
國 立 交 通 大 學 
 

管理科學系 
 

博 士 論 文 
 

No. 023 
 
 

預測公司破產事件之研究 

 

On Bankruptcy Prediction 
 
 
 
 
 

研 究 生：黃瑞卿 

指導教授：李昭勝  教授 

 
 
 
 
 

中 華 民 國 九 十 五 年 十 月 



國 立 交 通 大 學 
 

管理科學系 

 

博 士 論 文  
 

No. 023 
 

預測公司破產事件之研究 

 

On Bankruptcy Prediction 

 

 

研 究 生：黃瑞卿 

研究指導委員會：王耀德  教授 

許和鈞  教授 

謝國文  教授 

指導教授：李昭勝  教授 

 

中 華 民 國 九 十 五 年 十 月



預測公司破產事件之研究 

On Bankruptcy Prediction 
 
 

研 究 生：黃瑞卿                    Student：Ruey-Ching Hwang 

指導教授：李昭勝                    Advisor：Jack C. Lee 

 
 

國 立 交 通 大 學 

管理科學系 

博 士 論 文 

 
 

A Thesis 

Submitted to Department of Management Science 

College of Management 

National Chiao Tung University 

in Partial Fulfillment of the Requirements 

for the Degree of  

Doctor of Philosophy 

in 

Management 
 

 October 2006 
 

Hsin-Chu, Taiwan, Republic of China 
 

中華民國九十五年十月 







 i

預測公司破產事件之研究 

學生：黃瑞卿                                指導教授：李昭勝博士 

 

國立交通大學管理科學系博士班 

 

摘          要 

本文使用半母數羅吉特模型（semiparametric logit model）建立一個公司破產

事件的預測方法，並將之應用在追蹤性（prospective）或稱簡單隨機（simple random）

資料，以及個案控制（case-control）或稱選擇性（choice-based）資料。我們使用

區域概似方法（local likelihood approach）估計半母數羅吉特模型中未知參數，

且研究這些估計式的漸近偏差量與變異數（asymptotic bias and variance）。我們

證明當應用這個半母數羅吉特模型至前述兩種不同類型資料上，其所對應的破產預測

方法是相同的。因此我們的預測方法可以直接應用到這兩種重要類型的資料。實證研

究結果顯示，我們的預測方法較 Altman (1968)的區別分析模型（discriminant 

analysis model）、Ohlson（1980）的線性羅吉特模型（linear logit model）、以及

Merton (1974)與 Bharath and Shumway (2004) 的 KMV-Merton 模型等所建立的預測

方法，能夠產生較小的樣本外誤差率（out-of-sample error rate）。 

另外，本文使用離散型倖存模型（discrete-time survival model； Allison, 

1982），預測公司發生財務危機的機率。我們以最大概似法（maximum likelihood 

method）估計該模型的參數值，導出參數估計式的漸近常態分配（asymptotic normal 

distribution），進而估計公司發生財務危機的機率。藉由此機率估計值，我們可建

立財務危機預警模型，並用以分析及預測台灣股票上市公司發生財務危機的機率。實

證研究結果顯示，本文所介紹的離散型倖存模型對公司財務危機的預測，比線性羅吉

特模型，有更好的樣本外預測能力。 

關鍵詞：個案控制資料、離散型倖存模型、區別分析模型、KMV-Merton 模型、線性羅

吉特模型、追蹤性資料、半母數羅吉特模型、型 I誤差率、型 II 誤差率。 
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ABSTRACT 

Bankruptcy prediction methods based on a semiparametric logit model are proposed for 

prospective (simple random) and case-control (choice-based) data.  The unknown 

quantities in the model are estimated by the local likelihood approach, and the resulting 

estimators are analyzed through their asymptotic biases and variances.  Our 

semiparametric bankruptcy prediction methods using these two types of data are shown to 

be essentially equivalent.  Thus our proposed prediction model can be directly applied to 

data sampled from the two important designs.  Empirical studies demonstrate that our 

prediction method is more powerful than alternatives based on the discriminant analysis 

model (Altman 1968), the linear logit model (Ohlson 1980), and the KMV-Merton model 

(Merton 1974; Bharath and Shumway 2004), in the sense of yielding smaller out-of-sample 

error rates. 

The discrete-time survival model (Allison 1982) is applied to predict the probability of 

financial distress.  The maximum likelihood method is employed to estimate the values of 

parameters in the model. The resulting estimates are analyzed by their asymptotic normal 

distributions, and are used to estimate the probability of financial distress for each firm 

under study.  Using such estimated probability, a strategy is developed to identify failing 

firms, and is applied to study the probability of financial distress for firms listed in Taiwan 

Stock Exchange.  Empirical studies demonstrate that our strategy developed from the 
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discrete-time survival model can yield more accurate out-of-sample forecasts than the 

alternative method based on the linear logit model in Ohlson (1980). 

Keywords: case-control data, discrete-time survival model, discriminant analysis model, 

KMV-Merton model, linear logit model, prospective data, semiparametric logit 

model, type I error rate, type II error rate. 
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CHAPTER I

INTRODUCTION TO BANKRUPTCY PREDICTION METHODS

1.1 Introduction

Academics, practitioners and regulators have routinely used models to predict the

bankruptcy of companies. For example, the discriminant analysis model (DAM) has

been a popular technique for studying the financial health of a corporate; see Altman

(1968). Other frequently referred models include the models by Ohlson (1980) and

Zmijewski (1984). The former bankruptcy prediction method is based on a linear logit

model (LLM). The latter, on the other hand, is based on a probit model. Grice and

Dugan (2001) recently cautioned the routine application of these two probabilistic mod-

els of bankruptcy. Their study showed that using the prediction models to time periods

and industries other than those used to develop the models may result in significant

decline in prediction accuracies.

Bankruptcy prediction methods using other models or concepts include, for exam-

ple, the recursive partition model (Frydman, Altman, and Kao 1985), expert systems

(Messier and Hansen 1988), chaos theory (Lindsay and Campbell 1996), neural networks

(Koh and Tan 1999), survival analysis (Lane, Looney, and Wansley 1986; Shumway

2001; Chava and Jarrow 2004), rough set theory (McKee 2003), KMV-Merton model

(KMV; Merton 1974; Bharath and Shumway 2004; Vassalou and Xing 2004), and sup-

port vector machines (Härdle et al., 2006). Basically, these methods are more compli-

cated in computation and interpretation than the above probabilistic models.

The bankruptcy prediction model in Ohlson (1980) postulates that the logit function

of bankruptcy probability is a linear function of the predictors. Nine predictors were

selected for developing his model because they appeared to be the ones most frequently

mentioned in the literature. The main reason of using the LLM is due to its simplicity

in computation and interpretation. There are many software packages having logistic

regression capabilities, for example, BMDP, EGRET, GAUSS, GLIM, and SAS, etc.
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Thus LLM can be easily updated or revised as long as there are new observations of

the same predictors or new predictive variables available for analysis. For a detailed

introduction of the LLM, see the monograph by Hosmer and Lemeshow (1989).

When appropriate, the LLM has definite advantages. For example, the correspond-

ing inferential methods usually have nice efficiency properties. Also, the parameters

generally have some physical meaning which makes them interpretable and of interest

in their own right. If the assumed linear logit function is grossly in error, then the

advantages of the LLM will not be realized. Thus, there are few benefits from using

a poorly specified LLM. See the discussion and Figure 2 of Härdle, Moro, and Schäfer

(2006). Their results show that the relation between the bankruptcy probability and

predictors, such as net income change and company size, may not be monotonic. The

LLM is most appropriate when theory, past experience, or other sources are available

that provide detailed knowledge about the data under study. Sometimes, based on

previous experience, there are reasons for modelling the logit function of bankruptcy

probability as a particular parametric function of predictors, which may not be linear.

However, a general drawback of such parametric modelling is that if one chooses a

parametric family that is not of appropriate form, at least approximately, then there is

still a danger of reaching erroneous inference.

The first focus of this dissertation is to consider a robust method, against misspec-

ification of the parametric logit model relation, by introducing a semiparametric logit

model (SLM; Zhao, Kristal, and White 1996) for predicting bankruptcy. This model is

basically very similar to the LLM, except that some unspecified function replaces the

linear function to model the relation between the predictors and the logit function of

bankruptcy probability. Thus, clearly, the SLM is much more general and flexible in

predicting the bankruptcy of a firm. Since the SLM is developed without assuming a

parametric form for the logit function, there is some loss in the interpretability and

efficiency of estimators obtained in this fashion. In contrast to physics or engineer-

ing, it may not be often appropriate to give a specific functional relationship between
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the probability of bankruptcy and the predictors in finance fields. Härdle, Moro, and

Schäfer (2006) also propose a flexible but fully nonparametric approach for predicting

bankruptcy. They use support vector machines to generate nonlinear score function of

predictors, and then employ nonparametric technique to map scores into bankruptcy

probabilities. Their work presents a new trend in bankruptcy analysis.

On the other hand, there is another potential pitfall of the LLM. It is static in

nature, since it uses only one set of predictor values collected at a specific time point

for each firm. The static model is generally not appropriate for predicting bankruptcy

because it ignores both facts that the characteristics of firms change through time as

well as bankruptcy does not often occur. For more discussions of the drawback to the

static model, see Shumway (2001).

To avoid the drawback to the static model, Shumway (2001) applies the idea of

discrete-time survival analysis (Cox and Oakes 1984) to develop the so-called discrete-

time hazard model. The model has the advantage of using all available historical

information to determine each firm’s bankruptcy risk at each point in time, hence

it is a dynamic forecasting model. It is also called the discrete-time survival model

(DSM) in Allison (1982). The values of parameters in Shumway’s dynamic prediction

model are estimated by using the same approach as those in the multiperiod logit

model (Pagano, Panetta, and Zingales 1998). However, theoretically, the multiperiod

logit model assumes the predictor values collected for each firm at all time points are

independent. Clearly, such predictor values are dependent, and the assumption does not

hold in practice. Thus, asymptotic properties of the resulting estimates of parameters

in Shumway’s dynamic prediction model can not be obtained from the multiperiod logit

model.

The second focus of this dissertation is to employ directly the DSM to predict bank-

ruptcy, and ignore the estimation procedure of the multiperiod logit model. The values

of parameters in the DSM are estimated by the maximum likelihood method. The

advantages of direct employment of the DSM include, for example, using all available

3



historical information to determine each firm’s bankruptcy risk at each point in time,

assuming the predictor values of each firm are dependent. Hence, it is more general

and flexible for the DSM to predict bankruptcy. The DSM has been successfully ap-

plied in many fields including, for example, social science (Allison 1982), econometrics

(Lancaster 1990), education (Singer and Willett 1993), and biostatistics (Klein and

Moeschberger 1997).

The rest of this chapter is organized as follows. In Section 1.2, three important

sampling schemes including the prospective (simple random), the case-control (choice-

based), and the discrete-time survival data for bankruptcy prediction study are de-

scribed. The data of the first two types are for static forecasting models, the LLM,

the SLM, the KMV, and the DAM, and the data of the third type are for the dynamic

forecasting model, the DSM. In Sections 1.3-1.7, five bankruptcy prediction models, the

LLM, the SLM, the KMV, the DAM, and the DSM, are introduced respectively. In Sec-

tion 1.8, bankruptcy prediction devices based on the five bankruptcy prediction models

are presented. Finally, Section 1.9 contains a brief summary of the results obtained.

1.2 Three Sampling Schemes

In this section, the formulation of the data used in this dissertation for bankruptcy

prediction study will be given. Three types of data including the prospective, the

case-control, and the discrete-time survival data will be described in sequence.

Most bankruptcy prediction methods were developed on training samples. Usually,

the training sample consists of the data of n companies collected for some time period

by a simple random sampling scheme from the distribution of (X, Z). For the i-th

company, i = 1, · · ·, n, we observe values (Yi, xi, zi), where Yi = 1 indicating that the

i-th company is in the state of bankruptcy and 0, otherwise, and xi = (xi1, · · ·, xid)T

and zi = (zi1, · · ·, ziq)T are values of the vectors of explanatory variables (X, Z) used to

forecast failure. Here X and Z are the d-dimensional continuous and the q-dimensional

discrete variables, respectively, and the upper index T stands for the transpose of a

4



matrix. Hence we have the prospective sample

(Yi, xi, zi), i = 1, · ··, n.

For example, in Ohlson (1980), there were 9 financial variables being used for developing

his bankruptcy prediction model. Among these explanatory variables, 7 (= d) of them

are continuous variables and 2 (= q) are binary variables.

On the other hand, the case-control data for bankruptcy prediction are composed

of two simple random samples. One is selected from the population of bankrupt com-

panies, and called the case sample. The other is selected from the population of non-

bankrupt companies, and called the control sample. An important special case of the

case-control study is the stratified (matched) case-control study. In the latter study,

the number of cases (bankrupt companies) and controls (nonbankrupt companies) need

not to be constant across strata, but most matched designs include one case and one

to five controls per stratum and are thus referred to as 1-M matched designs. For a

detailed introduction of the (matched) case-control data, see the monograph by Hosmer

and Lemeshow (1989).

According to the case-control sampling, the case-control data are composed of a

random sample of nonbankrupt companies of n0 observations (controls), say (x1, z1), ···,

(xn0, zn0), from the conditional distribution of (X, Z) given Y = 0, and an independent

random sample of bankrupt companies of n1 observations (cases), say (xn0+1, zn0+1),

· · ·, (xn, zn), where n = n0 + n1, from the conditional distribution of (X, Z) given

Y = 1. Here Yi = 1 indicating that the i-th company is in the state of bankruptcy and

0, otherwise. Hence we have the case-control sample

(Yi, xi, zi), i = 1, · · ·, n, where Yi = 0 for i ≤ n0, and 1 for i > n0.

We now close this section by giving the formulation of the discrete-time survival

data. The data are generated by three steps. Firstly, both the sampling period and
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the sampling criteria are selected. For example, the sampling period may be taken as

the one starting from January of the year 1981 to December of the year 1999, and the

sampling criteria may be defined as those firms starting to be listed in Taiwan Stock

Exchange during the sampling period. Secondly, n companies satisfying the sampling

criteria are selected. Finally, all available historical information occurred at the discrete

time points in the sampling period of n selected companies are collected. Hence we have

the discrete-time survival data

(ti, Yi, xi,1, · ··, xi,ti , zi,1, · ··, zi,ti), for i = 1, · ··, n.

Here ti ∈ {1, 2, · · ·, m} denotes the duration time of the i-th company in the sampling

period, andm is a positive integer standing for the length of the sampling period. Also,

at the duration time ti, Yi = 0 indicates that the i-th company is nonbankrupt, and

1 the i-th company is bankrupt. Further, xi,j and zi,j are values of the d-dimensional

continuous and q-dimensional discrete explanatory variables X and Z collected at the

duration time j, respectively in each case, for each j = 1, · · ·, ti and for the i-th

company.

1.3 The LLM

In this section, the formulation of the LLM using the prospective sample as well as

that using the case-control sample for predicting bankruptcy will be introduced.

Given the prospective sample (Yi, xi, zi), i = 1, · · ·, n, the LLM is defined by

assuming the bankruptcy probability for the company with the predictor values (X,

Z) = (x, z) to be

p(Y = 1 | X = x, Z = z) =
exp(α+ β x+ θ z)

1 + exp(α+ β x+ θ z)
, (1)

or written in the form of the logit function of bankruptcy probability

logit{p(Y = 1 | X = x,Z = z)} = log
½

p(Y = 1 | X = x, Z = z)

1− p(Y = 1 | X = x,Z = z)

¾
= α+ βx+ θz.
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Here α, β, and θ are 1× 1, 1× d, and 1× q vectors of logistic parameters, respectively.

For the company with predictor values (x0, z0), its predicted bankruptcy probability

p̂(Y = 1 | X = x0, Z = z0) =
exp(α̂+ β̂ x0 + θ̂ z0)

1 + exp(α̂+ β̂ x0 + θ̂ z0)
(2)

is the logistic distribution evaluated at the predicted score α̂ + β̂ x0 + θ̂ z0. Here α̂,

β̂, and θ̂ are maximum likelihood estimates for α, β, and θ, respectively, based on the

prospective sample from the LLM (1).

The maximum likelihood approach for producing α̂, β̂, and θ̂ in (2) is now described.

For this, set η = (α, β, θ)T . Using the prospective sample from the LLM (1), the log-

likelihood function of η is

LLM(η) =
nX
i=1

[Yi (α+ β xi + θ zi)− log{1 + exp(α+ β xi + θ zi)}] .

Then (α̂, β̂, θ̂)T may be taken as the solution of the normal equations

∂ LLM(η)

∂η
=

nX
i=1

∙
Yi −

exp(α+ β xi + θ zi)

1 + exp(α+ β xi + θ zi)

¸ ⎡⎢⎢⎢⎢⎣
1

xi

zi

⎤⎥⎥⎥⎥⎦ = 0. (3)

Due to the consistency of α̂, β̂, and θ̂ (Hosmer and Lemeshow, 1989), the predicted

bankruptcy probability exp(α̂+β̂ x0+θ̂ z0)

1+exp(α̂+β̂ x0+θ̂ z0)
in (2) does converge to the true bankruptcy

probability exp(α+β x0+θ z0)
1+exp(α+β x0+θ z0)

in (1) for the company with predictor values (x0, z0). By

this fact, it will be used in Section 1.8 to construct a bankruptcy prediction device for

prospective data from the LLM (1).

On the other hand, using the case-control sample from the LLM (1) and treating

the sample as if it was a prospective sample from the LLM (1), the maximum likelihood

estimates for logistic parameters α, β, and θ are now given. Applying the case-control

sample (Yi = 0, xi, zi) for i ≤ n0 and (Yi = 1, xi, zi) for i > n0 from the LLM (1) to

the normal equations (3), Prentice and Pyke (1979) show that the resulting maximum

7



likelihood estimates α̂, β̂, and θ̂ of logistic parameters α, β, and θ, respectively, converge

to their true values, except the intercept estimate α̂, as both sample sizes of control

and case data become large. This intercept estimate α̂ approaches the quantity α+ c∗,

where

c∗ = log{p(Y = 0) / p(Y = 1)} + log(n1 / n0).

Using the case-control sample, inferences about the constant c∗ are not possible since

such data generally provide no information about the population frequency of bank-

rupt companies. Unfortunately, due to the inconsistency of the intercept estimate α̂

and the fact that the unknown quantity c∗ is generally not equal to 0, the resulting

predicted bankruptcy probability exp(α̂+β̂ x0+θ̂ z0)

1+exp(α̂+β̂ x0+θ̂ z0)
, obtained by plugging all these es-

timates of coefficients into (2), does not converge to the true bankruptcy probability

exp(α+β x0+θ z0)
1+exp(α+β x0+θ z0)

in (1), but approaches exp(α+c∗+β x0+θ z0)
1+exp(α+c∗+β x0+θ z0)

, for the company with pre-

dictor values (x0, z0). This is the major difference between applying the LLM to the

prospective sample and to the case-control sample. Although the predicted bankruptcy

probability derived by the case-control sample from the LLM (1) does not estimate the

true bankruptcy probability, we will discuss in Section 1.8 that it still can be used to

develop a bankruptcy prediction device for case-control data from the LLM (1).

The main advantage of the LLM lies in its simplicity of computation and interpre-

tation, but the model may not be efficient for the purpose of prediction. Sometimes,

based on previous experience, there are reasons for modelling the logit function of bank-

ruptcy probability as a particular parametric function of (X, Z), which may not be

linear. However, a general drawback of such parametric modelling is that if one chooses

a parametric family that is not of appropriate form, at least approximately, then there

is a danger of reaching erroneous prediction. The limitation of LLM can be overcome

by removing the restriction that the logit function of p(Y = 1 | X = x, Z = z) belongs

to a parametric family. In Section 1.4, we shall use some unspecified function H(·) to

replace the linear function to model the relation between the continuous predictors and

the logit function of bankruptcy probability.
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1.4 The SLM

In this section, the formulation of the SLM using the prospective sample and that

using the case-control sample will be given. The SLM is defined similarly to the LLM

(1) by replacing the linear relationship α + β x of the continuous predictor X in the

logit function of the LLM with an unknown function H(x).

Given the prospective sample (Yi, xi, zi), i = 1, · · ·, n, the SLM is defined by

assuming the bankruptcy probability for the company with the predictor values (X,

Z) = (x, z) to be

p(Y = 1 | X = x, Z = z) =
exp{H(x) + θ z}

1 + exp{H(x) + θ z} , (4)

or written in the form of the logit function of bankruptcy probability

logit{p(Y = 1 | X = x,Z = z)} = log
½

p(Y = 1 | X = x, Z = z)

1− p(Y = 1 | X = x,Z = z)

¾
= H(x) + θz.

Here, we only assume H(x) to be a smooth function of the value x of the continuous

predictorX, otherwise, it is not specified. Also, θ is a 1×q vectors of logistic parameters,

as it does in the LLM (1). Clearly, this is a very flexible prediction model. For the

company with predictor values (x0, z0), its predicted probability of bankruptcy is thus

defined as

p̂(Y = 1 | X = x0, Z = z0) =
exp{Ĥ(x0) + θ̂ z0}

1 + exp{Ĥ(x0) + θ̂ z0}
, (5)

the logistic distribution evaluated at the predictive score Ĥ(x0) + θ̂ z0. Here Ĥ(x0)

and θ̂ are estimates derived by applying the local likelihood method to the prospective

sample from the SLM (4).

The local likelihood approach for producing Ĥ(x0) and θ̂ in (5) is now introduced.

This approach is composed of three steps. In the first step, an initial local likelihood

estimate Ĥ1(x0) of H(x0) is generated. There exists many methods for estimating

H(x0). One of these methods with simple idea is the local likelihood method; see
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Tibshirani and Hastie (1987). This method is to first choose a positive scalar constant

bθ, also called the bandwidth, and define a neighborhood of x0 as

N(x0; bθ) = {t = (t1, · · ·, td)T : |tj − x0j| ≤ bθ, for j = 1, · ··, d},

where x0 = (x01, · · ·, x0d)T . Then the idea of the local likelihood method is to apply

both concepts of the weighted likelihood method using partial sample

S(x0; bθ) = {(Yi, xi, zi) : xi ∈ N(x0; bθ), for i = 1, · ··, n},

and the first order Taylor approximation

H(xi) ≈ H(x0) +H(1)(x0)
T (xi − x0) ≡ α+ β (xi − x0),

for each xi ∈ N(x0; bθ). Here the larger the value of bθ, the larger the number of data

points contained in S(x0; bθ). Also, the parameters α and β are 1×1 and 1×d vectors of

parameters, respectively, as they are in the LLM. But, they now stand for the unknown

quantities H(x0) and H(1)(x0)
T , respectively, and H(1)(x0) is the d× 1 vector of partial

derivatives of H(x0).

Specifically, to produce Ĥ1(x0), a bankruptcy probability model developed by the

above arguments

p(Y = 1 | X = x, Z = z) =
exp{α+ β (x− x0) + θ z}

1 + exp{α+ β (x− x0) + θ z} (6)

is imposed to the prospective sample (Yi, xi, zi), i = 1, · · ·, n, from the SLM (4)

with xi ∈ N(x0; bθ). Given the value of bθ and the resulting bankruptcy probability

model (6) for the prospective sample from the SLM (4) with xi ∈ N(x0; bθ), the local
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log-likelihood function of η = (α, β, θ)T is defined by

SLM(η; x0) =
nX
i=1

Yi {α+ β (xi − x0) + θ zi} Kbθ,i −

nX
i=1

log[1 + exp{α+ β (xi − x0) + θ zi}] Kbθ,i,

where Kbθ,i = Kbθ(xi − x0) =
Qd

j=1K{(xi,j − x0,j)/bθ}. Here K(·) is called the kernel

function, and is used to compute the weight assigned to the data. It is usually taken

as a symmetric and unimodal probability density function over [−1, 1]. Hence it gives

positive weight to the data inside the neighborhood sample S(x0; bθ) and weight 0

outside. The larger weights are given to data points with X values closer to x0 and

smaller weights to those with X values far from x0. However, the results from the

literature show that the choice of the density function K(·) is not very important in

the local fitting. A popular choice of K(·) is the Epanechnikov kernel defined as

K(u) = (3/4) (1− u2) I(|u| ≤ 1);

see Wand and Jones (1995), due to its computational convenience and optimal per-

formance (for example it minimizes mean square error among all nonnegative kernel

functions).

Set the first element α̂ of the solution η̂ = (α̂, β̂, θ̂) of the normal equations

∂ SLM(η;x0)

∂η
=

nX
i=1

∙
Yi −

exp(α+ β (xi − x0) + θ zi)

1 + exp(α+ β (xi − x0) + θ zi)

¸⎡⎢⎢⎢⎢⎣
1

xi − x0

zi

⎤⎥⎥⎥⎥⎦Kbθ,i = 0 (7)

as the initial local likelihood estimate Ĥ1(x0) of H(x0). By the same arguments for

the consistency of the maximum likelihood estimate α̂ derived by (3) for the LLM (1),

Ĥ1(x0) is a consistent estimate of H(x0). For this fact, see also Fan, Heckman, and

Wand (1995).
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Note that the concept of local inference is well established in regression analysis;

see also Wand and Jones (1995). There are two major strategies considered in the local

likelihood approach: using linear approximation (the first order Taylor approximation)

for each H(xi) with xi ∈ N(x0; bθ), and using the partial (local) sample S(x0; bθ) to

derive the maximum local likelihood estimates. This method is directly analogous to

the LLM, except that here we have used the concept of local fitting.

In the second step, the estimate θ̂ required in (5) is generated by applying the simple

logistic regression analysis. To estimate the value of θ, we shall replace the unknown

quantity H(xi) in the SLM (4) with its initial local likelihood estimate Ĥ1(xi), for each

i = 1, · · ·, n, fit the bankruptcy probability by the resulting model

p(Y = 1 | X = xi, Z = zi) =
exp{α0 + Ĥ1(xi) + θ zi}

1 + exp{α0 + Ĥ1(xi) + θ zi}
, (8)

and use the prospective sample from the SLM (4) to maximize the corresponding pseudo

profile log-likelihood function with respect to φ = (α0, θ)T . Here α0 is a normalizing

constant which makes the bankruptcy probability function (8) be integrated to 1.

Specifically, using the bankruptcy probability model (8) and the prospective sample

from the SLM (4), the pseudo profile log-likelihood function of φ = (α0, θ)T is

ŜLM(φ) =
nX
i=1

h
Yi {α0 + Ĥ1(xi) + θ zi}− log[1 + exp{α0 + Ĥ1(xi) + θ zi}]

i
.

Set (α̂0, θ̂)T as the solution of the normal equations

∂ ŜLM(φ)

∂φ
=

nX
i=1

"
Yi −

exp(α0 + Ĥ1(xi) + θ zi)

1 + exp(α0 + Ĥ1(xi) + θ zi)

# ⎡⎢⎣1
zi

⎤⎥⎦ = 0. (9)

Hence the required estimate θ̂ of θ in (5) is obtained. By the results in Hosmer and

Lemeshow (1989), the consistency of θ̂ for θ can be seen.

Finally, in the third step, the local likelihood estimate Ĥ(x0) required in (5) is
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produced. To produce the value of Ĥ(x0), follow the same arguments in the first step,

replace the unknown quantity θ with θ̂ obtained in the second step, use the value of

bandwidth bH , fit the bankruptcy probability by the resulting model

p(Y = 1 | X = xi, Z = zi) =
exp{α∗ + β (xi − x0) + θ̂ zi}

1 + exp{α∗ + β (xi − x0) + θ̂ zi}
(10)

for the prospective sample from the SLM (4) with xi ∈ N(x0; bH), and maximize the

corresponding pseudo profile local log-likelihood function with respect to ξ = (α∗, β)T .

Here α∗ and β stand for H(x0) +α1 and H(1)(x0)
T , respectively, where α1 is a normal-

izing constant which makes the bankruptcy probability function (10) be integrated to

1.

Specifically, using the value of bandwidth bH , the resulting bankruptcy probability

model (10), and the prospective sample from the SLM (4), the pseudo profile local

log-likelihood function of ξ = (α∗, β)T is

ŜLM(ξ; x0) =
nX
i=1

Yi {α∗ + β (xi − x0) + θ̂ zi} KbH ,i −

nX
i=1

log[1 + exp{α∗ + β (xi − x0) + θ̂ zi}] KbH ,i.

Set (α̂∗, β̂) as the solution of the normal equations

∂ ŜLM(ξ;x0)

∂ξ
=

nX
i=1

"
Yi −

exp(α∗ + β(xi − x0) + θ̂zi)

1 + exp(α∗ + β(xi − x0) + θ̂zi)

#⎡⎢⎣ 1

xi − x0

⎤⎥⎦KbH ,i = 0. (11)

Combining the consistency of θ̂ and the consistency of the maximum likelihood esti-

mates (α̂∗, β̂) for (α∗, β), we see that the value of α1 converges to 0, as the sample size

of prospective data become large. Hence α̂∗ is a consistent estimate of H(x0), and the

required estimate Ĥ(x0) of H(x0) in (5) may be taken as Ĥ(x0) = α̂∗. For this fact,

see also Fan, Heckman, and Wand (1995).

By the consistency of Ĥ(x0) and θ̂, the corresponding predicted bankruptcy proba-
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bility exp{Ĥ(x0)+θ̂ z0}
1+exp{Ĥ(x0)+θ̂ z0}

in (5) approaches the true bankruptcy probability exp{H(x0)+θ z0}
1+exp{H(x0)+θ z0}

in (4) for the company with predictor values (x0, z0), as the sample size of prospective

data become large. By this fact, it will be used in Section 1.8 to construct a bankruptcy

prediction device for prospective data from the SLM (4).

On the other hand, using the case-control sample from the SLM (4) and treating

the sample as if it was a prospective sample from the SLM (4), the local likelihood

estimates for H(x0) and θ are now given. Applying the case-control sample (Yi = 0, xi,

zi) for i ≤ n0 and (Yi = 1, xi, zi) for i > n0 from the SLM (4) to the normal equations

(7), (9), and (11), the local likelihood estimates Ĥ1(x0) and Ĥ(x0) for H(x0) and θ̂ for

θ can be produced. The consistency of both Ĥ1(x0) and Ĥ(x0) for H(x0) + c∗, and θ̂

for θ will be shown in Chapter II. Here

c∗ = log{p(Y = 0) / p(Y = 1)} + log(n1 / n0)

has been defined in Section 1.3.

Unfortunately, due to the consistency of Ĥ(x0) for H(x0) + c∗ and the fact that the

unknown quantity c∗ is generally not equal to 0, the resulting predicted bankruptcy

probability exp{Ĥ(x0)+θ̂ z0}
1+exp{Ĥ(x0)+θ̂ z0}

, obtained by plugging these Ĥ(x0) and θ̂ into (5), does not

converge to the true bankruptcy probability exp{H(x0)+θ z0}
1+exp{H(x0)+θ z0} in (4), but approaches

exp{c∗+H(x0)+θ z0}
1+exp{c∗+H(x0)+θ z0} , for the company with predictor values (x0, z0). This is the major

difference between applying the SLM to the prospective sample and to the case-control

sample. Although the predicted bankruptcy probability (5) derived by the case-control

sample from the SLM (4) does not estimate the true bankruptcy probability, we will

discuss in Section 1.8 that it still can be used to develop a bankruptcy prediction device

for case-control data from the SLM (4). The same conclusions have also been reached

for the LLM in Section 1.3.

1.5 The KMV

In this section, the KMV producing a probability of default for each firm under study

14



will be introduced. The detailed computational procedure of the default probability can

be referred to Bharath and Shumway (2004).

The KMV has two particularly important assumptions. The first one is that the

total value of a firm is assumed to follow geometric Brownian motion:

dV

V
= μ dt+ σV dZ.

Here V is the total value of a firm, μ is the expected continuously compounded return

on V , σV is the volatility of firm value, and Z is a standard Wiener process. The second

assumption of the KMV is that the firm has issued just one discount bond maturing

in T periods. Under these two assumptions, the equity of the firm is a call option on

the underlying value of the firm with a strike price equal to the face value of the firm’s

debt with a time-to-maturity of T . By the Black-Scholes call option pricing model, the

equity value of a firm satisfies

E = V N(d1)− e−rT B N(d2). (12)

Here E is the market value of the firm’s equity, B is the face value of the firm’s debt, r is

the risk-free interest rate, N(·) is the cumulative standard normal distribution function,

and

d1 =
ln(V / B) + (r + σ2V / 2) T

σV
√
T

, d2 = d1 − σV
√
T .

This formula (12) is called Black-Scholes-Merton option valuation equation. Hence,

the value of equity is a function of the value of the firm and time, so it follows directly

from Ito’s lemma that σE = (V / E) (∂E / ∂V ) σV . By Black-Scholes-Merton option

valuation equation, it can be shown that ∂E/∂V = N(d1), so that under the assump-

tions of the KMV , the volatilities of the firm value and its equity can be expressed

by
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σE = (V / E) N(d1) σV . (13)

In order to implement the KMV, first it needs to compute the market value of the

firm’s equity E by multiplying the firm’s shares outstanding by its current stock price.

Second, it needs to estimate the volatility of equity from either historical stock returns

data or from option implied volatility data. Third, it needs to choose a forecasting

horizon T and a measure of the face value of the firm’s debt B. For example, it is

common to assume T = 1, and take the book value of the firm’s total liabilities to

be the face value of the firm’s debt. Fourth, it needs to collect values of the risk-free

interest rate. After performing these steps, we have values for each of the variables in

equations (12) and (13) except for the total value of the firm V and the volatility of firm

value σV . Finally, it needs to simultaneously solve equations (12) and (13) numerically

for values of V and σV . Once this numerical solution is obtained, by the assumptions

of the KMV, the probability of default can be calculated as

πKMV = N(−DD),

where

DD =
ln(V / B) + (μ− σ2V / 2) T

σV
√
T

.

Simultaneously solving equations (12) and (13) is reasonably straightforward. How-

ever, the probability of default is not obtained by simply solving these two equations

numerically. Crosbie and Bohn (2001) explain that “In practice the market lever-

age moves around far too much for [equation (13)] to provide reasonable results.” To

resolve this problem, we compute the probability of default by implementing a com-

plicated iterative procedure suggested by Bharath and Shumway (2004). The iterative

procedure includes the following steps. First, we propose an initial value of σV = σE

{E/(E +B)} and we use this value of σV and equation (12) to infer the market value

of each firm’s assets at the end of every month for the previous year. Recall that E
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is the market value of each firm’s equity and is calculated from CRSP database as the

product of share price at the end of the month and the number of shares outstanding,

B is the sum of the debt in current liabilities and one half of long term debt, σE is

the annualized percent standard deviation of returns and is estimated from the prior

year stock return data for each month, r is the risk free interest rate, and T = 1.

Here r is taken as 1-Year Treasury Constant Maturity Rate obtained from the Board

of Governors of the Federal Reserve system, and it is available from the website at

http://research.stlouisfed.org/fred/data/irates/gs1. We then calculate the implied log

return on assets each month and use that returns series to generate new estimates of

σV and μ. We iterate on σV in this manner until it converges (so the absolute difference

in adjacent σV is less than 10−3).

1.6 The DAM

In this section, the formulation of the DAM proposed by Altman (1968) for predict-

ing bankruptcy will be introduced.

Given the sample (Yi, xi), i = 1, · · ·, n, the DAM for predicting bankruptcy for

the company with the predictor value X = x is to compute the discriminant function

value:

DFV = (x1 − x0)
T S−1pooled x,

where

x0 =

(
nX
i=1

xi I(Yi = 0)

)
/

(
nX
i=1

I(Yi = 0)

)
,

x1 =

(
nX
i=1

xi I(Yi = 1)

)
/

(
nX
i=1

I(Yi = 1)

)
,

Spooled =

(
nX
i=1

(xi − x1)(xi − x1)
T I(Yi = 1) +

nX
i=1

(xi − x0)(xi − x0)
T I(Yi = 0)

)
/(n−2).

The larger the value of DFV , the larger the possibility that the company having

the predictor value X = x bankrupts. Given a cutoff value v, if DFV > v, then the
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company is classified to be in the status of bankruptcy, otherwise it is classified as a

healthy company. The method for computing the optimal cutoff value v∗ for v will be

introduced in Section 1.8. For a detailed introduction of the DAM, see Johnson and

Wichern (2002).

1.7 The DSM

In this section, the formulation of the DSM using the discrete-time survival data for

predicting bankruptcy will be introduced.

The DSM is expressed by the likelihood function of the discrete-time survival data.

Recall the discrete-time survival data given in Section 1.2:

(ti, Yi, xi,1, · ··, xi,ti , zi,1, · ··, zi,ti), for i = 1, · ··, n.

Here ti ∈ {1, 2, · · ·, m} denotes the duration time of the i-th company in the sampling

period, andm is a positive integer standing for the length of the sampling period. Also,

at the duration time ti, Yi = 0 indicates that the i-th company is nonbankrupt, and

1 the i-th company is bankrupt. Further, xi,j and zi,j are values of the d-dimensional

continuous and q-dimensional discrete explanatory variables X and Z collected at the

duration time j, respectively in each case, for each j = 1, · · ·, ti and for the i-th

company.

To give the likelihood function of the discrete-time survival data, set f(t, x, z; ψ)

as the conditional frequency function of T given (X, Z) = (x, z). Here T is a discrete

random variable, T ∈ N = {1, 2, · · ·}, standing for the duration time of a given

company, (x, z) are the values of explanatory variables (X, Z) observed at the duration

time T = t, and ψ is a vector of parameters. Also, set the survivor function of the given

company as

S(t, x, z; ψ) = 1−
X
j<t

f(j, x, z; ψ) = p(T ≥ t | x, z; ψ). (14)

The survivor function (14) gives the probability of nonbankruptcy before the duration
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time t for the given company. Further, set the hazard function of the given company

as

h(t, x, z; ψ) =
f(t, x, z; ψ)

S(t, x, z; ψ)
= p(T = t | T ≥ t, x, z; ψ). (15)

The hazard function (15) gives the probability of bankruptcy happened instantly at the

duration time t for the given company which is nonbankrupt before the duration time

t.

We now give the likelihood function of the discrete-time survival data (ti, Yi, xi,1,

· · ·, xi,ti , zi,1, · · ·, zi,ti), for i = 1, · · ·, n. Using the conditional frequency function

f(t, x, z; ψ), it can be written as

L(ψ) =
nY
i=1

p(Ti = ti | xi,ti , zi,ti ; ψ)Yi p(Ti > ti | xi,ti , zi,ti ; ψ)1−Yi

=
nY
i=1

f(ti, xi,ti , zi,ti ; ψ)
Yi p(Ti > ti | xi,ti , zi,ti ; ψ)1−Yi .

Using elementary properties of conditional probabilities, each of the two probabilities

f(ti, xi,ti , zi,ti ; ψ) and p(Ti > ti | xi,ti , zi,ti ; ψ) in the likelihood function L(ψ) can be

expressed as a function of the hazard function (15). For this, using (15) and replacing

S(t, x, z; ψ) with f(t, x, z; ψ) + p(T > t | x, z; ψ), we have

f(t, x, z; ψ) = h(t, x, z; ψ) {f(t, x, z; ψ) + p(T > t | x, z; ψ)}.

On both sides of the equation, first subtracting f(t, x, z; ψ) h(t, x, z; ψ), and then

dividing by h(t, x, z; ψ), we have

{1− h(t, x, z; ψ)} S(t, x, z; ψ) = p(T > t | x, z; ψ).

Replacing S(t, x, z; ψ) with p(T > t − 1 | x, z; ψ), and applying the result iteratively
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to p(T > j | x, z; ψ) for each j = 1, · · ·, t, we have

tY
j=1

{1− h(j, x, z; ψ)} = p(T > t | x, z; ψ). (16)

On the other hand, using (15) and (16), we have

f(t, x, z; ψ) = h(t, x, z; ψ)
t−1Y
j=1

{1− h(j, x, z; ψ)}. (17)

Substituting (16) and (17) into the above likelihood function L(ψ) for the discrete-time

survival data, it can be expressed as

L(ψ) =
nY
i=1

½
h(ti, xi,ti , zi,ti ; ψ)

1− h(ti, xi,ti , zi,ti ; ψ)

¾Yi tiY
j=1

{1− h(j, xi,j, zi,j; ψ)}. (18)

Note that the hazard function (15) can be of any functional form whose values are

all in the interval (0, 1). In this dissertation, for simplicity of presentation, it is taken

as a logistic function

h(t, x, z; ψ) =
exp{α0 + α1 g(t) + β x+ θ z}

1 + exp{α0 + α1 g(t) + β x+ θ z} ,

where ψ = (α0, α1, β, θ)T . Here α0, α1, β, and θ are 1×1, 1×1, 1×d, and 1×q vectors of

logistic parameters, respectively. In this dissertation, the function g(t) is taken as g(t) =

log(t). Substituting the logistic hazard function h(t, x, z; ψ) = exp{α0+α1 g(t)+β x+θ z}
1+exp{α0+α1 g(t)+β x+θ z}

and the natural logarithm function g(t) = log(t) into the likelihood function L(ψ) in

(18), the DSM for the discrete-time survival data is expressed as

L(ψ) =
nY
i=1

[exp{α0 + α1 log(ti) + β xi,ti + θ zi,ti}Yi ×

tiY
j=1

[1 + exp{α0 + α1 log(j) + β xi,j + θ zi,j}]−1. (19)

If the function g(t) of the duration time t is taken as the natural logarithm function,
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then the resulting DSM (19) is an accelerated failure-time model; see Lancaster (1990).

Such logistic hazard function with g(t) = log(t) is also considered by Shumway (2001).

We now give the maximum likelihood estimates α̂0, α̂1, β̂, and θ̂ of α0, α1, β, and θ,

respectively. Using the DSM (19) and the discrete-time survival data, the log-likelihood

function of ψ = (α0, α1, β, θ)T is

DSM(ψ) =
nX
i=1

Yi {α0 + α1 log(ti) + β xi,ti + θ zi,ti} −

nX
i=1

tiX
j=1

log[1 + exp{α0 + α1 log(j) + β xi,j + θ zi,j}].

Then ψ̂ = (α̂0, α̂1, β̂, θ̂)
T may be taken as the solution of the normal equations

0 =
∂ DSM(ψ)

∂ψ

=
nX
i=1

Yi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

log(ti)

xi,ti

zi,ti

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

nX
i=1

tiX
j=1

exp{α0 + α1 log(j) + β xi,j + θ zi,j}
1 + exp{α0 + α1 log(j) + β xi,j + θ zi,j}

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

log(j)

xi,j

zi,j

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the maximum likelihood estimates α̂0, α̂1, β̂, and θ̂, for the company with

predictor values (X, Z) = (x0, z0) at the duration time t, its predicted probability of

instant bankruptcy

h(t, x0, z0; ψ̂) =
exp{α̂0 + α̂1 log(t) + β̂ x0 + θ̂ z0}

1 + exp{α̂0 + α̂1 log(t) + β̂ x0 + θ̂ z0}
(20)

is the logistic hazard function evaluated at the predicted score α̂0+ α̂1 log(t)+ β̂ x0+ θ̂

z0. Due to the consistency of maximum likelihood estimates α̂0, α̂1, β̂, and θ̂ (Section

3.3 of Cox and Oakes 1984), the predicted probability of instant bankruptcy exp{α̂0+α̂1

log(t) + β̂ x0 + θ̂ z0} / [1 + exp{α̂0 + α̂1 log(t) + β̂ x0 + θ̂ z0}] in (20) converges to the

true probability of instant bankruptcy exp{α0+α1 log(t)+β x0+θ z0}
1+exp{α0+α1 log(t)+β x0+θ z0} , the logistic hazard

function evaluated at the true score α0+α1 log(t) + β x0+ θ z0, for the company with
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predictor values (x0, z0) at the duration time t. By this fact, it will be used in Section

1.8 to construct a bankruptcy prediction device for the DSM with the discrete-time

survival data.

1.8 Bankruptcy Prediction Devices

In this section, we shall develop bankruptcy prediction methods for the five models,

LLM, SLM, KMV, DAM, and DSM, in sequence.

Using the prospective training sample from the LLM (1), we determine a p∗ ∈ (0,

1) value to make bankruptcy prediction for the company with predictor values (x0, z0).

By the consistency of its predicted bankruptcy probability p̂(Y = 1 | X = x0, Z = z0)

derived from (2), if it satisfies

p̂(Y = 1 | X = x0, Z = z0) > p∗,

then the company is classified to be in the status of bankruptcy, otherwise it is classified

as a healthy company. To decide a proper cut-off point p∗, usually one would use the

training sample to evaluate the performance of the classification scheme. In doing so,

there are two types of “in-sample” error rate occurred in this evaluation based on the

training sample:

type I error rate αin(p) =

Pn
i=1 Yi I{p̂(Y = 1 | X = xi, Z = zi) ≤ p}Pn

i=1 Yi
,

and

type II error rate βin(p) =

Pn
i=1 (1− Yi) I{p̂(Y = 1 | X = xi, Z = zi) > p}Pn

i=1 (1− Yi)
.

Here I(·) stands for the indicator function. Using the training sample and the cut-off

point p, αin(p) is the rate of misclassifying bankrupt company to healthy company, and

βin(p) is the rate of misclassifying healthy company to bankrupt company. To keep

these error rates to be as small as possible, we determine a proper cut-off point p∗ such
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that

τ in(p
∗) = αin(p

∗) + βin(p
∗) = min

p∈[0,1], αin(p)≤u
{αin(p) + βin(p)}.

That is to control the in-sample type I error rate αin(p) to be at most u, so that the sum

of the two in-sample error rates τ in(p) = αin(p) + βin(p) is minimal. This is essential

if the type I error would cause much more severe losses to the investors. On the other

hand, if classifying healthy firms as being bankrupt would cause more severe losses to

the investors, we might control the in-sample type II error rate βin(p) to be at most u.

In practice, the value of u ∈ [0, 1] is determined by the investor. If u = 1, then there is

no restriction on the magnitude of in-sample type I and II error rates (Altman, 1968;

Ohlson, 1980; Begley, Ming, and Watts, 1996). Since the value of p∗ depends on that

of u, it is also denoted by p∗(u).

On the other hand, using the case-control training sample from the LLM (1) and

treating the sample as if it was a prospective sample from the LLM (1), by the results

in Section 1.3, the corresponding predicted bankruptcy probability exp(α̂+β̂ x0+θ̂ z0)

1+exp(α̂+β̂ x0+θ̂ z0)

obtained from (2) does not converge to the true bankruptcy probability exp(α+β x0+θ z0)
1+exp(α+β x0+θ z0)

in (1), but approaches exp(α+c∗+β x0+θ z0)
1+exp(α+c∗+β x0+θ z0)

. Here c∗ = log{p(Y = 0)/p(Y = 1)} +

log(n1/n0). This drawback is caused by the fact that the resulting maximum likelihood

estimates β̂ and θ̂ of logistic parameters β and θ in the LLM (1) converge to their

true values, respectively, but α̂ approaches the quantity α+ c∗, as both sample sizes of

control and case data become large. This is the major difference between applying the

LLM to case-control data and to prospective data.

Fortunately, we still can use the predicted bankruptcy probability exp(α̂+β̂ x0+θ̂ z0)

1+exp(α̂+β̂ x0+θ̂ z0)

obtained by the case-control sample from the LLM (1) to develop a bankruptcy predic-

tion device by applying the following simple equivalent inequalities:

exp{α+ β x+ θ z}
1 + exp{α+ β x+ θ z} > p,
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if and only if

exp{α+ c∗ + β x+ θ z}
1 + exp{α+ c∗ + β x+ θ z} >

p exp(c∗)

(1− p) + p exp(c∗)
≡ pc∗.

This result is to say that using the probability exp(α+β x+θ z)
1+exp(α+β x+θ z)

to define classification

device with cut-off point p is equivalent to using the probability exp(α+c∗+β x+θ z)
1+exp(α+c∗+β x+θ z)

to

define classification device with cut-off point pc∗. Hence we may pretend the predicted

bankruptcy probability exp(α̂+β̂ x0+θ̂ z0)

1+exp(α̂+β̂ x0+θ̂ z0)
obtained by the case-control sample from the

LLM (1) to be the estimate of the true bankruptcy probability and use it to determine

the corresponding proper cut-off point p∗(u). Then the bankruptcy prediction device

for the case-control sample from the LLM (1) can be obtained.

Note that above bankruptcy prediction methods built for the LLM (1) using the

two types of data are essentially equivalent. Based on the same arguments, similar

bankruptcy prediction devices can be developed directly for the SLM (4) using the two

types of data by replacing respectively (2) and α̂ + β̂ x0 with (5) and Ĥ(x0). Hence

the bankruptcy prediction methods constructed for the SLM (4) using the two types of

data are also essentially equivalent.

Note also that the above method for computing the optimal cutoff value for the LLM

(1) can be similarly applied for both the KMV and the DAM by replacing p̂(Y = 1 |

X = x0, Z = z0) with πKMV and DFV to derive their optimal cutoff values π∗KMV and

v∗, respectively in each case. Given the optimal cutoff value π∗KMV , if πKMV > π∗KMV ,

then the company with the probability of default πKMV is classified to be in the status

of bankruptcy, otherwise it is classified as a healthy company. Similarly, given the

optimal cutoff value v∗, if DFV > v∗, then the company with the discriminant function

value DFV is classified to be in the status of bankruptcy, otherwise it is classified as a

healthy company.

We now give the bankruptcy prediction method for the DSM. Using the discrete-

time survival data and following the same arguments of the bankruptcy method based

on the LLMwith prospective data, we determine a p∗ ∈ (0, 1) value to make bankruptcy
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prediction for the company with predictor values (x0, z0) at the duration time t. By

the consistency of its predicted probability of instant bankruptcy h(t, x0, z0; ψ̂), if it

satisfies

h(t, x0, z0; ψ̂) > p∗,

then, at the duration time t, the company is classified to be in the status of bankruptcy,

otherwise it is classified as a healthy company. To decide a proper cut-off point p∗, we

use the data (ti, Yi, xi,ti, zi,ti), for i = 1, · · ·, n, to evaluate the performance of the

classification scheme. In doing so, there are two types of “in-sample” error rate occurred

in this evaluation based on the data (ti, Yi, xi,ti, zi,ti), for i = 1, · · ·, n:

type I error rate αin(p) =

Pn
i=1 Yi I{h(ti, xi,ti , zi,ti ; ψ̂) ≤ p}Pn

i=1 Yi
,

and

type II error rate βin(p) =

Pn
i=1 (1− Yi) I{h(ti, xi,ti , zi,ti ; ψ̂) > p}Pn

i=1 (1− Yi)
.

Here I(·) stands for the indicator function. To keep these two error rates to be as

small as possible, we determine a proper cut-off point p∗ = p∗(u) for the bankruptcy

prediction method based on the DSM such that

τ in{p∗(u)} = αin{p∗(u)}+ βin{p∗(u)} = min
p∈[0,1], αin(p)≤u

{αin(p) + βin(p)},

for each u ∈ [0, 1].

1.9 Summary of Results

In Chapter II, the SLM (4) with case-control sampling is applied to estimate bank-

ruptcy probabilities for firms collected fromCompustat North America (COMPUSTAT)

and Center for Research in Security Prices (CRSP) databases. The unknown quanti-

ties in the model are estimated by the local likelihood approach, and the resulting

estimators are analyzed through their asymptotic biases and variances. Both a real
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data example and a simulation study demonstrate that, given case-control data, our

semiparametric prediction method based on the SLM (4) is more powerful than the

prediction method based on the LLM (1), the KMV, and the DAM, in the sense of

yielding smaller out-of-sample error rate.

In Chapter III, the DSM (19) with discrete-time survival data is applied to estimate

the probabilities of financial distress for firms listed in Taiwan Stock Exchange. Since

there are only few bankrupt firms in Taiwan, it is difficult to predict bankruptcy well. In

this case, to provide more failure firms to proceed our research, we replaced our target

on bankruptcy prediction with financial distress prediction. According to the definition

of financial distress given by Taiwan Stock Exchange, financial distress companies are

those whose stocks were delisted, stopped trading, or traded by cash. The maximum

likelihood method is employed to estimate the values of parameters in the DSM, and the

resulting estimators are analyzed by their asymptotic normal distributions. Empirical

studies demonstrate that the financial distress prediction method based on the dynamic

DSM (19) using discrete-time survival data can yield more accurate forecasts than the

alternative method based on the static LLM (1), in the sense of yielding smaller out-

of-sample error rate.

In Chapter IV, some concluding remarks and future research topics for bankruptcy

prediction methods based on each of the static SLM (4) and the dynamic DSM (19)

are presented.
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CHAPTER II

SEMIPARAMETRIC BANKRUPTCY PREDICTION METHODS

2.1 Introduction

As introduced in Sections 1.3 and 1.4, the SLM (4) is a robust method against

misspecification of the parametric logit model relation for predicting bankruptcy. This

model is basically very similar to the LLM (1), except that some unspecified function

H(x) replaces the linear function α+β x to model the relation between the continuous

predictors and the logit function of bankruptcy probability. Thus, clearly, the SLM is

much more general and flexible in predicting the bankruptcy of a firm.

In this section, we shall first study the asymptotic properties of estimators Ĥ1(x),

θ̂, and Ĥ(x) given in Section 1.4 for the SLM with case-control data. Then the finite

sample performance of the bankruptcy prediction method based on the SLM with case-

control data is studied through a real data example and a simulation study. For these,

the composition of the case-control sample and the formulations of these estimators are

recalled.

According to the case-control sampling, we draw a random sample of nonbankrupt

companies of n0 observations (controls), say (x1, z1), ···, (xn0, zn0), from the conditional

distribution of predictors (X, Z) given Y = 0, and an independent random sample of

bankrupt companies of n1 observations (cases), say (xn0+1, zn0+1), · · ·, (xn, zn), where

n = n0 + n1, from the conditional distribution of predictors (X, Z) given Y = 1. Here

Yi = 1 indicating that the i-th company is in the state of bankruptcy and 0, otherwise.

Hence we have the case-control sample (Yi, xi, zi), i = 1, · · ·, n, where Yi = 0 for i ≤ n0,

and 1 for i > n0. Set f(x, z) as the frequency function of predictors (X, Z), and f0(x,

z) = f(x, z | Y = 0) and f1(x, z) = f(x, z | Y = 1) as the conditional frequency

functions of (X, Z) given Y = 0 and 1, respectively. Then from Bayes theorem and the

SLM (4), these two conditional frequency functions can be related by

f1(x, z) = f0(x, z) exp{H∗(x) + θ z}, (21)
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where

H∗(x) = H(x) + log{p(Y = 0) / p(Y = 1)}.

Given the case-control sample and the bandwidth parameters bθ and bH , by the de-

velopment of the logistic regression in the case-control setting given in both Section 1.4

of this dissertation and Section 6.3 of Hosmer and Lemeshow (1989), the log-likelihood

functions for producing Ĥ1(x), θ̂, and Ĥ(x) in the SLM (4) with kernel function K can

be expressed respectively as

1(α, β, θ; x) = (−1)
nX
i=1

log[1 + exp{α+ β (xi − x) + θ zi)}] Kbθ(xi − x) +

nX
i=n0+1

{α+ β (xi − x) + θ zi} Kbθ(xi − x), (22)

2(α0, θ) = (−1)
nX
i=1

log[1 + exp{α0 + Ĥ1(xi) + θ zi)}] +

nX
i=n0+1

{α0 + Ĥ1(xi) + θ zi}, (23)

3(α
∗, β; x) = (−1)

nX
i=1

log[1 + exp{α∗ + β (xi − x) + θ̂ zi)}] KbH (xi − x) +

nX
i=n0+1

{α∗ + β (xi − x) + θ̂ zi} KbH (xi − x). (24)

Note that the parameter β in (22) and (24) represents the unknown quantity H(1)(x)T ,

as it did in SLM(η; x0) and ŜLM(ξ; x0) in Section 1.4 with x0 replaced by x. But

α and α∗ in (22) and (24) stands for H(x) + c∗, not as they did in SLM(η; x0) and

ŜLM(ξ; x0) in Section 1.4 for H(x) with x0 replaced by x, respectively in each case.

The maximum likelihood estimates of α and α∗ produced from (22) and (24) would be

estimates for H(x)+c∗, not for H(x). This fact causes the major difference between the

applications of the logit model to the case-control sample and the prospective sample

(see discussions in Section 1.4).
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This chapter is organized as follows. Section 2.2 presents asymptotic properties of

estimators Ĥ1(x), θ̂, and Ĥ(x) introduced in Section 1.4 for the SLM (4) with case-

control data. To illustrate the bankruptcy prediction method based on the SLM with

case-control data, a real data set is analyzed in Section 2.3. Simulation results which

give additional insight of the bankruptcy prediction method are contained in Section

2.4. Section 2.5 gives concluding remarks and future research topics. Finally, sketches

of the proofs are given in Section 2.6.

2.2 Theoretical Results

In this section, we shall study the asymptotic properties of Ĥ1(x), θ̂, and Ĥ(x). For

this, we need the following conditions:

(C1) Kernel function K(u) is a symmetric and Lipschitz continuous probability density

function supported on [−1, 1], and is bounded above zero on [−1/2, 1/2].

(C2) n0/n→ ζ ∈ (0, 1), as n→∞.

(C3) Bandwidth parameters bθ, bH ∈ [δ n−1+δ, δ−1n−δ], for some δ satisfying 0 < δ <

1/2. They also satisfy n bd+2θ >> 1 >> bθ and n bdH >> 1 >> bH >> bθ. The notation

an >> bn means that bn/an → 0, as n→∞.

(C4) The d-variate function H(x) is defined on [0, 1]d, and each of its second order

partial derivatives is Lipschitz continuous on [0, 1]d.

(C5) Under control and case populations, their respective marginal densities f0(x) and

f1(x) of X are Lipschitz continuous and bounded above zero on [0, 1]d. Also, their

corresponding conditional probabilities f0(z | x) and f1(z | x) of Z given X = x can

not be zero or one for each given x, and are Lipschitz continuous with respect to x.

Conditions (C1)-(C4) are regular for the usual nonparametric regression analysis.

The support [0, 1]d in (C4) and (C5) of the d-dimensional variable X is given for

simplicity of presentation and for studying the asymptotic behavior of Ĥ1(x) and Ĥ(x)

on the boundary region of the support of f0(x) and f1(x). It can be replaced with any

bounded region Ω ⊂ Rd, and the asymptotic properties for the resulting Ĥ1(x), θ̂, and
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Ĥ(x) remain unchanged. The first part of condition (C5) guarantees that the design

points X, under control and case populations, have no holes on [0, 1]d. The second part

of (C5) makes sure that the Hessian matrix for each of 1(α, β, θ; x) and 3(α, β; x) is

invertible.

In order to give concise expressions for the asymptotic properties of Ĥ1(x), θ̂, and

Ĥ(x), we need more notations. Let

x = (x1, · ··, xd)T , t = (t1, · ··, td)T , Hij(x) = ∂2/(∂xi ∂xj) H(x),

mi = max{−1, (xi − 1)/b}, ki = min{1, xi/b}, K#(t) =
dY

j=1

K(tj),

λ0 =

Z k1

m1

· · ·
Z kd

md

K#(t) dt, τ 0 =

Z k1

m1

· · ·
Z kd

md

K#(t)2 dt,

λi,k =

Z ki

mi

uk K(u) du, cij =

Z k1

m1

· · ·
Z kd

md

ti tj K
∗(t) dt,

Q be the collection of all values of the discrete q-dimensional variable Z, and I1 be the

(1 + q) × (1 + q) identity matrix with the first column vector of the identity matrix

deleted, for i, j = 1, · · ·, d and k ≥ 0. Here K∗(t) is the d-variate Lejeune-Sarda kernel

function of order two (Lejeune and Sarda 1992). In particular, given the point x ∈ [0,

1]d, the kernel function K, and the bandwidth b, K∗(t) can be expressed as

K∗(t) =

(
dY

i=1

λ−1i,0 K(ti)

) (
1−

dX
i=1

(ti λi,0 − λi,1) λi,1 (λi,0 λi,2 − λ2i,1)
−1

)
,

and its corresponding values cij become

cij =

⎧⎪⎨⎪⎩ (λ2i,2 − λi,1 λi,3) (λi,0 λi,2 − λ2i,1)
−1, for i = j,

(−1) λi,1 λ−1i,0 λj,1 λ
−1
j,0 , for i 6= j.

Define

r(x, z) =
f0(x, z) exp{H(x) + c∗ + θ z}

ζ + (1− ζ) exp{H(x) + c∗ + θ z}} ,
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D0(x) =
X
z∈Q

r(x, z), D1(x) =
X
z∈Q

z r(x, z), D2(x) =
X
z∈Q

z zT r(x, z),

Dj =

Z 1

0

· · ·
Z 1

0

Dj(x) dx, for j = 0, 1, 2, D =

⎛⎜⎝ D0, DT
1

D1, D2

⎞⎟⎠ .

Also, define quantities related to the asymptotic biases and variances of Ĥ1(x), θ̂, and

Ĥ(x) in the following:

cH(x; b) = (1/2)
dX

i=1

dX
j=1

cij Hij(x),

vH,1(x; b) = D0(x)
−1
Z k1

m1

· · ·
Z kd

md

K∗(t)2 dt,

vH,2(x; b) = λ−20 τ 0 D0(x)
−1 DT

1 (x)
©
D0(x) D2(x)−D1(x) D

T
1 (x)

ª−1
D1(x),

cθ(b) = (−1)
∙Z 1

0

· · ·
Z 1

0

{D0(x),D
T
1 (x)} cH(x; b) dx

¸
D−1 I1,

vθ = D−1
2 D1 (D0 −DT

1 D−1
2 D1)

−1 DT
1 D−1

2 + D−1
2 .

If x is in the interior region [b, 1− b]d of [0, 1]d, then it can be seen that the values of

cH(x; b) and vH,1(x; b) become

cH(x; b) = (1/2)

½Z 1

−1
u2 K(u) du

¾ (
dX

i=1

Hii(x)

)
,

vH,1(x; b) = D0(x)
−1
½Z 1

−1
K(u)2 du

¾d

.

The following Theorem 2.1 states the asymptotic bias and variance for Ĥ1(x), and

those for θ̂ and Ĥ(x). The proofs will be given in Section 2.6.

Theorem 2.1. Under the SLM and the case-control sample, suppose that conditions

(C1)-(C5) are satisfied. For each x ∈ [0, 1]d and as n→∞,

Bias{Ĥ1(x)} = E{Ĥ1(x)}−H(x)− c∗ = b2θ cH(x; bθ) +O(b3θ + n−1b−dθ ), (25)

31



Var{Ĥ1(x)} = n−1b−dθ ζ−1(1− ζ)−1 {vH,1(x; bθ) + vH,2(x; bθ)}+O(n−1b−d+1θ ), (26)

Bias(θ̂) = E(θ̂)− θ = b2θ cθ(bθ) +O(b3θ + n−1b−dθ ), (27)

Var(θ̂) = n−1 ζ−1(1− ζ)−1 vθ +O(n−1bθ), (28)

Bias{Ĥ(x)} = E{Ĥ(x)}−H(x)− c∗ = b2H cH(x; bH) +O(b3H + b2θ + n−1b−dH ), (29)

Var{Ĥ(x)} = n−1b−dH ζ−1(1− ζ)−1 vH,1(x; bH) +O(n−1b−d+1H ). (30)

Remark 2.1. {The optimal kernel function K and the magnitudes of the optimal

bandwidth parameters b∗θ and b∗H for constructing θ̂ and Ĥ(x)} By Theorem 8 of

Fan, Gasser, Gijbels, Brockmann, and Engel (1993) and our Theorem 2.1, the optimal

K satisfying the conditions in (C1) for constructing Ĥ(x) is the Epanechnikov kernel

K(u) = (3/4) (1 − u2) I(|u| ≤ 1), for each x ∈ [0, 1]d, in the sense of having smaller

asymptotic mean square error. On the other hand, by (29) and (30), the optimal choice

of bH , in terms of having smallest mean square error of Ĥ(x), is b∗H = c∗H n−1/(d+4), where

c∗H is a constant depending on the unknown factors H(·), θ, and f0(x, z). Similarly, by

(25)-(28) and (C3), the optimal value b∗θ of bθ, in terms of having smallest mean square

error of θ̂, satisfies the condition n−1/(d+4) >> b∗θ >> n−1/(d+2). Hence we conclude that

the value of b∗H is of larger order than that of b∗θ, and that the mean square error of

Ĥ(x) using the optimal bandwidth parameter b∗H is of smaller order in magnitude than

that of Ĥ(x) using b∗θ.

Remark 2.2. {Selection of values of bθ and bH for practically constructing θ̂ and Ĥ(x),

respectively} The practical implementation of SLM requires the specification of each

value of bθ and bH . It determines how many data points should be included in the

SLM. The optimal values b∗θ and b∗H of bθ and bH , respectively, can be determined by

minimizing the mean square errors of the resulting θ̂ and Ĥ(x). Theoretical results

in Remark 2.1 show that b∗H is of larger order in magnitude than b∗θ. Although such

theoretical results give some indication on how to select bandwidth parameters bθ and

bH , they are not available in practice, since they depend on the unknown H(·), θ, and
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density function of the predictors. Thus, in real applications, we would suggest to

consider the in-sample type I and II error rates defined in Section 1.8 as functions of

the cut-off point p and values of bθ and bH , denoted as αin(p, bθ, bH) and βin(p, bθ, bH),

respectively. The cut-off point and the bandwidth parameters are then simultaneously

determined so that the sum of the two in-sample error rates τ in(p, bθ, bH) = αin(p, bθ,

bH)+ βin(p, bθ, bH) is minimal, subject to the constrains: p ∈ [0, 1], αin(p, bθ, bH) ≤ u,

and bH ≥ bθ, for each given value of u ∈ [0, 1]. Let p̂(u), b̂θ(u), and b̂H(u) denote such

selected values for p∗(u), b∗θ, and b∗H , respectively.

2.3 A Real Data Example

In this section, a real case-control data set is analyzed using our method SLM and

prediction rules DAM, LLM and KMV. McKee (2003) pointed out that company asset

size and industry are significant factors affecting bankruptcy status. Thus an ideal

approach is to stratify companies according to industry and asset size and determine

prediction model for each stratum. Unfortunately, we did not have enough data from

COMPUSTAT and CRSP databases for doing so. Thus, to illustrate our method, we

simply used two controls to match with one case so that they had the same standard

industrial classification (SIC) code and similar company asset size from the same year.

By doing this, it is clear that the company asset size has no more power in discriminating

the bankruptcy status of the company and thus will not be included in the analysis of

our example.

We now introduce the case-control data set. The data set contains 79 companies

that were delisted and declared bankruptcy (cases) during the period 1994 to 2002 by

COMPUSTAT as meeting the Chapter 11 Bankruptcy or Chapter 7 Liquidation. Af-

ter identifying these companies filing for bankruptcy, both COMPUSTAT and CRSP

databases were searched to locate the latest annual financial data prior to the delist-

ing date. Thus the annual financial data for the identified bankrupt companies were

from the period 1993 to 2001. Among the 79 selected bankrupt companies, each was

matched with two nonbankrupt companies, except 2 companies only matched with one
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Table 1: The SIC codes of companies in our case-control sample.

SIC category
number of bankrupt

companies
number of nonbankrupt

companies
1000− 1999 4 8
2000− 2999 11 22
3000− 3999 21 40
4000− 4999 5 10
5000− 5999 18 36
6000− 6999 3 6
7000− 7999 13 26
8000− 8999 4 8

Total companies: 79 156

nonbankrupt company each, due to the incompleteness of the two databases. Hence

our data set also contains 156 nonbankrupt companies (controls). The total number

of companies in this research was n = 235. The financial institutions were eliminated

from the sample due to the unique capital requirements and regulatory structure in

that industry group.

We note that COMPUSTAT provides 233 companies whose common stocks were

traded in NewYork Stock Exchange, American Stock Exchange or NASDAQ, and which

were declared bankrupt during the period 1994 to 2002. But since COMPUSTAT and

CRSP databases contain many missing values for the predictors studied in our example,

we only found 79 bankrupt companies with complete predictor values. There is no

additional criteria imposed to the bankrupt companies in our case-control sample. The

problem of missing data is not unusual in applications, especially when there are many

predictive variables used in the model. As long as the missingness occurs “at random”

then it will not introduce systematic biases in our analyses (Little and Rubin, 2002).

We have no reason not to believe that the missingness occurred in COMPUSTAT and

CRSP databases is “missing at random”.

The information about industry and that about company asset size of the selected

companies are given in Tables 1 and 2, respectively. The two-sample median test

was performed to test the null hypothesis of equal magnitude of the asset size for

nonbankrupt company and that for bankrupt company. The p-value given in Table
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Table 2: Summary statistics of company asset sizes (in million US dollars) from our
case-control sample.

79 bankrupt
companies

156 nonbankrupt
companies

median-stat
(p-value)

mean 105.103 150.508 0.092 (0.927)
median 32.211 33.599
std 290.254 808.741
min 1.447 1.636
max 2345.800 9794.400

2 shows that there is no significant difference between both company asset sizes at

significance level 0.05. This result indicates that our matching process has successfully

created similar asset sizes for bankrupt and nonbankrupt companies in our case-control

sample.

For predicting bankruptcy, the values of the 9 variables used by Ohlson (1980) and

the 2 variables suggested by Shumway (2001) were collected for our selected companies

from COMPUSTAT and CRSP databases. The 11 predictive variables are as follows:

1. TLTA = Total liabilities divided by total assets.

2. WCTA = Working capital divided by total assets.

3. CLCA = Current liabilities divided by current assets.

4. NITA = Net income divided by total assets.

5. FUTL = Funds provided by operations divided by total liabilities.

6. CHIN = (NIt − NIt−1) / (|NIt| + |NIt−1|), where NIt is net income for the most

recent period.

7. INTWO = One if net income was negative for the last two years, zero otherwise.

8. OENEG = One if total liabilities exceed total assets, zero otherwise.

9. SIZE = Logarithm of total asset divided by GNP price-level index. The index

assumes a base value of 100 for 1991.

10. Relative Size = Logarithm of each firm’s market equity value divided by the total

NYSE / AMEX / NASDAQ market equity value.

11. Excess Return = Monthly return on the firm minus the value-weighted CRSP

NYSE / AMEX / NASDAQ index return cumulated to obtain the yearly return.
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Table 3: Summary statistics of variables in our case-control sample.

variable mean median std min max
median-stat
(p-value)

79 bankrupt companies
TLTA 0.801 0.747 0.435 0.020 2.450 −5.432 (0.000)
WCTA 0.040 0.075 0.387 −1.192 0.980 4.511 (0.000)
CLCA 1.711 0.857 3.545 0.020 23.214 −4.603 (0.000)
NITA −0.423 −0.161 0.649 −2.833 0.182 5.891 (0.000)
FUTL −0.335 −0.051 0.921 −4.953 1.279 5.339 (0.000)
CHIN −0.251 −0.363 0.655 −1.000 1.000 3.130 (0.002)
INTWO 0.570 1 0.498 0 1 −4.612 (0.000)
OENEG 0.190 0 0.395 0 1 −3.844 (0.000)

Excess Return −0.254 −0.634 1.258 −1.320 6.617 3.682 (0.000)
Relative Size −5.803 −5.830 0.675 −7.379 −4.577 4.234 (0.000)

πKMV 0.413 0.331 0.383 0.000 1.000 −6.537 (0.000)
156 nonbankrupt companies

TLTA 0.486 0.478 0.273 0.029 1.926
WCTA 0.276 0.291 0.258 −0.592 0.921
CLCA 0.707 0.509 0.796 0.055 6.904
NITA −0.079 0.024 0.386 −3.800 0.249
FUTL −0.030 0.110 0.715 −3.387 2.544
CHIN −0.015 0.052 0.573 −1.000 1.000
INTWO 0.263 0 0.442 0 1
OENEG 0.038 0 0.193 0 1

Excess Return −0.131 −0.289 0.631 −1.246 2.503
Relative Size −5.284 −5.320 0.659 −6.838 −2.821

πKMV 0.114 0.001 0.241 0.000 0.989

Note that Ohlson (1980) suggested using the first 9 variables as predictive variables.

But in this dissertation we only used the first 8 variables as the predictive variables in

our case-control data analysis. The 9th variable, SIZE, was not used as a predictive

variable because the total asset had already been used as the matching factor in the

process of selecting the case-control sample for study. The last 2 variables are the

market-driven variables used in Shumway (2001).

Pairwise scatter diagrams of our case-control sample on the continuous variables are

presented in Figure 1. From the figure, it is clear that the distributions of these variables

are fat-tailed and skewed, and it is very difficult to perform bankruptcy prediction

visually, since most data points are clustered together.

The summary statistics of the 10 predictive variables considered in our case-control
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data analysis are presented in Table 3. For each of these 10 variables, the two-sample

median test was performed to test the null hypothesis of equal magnitude for nonbank-

rupt company and for bankrupt company. The p-value in Table 3 shows that the null

hypothesis of equal magnitude for cases and controls is significant at 0.05 level for each

predictive variable. This result indicates that each of these variables should be an effec-

tive predictive variable. On the other hand, the summary statistics and the frequency

distribution of the values of πKMV for the selected companies in our case-control data

analysis are shown respectively in Table 3 and Figure 2. The results also indicate that

πKMV has good predictive power.

Given our case-control sample, the bankruptcy prediction rules associated with

DAM, LLM, KMV and SLM were estimated. Their performance was measured by

the out-of-sample error rate. The out-of-sample error rate was computed on each of the

100 testing samples randomly selected from the given case-control sample. Each testing

sample was composed of 50% of bankrupt companies and their matched nonbankrupt

companies. The data not included in the testing sample were taken as the training

sample, and were used to develop the prediction rule.

Under SLM, kernel function K was taken as the Epanechnikov kernel K(u) = (3/4)

(1−u2) I(|u| ≤ 1). To compute the out-of-sample error rate for the prediction rule based

on SLM on each testing sample, the procedure given in Remark 2.2 for computing the

in-sample total error rate τ in(p, bθ, bH) = αin(p, bθ, bH)+βin(p, bθ, bH) on the training

sample was applied to choose the values of (p, bθ, bH). We computed τ in(p, bθ, bH)

on the equally spaced logarithmic grid of 1001 × 501 × 501 values of (p, bθ, bH) in [0,

1]× [1/10, 15]× [1/10, 15]. Given each value of u ∈ [0, 1], the global minimizer {p̂(u),

b̂θ(u), b̂H(u)} of τ in(p, bθ, bH) on the grid points with the restrictions αin(p, bθ, bH) ≤ u

and bH > bθ was taken as the selected values for (p, bθ, bH).

Using the selected values of {p̂(u), b̂θ(u), b̂H(u)} and the training sample, the values

Ĥ(xj) and θ̂ were computed for each data point (xj, zj) in the testing sample. The

company with the predictor values (xj, zj) in the testing sample was classified as a
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Figure 1: Pairwise scatter diagrams of our case-control sample. Given the values of
Shumway’s 2 market-driven variables, Excess Return and Relative Size, and Ohlson’s
6 continuous variables in our case-control sample, their pairwise scatter diagrams are
presented. Each panel plots 156 nonbankrupt companies (pluses) and 79 bankrupt com-
panies (stars) selected from COMPUSTAT and CRSP databases.
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Figure 2: The frequency histogram of the values of πKMV in our case-control sample.
The frequency histogram of the values of πKMV for the 156 nonbankrupt companies,
and that for the 79 bankrupt companies in our case-control sample are plotted in the
left and the right panels, respectively.

bankrupt company if

ψ̂j =
exp{Ĥ(xj) + θ̂ zj}

1 + exp{Ĥ(xj) + θ̂ zj}
> p̂(u),

otherwise a healthy company. After the classification procedure was completed for each

company in the testing sample, the out-of-sample error rates

αSLM(u) =

P
j:(xj ,zj) in testing sample

Yj I{ψ̂j ≤ p̂(u)}P
j:(xj ,zj) in testing sample

Yj
,

βSLM(u) =

P
j:(xj ,zj) in testing sample

(1− Yj) I{ψ̂j > p̂(u)}P
j:(xj ,zj) in testing sample

(1− Yj)
,

τSLM(u) = αSLM(u) + βSLM(u),

of the bankruptcy prediction rule based on SLM were computed, for each given value

of u. For the given value of u, αSLM(u) is the out-of-sample type I error rate of

classifying the bankrupt companies to healthy ones, and βSLM(u) is the out-of-sample

type II error rate of classifying the healthy companies to bankrupt ones from the testing

sample. After the computational procedure was completed for each testing sample, the

average of each out-of-sample error rate over the 100 testing samples was computed.
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Figure 3: The out-of-sample error rates obtained by applying KMV, DAM, LLM, and
SLM to our case-control sample. Panels (a)-(c) show three out-of-sample error rates of
the prediction methods derived from one testing sample. Panels (d)-(f) show sample
averages of the three out-of-sample error rates over the 100 testing samples. Each testing
sample was composed of 50% of bankrupt companies and their matched nonbankrupt
companies in our case-control sample.

The same computational procedures were applied to the prediction rules based on

DAM, LLM and KMV. Let {αDAM(u), βDAM(u), τDAM(u)}, {αLLM(u), βLLM(u),

τLLM(u)} and {αKMV (u), βKMV (u), τKMV (u)} be similarly defined as the out-of-

sample error rates for DAM, LLM and KMV. The prediction results obtained by apply-

ing the four discussed bankruptcy prediction rules to our case-control data are shown

in Figure 3 and Table 4.

Figure 3 presents the three (averaged) out-of-sample error rates for the four predic-

tion models under one (one hundred) testing sample(s). These error rates were derived

under the constraint that the type I error rate was at most u. If no such constraint is

required, we simply take u = 1 and the related out-of-sample error rates are given in

Table 4. For the case of u = 1, both SLM and KMV give smaller out-of-sample type I

error rates than DAM and LLM. Nevertheless, KMV has the largest out-of-sample type

II error rate among the four competing prediction rules. DAM and LLM show rather

similar behavior in the sense of having almost the same averaged out-of-sample types I

and II error rates. In terms of the total error rate, however, Table 4 confirms that SLM
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Table 4: Numerical results of the out-of-sample error rates obtained by applying KMV,
DAM, LLM, and SLM to our case-control sample. Given the value of u = 1, the values
of the three out-of-sample error rates shown in (a)-(c) of Figure 3 are presented, and
those shown in (d)-(f) of Figure 3 are given in parentheses.

KMV DAM LLM SLM
type I error rate 0.250 (0.253) 0.375 (0.290) 0.350 (0.296) 0.200 (0.202)
type II error rate 0.405 (0.328) 0.241 (0.278) 0.228 (0.287) 0.291 (0.321)
total error rate 0.655 (0.581) 0.616 (0.568) 0.578 (0.583) 0.491 (0.523)

has the best overall performance. Thus it is fair to say that by a reasonable margin,

the most accurate model listed in Table 4 is the SLM.

From Figure 3, we find out that the similar conclusions as those shown in Table 4

can also be reached. For u ≤ 0.2, KMV has the smallest averaged out-of-sample type

I error rate. However, it also has the largest averaged type II error rate in this range.

For u > 0.2, KMV has similar averaged type II error rate as SLM but larger type I

error rate than SLM. For u ∈ [0, 1], DAM and LLM show very similar performance.

However, comparing the four prediction rules based on averaged out-of-sample total

error rate, Figure 3 shows that SLM has the best overall performance.

2.4 A Simulation Study

In this section, a simulation study was performed to compare the performance of

the prediction rules based on DAM, LLM and SLM. We first introduce the simulation

settings. The dimension of the continuous predictor X was d = 2, and that of the dis-

crete predictor Z was q = 1. Two skewed and fat-tailed distributions for the simulated

X = (X1, X2) were considered. In the first case, the skewed Student t distribution

(Fernandez and Steel, 1998) with degrees of freedom k and scale parameter s was con-

sidered. The simulated control (nonbankruptcy) Xi values were taken from the skewed

Student t distribution with (k, s) = (3, 2) for i = 1, and (7, 4) for i = 2, and those for

case (bankruptcy) values (k, s) = (5, −3) for i = 1, and (5, 2) for i = 2 were used. In

the second case, the Pareto distribution (Siegrist, 2005) with shape parameter a and

scale parameter s was considered. Similarly, the values of (a, s) of both Pareto random

variables X1 and X2 for controls were (3, 2) and (7, 4), and those for cases were (5, −3)
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Figure 4: The out-of-sample error rates obtained by applying DAM, LLM, and SLM to
our simulated case-control data with the skewed Student t distribution for X. Given
the case of (μ0, μ1) = (−0.1, 0.1), panels (a)-(c) show sample averages of the three
out-of-sample error rates of the prediction methods over the 100 simulated case-control
data sets. For each simulated case-control data set, one testing sample was randomly
selected, and was composed of 50% of cases and their matched controls. The corre-
sponding results for the case of (μ0, μ1) = (−0.3, 0.3) are shown in panels (d)-(f).

and (5, 2), respectively.

Given marginal distributions ofX, the simulated controlX values with size 200 were

generated using mean vector (μ0, 0) and covariance matrix

⎛⎜⎝ 1/25, −1/250

−1/250, 1/25

⎞⎟⎠, and
their associated Z values were independently generated from a binary random variable

with the probability p(Z = 1) = 1/3. The simulated case X values with size 100 were

similarly generated with mean vector (μ1, 0) and covariance matrix

⎛⎜⎝ 1/4, 1/8

1/8, 1/4

⎞⎟⎠,
and their associated Z values were independently generated from a binary random

variable with the probability p(Z = 1) = 2/3. Two sets of the values (μ0, μ1) = (−0.1,

0.1) and (−0.3, 0.3) were considered. For each distribution of X and each set of the

values (μ0, μ1), one hundred independent sets of the case-control data were generated.

Given each case-control data set, one testing sample was randomly selected, and was

composed of 50% of cases and their matched controls.

Three bankruptcy prediction methods based on DAM, LLM and SLM were con-
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Figure 5: The out-of-sample error rates obtained by applying DAM, LLM, and SLM
to our simulated case-control data with the Pareto distribution for X. The captions
for (a)-(f) of Figure 5 are the same as those of Figure 4 with the skewed Student t
distribution of X replaced by the Pareto distribution for X.

sidered in this simulation study. The computational procedures and the measures of

performance presented in Section 2.3 were applied to the three prediction methods.

For SLM, the equally spaced logarithmic grid of 201× 201 values of (bθ, bH) in [1/10,

2] × [1/10, 2] were employed for selecting values of (bθ, bH), and the Epanechnikov

kernel K(u) = (3/4) (1−u2) I(|u| ≤ 1) was used. The simulation results are presented

in Figures 4 and 5.

Figure 4 presents averages of out-of-sample error rates over the 100 simulated data

sets for the three bankruptcy prediction methods under the case of the skewed Student

t distribution for X. From the figure, our SLM performs better than DAM and LLM,

since for most values of u, our prediction method has smaller average of out-of-sample

error rate of any type. Further, the smaller the difference |μ0 − μ1| is, the larger

advantage of SLM will achieve over DAM and LLM. The forecasting performance of

the three prediction methods under the case of the Pareto distribution for X is shown

in Figure 5. The results from Figure 5 also confirm that SLM has the best overall

performance.
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2.5 Discussion

In this chapter, bankruptcy prediction methods based on the SLM are proposed for

the prospective and the case-control data. Our SLM is developed by replacing the linear

logit function of the LLM with an unknown but smooth logit function. Hence it is more

flexible and robust than the LLM. The estimators for the unknown quantities in the

SLM are computed by the local likelihood method, and their large sample properties

are studied through their asymptotic biases and variances. We point out that, under

the case-control data, the estimated bankruptcy probability does not estimate the true

bankruptcy probability, unless the quantity c∗ = log{p(D = 0)/p(D = 1)}+log(n1/n0)

is 0. In contrast, for the prospective data, our estimated probability does estimate the

true bankruptcy probability. This is the major difference between the applications of

the logit model to the case-control sample and the prospective sample. However, using

the fact that the logistic distribution is strictly monotonically increasing, we discover

that such estimated probability can still be used to develop a bankruptcy prediction

device. To decide the optimal prediction rule, we propose to control the in-sample type

I (II) error rate to be at most u, so that the sum of in-sample type I and II error

rates is minimal. This is sometimes essential since the type I (II) error would cause

much more severe losses to the investors. The value of u ∈ [0, 1] is determined by the

investor. If u = 1, then there is no restriction on the magnitude of in-sample type I and

II error rates. Our results from one real data example based on eight predictor variables

of Ohlson (1980) and two market-driven variables of Shumway (2001) and simulations

confirm that the SLM performs better than the DAM, LLM and KMV, in the sense of

having smaller out-of-sample total error rate.

In applications of the SLM to the bankruptcy prediction problem, we need to decide

proper values of the bandwidth parameters bθ and bH . In this chapter, we suggest to

estimate the bandwidth parameters so that the sum of the corresponding in-sample

type I and II errors is minimized subject to some restrictions. This approach may

suffer from the heavy computational burden. One possible remedy for this drawback is
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to use the plug-in method to estimate these bandwidth parameters. For example, we

may determine the bandwidth parameter to minimize the estimated mean square error

of each estimator Ĥ(x) and θ̂. For more discussion of the plug-in method, see Jones,

Marron, and Sheather (1996).

Two possible extensions of SLM are outlined below. Firstly, in the SLM, we as-

sume that H(x) is an unknown but smooth function, and a local likelihood method

has been developed to estimate H(x). However, the resulting estimator Ĥ(x) suffers

from the curse of dimensionality, that is, as the dimension of the continuous predictor

X increases, the performance of the resulting Ĥ(x) deteriorates. For example, from

Remark 1 of Appendix A, the minimum mean square error of Ĥ(x) with respect to bH

is of order n−4/(d+4) in magnitude. Such mean square error increases as the value of

d increases. To avoid such drawback, one possible remedy is to consider an additive

model for H(x):

H(x) = H1(x1) + · · · +Hd(xd),

as described by Hastie and Tibshirani (1990). Here x = (x1, · · ·, xd)T and Hi(xi) is any

unknown but smooth function of xi, the i-th component of x, for each i = 1, · · ·, d.

Secondly, the logit function of our SLM is basically an additive model with H(X)

and θ Z. This assumption will be violated ifX and Z are interactive. A possible solution

to this problem is to introduce a nonparametric interaction such as G(X) Z, where G(·)

is a q-dimensional row vector of unknown but smooth functions, in the model. It will

be interesting to study the estimates of functions H(x) and G(x) simultaneously.

2.6 Sketches of the Proofs

In this section, sketches of the proofs for Theorem 2.1 will be given. The following

notations will be used. Let (1)
j and (2)

j be the gradient vector and the Hessian matrix

of j, for each j = 1,2,3, given in (22)-(24), respectively. Also, H(2)(x) is the Hessian

matrix of H(x). Define P0 as the event that the number of control data points falling

into the neighborhood N(x; b/2) of x is less than ρ0n0
R
N(x; b/2)

f0(t) dt, where ρ0 is a

positive constant satisfying ρ0 ≤ 1/4, and Q0 the event that the number of control data
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points falling into the neighborhood N(x; b) of x is greater than ϕ0n0
R
N(x; b)

f0(t) dt,

where ϕ0 is a positive constant satisfying ϕ0 ≥ exp(1). The definition of neighborhood

N(x; b) of the given point x has been given in Section 1.4. The events P1 and Q1 are

similarly defined for case data points with n0, f0, ρ0, and ϕ0 replaced respectively by

n1, f1, ρ1, and ϕ1.

The proofs of the asymptotic bias and variance for each of the estimators Ĥ1(x), θ̂,

and Ĥ(x) are given below in sequence.

Proof of the asymptotic bias and variance for Ĥ1(x). Set η = (α, β, θ)T and η̂ = (α̂,

β̂, θ̂)T , the maximizer of 1(α, β, θ; x) in (22). By the first order Taylor expansion, we

have

0 =
(1)
1 (η̂; x) =

(1)
1 (η; x) +

(2)
1 (η

∗; x) (η̂ − η), (31)

for each x ∈ [0, 1]d, where η∗ lies in the line segment connecting η and η̂.

Using conditions (C1)-(C5), (21), and the large deviation theorem in Section 10.3.1

of Serfling (1980), a straightforward calculation leads to the following asymptotic re-

sults: as n→∞,

P (P0 ∪Q0 ∪ P1 ∪Q1) = O{exp(−n bθ)}, (32)

E{ (1)
1 (η; x)} = (1/2) n b2θ ζ(1− ζ) A1 +O(n b3θ + b−dθ ), (33)

E{ (2)
1 (η; x)} = (−1) n ζ(1− ζ) B1 +O(n bθ), (34)

V ar{ (1)
1 (η; x)} = n b−dθ ζ(1− ζ) C1 +O(n b−d+1θ ), (35)

for each η. Here

A1 = {u0(x) D0(x), u
T
1 (x) D0(x), u0(x) D

T
1 (x)}T ,

B1 =

Z k1

m1

· · ·
Z kd

md

Λ1(x, t) K
#(t) dt,

C1 =

Z k1

m1

· · ·
Z kd

md

Λ1(x, t) K
#(t)2 dt,
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where

u0(x) =

Z k1

m1

· · ·
Z kd

md

{tT H(2)(x) t} K#(t) dt,

u1(x) =

Z k1

m1

· · ·
Z kd

md

{tT H(2)(x) t} t K#(t) dt,

Λ1(x, t) =

⎛⎜⎜⎜⎜⎝
D0(x), tT D0(x), DT

1 (x)

t D0(x), t tT D0(x), t DT
1 (x)

D1(x), D1(x) t
T , D2(x)

⎞⎟⎟⎟⎟⎠ .

Using condition (C3) and the results of (32)-(35) and comparing the magnitudes of

(1)
1 (η; x) = Op(n b2θ + n1/2 b

−d/2
θ ) and (2)

1 (η
∗; x) = Op(n) in (31), we have

η̂ − η = op(1). (36)

Using (31)-(36) and approximations to the standard errors of functions of random

variables in Section 10.5 of Stuart and Ord (1987), the results of the asymptotic bias

and variance of Ĥ1(x) in (25) and (26) follow, respectively.

Proof of the asymptotic bias and variance for θ̂. Set φ = (α0, θ) and φ̂ = (α̂0, θ̂), the

maximizer of 2(α0, θ) in (23). Using the fact that α0 is a normalizing constant for f1(x,

z) = f0(x, z) exp{α0+ Ĥ1(x) + θ z}, the results of the asymptotic bias and variance of

Ĥ1(x) in (25) and (26), (C1)-(C5), (21), and approximations to the standard errors of

functions of random variables, through a straightforward calculation, we have

exp(α0) = (1 + b2θ c1 + c2)
−1 {1 + op(1)},

where

c1 =

Z 1

0

· · ·
Z 1

0

f1(x) cH(x; bθ) dx, c2 =

Z 1

0

· · ·
Z 1

0

f1(x) [Ĥ1(x)−E{Ĥ1(x)}] dx.

Next, using this result and (C1)-(C5), through a straightforward calculation, we have,
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as n→∞,

E{ (1)
2 (φ)} = (−1) n b2θ ζ(1− ζ) ×

[

Z 1

0

· · ·
Z 1

0

{D0(x), D
T
1 (x)} cH(x; bθ) dx − (D0, D

T
1 ) c1] +O(n b3θ), (37)

E{ (2)
2 (φ)} = (−1) n ζ(1− ζ) D +O(n bθ), (38)

V ar{ (1)
2 (φ)} = n ζ(1− ζ)

©
D − (D0, D

T
1 )

T (D0, D
T
1 )
ª
+O(n bθ), (39)

for each φ.

Following the same arguments as those of (31) and (36) and using (37)-(39), we

have φ̂ − φ = op(1). Combining this result and using approximations to the standard

errors of functions of random variables in Section 10.5 of Stuart and Ord (1987), the

results of the asymptotic bias and variance of θ̂ in (27) and (28) follow, respectively.

Proof of the asymptotic bias and variance for Ĥ(x). Set ξ = (α∗, β)T and ξ̂ = (α̂∗, β̂)T ,

the maximizer of 3(α
∗, β; x) in (24), where α∗ = H∗(x) + α1 and α1 is a normalizing

constant. Using (C1)-(C5), (21), the asymptotic bias and variance of θ̂ in (27) and (28),

and approximations to the standard errors of functions of random variables, we have,

as n→∞,

E{ (1)
3 (ξ; x)} = (1/2) n b2H ζ(1− ζ) A3 +O(n b3H), (40)

E{ (2)
3 (ξ; x)} = (−1) n ζ(1− ζ) B3 +O(n bH), (41)

V ar{ (1)
3 (ξ; x)} = n b−dH ζ(1− ζ) C3 +O(n b−d+1H ), (42)

for each ξ, where

A3 = {u0(x), uT1 (x)}T D0(x),

B3 =

Z k1

m1

· · ·
Z kd

md

Λ3(x, t) K
#(t) dt,

C3 =

Z k1

m1

· · ·
Z kd

md

Λ3(x, t) K
#(t)2 dt,
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Λ3(x, t) =

⎛⎜⎝ 1, tT

t, t tT

⎞⎟⎠ D0(x).

Following the same arguments as those of (31) and (36) and using (32) and (40)-(42),

we have ξ̂ − ξ = op(1). Combining this result with (40)-(42) and using approximations

to the standard errors of functions of random variables, the results of the asymptotic

bias and variance of Ĥ(x) in (29) and (30) follow, respectively. Hence the proof of

Theorem 2.1 is completed.
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CHAPTER III

DYNAMIC PREDICTION METHODS FOR

BANKRUPTCY AND FINANCIAL DISTRESS

3.1 Introduction

As introduced in Sections 1.1 and 1.7, the DSM (19) is a dynamic forecasting method

against the static forecasting method LLM (1). The DSM (19) has the advantage of

using all available historical information to determine each firm’s bankruptcy risk at

each point in time; but the LLM (1) uses only one set of predictor values collected at

a specific time point for each firm.

In this chapter, we shall first study asymptotic properties of maximum likelihood

estimators ψ̂ = (α̂0, α̂1, β̂, θ̂)T given in Section 1.5 for the parameters ψ = (α0, α1, β,

θ)T in DSM (19) with discrete-time survival data. Then the practical performance of the

bankruptcy prediction method based on the DSM (19) with discrete-time survival data

is studied through a real data example. For these, the composition of the discrete-time

survival data and the formulation of the DSM (19) are recalled.

According to the discrete-time survival sampling introduced in Section 1.3, the

discrete-time survival data are expressed as

(ti, Yi, xi,1, · ··, xi,ti , zi,1, · ··, zi,ti), for i = 1, · ··, n.

Here ti ∈ {1, 2, · · ·, m} denotes the duration time of the i-th company in the sampling

period, andm is a positive integer standing for the length of the sampling period. Also,

at the duration time ti, Yi = 0 indicates that the i-th company is nonbankrupt, and

1 the i-th company is bankrupt. Further, xi,j and zi,j are values of the d-dimensional

continuous and q-dimensional discrete explanatory variables X and Z collected at the

duration time j, respectively in each case, for each j = 1, · · ·, ti and for the i-th

company.
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Combining the discrete-time survival data, the logistic hazard function, and the

natural logarithm function of the duration time, the DSM (19) is expressed by the

log-likelihood function for the discrete-time survival data as

DSM(ψ) =
nX
i=1

Yi {α0 + α1 log(ti) + β xi,ti + θ zi,ti} −

nX
i=1

tiX
j=1

log[1 + exp{α0 + α1 log(j) + β xi,j + θ zi,j}].

Using the log-likelihood function DSM(ψ), maximum likelihood estimators ψ̂ = (α̂0,

α̂1, β̂, θ̂)T for ψ = (α0, α1, β, θ)T may be taken as the solution of the normal equations

0 =
∂ DSM(ψ)

∂ψ

=
nX
i=1

Yi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

log(ti)

xi,ti

zi,ti

⎤⎥⎥⎥⎥⎥⎥⎥⎦
−

nX
i=1

tiX
j=1

exp{α0 + α1 log(j) + β xi,j + θ zi,j}
1 + exp{α0 + α1 log(j) + β xi,j + θ zi,j}

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

log(j)

xi,j

zi,j

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

By the functional form of the normal equations, we can not derive a closed-form

solution for ψ = (α0, α1, β, θ)
T from the normal equations. But, practically, there

are many software packages including, for example, S-plus, Gauss, and SAS providing

available procedures to solve the normal equations. In this dissertation, we use the

Gauss software to process the computational work.

This chapter is organized as follows. Section 3.2 presents asymptotic properties of

maximum likelihood estimators ψ̂ = (α̂0, α̂1, β̂, θ̂)T for the DSM (19) with the discrete-

time survival data. To illustrate the bankruptcy prediction method based on the DSM

(19) with the discrete-time survival data, a real data set is analyzed in Section 3.3.

Finally, the concluding remarks and future research topics are given in Section 3.4.

3.2 Theoretical Results

In this section, we shall study the asymptotic properties of maximum likelihood
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estimators ψ̂ = (α̂0, α̂1, β̂, θ̂)T for the parameters ψ = (α0, α1, β, θ)T in the DSM (19).

By the properties of maximum likelihood estimators given in Section 3.3 of Cox and

Oakes (1984), ψ̂ = (α̂0, α̂1, β̂, θ̂)T are asymptotically normally distributed as

ψ̂ ≈ N {ψ, In(ψ)−1},

where

In(ψ) = (−1) E
½
∂2 DSM(ψ)

∂ψ ∂ψT

¾

=
nX
i=1

tiX
j=1

exp{α0 + α1 log(j) + β xi,j + θ zi,j}
[1 + exp{α0 + α1 log(j) + β xi,j + θ zi,j}]2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

log(j)

xi,j

zi,j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

log(j)

xi,j

zi,j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

.

In practice, we can use

In(ψ̂) = (−1) ∂2 DSM(ψ)

∂ψ ∂ψT

¯̄̄̄
ψ=ψ̂

=
nX
i=1

tiX
j=1

exp{α̂0 + α̂1 log(j) + β̂ xi,j + θ̂ zi,j}
[1 + exp{α̂0 + α̂1 log(j) + β̂ xi,j + θ̂ zi,j}]2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

log(j)

xi,j

zi,j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

log(j)

xi,j

zi,j

⎤⎥⎥⎥⎥⎥⎥⎥⎦

T

to estimate In(ψ). Replacing the quantity In(ψ)
−1 in the above asymptotic normal

distribution of ψ̂ with its estimate In(ψ̂)−1, the resulting distribution can be used to

derive the confidence interval estimate and test the values of ψ.

3.3 A Real Data Example

In this section, the DSM (19) with the discrete-time survival data was applied to

the data occurred in Taiwan. Our discrete-time survival data were drawn by three

steps. In the first step, the sampling period was taken as the one during January of
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the year 1981 to December of the year 1999, and the sampling criterion was defined

as those firms starting to be listed in Taiwan Stock Exchange during the sampling

period. By characteristics of industries, the financial institutions (with industry code

M2800: Banking and Insurance) were eliminated from the sample due to the unique

capital requirements and regulatory structure in that industry group. Also, electronic

companies (with industry code M2300: Electron) were not considered because such

companies provide much less historical data and have much smaller financial failure

rate, compared to traditional companies. Further, the companies providing incomplete

values of explanatory variables were excluded. Hence, our discrete-time survival data

were selected from the traditional companies providing complete values of explanatory

variables.

In the second step, 249 companies satisfying the above sampling considerations were

selected, and called the in-sample companies. Finally, in the third step, the historical

data of the 249 selected in-sample companies were drawn from the financial database

provided by Taiwan Economic Journal Co. Ltd.

Note that since there are only few bankrupt companies among the 249 selected

ones, it is difficult to predict bankruptcy well. In this case, to provide more failure

companies to proceed our research, we replaced our target on bankruptcy prediction

with financial distress prediction. According to the definition of financial distress given

by Taiwan Stock Exchange, financial distress companies are those whose stocks were

delisted, stopped trading, or traded by cash.

For predicting financial distress, two different sets of predictors were considered in

the DSM (19). The first set of predictors was that used in Altman (1968), and the

second was that employed in Zmijewski (1984). The two sets of predictors are given as

follows.

Altman’s predictors:

1. WC/TA = Working capital / Total assets.

2. RE/TA = Retained earnings / Total assets.
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Table 5: The information about industry and financial status of in-sample companies.

Industry
number of distress

companies
number of healthy

companies
M1100 Cement 0 4
M1200 Food 3 17
M1300 Plastics 2 14
M1400 Textiles 3 35
M1500 Electric, Machinery 1 16
M1600 Appliance, Cable 0 6
M1700 Chemica 0 15
M1800 Glass, Ceramics 1 5
M1900 Paper, Pulp 1 1
M2000 Steel, Iron 6 21
M2100 Rubber 0 6
M2200 Automobile 3 3
M2500 Construction 4 28
M2600 Transportation 1 14
M2700 Tourism 0 4
M2900 Department Stores 0 7
M9900 Other 4 24
Total companies 29 220

3. EBIT/TA = Earnings before interest and taxes / Total assets.

4. ME/TL = Market value of equity / Book value of total debts.

5. S/TA = Sales / Total assets.

Zmijewski’s predictors:

1. NI/TA = Net income / Total assets.

2. TL/TA = Total debts / Total assets.

3. CA/CL = Current assets / Current liabilities.

Since there is no discrete predictor considered by Altman and Zmijewski, our discrete-

time survival data only contain continuous predictors. To perform the financial distress

prediction, the duration time t required by the DSM (19) was taken as the firm’s trading

age (Shumway 2001).

The values of Altman’s and Zmijewski’s predictors were collected for our selected

249 in-sample companies from the Taiwan Economic Journal database. For each se-
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Table 6: Summary statistics of variables in our discrete-time survival data.

mean median std min max
log(t) 1.3867 1.6094 0.7535 0.0000 2.8332
WC/TA 0.1486 0.1395 0.1803 −1.0713 1.1979
RE/TA 0.0533 0.0593 0.1232 −1.6818 0.6752
EBIT/TA 0.0592 0.0602 0.0854 −1.0061 0.6526
ME/TL 5.4051 3.3237 6.4633 0.0355 78.7321
S/TA 0.7228 0.6318 0.4568 −0.1665 4.1400
NI/TA 0.0347 0.0407 0.0984 −1.6825 0.6407
TL/TA 0.4000 0.3942 0.1690 0.0485 1.5139
CA/CL 1.9803 1.4929 1.6762 0.0129 21.1094

lected company, the annual values of Altman’s and Zmijewski’s predictors were collected

during the sampling period. The information about industry and financial status of our

selected 249 in-sample companies are given in Table 5. The summary statistics of log(t)

and the predictors considered by Altman and Zmijewski in our selected discrete-time

survival data are given in Table 6.

In this dissertation, in order to predict financial distress, the data used in the LLM

(1) and DSM (19) were standardized so that the prediction results are unaffected by

range, outliers, and other factors. The maximum likelihood estimates for parameters

in the DSM (19) using the discrete-time survival data with Altman’s predictors, and

those in the LLM (1) using the last annual data of the discrete-time survival data

with Altman’s predictors are presented in Table 7. By characteristics of Altman’s

predictors, the larger the values of Altman’s predictors, the smaller the probability

of financial distress. Combining the result and the fact that the logistic function is

strictly increasing, the coefficient estimates of Altman’s predictors in both models LLM

(1) and DSM (19) should be negative. From Table 7, the coefficient estimates of the

three predictors, WC/TA, RE/TA, and S/TA, are negative in both the DSM (19) and

LLM (1). But those of the two predictors, EBIT/TA and ME/TL, are positive in both

models. The tests of the latter two coefficient estimates are not significant at 0.05 level

in the DSM (19). Therefore, the resulting coefficient estimates of Altman’s predictors in

the DSM (19) are reasonable. On the other hand, the tests of the latter two coefficient
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Table 7: The estimated values of parameters in each of the DSM and the LLM using
our discrete-time survival data with Altman’s predictors. A z statistic was given to
test the significance of the value of each parameter. The value given in the parenthesis
stands for the p-value of the corresponding z test. Each value marked by ∗ denotes that
the corresponding coefficient is significant at 0.05 level.

prediction
model

log(t) WC/TA RE/TA EBIT/TA ME/TL S/TA

DSM −0.0151 −0.0291 −0.3219 0.0879 0.0486 −0.2000
(0.747) (0.548) (0.000)∗ (0.078) (0.300) (0.670)

LLM −0.1383 −0.1561 −3.9517 1.8612 0.4580 −0.2876
(0.326) (0.405) (0.000)∗ (0.000)∗ (0.001)∗ (0.080)

estimates are significant at 0.05 level in the LLM (1). Hence, it is unreasonable in this

situation. The coefficient test of the firm’s trading age is not significant in each of the

DSM (19) and LLM (1).

Table 8 shows the maximum likelihood estimates of the parameters in the DSM

(19) and the LLM (1), similar to Table 7, but with Zmijewski’s predictors instead of

Altman’s predictors. By characteristics of Zmijewski’s predictors, the larger the values

of NI/TA and CA/CL, and the smaller the value of TL/TA, the smaller the probability

of financial distress. Combining the result and the fact that the logistic function is

strictly increasing, the coefficient estimates of the two predictors, NI/TA and CA/CL,

should be negative and that of TL/TA should be positive. From Table 8, the coefficient

estimates of the predictors, NI/TA and TL/TA , are negative and positive, respectively,

in the DSM (19). The same remark is also made for the LLM. Those of the predictors

CA/CL are positive in both the DSM (19) and LLM (1). The test of coefficient estimate

of the predictor CA/CL is not significant at 0.05 level in the DSM (19). Therefore, the

resulting coefficient estimates of Zmijewski’s predictors in the DSM (19) are reasonable.

On the other hand, the test of coefficient estimate of the predictor CA/CL is significant

at 0.05 level in the LLM (1). Hence, it is unreasonable in this situation. The coefficient

test of the firm’s trading age is not significant in each of the DSM (19) and LLM (1).

In this illustration, the selected optimal cutoff value p̂∗ was taken as the minimizer of

the sum of in-sample type I and type II error rates without restriction on the magnitude
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Table 8: The estimated values of parameters in each of the DSM and the LLM using
our discrete-time survival data with Zmijewski’s predictors. A z statistic was given to
test the significance of the value of each parameter. The value given in the parenthesis
stands for the p-value of the corresponding z test. Each value marked by ∗ denotes that
the corresponding coefficient is significant at 0.05 level.

prediction
model

log(t) NI/TA TL/TA CA/CL

DSM 0.0009 −0.2421 0.0704 0.0522
(0.985) (0.000)∗ (0.146) (0.267)

LLM −0.0223 −1.5164 0.6676 0.3827
(0.874) (0.000)∗ (0.000)∗ (0.006)∗

Table 9: The selected optimal cutoff values p̂∗ obtained by applying each of the DSM
and the LLM to our discrete-time survival data with Altman’s predictors, and those
with Zmijewski’s predictors.

predictors DSM LLM
Altman 0.5281 0.4808
Zmijewski 0.5476 0.5621

of in-sample type I error rate. The type I and II error rates have been introduced in

Section 1.8. For each of the DSM (19) and LLM (1), Table 9 shows the selected

optimal cutoff values p̂∗ using the discrete-time survival data with each set of Altman’s

and Zmijewski’s predictors.

In order to compare the financial distress prediction performance of LLM (1) and

DSM (19), the 220 healthy companies in the sampling period were used to predict their

financial status in the out-of-sample period. These companies were called the out-of-

sample companies. The out-of-sample period was taken as the one during January of

the year 2000 to December of the year 2002. Table 10 presents their industry and

financial status in the out-of-sample period.

The last annual values of predictive variables in the out-of-sample period were col-

lected for the out-of-sample companies. These data was called the out-of-sample data.
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Table 10: The information about industry and financial status of out-of-sample com-
panies.

Industry
number of distress

companies
number of healthy

companies
M1100 Cement 0 4
M1200 Food 4 13
M1300 Plastics 1 13
M1400 Textiles 3 32
M1500 Electric, Machinery 1 15
M1600 Appliance, Cable 1 5
M1700 Chemica 0 15
M1800 Glass, Ceramics 1 4
M1900 Paper,Pulp 0 1
M2000 Steel, Iron 5 16
M2100 Rubber 0 6
M2200 Automobile 0 3
M2500 Construction 9 19
M2600 Transportation 0 14
M2700 Tourism 0 4
M2900 Department Stores 1 6
M9900 Other 3 21
Total companies 29 191

The out-of-sample data is expressed as

(tk, Ỹk, xk,tk), for k = 1, ..., n0.

Here n0 =
nP
i=1

(1 − Yi) is the number of the out-of-sample companies, n is the number

of the in-sample companies, and tk denotes the duration time of the k-th out-of-sample

company in the out-of-sample period. Also, at the duration time tk, Ỹk = 0 indicates

that the k-th out-of-sample company is healthy, and 1 the k-th out-of-sample company

is of financial distress. Further, xk,tk denotes the values of Altman’s or Zmijewski’s

predictors collected at the duration time tk.

Given each set of Altman’s and Zmijewski’s predictors, the financial distress pre-

diction performance of the LLM (1) and that of the DSM (19) were compared on their

out-of-sample error rates. Given each set of Altman’s and Zmijewski’s predictors, the
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out-of-sample error rates of the DSM were calculated as follows. First, use the maxi-

mum likelihood estimates ψ̂ of parameters ψ in Tables 7 and 8 for the DSM to calculate

the predicted probability of financial distress for the company with predictor values (tk,

xk,tk), for each k = 1, ..., n0. Second, use the resulting predicted probability of financial

distress to compare with the selected optimal cutoff value p̂∗ in Table 9 for the DSM.

The k-th company with predictor values (tk, xk,tk) is classified as a financial distress

company if

ĥk = h(tk, xi,tk ; ψ̂) =
exp{α̂0 + α̂1 log(tk) + β̂ xi,tk}

1 + exp{α̂0 + α̂1 log(tk) + β̂ xi,tk}
> p̂∗,

otherwise a healthy company. Finally, the three out-of-sample error rates of the DSM

corresponding to each set of Altman’s and Zmijewski’s predictors defined by

αDSM =

(
n0X
k=1

Ỹk I(ĥk ≤ p̂∗)

)
/

(
n0X
k=1

Ỹk

)
,

βDSM =

(
n0X
k=1

(1− Ỹk) I(ĥk > p̂∗)

)
/

(
n0X
k=1

(1− Ỹk)

)
,

τDSM = αDSM + βDSM ,

were computed. Here αDSM is the error rate of misclassifying the financial distress

companies to healthy ones, and βDSM is the error rate of misclassifying the healthy

companies to financial distress ones for the prediction rule DSM.

The same computational procedures were also applied to the prediction rule based

on the LLM (1). See Section 1.3 for a detailed introduction of the computational

procedures for the LLM (1). Let αLLM , βLLM , and τLLM be similarly defined as the

out-of-sample error rates for the LLM (1) corresponding to each set of Altman’s and

Zmijewski’s predictors.

Given each set of Altman’s and Zmijewski’s predictors, Table 11 presents the finan-

cial distress prediction performance of the DSM (19) and that of the LLM (1). Using

Zmijewski’s predictors, Table 11 shows that the performance of the DSM (19) is nearly
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Table 11: The out-of-sample error rates obtained by applying each of the DSM and
the LLM to our discrete-time survival data with Altman’s predictors, and those with
Zmijewski’s predictors.

predictors αDSM βDSM τDSM

Altman 0.0345 0.2513 0.2858
Zmijewski 0.2413 0.1675 0.4088
predictors αLLM βLLM τLLM
Altman 0.1724 0.2251 0.3975
Zmijewski 0.2413 0.1518 0.3931

equal to that of the LLM (1). But, using Altman’s predictors, Table 11 shows that the

performance of the DSM (19) is much better than that of the LLM (1). Hence, from

Table 11, to predict the financial distress for the traditional companies listed in Taiwan

Stock Exchange, we suggest using the DSM (19) with Altman’s predictors.

3.4 Discussion

In this chapter, the prediction of financial distress based on the DSM (19) are

proposed for the discrete-time survival data collected in Taiwan. The DSM (19) has

the advantage of using all available historical information to determine each firm’s

bankruptcy risk at each point in time, and it is a dynamic forecasting model.

The maximum likelihood method is employed to estimate the values of parameters

ψ of the DSM (19), and the resulting estimators ψ̂ are asymptotically normally dis-

tributed as ψ̂ ≈ N{ψ, In(ψ)−1}, where In(ψ) = (−1)E
n
∂2 DSM (ψ)

∂ψ ∂ψT

o
. In practice, we

use In(ψ̂) = (−1) ∂2 DSM (ψ)

∂ψ ∂ψT

¯̄̄
ψ=ψ̂

to estimate In(ψ). Replacing the quantity In(ψ)−1 in

the asymptotic normal distribution of ψ̂ with its estimate In(ψ̂)−1, the resulting dis-

tribution can be used to derive the confidence interval estimate and test the values of

ψ.

To decide the optimal prediction rule, we propose to define the optimal cutoff value

p̂∗ as the minimizer of the sum of in-sample type I and type II error rates without

restriction on the magnitude of the in-sample type I error rate. Based on our real data

example, our DSM (19) performs better than LLM (1), in the sense of having much
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smaller and having almost equal out-of-sample total error rates using Altman’s and

Zmijewski’s predictors, respectively. In conclusion, it is better for the financial distress

prediction of the traditional companies listed in Taiwan Stock Exchange to use the

DSM (19) with Altman’s predictors.

Although the DSM (19) has the above advantages, it has some practical drawbacks.

Firstly, it needs to collect each firm’s time-series data. However, such time-series data

may be incomplete and some ad hoc imputation methods are frequently employed.

For example, Shumway (2001) suggested substituting variable values from past years

for the missing values in the cases when the explanatory variables are not completely

observed. Secondly, there will be a problem encountered in economical structure change.

Grice and Dugan (2001) showed that using the prediction models to time periods other

than those used to develop the models may result in significant decline in prediction

accuracies. Finally, the hazard function employed by the DSM (19) is a linear logistic

function, which is not robust with respect to the misspecification of the linear relation.

This is the same problem happened to the LLM (1). Hence, to avoid such drawback

to the DSM (19), one remedy is to consider the hazard function as a semiparametric

logistic function

h(t, x, z) =
exp{H(t, x) + θ z}

1 + exp{H(t, x) + θ z} ,

as discussed in Section 1.4 and Chapter 2. Here H(t, x) is an unknown, but smooth

function of (t, x). It will be interesting to study the financial distress prediction per-

formance for the model combining both the SLM and DSM.
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CHAPTER IV

CONCLUSIONS

Ohlson (1980) proposed the LLM to predict bankruptcy. The LLM postulates that

the logit function of bankruptcy probability is a linear function of the predictors. The

main reason of using the LLM is due to its simplicity in computation and interpretation.

When appropriate, the LLM has definite advantages. For example, the corresponding

inferential methods usually have nice efficiency properties. Also, the parameters gen-

erally have some physical meaning which makes them interpretable and of interest in

their own right. However, if the assumed linear logit function is grossly in error, then

the advantages of the LLM will not be realized. Thus, there are few benefits from us-

ing a poorly specified LLM. Härdle, Moro, and Schäfer (2006) shows that the relation

between the bankruptcy probability and predictors, such as net income change and

company size, may not be monotonic.

The LLM is most appropriate when theory, past experience, or other sources are

available that provide detailed knowledge about the data under study. Sometimes,

based on previous experience, there are reasons for modelling the logit function of

bankruptcy probability as a particular parametric function of predictors, which may

not be linear. However, a general drawback of such parametric modelling is that if one

chooses a parametric family that is not of appropriate form, at least approximately,

then there is still a danger of reaching erroneous inference.

Under the circumstance, the first focus of this dissertation is to consider a robust

method, against misspecification of the parametric logit model relation, by introducing

the SLM for predicting bankruptcy. The SLM is basically very similar to the LLM,

except that some unknown but smooth function replaces the linear function to model

the relation between the predictors and the logit function of bankruptcy probability.

Thus, clearly, the SLM is much more general and flexible in predicting the bankruptcy

of a firm.
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In this dissertation, bankruptcy prediction methods based on the SLM are proposed

for both the prospective and the case-control data. The unknown parameters and

prediction probabilities in the model are estimated by the local likelihood approach, and

the resulting estimators are analyzed through their asymptotic biases and variances.

The bankruptcy prediction methods using these two types of data are shown to be

essentially equivalent. Thus our SLM can be directly applied to data sampled from

the two important designs. One real data example and simulations confirm that our

prediction method is more powerful than those based on the DAM, LLM, and KMV,

in the sense of yielding smaller out-of-sample error rates.

There are two possible extensions for the SLM. Firstly, in the SLM, we assume the

logit function of bankruptcy probability as H(x) + θ z, where H(x) is an unknown

but smooth function. A local likelihood method has been developed to estimate H(x).

However, the resulting estimator Ĥ(x) suffers from the curse of dimensionality, that

is, as the dimension of the continuous predictor X increases, the performance of the

resulting Ĥ(x) deteriorates. To avoid such drawback, one possible remedy is to consider

an additive model for H(x):

H(x) = H1(x1) + · · · +Hd(xd),

as described by Hastie and Tibshirani (1990). Here x = (x1, · · ·, xd)T and Hi(xi) is any

unknown but smooth function of xi, the i-th component of x, for each i = 1, · · ·, d.

Secondly, the logit function of bankruptcy probability in our SLM is basically an

additive model with H(X) and θ Z. This assumption will be violated if X and Z

are interactive. A possible solution to this problem is to introduce a nonparametric

interaction such as G(X) Z, where G(·) is a q-dimensional row vector of unknown but

smooth functions, in the model. It will be interesting to study the estimates of functions

H(x) and G(x) simultaneously.

On the other hand, there is another potential pitfall for the LLM. It is static in

nature, since it uses only one set of predictor values collected at a specific time point
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for each firm. The static model is generally not appropriate for predicting bankruptcy

because it ignores both facts that the characteristics of firms change through time as

well as bankruptcy does not often occur. The same drawback to the LLM also happens

to our proposed SLM. To avoid the drawback, the DSM (Allison 1982; Shumway 2001)

is suggested using the idea of discrete-time survival analysis. It has the advantage of

using all available historical information to determine each firm’s bankruptcy risk at

each point in time, hence it is a dynamic forecasting model.

However, the values of parameters in Shumway’s dynamic prediction model are

estimated by using the same approach as those in the multiperiod logit model (Pagano,

Panetta, and Zingales 1998). Theoretically, the multiperiod logit model assumes the

predictor values collected for each firm at all time points are independent. Clearly, such

predictor values are dependent, and the assumption does not hold in practice. Thus,

asymptotic properties of the resulting estimates of parameters in Shumway’s dynamic

prediction model can not be obtained from the multiperiod logit model.

By the considerations, the second focus of this dissertation is to employ directly the

DSM to predict bankruptcy. In this dissertation, the predictor values of each firm in the

DSM are assumed to be dependent, and the values of their parameters are estimated by

the maximum likelihood method. Asymptotic normalities of the resulting estimators of

parameters are obtained. Thus, the inferences about the parameters are available.

In practice, the DSM was applied to predict financial distress using the discrete-

time survival data collected in Taiwan. Since there are only few bankrupt companies

collected, it is difficult to predict bankruptcy well. In this case, to provide more failure

companies to proceed our research, we replaced our target on bankruptcy prediction

with financial distress prediction. According to the definition of financial distress given

by Taiwan Stock Exchange, financial distress companies are those whose stocks were

delisted, stopped trading, or traded by cash. Based on our real data example, our

DSM performs better than the LLM, in the sense of having much smaller and having

almost equal out-of-sample total error rates using Altman’s and Zmijewski’s predictors,
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respectively. The empirical result shows that it is better for the financial distress

prediction of the traditional companies listed in Taiwan Stock Exchange to use the

DSM with Altman’s predictors.

There is one possible extension for the DSM. The hazard function employed by the

DSM is defined by

h(t, x, z; ψ) =
exp{α0 + α1 log(t) + β x+ θ z}

1 + exp{α0 + α1 log(t) + β x+ θ z} ,

where ψ = (α0, α1, β, θ)T . It is a linear logistic hazard function. Thus, it is not robust

with respect to the misspecification of the linear relation. This is the same problem

happened to the LLM. Hence, to avoid such drawback to the DSM, the same remedy

improving the drawback to the LLM can be applied to the DSM by considering the

hazard function as a semiparametric logistic function

h(t, x, z) =
exp{H(t, x) + θ z}

1 + exp{H(t, x) + θ z} .

Here H(t, x) is an unknown but smooth function of (t, x). It will be interesting to

study the performance of prediction methods based on the resulting semiparametric

dynamic model.
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