ)

∫ τ0

τ

F (s)s−qω(s)ds,(A.7)

where

E(τ) = exp(−G(τ)), F (τ) = (f − qg) exp(G(τ)),

and C0 = τ1−q
0 ω′(τ1) exp(G(τ1)).
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566 SONG-SUN LIN

We first claim that

ω and ω′ are bounded on (0, τ ].(A.8)

Indeed, let

C1 = |C0| max
τ∈[0,τ1]

|E(τ)| and C2 = max
τ∈[0,τ1]

|E(τ)| · max
τ∈[0,τ1]

|F (τ)|.

Then from (A.7), we have

|ω′(τ)| ≤ C1τ
q−1 + C2τ

q−1

∫ τ0

τ

s−q|ω(s)|ds,(A.9)

which implies that

|ω′(τ)| ≤ C1τ
q−1 + C3 max

s∈[τ,τ0]
|ω(s)|,

where

C3 = C2 · (q − 1)−1.

Now for any τ ∈ (0, τ0), substituting (A.9) into

ω(τ) = ω(τ0) +

∫ τ

τ1

ω′(s)ds,

we obtain

|ω(τ)| ≤ |ω(τ0)|+ C4 + C3τ0 max
s∈[τ,τ0]

|ω(s)|,(A.10)

where

C4 = C1τ
q
1 .

Now if we choose C3τ0 < 1, (A.10) then implies

|ω(τ)| ≤ (1− C3τ0)−1{|ω(τ0)|+ C4}.

Hence ω is bounded on [0, τ1]. By (A.9), ω′ is bounded on [0, τ1], which also implies
that ω is continuous at 0. Now if ω(0) 6= 0, then (A.4) and (A.8) imply (A.3). If
ω(0) = 0, we shall claim that

|ω(τ)| ≤ C5τ
q(A.11)

for some C5 > 0. Indeed, ω(0) = 0 and ω′ bounded on [0, τ1] implies that

|ω(τ)| ≤ C6τ.(A.12)

Now substituting (A.12) into (A.9), we have

|ω′(τ)| ≤ C7τ
q−1 + C8τ(A.13)

for some C7 > 0 and C8 > 0. Substituting (A.13) into

ω(τ) =

∫ τ

0

ω′(s)ds,

we obtain a better estimate for ω than (A.12). After repeating the processes a finite
number of times, (A.15) follows. The proof is complete.
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STABILITY OF GASEOUS STARS 567

Appendix B. Friedrichs’ criteria. In this section, we recall a useful criterion
of Friedrichs [4] for studying the spectra of second-order differential operators that
are self-adjoint and singular at their endpoints.

Let J = (x−, x+) ⊂ R1 be a bounded or unbounded open interval.
Let a(x), a′(x), b(x), and c(x) be continuous functions on J . Furthermore, a(x)

and c(x) are positive on J . The eigenvalue equation

−(a(x)φ′(x))′ + b(x)φ(x) = λc(x)φ(x)

can be written as

Lφ = λφ,

where

L = c−1(x)

{
− d

dx

(
a(x)

d

dx

)
+ b(x)

}
.

Define

h =

∣∣∣∣∫ dx

a(x)
+ C

∣∣∣∣ > 0

in the neighborhood of x− or x+. The constants C = C− or C = C+ should be
chosen such that at the endpoint, h is either zero or infinite.

If h(x−) = 0 (or h(x+) = 0),(B.1)

then we require that

φ(x−) = 0 (or φ(x+) = 0).(B.2)

Otherwise, we need not put conditions on φ at x− or x+.
DefineX = {φ : J → R1 : φ is absolutely continuous and satisfies

∫ x+

x− c(x)φ2(x)dx

< ∞,
∫ x+

x− a(x)φ′2(x)dx < ∞, and
∫ x+

x− |b(x)|φ2(x)dx < ∞ and also satisfies (B.1) if
(B.2) holds} and

(φ, ψ) =

∫ x+

x−
c(x)φ(x)ψ(x)dx.

Definition B.1. The spectrum of L is called discrete below λ∗ if for every
λ′ < λ∗ there exists at most a finite number of mutually orthogonal eigenfunctions
φλ(x) associated with eigenvalue λ ≤ λ′ such that for every φ ∈ X such that

(φ, φλ) = 0,

we have

(φ,Lφ) ≥ λ∗(φ, φ).

L is called totally discrete if L possesses a pure point spectrum.
Remark B.2. If the spectrum is discrete below every λ∗, then it is totally discrete.
Define

Z(x) =
1

c(x)

{
b(x) +

1

4a(x)h2(x)

}
.

Friedrichs’ criterion can then be stated as follows.
Proposition B.3.
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568 SONG-SUN LIN

(I) L is totally discrete if

Z(x)→∞ as x→ x− and x→ x+.

(II) L is discrete below λ∗ if

lim inf Z(x) ≥ λ∗ as x→ x− and x→ x+.

(III) L is not discrete below λ∗ if Z(x) is bounded below and

lim supZ(x) < λ∗

as either x→ x− or x→ x+.
(IV) The spectrum of L is discrete below λ∗, unbounded below, if

lim inf
x→x−

Z(x) ≥ λ∗,

lim
x→x+

Z(x) = −∞,

and

Ω =

∫ x+

x0

{
c(x)

−a(x)Z(x)

} 1
2

dx <∞,

where x0 < x+ such that Z(x) < 0 in (x0, x+). A similar result holds if the roles of
x− and x+ are interchanged.
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