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摘  要 
 

為了支援多媒體服務之叢集性傳輸(bursty-transmission) 和異質性服務品質 (quality of 
services, QoS) 之要求，我們需要一套精確設計的訊務控制(traffic control)機制，藉以在滿足連
線頻寬與服務品質要求的狀況下，進一步有效地提升系統資源的使用效率。現有文獻已指出，

多媒體服務其多樣化且多變的訊務特性、以及各式各樣的傳輸與服務品質上的需求，已經使

得整體網路的行為更加複雜，因此有必要應用智慧型技術(intelligent techniques) 來解決多媒體
高速網路環境中的訊務控制課題。在本論文中，我們探討在 ATM 和 IP 這兩種多媒體高速網
路環境下，應用類神經/乏晰智慧型技術之訊務控制機制，並著重在「連線允諾控制 (connection 
admission control, CAC)」與「訊務監控調節(traffic policing)」這兩個主要的訊務控制功能。 

我們首先探討在 ATM網路中，採用「時域(time-domain)」訊務參數與類神經乏晰技術來進
行連線允諾控制決策的「類神經乏晰連線允諾控制(neural fuzzy connection admission control, 
NFCAC)」方法。該允諾控制方法由於採用了類神經乏晰控制器做為控制決策的核心，因此也
可以視為是一種整合性的技術：結合了乏晰邏輯系統的高階語意控制功能，以及類神經網路

的自我學習能力。透過挑選適當的輸入信號（包含時域訊務參數與部分系統性能量測統計值）

和設計較佳的控制法則，該允諾控制方法的類神經乏晰控制器即可以從中習得既有的連線允

諾控制的專家知識，並提供一套快速、精確而有效的計算程序來實現足夠強健(robust) 的連線
允諾控制功能。模擬結果顯示，與傳統的幾種（同樣採用時域訊務參數的）連線允諾控制機

制相較起來，我們在此所提出的類神經乏晰連線允諾控制方法可以在滿足服務品質保證的基

本條件下，達到最好的系統資源使用率；同時，若再與傳統方法中具有類神經網路學習功能

的方法比較起來，此類神經乏晰連線允諾控制方法也有較快的學習收斂速度。 

接著，在前述採用時域訊務參數的連線允諾控制方法之外，我們還另外探討採用「頻域 
(frequency-domain)」訊務參數與類神經網路技術來進行連線允諾控制決策的「功率頻譜基礎
之類神經網路連線允諾控制(power-spectrum-based neural-net connection admission control, 
PNCAC)」方法。該允諾控制方法採用類神經網路控制器作為控制決策的核心，並以呼叫連線
訊務源和既有連線訊務源的「功率頻譜密度(power spectral density, PSD) 參數」作為該控制器
的（部分）輸入信號來進行連線允諾的決策控制。其理論基礎主要源自於，已知一個訊務源

的功率頻譜密度函數(PSD function) 包含該訊務源的（時域）自我相關與叢集特性，並且已經
有研究文獻證實，功率頻譜密度函數的確可以完全掌握並描述一個訊務源在一個佇列系統

(queueing system) 的行為表現特性，因此其特徵參數（也就是前述簡稱的「功率頻譜密度參數」）
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自然也就可以視為是該訊務源的一種訊務參數，並且可以對應到其一定的佇列行為特性。此

研究發現，開啟了我們以訊務源的頻域訊務參數，亦即「功率頻譜密度參數」，來進行連線允

諾控制的初始構想和概念。隨後，透過我們所提出的一套功率頻譜密度函數合成演算法，可

以很快速地由兩個訊務源各自的功率頻譜密度參數，求得其合成訊務源的功率頻譜密度參數

（的合理近似值），如此也使得採用「功率頻譜密度參數」來進行連線允諾控制成為實際可行

且適合的方案。模擬結果顯示，我們所設計並提出採用「功率頻譜密度參數」的類神經網路

連線允諾控制方法，可以在變動的網路訊務特性的環境下，達到相當穩定而強健的控制效能。 

另外，我們在連線允諾控制機制的研究外，也對於和連線允諾機制息息相關且為其必備輔

助功能的訊務監控調節機制進行相關的研究。我們首先針對 ATM網路定義的訊務監控調節機
制，也就是所謂的使用參數控制(usage parameter control, UPC) 功能，提出兩種智慧型使用參
數控制器，分別是「乏晰使用參數控制器」以及「類神經乏晰使用參數控制器」。「乏晰使用

參數控制器」是在傳統 ATM 標準所建議並用來實現使用參數控制功能的「漏水桶方法(leaky 
bucket algorithm)」上，引進一個「乏晰水增量控制器(fuzzy increment controller, FIC)」；同理，
「類神經乏晰使用參數控制器」即是在傳統漏水桶方法上增加了一個「類神經乏晰水增量控

制器(neural fuzzy increment controller, NFIC)」。這兩個智慧型控制器皆是選用相同的兩個系統
量測統計值，即受監控訊務源之長期平均封包速率和短期平均封包速率，來做為其輸入語意

變數，並據此對受監控訊務源做出適應性的動態水增量調整決策。模擬結果顯示，我們所提

出的兩種智慧型使用參數控制器，皆可比傳統的漏水桶方法具有較高的違法封包檢出正確

率、較短的訊務違法反應時間以及較快的違法封包檢出速率；對於合法連線於用戶終端設備

輸出處的訊務塑型器(traffic shaper, TS) 所造成的佇列延遲上，也有比較小的數值表現。而在
兩智慧型使用參數控制器方法彼此的比較方面，類神經乏晰使用參數控制器也在上述幾個方

面的表現上比乏晰的方法有稍佳的效能，特別是在訊務違法反應時間及違法封包檢出速率上

有較明顯的差異。 

最後，我們繼續針對 IP網路環境上的訊務監控調節機制提出最佳化設計。而 IP網路的訊
務監控調節機制，主要是以定義在差異化服務(differentiated services, DiffServ) 模型中的「訊
務調節器(traffic conditioner)」所執行的訊務調節功能為主，因此我們便針對訊務調節器中的
核心關鍵性組件－訊務封包標記器(traffic maker)，以網際網路標準組織 IETF所建議的「雙速
率三顏色封包標記器(two-rate-three-color-marker, TRTCM)」方法為基礎，提出一「效能增強型
訊務封包標記器(enhanced traffic marker)」方法，在既有（消極）的監控性管制調節功能之外，
再增加公平標記與積極性封包合法位階促升(promotion) 功能。模擬結果顯示，我們所設計的
「效能增強型訊務封包標記器」的確可以在一合成訊務流中，對其各組成分流的封包合法位

階標記做到精確檢出及公平標記的目的。同時，其不僅可以在系統資源足夠的時候，把過去

曾經因為「局部(local)」網路壅塞或較嚴格的訊務合約(traffic contract) 導致合法位階被調降的
封包再度提升至其原有的合法位階標記，還能夠進一步積極地盡可能提升其他封包的合法位

階以享有較佳品質的封包處理動作，如此可在不違反訊務合約的狀況下，達到充分利用系統

資源並增進受監控訊務連線的上層應用程式服務品質的目的。因此模擬結果也顯示，我們所

設計的「效能增強型訊務封包標記器」比起傳統單純的「雙速率三顏色封包標記器」方法，

在各合法位階的訊務上皆有較高（但仍合於訊務合約）的封包輸出速率(throughput)。 
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Abstract

To support bursty-transmission and heterogeneous quality of services (QoS) require-

ments for multimedia services, a suite of well-designed sophisticated traffic control scheme is

required to effectively enhance the system utilization. The non-stationarity of work-loads, to-

gether with heterogeneous traffic characteristics and QoS constraints of multimedia services,

indeed constitute the necessity for applying intelligent techniques in multimedia high-speed

networks. In this dissertation, the traffic control functions involving the connection admission

control (CAC) and the traffic policing for multimedia high-speed networks by neural/fuzzy

intelligent techniques are studied. Both ATM and IP networks which can be utilized to

construct the multimedia high-speed networks are considered in this dissertation.

Firstly, a neural fuzzy connection admission control (NFCAC) scheme which based on the

time-domain traffic parameters and provides QoS guarantees for ATM networks is proposed.

The NFCAC scheme is an integrated method that combines the linguistic control capabilities

of a fuzzy logic controller and the learning abilities of a neural network. With properly

choosing input variables which involve the measured statistics of network performances,

and well designing the rule structure for the NFCAC scheme, it can not only provide a

robust framework to mimic experts’ knowledge embodied in existing connection admission
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control techniques but can also construct precise and efficient computational algorithms for

connection admission control. Simulation results show that, compared with conventional

CAC schemes, the proposed NFCAC can achieve superior system utilization, high learning

speed, and simple design procedure, while keeping the QoS contract.

And then, as contrast to the CAC scheme based on the time-domain traffic parameters

discussed above, a power-spectrum-based neural-net connection admission control (PNCAC)

scheme is proposed for also the multimedia high-speed ATM networks. It employs a neural

network controller to handle the CAC function according to the frequency-domain power

spectral density (PSD) parameters of the traffic sources. Since the PSD function of an input

traffic contains the correlation and burstiness properties of the traffic, and it has been proven

capable to characterize the queueing performances of the input traffic, the PSD parameters

describing the PSD function can well correspond to the queueing performances also. With

a composition algorithm to easily obtain the three PSD parameters of an aggregate traffic,

it is suitable to adopting PSD parameters for CAC accordingly. Simulation results show

that, after well training the neural network, an optimal CAC decision hyperplane based on

the input variables is constructed to provide an efficient and robust admission control under

dynamic network environments, while the QoS requirements are strictly assured.

After that, in addition to the studies about CAC, a traffic policing mechanism is neces-

sary to ensure that all established connections conform to their respective traffic contracts, so

that the CAC can perform correctly. Therefore, two intelligent usage parameter controllers

are first proposed to implement the traffic policing function, usage parameter control (UPC),

for multimedia transmissions in ATM networks. One is the fuzzy usage parameter controller

realized by the fuzzy leaky bucket algorithm, in which a fuzzy increment controller (FIC)

is incorporated with the conventional leaky bucket algorithm; the other is the neural fuzzy

usage parameter controller base on the neural fuzzy leaky bucket algorithm, where a neural
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fuzzy increment controller (NFIC) is added to the conventional leaky bucket algorithm. Both

of FIC and NFIC properly choose the measured long-term and short-term mean cell rates,

as input variables to adaptively determine the optimal increment value with respect to the

traffic dynamics. Simulation results show that both intelligent leaky bucket algorithms have

significantly outperformed the conventional leaky bucket algorithm, by higher selectivity

and shorter responding time when taking control actions against a non-conforming connec-

tion, while reducing the queueing delay experienced by a conforming connection. Also, the

neural fuzzy leaky bucket algorithm outperforms the fuzzy one in all aspects especially the

responsiveness.

Finally, since the UPC is the traffic policing function defined in ATM networks, the traffic

conditioner defined in the differentiated services (DiffServ) model is employed to handle the

traffic policing function, namely the traffic conditioning, for the IP networks. An enhanced

traffic marker (ETM) based on the Two-Rate-Three-Color-Marker (TRTCM) scheme is then

proposed for the traffic conditioner to perform traffic policing by properly determining the

conforming level of the incoming packet and making a corresponding color notation on the

packet. The proposed ETM scheme introduces the features of aggressive promotion and fair

share marking, and incorporates them into the existing traffic policing function. Simulation

results show that the ETM scheme can fairly allocates the color notations among connections

within an aggregate one. It also enhances the throughput of each conforming level for the

aggregate connection to achieve as high rate as possible by not only restore the conforming

levels of the previously demoted packets, but also aggressively promote the packets to higher

conforming levels, so that the end-to-end QoS of the applications would be substantially

improved while the traffic contract is still be respected. It can be concluded that the ETM

scheme outperform the conventional TRTCM scheme in both aspects of marking fairness

and traffic throughput of each conforming level under congested and under-loaded networks.
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Chapter 1

Introduction

1.1 Motivation

Over the past decades, the development of communication networks has been astonishing.

So is the evolution of the service provisioning in the field of high-speed network. With the

breakthrough of advanced semi-conductor and computer technologies, numerous transmis-

sion and networking techniques associated with broadband capability have gotten dramatic

developments. Also, the costs for network usage are continually getting cheaper and thus

more people enroll in the network due to the low cost and convenience. All kinds of applica-

tions or services have been developed over the high-speed communication networks. Most of

them, especially the emerging ones, are the kind of multimedia services, which have various

quality-of-service (QoS) and bandwidth requirements associated with the high-volume, high-

burstiness and variable-rate traffics. Henceforth, high-bursty and high-volume services over

high-speed networks are no longer scientifically fictional, but real. With the proliferation of

various applications and the emergence of multimedia and real-time services, the high-speed

network supporting multimedia services has to be capable of handling high-volume bursty

traffic and providing guarantees to various QoS and bandwidth requirements. This is abso-

lutely not an easy job because the abundant and diverse multimedia traffics have drastically
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complicated the network environments. Henceforth, sophisticated and efficient (real-time)

traffic control mechanisms are necessary to support diverse multimedia services/applications

with different QoS and bandwidth requirements for high-speed networks while achieving high

system utilization. Besides, the traffic control mechanisms are also required to be adaptive

enough to handle the traffic and network dynamics.

Nowadays, both ATM (asynchronous transfer mode) and IP (Internet Protocol) tech-

nologies can be employed to implement multimedia high-speed networks to accommodate

versatile services and the subsequent diverse traffic types and characteristics. In order to

support a set of QoS classes sufficient for all feasible multimedia services, several traffic con-

trol mechanisms are proposed in both ATM and IP networks, such as connection admission

control (CAC), traffic policing and shaping, congestion control, buffer management, (feed-

back) flow control, priority control, traffic identification/classification, and traffic scheduling.

[31], [32], [50], [51]. Among these traffic control mechanisms, the dissertation concentrates

on the studies of connection admission control (CAC) and traffic policing functions for ATM

and IP network systems. As shown in Fig. 1.1, where a generic architecture of a network

access node is illustrated and the conceptual operation locations of several traffic control

mechanisms are also depicted, the CAC and traffic policing functions can be regarded as two

critical mechanisms performing access control upon the network-incoming traffics.

Connection admission control (CAC) is performed in a network access node at the call

setup phase and is defined as “a set of actions taken by the network in order to determine

whether a connection can be accepted or not” [31]. Specifically, the set of actions taken by the

network (in the access node) is to estimate the network resources against the requirements

of the incoming connections. A new connection is accepted and allowed to begin its traffic

transmission only if sufficient network resources are available and its required QoS can be

afforded while the QoSs of existing connections can still be maintained. In addition, the
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Figure 1.1: The generic architecture of a network access node

network utilization would also be expected to increase through CAC as high as possible.

The challenge of CAC is the complexity because the characteristics of heterogeneous source

are hard to precisely estimate. For CAC to perform correctly, all the established connections

can not violate their respective traffic contracts.

To make sure that the established connections conform to their traffic contracts, a traffic

policing mechanism should be employed. Traffic policing is performed at the user-network

interface (UNI) during the data transfer phase, and is defined as the set of actions taken

by the network to police the offered traffic of a connection so that the associated traffic

contract is respected. That is, some portion of the traffic of a connection would be dropped

or shaped (by introducing queueing effect) to enforce the resultant traffic compliant with the

traffic profile negotiated in the traffic contract during the call setup phase. Sometimes, the

non-conforming portion of a connection would be tagged rather than directly dropped, so

that the residual traffic satisfy the contract and some future processing would be performed
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upon the tagged non-conforming traffic to attain some operation objectives. The main

purpose of the traffic policing function is to protect network resources from malicious as

well as unintentional misbehavior which can affect the QoS of other already established

connections. The wide variety of multimedia services with different traffic characteristics

and QoS requirements makes traffic policing a difficult job. The difficulty lies in finding a

simple, universal, and effective scheme which is able to police any type of traffic to meet its

(usually long-term and call-level statistic-oriented) traffic contract by making (short-term

and packet-level) processing decision upon each incoming packet.

Several approaches have been designed and proposed to deal with the traffic control prob-

lems. Most of the conventional approaches, which usually based on the analytic parametric

models, suffer from serious shortcomings: some are simple but have many approximations

and assumptions that are hard to justify, which makes those approaches impractical and

leads to poor network resource utilizations because of the over- or under-estimations; others

contain complicated mathematical solutions that may not be feasible to operate in real-time

for high-speed multimedia networks. Besides, these conventional approaches provide optimal

solutions only under a steady state with the assumption of a stationary system, and some

parameters of the approaches are designed to be a pre-defined static value. This makes it

difficult for the conventional approaches to handle the traffic control over non-stationarily

dynamic network systems, because of not being able to react or respond to the highly varying

network conditions.

Alternatively, some researchers turn to incorporate the measured system statistics and

apply intelligent techniques to deal with the traffic control problems. Intelligent techniques,

such as fuzzy logic inference systems, neural networks and neural fuzzy systems have been

widely applied to deal with problems in numerous fields. They have replaced conventional

technologies in many scientific applications and engineering systems including the network
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control systems. Both fuzzy systems and neural networks are numerical model-free estima-

tors and dynamical systems [1], which have the capability of modeling complex non-linear

processes to arbitrary degrees of accuracy and efficiently adapting to the system dynamics.

Recent research results have proven that these intelligent computations are capable of pro-

ducing better results than parametric models or other conventional algorithmic approaches

when applied to dynamic, non-linear complex systems. Researches have also shown that the

non-stationarity of work-loads, together with heterogeneous traffic characteristics and QoS

constraints of multimedia services, constitute the necessity for applying intelligent techniques

in multimedia high-speed networks. Henceforth, in this dissertation, it is motivated to ex-

ploit the merits of intelligent techniques applying to traffic control schemes for multimedia

high-speed networks.

1.2 Paper Survey

1.2.1 CAC using Time-domain Traffic Parameters

Two kinds of CAC schemes are discussed in this dissertation for ATM networks. They

make the CAC control decision according to the traffic parameters of different aspects which

are the time-domain [8]–[23] and frequency-domain [33]–[39] parameters, respectively. For

the CAC schemes based on time-domain parameters, the conventional ones usually apply a

parametric model of the traffic being offered, either by requiring each connection to provide

an accurate description of its traffic behavior (via traffic parameters such as the peak rate,

mean rate, and the peak rate duration), or by measuring the observed traffic and fitting it to

a model, and then infers the cell loss ratio (CLR) (and other network performance measures)

from this model. For this scheme, when a new connection is requested, the network examines

either the required bandwidth [8], [9], [10], [11], [12] or the QoS requirements [13], [14] to

decide whether to accept the new connection or not. In most of the approaches disclosed in
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the literature, complicated mathematical equations were derived and approximations were

required to meet the real-time operation requirement for CAC. Some conventional CAC

schemes based on the time-domain parameters are briefly described below.

Guèrin, Ahmadi, and Naghshineh [8] proposed an “equivalent capacity” method for in-

dividual and multiplexed connections, based on their statistical characteristics defined by

traffic parameters and the desired QoS. A unified metric is then obtained to represent the

effective bandwidth used by connections and the corresponding effective load on network

links. Although the paper can provide an exact approach to the computation of the equiva-

lent capacity, the associated complexity makes it infeasible for real-time calculation. Hence,

an approximation is introduced and it results in the degradation in utilization. Chang and

Thomas [9], [10] used the large deviation theory and the Laplace method of integration to

provide a simple intuitive overview of the recently developed theory of effective bandwidth

for ATM networks. A simple priority scheme and a cut-off threshold scheme for imple-

menting multiple QoS were discussed. Four parameters of the average rate, the asymptotic

variance, the peak rate, and the average burst duration were employed as traffic descriptors

for approximating the effective bandwidth functions. They introduced the use of envelope

processes and conjugate processes that could be used for fast simulation and bounds. An-

other effective bandwidth approach is proposed by Elwalid, Mitra, et al. in [11], [12] for

generic Markovian traffic sources rather than typical two-state on-off sources models. It also

based on the large deviation theory and derive the effective bandwidth with an approxi-

mation techniques according to Chernoff’s theorem. Fast and effective techniques for the

computation of the approximation are given. The additive form in the effective bandwidth

has simplifying consequences for connection admission problem with multiple heterogeneous

classes of sources.

Saito [13] proposed a call admission scheme by inferring the upper bound of cell loss
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probability from the traffic parameters specified by users (i.e. the maximum number of cells

arriving during a fixed interval, and the average and variance of the number of cells arriving

during a fixed interval). The QoS requirement is guaranteed to be satisfied under this control

without assumptions of a cell arrival process. In [14], Murata et al modeled an ATM switch

as a discrete-time single server queueing system, and an exact analysis is developed to obtain

the waiting time distribution and cell loss probability for a new call and all existing calls.

According to the results, how the network performances depend on the statistics of a new

call (burstiness, sojourn time of a call in active or inactive state, etc.) is investigated, and

the effectiveness of admission control and traffic smoothing is also demonstrated.

As noted in section 1.1, the conventional CAC approaches, based on the analytical para-

metric models, maybe simple but not feasible in practice. Many approximations and as-

sumptions in these approaches simplify the models and this represents that networks are

forced to make control decisions based on incomplete or imprecise information. Besides, the

conventional CAC approaches provide optimal solutions only under a steady state with the

assumptions of a stationary system. And some parameters of them are designed to be static

values associated to the a-priori statistical knowledge. Henceforth, it is difficult to deal with

the traffic control problems over modern and future communication networks, which are

expected to be highly complicated and non-stationarily dynamic.

Some literatures [15]–[23] had proposed schemes to adopt a number of measured statis-

tics of the network system to help provide a better or optimal traffic control decision. The

statistics can be obtained by collecting network performance information such as the net-

work load, the occupancy of the buffers, the data rate and the data loss ratio. All of them

were proven to effectively and greatly improve the network performances. The reason lies on

that the measured statistics of network performance indeed provide a more insight informa-

tion of the system: the measured values represent the real conditions which can substitute
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the parameters that base on a-priori knowledge in the model-based conventional schemes;

the continual measurements of the network statistics would further provide the controller

adaptive capabilities responding to network dynamics. Besides, the measurement forms a

close-loop control system capable of adjusting itself to correspond to the network conditions,

which would consequently provide stable and robust operations.

Additionally, more network statistics can be collected than what are needed in the model-

based schemes to provide more comprehensive information about the system. These addi-

tional measurements may provide intuitive information about the traffic control. To full

utilize those measurements, numerous model-free approaches based on the intelligent tech-

niques are proposed. This is because the intelligent techniques could accommodate all in-

formation without any assumption about the systems. With the learning capability or the

human experiences about the system, the intelligent techniques can extract the knowledge

about the CAC and construct a robust admission controller. These approaches are briefly

depicted as follows.

Fuzzy logic systems have been widely employed to deal with CAC-related problems in

ATM networks [17], [18]. Bonde and Ghosh [17] used fuzzy mathematics to provide a flexible,

high-performance solution to queue management in ATM networks. In [18], a fuzzy traffic

controller which simultaneously incorporates CAC and congestion control was proposed. It

is a fuzzy implementation of the two-threshold congestion control method and the equivalent

capacity admission control method extensively studied in the literature. Comparative studies

have shown that the proposed fuzzy approaches significantly improve system performance

compared with conventional approaches.

Aamadi, Tarraf, Habib, and Saadawi [19] introduced intelligent traffic control for ATM

networks. They surveyed some of the recent applications of NNs in high-speed networks. NNs

could be used to measure and predict the traffic characteristics, to determine the acceptance
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of connections as a CAC controller, to detect violation of negotiated parameters as a UPC

controller, and to control the traffic flow via feedback control signal to prevent network

from congestion. Performance results show that the NN approaches achieve better results,

much simpler and faster than conventional approaches. Hiramatsu [20] proposed a neural-

net based connection admission controller. The proposed ATM network controller used

multilayer feedforward neural networks for learning the relations between the offered traffic

and the service quality. In the proposed method, the declared traffic parameters were used

only to divide calls into several bit-rate classes. The neural network in the controller actually

learns the relationship between the numbers of existing connections in each bit-rate class and

their corresponding QoSs according to the statistical characteristics of each bit-rate class.

Morris and Samadi [21] described the application of neural networks to the CAC and the

switch control problems. Key network performance parameters are observed while carrying

various combinations of calls, and their relationship is learned by a neural network structure.

The neural network model chosen has the ability to interpolate or extrapolate from the past-

experienced results, and it also has the ability to adapt itself to the new and changing

conditions. In [22], Youssef, Habib, and Saadawi proposed a call admission controller for

ATM networks. A neural network is trained to compute the effective bandwidth required

to support MPEG-1 VBR video calls with different QoS requirements. They showed that

the adaptability of the neural network controller to new traffic situations had been achieved

by adopting a hierarchical approach to the design. We have also proposed a neural network

connection admission control (NNCAC) scheme [23] for ATM networks. Simulation results

reveal that call admission control with neural networks can improve significantly system

utilization, under QoS constraint.
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1.2.2 CAC using Frequency-domain Traffic Parameters

All the studies about CAC schemes mentioned above were conducted mainly on the basis

of traffic parameters in time domain. On the other hand, Li and Hwang [33] and Sheng

and Li [34] have studied the queueing performance of a high-speed network from the point

of view in the frequency-domain traffic parameters. The process of input traffic inherently

contains a power spectral density (PSD) function, which is the Fourier transform of the input

traffic process’s autocorrelation function. From their studies, two characteristics of PSD are

concluded: (i) The PSD can be well characterized by three main parameters such as the DC

component, the average power, and the half-power bandwidth. (ii) The low-frequency band

of the input PSD has a dominant impact on queueing performance, while the high-frequency

band can be neglected to a large extent. This is because the low frequency component

of PSD contains the correlation and burstiness of the input process. The more the low-

frequency components are, the burstier the input traffic will be [35]. Therefore, according

to the above two PSD characteristics from Li’s studies, it can be conducted that these

three PSD parameters can well characterize the input traffic and correspond to its queueing

performances, and thus this reveals a chance to employ the PSD parameters for CAC.

A composition algorithm is proposed in [36] to obtain the three PSD parameters of an

aggregate traffic source from the given PSD parameters of these individual traffic sources

which build the aggregate one. The computation process of the composition algorithm is

just through some simple arithmetic operations. It can then be concluded that PSD param-

eters possess additive property; this makes the PSD parameters more suitable for admission

control, no matter how many types of traffic sources there are, because the PSD parameters

of the virtually aggregated total traffic enrolling the new call could be easily estimated as

the new call request arrives and maintain the same (three) reference variables, which can

correspond to the queueing performances, for the admission control decision making. The
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design of the CAC algorithm based on PSD parameters can be made accordingly and this

indeed greatly reduce the complexity for admission control.

An intuitive and simple CAC method using PSD parameters, the power-spectrum-based

table-lookup CAC method, was studied for multimedia communications in ATM networks,

where the table content was the cell loss probability indexed by the PSD parameters of

voice/video calls and arrival rates of data calls [36]. The table can be constructed through

several explorative simulations. This method, according to the simulation results, is efficient

enough, however, since the table is constructed based on the original three PSD parame-

ters: DC component, half-power bandwidth, and average power [36], there is a drawback of

large-dimensional CAC table. An “equivalent source” concept is consequently introduced to

transform the PSD parameters of an offered traffic source into the so called “equivalent” PSD

parameters which are corresponding to another (equivalent) traffic source [37]. The word

“equivalent” exactly stands for almost the same queueing performances in some evaluation

aspects. That is, the corresponding traffic source with the “equivalent” PSD parameters

generated by the transformation is expected to have equivalent queueing performances with

the offered traffic source characterized by original PSD parameters, so that the equivalent

PSD parameters could substitute the original ones. A modified power-spectrum-based table-

lookup CAC method was then proposed in [37] where the CAC lookup table is significantly

reduced by one dimension than that proposed in [36], since the PSD parameters of each

table entry in [36] can be transformed to the equivalent ones with the pre-defined half-power

bandwidth value which is identical among all transformed entries, and thus only the DC

component and the transformed equivalent average power have to be specified to character-

ize and distinguish each (voice/video) traffic source. The offered three PSD parameters of

a new call request would also be transformed to the equivalent ones at first to adapt to the

operations based on the dimension-reduced CAC table. Although the transformation may
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introduce some degradations on performances, simulation results show that the modified

power-spectrum-based table-lookup CAC scheme is still efficient enough and more feasible

for practical implementations.

In order to get rid of the trade-off between efficiency and table size due to the quantization

resolution of the PSD parameters indexing the CAC table, an enhanced power-spectrum-

based CAC method based on the PSD parameters is designed by adopting the intelligent

techniques to replace the lookup table and accommodate the index variables (including PSD

parameters of voice/video calls and arrival rates of data calls) as the inputs for the intelligent

controller. A continuous CAC decision hyperplane according to the input variables is then

built to provide more precise admission control under the constraint of QoS requirements.

Also, the learning capability of some intelligent techniques can bring adaptability to respond

to the network dynamics. Two intelligent power-spectrum-based CAC schemes employing

the neural network and the neural fuzzy controllers has been proposed in [38] and [39],

respectively. Both of them further raise the performance improvements on network utilization

of the power-spectrum-based CAC schemes as compared with the conventional equivalent

capacity method [8].

1.2.3 Traffic Policing in ATM Networks

For CAC to perform correctly, a traffic policing mechanism is necessary to ensure that

all established connections conform to their respective traffic contracts. Two traffic policing

functions, the usage parameter control (UPC) [40]–[48] and traffic conditioning [49]–[56], are

exploited in this dissertation for ATM and IP networks, respectively. The UPC is the traffic

policing function defined in ATM networks [31], while the traffic policing in IP networks

is performed through the traffic conditioning functions. For ATM networks, several UPC

schemes such as the jumping window, triggered jumping window, moving window, exponen-

tially weighted moving average, and leaky bucket algorithm were studied and compared [40],
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[41], [42], [43]. The most popular and well-known policing scheme is the leaky bucket algo-

rithm because of its simplicity and effectiveness. Three performance objectives have to be

fulfilled by UPC and they can also be adopted as the criteria to evaluate the efficiency of the

UPC in ATM networks: (i) High selectivity (detection accuracy): UPC should detect and tag

(drop) the non-conforming cells of a violating connection as many as possible, while being

transparent when the connection conforms to its traffic contract. (ii) High responsiveness :

the time for UPC to detect a violating connection should be rather short. (iii) Low queueing

delay : cells of a non-violating connection should not experience too much queueing delay at

the output shaper of customer premise equipment (CPE).

Some literature had also studied to utilize the intelligent techniques for the UPC [44],

[45], [46], [47]. In [44], a fuzzy logic implementation of the leaky bucket algorithm that

used a channel utilization feedback to manage voice cells in ATM networks was proposed.

Simulation results showed that the fuzzy leaky bucket had performance improvement over the

conventional leaky bucket algorithm. In [45], a neural network traffic enforcement mechanism

using window-based scheme for ATM networks was presented. It is based upon an accurate

estimation of the probability density function (pdf) of the traffic via a counting process, and

the system performance is evaluated in terms of the pdf violation. It has scalability and

convergence problems if the number of previous windows is required to be a large value.

In [46], the paper designed a fuzzy policer based on window control scheme, which has

the characteristic of simplicity and the capability to combine a fast responsiveness with a

high-degree selectivity close to that of an ideal traffic policer. In [47], the proposed policing

strategy integrated with a linear prediction filter is used to forecast the cell rate of the policed

traffic source.
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1.2.4 Traffic Policing in DiffServ IP Networks

The traffic policing function in IP networks is handled by a controller named as traffic

conditioner defined in the Differentiated Services (DiffServ) model [50], [51]. The DiffServ

model is a QoS-provisioning service architecture for traffic processing and delivery proposed

by the Internet Engineering Task Force (IETF) [50] for the IP network, since the IP network

is basically originated on the “best-effort” service model and can hardly provides QoS guar-

antees for any connection because the bandwidth resources are allocated in a competition

sense among all connections. As contrary to the Integrated Services (IntServ) model [49]

which is alternatively the other QoS-provisioning service model defined by IETF but has

scalability problem because of the per-connection-based processing [51], DiffServ focuses on

the QoS of the aggregate connections and supports only a set of finite number of predefined

QoS classes in order to reduce the complexity and provide a promising solution to scalability.

The connections that require a similar QoS level would be assigned to the same class, and

thus (virtually) form an aggregate connection with a unique QoS processing including traffic

conditioning.

The traffic conditioner, consisting of a meter, a marker and a shaper (or a dropper), would

continually determine the conforming level of the incoming traffic of an aggregate connection

according to the measured traffic flow and its traffic contract [50], [51]. After that, a notation

would be made on the traffic packets by the marker to indicate the conforming level, and

a corresponding processing action such as dropping, shaping and bypassing is then taken

upon the packets. The packet notation assigned by the traffic marker in DiffServ networks is

defined as three colors, denoted as green, yellow, and red, which are corresponding to three

different pre-defined conforming levels for the packet with respect to the traffic contract.

The packets assigned a green notation can be called as green packets for simplicity, and so

do the packets marked a yellow or a red notation. The green packets stand for that these
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packets belong to the best conforming level and have the lowest dropping precedence (or the

shortest shaping delay); the red packets, on the contrary, represents that these packets are

judged to be with the worst conforming level (e.g. the violation level) and have the highest

dropping precedence (or the longest shaping delay).

In DiffServ IP networks, several traffic conditioning schemes such as Single-Rate-Three-

Color-Marker (SRTCM) [52], Two-Rate-Three-Color-Marker (TRTCM) [53] and Time-Sliding-

Window-Three-Color-Marker (TSWTCM) [54] were proposed in RFC to implement the traf-

fic conditioner. The TRTCM, which is popular because of its simplicity and effectiveness,

adopts a couple of token buckets to police two rate properties of a traffic source simultane-

ously. The output traffic rate of green packets as well as the aggregate output rate of green

and yellow packets are both ensured individually to conform to the traffic profile, where the

green traffic rate is usually corresponding to the policed mean (or sustainable) rate of the

incoming traffic and the aggregated green and yellow traffic rate represents the policed peak

rate of the incoming traffic.

In addition to the color-blind operation mode, where the color marking decisions are

based on only the metering results against the traffic contract, the alternative color-aware

operation mode of the TRTCM performs the color marking according to not only the me-

tering results against the traffic contract, but also the existing color notation of the packets,

simultaneously. The purpose and operation principle of the color-aware mode is to maintain

the existing color notation of the policed packets as best as it can while still conforming to

the traffic contract. This is because, as noted above, the color notation of the packets can

represent the conforming level and correspond to the pre-defined QoS-provisioning packet

processing behaviors. A packet may originally have its first color notation assigned by the

output shaping function at the source node according to not only the metered results but

also the importance of the packet’s content. By properly allocating color notations represent-
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ing higher conforming level and better QoS-provisioning packet processing behaviors to the

packets with application critical contents, the QoS of each application is then expected to be

quite improved while the traffic contract remains assured, since the packets with important

application data are supported and served with better QoS. For example, the I-frame in

the MPEG video is more vital than the other two coding frames, the B-frame and P-frame,

because it serves as the base frame to reconstruct a series of video frames. The packets con-

taining I-frame data can be assigned with the color notation representing higher conforming

level and better QoS-provisioning packet processing behaviors so that the quality of the re-

played video at the destination can be improved. Accordingly, the TRTCM operating in the

color-aware mode can support better QoS for the applications than the TRTCM running in

the color-blind mode.

As the TRTCM is a scheme to implement the traffic policing function in DiffServ IP

networks, the packet demotion capability that re-marks a packet with a color notation corre-

sponding to a lower conforming level than its existing one is inevitable and natural. However,

a packet that is demoted due to occasionally short-term congestions or a locally stricter traf-

fic profile may not have the chance to restore its existing or even the original conforming

level. It has also been observed that the output rate of green packets might be impaired by

the excessive incoming yellow packets: many packets with existing green notation are thus

demoted to be with red color directly because the token resources are excessively consumed

by the incoming yellow packets with the rate exceeding the traffic profile. These facts would

result in the end-to-end QoS degradations for the applications since more packets carrying

critical application data and originally denoted with a high conforming level maybe treated

by worse packet processing behaviors due to the demotions. Also, the marking fairness

among all connections within a (virtual) aggregate traffic is uncertain.

Similar performance objectives such as the selectivity, responsiveness and queueing delay
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introduced in the UPC of ATM networks can also be employed to verify the efficiency of

the traffic conditioner. In addition, because the processing of the traffic conditioner is based

on the aggregate connection, the marking fairness for resource share among all connections

within the (virtual) aggregate one could be taken into consideration as another performance

objective. On the other hand, the IP network would be a world-wide network constituted by

several interworking network systems which are hosted by different network service providers

(NSPs). The network management policies of different NSPs may be varied and thus the

definitions of a specific DiffServ QoS class can be distinct. Therefore, the traffic profile

and the associated QoS-provisioning processing of an aggregate connection corresponding to

the same QoS class may change from network domains to domains. As noted above in the

TRTCM scheme, the packets might be demoted due to a locally stricter traffic profile and thus

the end-to-end QoS of the applications would be degraded since the only demotion processing

would make the traffic rate corresponding to the high conforming level decline along the

communication route when the traffic traverse across several network hops or domains [55].

Consequently, a traffic promotion function is also considered as an objective for the traffic

conditioner to not only restore the conforming levels of the previously demoted packets,

but also aggressively promote the packets to higher conforming levels, if possible, for better

application QoSs, while the traffic contract is still be respected. The aggressive promotion

processing can then be equivalently regarded as fully utilizing the network resources to drive

the traffic of each conforming level to achieve as high rate as possible by packet promotions

while conforming to the traffic contract.

A random early demotion and promotion (REDP) technique [55] was proposed to over-

come the unfair-marking problem. It implements a packet promotion function in addition

to the demotion nature of the RED-In/Out (RIO) [56] marking mechanism, and achieves

marking fairness by appropriately allocating the demotion/promotion probabilities among
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packets during the packet demotion and promotion procedures. In order to fully utilize the

network resources for better application QoSs and provide marking fairness among all con-

nections within the (virtual) aggregate one for TRTCM, a TC PFG marking scheme [57]

was proposed. However, in TC PFG, only the packets belonging to the yellow conforming

level is allowed to be promoted and this limits its application. Moreover, TC PFG has the

problem of unjust-promotion that the previously demoted packets can not be guaranteed to

be promoted first when the network resource condition is available to perform the packet

promotion function.

1.3 Dissertation Organization

In this dissertation, the traffic control functions involving the connection admission control

(CAC) and the traffic policing for multimedia high-speed networks by neural/fuzzy intelligent

techniques are studied. Several types of service with different QoS requirements and various

bandwidth demands have to be supported by the multimedia high-speed networks. Both

ATM and IP networks which can be utilized to construct the multimedia high-speed networks

are considered in this dissertation. The CAC schemes which make the admission control

decisions according to the time-domain and frequency-domain traffic parameters are both

discussed where the intelligent techniques are chosen to implement the CAC controllers.

Also, the enhanced algorithms which implement the traffic policing function by incorporating

the intelligent techniques and a elaborate computation procedure into existing algorithms

for ATM and IP networks respectively are both well explored.

In Chapter 2, the basic concepts of fuzzy systems, neural networks, and integrated neural

fuzzy systems are briefly reviewed. The architecture of a fuzzy inference system (FIS) and

the most basic and popular fuzzy inference model to implement a fuzzy logic controller are

stated. The neural networks and learning mechanism are presented along with two popular
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architectures for implementing a neural network controller. The benefits of integrated neural

fuzzy systems is described. Also a typical five-layer connectionist architecture to build a

neural fuzzy controller are stated there. Additionally, the applications of these intelligent

techniques to the traffic control functions over multimedia high-speed networks are given.

In Chapter 3, a neural fuzzy connection admission control (NFCAC) scheme which based

on the time-domain traffic parameters and provides QoS guarantees for multimedia high-

speed ATM networks is proposed. The NFCAC scheme adopts a neural fuzzy controller for

admission control, which integrates the linguistic control capabilities of a fuzzy logic con-

troller with the learning abilities of a neural network. We properly choose input variables

which involves the measured statistics of network performances and the available network

resources converted from the time-domain traffic parameters, and then well design the rule

structure for the neural fuzzy controller. Accordingly, the NFCAC scheme can provide a

robust framework to mimic experts’ knowledge embodied in existing connection admission

control techniques and can construct precise and efficient computational algorithms for con-

nection admission control to achieve high system utilization while supporting QoS-guarantee.

In Chapter 4, a power-spectrum-based neural-net connection admission control (PNCAC)

scheme for multimedia high-speed ATM networks is proposed. It employs a neural network

controller to handle the connection admission control function according to the frequency-

domain power spectral density (PSD) parameters of the traffic sources. With a composition

algorithm to easily obtain the approximated three PSD parameters of the virtually aggre-

gated total traffic enrolling the new call request, the neural network controller accommodate

all the three PSD parameters as the inputs and generate the admission control decision.

After well training the neural network, an optimal CAC decision hyperplane based on the

input variables is constructed to provide an efficient and robust admission control even under

dynamic network environments, while the QoS requirements are still satisfied and strictly as-
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sured. Also, the learning capability of the neural network techniques can bring adaptability

to respond to the network dynamics.

In Chapter 5, two intelligent usage parameter controllers are proposed to implement the

traffic policing function for the sustainable-cell-rate (SCR) of multimedia transmissions in

ATM networks. One is the fuzzy usage parameter controller realized by the fuzzy leaky

bucket algorithm, in which a fuzzy increment controller (FIC) is incorporated with the

conventional leaky bucket algorithm; the other is the neural fuzzy usage parameter controller

base on the neural fuzzy leaky bucket algorithm, where a neural fuzzy increment controller

(NFIC) is added to the conventional leaky bucket algorithm. The FIC and NFIC are exactly

the fuzzy logic controller and the neural fuzzy controller, respectively, and both of them

properly choose two measured statistics of the network performances, the long-term mean

cell rate and the short-term mean cell rate, as the input variables to adaptively determine

the optimal increment value with respect to the traffic dynamics. Accordingly, both of the

proposed fuzzy and neural fuzzy usage parameter controllers can achieve better performances

than the conventional leaky-bucket-based usage parameter controller because of the dynamic

increment value by adaptive decisions.

In Chapter 6, an enhanced traffic marker (ETM) based on the Two-Rate-Three-Color-

Marker (TRTCM) scheme is proposed for the traffic conditioner to perform traffic policing

by properly determining the conforming level of the incoming packet and making a corre-

sponding color notation on the packet. The proposed ETM scheme introduces the features of

aggressive promotion and fair share marking, and incorporates them into the existing traffic

policing function. One of the primary performance objectives is that it can fairly allocate

the color notations among connections within an aggregate one. It is also anticipated to

enhances the throughput of each conforming level for the aggregate connection to achieve

as high rate as possible by not only restore the conforming levels of the previously demoted
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packets, but also aggressively promote the packets to higher conforming levels if the net-

work resource condition is available, so that the end-to-end QoS of the applications would

be substantially improved while the traffic contract is still be respected. The performances

of the proposed ETM scheme were verified via simulations and the simulation results were

compared with the conventional TRTCM scheme.

Finally, some concluding remarks and future research topics are addressed in Chapter 7.
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Chapter 2

An Overview of Intelligent Techniques

In this chapter, the basic concepts of fuzzy logic systems, neural networks,

and integrated neural fuzzy systems are briefly reviewed. Fuzzy logic systems

and neural networks are both numerical model-free estimators and dynamical

systems [1], which have the capability of modeling complex nonlinear processes

to arbitrary degrees of accuracy and efficiently adapting to the system dynam-

ics. Also, the integrated neural fuzzy systems are integrating fuzzy systems

and neural networks into a functional system to overcome their individual

weaknesses by mutual compensation; that is, neural networks provide fuzzy

systems with learning abilities and fuzzy systems provide neural networks with

structural reasoning.
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2.1 Introduction

In light of the recent developments of multimedia high-speed networks, future telecommu-

nication networks will consists of heterogeneous access networks and comprise of content-rich

services with diverse service characteristics and QoS requirements. Thus, the future mul-

timedia high-speed networks will be highly dynamic communication environments, which

require comprehensive and real-time traffic control mechanism. Traditional modelling and

computation techniques are not well-suited to fulfill the requirements of future multimedia

high-speed networks. On the other hand, intelligent techniques, such as fuzzy logic sys-

tems and neural networks, have attracted the numerous interests in various scientific and

engineering areas. These intelligent techniques have the capabilities of soft-computing and

adaptation, which are more flexible for network designers to cope with the network control

problems. In this chapter, the concept of fuzzy logic system, neural network and neural

fuzzy techniques will be briefly introduced.

Both fuzzy and neural network are mimicked the behaviors of human brain: fuzzy logic

operates on the way the brain deals with vague information and neural networks are modelled

according to the physical architecture of the brain [1]. There are a number of parallels that

point out their similarities. Fuzzy systems and neural networks are both numerical model-

free estimators and dynamical systems. Also, they have been shown to have the capability

of modelling complex nonlinear processes to arbitrary degrees of accuracy. Although the

two intelligent techniques are somewhat similar, some significant differences do exist. Fuzzy

systems employ linguistic if-then fuzzy rules as a kind of expert knowledge to formalize in-

sights about the structure of categories founding the real world. Fuzzy systems combine the

mathematical theory of fuzzy sets with fuzzy rules to produce overall complex nonlinear be-

havior. On the other hand, neural networks are dynamical systems and are adaptively fitting

the behavior of the real-world through their various connectionist structures and learning
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techniques. Neural networks have a large number of highly interconnected processing ele-

ments (nodes or neurons) which demonstrate the ability to learn, recall and generalize from

training patterns or data; these simple processing elements also collectively produce complex

nonlinear behavior.

Alternatively, an innovative concept of interests of intelligent techniques is to merge

or combine fuzzy systems and neural networks into a functional system to overcome their

individual weaknesses. This innovative concept of integration reaps the benefits of both

fuzzy systems and neural networks. That is, neural networks provide fuzzy systems with

learning abilities, and fuzzy systems provide neural networks with a structural framework

with high-level fuzzy if-then rule thinking and reasoning. Consequently, the two technologies

can complement each other.

The rest of this chapter is organized as follows. The concept of fuzzy inference system

(FIS) and the most basic and popular architectures of a fuzzy logic controller are stated in

section 2.2. The neural networks and learning mechanism are presented in section 2.3, along

with two popular architectures for implementing a neural network controller. In section 2.4,

the concept of the integrated neural fuzzy system is described. Also a typical five-layer con-

nectionist architecture to build a neural fuzzy controller are stated there. The applications

of these intelligent techniques (such as fuzzy logic system, neural networks and integrated

neural fuzzy system) in the following chapters of this dissertation are briefly previewed in

section 2.5. Finally, the concluding remarks are given in section 2.6.

2.2 Fuzzy Logic Controller

2.2.1 Fuzzy Inference System (FIS)

Fuzzy logic is based on the concepts of linguistic variables and fuzzy sets theory. A

fuzzy set in a universe of discourse U is characterized by a membership function µ(·) which
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takes values in the interval [0, 1]. A fuzzy set F is represented as a set of ordered pairs,

each made up of a generic element u ∈ U and its degree of membership µ(u). A linguistic

variable x in a universe of discourse U is characterized by T (x) = {T 1
x , ..., T

i
x, ..., T

K
x } and

M(x) = {M1
x(u), ...,M i

x(u), ...,M
K
x (u)}, where T (x) is the fuzzy term set, i.e., the set of

linguistic values’ names T i
x the linguistic variable x can take, and M i

x(u) is a membership

function with respect to the term T i
x. If, for instance, x indicates the temperature, T (x)

could be the set as {Low, Medium, High}, and each element in T (x) is associated with a

membership function.

The fuzzy inference system (FIS) is a popular computing framework based on the concept

of fuzzy logicand fuzzy reasoning. As shown in Fig. 2.1, a fuzzy inference system consists of

four fundamental blocks [4]: fuzzifier, fuzzy rule base, inference engine, and defuzzifier. The

fuzzifier performs a mapping function from the observed value of each input linguistic variable

xi to a fuzzy term set T (xi) with associated set of membership degree M(xi), i = 1, . . . ,m.

The fuzzy rule base is a knowledge base characterized by a set of linguistic statements in

a form of “if-then” rules that describe a fuzzy logic relationship between the m-dim input

linguistic variables {xi} and the n-dim output linguistic variables {yj}. The inference engine

performs an implication function according to the pre-condition of the fuzzy rule with the

input linguistic terms. It is a decision-making logic that acquires the input linguistic terms

of T (xi) from the fuzzifier and uses an inference method to obtain the output linguistic

terms of T (yj) [3]. The defuzzifier adopts a defuzzification function to convert T (yj) into a

non-fuzzy (crisp) value that represents the decision yj. Several implementation ways have

been introduced to build a fuzzy inference system as a fuzzy logic controller, such as the

Mamdani fuzzy model, Tsukamoto fuzzy model, and Sugeno fuzzy model [2]. Briefly speaking,

these fuzzy models (or said implementation ways) differ on the high-level linguistic expression

form of the fuzzy rule and the consequent reasoning way. Because the Mamdani fuzzy model
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Figure 2.1: The basic structure of fuzzy inference system

is the most basic and popular one, some descriptions about the Mamdani fuzzy model are

given in the following subsection.

2.2.2 Mamdani Fuzzy Model

The Mamdani fuzzy model is a way to implement a fuzzy inference system to serve as a

Figure 2.2: An example of Mamdani fuzzy model

controller. It was proposed as the first attempt to control a system by a set of linguistic

control rules obtained from experienced human knowledge. Fig. 2.2 shows an example of
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Mamdani fuzzy model, where the overall output Z is derived from two linguistic variables

X and Y . Here, the fuzzy rule is expressed by

if X is Ai and Y is Bi, then output Z is Ci with µ(Ci), i=1 and 2

where Ai, Bi and Ci are all fuzzy terms, and µ(Ci) is the membership value on Ci. In the

Mamdani model, each input linguistic variable is firstly fuzzified by the membership function

µ(·). Then, the inferred value of the output of each fuzzy rule is determined by a pre-defined

inference method. In this example, the min-max method is applied. That is, the inferred

value of each fuzzy rule is obtained by min operator and the inferred value of the same fuzzy

term is obtained by max operator. Finally, the overall crisp output is derived by a pre-defined

defuzzification method. There are diverse defuzzification methods such as: centroid of area

(COA), bisector of area (BOA), mean of maximum (MOM), smallest of maximum (SOM),

and largest of maximum (LOM), among which COA is the most popular one.

Additionally, the membership functions for terms in the term set should be defined with

the proper shape and position. In general, a triangular function f(x;x0, a0, a1) or a trape-

zoidal function g(x;x0, x1, a0, a1) is chosen as the membership function because of the ad-

vantage of simple computational complexity. This feature makes these functions are suitable

for real-time application [3]. As shown in Fig. 2.3, f(x;x0, a0, a1) and g(x;x0, x1, a0, a1) are

given by

f(x;x0, a0, a1) =


x−x0

a0
+ 1 for x0 − a0 < x ≤ x0

x0−x
a1

+ 1 for x0 < x ≤ x0 + a1

0 otherwise,

(2.1)

g(x;x0, x1, a0, a1) =


x−x0

a0
+ 1 for x0 − a0 < x ≤ x0

1 for x0 < x ≤ x1
x1−x0

a1
for x1 < x ≤ x1 + a1

0 otherwise,

(2.2)

where x0 in f(·) is the center of the triangular function; x0 (x1) in g(·) is the left (right)

edge of the trapezoidal function; and a0 (a1) is the left (right) width of the triangular or the

trapezoidal function.
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Figure 2.3: Definitions for functions f(·) and g(·)

2.3 Neural Network Controller

2.3.1 Neural Networks and its Learning Capability

Neural networks are inspired by modeling networks of real (biological) neurons in the

brain. It has a large number of highly interconnected processing elements which correspond

to biological neurons and thus also be called artificial neurons, or simply neurons. The nodes

are configured in regular architectures and can usually operate in parallel to make the whole

network as a parallel distributed information processing structure. The collective behavior

of an neural network, like a human brain, demonstrates the ability to learn, recall, and

generalize from training pattern or data. The building blocks of neural network consists of

three basic entities: neurons model, connectionist structures (among neurons) and learning

rules [1]. Neurons are the basic information processing elements and can be viewed as

consisting of two parts in the mathematical model: input part and output part. Associated

with the input of a neuron is an integration function f which serves to combine information,

activation, or evidence from an external source or other neurons into a net input to the

neuron. The integration function f is usually a linear function of the input. A second action

of each neuron is to output an activation value as a function of its net input through an

activation function or transfer function a(f). The step function, unipolar sigmoid function
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Figure 2.4: The basic structure of neural network

and bipolar sigmoid function are commonly used examples of the activation function. The

connectionist structures are then applied to link neurons to mimic how the human brain

works while the learning rules are applied to adaptively modify the behavior of the neural

networks through past experience. Fig. 2.4 shows the basic concept of neural network. In

the figure, X is the input signal, Y is the actual output, Z is the reference signal, and M

is the training signal. The connectionist neurons block computes the output signal Y for

input signal X and then the training signal generator block will generate a training signal

according to a specified learning rules. The training signal is used to update the weighting

of the nodes in the neural networks.

Generally speaking, the learning rules can be classified into three kinds of categories:

supervised learning, reinforcement learning, and unsupervised learning. For different learning

rules, there are different sets of Z andM . In the following, the main concepts of three learning

rules are briefly described.

• Supervised Learning

In supervised learning, each input signal X has its own desired output D. Here, the

reference signal Z is equal to desired output D. When the actual output Y is different from
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reference signal Z, an error occurs. Then, the training signal will be generated to adjust

the weighting of the nodes in the neural network such that the actual output will approach

the reference signal. Therefore, the supervised learning can be considered as a input/output

mapping machine or a function approximation tool.

• Reinforcement Learning

In the reinforcement learning, there is no desired output, only a reinforcement signal R.

The reinforcement signal is an evaluation value of the actual output Y . For example, in

the control problems, the reinforcement signal may be “good” or “bad”. Here, the reference

signal Z is equal to reinforcement signal R. Using the reinforcement signal R, a training

signal is generated to update the weighting such that the actual output will achieve a better

evaluation value in the future. Therefore, the reinforcement learning is learning with a

teacher. Using the reinforcement learning, the neural network acts as a controller to make

the system work better according to a pre-defined evaluation function.

• Unsupervised Learning

Unlike the previous two learning rules, there is no feedback information from the envi-

ronment in the unsupervised learning. Neither the desired output or reinforcement signal

are available. Instead, the training signal is generated from actual output Y and the in-

ternal weighting of the neural network. The training signal here is used to increase the

weighings of the nodes that connect to the actual output. That is, the correlation between

the chosen input nodes and output data will be enhanced. In the unsupervised learning,

the neural network discovers its patterns and the correlation through experiments, which is

called self-organizing. Therefore, the unsupervised learning are usually applied to deal with

the classification or clustering problems.

Like the condition in fuzzy logic controller, there are also diverse implementation ways
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to build a neural network as a controller. Two of them which are popular and applied in

this dissertation are described in the following subsections.

2.3.2 Multilayer Feedforward Neural Networks

Multilayer feedforward neural networks, as shown in Fig. 2.5, is a typical model for

implementing a neural network controller. The neural network controller possesses an ability

to perfectly approximate a generic function from input/output data pairs {X, Y }. Consider

a multilayer feedforward neural network NN(X,W ), with input vector X and a set of (link)

weight vector W which will be updated by some learning rules; denote a continuous function

by Z = f(X) : D ⊆ Rni → Rno , where D is a compact metric space on R, and ni (no) is the

input (output) space dimension. The Stone-Weierstrass theorem [5] showed that NN(X,W )

(actual output) can be trained to asymptotically approach any continuous desired output

function f(X) as close as possible. That is, an NN(X,W ) with appropriate weight W

can be found so that ||NN(X,W ) – f(X)||X < ε for an arbitrary ε > 0, where ||e||X =∑
X∈D ||e(X)||2 and || · || is a vector norm. The neural network is a non-structured network,

which cannot incorporate knowledge about system.

Figure 2.5: The structure of multilayer feedforward neural network

A back-propagation learning algorithm [6], which is a kind of supervised learning, is
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usually employed to train the neural network controller. LetX(i) denote the vector randomly

sampled from D and used as an input to the neural network controller at time instant ti,

let NN(X(i),W ) = ẑ(i) denote the corresponding decision of the neural network controller,

and let f(X(i)) = z(i) denote the desired decision. The objective of the back-propagation

learning algorithm is to minimize decision error E by recursively adjusting its weight in each

layer, where E is defined as

E =
1

2
||NN(X(i),W )− f(X(i))||2

=
1

2
(ẑ(i)− z(i))2. (2.3)

Consider an M -layer feedforward neural network. Each layer has a number of processing

elements (neurons) which are fully interconnected with the neurons in neighboring layers via

adaptive weights. Neurons in the input layer (layer k = 1) do not process the input data;

they simply store input data values. Neurons in the hidden layers (2 ≤ layer k ≤ M − 1)

and output layer (layer k = M) perform two operations. The jth neuron in the kth layer,

for example, first calculates a weighted sum, denoted by S
(k)
j , of all outputs o

(k−1)
i of the

(k − 1)th layer. S
(k)
j is given by

S
(k)
j =

{
xj if k = 1,∑nk−1

i=1 w
(k)
ji o

(k−1)
i if 2 ≤ k ≤M,

(2.4)

where xj is the input variable of the jth neuron in the input layer, nk−1 is the number of

neurons in layer (k − 1), and w
(k)
ji is the weight of the link connected from the ith neuron in

layer (k− 1) to the jth neuron in layer k. After that, the neuron further transforms S
(k)
j into

output o
(k)
j via an activation function G(·). o(k)

j is expressed as

o
(k)
j =

{
S

(k)
j if k = 1,

G(S
(k)
j ) if 2 ≤ k ≤M.

(2.5)

The adjustment of weights is based on a steepest-descent algorithm [6]. It can be ex-
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pressed as

w
(k),new
ji = w

(k),old
ji − η

∂E

∂w
(k)
ji

|
w

(k)
ji =w

(k),old
ji

, (2.6)

where η is a gain term that determines the learning rate of the link weight. η is usually set

equal to a positive constant less than unity. In order to obtain the partial derivative for the

quadratic error E, an error term produced by the jth neuron in layer k, denoted by δ
(k)
j , is

obtained from

δ
(k)
j = − ∂E

∂S
(k)
j

, 1 ≤ k ≤M, 1 ≤ j ≤ nk. (2.7)

It was shown in [6] that the error signals δ
(k)
j ’s can be computed according to a recursive

procedure of the generalized delta learning rule [6] described as follows,

δ
(k)
j =


G′(S

(k)
j )

∑
l δ

(k+1)
l w

(k+1)
lj for 2 ≤ k ≤M − 1,

(z − ẑ)G′(S
(k)
j ) for k = M.

(2.8)

Once these error signal terms have been determined, the partial derivative for the quadratic

error can be computed directly by

∂E

∂w
(k)
ji

=
∂E

∂S
(k)
j

∂S
(k)
j

∂w
(k)
ji

= −δ(k)
j o

(k−1)
i . (2.9)

And the update rule for the back-propagation algorithm is then given by

w
(k),new
ji = w

(k),old
ji − η

∂E

∂w
(k)
ji

= w
(k),old
ji + ηδ

(k)
j o

(k−1)
i . (2.10)

2.3.3 Radial Basis Function Neural Networks

The radial basis function neural networks (RBFN), which was suggested by Moody and

Darken in [7], is another implementation of the neural network to serve as a controller. It

has the architecture of the instar-outstar neural network model and uses the hybrid unsuper-

vised and supervised learning scheme. It offers a viable alternative to the two-layer neural

network in many applications of signal processing, pattern recognition, control, and function
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approximation. The structure of RBFN is showed in Fig. 2.6. Unlike the instar-outstar neu-

ral network model in which the hidden nodes are linear winner-take-all nodes, the hidden

nodes in the RBFN have normalized Gaussian activation function

zq = gq(x) =
Rq(x)∑
k Rk(x)

=
exp[− |x−mq |2

2σ2
q

]∑
k exp[− |x−mk|2

2σ2
k

]
, (2.11)

where x is the input vector. Thus, hidden node q gives a maximum response to input vectors

close to mq. Each hidden node q is said to have its own receptive filed Rq(x) in the input

space, which is a region centered on mq with size proportional to σq, where mq and σq

are the mean (an m-dimensional vector) and variance of the qth Gaussian function. The

Gaussian function is a particular example of radial basis functions. The output of the RBFN,

is denoted by y, is simply the weighted sum of the hidden node output, which is given by

y = a(
l∑

q=1

wqzq + θ ), (2.12)

where a(·) is the output activation function and θ is the threshold value. Generally, a(·) is

an identity function (i.e., the output node is a linear unit) and θ = 0.

The purpose of the RBFN is to pave the input space with overlapping receptive fields.

For an input vector x lying somewhere in the input space, the receptive fields with centers

close to it will be appreciably activated. The output of the RBFN is then the weighted sum

of the activation of these receptive fields.

The training rule of RBFN is hybrid. It includes unsupervised learning in the input layer

and supervised learning in the output layer. The unsupervised part of the learning involves

the determination of the receptive field centers mq and widths σq, q = 1, 2, · · · , l. The proper

centers mq can be found by unsupervised learning rules such as the vector quantization

approach, competitive learning rules, or simply the Kohonen learning rule; that is

∆mclosest = η(x−mclosest), (2.13)
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Figure 2.6: The structure of RBFN controller

where mclosest is the center of the receptive field closest to the input vector x and the other

centers are kept unchanged. In simple case, the widths σq are determined by

σq =
|mq −mclosest|

γ
, (2.14)

where mclosest is the closest vector to mq and γ is an overlap parameter.

According to the delta learning rule, the weights in the output layer can be updated by

∆wq = η(d− y)zq. (2.15)

When averaged over the p training pairs, the objective is to minimize the following mean

squared error cost function:

E(wq) =
1

2

∑
k

[dk − yk]2 (2.16)

=
1

2

∑
k

[dk −
l∑

q=1

wqz
k
q ]2 (2.17)
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=
1

2

∑
k

[dk −
l∑

q=1

wqgq(x
k)]2. (2.18)

Although RBFN generally cannot quite achieve the same accuracy as the multilayer

feedforward neural network, it can be trained several orders of magnitude faster than the

the multilayer feedforward neural network with back-propagation learning. This is due to

the advantage of hybrid-learning networks which have only one layer of connections trained

by supervised learning. It is suitable for the application where the neural network controller

is necessary to be on-line trained to adaptively capture the dynamic features of a system.

2.4 Neural Fuzzy Controller

2.4.1 Integrated Neural Fuzzy Systems

In the field of intelligent techniques, the fuzzy system and neural network are comple-

mentary techniques. Fuzzy systems provide a high-interpretable reasoning for the collected

data, but the design of the fuzzy rules and the membership functions are not easy tasks

which require much domain knowledge. Neural networks, on the other hand, are effective

and efficient computing architectures or algorithms with self-learning capability, but the con-

nectivity of hidden nodes of the neural network are somewhat like grey boxes. Thus, it is

a promising approach to merge and integrate them into a single system. The integration of

the two techniques can be classified into two categories: neuro-fuzzy system and fuzzy neural

system.

The basic concept of a neuro-fuzzy system is to use the neural network as tool in a fuzzy

model. The neuro-fuzzy systems can provide the self-learning (automatic tuning) capability

for the fuzzy systems. In this approach, the system is firstly designed as a fuzzy inference

system based on designers’ domain knowledge. Then, via numerous experiments, the fuzzy

rules and membership functions are tuned by the neural network. The whole design process

would be simplified and the development time would be reduced consequently.
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The basic concept of a fuzzy neural system is to fuzzify the conventional neural network

models. In the fuzzy neural system, the basic properties and node connectivity of neural

network are retained, but the operations and activation functions of the nodes are fuzzified.

In this approach, a network’s domain knowledge becomes formalized in terms of fuzzy sets,

later being applied to enhance the learning of the network in such a way that it learns the

mapping between input-output fuzzy sets. Generally speaking, the benefits of the fuzzy neu-

ral systems are three-folded: firstly, the input nodes are continuous-valued by fuzzification;

secondly, the domain knowledge is applied; and thirdly, some degree of uncertainty of the

collected data is allowed.

The learning rules introduced in neural networks should also be applied to the neural

fuzzy systems. In general, the learning capability of a neural fuzzy systems would make

itself achieve the expected performance objectives by adjusting the membership function.

Therefore, the membership functions utilized for the terms in the neural fuzzy systems should

be defined to be a proper formula which is suitable for the learning operation. That is, the

shape and position of the membership function can be easily and well characterized by the

parameters of moderate number. Meanwhile, the formula of the membership function is also

usually required to be differentiable because of the usual differentiation computation in the

learning process, especially the supervised learning. A general example of the membership

function for the neural fuzzy controller could be the bell-shaped function defined as

f(x) = exp

[
−(x−m)2

σ2

]
(2.19)

where m and σ are, respectively, the center (or mean) and the width (or variance) of the

bell-shaped function.
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2.4.2 A Typical Five-layer Neural Fuzzy Controller

Fig. 2.7 demonstrates a typical five-layer connectionist architecture to implement the

neural fuzzy system as a neural fuzzy controller. It is a structured neural network that can

incorporate domain knowledge about the system of the application field. Therefore, the five-

layer neural fuzzy controller is a kind of fuzzy neural system. The nodes in layer one and

layer five are input and output linguistic nodes, respectively. There are two kinds of output

linguistic nodes: one is for feeding training data (desired output) into the net and the other is

for pumping decision signals (actual output) out of the net. The nodes in layer two and layer

four are term nodes which act as membership functions of the respective linguistic variables.

The nodes in layer three are rule nodes; each node represents one fuzzy rule and all nodes

form a fuzzy rule base. The links in layer three and layer four, accompanied by the nodes in

both layers, can function as an inference engine — layer-three links define preconditions of

the rule nodes and layer-four links define consequences of the rule nodes. The links in layer

two and layer five are fully connected between the linguistic nodes and their corresponding

term nodes. They can, accompanied by the nodes in both layers, achieve the fuzzification

and defuzzification functions, respectively.

Generally, node i in layer k for the neural fuzzy controller has input function f
(k)
i (u

(k)
ij )

and activation output function a
(k)
i (f

(k)
i ), where u

(k)
ij denotes the input to node i in layer k

from node j in layer (k − 1) and u
(k)
ij is expressed as u

(k)
i if k = 1. For the five-layer neural

fuzzy controller with M -dim input and single output, the detail operations of each layer are

described as follows.

Layer 1: In this layer, there are M input nodes with respective to M input linguistic

variables xi, for i = 1, . . . ,M . Define

f
(1)
i (u

(1)
i ) = u

(1)
i and a

(1)
i = f

(1)
i , (2.20)
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Figure 2.7: The architecture of the five-layer neural fuzzy controller

where u
(1)
i = xi and 1 ≤ i ≤M .

Layer 2: The nodes in this layer are respectively corresponding to a linguistic term of

the input linguistic variables. Hence, these nodes are usually named as “term

node” and perform the fuzzification function to map the crisp input into a fuzzy

membership value according to its associated membership function. Assume K

nodes exists in this layer. Each node performs a bell-shaped function defined as

f
(2)
i (u

(2)
ij ) = exp

−(u
(2)
ij −m

(I)
jn )2

σ
(I)
jn

2

 (2.21)

and a
(2)
i = ef

(2)
i ,

where u
(2)
ij = a

(1)
j , 1 ≤ i ≤ K, 1 ≤ j ≤ M , and m

(I)
jn and σ

(I)
jn are the mean and

the standard deviation of the n-th term of the input linguistic variable from node
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j in input layer, respectively.

Layer 3: The nodes in layer three are so-called “rule nodes” and each of them represents

one fuzzy rule, respectively. All nodes in layer three form a fuzzy rule base. The

links in this layer perform precondition matching of fuzzy control rules. Assume

there are R rule nodes in this layer. Each rule node performs the fuzzy AND

operation defined as

f
(3)
i (u

(3)
ij ) = min(u

(3)
ij ;∀j ∈ Pi) (2.22)

and a
(3)
i = f

(3)
i ,

where u
(3)
ij = a

(2)
j and Pi = {j| all j that are precondition nodes of the i-th rule},

1 ≤ i ≤ R.

Layer 4: The nodes in this layer have two operating modes: down-up and up-down. In

the down-up operating mode, the links perform consequence matching of fuzzy

control rules. Assume there are N term nodes in this layer. Each node performs

a fuzzy OR operation to integrate the fired strength of rules that have the same

consequence. Thus, we define

f
(4)
i (u

(4)
ij ) = max(u

(4)
ij ;∀j ∈ Ci) (2.23)

and a
(4)
i = f

(4)
i ,

where u
(4)
ij = a

(3)
j and Ci = {j| all j that have the same consequence of the i-th

term in the term set of ẑ}, 1 ≤ i ≤ N . The up-down operating mode is used

during the training period. The nodes in this layer and the links in layer five have

functions similar to those in layer two. Each node is named as “term node” and

performs a bell-shaped function defined as

f
(4)
i (u

(4)
ij ) = exp

−(u
(4)
ij −m

(O)
j )2

σ
(O)
j

2

 (2.24)
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and a
(4)
i = ef

(4)
i ,

where u
(4)
ij is set to be a

(5)
j obtained from the up-down operating nodes in layer

five, and m
(O)
j and σ

(O)
j are the mean and the standard deviation of the j-th term

of ẑ, respectively, 1 ≤ i ≤ N , j = 1.

Layer 5: There are two nodes in this layer. One node performs the down-up operation for

the actual decision signal ẑ. The node and its links act as the defuzzifier. The

function used to simulate a center-of-area defuzzification method is approximated

by

f
(5)
i (u

(5)
ij ) =

4∑
j=1

m
(O)
j σ

(O)
j u

(5)
ij (2.25)

and a
(5)
i = U(

f
(5)
i∑4

j=1 σ
(O)
j u

(5)
ij

− za)

where u
(5)
ij = a

(4)
j , i = 1, za is the decision threshold, and

U(x) =

{
1 if x ≥ 0,
0 otherwise.

(2.26)

Clearly, ẑ = a
(5)
1 and a new connection will be accepted only if ẑ = 1. The other

node performs the up-down operation during the training period. It feeds the

desired decision signal z into the controller to adjust the link weights optimally.

For this kind of node,

f
(5)
i (u

(5)
ij ) = u

(5)
ii , and a

(5)
i = f

(5)
i (2.27)

where i = j = 1 and u
(5)
11 = z.

2.5 Applications of Intelligent Techniques In This Dis-

sertation

In Chapter 3, neural fuzzy connection admission control (NFCAC) scheme is proposed and

a kind of neural fuzzy controller, called NFCAC controller, is applied to deal with the traffic
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control problem in multimedia high-speed ATM networks. With properly choosing input

variables and designing the rule structure, the proposed NFCAC scheme not only provides a

robust framework to mimic experts’ knowledge embodied in existing traffic control techniques

but also constructs intelligent computational algorithm for traffic control.

In Chapter 4, a power-spectrum-based neural-net connection admission control (PNCAC)

scheme is proposed and a neural network controller, called PNCAC controller, is employed to

perform the connection admission control for multimedia networks. The PNCAC controller

has the learning/adapting capabilities so that the boundary of the decision hyperplane for

the connection admission control can be adjusted optimally and dynamically. Simulation

results show that the proposed PNCAC scheme enhances significantly the system utilization

while fulfilling QoS requirements.

In Chapter 5, two intelligent techniques which are the fuzzy logic systems and neural

fuzzy networks, are introduced to implement two intelligent increment controllers, fuzzy

increment controller (FIC) and neural fuzzy increment controller (NFIC), respectively, for

the usage parameter control (UPC) of multimedia transmission in ATM networks. Both of

these two intelligent increment controller are to be incorporated with the conventional leaky

bucket algorithm, which is a reference model for UPC function defined in ITU-T Recom-

mendation I.371 [31]. Both the fuzzy and the neural fuzzy increment controllers properly

choose the long-term mean cell rate and the short-term mean cell rate as input variables to

optimally determine the increment value. Simulation results show that both intelligent leaky

bucket algorithms have significantly outperformances over conventional leaky bucket algo-

rithm, in aspects of all considered performance measures such as selectivity, responsiveness,

and queueing delay.
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2.6 Concluding Remarks

This chapter provides a fundamental overview of the neural/fuzzy techniques, including

fuzzy systems, neural networks, and the neural fuzzy systems. Both the fuzzy systems and

neural networks are mimicked the behaviors of human brains, where the neural network

processes the low-level data clustering, classification, and mapping and the fuzzy system

processes the high-level reasoning of the input data. The fuzzy systems and neural networks

are complementary techniques. It would be beneficial to integrate the two techniques, which

contributes to the rising of the integrated neural fuzzy systems.

In the multimedia high-speed networks, the network operations and performance statis-

tics are chronically collected and stored. These data provide insight and meaningful infor-

mation for the traffic control schemes. However, with the emerging of future content-rich

services, the operation of the multimedia high-speed networks tend to be more dynamic and

some service scenario may be far beyond imagination. It is almost impossible to design

a comprehensive traffic control schemes in advance. Therefore, the intelligent techniques

are promising approaches for the traffic control schemes because they possess the capability

to extract the basic operation rules from the past records or experiences, and adaptively

modify the operation rules of traffic control schemes according to the network dynamics. In

the following three chapters, the intelligent techniques including fuzzy logic systems, neural

networks and neural fuzzy controllers, are applied to design precise and sophisticated traffic

control schemes for multimedia high-speed networks.
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Chapter 3

Intelligent Connection Admission
Control Scheme for Multimedia
High-speed Networks Using
Time-domain Traffic Parameters

This chapter proposes a neural fuzzy approach for connection admission

control (CAC) with QoS guarantee in multimedia high-speed ATM networks

according to the time-domain traffic parameters. The proposed neural fuzzy

connection admission control (NFCAC) scheme is an integrated method that

combines the linguistic control capabilities of a fuzzy logic controller and the

learning abilities of a neural network. With properly choosing input variables

which involve the measured statistics of network performances, and well de-

signing the rule structure for the NFCAC scheme, it can not only provide a

robust framework to mimic experts’ knowledge embodied in existing connection

admission control techniques but can also construct precise and efficient com-

putational algorithms for connection admission control. Simulation results

show that as compared with a conventional effective-bandwidth-based CAC,

a fuzzy-logic-based CAC, and a neural-net-based CAC, the proposed NFCAC

can achieve superior system utilization, high learning speed, and simple design

procedure, while keeping the QoS contract.
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3.1 Introduction

High-speed network supporting multimedia services has to be capable of handling bursty

traffic and satisfying various quality-of-service (QoS) and bandwidth requirements. There-

fore, a multimedia high-speed network must have an appropriate connection admission con-

trol (CAC) scheme not only to guarantee QoS for existing calls but also to achieve high

system utilization. As known, ATM (asynchronous transfer mode) is one of the technologies

that can integrate multimedia services for high-speed networks.

Conventional CAC schemes [8], [13], [10], [11], [12], [15], [16] that utilize either capacity

estimation or buffer thresholds suffer from some fundamental limitations. One of the limi-

tations is the difficulty of obtaining complete statistics on input traffic to a network. As a

result, it is not easy to accurately determine the equivalent capacity or effective thresholds

for multimedia high-speed networks in various bursty traffic flow conditions. Besides, these

conventional schemes provide optimal solutions only under a steady state. A control scheme

that dynamically regulates traffic flows according to changing network conditions, however,

requires understanding of network dynamics. The rationale and principles underlying the

nature and choice of thresholds or equivalent capacity under dynamic conditions are unclear

[14]. Networks are forced to make decisions based on incomplete information [14] so that the

decision process is full of uncertainty. Thus, because of unpredictable statistical fluctuations

of the system, these control schemes will always be subject to decision error, which degrades

performance.

Fuzzy logic systems have been widely employed to deal with CAC-related problems in

ATM networks [17], [18]. Fuzzy set theory appears to provide a robust mathematical frame-

work for dealing with real-world imprecision, and the fuzzy approach exhibits a soft behavior

which means to have a greater ability to adapt itself to dynamic, imprecise, and bursty en-

vironments [17], [18]. Bonde and Ghosh [17] used fuzzy mathematics to provide a flexible,
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high-performance solution to queue management in ATM networks. In [18], a fuzzy traffic

controller which simultaneously incorporates CAC and congestion control was proposed. It

is a fuzzy implementation of the two-threshold congestion control method and the equiva-

lent capacity admission control method extensively studied in the literature. Comparative

studies have shown that the proposed fuzzy approaches significantly improve system perfor-

mance compared with conventional approaches. However, no clear, general technique has

been presented to map existing knowledge on traffic control onto the design parameters of

the fuzzy logic controller. Self-learning capability should be incorporated into the fuzzy logic

controller to simplify the design procedure and obtain better control results.

The self-learning capability of neural networks has been applied to characterize the re-

lationship between input traffic and system performance [19], [20], [22]. In [20], Hiramatsu

used a neural network as a connection admission controller. In [22], Youssef, Habib, and

Saadawi proposed a call admission controller for ATM networks. A neural network is trained

to compute the effective bandwidth required to support MPEG-1 VBR video calls with dif-

ferent QoS requirements. They showed that the adaptability of the neural network controller

to new traffic situations had been achieved by adopting a hierarchical approach to the design.

However, in most of the proposed neural-net approaches for CAC, the numbers of users for

each kind of service were selected as input parameters. The dimension of neural network

and the learning time would increase as the number of traffic types grows. The system

complexity would increase for system upgrade. Therefore, the application of neural network

to CAC is limited to a simplistic traffic environment, such as limited traffic type, simplified

traffic source, etc.

Conventional, fuzzy-logic-based, and neural-net-based CAC schemes all have various ben-

efits in handling CAC. Conventional CAC, based on mathematical analysis, provides robust

solutions for different kinds of traffic environments but suffers from estimation error (due to
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modelling) and approximation error (due to the need to complete calculations in real time),

so is not suitable for dynamic environments. Fuzzy-logic-based CAC is excellent in dealing

with real-world imprecision and has a greater ability to adapt itself to dynamic, imprecise,

and bursty environments, but lacks the learning capability needed to automatically construct

its rule structure and membership functions so as to achieve optimal performance. Neural-

net-based CAC provides learning and adaptation capabilities which reduce the estimation

error of conventional CAC and achieve performance similar to that of a fuzzy logic controller.

However, the knowledge embodied in conventional methods is difficult to incorporate into

the design of a neural network.

This chapter proposes a neural fuzzy connection admission control (NFCAC) scheme,

which absorbs benefits of the three approaches while minimizing their drawbacks, for mul-

timedia high-speed networks. The NFCAC scheme utilizes the learning capability of the

neural network to reduce decision errors of conventional CAC policies resulted from mod-

eling, approximation, and unpredictable traffic fluctuations of the system. It also employs

the rule structure of the fuzzy logic controller to prevent operating errors, due to incor-

rect learning, and to decrease training time. Furthermore, the neural fuzzy network is a

simple structured network. We here properly choose input variables and design the rule

structure for the NFCAC scheme so that it not only provides a robust framework to mimic

experts’ knowledge embodied in existing connection admission control techniques but also

constructs intelligent computational algorithm for connection admission control to achieve

high system utilization while supporting QoS-guarantee. Simulation results reveal that the

NFCAC scheme achieves superior system utilization and high learning speed while keeping

the QoS contract, compared with the effective-bandwidth-based CAC (EBCAC) [10], the

fuzzy-logic-based CAC (FLCAC) [18], the neural-net-based CAC (NNCAC) [23], and the

radial-basis-function-based CAC (RBFCAC) schemes.
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The rest of this chapter is organized as follows. In Section 3.2, the basic concepts behind a

neural fuzzy controller are introduced, and an NFCAC scheme is proposed to cope with CAC-

related problems in multimedia high-speed networks. Section 3.3 presents simulation results

comparing the proposed NFCAC scheme with the existing effective bandwidth approach, the

fuzzy logic approach, and neural-net approach. Finally, some concluding remarks are given

in Section 3.4.

3.2 Neural Fuzzy Call Admission Control

3.2.1 System Model

Fig. 3.1 shows an NFCAC controller with its peripheral processors to handle the call

Figure 3.1: An NFCAC controller with its peripheral processors

admission control and traffic rate control simultaneously for multimedia high-speed networks.

The congestion controller generates a congestion indicator y according to the measured
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system statistics, such as the queue length q, the change rate of the queue length ∆q,

and the cell loss ratio pl. Different congestion control algorithms could be employed to

implement the congestion controller. For example, rate-based feedback congestion control

approaches, which commonly take the queue length and the cell loss ratio into account,

could be used. One of the most frequently used congestion control methods is the buffer

threshold method, where a congestion alarm occurs whenever the queue length exceeds some

predefined thresholds. Here, we adopt a fuzzy congestion controller [18] which is a fuzzy

implementation of the two-threshold congestion control scheme proposed in [28]. Network

congestion is then averted by regulating the traffic flow of the incoming sources according

to the traffic load adjustment parameter generated by the fuzzy congestion controller. The

bandwidth estimator estimates the required capacity Ce for a new connection from its traffic

description parameters such as the peak cell rate, sustainable cell rate, and peak cell rate

duration, denoted by Rp, Rm, and Tp, respectively. It employs the equivalent-capacity-

based algorithm proposed in the literature. The equivalent capacity method [8, Eq. (2)]

transforms the traffic characteristics (usually described by three traffic parameters: peak

cell rate, sustainable cell rate, and peak cell rate duration) of a new call into a unified

metric, called the equivalent bandwidth, to reduce the dependence of the proposed control

mechanism on the traffic type. Such a transformation can greatly reduce the number of

dimensions of the NFCAC scheme and save a large percentage of learning time. Here, we

adopt a fuzzy bandwidth estimator [18], which is a fuzzy implementation of the equivalent

capacity method in [8]. The network resource estimator does the accounting for system-

resource usage. When a new connection with bandwidth Ce is accepted, the value of Ca

is updated by subtracting Ce from the original value of Ca. Conversely, when an existing

connection with bandwidth Ce is disconnected, the value of Ca is updated by adding Ce to

the original value of Ca. Ca is initially set to 1. The NFCAC controller takes the available
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capacity Ca, the congestion indicator y, and the system performance feedback of cell loss

ratio pl as input linguistic variables to handle the CAC procedure and sends a decision signal

ẑ back to the new connection to indicate acceptance or rejection of the new call request.

3.2.2 NFCAC Controller

The NFCAC controller is a neural fuzzy controller which is a control system that integrates

a fuzzy logic system with a neural network. The integration brings the low-level learning

and computational power of the neural network into the fuzzy logic system, and provides the

high-level, human-like thinking and reasoning of fuzzy logic system for the neural network.

The neural fuzzy controller is generally implemented by taking the form of a multi-layer

neural network to incorporate the fuzzy logic system [1].

Fig. 3.2 demonstrates the architecture of the proposed NFCAC controller which is im-

plemented by the five-layer neural fuzzy controller introduced in section 2.4. The NFCAC

controller adopts three linguistic inputs of an available capacity Ca, a congestion indicator

y, and a cell loss ratio pl and outputs a decision signal ẑ to indicate acceptance or rejection

of the new call request. As mentioned above, the nodes in the second layer are the term

nodes and they would co-operate with the links of the same layer to act as the fuzzifier.

According to the CAC methods in [8][18], the term used to describe the remaining capacity

available for a new connection is either “Enough” or “Not Enough.” Thus the term set for

the available capacity is defined as T (Ca) = {Not Enough (NE), Enough (E)}. The system

is either in a congested state (“y is Negative”) or a congestion-free state (“y is Positive”),

so the term set for the congestion status can be defined as T (y) = {Negative (N), Positive

(P)}. The term used to describe the cell loss ratio, which is one of the dominant QoS re-

quirements, is either “Satisfied” or “Not Satisfied.” Thus the term set for the cell loss ratio

is defined as T (pl) = {Satisfied (S), Not Satisfied (NS)}. In summary, we have six nodes in

layer two with respect to the six terms defined by the three input linguistic variables Ca,
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Figure 3.2: The architecture of the NFCAC controller

y and pl. In order to provide a soft admission decision with multiple decision result levels,

not only “Accept” and “Reject” but also “Weak Accept” and “Weak Reject” are employed

to describe the accept/reject decision. Therefore, the NFCAC controller may have an alter-

native choice for calls which fall into the area around the call acceptance/rejection decision

boundary. Thus, the term set of the output linguistic variable ẑ is defined as T (ẑ) = {Reject

(R), Weak Reject (WR), Weak Accept (WA), Accept (A)}, and consequently there are four

corresponding nodes in the fourth layer.
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3.2.3 Hybrid Learning Algorithm

A hybrid learning algorithm is applied in the design of the NFCAC controller. The

algorithm is a two-phase learning method. In phase one, a self-organized learning scheme

is used to construct the rules and to locate the initial membership functions. In phase two,

a supervised learning scheme is adopted to optimally adjust the membership functions for

desired outputs. Training data must be provided for the learning process, in addition to the

size of the term set for each input/output linguistic variable and the fuzzy control rules. The

procedure for constructing the set of training data is described below:

[Construction of Training Data:]

For a new connection request with traffic parameters of

Rm, Rp, and Tp

Estimate the required capacity Ce by using fuzzy

bandwidth estimator

Count the available capacity Ca by using network

resource estimator

Generate a congestion indicator y by using fuzzy

congestion controller

Get the cell loss ratio pl measured from system

information statistics

If pl > QoS

Then

Reject the request and set the desired output

z = 0

Else

Accept the request and set the desired output
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z = 1

[Verification of the Acceptance Decision:]

Continue the simulation for a predefined time

interval, without accepting any new connection

requests

Obtain the statistics of cell loss ratio p′l

If p′l > QoS (acceptance decision is failed),

then

Set z = 0

EndIf

EndIf

Store training data of Ca, y, pl, and z

Using the input training data Ca, y, pl, the desired output z, the fuzzy partitions |Ca|, |y|,

|pl|, |ẑ|, and the desired shape of the membership functions, the self-organized training would

locate the membership functions and find the fuzzy control rules. If an initial knowledge

base is employed to help constructing an initial structure of the fuzzy control rules, a number

of possible rule structures can be formed by slight modification of rules. Among all of the

possible structures, the one that yields the minimum square error E for the training data is

selected. E is defined as

E =
1

2

N∑
j=1

[z(tj)− ẑ(tj)]
2, (3.1)

where N is the number of training data, z(tj) and ẑ(tj) are the desired output and the actual

output obtained at time tj, respectively.

If an initial knowledge base is not provided, the initial locations of membership functions

are estimated by using Kohonen’s self organizing feature-maps algorithm and the N-nearest-

neighbors scheme [26], and the initial rule structure is constructed via genetic algorithms
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(GAs) [27].

The procedure to locate the means mi of the i-th membership function for linguistic

variable x, 1 ≤ i ≤ M , given a set of training data xj for x, 1 ≤ j ≤ N , is described below.

It employs the statistical clustering technique of Kohonen’s feature-maps algorithm [25].

[Obtain mi by using Kohonen’s Feature-Maps Algorithm:]

Step 1: Set initial values of mi for all membership functions, 1 ≤ i ≤M , such that

min
1≤j≤N

xj ≤ mi ≤ max
1≤j≤N

xj.

Set an initial learning rate α (0 < α < 1).

Step 2: Set j = 1.

Step 3: Present training data xj and compute the distance di = |xj −mi|, 1 ≤ i ≤M .

Step 4: Determine the kth membership function which has the minimum distance dk

(dk = min1≤i≤M di).

Update mk by

mk = mk + α(xj −mk).

Step 5: If j < N , j = j + 1, Goto Step 3

Else

Decrease α and Goto Step 2.

EndIf

The above procedure will stop until α ≤ 0. The determination of which di is minimum at

Step 4 can be quickly accomplished in constant time via a winner-take-all circuit [25]. The

adaptive algorithm can be independently performed to obtain mi for each input and output

linguistic variables.
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As for the corresponding standard deviation σi of the i-th membership function of x,

since mi and σi will be finely tuned in the supervised learning phase, we just use a first-

nearest-neighbor heuristic to estimate σi, which is given by

σi =
|mi −m∗|

γ
, (3.2)

where

m∗ =

{
mi−1 for |mi −mi−1| < |mi −mi+1|
mi+1 otherwise,

(3.3)

and γ is called an overlap parameter used to describe the degree of overlapping for the two

membership functions.

GAs are search algorithms based on the mechanics of natural selection and natural ge-

netics [29, pp. 1–22]. They combine the survival of the fittest and some of the innovative

flair of human search. According to the fittest values among those randomly selected string

structures, a structured but randomized information exchange is defined to form a search

algorithm. Although the randomized generating procedure is used, GAs are not simple ran-

dom walks. They efficiently make use of the historical information to speculate on new

search points with expected improved performance [29]. The input/output rule structure is

encoded into a gene string G(t) defined as

G(t) = [g1(t), g2(t), . . . , gn(t)], (3.4)

where n is the total number of rule nodes, and gi(t) (1 ≤ i ≤ n) denotes the i-th gene in G(t).

For example, if the i-th rule node in Layer 3 is connected to the j-th node (1 ≤ j ≤ |T (ẑ)|)

in Layer 4 at time t, then gi(t) is set to j. Initially, the rules gi(0) are integers and are

randomly assigned within the range of [1, |T (ẑ)|]. G(t) is then updated by genetic operators

of crossover and mutation according to the value of fitness function, which is defined as the

inverse of the error E defined in Eq. (3.1). The structure that provides the minimum value

of E will be chosen as the optimal structure.
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After the self-organized training phase, the NFCAC controller then enters the supervised

learning phase. The aim of the supervised learning is to further minimize E for the training

data using a back-propagation learning algorithm. Starting at the output node, a backward

pass is used to compute ∂E
∂w

for all the hidden nodes in Layer 4 and Layer 2. Assuming

that w is an adjustable parameter in a node (i.e., the mean or the standard deviation of the

membership function), the general learning rule is

wnew = wold + η
∂E

∂w
, (3.5)

where η is the learning rate and

∂E

∂w
=
∂E

∂f

∂f

∂w
=
∂E

∂a

∂a

∂f

∂f

∂w
. (3.6)

f and a were defined in the previous subsection. Here, different values of η could be used

in Layer 2 and Layer 4 to provide different learning rates for input and output variables.

Different values of η represent different adoption rates for these variables. If the membership

function of a specific linguistic variable is not intended to be modified, then η = 0 is used.

3.3 Simulation Results and Discussions

Simulations were performed to test the effectiveness of the proposed NFCAC scheme.

Before discussing the results of the simulations, we will first describe the simulation environ-

ment.

3.3.1 Simulation Environment

Assume that an ATM network is chosen to be the high-speed network supporting mul-

timedia services. The input traffic is categorized into two types: real-time (type-1) and

non-real-time (type-2) traffic. Video and voice services are examples of type-1 traffic, while

data services are examples of type-2 traffic. The network system provides two separate finite
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buffers with size Ki, in order to support different QoS requirements for type-i traffic, i=1

and 2. When the buffer is full, incoming cells are blocked and lost. The system reserves Cr

portion of its capacity for type-1 traffic and the remaining (1−Cr) portion for type-2 traffic.

When there is unused type-1 or type-2 capacity, it is used for the other type of traffic. In the

simulations described here, K1 = K2 = 100 cells and Cr = 0.8. Also, the QoS requirement

for type-1 traffic QoS1 = 10−5 and that for type-2 traffic QoS2 = 10−6.

The cell generation process for a video coder is assumed to have two motion states: one is

the low motion state for the rate of interframe coding and the other is the high motion state

for the rate of intraframe coding [30]. The rate of intraframe coding is further divided into two

parts: the first part has the same rate as the interframe coding and the second part, called

difference coding, is the difference between the rates of intraframe coding and interframe

coding. The interframe coding and the difference coding are all modeled as discrete-state

Markov-modulated Bernoulli processes (MMBP) with basic rates Ar and Aa. The state-

transition diagram is shown in Figs. 3.3(a) and 3.3(b). Let λa(t), λr(t), and λ′a(t) denote the

cell generation rates for intraframe coding, interframe coding, and difference coding at time

t, respectively, from the video coder. Clearly, λa(t) = λr(t)+λ
′
a(t). The process of λr(t) is an

(Mr+1)-state birth-death Markov process. The state-transition diagram for λr(t) uses the

label mrAr to indicate the cell generation rate of interframe coding of a state and uses the

labels (Mr −mr)γ and mrω to denote the transition probabilities from state mrAr to state

(mr +1)Ar and from state mrAr to state (mr − 1)Ar, respectively. Similarly, the process for

λ′a(t) is an (Ma+1)-state birth-death Markov process. The state-transition diagram for λ′a(t)

uses the label maAa to indicate the additional cell generation rate of a state due to intraframe

coding and uses the labels (Ma −ma)φ and maψ to denote the transition probability from

state maAa to state (ma +1)Aa and from state maAa to state (ma− 1)Aa, respectively. One

should note that the long-term correlation behavior of a video source is resulted from the
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Figure 3.3: Level transition diagram for (a) interframe coding λr(t) (b) difference state λ′a(t)
(c)interframe and intraframe alternate model (d)voice source

process λa(t). The video source will alternate between interframe and intraframe, depending

on the video source activity factor. As shown in Fig. 3.3(c), there is a transition rate c in

the interframe state and a transition rate d in the intraframe state. The values of γ, ω, Mr,

Ar, φ, ψ, Ma, Aa, c, and d can be obtained from the traffic variables Rp, Rm, and Tp.

The cell generation process for a voice call is modeled by an interrupted Bernoulli process

(IBP) [28]. As shown in Fig. 3.3(d), during the ON (talkspurt) state, voice cells are generated

with rate Av; during the OFF (silence) state, no cells are generated. A voice source has a

transition rate α in the OFF state and a transition rate β in the ON state.

As for the data source, there are high-bit-rate and low-bit-rate data services. The gener-

ation of high-bit-rate and low-bit-rate data cells is characterized by Bernoulli processes with

rates θ1 and θ2, respectively. Also, the distributions of the holding times for video, voice,
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high-bit-rate data, and low-bit-rate data are assumed to be exponentially distributed.

In the simulations, for the arrival process of a video source, it is assumed that Rp=3.31×

10−2, Rm=1.10× 10−2, and Tp=0.5 seconds, which would give Mr=Ma=20, Ar=1.34× 10−3,

Aa=3.15 × 10−4, γ= 3.77 × 10−6, ω=5.65 × 10−6, φ=ψ=2.83 × 10−5, c=5.65 × 10−6, and

d=5.09× 10−5; for the arrival process of a voice source, it is assumed that Rp=4.71× 10−4,

Rm=2.12×10−4, and Tp=1.35 seconds, which would give Av=4.71×10−4, α=1.71×10−6, and

β=2.09×10−6; for high-bit-rate data sources, it is assumed that Rp=7.36×10−2, Rm=7.36×

10−3, and Tp=3.14×10−2 seconds, which would give θ1=0.1, and for low-bit-rate data sources,

it is assumed that Rp=3.68 × 10−2, Rm=7.36 × 10−4, and Tp= 2.88 × 10−2 second, which

give θ2=0.02. The mean holding time is 60 minutes for a video service, 3 minutes for a voice

service, and 18 seconds for both high- and low-bit-rate data services. Notice that the values

of Rp and Rm have been normalized by the network capacity.

Two kinds of cell loss ratios for type-i traffic are considered: the source loss ratio due to

selective discarding at the customer side ps,i and the node loss ratio due to blocking at the

network side pn,i. The overall cell loss ratio for type-i traffic pl,i is defined as

pl,i = κps,i + pn,i, i = 1, 2, (3.7)

where κ is used to indicate the significance of the node loss ratio over the source loss ratio.

κ = 0.8 is assumed here because selectively discarding cells at the source should have less

effect on information retrieval than blocking cells at the node. In the simulations, the cell

loss ratio is estimated as the total loss cells divided by the arriving cells during the whole

simulation interval.

3.3.2 Simulation Results and Discussions

On the basis of prior knowledge concerning CAC, the rule structure and parameters

of the NFCAC controller can be initially set and then properly adjusted via the learning
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algorithm. The membership functions of the linguistic variables for type-1 and type-2 traffic

were initially specified in the left-hand side of Fig. 3.4(a) and Fig. 3.4(b), respectively. As

we know, the available capacity Ca, deduced from the equivalent capacity Ce of the existing

calls, may possess estimation errors. In order to utilize the network as much as possible, we

may employ an idea of “budget deficit” to over-assign the capacity. Thus, the mean value

m
(I)
11 of the membership function of NE was set to be a negative value and the mean value

m
(I)
12 of the membership function of E was set to be a value close to zero.

The behavior of the congestion indicator y could be monitored from the congestion and

congestion-free states during a long-term simulation of the network operation. Thus, the

membership functions of y could be initially optimized based on the obtained information.

The mean value m
(I)
22 of the membership function of P would be set to be the mean value

of the queue-length change rate during congestion-free periods, the mean value m
(I)
21 of the

membership function of N would be set to be the mean value of the queue-length change

rate during congestion periods, and let σ
(I)
21 = σ

(I)
22 = m

(I)
22 −m

(I)
21 . These parameters could

be further off-line optimized via GA by simulation.

The initial membership functions of the cell loss ratio pl were set according to the QoS

requirement. The mean value m
(I)
32 of the membership function of NS would be set to be the

QoS requirement, the mean value m
(I)
31 of the membership function of S would be set to be a

fraction of the QoS requirement, and the standard deviations would be set to be σ
(I)
31 =σ

(I)
32 =

m
(I)
32 −m

(I)
31 . As a result, there exists a safety margin between the membership functions of

terms S and NS provided to tolerate the dynamic behavior of the network operation and

insure the QoS requirement.

Here, little information about the setting of initial values for the mean m
(O)
j of the term

set T(ẑ) could be employed; therefore, the values of m
(O)
j are set to be equally spaced in the

range of [0,1]. Based on the initial membership functions, an optimal rule structure shown
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Figure 3.4: Membership functions of Ca, y, pl and ẑ for (a) type-1 traffic, (b) type-2 traffic
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Rule Ca y pl ẑ Rule Ca y pl ẑ
1 NE N NS R 5 E N NS WR
2 NE N S WR 6 E N S WA
3 NE P NS R 7 E P NS WA
4 NE P S WR 8 E P S A

Table 3.1: The rule structure for the NFCAC

in Table 3.1 was obtained by using GA in the self-organized learning phase. When the fuzzy

logic rules were found, the NFCAC controller entered the supervised learning phase, in which

the membership functions were adjusted optimally.

Three different values of η were used for the variables Ca, y, pl, and ẑ. η was set to zero

for pl because the membership functions were specified by the QoS constraint and should not

be modified. η = 0.001 was used for y because the membership functions of y were initially

optimized. As for Ca and ẑ, their initial membership functions were heuristically set and

required further optimization in the supervised learning phase. Thus, η = 0.01 was used.

The use of different η may drastically reduce the training time required in the supervised

learning phase. The learned membership functions of the linguistic variables for type-1 and

type-2 traffic were shown in the right-hand side of Fig. 3.4(a) and Fig. 3.4(b), respectively.

For type-1 traffic in Fig. 3.4(a), it can be found that the differences of the membership

functions before and after learning are: For the membership functions of Ca, the mean value

m
(I)
11 of the membership function of NE was properly modified from -0.4 to -0.27. Similarly,

the mean value m
(I)
12 of the membership function of E was properly modified from 0.16 to

-0.02. There is a drastically change for membership functions of Ca, and the phenomenon

can also be found in the membership functions of y. It is because we heuristically set their

initial values and we used only two terms to describe Ca or y. The change of the position of

one term of Ca and y will squeeze the other term but receive less counteraction from the other

one term (compared to ẑ described later). Membership functions of pl are not changed since
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η for pl was chosen to be zero. For the membership function of ẑ, however, the mean m
(O)
1 of

the membership function of R is slightly increased from 0 to 0.05, representing that the effect

of “Reject” is decreased. Also, the mean m
(O)
3 of the membership function of WA is slightly

increased from 0.67 to 0.72, representing that the effect of “Weak Accept” is increased. The

small change is because we used four terms to describe ẑ. The change of the position of

one term of ẑ will squeeze the other three terms but receive more counteraction from the

three terms. Therefore, the change of position would be confined in a smaller range. The

changes of membership functions of ẑ imply that the NFCAC controller prefers to accept

new calls. This phenomenon demonstrates that the NFCAC controller intends to recover

some system bandwidth which the equivalent capacity method wastes due to over-estimation,

while keeping the QoS contract. It may be the reason for the utilization improvement of the

proposed NFCAC controller, which will be shown below. Similar results could be found for

type-2 traffic in Fig. 3.4(b).

We compare the NFCAC scheme with the effective-band-width-based CAC (EBCAC)

scheme proposed in [10], the fuzzy-logic-based CAC (FLCAC) scheme proposed in [18], the

neural-net-based CAC (NNCAC) scheme proposed in [23], and the radial-basis-function-

based CAC (RBFCAC) scheme from the aspects of the cell loss ratio (CLR), the system

utilization, and/or the training time under the constraint of QoS guarantee. The EBCAC

scheme is a hybrid technique combining the conventional techniques of the Gaussian ap-

proximation and the bufferless analysis; it is an improved version of the equivalent capacity

method [8]. Simulation of the EBCAC scheme is simply to calculate the required bandwidth

of a new connection. The new connection request is accepted if the total bandwidth re-

quired by the new connection and the existing connection is less than the system capacity.

Otherwise, it is rejected. The FLCAC scheme is a fuzzy implementation of the equiva-

lent capacity admission control method; details for the FLCAC scheme can be referred to
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[18]. The NNCAC and RBFCAC schemes are neural-net implementation of the equivalent

capacity admission control method, where the NNCAC adopts the multi-layer perceptron

(MLP) structure with 30 hidden nodes, while the RBFCAC uses radial basis function net-

work (RBFN) with 30 hidden nodes. Details for the NNCAC scheme can be referred to [23].

In the simulations, the FLCAC, NNCAC, or RBFCAC controller is equipped with the same

three peripheral processors as those used in the NFCAC controller shown in Fig. 3.1. The

sizes of training set and test set are all equal to 200, the number of repeated experiments is

20, and the standard deviation is less than 5%.

Fig. 3.5 shows the CLRs of an ATM traffic controller employing the NFCAC scheme,

and the EBCAC, FLCAC, NNCAC, RBFCAC schemes. It is found that the QoSs for

both types of traffic are indeed guaranteed for all of these control schemes. Fig. 3.6 shows

that the system utilization of the NFCAC scheme and the four schemes. We can find

that the utilization of the NFCAC scheme is slightly greater than that of the NNCAC

and the RBFCAC schemes; the system utilizations of NFCAC, NNCAC, and RBFCAC are

91%, 90.5%, and 89%, respectively; and the NFCAC scheme offers about 32% and 11%

greater system utilization than the EBCAC scheme and the FLCAC scheme. It is because

NFCAC can incorporate the domain knowledge obtained from both the analytical-based

method (the equivalent capacity scheme [8] is employed in the bandwidth estimator) and

the measurement-based method (the system statistics of the queue length, the change rate

of the queue length, and the CLR are considered in the congestion controller). Also, the

reason for the performance improvement is that NFCAC possesses the learning capability of

the neural network.

Fig. 3.7 shows the training time required for the NFCAC scheme and the NNCAC,

RBFCAC schemes. Here, a widely used back-propagation learning algorithm was employed

to adjust the membership functions (i.e. represented in terms of weights) of the multi-layer
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neural fuzzy network and neural network for the NFCAC and NNCAC schemes, while the

RBFCAC scheme is basically trained by the hybrid learning rule: unsupervised learning

in the input layer and supervised learning in the output layer. It is found that NFCAC

has training time of 7 (4) epochs, while RBFCAC and NNCAC have training time of 103

(40) and 5× 104 (6× 102), respectively, for type-1 (type-2) traffic. The NFCAC has higher

learning speed than the RBFCAC and NNCAC. One reason is that the neural fuzzy network

is a structured network, thus the NFCAC controller can easily adopt the domain knowledge

of conventional control methods to construct the initial rule structure and the parameters

of the membership functions, providing an excellent initial guess in adjusting its weights;

on the contrast, the neural network is a non-structured network, which cannot incorporate

domain knowledge about system. The other reason is that the neural fuzzy network has

simpler structure than the neural network; the number of tunning parameters used in the

neural fuzzy network is quite small, as compared to the neural network such as MLP and

RBFN considered here. In this chapter, there are only 16 weighting parameters used in

NFCAC, while there are 150 and 480 weighting parameters required for the RBFCAC and

NNCAC, respectively. It is also noted that the RBFCAC scheme has less learning time

than the NNCAC scheme. This is because the RBFCAC scheme can have the proper initial

setting of means and variances for the Gaussian activation functions during unsupervised

learning according to the prior knowledge, and it has only one layer of connection needed to

be trained by supervised learning.

As usually noted, RBFCAC can have faster training speed than NNCAC but cannot

achieve the same accuracy as the back-propagation NNCAC. In the simulations, we first

adopted the same set of data used to train NFCAC and NNCAC for RBFCAC. However,

it was found that RBFCAC finally violated the QoS contracts due to its error decision of

accepting more users than it should be. In order to provide QoS guarantee for RBFCAC, we
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have to prepare much more training data, especially those around the acceptance/rejection

boundary. This will increase the training time of RBFCAC in each epoch than those required

by NFCAC and NNCAC. Moreover, the overall processing time of RBFCAC is greater than

that needed by either NFCAC or NNCAC because RBFCAC uses more nodes (compared

with NFCAC) and a more complicated activation function (compared with NNCAC). All

these would degrade the performance of RBFCAC in real application.

3.4 Concluding Remarks

This chapter has proposed a neural fuzzy approach for connection admission control in

high-speed multimedia networks. The neural fuzzy connection admission control (NFCAC)

scheme combines the linguistic control capability of a fuzzy logic controller and the learning

ability of a neural network. This type of integrated neural fuzzy system can automati-

cally construct a rule structure by learning from training examples and can self-calibrate

parameters of membership functions. It not only provides a robust framework to mimic

experts’ knowledge embodied in existing traffic control techniques but also constructs intel-

ligent computational algorithms for traffic control. It can be easily trained and enhances

system utilization. Simulation results show that the proposed NFCAC scheme provides sys-

tem utilization about 32% and 11% higher than the EBCAC and FLCAC schemes proposed

in [10] and [18], respectively, and the NFCAC scheme requires only a fraction of the 103

order and the 101 order of training cycles, consumed by the NNCAC scheme proposed in

[23] and RBFCAC scheme, respectively. An NFCAC scheme such as the one introduced here

may be the answer to the problem of designing a coherent call admission controller for ATM

systems.
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Figure 3.5: Cell loss ratio for (a) type-1 traffic, (b) type-2 traffic

67



Figure 3.6: System utilization
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Figure 3.7: Training cycles needed for (a) type-1 traffic, (b) type-2 traffic
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Chapter 4

Intelligent Connection Admission
Control Scheme for Multimedia
High-speed Networks Using
Frequency-domain Traffic Parameters

As contrast to the CAC scheme proposed in Chapter 3, which is based on

the time-domain traffic parameters to make CAC decisions, this chapter pro-

poses a power-spectrum-based neural-net connection admission control (PN-

CAC) scheme for multimedia high-speed ATM networks. It employs a neural

network controller to handle the CAC function according to the frequency-

domain power spectral density (PSD) parameters of the traffic sources. Since

the PSD function of an input traffic contains the correlation and burstiness

properties of the traffic, and it has been proven capable to characterize the

queueing performances of the input traffic, the PSD parameters describing the

PSD function can well correspond to the queueing performances also. With a

composition algorithm to easily obtain the three PSD parameters of an aggre-

gate traffic, it is suitable to adopting PSD parameters for CAC accordingly.

Simulation results show that, after well training the neural network, an op-

timal CAC decision hyperplane based on the input variables is constructed

to provide an efficient and robust admission control under dynamic network

environments, while the QoS requirements are strictly assured.
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4.1 Introduction

Multimedia high-speed networks should be equipped with a set of traffic control functions

to ensure QoS of each service connection and to enhance system utilization. One of the traffic

control functions is connection admission control. Connection admission control (CAC) is

defined as “a set of actions taken by the network in order to determine whether a connection

can be accepted” [31]. A new connection is accepted only if sufficient network resources are

available and the required performance can be maintained.

Several conventional CAC control techniques for high-speed networks have been proposed.

In the peak rate allocation, QoS is always guaranteed if the aggregate bit rate never exceeds

the system capacity. However, it leads to low utilization of network resources. An equivalent

capacity (effective bandwidth) method was proposed to estimate the required bandwidth

for individual or aggregate connections with desired QoS [8], [11]. A call admission scheme

by inferring the upper bound of cell loss probability from the traffic parameters specified

by users was studied in [13]. And a simple bandwidth assignment policy by classifying all

traffic sources was presented. All the studies were conducted mainly on the basis of traffic

parameters in time domain.

On the other hand, Li and Hwang [33] and Sheng and Li [34] have studied the queueing

performance of a high-speed network from the point of view in the frequency-domain traffic

parameters. The process of input traffic inherently contains a power spectral density (PSD)

function, which is the Fourier transform of the input traffic process’s autocorrelation function.

From their studies, two characteristics of PSD are concluded: (i) The PSD can be represented

by three main parameters such as the DC component, the average power, and the half-

power bandwidth. (ii) The low-frequency band of the input PSD has a dominant impact on

queueing performance, while the high-frequency band can be neglected to a large extent. It

is because the low frequency component of PSD contains the correlation and burstiness of
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the input process. The more the low-frequency components are, the burstier the input traffic

will be [35]. Therefore, according to the above two PSD characteristics from Li’s studies, it

can be conducted that these three PSD parameters can well characterize the input traffic

and correspond to its queueing performances, and thus this reveals a chance to employ the

PSD parameters for CAC.

A composition algorithm is proposed in [36] to obtain the three PSD parameters of an

aggregate traffic source from the given PSD parameters of these individual traffic sources

which build the aggregate one. The computation process of the composition algorithm is just

through some simple arithmetic operations. It can then be concluded that PSD parameters

possess additive property; this makes the PSD parameters more suitable for admission con-

trol, no matter how many types of traffic sources there are, because the PSD parameters of

the virtually aggregated total traffic enrolling the new call could be easily derived as the new

call request arrives and maintain the same (three) reference variables, which can correspond

to the queueing performances, for the admission control decision making. The design of the

CAC algorithm based on PSD parameters can be made accordingly and this indeed greatly

reduce the complexity for admission control.

A power-spectrum-based table-lookup CAC method for multimedia communications in

ATM networks was studied, where the table content was the cell loss probability indexed by

the PSD parameters of voice/video calls and arrival rates of data calls [36]. The table can be

constructed through several explorative simulations. However, since the table is constructed

based on the original three parameters for the power-spectrum: DC component, half-power

bandwidth, and average power [36], there is a drawback of large-dimensional CAC table. An

“equivalent source” concept is consequently introduced to transform the PSD parameters

of an offered traffic source into the so called “equivalent” PSD parameters which are corre-

sponding to another (equivalent) traffic source [37]. The word “equivalent” exactly stands for
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almost the same queueing performances in some evaluation aspects. That is, the correspond-

ing traffic source with the “equivalent” PSD parameters generated by the transformation is

expected to have equivalent queueing performances with the offered traffic source character-

ized by original PSD parameters, so that the equivalent PSD parameters could substitute the

original ones. The transformation was done by using a low-pass filter and an integrator, while

a heuristic method to obtain a typical value for the cut-off frequency is adopted. A modified

power-spectrum-based table-lookup CAC method was then proposed in [37] where the CAC

lookup table is significantly reduced by one dimension than that proposed in [36], since the

PSD parameters of each table entry in [36] can be transformed to the equivalent ones with

the pre-defined half-power bandwidth value which is identical among all transformed entries,

and thus only the DC component and the transformed equivalent average power have to be

specified to characterize and distinguish each (voice/video) traffic source. The offered three

PSD parameters of a new call request would also be transformed to the equivalent ones at

first to adapt to the operations based on the dimension-reduced CAC table. Although the

transformation may introduce some degradations on performances, simulation results show

that the modified power-spectrum-based table-lookup CAC scheme is still efficient enough

by about 9% higher system utilization than that of the conventional equivalent capacity

CAC method [8], while improves the feasibility for practical implementations.

In recent years, neural networks have been widely employed to deal with the traffic control

problems in high-speed multimedia networks [20], [23]. A major feature of the neural network

is the self-learning capability which can be utilized to characterize the relationship between

input traffic and system performance. In [20], Hiramatsu proposed a connection admission

controller using neural network. The neural network in the controller learns the relations

between the offered traffic and the service quality. Because the declared traffic parameters

were used only to divide calls into several bit-rate classes, the neural network actually learns
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the relationship between the numbers of existing connections in each bit-rate class and their

corresponding QoSs according to the statistical characteristics of each bit-rate class. Results

showed that the neural network learned a complicated boundary for call acceptance decision.

We have also proposed a neural network connection admission control (NNCAC) scheme [23]

and a neural fuzzy connection admission control (NFCAC) scheme as mentioned in Chapter 3

for ATM networks. Simulation results reveal that call admission control with either neural

networks or neural fuzzy networks can improve significantly system utilization, under QoS

constraint.

In this chapter, we propose a power-spectrum-based neural-net connection admission

control (PNCAC) method for multimedia high-speed networks. It introduces the three PSD

parameters (DC component, half-power bandwidth, and average power) of the virtually ag-

gregated total traffic as inputs and chooses a neural network controller to accommodate all

the inputs and generate the admission control decisions. We first transform the time-domain

parameters of source traffic of connections into the power-spectrum parameters in frequency

domain, then a decision hyperplane of the connection admission control is constructed under

the constraint of QoS after the neural network has been trained. The decision hyperplane

splits the sample space into two — one is for “accept” and the other is for “reject.” We further

adopt the learning/adapting capabilities of the neural network to adjust the optimal location

of the boundary between these two decision spaces (i.e. use the back-propagation training

algorithm to adjust the link weights of PNCAC to the optimum value). Simulation results

show that PNCAC achieves higher system utilization, superior by 23.8% to the conventional

equivalent capacity CAC proposed in [8], and comparable to that of Hiramatsu’s neural

network CAC (NNCAC) [20]. However, PNCAC is more robust than Hiramatsu’s NNCAC

in dynamic high-speed multimedia networks whose characteristics may alter with time. As

characteristics of traffic sources change, the connection number of each traffic type utilized

74



as the input variables in Hiramatsu’s NNCAC can no longer characterize the traffic. At this

time, Hiramatsu’s NNCAC should perform on-line training and even the node-growing or

-pruning learning process in order to adapt to the variation in traffic sources; otherwise, the

performance would deeply degrade with the QoS no longer guaranteed. However, the pro-

posed PNCAC can still perform well without any other modifications or re-training process.

The rest of the chapter is organized as follows. Section 4.2 describes the transformation

of time-domain traffic parameters of an input process into power-spectrum parameters of its

power spectral density. In Section 4.3, we describe the system configuration and address the

design of the proposed PNCAC. In Section 4.4, some simulation examples are illustrated to

justify the feasibility of PNCAC, by comparing it with the conventional equivalent capacity

CAC (ECCAC) and the Hiramatu’s NNCAC. Finally, concluding remarks are presented in

Section 4.5.

4.2 Power Spectrum of Input Process

If an input rate process a(t) is modeled as an (M + 1)-state Markov-modulated Poisson

process (MMPP), the MMPP can be represented by (Q,r), where Q is the state transition-

rate matrix and r = [γ0, γ1, ...., γM ] is the vector representing the arrival rate at each MMPP

state. The stationary probability vector of state, denoted by Π = [π0, π1, ...., πM ], can be

obtained by solving equations of ΠQ = 0 and Πe = 1, where e is an unit column vector.

The average input rate γ̄ is then given by

γ̄ =
M∑
i=0

γiπi. (4.1)

Q is diagonalizable and can be represented by spectral decomposition as

Q =
M∑
l=0

λlglhl, (4.2)
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where λl is the l-th eigenvalue of Q, and gl and hl are the associated right column and left

row column eigenvectors of Q with respect to λl, respectively [34].

Then the autocorrelation function of the MMPP, defined as R(τ) ≡ a(t)a(t+ τ), can be

derived. Its corresponding PSD, denoted by P (ω), can also be given, via Fourier transfor-

mation of R(τ), by [34]

P (ω) = γ̄ + 2πΨ0δ(ω) +
M∑
l=1

bl(ω), (4.3)

where

δ(ω) =

{
∞ for ω = 0
0 elsewhere;

(4.4)

Ψ0 is the DC component, given by

Ψ0 = γ̄2; (4.5)

and bl(ω) is the bell-shaped function with respect to non-zero λl, given by

bl(ω) =
ΨlBl

(Bl/2)2 + (ω − ωl)2
. (4.6)

Ψl in (4.6) is the average power contributed by λl, given by

Ψl =
∑

i

∑
j

πiγiγjglihlj for 1 ≤ l ≤M, (4.7)

where gli and hlj are the i-th and j-th entities of the vector gl and hl, respectively. Bl in (4.6)

is the half-power bandwidth, Bl = −2Re{λl}, and the ωl in (4.6) is the central frequency of

the bell-shaped function bl(ω), ωl = Im{λl}, where Re{·} and Im{·} denote the real part

and the imaginary part of the argument, respectively.

From (4.3), it can be found that the PSD of an MMPP process is constituted by white

noise γ̄, DC component 2πΨ0, and a set of bell-shaped functions bl(ω) described by the

average power Ψl, the half-power bandwidth Bl, and the central frequency wl, with respect

to the l-th eigenvalue of Q. The white noise is contributed by the Poisson local dynamics.

From the result showed in [33], the influence of the white noise on a queueing system can be

neglected.
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If the traffic source is further assumed to be an (M + 1)-state birth-death MMPP, which

is a superposition of M independent and identically distributed (iid) two-state MMPPs

with parameters (α, β, ro) as shown in Fig. 4.1, it would have all eigenvalues real and all

bell-shaped functions zero-centered. Take a two-state MMPP for example, its time-domain

traffic parameters described by (α, β, ro) is shown in Fig. 4.2(a), and the PSD parameters

characterized by (γ̄, B,Ψ) are shown in Fig. 4.2(b), where γ̄ = βro

α+β
, B = 2(α + β), and

Ψ = αβr2
o

(α+β)2
. The PSD of the (M + 1)-state birth-death MMPP can be obtained by com-

posing PSDs of the M iid two-state MMPPs into a composite power spectrum which is

further approximated by an impulse DC component and a single bell-shaped function with

parameters:

γ̄ =
Mβro

α+ β
, (4.8)

B = 2(α+ β), (4.9)

Ψ =
Mαβr2

o

(α+ β)2
. (4.10)

The composition algorithm for the two different power spectrums is stated in the appendix

content of section 4.6.

Therefore, it can be concluded that: a birth-death MMPP traffic source can be described

by its PSD with power-spectrum parameters (γ̄, B,Ψ) including the DC component (γ̄), the

half-power bandwidth (B) and the average power (Ψ) of the bell-shaped function. These

parameters can be obtained from the (M +1)-state MMPP parameters (α, β, ro). The larger

the mean input rate is, the higher the γ̄ will be; the more correlated the input process is,

the smaller the B will be; and the larger the input rate variance is, the higher the Ψ will be.

Moreover, PSD parameters of input process possess additive property, which does not exist

in the time-domain traffic parameters.

When a new call request provides its time-domain traffic parameters such as peak bit

rate (RP ), mean bit rate (RM), and average peak bit rate duration (TD) during the call
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Figure 4.1: The (M+1)-state birth-death MMPP model

establishment phase, the modeled (M+1)-state birth-death MMPP process with parameters

(α, β, ro) can be obtained from these traffic parameters (RP , RM , TD) by

α =
1

MTD

, (4.11)

β =
RM

MTD(RP −RM)
, (4.12)

ro =
RP

M
. (4.13)

Figure 4.2: The time/frequency-domain parameters of the two-state MMPP
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And the power-spectrum parameters (γ̄, B,Ψ) of the input traffic of the new call can then

be converted from the (M +1)-state birth-death MMPP parameters (α, β, ro) by Eqs. (4.8)-

(4.10).

4.3 PSD-based Neural-net Connection Admission Con-

troller

Fig. 4.3 shows the functional block diagram of the PSD-based neural-net connection

admission controller. It mainly contains a PNCAC controller, a time/frequency parameters

converter, a data rate register, a PSD parameter register, a data rate composer, and a power

spectrum composer. Input traffic is assumed to be classified into two types. Type-1 traffic

is the real-time traffic such as voice and video, and type-2 traffic is the non-real-time traffic

such as data.

As the new call request for type-1 traffic claims its traffic parameters: RP , RM , and

TD in the call establishment phase, the time/frequency parameter converter transforms the

(RM , RP , TD) in time domain into (γ̄, B,Ψ) in frequency domain. The PSD parameter reg-

ister keeps the record of the power-spectrum parameters (γ̄E, BE,ΨE) of the total existing

type-1 connections, where γ̄E is the total average input rate, BE is the total half-power

bandwidth, and ΨE is the total average power. The two sets of parameters (γ̄, B,Ψ) and

(γ̄E, BE,ΨE) are added to form a new set of parameters (γ̄T , BT ,ΨT ) through the power spec-

trum composer which performs the power spectrum composition and approximation functions

mentioned in section 4.6. If the new call request belongs to type-2 data traffic, it claims the

data rate Γ as the traffic parameters in the call establishment phase. The data rate register

records the overall data rate ΓE of the existing type-2 connections, and the data rate com-

poser adds these two data rate, Γ and ΓE, to form a new parameter ΓT . The set of PSD

parameters (γ̄T , BT ,ΨT ) accompanied with the data rate ΓT is then fed into the PNCAC
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controller as the input variables. As shown in Fig. 4.4, the PNCAC controller is a multi-

layer feedforward neural network [1], [23], which possesses capabilities of approximation to a

perfect connection acceptance decision function. And a back-propagation learning algorithm

[6] is used here to train the neural network. The PNCAC controller will then decide whether

to accept or reject this connection request using the neural-network and feed the decision

output (Y ) back to the source.

Figure 4.3: The functional block diagram of the PSD-based neural-net connection admission
controller

If the decision is to accept the new type-1 call, the PSD parameter register will be

triggered to update the stored power-spectrum parameters (γ̄E, BE,ΨE) to be (γ̄T , BT ,ΨT ).

So does the type-2 data rate register if a type-2 call is accepted. If the decision is to reject the

new call, no updating procedure is needed. Notice that (γ̄, B,Ψ) or Γ should be subtracted

from (γ̄E, BE,ΨE) or ΓE when a type-1 or type-2 call is disconnected, respectively, which is

not shown here.

The implementation of the proposed PNCAC takes about 200 lines of C codes, in which

370 multiplication and 310 addition operations are included. The computation time to make

an admission decision would be no more than 500µsec under general purpose CPU such as
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INTEL Pentium-II or above. Therefore, the PNCAC would be feasible in real implementation

for high-speed multimedia networks. If special purpose CPU or DSP processors with pipeline

architecture or optimized computation capabilities are adopted, less time should be taken to

response to a call request. Also, the compiled machine (execution) codes for INTEL CPU is

about 20KBytes. The proposed PNCAC scheme can even be downloaded to the embedded

systems (platforms).

Figure 4.4: The basic structure of the PNCAC controller

4.4 Simulation Results and Discussions

Here we assume that the call admission controller is designed and implemented in an

ATM switch/router in multimedia high-speed networks, and input messages are segmented

into fixed-length ATM cells. Two separate buffers with buffer size K1 and K2 are for type-1

and type-2 traffic, respectively. One buffer space can accommodate one ATM cell. When

the buffer is full, new coming cells are blocked and lost. The service discipline for type-1

and type-2 traffic is that the system initially allocates equal capacity for both types, and the
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remaining capacity of one type traffic can be used by the other type traffic.

In the simulations, the buffer sizes K1 and K2 are all set to be 100 cells; the system

capacity is assumed to be 150 Mbps. Different QoS requirements for these two types of traffic

are defined: the required cell loss probability is set to be 10−5 for type-1 traffic and 10−6 for

type-2 traffic. The voice sources are modeled by a two-state on-off Markov chain (MMPP);

the video sources are modeled by a modified Markov process addressed in Chapter 3, where

the numbers of video interframe and intraframe are assumed to have five states; and the

data sources are modeled by a Poisson process. The traffic parameters for voice and video

sources are shown in Table 4.1, and the mean rate for data sources is 1 Mbps. The call

arrival rate for voice is 15.4 calls/sec with mean holding time of one minute, the call arrival

rate for video is 0.082 calls/sec with mean holding time of five minutes, and the call arrival

rate for data is 3.2 calls/sec with mean holding time of 20 seconds. For all traffic types, the

call arrival processes are assumed to be independently Poisson distributed, and the mean

holding time is assumed to be exponentially distributed. Note that in the transformation of

the three input time-domain parameters (RM , RP , TD) into PSD parameters (γ̄, B,Ψ), both

voice and video sources are assumed to be two-state birth-death MMPP.

The neural networks adopted by the PNCAC is a three-layered full-connected feedforward

neural network with 50 hidden nodes, as the one used by Hiramatsu’s NNCAC which has

30 hidden nodes. It uses 683 and 280 training data and takes about 221,467 and 199,501

iterations to well train the PNCAC and Hiramatsu’s NNCAC, respectively.

Table 4.1: Traffic source parameters

Traffic Parameters Peak Rate Mean Rate Peak Rate Duration

Voice 64.0 Kbps 27.6 Kbps 1.366 sec
Video 5.7 Mbps 1.9 Mbps 0.033 sec
Data - 1.0 Mbps -
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Fig. 4.5 shows the cell loss ratio of type-1 traffic in (a), the cell loss ratio of type-2 traffic

in (b), and the system utilization in (c) for the three approaches, where the characteristics of

traffic source in simulation are exactly the same as the ones used in training data generation

phase. We can find that, after the neural networks have been well trained, both Hiramatsu’s

NNCAC and PNCAC have larger cell loss ratio than ECCAC, but still guarantee QoS re-

quirements; while Hiramatsu’s NNCAC and PNCAC can improve significantly the system

utilization over the conventional ECCAC by about 24.4% and 23.8%, respectively. Note that

this utilization is obtained by averaging those values between 109 and 2∗109 slot times. It is

due to the learning and adaptive capability of neural networks. Also, Hiramatsu’s NNCAC

has slightly better system utilization than PNCAC by about 0.6%. This is because Hira-

matsu’s NNCAC adopts the connection number of each traffic characteristic as the input to

decide whether a call request is accepted or not, and the traffic characteristics in simulations

are exactly the same as the ones used in training data generation phase for Hiramatsu’s

NNCAC.

We further consider two simulation examples when the neural networks were well trained

according to the traffic characteristics illustrated in Table 4.1, but the system receives heavier

and lighter traffic sources with parameters in Table 4.2 and Table 4.3, respectively.

Table 4.2: Heavier traffic source parameters

Traffic Parameters Peak Rate Mean Rate Peak Rate Duration

Voice 64.0 Kbps 40.958 Kbps 1.742 sec
Video 11.4 Mbps 3.8 Mbps 0.033 sec
Data - 1.5 Mbps -

Fig. 4.6 shows the cell loss ratio of type-1 and type-2, and the system utilization, for the

heavier traffic source, in (a), (b), and (c), respectively. It can be seen that the cell loss ratio of

Hiramatsu’s NNCAC, denoted by the dashed line, seriously violates the QoS requirements,
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Table 4.3: Lighter traffic source parameters

Traffic Parameters Peak Rate Mean Rate Peak Rate Duration

Voice 64.0 Kbps 23.042 Kbps 0.98 sec
Video 2.85 Mbps 0.95 Mbps 0.033 sec
Data - 0.5 Mbps -

in both type-1 and type-2 traffic, although the utilization of Hiramatsu’s NNCAC is the

highest one and approaches 100%. On the other hand, the proposed PNCAC and ECCAC

can still fulfill the QoS requirements, and the system utilizations of PNCAC and ECCAC

are 85.8% and 77.7%, respectively.

Fig. 4.7 shows the cell loss ratios of type-1 and type-2, and the system utilization, for the

lighter traffic source, in (a), (b), and (c), respectively. It can be seen that all the three CAC

schemes have zero cell loss ratios and guarantee the required QoS but obtain low system

utilizations, compared to those of the normal case shown in Fig. 4.5. The Hiramatsu’s

NNCAC suffers more degradation and turns out to have the worst system utilization.

From these two simulation examples, it can be concluded that Hiramatsu’s NNCAC has

worse adaptivity and flexibility than PNCAC and ECCAC. This is because the connection

number of each traffic type adopted by Hiramatsu’s NNCAC could apply only when the traf-

fic characteristics of traffic sources fed into the operational system are the same as the ones in

the training phase. However, this is usually impossible in real practice. As traffic character-

istics of sources change, the neural network should learn to adapt to the variation in sources

by on-line training, and moreover, the structure of the neural network should be modified to

have proper inputs by node-growing or -pruning learning process, if necessary. This would

make Hiramatsu’s NNCAC infeasible. Because both ECCAC and PNCAC depend on traffic

characteristic parameters which can react to the variation in traffic characteristics, these

two schemes can adapt to traffic properly without any other modifications or re-training and
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still perform the CAC decision well. It is also because the transformed equivalent capacity

for ECCAC and the PSD parameters for PNCAC are both unified metrics corresponding to

traffic characteristics of all different sources and possess additive property, while the con-

nection number adopted by Hiramatsu’s NNCAC as the input variables for neural networks

could not be summed for different traffic types.

In addition, the proposed PNCAC has better performance than ECCAC. Both PNCAC

and ECCAC depend on traffic characteristic parameters; however, PNCAC transforms the

three time-domain traffic characteristic parameters into the corresponding three PSD-domain

parameters, while ECCAC converts the same time-domain parameters to a single equivalent

capacity. Although the equivalent capacity is also additive, the proposed PNCAC adopts

the three PSD parameters as the inputs of neural networks to perform the CAC decision,

which could capture more traffic characteristics and less composition approximation error

than the single equivalent capacity. The self-learning capability of neural network also makes

the PNCAC more adaptive to the traffic.

4.5 Concluding Remarks

In this chapter, we propose a power-spectrum-based neural-net connection admission

control (PNCAC) scheme for ATM networks. The PNCAC method adopts the converted

power-spectrum parameters of traffic source to represent its traffic characteristics and uses

neural network to implement the connection admission control. The frequency-domain

power-spectrum parameters of traffic source possess additive property and can capture the

correlation and burstiness behavior more than the time-domain parameters such as peak

rate, mean rate, and peak rate duration. The neural network has the learning/adapting

capabilities so that the boundary of the decision hyperplane for the connection admission

control can be adjusted optimally and dynamically. We demonstrate results whenever the
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input voice and video traffic sources are modeled by MMPP and modified MMPP, respec-

tively, and the data traffic sources are modeled by a Poisson process. Simulation results show

that the proposed PNCAC enhances significantly the system utilization while fulfilling QoS

requirements. Not only it is superior to the conventional equivalent capacity CAC scheme

(ECCAC), it also obtains more flexibility and robustness than Hiramatsu’s NNCAC.

4.6 Appendix: Composition Algorithm for Power Spec-

trums

Assume that b1(ω) and b2(ω) are two bell-shaped functions corresponding to zero-centered

PSDs with parameters (γ̄1, B1,Ψ1) and (γ̄2, B2,Ψ2), as shown in Fig. 4.8, and b(ω) is the

approximated bell-shaped function corresponding to the composite power spectrum with pa-

rameters (γ̄, B,Ψ). To compose the two zero-centered PSDs, we add the two DC components

and the two bell-shaped functions directly. We then approximate b1(ω) + b2(ω) to be b(ω).

In the approximation, we set Ψ = Ψ1 + Ψ2, and b(ω) = b1(ω) + b2(ω) at ω = 0. Therefore,

(γ̄, B,Ψ) of the approximated power spectrum are given by

γ̄ = γ̄1 + γ̄2, (4.14)

B =
(Ψ1 + Ψ2)B1B2

Ψ1B2 + Ψ2B1

, (4.15)

Ψ = Ψ1 + Ψ2. (4.16)

Note that the approximated bell-shaped function contains more low-frequency components

than b1(ω) + b2(ω).
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Figure 4.5: (a) The type-1 cell loss ratio (CLR), (b) the type-2 cell loss ratio (CLR), and
(c) the system utilization of the ECCAC, Hiramatsu’s NNCAC, and PNCAC
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Figure 4.6: (a) The type-1 cell loss ratio (CLR), (b) the type-2 cell loss ratio (CLR), and
(c) the system utilization of the ECCAC, Hiramatsu’s NNCAC, and PNCAC with heavier
traffic sources
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Figure 4.7: (a) The type-1 cell loss ratio (CLR), (b) the type-2 cell loss ratio (CLR), and
(c) the system utilization of the ECCAC, Hiramatsu’s NNCAC, and PNCAC with lighter
traffic sources
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Figure 4.8: The approximated bell-shaped function of the composed bell-shaped PSD
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Chapter 5

An Intelligent Usage Parameter
Controller for Multimedia High-speed
ATM Networks

For CAC to perform correctly, a traffic policing mechanism is necessary

to ensure that all established connections conform to their respective traffic

contracts. Therefore, in this chapter, two intelligent usage parameter con-

trollers are proposed to implement the traffic policing function for multimedia

transmissions in ATM networks. One is the fuzzy usage parameter controller

realized by the fuzzy leaky bucket algorithm, in which a fuzzy increment con-

troller (FIC) is incorporated with the conventional leaky bucket algorithm; the

other is the neural fuzzy usage parameter controller base on the neural fuzzy

leaky bucket algorithm, where a neural fuzzy increment controller (NFIC) is

added to the conventional leaky bucket algorithm. Both of FIC and NFIC

properly choose the measured long-term and short-term mean cell rates, as

input variables to adaptively determine the optimal increment value. Simu-

lation results show that both intelligent leaky bucket algorithms have signif-

icantly outperformed the conventional one by responding about 160% faster

when taking control actions against a non-conforming connection, while re-

ducing as much as 50% of the queueing delay experienced by a conforming

connection. In addition, the neural fuzzy leaky bucket algorithm outperforms

the fuzzy one especially in the aspect of responsiveness.
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5.1 Introduction

The emergence of multimedia services has diversified the quality-of-service (QoS) and

bandwidth requirements for communication services. Asynchronous transfer mode (ATM) is

considered as a suitable technique to meet the diverse requirements. Several traffic control

mechanisms are recommended for ATM networks [31]. Among them, connection admission

control (CAC) and usage parameter control (UPC) are most important.

CAC is performed at the call setup phase to decide whether the connection can be ac-

cepted or not. It accepts the connection if the required bandwidth and QoS of the connection

can be afforded while QoS of existing connections can still be maintained. A traffic contract,

which specifies traffic descriptors such as the peak cell rate (PCR), the sustainable cell rate

(SCR) and the maximum burst size (MBS), would then be built between the accepted connec-

tion and the network. For CAC to perform correctly, all the established connections must

not violate their respective traffic contracts which are of vital importance to the decision

making of CAC. To make sure that the established connections conform to their traffic con-

tracts, the UPC mechanism which is the traffic policing function defined in ATM networks

should be employed and co-operate with the CAC.

UPC is performed at the user-network interface (UNI) during the data transfer phase.

It is defined as the set of actions taken by the network to police the offered traffic of a

connection so that the negotiated traffic contract is respected. That is, some portion of

the traffic of a connection would be dropped or shaped (by introducing queueing effect) to

enforce the resultant traffic compliant with the traffic profile negotiated in the traffic contract

during the call setup phase. Sometimes, the non-conforming portion of a connection would

be tagged rather than directly dropped, so that the residual traffic satisfy the contract and

some future processing would be performed upon the tagged non-conforming traffic to attain

some operation objectives. The main purpose of UPC is to protect network resources from
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malicious as well as unintentional misbehavior which can affect the QoS of other already

established connections.

Monitoring and controlling PCR of a connection is not difficult because we only have to

determine if the peak emission interval is smaller than the reciprocal of the negotiated PCR,

ΛPCR. However, policing the SCR of a connection is much more complicated because the

connection is eligible to transfer cells with a short-term mean rate higher than the negotiated

SCR, ΛSCR, while the long-term mean rate of the connection still conforms to ΛSCR. The

difficulty of the UPC to control the SCR of a connection lies in finding a simple, universal,

and effective scheme which is able to police any type of traffic to meet the long-term SCR

specified in its traffic contract by making short-term and packet-level processing decision

upon each incoming packet. Besides, the wide variety of multimedia services with different

traffic characteristics and QoS requirements would further complicate the UPC especially

for the SCR policing. Since the SCR policing is not a easy job, we here concentrate on the

UPC for the SCR of the offered connection.

In this chapter, we assume that a traffic shaper (TS) is equipped within the customer

premise equipment (CPE) to regulate the cell stream of the traffic source so as to conform

the negotiated SCR. The regulation is to alter the traffic characteristics of the cell stream

to achieve a desired traffic shape. However, the consequence of the regulation would cause

an increase in the mean cell transfer delay. The conjunction of TS and UPC, named as TS-

UPC, should employ identical schemes with same parameters settings in both TS and UPC

so that any possible illegal cell that might have been detected as non-conforming by UPC

will be detected ahead of time and saved in the queue by TS. In this way, the TS-UPC can

guarantee zero cell loss ratio at UPC for a non-violating connection. Nevertheless, if a user

intentionally or unintentionally changes the parameters settings in TS and illegally enjoys a

higher bit-rate service there, UPC will detect the violation and take actions against it. The
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Figure 5.1: The connection model

primitive connection model with TS-UPC is shown in Fig. 5.1. The component attached to

the traffic source is the TS which contains a shaper and a queue. It bypasses the conforming

cells but stores the non-conforming cells in the queue for further legal transmission. The

component at the entrance of the network is UPC, where a policer is incorporated. It

bypasses the conforming cells but drops or tags the non-conforming cells.

Three performance objectives have to be fulfilled by TS-UPC and they can also be

adopted as the criteria to evaluate the efficiency of the TS-UPC in ATM networks: (i)

High selectivity (detection accuracy): UPC should detect and tag (drop) the non-conforming

cells of a violating connection as many as possible, while being transparent when the connec-

tion conforms to its traffic contract. (ii) High responsiveness : the time for UPC to detect a

violating connection should be rather short. (iii) Low queueing delay : cells of a non-violating

connection should not experience too much queueing delay at TS. However, the queueing

delay introduced by TS on a violating connection is beyond our consideration.

Several UPC schemes such as the jumping window, triggered jumping window, moving

window, exponentially weighted moving average, and leaky bucket algorithm were studied

and compared [40], [41], [42], [43]. The most popular and well-known policing scheme is the

leaky bucket algorithm because of its simplicity and effectiveness. The conventional TS-UPC

using the leaky bucket algorithm recommended in ITU-T I.371 has a crisp structure with

two fixed parameters of threshold and increment. It uses parametric model to analyze, thus
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resulting in the lack of real multimedia traffic information which are dynamic, imprecise, non-

linear, and even non-stationary. Generally speaking, it is difficult for networks to acquire

complete statistics of input traffic. Therefore, it is not easy to accurately determine the

threshold or the increment in the multimedia traffic flows. The rationale and principles

underlying the nature and choice of the threshold or the increment under dynamic and

bursty conditions are unclear. As a result, the decision process of the network is based on

incomplete information and full of uncertainty.

The fuzzy logic system and neural network are both numerical model-free estimators and

dynamical systems [1]. The fuzzy set theory appears to provide a robust mathematical

framework for dealing with real-world imprecision. Its approach exhibits a soft behavior

which has the capability to adapt to dynamic, imprecise, and bursty environments. The

fuzzy logic system can represent information in a way that resembles natural human com-

munication, and can handle the information in a way similar to human reasoning [3], [17],

[18]. It would be an intelligent implementation that not only refers to the mathematical

formulation of classical control but also mimics expert knowledge in traffic control. Neural

networks are trainable systems that demonstrate the ability to learn, recall, and generalize

from training patterns or data. Through learning, neural networks can predict non-linear

complex functions, thus making themselves effective tools to be employed in ATM networks

for traffic modeling and prediction [1].

In recent years, neural network research has pursued either by a pre-structuring of the

neural network to improve its performance, or by a possible interpretation of the synaptic

matrix following the learning stage; and fuzzy logic research has pursued the development

of methods for automatic tuning of the parameters which characterize the fuzzy control

system. Notice that the fuzzy set theory possesses no clear, general technique to map expert

knowledge of traffic control onto the design parameters of the fuzzy logic controller. Hence,
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one approach that gets benefits of neural networks and fuzzy logics and solves their respective

problems, called neural fuzzy network, is developed. The neural fuzzy network integrates the

fuzzy logics within a neural network. The integration brings the low-level learning and

computational power of the neural network into the fuzzy logic system, and provides the

high-level, human-like thinking and reasoning of fuzzy logic system into the neural network.

The neural fuzzy network generally takes the form of a multi-layer neural network to realize a

fuzzy logic system. It is a structured neural network that can incorporate domain knowledge

from conventional policies; and it not only provides a robust framework to mimic experts’

knowledge embodied in existing traffic control techniques but also constructs intelligent

computational algorithm for traffic control [1].

Some literature had also studied to utilize the intelligent techniques for the UPC [44],

[45], [46], [47]. In [44], a fuzzy logic implementation of the leaky bucket algorithm that

used a channel utilization feedback to manage voice cells in ATM networks was proposed.

Simulation results showed that the fuzzy leaky bucket had performance improvement over the

conventional leaky bucket algorithm. In [45], a neural network traffic enforcement mechanism

using window-based scheme for ATM networks was presented. It is based upon an accurate

estimation of the probability density function (pdf) of the traffic via a counting process, and

the system performance is evaluated in terms of the pdf violation. It has scalability and

convergence problems if the number of previous windows is required to be a large value. In

[46], the paper designed a fuzzy traffic policer based on window control scheme, which has

the characteristic of simplicity and the capability to combine a fast responsiveness with a

high-degree selectivity close to that of an ideal traffic policer. In [47], the proposed policing

strategy integrated with a linear prediction filter is used to forecast the cell rate of the policed

traffic source.

In this chapter we propose two intelligent UPC schemes to perform the sustainable-cell-
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rate usage parameter control of multimedia transmissions in ATM networks. One is the fuzzy

TS-UPC realized by the fuzzy leaky bucket algorithm, in which a fuzzy increment controller

(FIC) is incorporated with the conventional leaky bucket algorithm for dynamic increment

adjustment. Two system parameters, the long-term mean cell rate and the short-term mean

cell rate, of a connection are fed into the FIC to adaptively calculate the appropriate in-

crement. Simulation results show that the fuzzy TS-UPC can have higher selectivity, faster

responsiveness, and smaller queueing delay than the conventional TS-UPC, as anticipated.

The other proposed intelligent UPC scheme is the neural fuzzy TS-UPC base on the neural

fuzzy leaky bucket algorithm, where a neural fuzzy increment controller (NFIC) is added to

the conventional leaky bucket algorithm to dynamically adjust the increment. Neural fuzzy

network is a structured neural network; it integrates intelligent learning and computation of

neural networks with fuzzy logic systems. Also, the reinforcement learning is here applied for

NFIC since we cannot measure the desired increment. Simulation results show that the neu-

ral fuzzy TS-UPC performs further better than the fuzzy TS-UPC in the above-mentioned

performance measures of selectivity, responsiveness, and queueing delay, especially as the

multimedia traffic flows are more bursty, dynamic, and non-stationary.

The chapter is oriented as follows. In Section 5.2, we provide an introduction of the leaky

bucket algorithm recommended in ITU-T I.371 for conventional TS-UPC and the problems

it encounters. In Section 5.3, we describe the proposed fuzzy leaky bucket algorithm for

the fuzzy TS-UPC. In Section 5.4, we describe the proposed neural fuzzy leaky bucket algo-

rithm for the neural fuzzy TS-UPC. The performance measures of selectivity, responsiveness,

and queueing delay for the conventional TS-UPC, the fuzzy TS-UPC, and the neural fuzzy

TS-UPC are compared in Section 5.5. Finally, some concluding remarks are presented in

Section 5.6.
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5.2 Leaky Bucket Algorithm

ITU-T Recommendation I.371 [31] recommends the Generic Cell Rate Algorithm (GCRA)

as a conformance test for the cell stream of a connection. GCRA has two equivalent versions

– the virtual scheduling algorithm and the leaky bucket algorithm. The latter seems to

be better comprehended since it can be pictured as a virtual leaky bucket whose content

determines the conformance of a cell. As shown in Fig. 5.2, the leaky bucket is viewed as a

finite capacity bucket whose real-valued content drains out at one unit rate but is increased

by T units for each conforming cell. If a cell arrives at the time when the bucket content

X ′ is above the threshold value τ , then the cell is non-conforming; otherwise, the cell is

conforming and the bucket content is added by an increment T .

Figure 5.2: The flow chart of the conventional leaky bucket algorithm

The conventional TS-UPC employs the leaky bucket algorithm in the shaper and the

policer as their schemes to monitor the sustainable cell rate of a connection. The threshold
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value τ is taken to be τIBT + τ ′SCR and the increment T is taken to be the reciprocal of the

negotiated sustainable cell rate ΛSCR of the connection, where τIBT is the intrinsic burst

tolerance (IBT) used to limit the burst size to the negotiated maximum burst size (MBS)

and τ ′SCR is an additional tolerance added to account for the cell delay variation (CDV)

introduced by multiplexing schemes. Details of the two parameters τIBT and τ ′SCR can be

found in the ITU-T Recommendation I.371.

If ΛSCR is set to be the mean cell rate Λmean for the TS-UPC, then the possible rate

fluctuations of the connection around the claimed mean cell rate will cause the leaky bucket

within TS to detect some non-conforming cells. These detected non-conforming cells are

stored in the queue, resulting in a long queueing delay. The undesirable long queueing delay

can be avoided by making the bucket threshold τ in TS and UPC deviate from τIBT + τ ′SCR

to a large value. Unfortunately, a higher τ would cause the slower response time for UPC.

Another solution without changing the bucket threshold is to make ΛSCR be Λmean multiplied

by a magnifying factor C, C > 1. By doing this, we can eliminate the retardation provoked

by a higher τ . However, it has a risk of letting a connection with small rate fluctuations,

e.g. a CBR connection, enjoy bandwidth higher than that negotiated. There are an infinite

number of admissible couples of values for ΛSCR and τ . The detailed analysis for the selection

of ΛSCR and τ and the consequent system performance can be found in [48].

5.3 Fuzzy Leaky Bucket Algorithm

Fig. 5.3 shows an intelligent leaky bucket algorithm which contains the conventional leaky

bucket algorithm (enclosed by the dashed line) incorporated with an intelligent increment

controller (IIC). The first intelligent leaky bucket algorithm we proposed is the fuzzy leaky

bucket algorithm which employs a fuzzy increment controller (FIC) to implement IIC. FIC is

a fuzzy logic controller and is designed to dynamically adjust T , instead of using a fixed T =
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1/ΛSCR, so that the selectivity, responsiveness, and queueing delay can be optimally achieved.

The reason we use the fuzzy logic system to implement the increment controller is that the

fuzzy logic can represent information in a way resembling natural human communication

and handle the information in a way similar to human reasoning [3]. The domain knowledge

for the adjustment of T is as follows. When the cell stream of a connection appears to

be violating the negotiated sustainable cell rate, T should be adjusted to be big so that

the leaky bucket can quickly detect the non-conforming cells; while in contrast, when the

cell stream of a connection appears to be conforming or conservative to the sustainable cell

rate, T should be adjusted to be reasonably small so that no cell of the connection will be

detected as non-conforming cells by the fuzzy leaky bucket (i.e., the leaky bucket would be

transparent to the connection).

Figure 5.3: The intelligent leaky bucket algorithm
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Figure 5.4: (a) The membership functions for the input variables ΛL and ΛS (b) The mem-
bership functions for the output variable T

We choose two input variables for FIC – the long-term mean cell rate ΛL and the short-

term mean cell rate ΛS of the connection being policed. The long-term mean cell rate is

defined as the average cell rate of a connection since the beginning of the connection, and

the short-term mean cell rate is defined as a moving average cell rate in a time window.

ΛL and ΛS are used to provide an indication of the conformance degree of the connection.

At the arrival of a cell, the statistics of ΛL and ΛS are fed into FIC to obtain an optimal

increment T .

We design ΛL and ΛS to have the same term set – {Low,Moderate,High}. And let

T have five terms – {V erySmall (T1), Small (T2),Medium (T3), Big (T4), V eryBig (T5)}.

Fig. 5.4(a) and Fig. 5.4(b) show the membership function of the input and output variables,

respectively. The membership functions for {Low,Moderate,High} are denoted by {ALo,

AMo, AHi}; the membership function for {T1, T2, T3, T4, T5} are denoted by {AT1 , AT2 , AT3 ,

AT4 , AT5}. These membership functions in the figures are represented by either triangular

or trapezoidal functions, which have the advantage of simple computational complexity.

The rule base is designed according to the domain knowledge on how the fuzzy increment

controller should behave. For example, the knowledge and experience tell us: when both ΛL
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Table 5.1: The rule base for FIC

Rule ΛL ΛS T

1 Low Low Very Small (T1)
2 Low Moderate Very Small (T1)
3 Low High Small (T2)
4 Moderate Low Small (T2)
5 Moderate Moderate Medium (T3)
6 Moderate High Big (T4)
7 High Low Big (T4)
8 High Moderate Very Big (T5)
9 High High Very Big (T5)

and ΛS are lower than ΛSCR, FIC should generate a very small T so that the connection can

enjoy a higher cell rate later because the connection is likely to be too conservative; when

both ΛL and ΛS are higher than ΛSCR, the connection is likely to violate the negotiated

sustainable cell rate and FIC should generate a very big T so that the violation will be

detected quickly. The inference rule base is shown in Table 5.1. Below is an example of how

the rules should be read.

Rule 1: If (ΛL is Low) and (ΛS is Low), then (T is Very Small).

The proposed FIC is then implemented by the Mamdani fuzzy model introduced in

section 2.2. The linguistic values of T1, T2, T3, T4, and T5 of the output linguistic variable T

are defined over a discrete universe of discourse having 65,536 points. The inference method

adopts min-max scheme. Take rule 1 and rule 2 which have the same term V erySmall (T1)

for example. In the first step, the min-max inference method applies the min operator on

membership values of associated term of all the input linguistic variables for each rule. We

denote the firing strength of rule 1 and rule 2 by w1 and w2:

w1 = min(ALo(ΛL), ALo(ΛS)) (5.1)

w2 = min(ALo(ΛL), AMo(ΛS)). (5.2)
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Then applying the max operator between w1 and w2 yields the overall membership value of

T1, denoted by:

wT1 = max(w1, w2). (5.3)

The defuzzification method uses the centroid of area mechanism to obtain T :

T =

∑n
i=1AT (zi) ∗ zi∑n

i=1AT (zi)
, (5.4)

where n is the number of points of the output, n = 65536, zi is the amount of control

output at point i, and AT (zi) represents its membership value in the output term set

{T1, T2, T3, T4, T5} [3], which is given by

AT (zi) = max
j∈[1,5]

[min(wTj
, ATj

(zi))]. (5.5)

After FIC is built, the membership functions can be manually fine-tuned by observing

the progress of simulation. The tuning can be done with different objectives, such as the

response time and queueing delay. Any gain in response time must be traded off by a

possible increase in the queueing delay experienced by a cell. However, since the tuning of

the membership functions is intuitive, it is easy to achieve an appropriate balance between

an acceptable queueing delay and a satisfactory responsiveness. The final control surface of

FIC is shown in Fig. 5.5.

5.4 Neural Fuzzy Leaky Bucket Algorithm

The second intelligent leaky bucket algorithm we proposed is the neural fuzzy leaky bucket

algorithm which employs a neural fuzzy increment controller (NFIC) to realize IIC. The NFIC

is a neural fuzzy controller and is also expected to dynamically adjust T to achieve better

performances on selectivity, responsiveness and queueing delay. The NFIC also chooses the

long-term mean cell rate ΛL and the short-term mean cell rate ΛS as input variables and

the increment T as the output variable; it adopts the same term sets for ΛL, ΛS, T and the
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Figure 5.5: The control surface of FIC

same rule base as those employed by FIC, before the learning. However, the membership

functions for all terms are chosen to be the bell-shaped function as defined in Eq. (2.19) in

section 2.4.

5.4.1 Structure of NFIC

Here, as shown in Fig. 5.6, the five-layer neural fuzzy controller introduced in section 2.4 is

also adopted to implement the NFIC. The nodes in layer one and layer five are input and out-

put linguistic nodes, respectively. Two input linguistic nodes exist in layer one for input lin-

guistic variables ΛL and ΛS. There are two kinds of output linguistic nodes: one is for feeding

training data (desired output) r into the net and the other is for pumping decision signals (ac-

tual output) T out of the net. The nodes in layer two and layer four are term nodes which are

respectively corresponding to a linguistic term of the input linguistic variables, and perform

the fuzzification function to map the crisp input into a fuzzy membership value according to

its associated membership function. As mentioned earlier, ΛL and ΛS have the same term
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Figure 5.6: The structure of the neural fuzzy increment controller (NFIC)

set – {Low,Moderate,High}, thus we have six nodes in layer two, and five nodes in layer

four for the term set {V erySmall (T1), Small (T2),Medium (T3), Big (T4), V eryBig (T5)}

of T . The nodes in layer three are rule nodes; each node represents one fuzzy rule and all

nodes form a fuzzy rule base. There are nine nodes in layer three with respect to the rule

base shown in Table 5.1. The links in layer three and layer four, accompanied by the nodes

in both layers, can function as an inference engine — layer-three links define preconditions

of the rule nodes and layer-four links define consequences of the rule nodes. Thus, the links

and nodes in layer three would execute the fuzzy AND operation while the links and nodes in

layer four perform the fuzzy OR operation to integrate the fired strength of rules that have

the same consequence. Accordingly, the fuzzy reasoning is done by the nodes and links in

both layer three and four. The links in layer two and layer five are fully connected between
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the linguistic nodes nodes and their respective term nodes. They can, accompanied by the

nodes in both layers, achieve the fuzzification and defuzzification functions, respectively.

5.4.2 Reinforcement Learning

The diagram of the reinforcement learning for NFIC is shown in Fig. 5.7, where the ATM

system offers statistics of ΛL and ΛS input to NFIC, provides a reinforcement signal r as

a desired output to NFIC, and receives the updating increment value T from NFIC. The

reinforcement signal is defined as

r = P ∗
d − Pd, (5.6)

where P ∗
d denotes the desired cell loss ratio and Pd is the actually measured cell loss ratio.

Figure 5.7: The configuration of the reinforcement learning for NFIC

Based on this connectionist structure established in Fig. 5.6, the reinforcement learning is

applied to optimally adjust parameters of input and output membership functions, according

to the input training data, the reinforcement signal, the fuzzy partition, and the fuzzy logic
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rules. It derives updating rules for the mean and the standard deviation of the bell-shaped

membership functions so as to minimize the error function, defined as

E =
1

2
r2 =

1

2
(P ∗

d − Pd)
2. (5.7)

For each training data set, starting at the input nodes, the down−up operation can compute

to obtain the actual output of increment T. On the opposite direction, starting at the output

node, the up − down operation is used to compute ∂E
∂w

for all hidden nodes, where w is the

adjustable parameters such as the mean and the standard deviation for the input and output

bell-shaped membership functions. We adopt the general learning rule to do the adjustment,

which is given by

w(n+ 1) = w(n) + η · (−∂E
∂w

), (5.8)

where η is the learning rate. The updating rules for parameters are layer by layer listed

below.

Layer 5: The updating rule for m
(O)
j in this layer can be obtained by

m
(O)
j (n+ 1) = m

(O)
j (n) + η · r ·

σ
(O)
j u

(5)
ij∑

j σ
(O)
j u

(5)
ij

, 1 ≤ j ≤ 5, (5.9)

and the updating rule for σ
(O)
j is given by

σ
(O)
j (n+ 1) = σ

(O)
j (n) + η · r ·

m
(O)
j u

(5)
ij (

∑
j σ

(O)
j u

(5)
ij )− u

(5)
ij (

∑
j m

(O)
j σ

(O)
j u

(5)
ij )

(
∑

j σ
(O)
j u

(5)
ij )2

. (5.10)

The error signal, δ(5), to be propagated to the proceeding layer, is given by

δ(5) = r. (5.11)

Layer 4: In this layer, only the error signal, δ
(4)
i , needs to be computed and propagated. δ

(4)
i is

derived as

δ
(4)
i = r · m

(O)
i σ

(O)
i (

∑
i σ

(O)
i u

(5)
i )− σ

(O)
i (

∑
im

(O)
i σ

(O)
i u

(5)
i )

(
∑

i σ
(O)
i u

(5)
i )2

. (5.12)
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Layer 3: As in layer 4, only the error signal, δ
(3)
i , needs to be computed as

δ
(3)
i = δ

(4)
i . (5.13)

Layer 2: The adaptive rule of m
(I)
ij is derived as

m
(I)
ij (n+ 1) = m

(I)
ij (n) + η · δ(2)

i · ef
(2)
i ·

2(u
(2)
i −m

(I)
ij )

σ
(I)2
ij

, (5.14)

and the adaptive rule of σ
(I)
ij becomes

σ
(I)
ij (n+ 1) = σ

(I)
ij (n) + η · δ(2)

i · ef
(2)
i ·

2(u
(2)
i −m

(I)2
ij )

σ
(I)3
ij

. (5.15)

where δ
(2)
i = −∑

k qk; and qk = −δ(3)
k if a

(2)
i is minimum in kth rule node’s inputs,

qk = 0 otherwise.

5.5 Simulation Results and Discussions

We verify the effectiveness of the intelligent leaky bucket algorithms for TS-UPC by

comparing to the conventional leaky bucket algorithm. In the simulations, the primitive

connection model as shown in Fig. 5.1 is adopted as the system model while a 2-state Markov

modulated deterministic process (MMDP), a 2-state Markov modulated Bernoulli process

(MMBP), and a VBR MPEG video “Star Wars” are employed as three different source

models for the verification. We set the 2-state MMDP and the 2-state MMBP sources to

have the mean active duration of 350 msec, the mean silence duration of 650 msec, and the

mean cell rate Λmean = 21.875 cells/sec. The holding time of each state of the two source

models follows a geometric distribution. During the active state, the 2-state MMDP source

is a deterministic process which transmits cells at a fixed packetization interval of TPCR = 16

msec, whereas the 2-state MMBP source is a Bernoulli process which, for every fixed time

interval TPCR = 1.6 msec, is likely to transmit a cell with probability of 0.1. The peak cell
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rate of the VBR MPEG video is 4000 cells/sec, and the mean cell rate Λmean = 975 cells/sec.

The window size for calculating the short-term mean rate is set to be ten times the sum of

the mean active duration and mean silent duration, i.e., window size = 10∗ (350+650) msec

= 10 sec.

The primitive connection model with TS-UPC is shown in Fig. 5.1.

In the simulations, C is set to be 1.1, thus for MMDP and MMBP sources, ΛSCR =

C ∗Λmean = 24.0625 cells/sec. The increment T for the conventional leaky bucket algorithm,

which is taken to be the inverse of the sustainable cell rate, equals 0.041558, and the threshold

τSCR of the leaky bucket equals τIBT + τ ′SCR, where τIBT = d(MBS − 1)(TSCR − TPCR)e

and τ ′SCR = TSCR for MMDP and MMBP. In order to compare the performance under the

MMDP and MMBP sources, τSCR for the MMBP source is set to be the same as the MMDP

source. To calculate τIBT for the MMDP source, we need the maximum burst size of the

source. We set the allowed MBS for the MMDP source to be ten times the mean number

of cell arrivals during the active state, i.e., MBS = 10 ∗ (350/16) = 218.75 cells. Then τSCR

can be calculated as 5.607. For the VBR MPEG video source, τSCR is set to be 3.79, and

MBS = 4870. For simplicity of simulation and not to distract our attention, the queue in

TS is assumed to be of infinite capacity.

In the chapter, we define Source σ as the ratio of the actual mean cell rate to the

sustainable cell rate of the traffic source. There are three regions for Source σ: non-violation

region, intermediate region, and violation region. The non-violation region ranges from

Source σ = 0 to Source σ = 1/C, where C is the magnifying factor. The user within

this region is a legal user and is guaranteed a zero cell dropping (or tagging) probability

imposed by UPC and a negligible queueing delay introduced by TS. The intermediate region

is the region between Source σ = 1/C and Source σ = 1. Any user within this region is

also a legal user and can still have zero cell dropping probability, but it does not have a
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Figure 5.8: The correspondence between TS σ, UPC σ, and Source σ

satisfactory queueing delay. Finally, the violation region is from those beyond Source σ = 1.

The user whose Source σ is located in this region is an illegal user, and both the cell dropping

probability and queueing delay are not guaranteed by TS-UPC.

A connection with Source σ may have corresponding TS σ and UPC σ for TS and UPC,

respectively, where TS σ (UPC σ) is defined as the ratio of the allowed mean cell rate to the

sustainable cell rate at TS (UPC). As can be seen from Fig. 5.8, UPC σ is always held 1 for

all Source σ’s such that UPC can pass legal cells but drop (tag) illegal cells. TS σ is fixed

at 1 for Source σ ≤ 1, denoting that legal cells can pass TS transparently; TS σ = Source

σ for Source σ > 1, denoting that the illegal calls can still pass TS in the sense that the

badly-behaved user of the connection enlarges TS σ and intends to illegally enjoy a higher

bit-rate service. If the user had not changed TS σ, then the cell stream passed by TS would

have been conforming even though Source σ > 1, but there would be tremendous queueing

delay incurred.

Fig. 5.9(a), Fig. 5.9(b), and Fig. 5.9(c) show the selectivity for the conventional leaky
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bucket algorithm, the fuzzy leaky bucket algorithm, and the neural fuzzy leaky bucket al-

gorithm, under the 2-state MMDP traffic source, the 2-state MMBP traffic source, and the

MPEG video traffic source, respectively. The ideal curve of cell loss ratio is P ∗
d = 1−1/Source

σ for Source σ > 1 and P ∗
d = 0 for Source σ ≤ 1. As it can be seen, the three algorithms

present a zero cell loss ratio for Source σ ≤ 1. But for Source σ > 1, the neural fuzzy leaky

bucket algorithm has a cell loss ratio closest to the ideal curve, then the fuzzy leaky bucket

algorithm and the conventional leaky bucket algorithm. And in the case of MPEG video

traffic source, the difference phenomenon is more significant. It is because MPEG video

traffic is burstier than MMDP and MMBP traffic sources and the intelligent TS-UPCs can

be more adaptive than the conventional TS-UPC in dynamic, non-stationary systems.

Fig. 5.10(a), Fig. 5.10(b), and Fig. 5.10(c) show the responsiveness behavior of the three

leaky bucket algorithms under the 2-state MMDP traffic source, the 2-state MMBP traffic

source, and the MPEG video traffic source, for Source σ = 1.5. The responsiveness is

illustrated in terms of the cell loss ratio versus time. From the figures, it can be seen that

the intelligent leaky bucket algorithms not only have a shorter response time (i.e., the time

it takes control action to start dropping the cells of a violating connection) which is about

1.5 sec., as compared to 4 sec. of the conventional leaky bucket algorithm, but also has a

higher detection rate (i.e., the rate the cell loss ratio grows) than the conventional leaky

bucket algorithm, under the MMDP, the MMBP, and the MPEG video traffic sources. It

is because the adopted intelligent techniques have the ability to quickly express the control

structure system using a priori knowledge; they are less dependent on the availability of

a precise model of the controlled process and are more capable of handing non-linearities.

Also, the neural fuzzy leaky bucket algorithm performs better than the fuzzy leaky bucket

algorithm. It is because the neural fuzzy network is a neural network structured on the

basis of fuzzy logics; it integrates intelligent learning and computation of neural networks
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into fuzzy logic systems. Note that the fuzzy and neural fuzzy leaky bucket algorithms have

similar detection rate to the fuzzy policer proposed in [46], but the former two have much

earlier response time than the latter.

Fig. 5.11 shows the mean queueing delay versus different Source σ’s under the 2-state

MMDP, the 2-state MMBP, and the MPEG video traffic sources. We only consider the

queueing delay of a connection with Source σ ≤ 1 because the mean queueing delay of a

violating connection needs not to be concerned. The figure reveals that the intelligent leaky

bucket algorithms have the queueing delay more satisfactory than the conventional leaky

bucket algorithm, regardless of the traffic source model used. This improvement owes to

the fact that the intelligent leaky bucket algorithms further consider two system parameters,

namely, the long-term and short-term mean rates. With these two parameters, the intelligent

leaky bucket algorithms can know that the connection is conforming, so they set the incre-

ment to be very small in order to reduce the probability of cells being stored in the queue

and thus decrease the mean queueing delay. Besides, the neural fuzzy leaky bucket algorithm

has almost the same mean queueing delay as the fuzzy leaky bucket algorithm. Apparently,

since the traffic source is legal, nearly nothing can be learned from the reinforcement learning

by the neural fuzzy leaky bucket algorithm to improve its performance.

5.6 Concluding Remarks

In this chapter we employ intelligent techniques, which are the fuzzy logic controller and

neural fuzzy networks, to design two intelligent usage parameter controllers for policing the

sustainable-cell-rate of multimedia transmissions in ATM networks. The first algorithm we

proposed is the fuzzy leaky bucket algorithm, which as the name implies, employs a fuzzy

increment controller (FIC) in conjunction with the conventional leaky bucket algorithm. The

FIC monitors the long-term mean rate and the short-term mean rate of a connection and
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uses the fuzzification, inference rules and defuzzification to process them in order to derive

the optimal increment value. The other intelligent leaky bucket algorithm we proposed is

the neural fuzzy leaky bucket algorithm, which utilizes a neural fuzzy increment controller

(NFIC) to dynamically adjust the increment value. The NFIC is basically an FIC except

that it further employs a neural network to optimize its fuzzy logic system through the

reinforcement learning.

Simulation results show that, regardless of the traffic sources chosen, both intelligent

leaky bucket algorithms achieve better performances in terms of selectivity, responsiveness

and mean queueing delay as compared to the conventional leaky bucket algorithm. The

performance gain of the intelligent algorithms is a result of employing fuzzy logic and neural

fuzzy controllers as well as taking the long-term and short-term mean rates as the feedback

information. Based on the feedback information, both intelligent algorithms can adapt to

the time-varying and non-stationary traffic, and thus enhance their performances.

Simulation results also show that the neural fuzzy leaky bucket algorithm achieves better

performances than the fuzzy leaky bucket algorithm in all aspects especially the respon-

siveness. Despite the fuzzy logic is excellent in dealing with real-world impression and is

capable of adapting itself to dynamic and bursty environments, it lacks the capability of au-

tomatically constructing its rule structure and membership functions to achieve the optimal

performance. On the other hand, the neural fuzzy leaky bucket algorithm has perfected the

impairment of the fuzzy leaky bucket algorithm by utilizing the learning capability of the

neural network to continuously update the membership functions of the fuzzy logic system.

However, the implementation cost of the neural fuzzy leaky bucket algorithm could be higher

than that of the fuzzy leaky bucket algorithm.
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Figure 5.9: The selectivity of the conventional leaky bucket algorithm, the fuzzy leaky bucket
algorithm, and the neural fuzzy leaky bucket algorithm under (a) MMDP traffic source (b)
MMBP traffic source (c) MPEG video traffic source
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Figure 5.10: The responsiveness of the conventional leaky bucket algorithm, the fuzzy leaky
bucket algorithm, and the neural fuzzy leaky bucket algorithm under (a) MMDP traffic
source (b) MMBP traffic source (c) MPEG video traffic source, for Source σ=1.5
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Figure 5.11: The mean queueing delay of the conventional leaky bucket algorithm, the fuzzy
leaky bucket algorithm, and the neural fuzzy leaky bucket algorithm under (a) MMDP traffic
source (b) MMBP traffic source (c) MPEG video traffic source
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Chapter 6

An Enhanced Traffic Conditioner for
Multimedia High-speed DiffServ IP
Networks

As the UPC is the traffic policing function defined in ATM networks,

the policing function for the IP networks is the traffic conditioning function

handled by the traffic conditioner proposed in the differentiated services (Diff-

Serv) model. In this chapter, an enhanced traffic marker (ETM) based on the

Two-Rate-Three-Color-Marker (TRTCM) scheme is proposed for the traffic

conditioner to perform traffic policing by properly determining the conform-

ing level of the incoming packet and making a corresponding color notation

on the packet. For the conventional traffic conditioner, the marking fairness

among all connections within the aggregate traffic is not guaranteed because

the processing is in the sense of an aggregate connection only. In addition,

the end-to-end QoS of the applications would be degraded since the only na-

tive demotion processing would make the traffic rate of the high conforming

level decline along the communication route when the traffics traverse across

several network hops or domains [55]. The proposed ETM scheme introduces

the features of aggressive promotion and fair share marking, and incorporates

them into the existing traffic policing function. Simulation results show that

the ETM scheme can fairly allocates the color notations among connections

within an aggregate one and achieves a higher throughput for the traffic of

each conforming level than the (conventional) TRTCM scheme does.
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6.1 Introduction

There are increasing demands for the supporting of quality-of-service (QoS) over Internet.

However, the IP network is basically originated on the “best-effort” service model and can

hardly provides QoS guarantees for any connection because the bandwidth resources are

allocated in a competition sense among all connections. Accordingly, Internet Engineering

Task Force (IETF) has proposed two QoS-provisioning service models, named the Integrated

Services (IntServ) [49] and the Differentiated Services (DiffServ) [50], respectively, to support

Internet QoS. The IntServ model reserves the network resource before using it. It ensures

the end-to-end QoS for each application (i.e. micro-flow) but has the scalability problem

[51]. The DiffServ model focuses on the QoS of the aggregate connections and support only a

set of finite number of predefined QoS classes in order to reduce the complexity and provide

a promising solution to scalability. The connections that require a similar QoS level would

be assigned to the same class, and thus (virtually) form an aggregate connection with a

unique QoS processing including traffic conditioning. In a DiffServ network, an edge router

is responsible for classifying the traffic into several aggregate connections associated with

different QoS classes, conditioning the classified aggregate connections with respect to their

traffic contract, and also processing the packet according to the QoS requirement defined

for each class. The conditioning and processing functions are handled by a model named a

traffic conditioner.

The traffic conditioner, consisting of a meter, a marker and a shaper (or a dropper), would

continually determine the conforming level of the incoming traffic of an aggregate connection

according to the measured traffic flow and its traffic contract [50], [51]. After that, a notation

would be made on the traffic packets by the marker to indicate the conforming level, and

a corresponding processing action such as dropping, shaping and bypassing is then taken

upon the packets by the traffic shaper or dropper. The packet notation assigned by the
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traffic marker in DiffServ networks is defined as three colors, denoted as green, yellow, and

red, which are corresponding to three different pre-defined conforming levels for the packet

with respect to the traffic contract. The packets assigned a green notation can be called as

green packets for simplicity, and so do the packets marked a yellow or a red notation. The

green packets stand for that these packets belong to the best conforming level and have the

lowest dropping precedence (or the shortest shaping delay); the red packets, on the contrary,

represents that these packets are judged to be with the worst conforming level (e.g. the

violation level) and have the highest dropping precedence (or the longest shaping delay).

Several traffic conditioning schemes such as Single-Rate-Three-Color-Marker (SRTCM)

[52], Two-Rate-Three-Color-Marker (TRTCM) [53] and Time-Sliding-Window-Three-Color-

Marker (TSWTCM) [54] were proposed in RFC to implement the traffic conditioner. The

TRTCM, which is popular because of its simplicity and effectiveness, adopts a couple of

token buckets to police two rate properties of a traffic source simultaneously. The output

traffic rate of green packets as well as the aggregate output rate of green and yellow packets

are both ensured individually to conform to the traffic profile, where the green traffic rate is

usually corresponding to the policed mean (or sustainable) rate of the incoming traffic and

the aggregated green and yellow traffic rate represents the policed peak rate of the incoming

traffic.

In addition to the color-blind operation mode, where the color marking decisions are

based on only the metering results against the traffic contract, the alternative color-aware

operation mode of the TRTCM performs the color marking according to not only the me-

tering results against the traffic contract, but also the existing color notation of the packets,

simultaneously. The purpose and operation principle of the color-aware mode is to maintain

the existing color notation of the policed packets as best as it can while still conforming to

the traffic contract. This is because, as noted above, the color notation of the packets can
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represent the conforming level and correspond to the pre-defined QoS-provisioning packet

processing behaviors. A packet may originally have its first color notation assigned by the

output shaping function at the source node according to not only the metered results but

also the importance of the packet’s content. By properly allocating color notations represent-

ing higher conforming level and better QoS-provisioning packet processing behaviors to the

packets with application critical contents, the QoS of each application is then expected to be

quite improved while the traffic contract remains assured, since the packets with important

application data are supported and served with better QoS. For example, the I-frame in

the MPEG video is more vital than the other two coding frames, the B-frame and P-frame,

because it serves as the base frame to reconstruct a series of video frames. The packets con-

taining I-frame data can be assigned with the color notation representing higher conforming

level and better QoS-provisioning packet processing behaviors so that the quality of the re-

played video at the destination can be improved. Accordingly, the TRTCM operating in the

color-aware mode can support better QoS for the applications than the TRTCM running in

the color-blind mode.

As the TRTCM is a scheme to implement the traffic policing function in DiffServ IP

networks, the packet demotion capability that re-marks a packet with a color notation corre-

sponding to a lower conforming level than its existing one is inevitable and natural. However,

a packet that is demoted due to occasionally short-term congestions or a locally stricter traf-

fic profile may not have the chance to restore its existing or even the original conforming

level. It has also been observed that the output rate of green packets might be impaired by

the excessive incoming yellow packets: many packets with existing green notation are thus

demoted to be with red color directly because the token resources are excessively consumed

by the incoming yellow packets with the rate exceeding the traffic profile. These facts would

result in the end-to-end QoS degradations for the applications since more packets carrying
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critical application data and originally denoted with a high conforming level maybe treated

by worse packet processing behaviors due to the demotions. Also, the marking fairness

among all connections within a (virtual) aggregate traffic is uncertain.

Similar performance objectives such as the selectivity, responsiveness and queueing delay

introduced in the UPC of ATM networks can also be employed to verify the efficiency of

the traffic conditioner. In addition, because the processing of the traffic conditioner is based

on the aggregate connection, the marking fairness for resource share among all connections

within the (virtual) aggregate one could be taken into consideration as another performance

objective. On the other hand, the IP network would be a world-wide network constituted by

several interworking network systems which are hosted by different network service providers

(NSPs). The network management policies of different NSPs may be varied and thus the

definitions of a specific DiffServ QoS class can be distinct. Therefore, the traffic profile

and the associated QoS-provisioning processing of an aggregate connection corresponding to

the same QoS class may change from network domains to domains. As noted above in the

TRTCM scheme, the packets might be demoted due to a locally stricter traffic profile and thus

the end-to-end QoS of the applications would be degraded since the only demotion processing

would make the traffic rate corresponding to the high conforming level decline along the

communication route when the traffic traverse across several network hops or domains [55].

Consequently, a traffic promotion function is also considered as an objective for the traffic

conditioner to not only restore the conforming levels of the previously demoted packets,

but also aggressively promote the packets to higher conforming levels, if possible, for better

application QoSs, while the traffic contract is still be respected. The aggressive promotion

processing can then be equivalently regarded as fully utilizing the network resources to drive

the traffic of each conforming level to achieve as high rate as possible by packet promotions

while conforming to the traffic contract.
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A random early demotion and promotion (REDP) technique [55] was proposed to over-

come the unfair-marking problem. It implements a packet promotion function in addition

to the demotion nature of the RED-In/Out (RIO) [56] marking mechanism, and achieves

marking fairness by appropriately allocating the demotion/promotion probabilities among

packets during the packet demotion and promotion procedures. In order to fully utilize the

network resources for better application QoSs and provide marking fairness among all con-

nections within the (virtual) aggregate one for TRTCM, a TC PFG marking scheme [57]

was proposed. However, in TC PFG, only the packets belonging to the yellow conforming

level is allowed to be promoted and this limits its application. Moreover, TC PFG has the

problem of unjust-promotion that the previously demoted packets can not be guaranteed to

be promoted first when the network resource condition is available to perform the packet

promotion function.

In this chapter, we proposed an enhanced traffic marker (ETM) based on the Two-

Rate-Three-Color-Marker (TRTCM) scheme for the traffic conditioner to perform traffic

policing by properly determining the conforming level of the incoming packet and making

a corresponding color notation on the packet. The proposed ETM scheme introduces the

features of aggressive promotion and fair share marking, and incorporates them into the

existing traffic policing function. Simulation results show that the ETM scheme can fairly

allocates the color notations among connections (micro-flows) within an aggregate one and

achieves a higher throughput for the traffic of each conforming level than the (conventional)

TRTCM scheme does.

The chapter is organized as follows. In Section 6.2, the design of the proposed ETM

scheme is introduced and well described. In Section 6.3, the performance measures about

marking accuracy and fairness of the ETM and conventional TRTCM schemes are evaluated

and compared. Finally, some concluding remarks are presented in Section 6.4.
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6.2 Enhanced Traffic Marker

The ETM is based on TRTCM scheme. It adopts the concept of RED [55] and pro-

vides functions of promotion, fairness-guarantee, and green-packet protection. The promo-

tion function remarks the low-conforming packets into high-conforming ones when there are

excessive resources of the network, and this would improve the throughput of the aggregate

flow. Based on the natural demotion capability and the proposed promotion function, the

fairness-guarantee function further improves the fair share among the connections of an ag-

gregate one by appropriately determining reasonable demotion/promotion probabilities for

the green and yellow packets of each individual connection. The green-packet protection

function allows the token number in the bucket to be in deficit for incoming green packets

to protect them from being affected by excessive incoming yellow packets.

TRTCM is composed of two token buckets denoted as TP and TC . The Peak Information

Rate (PIR), the Peak Burst Size (PBS), the Committed Information Rate (CIR), and the

Committed Burst Size (CBS) are four parameters to be configured. The size and the token

generation rate of TP (TC) are set to be PBS and PIR (CBS and CIR), respectively. Initially,

both the token buckets TP and TC are set to be full. An incoming packet is marked as green

if both TP and TC are not empty. A packet is marked as yellow if TP is not empty and TC

is empty. If TP is empty, the incoming packet is marked as red. After marking, the number

of tokens consumed from TP and TC is depend on the size of the packet.

The functional block diagram of the proposed ETM is illustrated in Fig. 6.1. We adopt

the same architecture and parameters used in TRTCM, but modify its marking algorithm.

The ETM also consists of two token buckets, denoted as TP and TC , respectively, and a

marking algorithm processor, the fair traffic marker with aggressive promotion (FTM AP).

The size and token generation rate of TP (TC) are also set to be PBS and PIR (CBS and

CIR), respectively. The FTM AP works with a record unit and a promotion/demotion
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Figure 6.1: ETM scheme

probability generator. The record unit stores the flow-id, the existing color, and the arrival

time for incoming packets every ∆t. The number of green, yellow, and red packets of an

individual connection j, denoted by g(j), y(j), and r(j), respectively, are then recorded. The

promotion/demotion probability generator uses the statistics to estimate the distribution of

incoming packets and determines the promotion/demotion probability for each individual

connection based on the available tokens.

FTM AP supports the promotion of yellow and red packets to enhance the throughput

as well as achieve better marking fairness. FTM AP further the original color to reduce the

unjust promotion. For each incoming packet, currently unused (CU) bits in the DS field [50]

are used to store the information of its original color and current color. The original color

is assigned at the source end and the current color could be remarked at any intermediate

node. For simplicity, the G, Y, and R are used to denote the green, yellow, and red original

colors, respectively. YG, for example, can be regarded as a compound color which represents
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that the current color is yellow and the original color is green.

Twelve thresholds are defined and are further categorized into four groups, denoted by

THC , TLC , THP , and TLP , respectively. THC and TLC are used in TC and they divide TC

into the promotion, balance, and demotion regions. Similarly, THP and TLP divide TP into

three regions. Each threshold group defines three sub-thresholds for packets with different

original color. For example, the thresholds THC G, THC Y , and THC R defined in the group

THC are specified for the original color of green, yellow and red packet, respectively. In order

to mitigate the influence of unjust promotion, the constraint TX G ≤ TX Y ≤ TX R, where X

∈ {HP, LP, HC, LC}, should be met. The constraint is to assure that a packet with a higher

original conforming level color at the source would be demoted with a lower probability.

Assume TC(t) and TP (t) denote the number of tokens in TC and TP observed at time

t, respectively. In our design, FTM AP demotes an incoming packet from green to yellow

when TC(t) < TLC . The demotion probability PG
d is given by

PG
d = MaxG

d ×
TLC X − TC(t)

TLC X

, (6.1)

where MaxG
d is the maximum demotion ratio defined by the system and X ∈ {G, Y,R} is

corresponding to the original color of the incoming packet. It can be found that a large TLC

will result in a higher demotion probability. The demotion probability is increased as the

decrease of available tokens. We further use PG
d and the packet number statistics g(i) to

estimate the actual demotion probability applied on the incoming green packet. At first,

we can obtain the amount of green packets that can pass through ETM without demotion,

denoted by gpass, by

gpass =
n∑

i=1

g(i)× (1− PG
d ), (6.2)

where g(i) is the amount of green packets of the individual connection i; n is the total

number of the individual connection within an aggregate connection. According to the max-

min fairness [58], we have to guarantee the sending rate of the “micro-flow that need less
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(MFNL)” traffic first. The remaining resource is then equally shared by the “micro-flow that

need more (MFNM)” traffic. It means that we shall not demote any green packet for each

individual MFNL connection and then share the remaining resource of gpass to the MFNM

connections. Assume that there are nMFNM MFNM connections and the remaining resource

of gpass is gMFNM . Then we can recursively obtain the demotion probability of the green

packet for individual connection j until the following condition is fulfilled:

PG
d (j) =

{
0 if j belongs to MFNL traffic,

1− (gMFNM/nMFNM )
g(j)

if j belongs to MFNM traffic.
(6.3)

That is, for an individual connection containing more green packets (i.e. larger g(j)), its

green packets will have a higher probability to be demoted in ETM.

Similarly, a yellow packet is demoted to be red when TP (t) < TLP . The demotion

probability P Y
d is given by

P Y
d = MaxY

d ×
TLP X − Tp(t)

TLP X

, (6.4)

where MaxY
d is the maximum demotion ratio defined by the system and X ∈ {G, Y,R} is

corresponding to the original color of the incoming packet. The amount of yellow packets

that can pass through ETM without demotion, denoted by ypass, is then given by

ypass =
n∑

i=1

y(i)×(1− P Y
d ). (6.5)

And we can recursively obtain the demotion probability of the yellow packet for individual

connection j as

P Y
d (j) =

{
0 if j belongs to MFNL traffic,

1− (yMFNM/nMFNM )
y(j)

if j belongs to MFNM traffic.
(6.6)

We will promote the yellow and red packets when there is available resource (i.e. sufficient

token number in TP and TC). Based on the concept of max-min fairness, the individual

connection i that consumes the smallest resource among the connections within the aggregate
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one will be promoted first. In ETM, a packet is promoted by FTM AP from yellow to green

when TC(t) > THC . The promotion probability P Y
p is given by

P Y
p = MaxY

p ×
TC(t)− THC X

CBS − THC X

, (6.7)

where MaxY
p is the maximum promotion ratio defined by the system and X ∈ {G, Y,R}

is corresponding to the original color of the incoming packet. It can be found that the

promotion probability is raised along with the increase of the available tokens. The excess

resource to be spent for supporting the promotion of yellow packets, denoted as yprom, can

be obtained by

yprom =
n∑

i=1

y(i)× P Y
p . (6.8)

The excess resource is then equally shared by the connections whose green traffic after

accumulating the distributed resource does not violate their traffic profiles. We can recur-

sively obtain the promotion probability of the yellow packet for the individual connection j,

denoted as P Y
p (j), until the following condition is fulfilled:

P Y
p (j) =


0 if j violates its traffic profile,((

yprom+
k∑

i=1

g(i)

)/
k

)
−g(j)

y(j)
otherwise,

(6.9)

where k is the total number of connections whose green traffic after accumulating the dis-

tributed resource still respect to their traffic profiles.

Similarly, a red packet can be promoted to be yellow when TP (t) > THP . The promotion

probability PR
p is given by

PR
p = MaxR

p ×
TP (t)− THP X

CBS − THP X

, (6.10)

where MaxR
p is the maximum promotion ratio defined by the system and X ∈ {G, Y,R} is

corresponding to the original color of the incoming packet. The excess bandwidth results

from the promotion of red packets, denoted as
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The excess resource to be spent for supporting the promotion of red packets, denoted as

rprom, is obtained by

rprom =
n∑

i=1

r(i)× PR
p . (6.11)

The promotion probability of red packets for the individual connection j, denoted as PR
p (j),

is given by

PR
p (j) =


0 if j violates its traffic profile,((

rprom+
k∑

i=1

(g(i)+y(i))

)/
k

)
−(g(j)+y(j))

g(j)+y(j)
otherwise.

(6.12)

In this equation, k is the total number of connections whose traffic profiles are still be

respected after accumulating the distributed resource and g(j)+ y(j) is the resource volume

that has been used by the individual connection j.

6.3 Simulation Results and Discussions

In this section, two simulation scenarios were presented to verify the marking accuracy and

fairness of the ETM. The results were then compared with the (conventional) TRTCM. The

network configuration for simulation is demonstrated in Fig. 6.2. N micro-flows belonging to

the same service class originate from the sources and traverse across three DiffServ domains

to reach their destinations (i.e. the “sink” node). The link capacity and delay parameter for

each link are directly noted in the figure, and the round trip time (RTT) of a connection is

assumed to be 36ms.

6.3.1 Accuracy of the Marking

The first simulation scenario we take is to verify the marking accuracy of traffic markers. In

this scenario, only single traffic source is necessary (i.e. N = 1 in Fig. 6.2.) but diverse traffic

parameter conditions of the source would be considered to explore the marker’s performance

on accuracy. In this chapter, a Pareto traffic source with ten different traffic rate combination
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Table 6.1: System parameters of scenario 1

Scheme Parameters Value

TRTCM
CBS 60 packets
PBS 60 packets
TL P 17 packets
∆t 0.432 ms
CBS 60 packets
PBS 60 packets

ETM (MaxG
d ,MaxY

d ,MaxY
P ,MaxR

P ) (1, 1, 1, 1)
(TLC G, TLC Y , TLC R) (10, 17, 24) packets
(TLP G, TLP Y , TLP R) (10, 17, 24) packets
(THC G, THC Y , THC R) (36, 43, 50) packets
(THP G, THP Y , THP R) (36, 43, 50) packets

conditions is employed. The QoS profile specified at the ER1 is CIR equals to 5Mbps and PIR

equals to 10Mbps and no profiles are specified at ER2 and ER3. That is, the maximum ideal

green and yellow rates observed at the output of ER1 are 5Mbps and 5Mbps, respectively,

and the ER2 and ER3 are transparent for the traffic. The other system parameters and

the simulation results are listed in Table 6.1 and Table 6.2, respectively, and the results are

observed and measured at the output of ER1.

Figure 6.2: Simulation topology

In Table 6.2, it can be found that the ETM and TRTCM have similar results in traffic
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conditions 1, 3, and 4. Traffic condition 2 demonstrates the case that a greedy source

generates an excess amount of yellow packets than its QoS profile. In this case, the TRTCM

does not take action for the excess yellow packets. Therefore, the yellow packets consume

most of the tokens in TP and result in the starvation of green packets. With ETM, it can

be found that both the green and yellow packets are conformed to the QoS profile. Traffic

conditions 5, 8, 9, and 10 simulate the congestion at source nodes such that the input green

rate is smaller than the QoS profile. It’s found that the ETM marks more green packets

via aggressive promotion to meet the profile. In summary, the proposed ETM meets the

traffic profile and achieves a highest throughput for the traffic of each conforming level than

TRTCM does.

6.3.2 Fairness of the Marking

The second simulation scenario is to verify the fair share making capability of traffic

markers. Therefore, several connections with different traffic characteristics and parameters

are employed. The QoS profile in DiffServ domain 1 (DS1) is then configured as the bot-

tleneck for the incoming green traffic. Thus, some of the green packets would be demoted

or discarded. Besides, the Multiple-RED (MRED) [56] scheme is adopted in the core router

(CR1 and CR2) to handle the congestion for both TRTCM and ETM. In MRED, packets

marked as the lowest conforming level will be dropped first if congestion happens.

In the simulation, 45,000 packets (about 20 seconds) were simulated and the size of all

packets is 512 bytes. Four UDP and two TCP connections are assumed. The UDP sources

are implemented as Constant Bit Rate (CBR) traffic. The TCP sources are adaptive traffic

with varied sending rates. The round trip time (RTT) of a TCP connection is assumed to be

36ms. The traffic parameters, the output (green, yellow, red) traffic rate in Mbps, for each

source are as follows: UDP1=(1.9, 0.3, 0.3), UDP2=(1.0, 0.9, 0.9), UDP3=(0.7, 0.35, 0.35),

UDP4=(0.3, 0.35, 0.35), TCP1=(1.0, 0.5, 0.5) and TCP2=(1.0, 0.5, 0.5). The QoS profile in
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each edge router is the same and is set as CIR = 2.0 Mbps and PIR = 2.5 Mbps. The other

system parameters including the parameters for both of the TRTCM and ETM schemes used

in the simulation are the same with those defined in Table 6.1 for the simulation scenario 1.

In order to evaluate the marking fairness among all of the connections within the same

aggregate one, we adopt the fairness index defined by [59]

xi =
achieved ratei

ideal ratei

, (6.13)

fairness index =

(∑
i
xi

)2

n×∑
i
x2

i

, (6.14)

where achieved rate i and ideal rate i are the practical average throughput and the ideal

throughput for the individual connection i, respectively; n is the number of active con-

nections. The fairness index falls into the range between 0 and 1. For the perfect fairness,

the fairness index should be equal to 1.

The average throughput of each conforming level for every traffic source obtained during

the simulation is shown in Fig. 6.3. In Fig. 6.3, the fairness index of TRTCM and ETM

are 55.51% and 97.13%, respectively. It’s because that TRTCM does not protect the TCP

traffic and, thus, a large number of packets are demoted in ER1 and dropped in the core

routers. This leads to the re-transmission mechanism of TCP and results in a low throughput

for TCP users; therefore, the fairness index is decreased. Here, we can also observe the

unfair marking due to phase effect [60] in traditional marking algorithm among the adaptive

and non-adaptive traffic sources: the CBR UDP traffic source, UDP3, suffers the lowest

throughput for both of the green and yellow levels, since the packet demotion may happen

in a periodic sense which is just corresponding to the constant packet rate of UDP3. The

result shows that the ETM could more effectively mitigate the unfair marking caused by the

phase effect than the TRTCM does. In the simulation, we also studied the effect of unjust

promotion for TC PFG and ETM. It is found that the ETM may also mitigate the unjust
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promotion problem.

Figure 6.3: Throughput distribution of different traffic marker schemes in simulation scenario
2: (a) TRTCM scheme, (b) ETM scheme

6.4 Concluding Remarks

In this chapter, we proposed an enhanced traffic marker (ETM) for the TRTCM-based

traffic conditioner to perform the traffic policing function in DiffServ IP networks. The

primary feature of the proposed ETM is that it can fairly allocate the color notations among

connections within an aggregate one. It also enhances the throughput of each conforming

level for the aggregate connection to achieve as high rate as possible by not only restore

the conforming levels of the previously demoted packets, but also aggressively promote the

packets to higher conforming levels if the network resource condition is available, so that the
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end-to-end QoS of the applications would be substantially improved while the traffic contract

is still be respected. The operations of the ETM scheme as well as the computations of the

promotion/demotion probabilities are carefully defined. The performances of the proposed

ETM scheme were verified via simulations and the simulation results were compared with

the conventional TRTCM scheme. Simulation results show the ETM scheme outperform

the TRTCM scheme in both aspects of marking fairness and traffic throughput of each

conforming level under congested and under-loaded networks.
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Table 6.2: Simulation results of scenario 1

Scenario 1
Traffic

Conditions

Input
Rate
(Mbps)

QoS
Profile
(Mbps)

Output rate
of TRTCM
(Mbps)

Output rate
of ETM
(Mbps)

1

Green
Yellow
Red

5.0
5.0
2.0

5.0
5.0
—

4.9145
4.8082
2.2773

4.9461
4.7701
2.2838

2

Green
Yellow
Red

5.0
8.0
2.0

5.0
5.0
—

4.5504
5.1563
5.2934

5.0033
4.8674
5.1293

3

Green
Yellow
Red

8.0
5.0
2.0

5.0
5.0
—

4.9371
4.8152
5.2477

4.9941
4.8559
5.1500

4

Green
Yellow
Red

10.0
12.0
2.0

5.0
5.0
—

4.9605
4.9035
14.1359

5.0010
4.9313
14.0678

5

Green
Yellow
Red

4.0
8.0
2.0

5.0
5.0
—

3.7645
6.0348
4.2008

4.8717
4.9541
4.1742

6

Green
Yellow
Red

3.0
6.0
2.0

5.0
5.0
—

2.9781
5.8557
2.1662

4.7209
4.2170
2.0621

7

Green
Yellow
Red

6.0
3.0
2.0

5.0
5.0
—

4.9578
3.8930
2.1492

4.9787
4.0682
1.9531

8

Green
Yellow
Red

3.0
2.0
6.0

5.0
5.0
—

3.0488
2.0203
5.9309

4.6262
3.2920
3.0818

9

Green
Yellow
Red

3.0
4.0
2.0

5.0
5.0
—

3.0447
4.0328
1.9195

4.6838
3.1402
1.1760

10

Green
Yellow
Red

2.0
2.0
2.0

5.0
5.0
—

1.9969
1.9582
2.0449

4.1533
1.3479
0.4988
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Chapter 7

Conclusions and Future Works

In this dissertation, the traffic control functions involving the connection admission con-

trol and the traffic policing for multimedia high-speed networks are studied by employing

the neural/fuzzy intelligent techniques or a sophisticated computation algorithm, including a

neural fuzzy connection admission controller, a power-spectrum-based neural-net connection

admission controller, a fuzzy increment controller, a neural fuzzy increment controller and

a enhanced traffic marker. Both ATM and IP networks which can be utilized to construct

the multimedia high-speed networks are considered in this dissertation. The CAC schemes

which make the admission control decisions according to the time-domain and frequency-

domain traffic parameters are both discussed where the intelligent techniques are chosen

to implement the CAC controllers. Also, the enhanced algorithms which implement the

traffic policing function by incorporating the intelligent techniques and a elaborate compu-

tation procedure into existing algorithms for ATM and IP networks respectively are both

well explored.

In Chapter 3, a neural fuzzy connection admission control (NFCAC) scheme which based

on the time-domain traffic parameters and provides QoS guarantees for ATM networks is

proposed. The NFCAC scheme combines the linguistic control capability of a fuzzy logic

controller and the learning ability of a neural network. This type of integrated neural fuzzy

system can automatically construct a rule structure by learning from training examples
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and can self-calibrate parameters of membership functions. It not only provides a robust

framework to mimic experts’ knowledge embodied in existing traffic control techniques but

also constructs intelligent computational algorithms for traffic control. It can be easily

trained and enhances system utilization. Simulation results show that the proposed NFCAC

scheme provides system utilization about 32% and 11% higher than the EBCAC and FLCAC

schemes proposed in [10] and [18], respectively, and the NFCAC scheme requires only a

fraction of the 103 order and the 101 order of training cycles, consumed by the NNCAC

scheme proposed in [23] and RBFCAC scheme, respectively. An NFCAC scheme such as the

one introduced here may be the answer to the problem of designing a coherent call admission

controller for ATM systems.

In Chapter 4, we propose a power-spectrum-based neural-net connection admission con-

trol (PNCAC) scheme for ATM networks. The PNCAC method adopts the converted power-

spectrum parameters of traffic source to represent its traffic characteristics and uses neural

network to implement the connection admission control. The frequency-domain power-

spectrum parameters of traffic source possess additive property and can capture the cor-

relation and burstiness behavior more than the time-domain parameters such as peak rate,

mean rate, and peak rate duration. The neural network has the learning/adapting capabili-

ties so that the boundary of the decision hyperplane for the connection admission control can

be adjusted optimally and dynamically. Simulation results show that the proposed PNCAC

enhances significantly the system utilization while fulfilling QoS requirements. Not only is

it superior to the conventional equivalent capacity CAC scheme (ECCAC), it also obtains

more flexibility and robustness than Hiramatsu’s NNCAC.

However, the practical traffic characteristics of multimedia services in broadband net-

works may change very fast and abruptly with large volume. Also, several researches demon-

strate that the multimedia traffic possesses self-similar or chaotic property, and present a
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long-range dependence (LRD). The conventional traffic control algorithms based on current

system performance measures may not perform well because of the fast varying dynamic

traffic; the control decision would be obsolete and inappropriate due to delayed react to

such a fast dynamic traffic. It is necessary to capture the next-step system performance,

that is, the predicted information about the system status due to traffic change should be

provided. Accordingly, a predictive intelligent traffic controller for broadband multimedia

systems could be proposed as the future work for the CAC. It considers predicted system

performance measures, instead of present ones, to well capture the oncoming effects in the

future, besides also adopting the neural fuzzy network for the CAC decision making as well

as the fuzzy logic controller for both of the equivalent capacity estimation of the new call and

congestion estimation of the system. A pipelined recurrent neural network with extended

recursive least square learning algorithm (PRNN/ERLS) [61], [62], which can efficiently re-

duce the prediction error for the statistical fluctuations of the system, could be employed

to implement the predictors to well attain the advance information of the system. It is

expected that the predictive intelligent traffic controller with predicted system measured

statistics would achieves better performances than that of the conventional CAC schemes

without prediction.

In Chapter 5, we employ two intelligent techniques, the fuzzy logic systems and the

neural fuzzy networks, to design two intelligent leaky bucket algorithms, respectively, for

sustainable-cell-rate usage parameter control of multimedia transmission in ATM networks.

The first algorithm we proposed is the fuzzy leaky bucket algorithm, which as the name im-

plies, employs a fuzzy increment controller (FIC) in conjunction with the conventional leaky

bucket algorithm. The FIC monitors the long-term mean rate and the short-term mean

rate of a connection and uses the fuzzification, inference rules and defuzzification to process

them in order to derive the optimal increment value. The other intelligent leaky bucket
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algorithm we proposed is the neural fuzzy leaky bucket algorithm, which utilizes a neural

fuzzy increment controller (NFIC) to dynamically adjust the increment value. The NFIC is

basically an FIC except that it further employs a neural network to optimize its fuzzy logic

system through the reinforcement learning. Simulation results show that, regardless of the

traffic sources chosen, both intelligent leaky bucket algorithms achieve better performances

in terms of selectivity, responsiveness and mean queueing delay as compared to the conven-

tional leaky bucket algorithm by responding about 160% faster when taking control actions

against a non-conforming connection, while reducing as much as 50% of the queueing delay

experienced by a conforming connection. The performance gain of the intelligent algorithms

is a result of employing fuzzy logic and neural fuzzy controllers where the measured system

statistics, the long-term and short-term mean rates, are introduced as the feedback infor-

mation and served as the inputs of the intelligent controllers to form a robust and adaptive

close-loop control system. Accordingly, both intelligent algorithms can adapt to the time-

varying and non-stationary traffic, and thus enhance their performances. In addition, the

simulation results also show that the neural fuzzy leaky bucket algorithm outperforms the

fuzzy one by achieving better performance in all aspects especially the responsiveness.

In Chapter 6, we proposed an enhanced traffic marker (ETM) for the TRTCM-based

traffic conditioner to perform the traffic policing function in DiffServ IP networks. The

primary feature of the proposed ETM is that it can fairly allocate the color notations among

connections within an aggregate one. It also enhances the throughput of each conforming

level for the aggregate connection to achieve as high rate as possible by not only restore

the conforming levels of the previously demoted packets, but also aggressively promote the

packets to higher conforming levels if the network resource condition is available, so that the

end-to-end QoS of the applications would be substantially improved while the traffic contract

is still be respected. The operations of the ETM scheme as well as the computations of the
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promotion/demotion probabilities are carefully defined. The performances of the proposed

ETM scheme were verified via simulations and the simulation results were compared with

the conventional TRTCM scheme. Simulation results show the ETM scheme outperform

the TRTCM scheme in both aspects of marking fairness and traffic throughput of each

conforming level under congested and under-loaded networks.
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