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Abstract

To support bursty-transmission and heterogeneous quality of services (QoS) require-
ments for multimedia services, a suite ofwell-designed sophisticated traffic control scheme is
required to effectively enhance the system utilization. The non-stationarity of work-loads, to-
gether with heterogeneous traffic characteristics and QoS constraints of multimedia services,
indeed constitute the necessity for applying intelligent techniques in multimedia high-speed
networks. In this dissertation, the traffic control functions involving the connection admission
control (CAC) and the traffic policing for multimedia high-speed networks by neural/fuzzy
intelligent techniques are studied. Both ATM and IP networks which can be utilized to
construct the multimedia high-speed networks are considered in this dissertation.

Firstly, a neural fuzzy connection admission control (NFCAC) scheme which based on the
time-domain traffic parameters and provides QoS guarantees for ATM networks is proposed.
The NFCAC scheme is an integrated method that combines the linguistic control capabilities
of a fuzzy logic controller and the learning abilities of a neural network. With properly
choosing input variables which involve the measured statistics of network performances,
and well designing the rule structure for the NFCAC scheme, it can not only provide a

robust framework to mimic experts’ knowledge embodied in existing connection admission
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control techniques but can also construct precise and efficient computational algorithms for
connection admission control. Simulation results show that, compared with conventional
CAC schemes, the proposed NFCAC can achieve superior system utilization, high learning
speed, and simple design procedure, while keeping the QoS contract.

And then, as contrast to the CAC scheme based on the time-domain traffic parameters
discussed above, a power-spectrum-based neural-net connection admission control (PNCAC)
scheme is proposed for also the multimedia high-speed ATM networks. It employs a neural
network controller to handle the CAC function according to the frequency-domain power
spectral density (PSD) parameters of the traffic sources. Since the PSD function of an input
traffic contains the correlation and burstiness properties of the traffic, and it has been proven
capable to characterize the queueing performances of the input traffic, the PSD parameters
describing the PSD function can well correspond te.the queueing performances also. With
a composition algorithm to easily obtain the three PSD parameters of an aggregate traffic,
it is suitable to adopting PSD parameters for CAC agcordingly. Simulation results show
that, after well training the neural network, an optimal CAC decision hyperplane based on
the input variables is constructed to provide‘an ‘efficient and robust admission control under
dynamic network environments, while the QoS requirements are strictly assured.

After that, in addition to the studies about CAC, a traffic policing mechanism is neces-
sary to ensure that all established connections conform to their respective traffic contracts, so
that the CAC can perform correctly. Therefore, two intelligent usage parameter controllers
are first proposed to implement the traffic policing function, usage parameter control (UPC),
for multimedia transmissions in ATM networks. One is the fuzzy usage parameter controller
realized by the fuzzy leaky bucket algorithm, in which a fuzzy increment controller (FIC)
is incorporated with the conventional leaky bucket algorithm; the other is the neural fuzzy

usage parameter controller base on the neural fuzzy leaky bucket algorithm, where a neural
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fuzzy increment controller (NFIC) is added to the conventional leaky bucket algorithm. Both
of FIC and NFIC properly choose the measured long-term and short-term mean cell rates,
as input variables to adaptively determine the optimal increment value with respect to the
traffic dynamics. Simulation results show that both intelligent leaky bucket algorithms have
significantly outperformed the conventional leaky bucket algorithm, by higher selectivity
and shorter responding time when taking control actions against a non-conforming connec-
tion, while reducing the queueing delay experienced by a conforming connection. Also, the
neural fuzzy leaky bucket algorithm outperforms the fuzzy one in all aspects especially the
responsiveness.

Finally, since the UPC is the traffic policing function defined in ATM networks, the traffic
conditioner defined in the differentiated services (DiffServ) model is employed to handle the
traffic policing function, namely the traffic conditioning, for the IP networks. An enhanced
traffic marker (ETM) based on the Two-Rate-Three-Color-Marker (TRTCM) scheme is then
proposed for the traffic conditioner to perform traffic policing by properly determining the
conforming level of the incoming packet ahd making a corresponding color notation on the
packet. The proposed ETM scheme introduces the features of aggressive promotion and fair
share marking, and incorporates them into the existing traffic policing function. Simulation
results show that the ETM scheme can fairly allocates the color notations among connections
within an aggregate one. It also enhances the throughput of each conforming level for the
aggregate connection to achieve as high rate as possible by not only restore the conforming
levels of the previously demoted packets, but also aggressively promote the packets to higher
conforming levels, so that the end-to-end QoS of the applications would be substantially
improved while the traffic contract is still be respected. It can be concluded that the ETM
scheme outperform the conventional TRTCM scheme in both aspects of marking fairness

and traffic throughput of each conforming level under congested and under-loaded networks.
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Chapter 1

Introduction

1.1 Motivation

Over the past decades, the development of communication networks has been astonishing.
So is the evolution of the service provisioning in the field of high-speed network. With the
breakthrough of advanced semi-conductor and computer technologies, numerous transmis-
sion and networking techniques associated with broadband capability have gotten dramatic
developments. Also, the costs for network usage aré-continually getting cheaper and thus
more people enroll in the network due to the low cost and convenience. All kinds of applica-
tions or services have been developed over the high-speed communication networks. Most of
them, especially the emerging ones, are the kind of multimedia services, which have various
quality-of-service (QoS) and bandwidth requirements associated with the high-volume, high-
burstiness and variable-rate traffics. Henceforth, high-bursty and high-volume services over
high-speed networks are no longer scientifically fictional, but real. With the proliferation of
various applications and the emergence of multimedia and real-time services, the high-speed
network supporting multimedia services has to be capable of handling high-volume bursty
traffic and providing guarantees to various QoS and bandwidth requirements. This is abso-

lutely not an easy job because the abundant and diverse multimedia traffics have drastically



complicated the network environments. Henceforth, sophisticated and efficient (real-time)
traffic control mechanisms are necessary to support diverse multimedia services/applications
with different QoS and bandwidth requirements for high-speed networks while achieving high
system utilization. Besides, the traffic control mechanisms are also required to be adaptive
enough to handle the traffic and network dynamics.

Nowadays, both ATM (asynchronous transfer mode) and IP (Internet Protocol) tech-
nologies can be employed to implement multimedia high-speed networks to accommodate
versatile services and the subsequent diverse traffic types and characteristics. In order to
support a set of QoS classes sufficient for all feasible multimedia services, several traffic con-
trol mechanisms are proposed in both ATM and IP networks, such as connection admission
control (CAC), traffic policing and shaping, congestion control, buffer management, (feed-
back) flow control, priority control, traffic identifieation /classification, and traffic scheduling.
[31], [32], [50], [51]. Among these traffic-coritrol mechanisms, the dissertation concentrates
on the studies of connection admission contrel (CAC) and traffic policing functions for ATM
and IP network systems. As shown«n Fig. 1.1, where a generic architecture of a network
access node is illustrated and the conceptual ‘operation locations of several traffic control
mechanisms are also depicted, the CAC and traffic policing functions can be regarded as two
critical mechanisms performing access control upon the network-incoming traffics.

Connection admission control (CAC) is performed in a network access node at the call
setup phase and is defined as “a set of actions taken by the network in order to determine
whether a connection can be accepted or not” [31]. Specifically, the set of actions taken by the
network (in the access node) is to estimate the network resources against the requirements
of the incoming connections. A new connection is accepted and allowed to begin its traffic
transmission only if sufficient network resources are available and its required QoS can be

afforded while the QoSs of existing connections can still be maintained. In addition, the
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are hard to precisely estimate. For CAC t@ pﬁl:form eorrectly, all the established connections

can not violate their respective traffic contracts.

To make sure that the established connections conform to their traffic contracts, a traffic
policing mechanism should be employed. Traffic policing is performed at the user-network
interface (UNI) during the data transfer phase, and is defined as the set of actions taken
by the network to police the offered traffic of a connection so that the associated traffic
contract is respected. That is, some portion of the traffic of a connection would be dropped
or shaped (by introducing queueing effect) to enforce the resultant traffic compliant with the
traffic profile negotiated in the traffic contract during the call setup phase. Sometimes, the
non-conforming portion of a connection would be tagged rather than directly dropped, so

that the residual traffic satisfy the contract and some future processing would be performed



upon the tagged non-conforming traffic to attain some operation objectives. The main
purpose of the traffic policing function is to protect network resources from malicious as
well as unintentional misbehavior which can affect the QoS of other already established
connections. The wide variety of multimedia services with different traffic characteristics
and QoS requirements makes traffic policing a difficult job. The difficulty lies in finding a
simple, universal, and effective scheme which is able to police any type of traffic to meet its
(usually long-term and call-level statistic-oriented) traffic contract by making (short-term
and packet-level) processing decision upon each incoming packet.

Several approaches have been designed and proposed to deal with the traffic control prob-
lems. Most of the conventional approaches, which usually based on the analytic parametric
models, suffer from serious shortcomings: some are simple but have many approximations
and assumptions that are hard to justify, which makes those approaches impractical and
leads to poor network resource utilizations because of 'the over- or under-estimations; others
contain complicated mathematical solutions that may not be feasible to operate in real-time
for high-speed multimedia networks. Besides, these conventional approaches provide optimal
solutions only under a steady state with theassumption of a stationary system, and some
parameters of the approaches are designed to be a pre-defined static value. This makes it
difficult for the conventional approaches to handle the traffic control over non-stationarily
dynamic network systems, because of not being able to react or respond to the highly varying
network conditions.

Alternatively, some researchers turn to incorporate the measured system statistics and
apply intelligent techniques to deal with the traffic control problems. Intelligent techniques,
such as fuzzy logic inference systems, neural networks and neural fuzzy systems have been
widely applied to deal with problems in numerous fields. They have replaced conventional

technologies in many scientific applications and engineering systems including the network



control systems. Both fuzzy systems and neural networks are numerical model-free estima-
tors and dynamical systems [1], which have the capability of modeling complex non-linear
processes to arbitrary degrees of accuracy and efficiently adapting to the system dynamics.
Recent research results have proven that these intelligent computations are capable of pro-
ducing better results than parametric models or other conventional algorithmic approaches
when applied to dynamic, non-linear complex systems. Researches have also shown that the
non-stationarity of work-loads, together with heterogeneous traffic characteristics and QoS
constraints of multimedia services, constitute the necessity for applying intelligent techniques
in multimedia high-speed networks. Henceforth, in this dissertation, it is motivated to ex-
ploit the merits of intelligent techniques applying to traffic control schemes for multimedia

high-speed networks.

1.2 Paper Survey

1.2.1 CAC using Time-domain. Traffic Parameters

Two kinds of CAC schemes are diseussed in this dissertation for ATM networks. They
make the CAC control decision according to the traffic parameters of different aspects which
are the time-domain [8]-[23] and frequency-domain [33]-[39] parameters, respectively. For
the CAC schemes based on time-domain parameters, the conventional ones usually apply a
parametric model of the traffic being offered, either by requiring each connection to provide
an accurate description of its traffic behavior (via traffic parameters such as the peak rate,
mean rate, and the peak rate duration), or by measuring the observed traffic and fitting it to
a model, and then infers the cell loss ratio (CLR) (and other network performance measures)
from this model. For this scheme, when a new connection is requested, the network examines
either the required bandwidth [8], [9], [10], [11], [12] or the QoS requirements [13], [14] to

decide whether to accept the new connection or not. In most of the approaches disclosed in



the literature, complicated mathematical equations were derived and approximations were
required to meet the real-time operation requirement for CAC. Some conventional CAC
schemes based on the time-domain parameters are briefly described below.

Guerin, Ahmadi, and Naghshineh [8] proposed an “equivalent capacity” method for in-
dividual and multiplexed connections, based on their statistical characteristics defined by
traffic parameters and the desired QoS. A unified metric is then obtained to represent the
effective bandwidth used by connections and the corresponding effective load on network
links. Although the paper can provide an exact approach to the computation of the equiva-
lent capacity, the associated complexity makes it infeasible for real-time calculation. Hence,
an approximation is introduced and it results in the degradation in utilization. Chang and
Thomas [9], [10] used the large deviation theory and the Laplace method of integration to
provide a simple intuitive overview of.the recently developed theory of effective bandwidth
for ATM networks. A simple priority schéme and a“cut-off threshold scheme for imple-
menting multiple QoS were discussed. Four parameters'of the average rate, the asymptotic
variance, the peak rate, and the average burst duration were employed as traffic descriptors
for approximating the effective bandwidth “‘functions. They introduced the use of envelope
processes and conjugate processes that could be used for fast simulation and bounds. An-
other effective bandwidth approach is proposed by Elwalid, Mitra, et al. in [11], [12] for
generic Markovian traffic sources rather than typical two-state on-off sources models. It also
based on the large deviation theory and derive the effective bandwidth with an approxi-
mation techniques according to Chernoff’s theorem. Fast and effective techniques for the
computation of the approximation are given. The additive form in the effective bandwidth
has simplifying consequences for connection admission problem with multiple heterogeneous
classes of sources.

Saito [13] proposed a call admission scheme by inferring the upper bound of cell loss



probability from the traffic parameters specified by users (i.e. the maximum number of cells
arriving during a fixed interval, and the average and variance of the number of cells arriving
during a fixed interval). The QoS requirement is guaranteed to be satisfied under this control
without assumptions of a cell arrival process. In [14], Murata et al modeled an ATM switch
as a discrete-time single server queueing system, and an exact analysis is developed to obtain
the waiting time distribution and cell loss probability for a new call and all existing calls.
According to the results, how the network performances depend on the statistics of a new
call (burstiness, sojourn time of a call in active or inactive state, etc.) is investigated, and
the effectiveness of admission control and traffic smoothing is also demonstrated.

As noted in section 1.1, the conventional CAC approaches, based on the analytical para-
metric models, maybe simple but not feasible in practice. Many approximations and as-
sumptions in these approaches simplify the models. and this represents that networks are
forced to make control decisions based on-incomplete ot imprecise information. Besides, the
conventional CAC approaches provide optimal solutions only under a steady state with the
assumptions of a stationary system. And some parameters of them are designed to be static
values associated to the a-priori statistical knowledge. Henceforth, it is difficult to deal with
the traffic control problems over modern and future communication networks, which are
expected to be highly complicated and non-stationarily dynamic.

Some literatures [15]-[23] had proposed schemes to adopt a number of measured statis-
tics of the network system to help provide a better or optimal traffic control decision. The
statistics can be obtained by collecting network performance information such as the net-
work load, the occupancy of the buffers, the data rate and the data loss ratio. All of them
were proven to effectively and greatly improve the network performances. The reason lies on
that the measured statistics of network performance indeed provide a more insight informa-

tion of the system: the measured values represent the real conditions which can substitute



the parameters that base on a-priori knowledge in the model-based conventional schemes;
the continual measurements of the network statistics would further provide the controller
adaptive capabilities responding to network dynamics. Besides, the measurement forms a
close-loop control system capable of adjusting itself to correspond to the network conditions,
which would consequently provide stable and robust operations.

Additionally, more network statistics can be collected than what are needed in the model-
based schemes to provide more comprehensive information about the system. These addi-
tional measurements may provide intuitive information about the traffic control. To full
utilize those measurements, numerous model-free approaches based on the intelligent tech-
niques are proposed. This is because the intelligent techniques could accommodate all in-
formation without any assumption about the systems. With the learning capability or the
human experiences about the system,.the intelligent techniques can extract the knowledge
about the CAC and construct a robust|admission controller. These approaches are briefly
depicted as follows.

Fuzzy logic systems have been widely”“employed:to deal with CAC-related problems in
ATM networks [17], [18]. Bonde and Ghosh{17] used fuzzy mathematics to provide a flexible,
high-performance solution to queue management in ATM networks. In [18], a fuzzy traffic
controller which simultaneously incorporates CAC and congestion control was proposed. It
is a fuzzy implementation of the two-threshold congestion control method and the equivalent
capacity admission control method extensively studied in the literature. Comparative studies
have shown that the proposed fuzzy approaches significantly improve system performance
compared with conventional approaches.

Aamadi, Tarraf, Habib, and Saadawi [19] introduced intelligent traffic control for ATM
networks. They surveyed some of the recent applications of NNs in high-speed networks. NNs

could be used to measure and predict the traffic characteristics, to determine the acceptance



of connections as a CAC controller, to detect violation of negotiated parameters as a UPC
controller, and to control the traffic flow via feedback control signal to prevent network
from congestion. Performance results show that the NN approaches achieve better results,
much simpler and faster than conventional approaches. Hiramatsu [20] proposed a neural-
net based connection admission controller. The proposed ATM network controller used
multilayer feedforward neural networks for learning the relations between the offered traffic
and the service quality. In the proposed method, the declared traffic parameters were used
only to divide calls into several bit-rate classes. The neural network in the controller actually
learns the relationship between the numbers of existing connections in each bit-rate class and
their corresponding (QoSs according to the statistical characteristics of each bit-rate class.
Morris and Samadi [21] described the application of neural networks to the CAC and the
switch control problems. Key network,performance parameters are observed while carrying
various combinations of calls, and their relationship:is learned by a neural network structure.
The neural network model chosen has the ability to interpolate or extrapolate from the past-
experienced results, and it also has:the“ability tosadapt itself to the new and changing
conditions. In [22], Youssef, Habib, and Saadawi proposed a call admission controller for
ATM networks. A neural network is trained to compute the effective bandwidth required
to support MPEG-1 VBR video calls with different QoS requirements. They showed that
the adaptability of the neural network controller to new traffic situations had been achieved
by adopting a hierarchical approach to the design. We have also proposed a neural network
connection admission control (NNCAC) scheme [23] for ATM networks. Simulation results
reveal that call admission control with neural networks can improve significantly system

utilization, under QoS constraint.



1.2.2 CAC using Frequency-domain Traffic Parameters

All the studies about CAC schemes mentioned above were conducted mainly on the basis
of traffic parameters in time domain. On the other hand, Li and Hwang [33] and Sheng
and Li [34] have studied the queueing performance of a high-speed network from the point
of view in the frequency-domain traffic parameters. The process of input traffic inherently
contains a power spectral density (PSD) function, which is the Fourier transform of the input
traffic process’s autocorrelation function. From their studies, two characteristics of PSD are
concluded: (i) The PSD can be well characterized by three main parameters such as the DC
component, the average power, and the half-power bandwidth. (ii) The low-frequency band
of the input PSD has a dominant impact on queueing performance, while the high-frequency
band can be neglected to a large extent. This is because the low frequency component
of PSD contains the correlation andsburstiness .of the input process. The more the low-
frequency components are, the burstier the input traffic will be [35]. Therefore, according
to the above two PSD characteristics from Li’s-studies, it can be conducted that these
three PSD parameters can well charac¢terize the input traffic and correspond to its queueing
performances, and thus this reveals a chance to employ the PSD parameters for CAC.

A composition algorithm is proposed in [36] to obtain the three PSD parameters of an
aggregate traffic source from the given PSD parameters of these individual traffic sources
which build the aggregate one. The computation process of the composition algorithm is
just through some simple arithmetic operations. It can then be concluded that PSD param-
eters possess additive property; this makes the PSD parameters more suitable for admission
control, no matter how many types of traffic sources there are, because the PSD parameters
of the virtually aggregated total traffic enrolling the new call could be easily estimated as
the new call request arrives and maintain the same (three) reference variables, which can

correspond to the queueing performances, for the admission control decision making. The
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design of the CAC algorithm based on PSD parameters can be made accordingly and this
indeed greatly reduce the complexity for admission control.

An intuitive and simple CAC method using PSD parameters, the power-spectrum-based
table-lookup CAC method, was studied for multimedia communications in ATM networks,
where the table content was the cell loss probability indexed by the PSD parameters of
voice/video calls and arrival rates of data calls [36]. The table can be constructed through
several explorative simulations. This method, according to the simulation results, is efficient
enough, however, since the table is constructed based on the original three PSD parame-
ters: DC component, half-power bandwidth, and average power [36], there is a drawback of
large-dimensional CAC table. An “equivalent source” concept is consequently introduced to
transform the PSD parameters of an offered traffic source into the so called “equivalent” PSD
parameters which are corresponding to another (equivalent) traffic source [37]. The word
“equivalent” exactly stands for almost the same queueing performances in some evaluation
aspects. That is, the corresponding traffic source with the “equivalent” PSD parameters
generated by the transformation is expectéd to haveiequivalent queueing performances with
the offered traffic source characterized by original PSD parameters, so that the equivalent
PSD parameters could substitute the original ones. A modified power-spectrum-based table-
lookup CAC method was then proposed in [37] where the CAC lookup table is significantly
reduced by one dimension than that proposed in [36], since the PSD parameters of each
table entry in [36] can be transformed to the equivalent ones with the pre-defined half-power
bandwidth value which is identical among all transformed entries, and thus only the DC
component and the transformed equivalent average power have to be specified to character-
ize and distinguish each (voice/video) traffic source. The offered three PSD parameters of
a new call request would also be transformed to the equivalent ones at first to adapt to the

operations based on the dimension-reduced CAC table. Although the transformation may
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introduce some degradations on performances, simulation results show that the modified
power-spectrum-based table-lookup CAC scheme is still efficient enough and more feasible
for practical implementations.

In order to get rid of the trade-off between efficiency and table size due to the quantization
resolution of the PSD parameters indexing the CAC table, an enhanced power-spectrum-
based CAC method based on the PSD parameters is designed by adopting the intelligent
techniques to replace the lookup table and accommodate the index variables (including PSD
parameters of voice/video calls and arrival rates of data calls) as the inputs for the intelligent
controller. A continuous CAC decision hyperplane according to the input variables is then
built to provide more precise admission control under the constraint of QoS requirements.
Also, the learning capability of some intelligent techniques can bring adaptability to respond
to the network dynamics. Two intelligent power=spectrum-based CAC schemes employing
the neural network and the neural fuzzy controllers has been proposed in [38] and [39],
respectively. Both of them further raise the performanceimprovements on network utilization
of the power-spectrum-based CAC schemes as compared with the conventional equivalent

capacity method [8].
1.2.3 Traffic Policing in ATM Networks

For CAC to perform correctly, a traffic policing mechanism is necessary to ensure that
all established connections conform to their respective traffic contracts. Two traffic policing
functions, the usage parameter control (UPC) [40]-[48] and traffic conditioning [49]-[56], are
exploited in this dissertation for ATM and IP networks, respectively. The UPC is the traffic
policing function defined in ATM networks [31], while the traffic policing in IP networks
is performed through the traffic conditioning functions. For ATM networks, several UPC
schemes such as the jumping window, triggered jumping window, moving window, exponen-

tially weighted moving average, and leaky bucket algorithm were studied and compared [40],
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[41], [42], [43]. The most popular and well-known policing scheme is the leaky bucket algo-
rithm because of its simplicity and effectiveness. Three performance objectives have to be
fulfilled by UPC and they can also be adopted as the criteria to evaluate the efficiency of the
UPC in ATM networks: (i) High selectivity (detection accuracy): UPC should detect and tag
(drop) the non-conforming cells of a violating connection as many as possible, while being
transparent when the connection conforms to its traffic contract. (ii) High responsiveness:
the time for UPC to detect a violating connection should be rather short. (iii) Low queueing
delay: cells of a non-violating connection should not experience too much queueing delay at
the output shaper of customer premise equipment (CPE).

Some literature had also studied to utilize the intelligent techniques for the UPC [44],
[45], [46], [47]. In [44], a fuzzy logic implementation of the leaky bucket algorithm that
used a channel utilization feedback to;manage voice cells in ATM networks was proposed.
Simulation results showed that the fuzzy leaky bueket had performance improvement over the
conventional leaky bucket algorithm. In [45], & neural network traffic enforcement mechanism
using window-based scheme for ATM networks was presented. It is based upon an accurate
estimation of the probability density function‘(pdf) of the traffic via a counting process, and
the system performance is evaluated in terms of the pdf violation. It has scalability and
convergence problems if the number of previous windows is required to be a large value.
In [46], the paper designed a fuzzy policer based on window control scheme, which has
the characteristic of simplicity and the capability to combine a fast responsiveness with a
high-degree selectivity close to that of an ideal traffic policer. In [47], the proposed policing
strategy integrated with a linear prediction filter is used to forecast the cell rate of the policed

traffic source.
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1.2.4 Traffic Policing in DiffServ IP Networks

The traffic policing function in IP networks is handled by a controller named as traffic
conditioner defined in the Differentiated Services (DiffServ) model [50], [51]. The DiffServ
model is a QoS-provisioning service architecture for traffic processing and delivery proposed
by the Internet Engineering Task Force (IETF) [50] for the IP network, since the IP network
is basically originated on the “best-effort” service model and can hardly provides QoS guar-
antees for any connection because the bandwidth resources are allocated in a competition
sense among all connections. As contrary to the Integrated Services (IntServ) model [49]
which is alternatively the other QoS-provisioning service model defined by IETF but has
scalability problem because of the per-connection-based processing [51], DiffServ focuses on
the QoS of the aggregate connections and supports only a set of finite number of predefined
QoS classes in order to reduce the comiplexity and.provide a promising solution to scalability.
The connections that require a similar-QoS level would be assigned to the same class, and
thus (virtually) form an aggregate ¢onnection with a unique QoS processing including traffic
conditioning.

The traffic conditioner, consisting of a meter, a marker and a shaper (or a dropper), would
continually determine the conforming level of the incoming traffic of an aggregate connection
according to the measured traffic flow and its traffic contract [50], [51]. After that, a notation
would be made on the traffic packets by the marker to indicate the conforming level, and
a corresponding processing action such as dropping, shaping and bypassing is then taken
upon the packets. The packet notation assigned by the traffic marker in DiffServ networks is
defined as three colors, denoted as green, yellow, and red, which are corresponding to three
different pre-defined conforming levels for the packet with respect to the traffic contract.
The packets assigned a green notation can be called as green packets for simplicity, and so

do the packets marked a yellow or a red notation. The green packets stand for that these
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packets belong to the best conforming level and have the lowest dropping precedence (or the
shortest shaping delay); the red packets, on the contrary, represents that these packets are
judged to be with the worst conforming level (e.g. the violation level) and have the highest
dropping precedence (or the longest shaping delay).

In DiffServ IP networks, several traffic conditioning schemes such as Single-Rate-Three-
Color-Marker (SRTCM) [52], Two-Rate-Three-Color-Marker (TRTCM) [53] and Time-Sliding-
Window-Three-Color-Marker (TSWTCM) [54] were proposed in RFC to implement the traf-
fic conditioner. The TRTCM, which is popular because of its simplicity and effectiveness,
adopts a couple of token buckets to police two rate properties of a traffic source simultane-
ously. The output traffic rate of green packets as well as the aggregate output rate of green
and yellow packets are both ensured individually to conform to the traffic profile, where the
green traffic rate is usually corresponding to the policed mean (or sustainable) rate of the
incoming traffic and the aggregated-green-and vellow traffic rate represents the policed peak
rate of the incoming traffic.

In addition to the color-blind operation mode, where the color marking decisions are
based on only the metering results against the"traffic contract, the alternative color-aware
operation mode of the TRTCM performs the color marking according to not only the me-
tering results against the traffic contract, but also the existing color notation of the packets,
simultaneously. The purpose and operation principle of the color-aware mode is to maintain
the existing color notation of the policed packets as best as it can while still conforming to
the traffic contract. This is because, as noted above, the color notation of the packets can
represent the conforming level and correspond to the pre-defined QoS-provisioning packet
processing behaviors. A packet may originally have its first color notation assigned by the
output shaping function at the source node according to not only the metered results but

also the importance of the packet’s content. By properly allocating color notations represent-
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ing higher conforming level and better QoS-provisioning packet processing behaviors to the
packets with application critical contents, the QoS of each application is then expected to be
quite improved while the traffic contract remains assured, since the packets with important
application data are supported and served with better QoS. For example, the I-frame in
the MPEG video is more vital than the other two coding frames, the B-frame and P-frame,
because it serves as the base frame to reconstruct a series of video frames. The packets con-
taining I-frame data can be assigned with the color notation representing higher conforming
level and better QoS-provisioning packet processing behaviors so that the quality of the re-
played video at the destination can be improved. Accordingly, the TRTCM operating in the
color-aware mode can support better QoS for the applications than the TRTCM running in
the color-blind mode.

As the TRTCM is a scheme to implement the:traffic policing function in DiffServ IP
networks, the packet demotion capability that ¥e-marks-a packet with a color notation corre-
sponding to a lower conforming level than its-existing one is inevitable and natural. However,
a packet that is demoted due to occasionally short-term congestions or a locally stricter traf-
fic profile may not have the chance to restore its existing or even the original conforming
level. It has also been observed that the output rate of green packets might be impaired by
the excessive incoming yellow packets: many packets with existing green notation are thus
demoted to be with red color directly because the token resources are excessively consumed
by the incoming yellow packets with the rate exceeding the traffic profile. These facts would
result in the end-to-end QoS degradations for the applications since more packets carrying
critical application data and originally denoted with a high conforming level maybe treated
by worse packet processing behaviors due to the demotions. Also, the marking fairness
among all connections within a (virtual) aggregate traffic is uncertain.

Similar performance objectives such as the selectivity, responsiveness and queueing delay
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introduced in the UPC of ATM networks can also be employed to verify the efficiency of
the traffic conditioner. In addition, because the processing of the traffic conditioner is based
on the aggregate connection, the marking fairness for resource share among all connections
within the (virtual) aggregate one could be taken into consideration as another performance
objective. On the other hand, the IP network would be a world-wide network constituted by
several interworking network systems which are hosted by different network service providers
(NSPs). The network management policies of different NSPs may be varied and thus the
definitions of a specific DiffServ QoS class can be distinct. Therefore, the traffic profile
and the associated (QoS-provisioning processing of an aggregate connection corresponding to
the same QoS class may change from network domains to domains. As noted above in the
TRTCM scheme, the packets might be demoted due to a locally stricter traffic profile and thus
the end-to-end QoS of the applications.would be degraded since the only demotion processing
would make the traffic rate corresponding to-the high conforming level decline along the
communication route when the traffic traverse across several network hops or domains [55].
Consequently, a traffic promotion funetion is also censidered as an objective for the traffic
conditioner to not only restore the conforming levels of the previously demoted packets,
but also aggressively promote the packets to higher conforming levels, if possible, for better
application QoSs, while the traffic contract is still be respected. The aggressive promotion
processing can then be equivalently regarded as fully utilizing the network resources to drive
the traffic of each conforming level to achieve as high rate as possible by packet promotions
while conforming to the traffic contract.

A random early demotion and promotion (REDP) technique [55] was proposed to over-
come the unfair-marking problem. It implements a packet promotion function in addition
to the demotion nature of the RED-In/Out (RIO) [56] marking mechanism, and achieves

marking fairness by appropriately allocating the demotion/promotion probabilities among
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packets during the packet demotion and promotion procedures. In order to fully utilize the
network resources for better application QoSs and provide marking fairness among all con-
nections within the (virtual) aggregate one for TRTCM, a TC_PFG marking scheme [57]
was proposed. However, in TC_PFG, only the packets belonging to the yellow conforming
level is allowed to be promoted and this limits its application. Moreover, TC_PFG has the
problem of unjust-promotion that the previously demoted packets can not be guaranteed to
be promoted first when the network resource condition is available to perform the packet

promotion function.

1.3 Dissertation Organization

In this dissertation, the traffic control functions involving the connection admission control
(CAC) and the traffic policing for multimedia high-speed networks by neural /fuzzy intelligent
techniques are studied. Several types of service with: different QoS requirements and various
bandwidth demands have to be supported+by the multimedia high-speed networks. Both
ATM and IP networks which can be utilized to construct the multimedia high-speed networks
are considered in this dissertation. The CAC schemes which make the admission control
decisions according to the time-domain and frequency-domain traffic parameters are both
discussed where the intelligent techniques are chosen to implement the CAC controllers.
Also, the enhanced algorithms which implement the traffic policing function by incorporating
the intelligent techniques and a elaborate computation procedure into existing algorithms
for ATM and IP networks respectively are both well explored.

In Chapter 2, the basic concepts of fuzzy systems, neural networks, and integrated neural
fuzzy systems are briefly reviewed. The architecture of a fuzzy inference system (FIS) and
the most basic and popular fuzzy inference model to implement a fuzzy logic controller are

stated. The neural networks and learning mechanism are presented along with two popular
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architectures for implementing a neural network controller. The benefits of integrated neural
fuzzy systems is described. Also a typical five-layer connectionist architecture to build a
neural fuzzy controller are stated there. Additionally, the applications of these intelligent
techniques to the traffic control functions over multimedia high-speed networks are given.
In Chapter 3, a neural fuzzy connection admission control (NFCAC) scheme which based
on the time-domain traffic parameters and provides QoS guarantees for multimedia high-
speed ATM networks is proposed. The NFCAC scheme adopts a neural fuzzy controller for
admission control, which integrates the linguistic control capabilities of a fuzzy logic con-
troller with the learning abilities of a neural network. We properly choose input variables
which involves the measured statistics of network performances and the available network
resources converted from the time-domain traffic parameters, and then well design the rule
structure for the neural fuzzy controller: Accordingly, the NFCAC scheme can provide a
robust framework to mimic experts’ knowledge embodied in existing connection admission
control techniques and can construet precise-and efficient computational algorithms for con-
nection admission control to achieve high system utilization while supporting QoS-guarantee.
In Chapter 4, a power-spectrum-based neural-net connection admission control (PNCAC)
scheme for multimedia high-speed ATM networks is proposed. It employs a neural network
controller to handle the connection admission control function according to the frequency-
domain power spectral density (PSD) parameters of the traffic sources. With a composition
algorithm to easily obtain the approximated three PSD parameters of the virtually aggre-
gated total traffic enrolling the new call request, the neural network controller accommodate
all the three PSD parameters as the inputs and generate the admission control decision.
After well training the neural network, an optimal CAC decision hyperplane based on the
input variables is constructed to provide an efficient and robust admission control even under

dynamic network environments, while the QoS requirements are still satisfied and strictly as-
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sured. Also, the learning capability of the neural network techniques can bring adaptability
to respond to the network dynamics.

In Chapter 5, two intelligent usage parameter controllers are proposed to implement the
traffic policing function for the sustainable-cell-rate (SCR) of multimedia transmissions in
ATM networks. One is the fuzzy usage parameter controller realized by the fuzzy leaky
bucket algorithm, in which a fuzzy increment controller (FIC) is incorporated with the
conventional leaky bucket algorithm; the other is the neural fuzzy usage parameter controller
base on the neural fuzzy leaky bucket algorithm, where a neural fuzzy increment controller
(NFIC) is added to the conventional leaky bucket algorithm. The FIC and NFIC are exactly
the fuzzy logic controller and the neural fuzzy controller, respectively, and both of them
properly choose two measured statistics of the network performances, the long-term mean
cell rate and the short-term mean cell¥ate, as thesinput variables to adaptively determine
the optimal increment value with réspect-to-the traffic.dynamics. Accordingly, both of the
proposed fuzzy and neural fuzzy usage patameter controllers can achieve better performances
than the conventional leaky-bucket-based tisage parameter controller because of the dynamic
increment value by adaptive decisions.

In Chapter 6, an enhanced traffic marker (ETM) based on the Two-Rate-Three-Color-
Marker (TRTCM) scheme is proposed for the traffic conditioner to perform traffic policing
by properly determining the conforming level of the incoming packet and making a corre-
sponding color notation on the packet. The proposed ETM scheme introduces the features of
aggressive promotion and fair share marking, and incorporates them into the existing traffic
policing function. One of the primary performance objectives is that it can fairly allocate
the color notations among connections within an aggregate one. It is also anticipated to
enhances the throughput of each conforming level for the aggregate connection to achieve

as high rate as possible by not only restore the conforming levels of the previously demoted
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packets, but also aggressively promote the packets to higher conforming levels if the net-
work resource condition is available, so that the end-to-end QoS of the applications would
be substantially improved while the traffic contract is still be respected. The performances
of the proposed ETM scheme were verified via simulations and the simulation results were
compared with the conventional TRTCM scheme.

Finally, some concluding remarks and future research topics are addressed in Chapter 7.
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Chapter 2

An Overview of Intelligent Techniques

In this chapter, the basic concepts of fuzzy logic systems, neural networks,
and integrated neural fuzzy systems are briefly reviewed. Fuzzy logic systems
and neural networks are both numerical model-free estimators and dynamical
systems [1], which have the capability of moedeling complex nonlinear processes
to arbitrary degrees of accuracy and:efficiently-adapting to the system dynam-
1cs.  Also, the integrated meural| fuzzy systems: are integrating fuzzy systems
and neural networks into @ funétional system to overcome their individual
weaknesses by mutual compensation,: that is, neural networks provide fuzzy
systems with learning abilities and fuzzy systems provide neural networks with

structural reasoning.
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2.1 Introduction

In light of the recent developments of multimedia high-speed networks, future telecommu-
nication networks will consists of heterogeneous access networks and comprise of content-rich
services with diverse service characteristics and QoS requirements. Thus, the future mul-
timedia high-speed networks will be highly dynamic communication environments, which
require comprehensive and real-time traffic control mechanism. Traditional modelling and
computation techniques are not well-suited to fulfill the requirements of future multimedia
high-speed networks. On the other hand, intelligent techniques, such as fuzzy logic sys-
tems and neural networks, have attracted the numerous interests in various scientific and
engineering areas. These intelligent techniques have the capabilities of soft-computing and
adaptation, which are more flexible for network designers to cope with the network control
problems. In this chapter, the congept of fuzzy:logic system, neural network and neural
fuzzy techniques will be briefly introduced.

Both fuzzy and neural network ‘are mimicked-the behaviors of human brain: fuzzy logic
operates on the way the brain deals with vague information and neural networks are modelled
according to the physical architecture of the brain [1]. There are a number of parallels that
point out their similarities. Fuzzy systems and neural networks are both numerical model-
free estimators and dynamical systems. Also, they have been shown to have the capability
of modelling complex nonlinear processes to arbitrary degrees of accuracy. Although the
two intelligent techniques are somewhat similar, some significant differences do exist. Fuzzy
systems employ linguistic if-then fuzzy rules as a kind of expert knowledge to formalize in-
sights about the structure of categories founding the real world. Fuzzy systems combine the
mathematical theory of fuzzy sets with fuzzy rules to produce overall complex nonlinear be-
havior. On the other hand, neural networks are dynamical systems and are adaptively fitting

the behavior of the real-world through their various connectionist structures and learning
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techniques. Neural networks have a large number of highly interconnected processing ele-
ments (nodes or neurons) which demonstrate the ability to learn, recall and generalize from
training patterns or data; these simple processing elements also collectively produce complex
nonlinear behavior.

Alternatively, an innovative concept of interests of intelligent techniques is to merge
or combine fuzzy systems and neural networks into a functional system to overcome their
individual weaknesses. This innovative concept of integration reaps the benefits of both
fuzzy systems and neural networks. That is, neural networks provide fuzzy systems with
learning abilities, and fuzzy systems provide neural networks with a structural framework
with high-level fuzzy if-then rule thinking and reasoning. Consequently, the two technologies
can complement each other.

The rest of this chapter is organized as followss.The concept of fuzzy inference system
(FIS) and the most basic and popular architectures of-a fuzzy logic controller are stated in
section 2.2. The neural networks and learning mechanism are presented in section 2.3, along
with two popular architectures for implementing a neural network controller. In section 2.4,
the concept of the integrated neural fuzzy system is described. Also a typical five-layer con-
nectionist architecture to build a neural fuzzy controller are stated there. The applications
of these intelligent techniques (such as fuzzy logic system, neural networks and integrated
neural fuzzy system) in the following chapters of this dissertation are briefly previewed in

section 2.5. Finally, the concluding remarks are given in section 2.6.

2.2 Fuzzy Logic Controller

2.2.1 Fuzzy Inference System (FIS)

Fuzzy logic is based on the concepts of linguistic variables and fuzzy sets theory. A

fuzzy set in a universe of discourse U is characterized by a membership function pu(-) which
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takes values in the interval [0, 1]. A fuzzy set F is represented as a set of ordered pairs,
each made up of a generic element u € U and its degree of membership p(u). A linguistic
variable x in a universe of discourse U is characterized by T'(z) = {T%},...,T¢,...,TX} and
M(z) = {M}(u), ..., Mi(u),...., MEX(u)}, where T'(x) is the fuzzy term set, i.e., the set of
linguistic values’ names T the linguistic variable z can take, and M!(u) is a membership
function with respect to the term T¢. If, for instance, = indicates the temperature, T'(z)
could be the set as {Low, Medium, High}, and each element in T'(x) is associated with a
membership function.

The fuzzy inference system (FIS) is a popular computing framework based on the concept
of fuzzy logicand fuzzy reasoning. As shown in Fig. 2.1, a fuzzy inference system consists of
four fundamental blocks [4]: fuzzifier, fuzzy rule base, inference engine, and defuzzifier. The
fuzzifier performs a mapping function from the observed value of each input linguistic variable
x; to a fuzzy term set T'(z;) with associated-set of membership degree M (x;),i=1,...,m.
The fuzzy rule base is a knowledge base characterized by a set of linguistic statements in
a form of “if-then” rules that describe a fuzzy logic relationship between the m-dim input
linguistic variables {z;} and the n-dim output linguistic variables {y;}. The inference engine
performs an implication function according to the pre-condition of the fuzzy rule with the
input linguistic terms. It is a decision-making logic that acquires the input linguistic terms
of T'(z;) from the fuzzifier and uses an inference method to obtain the output linguistic
terms of T'(y;) [3]. The defuzzifier adopts a defuzzification function to convert 7'(y;) into a
non-fuzzy (crisp) value that represents the decision y;. Several implementation ways have
been introduced to build a fuzzy inference system as a fuzzy logic controller, such as the
Mamdani fuzzy model, Tsukamoto fuzzy model, and Sugeno fuzzy model [2]. Briefly speaking,
these fuzzy models (or said implementation ways) differ on the high-level linguistic expression

form of the fuzzy rule and the consequent reasoning way. Because the Mamdani fuzzy model
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T(X) Inference T(Y)

X —» Fuzzifier ; Defuzzifier [— Y
Engine

T

Fuzzy Rule Base

Figure 2.1: The basic structure of fuzzy inference system

is the most basic and popular one, some descriptions about the Mamdani fuzzy model are

given in the following subsection.

2.2.2 Mamdani Fuzzy Model

The Mamdani fuzzy model is a way to implement a fuzzy inference system to serve as a

T “ H

H

™

zy 2] Z

Figure 2.2: An example of Mamdani fuzzy model

controller. It was proposed as the first attempt to control a system by a set of linguistic

control rules obtained from experienced human knowledge. Fig. 2.2 shows an example of
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Mamdani fuzzy model, where the overall output Z is derived from two linguistic variables
X and Y. Here, the fuzzy rule is expressed by
if X is A; and Y is B;, then output Z is C; with u(C;), =1 and 2

where A;, B; and C; are all fuzzy terms, and u(C;) is the membership value on C;. In the
Mamdani model, each input linguistic variable is firstly fuzzified by the membership function
1(+). Then, the inferred value of the output of each fuzzy rule is determined by a pre-defined
inference method. In this example, the min-max method is applied. That is, the inferred
value of each fuzzy rule is obtained by min operator and the inferred value of the same fuzzy
term is obtained by maz operator. Finally, the overall crisp output is derived by a pre-defined
defuzzification method. There are diverse defuzzification methods such as: centroid of area
(COA), bisector of area (BOA), mean of maximum (MOM), smallest of maximum (SOM),
and largest of maximum (LOM), among which COA is the most popular one.

Additionally, the membership functions for-terms in. the term set should be defined with
the proper shape and position. Ingeneral, a triangular function f(x;xg,ag,a;1) or a trape-
zoidal function g(z;xg, z1,ap, aq1) is ehosen as the membership function because of the ad-
vantage of simple computational complexity.” This feature makes these functions are suitable
for real-time application [3]. As shown in Fig. 2.3, f(x;xo, ag, a1) and g(x; xo, x1, a9, a1) are

given by
%4—1 for zg —ag < x < z9
f(z; 20,00, a1) = 41 forag <z <zt (2.1)
0 otherwise,

%—I—l for xg —ag < x < xg

1 for xg < x < 13
T;To, L1, A0, A1) = - 2.2
g()Ov 1, %0, 1) % fOI'CC1<CC§J]1+CL1 ( )
0 otherwise,

where xy in f(-) is the center of the triangular function; x¢ (z1) in g(-) is the left (right)
edge of the trapezoidal function; and ag (a) is the left (right) width of the triangular or the

trapezoidal function.
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Figure 2.3: Definitions for functions f(-) and g(-)

2.3 Neural Network Controller

2.3.1 Neural Networks and its Learning Capability

Neural networks are inspired by modeling. networks of real (biological) neurons in the
brain. It has a large number of highlytinterconnected processing elements which correspond
to biological neurons and thus also be ealled artificial-neurons, or simply neurons. The nodes
are configured in regular architectures andcan-usually eperate in parallel to make the whole
network as a parallel distributed information proeessing structure. The collective behavior
of an neural network, like a human brain, demonstrates the ability to learn, recall, and
generalize from training pattern or data. The building blocks of neural network consists of
three basic entities: neurons model, connectionist structures (among neurons) and learning
rules [1]. Neurons are the basic information processing elements and can be viewed as
consisting of two parts in the mathematical model: input part and output part. Associated
with the input of a neuron is an integration function f which serves to combine information,
activation, or evidence from an external source or other neurons into a net input to the
neuron. The integration function f is usually a linear function of the input. A second action
of each neuron is to output an activation value as a function of its net input through an

activation function or transfer function a(f). The step function, unipolar sigmoid function
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Figure 2.4: The basic structure of neural network

and bipolar sigmoid function are commonly used examples of the activation function. The
connectionist structures are then applied to link neurons to mimic how the human brain
works while the learning rules are applied: toradaptively modify the behavior of the neural
networks through past experience. Fig. 2.4'shows. thé. basic concept of neural network. In
the figure, X is the input signal, ¥ is the actual output, Z is the reference signal, and M
is the training signal. The connectionist weuwronms block computes the output signal Y for
input signal X and then the training signal.gemerator block will generate a training signal
according to a specified learning rules. The training signal is used to update the weighting
of the nodes in the neural networks.

Generally speaking, the learning rules can be classified into three kinds of categories:
supervised learning, reinforcement learning, and unsupervised learning. For different learning
rules, there are different sets of Z and M. In the following, the main concepts of three learning

rules are briefly described.
e Supervised Learning

In supervised learning, each input signal X has its own desired output D. Here, the

reference signal Z is equal to desired output D. When the actual output Y is different from
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reference signal Z, an error occurs. Then, the training signal will be generated to adjust
the weighting of the nodes in the neural network such that the actual output will approach
the reference signal. Therefore, the supervised learning can be considered as a input/output

mapping machine or a function approximation tool.
¢ Reinforcement Learning

In the reinforcement learning, there is no desired output, only a reinforcement signal R.
The reinforcement signal is an evaluation value of the actual output Y. For example, in
the control problems, the reinforcement signal may be “good” or “bad”. Here, the reference
signal Z is equal to reinforcement signal R. Using the reinforcement signal R, a training
signal is generated to update the weighting such that the actual output will achieve a better
evaluation value in the future. Thereforeil thes reinforcement learning is learning with a
teacher. Using the reinforcement learning,,the meural network acts as a controller to make

the system work better according to a pre-defined evahiation function.
e Unsupervised Learning

Unlike the previous two learning rules, there is no feedback information from the envi-
ronment in the unsupervised learning. Neither the desired output or reinforcement signal
are available. Instead, the training signal is generated from actual output Y and the in-
ternal weighting of the neural network. The training signal here is used to increase the
weighings of the nodes that connect to the actual output. That is, the correlation between
the chosen input nodes and output data will be enhanced. In the unsupervised learning,
the neural network discovers its patterns and the correlation through experiments, which is
called self-organizing. Therefore, the unsupervised learning are usually applied to deal with
the classification or clustering problems.

Like the condition in fuzzy logic controller, there are also diverse implementation ways
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to build a neural network as a controller. Two of them which are popular and applied in

this dissertation are described in the following subsections.

2.3.2 Multilayer Feedforward Neural Networks

Multilayer feedforward neural networks, as shown in Fig. 2.5, is a typical model for
implementing a neural network controller. The neural network controller possesses an ability
to perfectly approximate a generic function from input/output data pairs {X,Y}. Consider
a multilayer feedforward neural network NN (X, W), with input vector X and a set of (link)
weight vector W which will be updated by some learning rules; denote a continuous function
by Z = f(X): D C R" — R", where D is a compact metric space on R, and n; (n,) is the
input (output) space dimension. The Stone-Weierstrass theorem [5] showed that NN (X, W)
(actual output) can be trained to asymptotically approach any continuous desired output
function f(X) as close as possible.s Thati i, -an :NN(X, W) with appropriate weight W
can be found so that ||[INN(X, W) f(X)|lx < € for an arbitrary ¢ > 0, where ||e||x =
Sxep lle(X)||? and || - || is a vector'norm,.Theneural network is a non-structured network,

which cannot incorporate knowledge about system.

Figure 2.5: The structure of multilayer feedforward neural network

A back-propagation learning algorithm [6], which is a kind of supervised learning, is
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usually employed to train the neural network controller. Let X (7) denote the vector randomly
sampled from D and used as an input to the neural network controller at time instant t;,
let NN(X (i), W) = 2(i) denote the corresponding decision of the neural network controller,
and let f(X (7)) = z(i) denote the desired decision. The objective of the back-propagation
learning algorithm is to minimize decision error E by recursively adjusting its weight in each

layer, where E is defined as

B = ;||NN(X(i),W)—f(X(i))|’2
= (00 — ) (23)

Consider an M-layer feedforward neural network. Each layer has a number of processing
elements (neurons) which are fully interconnected with the neurons in neighboring layers via
adaptive weights. Neurons in the inputlayer (layerk = 1) do not process the input data;
they simply store input data values. Neurons:in the hidden layers (2 < layer £ < M — 1)
and output layer (layer k = M) petformi two operationis. The j* neuron in the k' layer,

for example, first calculates a weighted sum, denoted by SJ(-k), of all outputs oY of the

)

(k — 1) layer. S](-k) is given by

Zj if k=1
7 =1 - ’ 2.4

where z; is the input variable of the j* neuron in the input layer, n;_; is the number of

k)

neurons in layer (k — 1), and wj(-i is the weight of the link connected from the i** neuron in

layer (k —1) to the j'* neuron in layer k. After that, the neuron further transforms S](-k) into

(k) (k)
J

output o;’ via an activation function G(-). o;" is expressed as

J

(2.5)

J

) Sk it k=1,
0; " = / (k) .
G(S;7) if 2<k< M.

The adjustment of weights is based on a steepest-descent algorithm [6]. It can be ex-
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pressed as

w(k),new o w(k),old B ) |
Ji i aw](];) w;?):w§f>‘°ld’

(2.6)

where 7 is a gain term that determines the learning rate of the link weight. 7 is usually set
equal to a positive constant less than unity. In order to obtain the partial derivative for the
quadratic error E, an error term produced by the j* neuron in layer k, denoted by (5§k), is

obtained from

oF
5§’“=—W,1gk§M,1§jgnk. (2.7)
95,
It was shown in [6] that the error signals 5J(-k)’s can be computed according to a recursive

procedure of the generalized delta learning rule [6] described as follows,

G'(S8) sy o Y for 2 <k < M -1,

) _
o\ = k (2.8)
(= — 2)&'(S) for 'k = M.

Once these error signal terms havebeen determined, the partial derivative for the quadratic

error can be computed directly by

(k)
0E _ OBE;d9 SN OS] (2.9)
ol asP ol 7

Ji

And the update rule for the back-propagation algorithm is then given by

k),new k),old aE k),old k) (k—1
w](-i) = wj(l-) — n@w(k) = w](-i) +775J(» )OZ(' ), (2.10)

J

2.3.3 Radial Basis Function Neural Networks

The radial basis function neural networks (RBFN), which was suggested by Moody and
Darken in [7], is another implementation of the neural network to serve as a controller. It
has the architecture of the instar-outstar neural network model and uses the hybrid unsuper-
vised and supervised learning scheme. It offers a viable alternative to the two-layer neural

network in many applications of signal processing, pattern recognition, control, and function
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approximation. The structure of RBFN is showed in Fig. 2.6. Unlike the instar-outstar neu-
ral network model in which the hidden nodes are linear winner-take-all nodes, the hidden

nodes in the RBFN have normalized Gaussian activation function

|x—m,|?

Ry(x) exp[— 55"
= = = g 2.11
% = 0a(X) Xk Ry (x) ZkeXp[_7|x_22:€k‘2], i

where x is the input vector. Thus, hidden node ¢ gives a maximum response to input vectors
close to m,. Each hidden node ¢ is said to have its own receptive filed R,(x) in the input
space, which is a region centered on m, with size proportional to o,, where m, and o,
are the mean (an m-dimensional vector) and variance of the gth Gaussian function. The
Gaussian function is a particular example of radial basis functions. The output of the RBFN,
is denoted by vy, is simply the weighted sum of the hidden node output, which is given by
!
ya oSN ), (2.12)
q=1

where a(-) is the output activation‘function‘and 6 is the threshold value. Generally, a(-) is
an identity function (i.e., the output‘nedé is a linear unit) and 6 = 0.

The purpose of the RBFN is to pave the'input space with overlapping receptive fields.
For an input vector x lying somewhere in the input space, the receptive fields with centers
close to it will be appreciably activated. The output of the RBFN is then the weighted sum
of the activation of these receptive fields.

The training rule of RBFN is hybrid. It includes unsupervised learning in the input layer
and supervised learning in the output layer. The unsupervised part of the learning involves
the determination of the receptive field centers m, and widths o4, ¢ = 1,2,---,{. The proper
centers m, can be found by unsupervised learning rules such as the vector quantization

approach, competitive learning rules, or simply the Kohonen learning rule; that is
Arnclosest == T](X - mclosest); (213>
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Figure 2.6: The stitieture:6t,RBFN controller

where mygoeest 18 the center of the receptive field closest:to the input vector x and the other

centers are kept unchanged. In simple case, thewidths o, are determined by

O_q _ ‘mq - = i[ynclosest| ’ (214)

where mgosest 1S the closest vector to m, and v is an overlap parameter.

According to the delta learning rule, the weights in the output layer can be updated by
Aw, = n(d —y)z,. (2.15)

When averaged over the p training pairs, the objective is to minimize the following mean

squared error cost function:
B(w,) = 5 ld*—yP? (2.16)
ke

E};[d’“ = > wyzy]? (2.17)



1wng(xk)]2. (2.18)

N —

T3

q

Although RBFN generally cannot quite achieve the same accuracy as the multilayer
feedforward neural network, it can be trained several orders of magnitude faster than the
the multilayer feedforward neural network with back-propagation learning. This is due to
the advantage of hybrid-learning networks which have only one layer of connections trained
by supervised learning. It is suitable for the application where the neural network controller

is necessary to be on-line trained to adaptively capture the dynamic features of a system.

2.4 Neural Fuzzy Controller

2.4.1 Integrated Neural Fuzzy Systems

In the field of intelligent techniques,ithe fuzzy' system and neural network are comple-
mentary techniques. Fuzzy systems provide a high-interpretable reasoning for the collected
data, but the design of the fuzzy rules and the membership functions are not easy tasks
which require much domain knowledge.” Neural networks, on the other hand, are effective
and efficient computing architectures or algerithms with self-learning capability, but the con-
nectivity of hidden nodes of the neural network are somewhat like grey boxes. Thus, it is
a promising approach to merge and integrate them into a single system. The integration of
the two techniques can be classified into two categories: neuro-fuzzy system and fuzzy neural
system.

The basic concept of a neuro-fuzzy system is to use the neural network as tool in a fuzzy
model. The neuro-fuzzy systems can provide the self-learning (automatic tuning) capability
for the fuzzy systems. In this approach, the system is firstly designed as a fuzzy inference
system based on designers’ domain knowledge. Then, via numerous experiments, the fuzzy
rules and membership functions are tuned by the neural network. The whole design process

would be simplified and the development time would be reduced consequently.
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The basic concept of a fuzzy neural system is to fuzzify the conventional neural network
models. In the fuzzy neural system, the basic properties and node connectivity of neural
network are retained, but the operations and activation functions of the nodes are fuzzified.
In this approach, a network’s domain knowledge becomes formalized in terms of fuzzy sets,
later being applied to enhance the learning of the network in such a way that it learns the
mapping between input-output fuzzy sets. Generally speaking, the benefits of the fuzzy neu-
ral systems are three-folded: firstly, the input nodes are continuous-valued by fuzzification;
secondly, the domain knowledge is applied; and thirdly, some degree of uncertainty of the
collected data is allowed.

The learning rules introduced in neural networks should also be applied to the neural
fuzzy systems. In general, the learning capability of a neural fuzzy systems would make
itself achieve the expected performance objectives:by adjusting the membership function.
Therefore, the membership functions utilizedfor the terins in the neural fuzzy systems should
be defined to be a proper formula which is suitable for the learning operation. That is, the
shape and position of the membership function can-be easily and well characterized by the
parameters of moderate number. Meanwhile, the formula of the membership function is also
usually required to be differentiable because of the usual differentiation computation in the
learning process, especially the supervised learning. A general example of the membership

function for the neural fuzzy controller could be the bell-shaped function defined as

g

f(z) = exp [—W] (2.19)

where m and o are, respectively, the center (or mean) and the width (or variance) of the

bell-shaped function.
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2.4.2 A Typical Five-layer Neural Fuzzy Controller

Fig. 2.7 demonstrates a typical five-layer connectionist architecture to implement the
neural fuzzy system as a neural fuzzy controller. It is a structured neural network that can
incorporate domain knowledge about the system of the application field. Therefore, the five-
layer neural fuzzy controller is a kind of fuzzy neural system. The nodes in layer one and
layer five are input and output linguistic nodes, respectively. There are two kinds of output
linguistic nodes: one is for feeding training data (desired output) into the net and the other is
for pumping decision signals (actual output) out of the net. The nodes in layer two and layer
four are term nodes which act as membership functions of the respective linguistic variables.
The nodes in layer three are rule nodes; each node represents one fuzzy rule and all nodes
form a fuzzy rule base. The links in layer three and layer four, accompanied by the nodes in
both layers, can function as an inference engine - layer-three links define preconditions of
the rule nodes and layer-four links define consequences-of the rule nodes. The links in layer
two and layer five are fully connected between the linguistic nodes and their corresponding
term nodes. They can, accompanied‘by.the nodes i1 both layers, achieve the fuzzification

and defuzzification functions, respectively.

(k))

Generally, node ¢ in layer k£ for the neural fuzzy controller has input function fi(k) (u;;

(k)

and activation output function a;"’( fl-(k)), where ugf) denotes the input to node 7 in layer k

) is expressed as ugk) if k = 1. For the five-layer neural

from node j in layer (k — 1) and ugf
fuzzy controller with M-dim input and single output, the detail operations of each layer are

described as follows.

Layer 1: In this layer, there are M input nodes with respective to M input linguistic

variables x;, for i = 1,..., M. Define

f.(l)(ul(l)) = u!" and oV = £, (2.20)



Layer 2:

Layer 5§

output
linguistic
node

Layer 4

Layer 2
input
term node

Layer1|
input
linguistic
node

Figure 2.7: The architecture of the five-layer neural fuzzy controller

where u!! = z;and 1 <7 < M.

7

The nodes in this layer are respectively corresponding to a linguistic term of
the input linguistic variables. Hence, these nodes are usually named as “term
node” and perform the fuzzification function to map the crisp input into a fuzzy
membership value according to its associated membership function. Assume K

nodes exists in this layer. Each node performs a bell-shaped function defined as

@ (D2
@, @) _ (w5’ —mj, )
fi (uij ) = exp [— ’ (I)Qj ] (2'21)

9j
(2)

and az(?) =eli |

I

. are the mean and

where ugj) = ag-l), 1< <K, 1<75< M, and mﬁ) and 0](-

the standard deviation of the n-th term of the input linguistic variable from node
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Layer 3:

Layer 4:

J in input layer, respectively.

The nodes in layer three are so-called “rule nodes” and each of them represents
one fuzzy rule, respectively. All nodes in layer three form a fuzzy rule base. The
links in this layer perform precondition matching of fuzzy control rules. Assume
there are R rule nodes in this layer. Each rule node performs the fuzzy AND

operation defined as

f,(S) (u(3)> = min(u(g)'Vj € p) (2.22)

1 ij

and az(g) = f.(?’),

7

®) — 4 and P, = {j| all j that are precondition nodes of the i-th rule},

where u;;” = a;

1<i<R.

The nodes in this layer have twegoperating modes: down-up and up-down. In
the down-up operating fhode, the links perform consequence matching of fuzzy
control rules. Assume there are’/V-term; nodes in this layer. Each node performs
a fuzzy OR operation to integrate the fired strength of rules that have the same

consequence. Thus, we define

f~(4)(u§;~1)) = max(u(4)'Vj e (y) (2.23)

% ij

and al(-A‘) = f-(4),

()

where ul(;-l) = a§-3) and C; = {j| all j that have the same consequence of the i-th

term in the term set of 2}, 1 < i < N. The up-down operating mode is used
during the training period. The nodes in this layer and the links in layer five have
functions similar to those in layer two. Each node is named as “term node” and
performs a bell-shaped function defined as

(U@(;'l) _ m§0)>2]

FP ) = exp [— (2.24)
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Layer 5:

@)
and a§4) =i,

(4)

]

5

is set to be a; ) obtained from the up-down operating nodes in layer

0)

where u
five, and mg-o) and aj(» are the mean and the standard deviation of the j-th term

of 2, respectively, 1 <: < N, 5 =1.

There are two nodes in this layer. One node performs the down-up operation for
the actual decision signal Z. The node and its links act as the defuzzifier. The

function used to simulate a center-of-area defuzzification method is approximated

by
4
fz-(5) (ug))) =Y mg-o)a](-o)ug?) (2.25)
j=1
(5)
(5) fi
and a;’ = U(ﬁ - Za)
5 W TR
where u,(f) = a§4), 1 =1, z, 1s the decision threshold, and
1 if x>0,
L ()% { O+—otherwise. (2.26)

Clearly, z = a§5) and a new’connection-will be accepted only if 2 = 1. The other

node performs the up-down operation during the training period. It feeds the
desired decision signal z into the controller to adjust the link weights optimally.

For this kind of node,

FOuD) =4, and o = £ (2.27)

% i i

where 1 = 7 =1 and uﬁ) = z.

2.5 Applications of Intelligent Techniques In This Dis-
sertation

In Chapter 3, neural fuzzy connection admission control (NFCAC) scheme is proposed and

a kind of neural fuzzy controller, called NFCAC controller, is applied to deal with the traffic
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control problem in multimedia high-speed ATM networks. With properly choosing input
variables and designing the rule structure, the proposed NFCAC scheme not only provides a
robust framework to mimic experts’ knowledge embodied in existing traffic control techniques
but also constructs intelligent computational algorithm for traffic control.

In Chapter 4, a power-spectrum-based neural-net connection admission control (PNCAC)
scheme is proposed and a neural network controller, called PNCAC controller, is employed to
perform the connection admission control for multimedia networks. The PNCAC controller
has the learning/adapting capabilities so that the boundary of the decision hyperplane for
the connection admission control can be adjusted optimally and dynamically. Simulation
results show that the proposed PNCAC scheme enhances significantly the system utilization
while fulfilling QoS requirements.

In Chapter 5, two intelligent techmiques whichrare the fuzzy logic systems and neural
fuzzy networks, are introduced tosimplemeént:two:intelligent increment controllers, fuzzy
increment controller (FIC) and neural fuzzy inerement controller (NFIC), respectively, for
the usage parameter control (UPC) ef multimedia transmission in ATM networks. Both of
these two intelligent increment controller are to 'be incorporated with the conventional leaky
bucket algorithm, which is a reference model for UPC function defined in ITU-T Recom-
mendation 1.371 [31]. Both the fuzzy and the neural fuzzy increment controllers properly
choose the long-term mean cell rate and the short-term mean cell rate as input variables to
optimally determine the increment value. Simulation results show that both intelligent leaky
bucket algorithms have significantly outperformances over conventional leaky bucket algo-
rithm, in aspects of all considered performance measures such as selectivity, responsiveness,

and queueing delay.
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2.6 Concluding Remarks

This chapter provides a fundamental overview of the neural/fuzzy techniques, including
fuzzy systems, neural networks, and the neural fuzzy systems. Both the fuzzy systems and
neural networks are mimicked the behaviors of human brains, where the neural network
processes the low-level data clustering, classification, and mapping and the fuzzy system
processes the high-level reasoning of the input data. The fuzzy systems and neural networks
are complementary techniques. It would be beneficial to integrate the two techniques, which
contributes to the rising of the integrated neural fuzzy systems.

In the multimedia high-speed networks, the network operations and performance statis-
tics are chronically collected and stored. These data provide insight and meaningful infor-
mation for the traffic control schemes. However, with the emerging of future content-rich
services, the operation of the multimedia highsspeed networks tend to be more dynamic and
some service scenario may be far beyond imagination= It is almost impossible to design
a comprehensive traffic control schemesiin-adyvance. / Therefore, the intelligent techniques
are promising approaches for the traffic eentrol sehemes because they possess the capability
to extract the basic operation rules from the past records or experiences, and adaptively
modify the operation rules of traffic control schemes according to the network dynamics. In
the following three chapters, the intelligent techniques including fuzzy logic systems, neural
networks and neural fuzzy controllers, are applied to design precise and sophisticated traffic

control schemes for multimedia high-speed networks.
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Chapter 3

Intelligent Connection Admission
Control Scheme for Multimedia
High-speed Networks Using
Time-domain Traffic Parameters

This chapter proposes a seural fuzzy approach for connection admission
control (CAC) with QoS guarantee-in, multimedia high-speed ATM networks
according to the time-domain traffic parameters. The proposed neural fuzzy
connection admission control. (NFCAC) scheme is an integrated method that
combines the linguistic control eapabilities of a fuzzy logic controller and the
learning abilities of a neural network. With properly choosing input variables
which inwvolve the measured statistics of network performances, and well de-
signing the rule structure for the NFCAC scheme, it can not only provide a
robust framework to mimic experts’ knowledge embodied in existing connection
admission control techniques but can also construct precise and efficient com-
putational algorithms for connection admission control. Simulation results
show that as compared with a conventional effective-bandwidth-based CAC,
a fuzzy-logic-based CAC, and a neural-net-based CAC, the proposed NFCAC
can achieve superior system utilization, high learning speed, and simple design

procedure, while keeping the QoS contract.
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3.1 Introduction

High-speed network supporting multimedia services has to be capable of handling bursty
traffic and satisfying various quality-of-service (QoS) and bandwidth requirements. There-
fore, a multimedia high-speed network must have an appropriate connection admission con-
trol (CAC) scheme not only to guarantee QoS for existing calls but also to achieve high
system utilization. As known, ATM (asynchronous transfer mode) is one of the technologies
that can integrate multimedia services for high-speed networks.

Conventional CAC schemes [8], [13], [10], [11], [12], [15], [16] that utilize either capacity
estimation or buffer thresholds suffer from some fundamental limitations. One of the limi-
tations is the difficulty of obtaining complete statistics on input traffic to a network. As a
result, it is not easy to accurately determinethe equivalent capacity or effective thresholds
for multimedia high-speed networks, in various:bursty'traffic flow conditions. Besides, these
conventional schemes provide optimalisolutions only under a steady state. A control scheme
that dynamically regulates traffic flows accerding-to changing network conditions, however,
requires understanding of network dynamics. The rationale and principles underlying the
nature and choice of thresholds or equivalent capacity under dynamic conditions are unclear
[14]. Networks are forced to make decisions based on incomplete information [14] so that the
decision process is full of uncertainty. Thus, because of unpredictable statistical fluctuations
of the system, these control schemes will always be subject to decision error, which degrades
performance.

Fuzzy logic systems have been widely employed to deal with CAC-related problems in
ATM networks [17], [18]. Fuzzy set theory appears to provide a robust mathematical frame-
work for dealing with real-world imprecision, and the fuzzy approach exhibits a soft behavior
which means to have a greater ability to adapt itself to dynamic, imprecise, and bursty en-

vironments [17], [18]. Bonde and Ghosh [17] used fuzzy mathematics to provide a flexible,
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high-performance solution to queue management in ATM networks. In [18], a fuzzy traffic
controller which simultaneously incorporates CAC and congestion control was proposed. It
is a fuzzy implementation of the two-threshold congestion control method and the equiva-
lent capacity admission control method extensively studied in the literature. Comparative
studies have shown that the proposed fuzzy approaches significantly improve system perfor-
mance compared with conventional approaches. However, no clear, general technique has
been presented to map existing knowledge on traffic control onto the design parameters of
the fuzzy logic controller. Self-learning capability should be incorporated into the fuzzy logic
controller to simplify the design procedure and obtain better control results.

The self-learning capability of neural networks has been applied to characterize the re-
lationship between input traffic and system performance [19], [20], [22]. In [20], Hiramatsu
used a neural network as a connectiomadmission controller. In [22], Youssef, Habib, and
Saadawi proposed a call admission controller for ATM networks. A neural network is trained
to compute the effective bandwidth required to support: MPEG-1 VBR video calls with dif-
ferent QoS requirements. They showed that the adaptability of the neural network controller
to new traffic situations had been achieved by adopting a hierarchical approach to the design.
However, in most of the proposed neural-net approaches for CAC, the numbers of users for
each kind of service were selected as input parameters. The dimension of neural network
and the learning time would increase as the number of traffic types grows. The system
complexity would increase for system upgrade. Therefore, the application of neural network
to CAC is limited to a simplistic traffic environment, such as limited traffic type, simplified
traffic source, etc.

Conventional, fuzzy-logic-based, and neural-net-based CAC schemes all have various ben-
efits in handling CAC. Conventional CAC, based on mathematical analysis, provides robust

solutions for different kinds of traffic environments but suffers from estimation error (due to
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modelling) and approximation error (due to the need to complete calculations in real time),
so is not suitable for dynamic environments. Fuzzy-logic-based CAC is excellent in dealing
with real-world imprecision and has a greater ability to adapt itself to dynamic, imprecise,
and bursty environments, but lacks the learning capability needed to automatically construct
its rule structure and membership functions so as to achieve optimal performance. Neural-
net-based CAC provides learning and adaptation capabilities which reduce the estimation
error of conventional CAC and achieve performance similar to that of a fuzzy logic controller.
However, the knowledge embodied in conventional methods is difficult to incorporate into
the design of a neural network.

This chapter proposes a neural fuzzy connection admission control (NFCAC) scheme,
which absorbs benefits of the three approaches while minimizing their drawbacks, for mul-
timedia high-speed networks. The NFCAC scheme. utilizes the learning capability of the
neural network to reduce decision érrors-of conventional CAC policies resulted from mod-
eling, approximation, and unpredietable tratfic fluctuations of the system. It also employs
the rule structure of the fuzzy logic eontroller to prevent operating errors, due to incor-
rect learning, and to decrease training time. "Furthermore, the neural fuzzy network is a
simple structured network. We here properly choose input variables and design the rule
structure for the NFCAC scheme so that it not only provides a robust framework to mimic
experts’ knowledge embodied in existing connection admission control techniques but also
constructs intelligent computational algorithm for connection admission control to achieve
high system utilization while supporting QoS-guarantee. Simulation results reveal that the
NFCAC scheme achieves superior system utilization and high learning speed while keeping
the QoS contract, compared with the effective-bandwidth-based CAC (EBCAC) [10], the
fuzzy-logic-based CAC (FLCAC) [18], the neural-net-based CAC (NNCAC) [23], and the
radial-basis-function-based CAC (RBFCAC) schemes.
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The rest of this chapter is organized as follows. In Section 3.2, the basic concepts behind a
neural fuzzy controller are introduced, and an NFCAC scheme is proposed to cope with CAC-
related problems in multimedia high-speed networks. Section 3.3 presents simulation results
comparing the proposed NFCAC scheme with the existing effective bandwidth approach, the
fuzzy logic approach, and neural-net approach. Finally, some concluding remarks are given

in Section 3.4.

3.2 Neural Fuzzy Call Admission Control

3.2.1 System Model

Fig. 3.1 shows an NFCAC controller with its peripheral processors to handle the call

Call Set-Up Rp Rm, .| Bandwidth | Ce II{\T:st:)Nu(;i:lz
R t T i .
eques p Estimator Estimator
3
Ca
z NFCAC <
Call A t/Reject
all Acceptiejec Controller
) y
Coding Rate
Control Congestion
Transmission Rate Controller
Control
9 »rq P

System Information

Figure 3.1: An NFCAC controller with its peripheral processors

admission control and traffic rate control simultaneously for multimedia high-speed networks.

The congestion controller generates a congestion indicator y according to the measured
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system statistics, such as the queue length ¢, the change rate of the queue length Ag,
and the cell loss ratio p;. Different congestion control algorithms could be employed to
implement the congestion controller. For example, rate-based feedback congestion control
approaches, which commonly take the queue length and the cell loss ratio into account,
could be used. One of the most frequently used congestion control methods is the buffer
threshold method, where a congestion alarm occurs whenever the queue length exceeds some
predefined thresholds. Here, we adopt a fuzzy congestion controller [18] which is a fuzzy
implementation of the two-threshold congestion control scheme proposed in [28]. Network
congestion is then averted by regulating the traffic flow of the incoming sources according
to the traffic load adjustment parameter generated by the fuzzy congestion controller. The
bandwidth estimator estimates the required capacity C, for a new connection from its traffic
description parameters such as the peak cell rate, sustainable cell rate, and peak cell rate
duration, denoted by R,, R,,, and 7}, respectively. It employs the equivalent-capacity-
based algorithm proposed in the lterature. The equivalent capacity method [8, Eq. (2)]
transforms the traffic characteristics (usually described by three traffic parameters: peak
cell rate, sustainable cell rate, and peak’ cell'rate duration) of a new call into a unified
metric, called the equivalent bandwidth, to reduce the dependence of the proposed control
mechanism on the traffic type. Such a transformation can greatly reduce the number of
dimensions of the NFCAC scheme and save a large percentage of learning time. Here, we
adopt a fuzzy bandwidth estimator [18], which is a fuzzy implementation of the equivalent
capacity method in [8]. The network resource estimator does the accounting for system-
resource usage. When a new connection with bandwidth C, is accepted, the value of C,
is updated by subtracting C, from the original value of C,. Conversely, when an existing
connection with bandwidth C, is disconnected, the value of C, is updated by adding C,. to

the original value of C,. C, is initially set to 1. The NFCAC controller takes the available
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capacity C, the congestion indicator y, and the system performance feedback of cell loss
ratio p; as input linguistic variables to handle the CAC procedure and sends a decision signal

Z back to the new connection to indicate acceptance or rejection of the new call request.

3.2.2 NFCAC Controller

The NFCAC controller is a neural fuzzy controller which is a control system that integrates
a fuzzy logic system with a neural network. The integration brings the low-level learning
and computational power of the neural network into the fuzzy logic system, and provides the
high-level, human-like thinking and reasoning of fuzzy logic system for the neural network.
The neural fuzzy controller is generally implemented by taking the form of a multi-layer
neural network to incorporate the fuzzy logic system [1].

Fig. 3.2 demonstrates the architecture of thé proposed NFCAC controller which is im-
plemented by the five-layer neural fuzzy controller, inttoduced in section 2.4. The NFCAC
controller adopts three linguistic inputs of an-available-capacity C,, a congestion indicator
y, and a cell loss ratio p; and outputs a decisien:signal Z to indicate acceptance or rejection
of the new call request. As mentioned ‘above; the nodes in the second layer are the term
nodes and they would co-operate with the links of the same layer to act as the fuzzifier.
According to the CAC methods in [8][18], the term used to describe the remaining capacity
available for a new connection is either “Enough” or “Not Enough.” Thus the term set for
the available capacity is defined as T'(C,) = {Not Enough (NE), Enough (E)}. The system
is either in a congested state (“y is Negative”) or a congestion-free state (“y is Positive”),
so the term set for the congestion status can be defined as T'(y) = { Negative (N), Positive
(P)}. The term used to describe the cell loss ratio, which is one of the dominant QoS re-
quirements, is either “Satisfied” or “Not Satisfied.” Thus the term set for the cell loss ratio
is defined as T'(p;) = {Satisfied (S), Not Satisfied (NS)}. In summary, we have six nodes in

layer two with respect to the six terms defined by the three input linguistic variables C,,
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Figure 3.2: The architecture of the NFCAC controller

y and p;. In order to provide a soft admission decision with multiple decision result levels,
not only “Accept” and “Reject” but also “Weak Accept” and “Weak Reject” are employed
to describe the accept/reject decision. Therefore, the NFCAC controller may have an alter-
native choice for calls which fall into the area around the call acceptance/rejection decision
boundary. Thus, the term set of the output linguistic variable 2 is defined as T'(2) = { Reject
(R), Weak Reject (WR), Weak Accept (WA), Accept (A)}, and consequently there are four

corresponding nodes in the fourth layer.
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3.2.3 Hybrid Learning Algorithm

A hybrid learning algorithm is applied in the design of the NFCAC controller. The
algorithm is a two-phase learning method. In phase one, a self-organized learning scheme
is used to construct the rules and to locate the initial membership functions. In phase two,
a supervised learning scheme is adopted to optimally adjust the membership functions for
desired outputs. Training data must be provided for the learning process, in addition to the
size of the term set for each input/output linguistic variable and the fuzzy control rules. The

procedure for constructing the set of training data is described below:

[Construction of Training Data.]
For a new connection request with traffic parameters of
R, Ry, and T,
Estimate the required capacity. (. by msing fuzzy
bandwidth estimator
Count the available capacity C by rsing network
resource estimator
Generate a congestion indicator y by using fuzzy
congestion controller
Get the cell loss ratio p; measured from system
information statistics
If p; > QoS
Then
Reject the request and set the desired output
z=0
Else

Accept the request and set the desired output
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z=1

[ Verification of the Acceptance Decision]
Continue the simulation for a predefined time
interval, without accepting any new connection
requests

Obtain the statistics of cell loss ratio p;

If p; > QoS (acceptance decision is failed),

then
Set 2 =0
EndIf
EndIf
Store training data of C,, y, p;, and 2 .

Using the input training data Cg y,.py, the desired output z, the fuzzy partitions |C,|, |y,
Ipi], |2, and the desired shape of the membetship functions, the self-organized training would
locate the membership functions and find the fuzzycontrol rules. If an initial knowledge
base is employed to help constructing an initial structure of the fuzzy control rules, a number
of possible rule structures can be formed by slight modification of rules. Among all of the
possible structures, the one that yields the minimum square error E for the training data is

selected. FE is defined as

N

B - ;;[zm-) — 24P, (3.)

where N is the number of training data, z(¢;) and 2(¢;) are the desired output and the actual
output obtained at time ¢;, respectively.

If an initial knowledge base is not provided, the initial locations of membership functions

are estimated by using Kohonen’s self organizing feature-maps algorithm and the N-nearest-

neighbors scheme [26], and the initial rule structure is constructed via genetic algorithms
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(GAs) [27].

The procedure to locate the means m; of the i-th membership function for linguistic
variable z, 1 < ¢ < M, given a set of training data x; for z, 1 < j < N, is described below.
It employs the statistical clustering technique of Kohonen’s feature-maps algorithm [25].

[Obtain m; by using Kohonen’s Feature-Maps Algorithm.]

Step 1: Set initial values of m; for all membership functions, 1 <7 < M, such that

min z; < m; < max ;.

1<j<N TIKGEN

Set an initial learning rate a (0 < a < 1).
Step 2: Set j = 1.
Step 3: Present training data x; and 'eompute the distance d; = |x; —m;|, 1 <1i < M.

Step 4: Determine the kth membérship function which has the minimum distance dj,
(dk = minlSiSM dz)
Update my, by

my = my + a(z; —my).

Step 5: If j < N, j=7+1, Goto Step 3
Else

Decrease o and Goto Step 2.
EndIf n

The above procedure will stop until @ < 0. The determination of which d; is minimum at
Step 4 can be quickly accomplished in constant time via a winner-take-all circuit [25]. The
adaptive algorithm can be independently performed to obtain m; for each input and output

linguistic variables.
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As for the corresponding standard deviation o; of the i-th membership function of =,
since m; and o; will be finely tuned in the supervised learning phase, we just use a first-
nearest-neighbor heuristic to estimate o;, which is given by

5 = M (3.2)
Y

where

. { mi—1 for |m; —my_1| < |m; —ms| (3.3)

me= m;y1 otherwise,
and ~y is called an overlap parameter used to describe the degree of overlapping for the two
membership functions.

GAs are search algorithms based on the mechanics of natural selection and natural ge-
netics [29, pp. 1-22]. They combine the survival of the fittest and some of the innovative
flair of human search. According to the fittest valuesramong those randomly selected string
structures, a structured but randomized information ‘exchange is defined to form a search
algorithm. Although the randomized generating procedure is used, GAs are not simple ran-
dom walks. They efficiently make use of the historical information to speculate on new
search points with expected improved performance [29]. The input/output rule structure is

encoded into a gene string G(t) defined as

G(t) = [91 (t)v 92<t)7 s 7gn(t)]7 (34)

where n is the total number of rule nodes, and g;(t) (1 < i < n) denotes the i-th gene in G(t).
For example, if the i-th rule node in Layer 3 is connected to the j-th node (1 < j <|7T(2)])
in Layer 4 at time ¢, then g¢;(¢) is set to j. Initially, the rules ¢;(0) are integers and are
randomly assigned within the range of [1,|7'(2)|]. G(¢) is then updated by genetic operators
of crossover and mutation according to the value of fitness function, which is defined as the
inverse of the error E defined in Eq. (3.1). The structure that provides the minimum value

of E' will be chosen as the optimal structure.
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After the self-organized training phase, the NFCAC controller then enters the supervised
learning phase. The aim of the supervised learning is to further minimize E for the training
data using a back-propagation learning algorithm. Starting at the output node, a backward
pass is used to compute g—f for all the hidden nodes in Layer 4 and Layer 2. Assuming
that w is an adjustable parameter in a node (i.e., the mean or the standard deviation of the

membership function), the general learning rule is

OF
old e
+ U (3.5)

wnew = w

where 7 is the learning rate and

o8 _omos _opoa o) )
ow  Of ow  da Of Ow’ '

f and a were defined in the previous subsection: Here, different values of n could be used
in Layer 2 and Layer 4 to provide different-learning rates for input and output variables.
Different values of ) represent different adoption rates for these variables. If the membership

function of a specific linguistic variable is'hot intended to be modified, then n = 0 is used.

3.3 Simulation Results and Discussions

Simulations were performed to test the effectiveness of the proposed NFCAC scheme.
Before discussing the results of the simulations, we will first describe the simulation environ-

ment.

3.3.1 Simulation Environment

Assume that an ATM network is chosen to be the high-speed network supporting mul-
timedia services. The input traffic is categorized into two types: real-time (type-1) and
non-real-time (type-2) traffic. Video and voice services are examples of type-1 traffic, while

data services are examples of type-2 traffic. The network system provides two separate finite
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buffers with size K;, in order to support different QoS requirements for type-i traffic, i=1
and 2. When the buffer is full, incoming cells are blocked and lost. The system reserves C.
portion of its capacity for type-1 traffic and the remaining (1 — C,) portion for type-2 traffic.
When there is unused type-1 or type-2 capacity, it is used for the other type of traffic. In the
simulations described here, K; = K5 = 100 cells and C, = 0.8. Also, the QoS requirement
for type-1 traffic QoS; = 107° and that for type-2 traffic QoSy = 1075,

The cell generation process for a video coder is assumed to have two motion states: one is
the low motion state for the rate of interframe coding and the other is the high motion state
for the rate of intraframe coding [30]. The rate of intraframe coding is further divided into two
parts: the first part has the same rate as the interframe coding and the second part, called
difference coding, is the difference between the rates of intraframe coding and interframe
coding. The interframe coding and the difference coding are all modeled as discrete-state
Markov-modulated Bernoulli processes (MMBP). with-basic rates A, and A,. The state-
transition diagram is shown in Figs: 8.3(a) and 3.3(b). Let A\, (¢), \.(t), and X, (f) denote the
cell generation rates for intraframe ceding, interframe-coding, and difference coding at time
t, respectively, from the video coder. Clearly; A,(f) = A, (t)+ AL (¢). The process of \,() is an
(M,+1)-state birth-death Markov process. The state-transition diagram for A.(¢) uses the
label m, A, to indicate the cell generation rate of interframe coding of a state and uses the
labels (M, — m, )~ and m,w to denote the transition probabilities from state m, A, to state
(m, +1)A, and from state m,. A, to state (m, — 1) A,, respectively. Similarly, the process for
N () is an (M,+1)-state birth-death Markov process. The state-transition diagram for X, (¢)
uses the label m, A, to indicate the additional cell generation rate of a state due to intraframe
coding and uses the labels (M, — m,)¢ and m,1 to denote the transition probability from
state myA, to state (m, + 1)A, and from state m,A, to state (m, — 1)A,, respectively. One

should note that the long-term correlation behavior of a video source is resulted from the

o7



(Mr—l)'Y (Mr—Z)'Y (Mr—mr—l)'Y (Mr—l’nr)'}/ Y

Mry
ool E
(O] 2m 3m

P S —

mr® (mr+Do Mo
(a)
M Ma-1)p (Ma-2)p (Ma-ma-1)¢ Ma-ma)p ¢
7 T — T 7 T
o) SRR
.. L - P
3y ma\y/ (ma+1)y Mays
(b)

a
K-\_//
W 2y
c o
d
© (E)l)

Figure 3.3: Level transition diagram for (a) interframe coding A, (¢) (b) difference state X (¢)
(c)interframe and intraframe alternate model (d)voice source

process A, (t). The video source will alterriate betweéninterframe and intraframe, depending
on the video source activity factor. As shown'in Fig. 3.3(c), there is a transition rate ¢ in
the interframe state and a transition rate d in the intraframe state. The values of v, w, M,.,
A, ¢, 9, M,, A,, ¢, and d can be obtained from the traffic variables R,, R,,, and T,,.

The cell generation process for a voice call is modeled by an interrupted Bernoulli process
(IBP) [28]. Asshown in Fig. 3.3(d), during the ON (talkspurt) state, voice cells are generated
with rate A,; during the OFF (silence) state, no cells are generated. A voice source has a
transition rate o in the OFF state and a transition rate 3 in the ON state.

As for the data source, there are high-bit-rate and low-bit-rate data services. The gener-
ation of high-bit-rate and low-bit-rate data cells is characterized by Bernoulli processes with

rates ¢, and 6y, respectively. Also, the distributions of the holding times for video, voice,
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high-bit-rate data, and low-bit-rate data are assumed to be exponentially distributed.

In the simulations, for the arrival process of a video source, it is assumed that R,=3.31 x
1072, R,,=1.10 x 1072, and T,=0.5 seconds, which would give M,=M,=20, A,=1.34 x 1073,
Ae=3.15 x 107%, v= 3.77 x 1075, w=>5.65 x 1076, ¢p=1)=2.83 x 1075, ¢=5.65 x 1075, and
d=>5.09 x 1075; for the arrival process of a voice source, it is assumed that R,=4.71 x 1074,
R,,=2.12x107* and T,=1.35 seconds, which would give A,=4.71x107%, a=1.71x107%, and
$=2.09 x 107; for high-bit-rate data sources, it is assumed that R,=7.36 x 1072, R,,=7.36 X
1073, and T,,=3.14 x 102 seconds, which would give #;=0.1, and for low-bit-rate data sources,
it is assumed that R,=3.68 x 1072, R,,=7.36 x 107*, and T,= 2.88 x 1072 second, which
give §;=0.02. The mean holding time is 60 minutes for a video service, 3 minutes for a voice
service, and 18 seconds for both high- and low-bit-rate data services. Notice that the values
of R, and R,, have been normalized byithe netwotk.capacity.

Two kinds of cell loss ratios for fype-7 traffic are considered: the source loss ratio due to
selective discarding at the customet side pg;7and the node loss ratio due to blocking at the

network side p,, ;. The overall cell loss ratio for type-i-traffic p;; is defined as
Pii = RPs.i _I'pn,ia 1= 17 27 (37)

where « is used to indicate the significance of the node loss ratio over the source loss ratio.
r = 0.8 is assumed here because selectively discarding cells at the source should have less
effect on information retrieval than blocking cells at the node. In the simulations, the cell
loss ratio is estimated as the total loss cells divided by the arriving cells during the whole

simulation interval.

3.3.2 Simulation Results and Discussions

On the basis of prior knowledge concerning CAC, the rule structure and parameters

of the NFCAC controller can be initially set and then properly adjusted via the learning
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algorithm. The membership functions of the linguistic variables for type-1 and type-2 traffic
were initially specified in the left-hand side of Fig. 3.4(a) and Fig. 3.4(b), respectively. As
we know, the available capacity C,, deduced from the equivalent capacity C, of the existing
calls, may possess estimation errors. In order to utilize the network as much as possible, we
may employ an idea of “budget deficit” to over-assign the capacity. Thus, the mean value
mﬁ) of the membership function of NE was set to be a negative value and the mean value
mglz) of the membership function of E was set to be a value close to zero.

The behavior of the congestion indicator y could be monitored from the congestion and
congestion-free states during a long-term simulation of the network operation. Thus, the
membership functions of y could be initially optimized based on the obtained information.
The mean value mé? of the membership function of P would be set to be the mean value
of the queue-length change rate duringicongestion-free periods, the mean value mé? of the
membership function of N would be set to be the.mean value of the queue-length change
rate during congestion periods, and let ag) o aéé) S mgIQ) — méll). These parameters could
be further off-line optimized via GA'hy smulation.

The initial membership functions of the ‘cell'loss ratio p; were set according to the QoS
requirement. The mean value mi(é) of the membership function of NS would be set to be the
QoS requirement, the mean value méll) of the membership function of S would be set to be a

fraction of the QoS requirement, and the standard deviations would be set to be aé?zaéé):

mélz) — mgfl) . As a result, there exists a safety margin between the membership functions of
terms S and NS provided to tolerate the dynamic behavior of the network operation and
insure the QoS requirement.
Here, little information about the setting of initial values for the mean mgo) of the term
0)

set T(2) could be employed; therefore, the values of m§ are set to be equally spaced in the

range of [0,1]. Based on the initial membership functions, an optimal rule structure shown
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Figure 3.4: Membership functions of C,, y, p; and Z for (a) type-1 traffic, (b) type-2 traffic
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Rule| C, |y | m zZ ||Rule| C, | v | m z
1 |[NE|N|NS| R 5 | E | N|]NS|WR
2 |[NE|N| S |WR| 6 | E|N| S | WA
3 |[NE|P|NS| R 7 | E|P|NS| WA
4 INE|P| S |WR| 8 | E|P]| S A

Table 3.1: The rule structure for the NFCAC

in Table 3.1 was obtained by using GA in the self-organized learning phase. When the fuzzy
logic rules were found, the NFCAC controller entered the supervised learning phase, in which
the membership functions were adjusted optimally.

Three different values of n were used for the variables C,, y, p;, and Z. 1 was set to zero
for p; because the membership functions were specified by the QoS constraint and should not
be modified. n = 0.001 was used for y because the membership functions of y were initially
optimized. As for C, and Z, their initial membership functions were heuristically set and
required further optimization in the supervised learning phase. Thus, n = 0.01 was used.
The use of different n may drastically reduce the training time required in the supervised
learning phase. The learned membership. functions of-the linguistic variables for type-1 and
type-2 traffic were shown in the right-hand side of Fig. 3.4(a) and Fig. 3.4(b), respectively.

For type-1 traffic in Fig. 3.4(a), it can be found that the differences of the membership
functions before and after learning are: For the membership functions of C,, the mean value
mg? of the membership function of N E was properly modified from -0.4 to -0.27. Similarly,
the mean value mﬁQ of the membership function of E was properly modified from 0.16 to
-0.02. There is a drastically change for membership functions of C,, and the phenomenon
can also be found in the membership functions of y. It is because we heuristically set their
initial values and we used only two terms to describe C, or y. The change of the position of
one term of C, and y will squeeze the other term but receive less counteraction from the other

one term (compared to Z described later). Membership functions of p; are not changed since
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7 for p; was chosen to be zero. For the membership function of 2, however, the mean mgo) of
the membership function of R is slightly increased from 0 to 0.05, representing that the effect

of “Reject” is decreased. Also, the mean méo)

of the membership function of W A is slightly
increased from 0.67 to 0.72, representing that the effect of “Weak Accept” is increased. The
small change is because we used four terms to describe 2. The change of the position of
one term of Z will squeeze the other three terms but receive more counteraction from the
three terms. Therefore, the change of position would be confined in a smaller range. The
changes of membership functions of Z imply that the NFCAC controller prefers to accept
new calls. This phenomenon demonstrates that the NFCAC controller intends to recover
some system bandwidth which the equivalent capacity method wastes due to over-estimation,
while keeping the QoS contract. It may be the reason for the utilization improvement of the
proposed NFCAC controller, which will- be shown below. Similar results could be found for
type-2 traffic in Fig. 3.4(b).

We compare the NFCAC scheme with the effective-band-width-based CAC (EBCAC)
scheme proposed in [10], the fuzzy-logic-based CAC(FLCAC) scheme proposed in [18], the
neural-net-based CAC (NNCAC) scheme proposed in [23], and the radial-basis-function-
based CAC (RBFCAC) scheme from the aspects of the cell loss ratio (CLR), the system
utilization, and/or the training time under the constraint of QoS guarantee. The EBCAC
scheme is a hybrid technique combining the conventional techniques of the Gaussian ap-
proximation and the bufferless analysis; it is an improved version of the equivalent capacity
method [8]. Simulation of the EBCAC scheme is simply to calculate the required bandwidth
of a new connection. The new connection request is accepted if the total bandwidth re-
quired by the new connection and the existing connection is less than the system capacity.
Otherwise, it is rejected. The FLCAC scheme is a fuzzy implementation of the equiva-

lent capacity admission control method; details for the FLCAC scheme can be referred to
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[18]. The NNCAC and RBFCAC schemes are neural-net implementation of the equivalent
capacity admission control method, where the NNCAC adopts the multi-layer perceptron
(MLP) structure with 30 hidden nodes, while the RBFCAC uses radial basis function net-
work (RBFN) with 30 hidden nodes. Details for the NNCAC scheme can be referred to [23].
In the simulations, the FLCAC, NNCAC, or RBFCAC controller is equipped with the same
three peripheral processors as those used in the NFCAC controller shown in Fig. 3.1. The
sizes of training set and test set are all equal to 200, the number of repeated experiments is
20, and the standard deviation is less than 5%.

Fig. 3.5 shows the CLRs of an ATM traffic controller employing the NFCAC scheme,
and the EBCAC, FLCAC, NNCAC, RBFCAC schemes. It is found that the QoSs for
both types of traffic are indeed guaranteed for all of these control schemes. Fig. 3.6 shows
that the system utilization of the NFCAC schemie and the four schemes. We can find
that the utilization of the NFCAC schemeé is slightly greater than that of the NNCAC
and the RBFCAC schemes; the system utilizations of NFCAC, NNCAC, and RBFCAC are
91%, 90.5%, and 89%, respectivelyi and"the NFCA€ scheme offers about 32% and 11%
greater system utilization than the EBCAC"scheme and the FLCAC scheme. It is because
NFCAC can incorporate the domain knowledge obtained from both the analytical-based
method (the equivalent capacity scheme [8] is employed in the bandwidth estimator) and
the measurement-based method (the system statistics of the queue length, the change rate
of the queue length, and the CLR are considered in the congestion controller). Also, the
reason for the performance improvement is that NFCAC possesses the learning capability of
the neural network.

Fig. 3.7 shows the training time required for the NFCAC scheme and the NNCAC,
RBFCAC schemes. Here, a widely used back-propagation learning algorithm was employed

to adjust the membership functions (i.e. represented in terms of weights) of the multi-layer
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neural fuzzy network and neural network for the NFCAC and NNCAC schemes, while the
RBFCAC scheme is basically trained by the hybrid learning rule: unsupervised learning
in the input layer and supervised learning in the output layer. It is found that NFCAC
has training time of 7 (4) epochs, while RBFCAC and NNCAC have training time of 103
(40) and 5 x 10* (6 x 10?), respectively, for type-1 (type-2) traffic. The NFCAC has higher
learning speed than the RBFCAC and NNCAC. One reason is that the neural fuzzy network
is a structured network, thus the NFCAC controller can easily adopt the domain knowledge
of conventional control methods to construct the initial rule structure and the parameters
of the membership functions, providing an excellent initial guess in adjusting its weights;
on the contrast, the neural network is a non-structured network, which cannot incorporate
domain knowledge about system. The other reason is that the neural fuzzy network has
simpler structure than the neural network; the number of tunning parameters used in the
neural fuzzy network is quite smallj as compared to the neural network such as MLP and
RBFN considered here. In this chapter, there are only 16 weighting parameters used in
NFCAC, while there are 150 and 480 werghting parameters required for the RBFCAC and
NNCAC, respectively. It is also noted that'the RBFCAC scheme has less learning time
than the NNCAC scheme. This is because the RBFCAC scheme can have the proper initial
setting of means and variances for the Gaussian activation functions during unsupervised
learning according to the prior knowledge, and it has only one layer of connection needed to
be trained by supervised learning.

As usually noted, RBFCAC can have faster training speed than NNCAC but cannot
achieve the same accuracy as the back-propagation NNCAC. In the simulations, we first
adopted the same set of data used to train NFCAC and NNCAC for RBFCAC. However,
it was found that RBFCAC finally violated the QoS contracts due to its error decision of

accepting more users than it should be. In order to provide QoS guarantee for RBFCAC, we
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have to prepare much more training data, especially those around the acceptance/rejection
boundary. This will increase the training time of RBFCAC in each epoch than those required
by NFCAC and NNCAC. Moreover, the overall processing time of RBFCAC is greater than
that needed by either NFCAC or NNCAC because RBFCAC uses more nodes (compared
with NFCAC) and a more complicated activation function (compared with NNCAC). All

these would degrade the performance of RBFCAC in real application.

3.4 Concluding Remarks

This chapter has proposed a neural fuzzy approach for connection admission control in
high-speed multimedia networks. The neural fuzzy connection admission control (NFCAC)
scheme combines the linguistic control capability of a fuzzy logic controller and the learning
ability of a neural network. This type of integrated neural fuzzy system can automati-
cally construct a rule structure by:learning“from training examples and can self-calibrate
parameters of membership functions. It nét only provides a robust framework to mimic
experts’ knowledge embodied in existing traffic contrel techniques but also constructs intel-
ligent computational algorithms for traffic control. It can be easily trained and enhances
system utilization. Simulation results show that the proposed NFCAC scheme provides sys-
tem utilization about 32% and 11% higher than the EBCAC and FLCAC schemes proposed
in [10] and [18], respectively, and the NFCAC scheme requires only a fraction of the 103
order and the 10! order of training cycles, consumed by the NNCAC scheme proposed in
23] and RBFCAC scheme, respectively. An NFCAC scheme such as the one introduced here
may be the answer to the problem of designing a coherent call admission controller for ATM

systems.
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Chapter 4

Intelligent Connection Admission
Control Scheme for Multimedia
High-speed Networks Using
Frequency-domain Traffic Parameters

As contrast to the CAC scheme propesed in Chapter 3, which is based on
the time-domain traffic parameters to-make CAC decisions, this chapter pro-
poses a power-spectrum-based neural-net connection admission control (PN-
CAC) scheme for multimedia high=speed A TM networks. It employs a neural
network controller to handle the. CAC function according to the frequency-
domain power spectral density (PSD) parameters of the traffic sources. Since
the PSD function of an input traffic contains the correlation and burstiness
properties of the traffic, and it has been proven capable to characterize the
queueing performances of the input traffic, the PSD parameters describing the
PSD function can well correspond to the queueing performances also. With a
composition algorithm to easily obtain the three PSD parameters of an aggre-
gate traffic, it is suitable to adopting PSD parameters for CAC accordingly.
Stmulation results show that, after well training the neural network, an op-
timal CAC decision hyperplane based on the input variables is constructed
to provide an efficient and robust admission control under dynamic network

environments, while the QoS requirements are strictly assured.
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4.1 Introduction

Multimedia high-speed networks should be equipped with a set of traffic control functions
to ensure QoS of each service connection and to enhance system utilization. One of the traffic
control functions is connection admission control. Connection admission control (CAC) is
defined as “a set of actions taken by the network in order to determine whether a connection
can be accepted” [31]. A new connection is accepted only if sufficient network resources are
available and the required performance can be maintained.

Several conventional CAC control techniques for high-speed networks have been proposed.
In the peak rate allocation, QoS is always guaranteed if the aggregate bit rate never exceeds
the system capacity. However, it leads to low utilization of network resources. An equivalent
capacity (effective bandwidth) method was;preposed to estimate the required bandwidth
for individual or aggregate connections withedesired QoS [8], [11]. A call admission scheme
by inferring the upper bound of cell loss probability from the traffic parameters specified
by users was studied in [13]. And & simiple-bandwidth assignment policy by classifying all
traffic sources was presented. All the studies were eonducted mainly on the basis of traffic
parameters in time domain.

On the other hand, Li and Hwang [33] and Sheng and Li [34] have studied the queueing
performance of a high-speed network from the point of view in the frequency-domain traffic
parameters. The process of input traffic inherently contains a power spectral density (PSD)
function, which is the Fourier transform of the input traffic process’s autocorrelation function.
From their studies, two characteristics of PSD are concluded: (i) The PSD can be represented
by three main parameters such as the DC component, the average power, and the half-
power bandwidth. (ii) The low-frequency band of the input PSD has a dominant impact on
queueing performance, while the high-frequency band can be neglected to a large extent. It

is because the low frequency component of PSD contains the correlation and burstiness of
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the input process. The more the low-frequency components are, the burstier the input traffic
will be [35]. Therefore, according to the above two PSD characteristics from Li’s studies, it
can be conducted that these three PSD parameters can well characterize the input traffic
and correspond to its queueing performances, and thus this reveals a chance to employ the
PSD parameters for CAC.

A composition algorithm is proposed in [36] to obtain the three PSD parameters of an
aggregate traffic source from the given PSD parameters of these individual traffic sources
which build the aggregate one. The computation process of the composition algorithm is just
through some simple arithmetic operations. It can then be concluded that PSD parameters
possess additive property; this makes the PSD parameters more suitable for admission con-
trol, no matter how many types of traffic sources there are, because the PSD parameters of
the virtually aggregated total traffic enrolling the mew call could be easily derived as the new
call request arrives and maintain thé same (three) reference variables, which can correspond
to the queueing performances, for the admission control decision making. The design of the
CAC algorithm based on PSD parameters'can be made accordingly and this indeed greatly
reduce the complexity for admission control!

A power-spectrum-based table-lookup CAC method for multimedia communications in
ATM networks was studied, where the table content was the cell loss probability indexed by
the PSD parameters of voice/video calls and arrival rates of data calls [36]. The table can be
constructed through several explorative simulations. However, since the table is constructed
based on the original three parameters for the power-spectrum: DC component, half-power
bandwidth, and average power [36], there is a drawback of large-dimensional CAC table. An
“equivalent source” concept is consequently introduced to transform the PSD parameters
of an offered traffic source into the so called “equivalent” PSD parameters which are corre-

sponding to another (equivalent) traffic source [37]. The word “equivalent” exactly stands for
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almost the same queueing performances in some evaluation aspects. That is, the correspond-
ing traffic source with the “equivalent” PSD parameters generated by the transformation is
expected to have equivalent queueing performances with the offered traffic source character-
ized by original PSD parameters, so that the equivalent PSD parameters could substitute the
original ones. The transformation was done by using a low-pass filter and an integrator, while
a heuristic method to obtain a typical value for the cut-off frequency is adopted. A modified
power-spectrum-based table-lookup CAC method was then proposed in [37] where the CAC
lookup table is significantly reduced by one dimension than that proposed in [36], since the
PSD parameters of each table entry in [36] can be transformed to the equivalent ones with
the pre-defined half-power bandwidth value which is identical among all transformed entries,
and thus only the DC component and the transformed equivalent average power have to be
specified to characterize and distinguish each (voice/video) traffic source. The offered three
PSD parameters of a new call request would also be transformed to the equivalent ones at
first to adapt to the operations based on|the dimension-reduced CAC table. Although the
transformation may introduce some’degradations on performances, simulation results show
that the modified power-spectrum-based table-lookup CAC scheme is still efficient enough
by about 9% higher system utilization than that of the conventional equivalent capacity
CAC method [8], while improves the feasibility for practical implementations.

In recent years, neural networks have been widely employed to deal with the traffic control
problems in high-speed multimedia networks [20], [23]. A major feature of the neural network
is the self-learning capability which can be utilized to characterize the relationship between
input traffic and system performance. In [20], Hiramatsu proposed a connection admission
controller using neural network. The neural network in the controller learns the relations
between the offered traffic and the service quality. Because the declared traffic parameters

were used only to divide calls into several bit-rate classes, the neural network actually learns
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the relationship between the numbers of existing connections in each bit-rate class and their
corresponding (QoSs according to the statistical characteristics of each bit-rate class. Results
showed that the neural network learned a complicated boundary for call acceptance decision.
We have also proposed a neural network connection admission control (NNCAC) scheme [23]
and a neural fuzzy connection admission control (NFCAC) scheme as mentioned in Chapter 3
for ATM networks. Simulation results reveal that call admission control with either neural
networks or neural fuzzy networks can improve significantly system utilization, under QoS
constraint.

In this chapter, we propose a power-spectrum-based neural-net connection admission
control (PNCAC) method for multimedia high-speed networks. It introduces the three PSD
parameters (DC component, half-power bandwidth, and average power) of the virtually ag-
gregated total traffic as inputs and cheoses a neural.network controller to accommodate all
the inputs and generate the admission control decisions. We first transform the time-domain
parameters of source traffic of connections into the power-spectrum parameters in frequency
domain, then a decision hyperplane of the‘tconnection admission control is constructed under
the constraint of QoS after the neural network"has been trained. The decision hyperplane
splits the sample space into two — one is for “accept” and the other is for “reject.” We further
adopt the learning/adapting capabilities of the neural network to adjust the optimal location
of the boundary between these two decision spaces (i.e. use the back-propagation training
algorithm to adjust the link weights of PNCAC to the optimum value). Simulation results
show that PNCAC achieves higher system utilization, superior by 23.8% to the conventional
equivalent capacity CAC proposed in [8], and comparable to that of Hiramatsu’s neural
network CAC (NNCAC) [20]. However, PNCAC is more robust than Hiramatsu’s NNCAC
in dynamic high-speed multimedia networks whose characteristics may alter with time. As

characteristics of traffic sources change, the connection number of each traffic type utilized
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as the input variables in Hiramatsu’s NNCAC can no longer characterize the traffic. At this
time, Hiramatsu’s NNCAC should perform on-line training and even the node-growing or
-pruning learning process in order to adapt to the variation in traffic sources; otherwise, the
performance would deeply degrade with the QoS no longer guaranteed. However, the pro-
posed PNCAC can still perform well without any other modifications or re-training process.

The rest of the chapter is organized as follows. Section 4.2 describes the transformation
of time-domain traffic parameters of an input process into power-spectrum parameters of its
power spectral density. In Section 4.3, we describe the system configuration and address the
design of the proposed PNCAC. In Section 4.4, some simulation examples are illustrated to
justify the feasibility of PNCAC, by comparing it with the conventional equivalent capacity
CAC (ECCAC) and the Hiramatu’s NNCAC. Finally, concluding remarks are presented in

Section 4.5.

4.2 Power Spectrum of Input Process

If an input rate process a(t) is modeled as an (M 1)-state Markov-modulated Poisson
process (MMPP), the MMPP can be represented by (Q,r), where Q is the state transition-
rate matrix and r = [yg, 71, -..., Yar] 18 the vector representing the arrival rate at each MMPP
state. The stationary probability vector of state, denoted by II = [m, 7, ...., mp], can be
obtained by solving equations of IIQ = 0 and Ile = 1, where e is an unit column vector.

The average input rate 7 is then given by

M
1=0

Q is diagonalizable and can be represented by spectral decomposition as

M
Q=> \gh, (4.2)
1=0
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where )\; is the [-th eigenvalue of Q, and g; and h; are the associated right column and left
row column eigenvectors of Q with respect to A;, respectively [34].

Then the autocorrelation function of the MMPP, defined as R(7) = a(t)a(t + 7), can be
derived. Its corresponding PSD, denoted by P(w), can also be given, via Fourier transfor-

mation of R(7), by [34]

M
P(w) =7+ 21000 (w) + > b(w), (4.3)
=1
where
oo forw=0
Ow) = { 0 elsewhere; (4.4)

Ug is the DC component, given by
U = 7% (4.5)

and b(w) is the bell-shaped function withwespect, to non-zero \;, given by

VB
b = : 4.6
U, in (4.6) is the average power contributed“by A, given by
Uy = > mlgubg for 1 <1< M, (4.7)

LI

where g;; and hy; are the i-th and j-th entities of the vector g; and hy, respectively. B; in (4.6)
is the half-power bandwidth, B, = —2Re{\;}, and the w; in (4.6) is the central frequency of
the bell-shaped function b;(w), w; = Im{\}, where Re{-} and Im{-} denote the real part
and the imaginary part of the argument, respectively.

From (4.3), it can be found that the PSD of an MMPP process is constituted by white
noise 7, DC component 27V, and a set of bell-shaped functions b;(w) described by the
average power U, the half-power bandwidth B;, and the central frequency w;, with respect
to the [-th eigenvalue of Q. The white noise is contributed by the Poisson local dynamics.
From the result showed in [33], the influence of the white noise on a queueing system can be

neglected.
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If the traffic source is further assumed to be an (M + 1)-state birth-death MMPP, which
is a superposition of M independent and identically distributed (iid) two-state MMPPs
with parameters (a, 3,7,) as shown in Fig. 4.1, it would have all eigenvalues real and all
bell-shaped functions zero-centered. Take a two-state MMPP for example, its time-domain
traffic parameters described by («, 3,7,) is shown in Fig. 4.2(a), and the PSD parameters
characterized by (5, B, ¥) are shown in Fig. 4.2(b), where 5 = &%= B = 2(a + ), and

o+

U = (265;3)2 The PSD of the (M + 1)-state birth-death MMPP can be obtained by com-

posing PSDs of the M iid two-state MMPPs into a composite power spectrum which is

further approximated by an impulse DC component and a single bell-shaped function with

parameters:
Mpr,
T = (45)
B = p2(a.4 B (4.9)
M 2
U = (ai—%Q (4.10)

The composition algorithm for the two different power spectrums is stated in the appendix
content of section 4.6.

Therefore, it can be concluded that: a birth-death MMPP traffic source can be described
by its PSD with power-spectrum parameters (7, B, ¥) including the DC component (¥), the
half-power bandwidth (B) and the average power (¥) of the bell-shaped function. These
parameters can be obtained from the (M + 1)-state MMPP parameters («, 3, 7,). The larger
the mean input rate is, the higher the 4 will be; the more correlated the input process is,
the smaller the B will be; and the larger the input rate variance is, the higher the ¥ will be.
Moreover, PSD parameters of input process possess additive property, which does not exist
in the time-domain traffic parameters.

When a new call request provides its time-domain traffic parameters such as peak bit

rate (Rp), mean bit rate (Rys), and average peak bit rate duration (7)) during the call
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Figure 4.1: The (M+1)-state birth-death MMPP model

establishment phase, the modeled (M +4sb)-state birth-death MMPP process with parameters

(a, B,7,) can be obtained from these traffic parameters. (Rp, Ry, Tp) by

1
R
- , 4.12
0 = N Ry — ) (4.12)
Rp
= —. 4.1
To 7 (4.13)
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Figure 4.2: The time/frequency-domain parameters of the two-state MMPP
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And the power-spectrum parameters (3, B, ¥) of the input traffic of the new call can then
be converted from the (M + 1)-state birth-death MMPP parameters (a, 3, 7,) by Egs. (4.8)-

(4.10).

4.3 PSD-based Neural-net Connection Admission Con-
troller

Fig. 4.3 shows the functional block diagram of the PSD-based neural-net connection
admission controller. It mainly contains a PNCAC' controller, a time/frequency parameters
converter, a data rate register, a PSD parameter register, a data rate composer, and a power
spectrum composer. Input traffic is assumed to be classified into two types. Type-1 traffic
is the real-time traffic such as voice and video, and type-2 traffic is the non-real-time traffic
such as data.

As the new call request for type-1 traffic claims its traffic parameters: Rp, R, and
Tp in the call establishment phase; the time/frequency-parameter converter transforms the
(Rar, Rp, Tp) in time domain into (¥, B, ¥) in frequency domain. The PSD parameter reg-
ister keeps the record of the power-spectrum’ parameters (yg, Bp, Vi) of the total existing
type-1 connections, where 4 is the total average input rate, Bg is the total half-power
bandwidth, and Vg is the total average power. The two sets of parameters (3, B, ¥) and
(Y, Be, Vg) are added to form a new set of parameters (77, Br, Ur) through the power spec-
trum composer which performs the power spectrum composition and approximation functions
mentioned in section 4.6. If the new call request belongs to type-2 data traffic, it claims the
data rate I' as the traffic parameters in the call establishment phase. The data rate register
records the overall data rate I'g of the existing type-2 connections, and the data rate com-
poser adds these two data rate, I' and I'g, to form a new parameter I'y. The set of PSD

parameters (37, Br, Ur) accompanied with the data rate I'r is then fed into the PNCAC
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controller as the input variables. As shown in Fig. 4.4, the PNCAC controller is a multi-
layer feedforward neural network [1], [23], which possesses capabilities of approximation to a
perfect connection acceptance decision function. And a back-propagation learning algorithm
6] is used here to train the neural network. The PNCAC controller will then decide whether
to accept or reject this connection request using the neural-network and feed the decision

output (Y) back to the source.

New Call Request .
for Voice & Video | | Time/Frequency (FBY)
> Parameters >
Ry ,Rp,Tp) Converter )
New Call Request
for Data (Ir)
>| Data Rate )
( F) 4 Composer
Register | (%) PNCAC
A \V2 Controller
paD | (B Power |(7r,Br,'¥r)
Register Spectrum )
A A Composer
< f
\
Accept / Reject Y

Decision

Figure 4.3: The functional block diagram of the PSD-based neural-net connection admission
controller

If the decision is to accept the new type-1 call, the PSD parameter register will be
triggered to update the stored power-spectrum parameters (g, Bg, V) to be (37, By, V).
So does the type-2 data rate registerif a type-2 call is accepted. If the decision is to reject the
new call, no updating procedure is needed. Notice that (3, B, ¥) or I" should be subtracted
from (yg, Bg, V) or 'y when a type-1 or type-2 call is disconnected, respectively, which is
not shown here.

The implementation of the proposed PNCAC takes about 200 lines of C codes, in which
370 multiplication and 310 addition operations are included. The computation time to make

an admission decision would be no more than 500usec under general purpose CPU such as

80



INTEL Pentium-II or above. Therefore, the PNCAC would be feasible in real implementation
for high-speed multimedia networks. If special purpose CPU or DSP processors with pipeline
architecture or optimized computation capabilities are adopted, less time should be taken to
response to a call request. Also, the compiled machine (execution) codes for INTEL CPU is
about 20KBytes. The proposed PNCAC scheme can even be downloaded to the embedded

systems (platforms).

\A

> Y
= (Accept / Reject)

X
=(7p By, ¥, 1)

Figure 4.4: The basic structure of the PNCAC controller

4.4 Simulation Results and Discussions

Here we assume that the call admission controller is designed and implemented in an
ATM switch/router in multimedia high-speed networks, and input messages are segmented
into fixed-length ATM cells. Two separate buffers with buffer size K1 and K2 are for type-1
and type-2 traffic, respectively. One buffer space can accommodate one ATM cell. When
the buffer is full, new coming cells are blocked and lost. The service discipline for type-1

and type-2 traffic is that the system initially allocates equal capacity for both types, and the
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remaining capacity of one type traffic can be used by the other type traffic.

In the simulations, the buffer sizes K1 and K2 are all set to be 100 cells; the system
capacity is assumed to be 150 Mbps. Different QoS requirements for these two types of traffic
are defined: the required cell loss probability is set to be 107 for type-1 traffic and 107 for
type-2 traffic. The voice sources are modeled by a two-state on-off Markov chain (MMPP);
the video sources are modeled by a modified Markov process addressed in Chapter 3, where
the numbers of video interframe and intraframe are assumed to have five states; and the
data sources are modeled by a Poisson process. The traffic parameters for voice and video
sources are shown in Table 4.1, and the mean rate for data sources is 1 Mbps. The call
arrival rate for voice is 15.4 calls/sec with mean holding time of one minute, the call arrival
rate for video is 0.082 calls/sec with mean holding time of five minutes, and the call arrival
rate for data is 3.2 calls/sec with meantholding time.of 20 seconds. For all traffic types, the
call arrival processes are assumed to be independently Poisson distributed, and the mean
holding time is assumed to be exponentially distributed; Note that in the transformation of
the three input time-domain paraméters (Ry;, Rp, Tp) into PSD parameters (7, B, ¥), both
voice and video sources are assumed to bé two-state birth-death MMPP.

The neural networks adopted by the PNCAC is a three-layered full-connected feedforward
neural network with 50 hidden nodes, as the one used by Hiramatsu’s NNCAC which has
30 hidden nodes. It uses 683 and 280 training data and takes about 221,467 and 199,501

iterations to well train the PNCAC and Hiramatsu’s NNCAC, respectively.

Table 4.1: Traffic source parameters

’ Traffic Parameters \ Peak Rate \ Mean Rate \ Peak Rate Duration

Voice 64.0 Kbps | 27.6 Kbps 1.366 sec
Video 5.7 Mbps | 1.9 Mbps 0.033 sec
Data - 1.0 Mbps -
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Fig. 4.5 shows the cell loss ratio of type-1 traffic in (a), the cell loss ratio of type-2 traffic
in (b), and the system utilization in (c) for the three approaches, where the characteristics of
traffic source in simulation are exactly the same as the ones used in training data generation
phase. We can find that, after the neural networks have been well trained, both Hiramatsu’s
NNCAC and PNCAC have larger cell loss ratio than ECCAC, but still guarantee QoS re-
quirements; while Hiramatsu’s NNCAC and PNCAC can improve significantly the system
utilization over the conventional ECCAC by about 24.4% and 23.8%, respectively. Note that
this utilization is obtained by averaging those values between 10° and 2 x 10° slot times. It is
due to the learning and adaptive capability of neural networks. Also, Hiramatsu’s NNCAC
has slightly better system utilization than PNCAC by about 0.6%. This is because Hira-
matsu’s NNCAC adopts the connection number of each traffic characteristic as the input to
decide whether a call request is accepted or not, and.the traffic characteristics in simulations
are exactly the same as the ones used in training.data generation phase for Hiramatsu’s
NNCAC.

We further consider two simulation examples when-the neural networks were well trained
according to the traffic characteristics illustrated in Table 4.1, but the system receives heavier

and lighter traffic sources with parameters in Table 4.2 and Table 4.3, respectively.

Table 4.2: Heavier traffic source parameters

] Traffic Parameters \ Peak Rate \ Mean Rate \ Peak Rate Duration

Voice 64.0 Kbps | 40.958 Kbps 1.742 sec
Video 11.4 Mbps | 3.8 Mbps 0.033 sec
Data - 1.5 Mbps -

Fig. 4.6 shows the cell loss ratio of type-1 and type-2, and the system utilization, for the
heavier traffic source, in (a), (b), and (c), respectively. It can be seen that the cell loss ratio of

Hiramatsu’s NNCAC, denoted by the dashed line, seriously violates the QoS requirements,
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Table 4.3: Lighter traffic source parameters

’ Traffic Parameters \ Peak Rate \ Mean Rate \ Peak Rate Duration

Voice 64.0 Kbps | 23.042 Kbps 0.98 sec
Video 2.85 Mbps | 0.95 Mbps 0.033 sec
Data - 0.5 Mbps -

in both type-1 and type-2 traffic, although the utilization of Hiramatsu’s NNCAC is the
highest one and approaches 100%. On the other hand, the proposed PNCAC and ECCAC
can still fulfill the QoS requirements, and the system utilizations of PNCAC and ECCAC
are 85.8% and 77.7%, respectively.

Fig. 4.7 shows the cell loss ratios of type-1 and type-2, and the system utilization, for the
lighter traffic source, in (a), (b), and (c), regpectively. It can be seen that all the three CAC
schemes have zero cell loss ratios and guarantee. thé.required QoS but obtain low system
utilizations, compared to those of:the normal. ¢ase-shown in Fig. 4.5. The Hiramatsu’s
NNCAC suffers more degradation and turns.out to have the worst system utilization.

From these two simulation examples;:it can be¢oncluded that Hiramatsu’s NNCAC has
worse adaptivity and flexibility than PNCAC and ECCAC. This is because the connection
number of each traffic type adopted by Hiramatsu’s NNCAC could apply only when the traf-
fic characteristics of traffic sources fed into the operational system are the same as the ones in
the training phase. However, this is usually impossible in real practice. As traffic character-
istics of sources change, the neural network should learn to adapt to the variation in sources
by on-line training, and moreover, the structure of the neural network should be modified to
have proper inputs by node-growing or -pruning learning process, if necessary. This would
make Hiramatsu’s NNCAC infeasible. Because both ECCAC and PNCAC depend on traffic
characteristic parameters which can react to the variation in traffic characteristics, these

two schemes can adapt to traffic properly without any other modifications or re-training and
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still perform the CAC decision well. It is also because the transformed equivalent capacity
for ECCAC and the PSD parameters for PNCAC are both unified metrics corresponding to
traffic characteristics of all different sources and possess additive property, while the con-
nection number adopted by Hiramatsu’s NNCAC as the input variables for neural networks
could not be summed for different traffic types.

In addition, the proposed PNCAC has better performance than ECCAC. Both PNCAC
and ECCAC depend on traffic characteristic parameters; however, PNCAC transforms the
three time-domain traffic characteristic parameters into the corresponding three PSD-domain
parameters, while ECCAC converts the same time-domain parameters to a single equivalent
capacity. Although the equivalent capacity is also additive, the proposed PNCAC adopts
the three PSD parameters as the inputs of neural networks to perform the CAC decision,
which could capture more traffic characteristics and less composition approximation error
than the single equivalent capacity. The self-learning capability of neural network also makes

the PNCAC more adaptive to the traffic.

4.5 Concluding Remarks

In this chapter, we propose a power-spectrum-based neural-net connection admission
control (PNCAC) scheme for ATM networks. The PNCAC method adopts the converted
power-spectrum parameters of traffic source to represent its traffic characteristics and uses
neural network to implement the connection admission control. The frequency-domain
power-spectrum parameters of traffic source possess additive property and can capture the
correlation and burstiness behavior more than the time-domain parameters such as peak
rate, mean rate, and peak rate duration. The neural network has the learning/adapting
capabilities so that the boundary of the decision hyperplane for the connection admission

control can be adjusted optimally and dynamically. We demonstrate results whenever the
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input voice and video traffic sources are modeled by MMPP and modified MMPP, respec-
tively, and the data traffic sources are modeled by a Poisson process. Simulation results show
that the proposed PNCAC enhances significantly the system utilization while fulfilling QoS
requirements. Not only it is superior to the conventional equivalent capacity CAC scheme

(ECCAC), it also obtains more flexibility and robustness than Hiramatsu’s NNCAC.

4.6 Appendix: Composition Algorithm for Power Spec-
trums

Assume that by (w) and be(w) are two bell-shaped functions corresponding to zero-centered
PSDs with parameters (91, By, ¥1) and (72, B, W3), as shown in Fig. 4.8, and b(w) is the
approximated bell-shaped function corresponding to the composite power spectrum with pa-
rameters (7, B, V). To compose the tweizero-centeréd PSDs, we add the two DC components
and the two bell-shaped functions directly. Welthen approximate by (w) + ba(w) to be b(w).
In the approximation, we set U =¥, + Wo,sand b(w) = by (w) + ba(w) at w = 0. Therefore,

(7, B, ¥) of the approximated powersgpectrum are given by

¥ o= N+ (4.14)
(V) + Wy) B By

B , 4.15
U, By + Ve BBy ( )

U = U+ U, (4.16)

Note that the approximated bell-shaped function contains more low-frequency components

than by (w) + ba(w).
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Chapter 5

An Intelligent Usage Parameter
Controller for Multimedia High-speed
ATM Networks

For CAC to perform correctly, a traffic policing mechanism is necessary
to ensure that all established conmections,conform to their respective traffic
contracts. Therefore, in this chapter, two antelligent usage parameter con-
trollers are proposed to implement the-traffic policing function for multimedia
transmissions in ATM networks: Ones-the fuzzy usage parameter controller
realized by the fuzzy leaky bucket algorithms; in which a fuzzy increment con-
troller (FIC) is incorporated with the conventional leaky bucket algorithm; the
other is the neural fuzzy usage parameter controller base on the neural fuzzy
leaky bucket algorithm, where a neural fuzzy increment controller (NFIC) is
added to the conventional leaky bucket algorithm. Both of FIC and NFIC
properly choose the measured long-term and short-term mean cell rates, as
mput variables to adaptively determine the optimal increment value. Simu-
lation results show that both intelligent leaky bucket algorithms have signif-
icantly outperformed the conventional one by responding about 160% faster
when taking control actions against a non-conforming connection, while re-
ducing as much as 50% of the queueing delay experienced by a conforming
connection. In addition, the neural fuzzy leaky bucket algorithm outperforms

the fuzzy one especially in the aspect of responsiveness.
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5.1 Introduction

The emergence of multimedia services has diversified the quality-of-service (QoS) and
bandwidth requirements for communication services. Asynchronous transfer mode (ATM) is
considered as a suitable technique to meet the diverse requirements. Several traffic control
mechanisms are recommended for ATM networks [31]. Among them, connection admission
control (CAC) and usage parameter control (UPC) are most important.

CAC is performed at the call setup phase to decide whether the connection can be ac-
cepted or not. It accepts the connection if the required bandwidth and QoS of the connection
can be afforded while QoS of existing connections can still be maintained. A traffic contract,
which specifies traffic descriptors such as the peak cell rate (PCR), the sustainable cell rate
(SCR) and the mazimum burst size (MBS), would then be built between the accepted connec-
tion and the network. For CAC to performmoerrectly; all the established connections must
not violate their respective traffic .«contracts which are-of vital importance to the decision
making of CAC. To make sure thatithe established connections conform to their traffic con-
tracts, the UPC mechanism which is the traffic policing function defined in ATM networks
should be employed and co-operate with the CAC.

UPC is performed at the user-network interface (UNI) during the data transfer phase.
It is defined as the set of actions taken by the network to police the offered traffic of a
connection so that the negotiated traffic contract is respected. That is, some portion of
the traffic of a connection would be dropped or shaped (by introducing queueing effect) to
enforce the resultant traffic compliant with the traffic profile negotiated in the traffic contract
during the call setup phase. Sometimes, the non-conforming portion of a connection would
be tagged rather than directly dropped, so that the residual traffic satisfy the contract and
some future processing would be performed upon the tagged non-conforming traffic to attain

some operation objectives. The main purpose of UPC is to protect network resources from
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malicious as well as unintentional misbehavior which can affect the QoS of other already
established connections.

Monitoring and controlling PCR of a connection is not difficult because we only have to
determine if the peak emission interval is smaller than the reciprocal of the negotiated PCR,
Apcr. However, policing the SCR of a connection is much more complicated because the
connection is eligible to transfer cells with a short-term mean rate higher than the negotiated
SCR, Ascr, while the long-term mean rate of the connection still conforms to Agcgr. The
difficulty of the UPC to control the SCR of a connection lies in finding a simple, universal,
and effective scheme which is able to police any type of traffic to meet the long-term SCR
specified in its traffic contract by making short-term and packet-level processing decision
upon each incoming packet. Besides, the wide variety of multimedia services with different
traffic characteristics and QoS requirements would . further complicate the UPC especially
for the SCR policing. Since the SCR polieing is not a easy job, we here concentrate on the
UPC for the SCR of the offered connection.

In this chapter, we assume that"a traffic shaper (TS) is equipped within the customer
premise equipment (CPE) to regulate the eell'stream of the traffic source so as to conform
the negotiated SCR. The regulation is to alter the traffic characteristics of the cell stream
to achieve a desired traffic shape. However, the consequence of the regulation would cause
an increase in the mean cell transfer delay. The conjunction of TS and UPC, named as TS-
UPC, should employ identical schemes with same parameters settings in both TS and UPC
so that any possible illegal cell that might have been detected as non-conforming by UPC
will be detected ahead of time and saved in the queue by TS. In this way, the TS-UPC can
guarantee zero cell loss ratio at UPC for a non-violating connection. Nevertheless, if a user
intentionally or unintentionally changes the parameters settings in TS and illegally enjoys a

higher bit-rate service there, UPC will detect the violation and take actions against it. The
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Figure 5.1: The connection model

primitive connection model with TS-UPC is shown in Fig. 5.1. The component attached to
the traffic source is the T'S which contains a shaper and a queue. It bypasses the conforming
cells but stores the non-conforming cells in the queue for further legal transmission. The
component at the entrance of the network is UPC, where a policer is incorporated. It
bypasses the conforming cells but drops«of-tags the non-conforming cells.

Three performance objectives have|torbe fulfilled. by TS-UPC and they can also be
adopted as the criteria to evaluate the efficiency of the TS-UPC in ATM networks: (i)
High selectivity (detection accuracy): URC should detect and tag (drop) the non-conforming
cells of a violating connection as many aspossible, while being transparent when the connec-
tion conforms to its traffic contract. (ii) High responsiveness: the time for UPC to detect a
violating connection should be rather short. (iii) Low queueing delay: cells of a non-violating
connection should not experience too much queueing delay at TS. However, the queueing
delay introduced by TS on a violating connection is beyond our consideration.

Several UPC schemes such as the jumping window, triggered jumping window, moving
window, exponentially weighted moving average, and leaky bucket algorithm were studied
and compared [40], [41], [42], [43]. The most popular and well-known policing scheme is the
leaky bucket algorithm because of its simplicity and effectiveness. The conventional TS-UPC
using the leaky bucket algorithm recommended in ITU-T [.371 has a crisp structure with

two fixed parameters of threshold and increment. It uses parametric model to analyze, thus
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resulting in the lack of real multimedia traffic information which are dynamic, imprecise, non-
linear, and even non-stationary. Generally speaking, it is difficult for networks to acquire
complete statistics of input traffic. Therefore, it is not easy to accurately determine the
threshold or the increment in the multimedia traffic flows. The rationale and principles
underlying the nature and choice of the threshold or the increment under dynamic and
bursty conditions are unclear. As a result, the decision process of the network is based on
incomplete information and full of uncertainty.

The fuzzy logic system and neural network are both numerical model-free estimators and
dynamical systems [1]. The fuzzy set theory appears to provide a robust mathematical
framework for dealing with real-world imprecision. Its approach exhibits a soft behavior
which has the capability to adapt to dynamic, imprecise, and bursty environments. The
fuzzy logic system can represent information in a way that resembles natural human com-
munication, and can handle the information-in a:way similar to human reasoning [3], [17],
[18]. It would be an intelligent implementation that mot only refers to the mathematical
formulation of classical control but also mimics expert knowledge in traffic control. Neural
networks are trainable systems that demonstrate the ability to learn, recall, and generalize
from training patterns or data. Through learning, neural networks can predict non-linear
complex functions, thus making themselves effective tools to be employed in ATM networks
for traffic modeling and prediction [1].

In recent years, neural network research has pursued either by a pre-structuring of the
neural network to improve its performance, or by a possible interpretation of the synaptic
matrix following the learning stage; and fuzzy logic research has pursued the development
of methods for automatic tuning of the parameters which characterize the fuzzy control
system. Notice that the fuzzy set theory possesses no clear, general technique to map expert

knowledge of traffic control onto the design parameters of the fuzzy logic controller. Hence,
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one approach that gets benefits of neural networks and fuzzy logics and solves their respective
problems, called neural fuzzy network, is developed. The neural fuzzy network integrates the
fuzzy logics within a neural network. The integration brings the low-level learning and
computational power of the neural network into the fuzzy logic system, and provides the
high-level, human-like thinking and reasoning of fuzzy logic system into the neural network.
The neural fuzzy network generally takes the form of a multi-layer neural network to realize a
fuzzy logic system. It is a structured neural network that can incorporate domain knowledge
from conventional policies; and it not only provides a robust framework to mimic experts’
knowledge embodied in existing traffic control techniques but also constructs intelligent
computational algorithm for traffic control [1].

Some literature had also studied to utilize the intelligent techniques for the UPC [44],
[45], [46], [47]. In [44], a fuzzy logic.implementation of the leaky bucket algorithm that
used a channel utilization feedbackito manage voice cells in ATM networks was proposed.
Simulation results showed that the fuzzy leaky bucket had performance improvement over the
conventional leaky bucket algorithm."In [45], a neural network traffic enforcement mechanism
using window-based scheme for ATM networks was presented. It is based upon an accurate
estimation of the probability density function (pdf) of the traffic via a counting process, and
the system performance is evaluated in terms of the pdf violation. It has scalability and
convergence problems if the number of previous windows is required to be a large value. In
[46], the paper designed a fuzzy traffic policer based on window control scheme, which has
the characteristic of simplicity and the capability to combine a fast responsiveness with a
high-degree selectivity close to that of an ideal traffic policer. In [47], the proposed policing
strategy integrated with a linear prediction filter is used to forecast the cell rate of the policed
traffic source.

In this chapter we propose two intelligent UPC schemes to perform the sustainable-cell-
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rate usage parameter control of multimedia transmissions in ATM networks. One is the fuzzy
TS-UPC realized by the fuzzy leaky bucket algorithm, in which a fuzzy increment controller
(FIC) is incorporated with the conventional leaky bucket algorithm for dynamic increment
adjustment. Two system parameters, the long-term mean cell rate and the short-term mean
cell rate, of a connection are fed into the FIC to adaptively calculate the appropriate in-
crement. Simulation results show that the fuzzy TS-UPC can have higher selectivity, faster
responsiveness, and smaller queueing delay than the conventional TS-UPC, as anticipated.
The other proposed intelligent UPC scheme is the neural fuzzy TS-UPC base on the neural
fuzzy leaky bucket algorithm, where a neural fuzzy increment controller (NFIC) is added to
the conventional leaky bucket algorithm to dynamically adjust the increment. Neural fuzzy
network is a structured neural network; it integrates intelligent learning and computation of
neural networks with fuzzy logic systems. Also, the reinforcement learning is here applied for
NFIC since we cannot measure the desired inerement. Simulation results show that the neu-
ral fuzzy TS-UPC performs further better than the fuzzy TS-UPC in the above-mentioned
performance measures of selectivity,sresponsiveness; and queueing delay, especially as the
multimedia traffic flows are more bursty, dynamic, and non-stationary.

The chapter is oriented as follows. In Section 5.2, we provide an introduction of the leaky
bucket algorithm recommended in ITU-T 1.371 for conventional TS-UPC and the problems
it encounters. In Section 5.3, we describe the proposed fuzzy leaky bucket algorithm for
the fuzzy TS-UPC. In Section 5.4, we describe the proposed neural fuzzy leaky bucket algo-
rithm for the neural fuzzy TS-UPC. The performance measures of selectivity, responsiveness,
and queueing delay for the conventional TS-UPC, the fuzzy TS-UPC, and the neural fuzzy
TS-UPC are compared in Section 5.5. Finally, some concluding remarks are presented in

Section 5.6.
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5.2 Leaky Bucket Algorithm

ITU-T Recommendation 1.371 [31] recommends the Generic Cell Rate Algorithm (GCRA)
as a conformance test for the cell stream of a connection. GCRA has two equivalent versions
— the virtual scheduling algorithm and the leaky bucket algorithm. The latter seems to
be better comprehended since it can be pictured as a virtual leaky bucket whose content
determines the conformance of a cell. As shown in Fig. 5.2, the leaky bucket is viewed as a
finite capacity bucket whose real-valued content drains out at one unit rate but is increased
by T" units for each conforming cell. If a cell arrives at the time when the bucket content
X’ is above the threshold value 7, then the cell is non-conforming; otherwise, the cell is

conforming and the bucket content is added by an increment 7.

Arrival of a cell at time ta

next cell i
X' =X-(ta-LCT)
Non- Yes
< Conforming
Cell
No
Conforming Cell

X =max(0, X) + T
LCT = ta

X Value of the Leaky Bucket Counter
X' Auxiliary Variable

LCT Last Conformance Time

T Increment Value

T Threshold Value

Figure 5.2: The flow chart of the conventional leaky bucket algorithm

The conventional TS-UPC employs the leaky bucket algorithm in the shaper and the

policer as their schemes to monitor the sustainable cell rate of a connection. The threshold
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value 7 is taken to be 751 + 74 p and the increment 7T is taken to be the reciprocal of the
negotiated sustainable cell rate Agcr of the connection, where 7757 is the intrinsic burst
tolerance (IBT) used to limit the burst size to the negotiated maximum burst size (MBS)
and T4 is an additional tolerance added to account for the cell delay variation (CDV)
introduced by multiplexing schemes. Details of the two parameters 7,57 and 74, can be
found in the ITU-T Recommendation 1.371.

If Agscr is set to be the mean cell rate A,,cqn, for the TS-UPC, then the possible rate
fluctuations of the connection around the claimed mean cell rate will cause the leaky bucket
within TS to detect some non-conforming cells. These detected non-conforming cells are
stored in the queue, resulting in a long queueing delay. The undesirable long queueing delay
can be avoided by making the bucket threshold 7 in T'S and UPC deviate from 751 + Téc g
to a large value. Unfortunately, a higher 7 would ¢ause the slower response time for UPC.
Another solution without changing the bucket threshold is to make Agcr be A,eqn multiplied
by a magnifying factor C', C' > 1. By doing. this, we cam eliminate the retardation provoked
by a higher 7. However, it has a risk of Tetting a gonnection with small rate fluctuations,
e.g. a CBR connection, enjoy bandwidth higher than that negotiated. There are an infinite
number of admissible couples of values for Agscr and 7. The detailed analysis for the selection

of Ascr and 7 and the consequent system performance can be found in [48].

5.3 Fuzzy Leaky Bucket Algorithm

Fig. 5.3 shows an intelligent leaky bucket algorithm which contains the conventional leaky
bucket algorithm (enclosed by the dashed line) incorporated with an intelligent increment
controller (IIC). The first intelligent leaky bucket algorithm we proposed is the fuzzy leaky
bucket algorithm which employs a fuzzy increment controller (FIC) to implement IIC. FIC is

a fuzzy logic controller and is designed to dynamically adjust T, instead of using a fixed T' =
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1/Ascr, so that the selectivity, responsiveness, and queueing delay can be optimally achieved.
The reason we use the fuzzy logic system to implement the increment controller is that the
fuzzy logic can represent information in a way resembling natural human communication
and handle the information in a way similar to human reasoning [3]. The domain knowledge
for the adjustment of 7" is as follows. When the cell stream of a connection appears to
be violating the negotiated sustainable cell rate, T' should be adjusted to be big so that
the leaky bucket can quickly detect the non-conforming cells; while in contrast, when the
cell stream of a connection appears to be conforming or conservative to the sustainable cell
rate, T' should be adjusted to be reasonably small so that no cell of the connection will be
detected as non-conforming cells by the fuzzy leaky bucket (i.e., the leaky bucket would be

transparent to the connection).

Arrival of a cell at time ta

next cell ¢
X'=X-(ta-LCT)

Non-
< Conforming
Cell

No

Conforming Cell
X=max(0, X)+T
LCT =ta

:Conventional LB

Intelligent Increment
Controller (1IC)

X Value of the Leaky Bucket Counter
X' Auxiliary Variable

LCT Last Conformance Time

T Increment Value

T Threshold Value

Note that IIC is either FIC or NFIC

Figure 5.3: The intelligent leaky bucket algorithm
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Figure 5.4: (a) The membership functions for the input variables Ay and Ag (b) The mem-
bership functions for the output variable T

We choose two input variables for FIC — the long-term mean cell rate Ay and the short-
term mean cell rate Ag of the connection being policed. The long-term mean cell rate is
defined as the average cell rate of a gonnection sing¢e the beginning of the connection, and
the short-term mean cell rate is defined as'“a“moving average cell rate in a time window.
Ar and Ag are used to provide an<ndication of the conformance degree of the connection.
At the arrival of a cell, the statisticssof A; and Ag are fed into FIC to obtain an optimal
increment 7'.

We design Ay and Ag to have the same term set — {Low, Moderate, High}. And let
T have five terms — {VerySmall (1), Small (Ty), Medium (T3), Big (1y), VeryBig (Ts)}.
Fig. 5.4(a) and Fig. 5.4(b) show the membership function of the input and output variables,
respectively. The membership functions for {Low, Moderate, High} are denoted by {Arf,,
Ao, Api}; the membership function for {74, Ty, T3, Ty, Ts} are denoted by {Ar,, Ar,, Ar,,
Ar,, A1, }. These membership functions in the figures are represented by either triangular
or trapezoidal functions, which have the advantage of simple computational complexity.

The rule base is designed according to the domain knowledge on how the fuzzy increment

controller should behave. For example, the knowledge and experience tell us: when both Ap
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Table 5.1: The rule base for FIC

’ Rule ‘ AL ‘ AS ‘ T ‘
1 Low Low Very Small (77)
2 Low Moderate | Very Small (77)
3 Low High Small (75)
4 | Moderate Low Small (75)
5 | Moderate | Moderate | Medium (73)
6 | Moderate High Big (T4)
7 High Low Big (T})
8 High Moderate | Very Big (T5)
9 High High Very Big (T5)

and Ag are lower than Agcr, FIC should generate a very small T so that the connection can
enjoy a higher cell rate later because the connection is likely to be too conservative; when
both A; and Ag are higher than Aggg; the conmection is likely to violate the negotiated
sustainable cell rate and FIC should generate a very:.big T so that the violation will be
detected quickly. The inference rule base is shown in Table 5.1. Below is an example of how
the rules should be read.

Rule 1: If (A is Low) and (Ag is Low),"then (T is Very Small).

The proposed FIC is then implemented by the Mamdani fuzzy model introduced in
section 2.2. The linguistic values of T, T5, T3, Ty, and T of the output linguistic variable T
are defined over a discrete universe of discourse having 65,536 points. The inference method
adopts min-maz scheme. Take rule 1 and rule 2 which have the same term VerySmall (T})
for example. In the first step, the min-maz inference method applies the min operator on
membership values of associated term of all the input linguistic variables for each rule. We

denote the firing strength of rule 1 and rule 2 by w; and w»:
w, = mm(ALO(AL), ALO(AS)) (51)

Wy = min(ALo(AL),AM0<A5)). (52)
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Then applying the max operator between w; and ws yields the overall membership value of
T1, denoted by:

wr, = max(wy, ws). (5.3)

The defuzzification method uses the centroid of area mechanism to obtain 7'

T — 2?21 AT<Zi> * 2
Z?:l AT(ZZ') ’

(5.4)

where n is the number of points of the output, n = 65536, z; is the amount of control
output at point i, and Ap(z;) represents its membership value in the output term set

{1, T, T5, Ty, T5} [3], which is given by

Ar(z;) = max [min(wr;, Az, (2:))). (5.5)

j€[1,5]

After FIC is built, the membership, funetionsrean be manually fine-tuned by observing
the progress of simulation. The tuding can-he done Wwith different objectives, such as the
response time and queueing delay: Any gain - in response time must be traded off by a
possible increase in the queueing délay experienced by a cell. However, since the tuning of
the membership functions is intuitive, it is easy to achieve an appropriate balance between
an acceptable queueing delay and a satisfactory responsiveness. The final control surface of

FIC is shown in Fig. 5.5.

5.4 Neural Fuzzy Leaky Bucket Algorithm

The second intelligent leaky bucket algorithm we proposed is the neural fuzzy leaky bucket
algorithm which employs a neural fuzzy increment controller (NFIC) to realize IIC. The NFIC
is a neural fuzzy controller and is also expected to dynamically adjust T' to achieve better
performances on selectivity, responsiveness and queueing delay. The NFIC also chooses the
long-term mean cell rate Ay and the short-term mean cell rate Ag as input variables and

the increment 1" as the output variable; it adopts the same term sets for Ay, Ag, T" and the
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Figure 5.5: The control surface of FIC

same rule base as those employed byt FIC, before the learning. However, the membership
functions for all terms are chosen te be the bell-shaped: function as defined in Eq. (2.19) in

section 2.4.

5.4.1 Structure of NFIC

Here, as shown in Fig. 5.6, the five-layer neural fuzzy controller introduced in section 2.4 is
also adopted to implement the NFIC. The nodes in layer one and layer five are input and out-
put linguistic nodes, respectively. Two input linguistic nodes exist in layer one for input lin-
guistic variables A;, and Ag. There are two kinds of output linguistic nodes: one is for feeding
training data (desired output) r into the net and the other is for pumping decision signals (ac-
tual output) T out of the net. The nodes in layer two and layer four are term nodes which are
respectively corresponding to a linguistic term of the input linguistic variables, and perform
the fuzzification function to map the crisp input into a fuzzy membership value according to

its associated membership function. As mentioned earlier, A; and Ag have the same term
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Layer 5
(output linguistic nodes)

Layer 4
(output term nodes)

Layer 3
(rule nodes)

Layer 2
(input term nodes)

Layer 1
(input linguistic nodes)

Figure 5.6: The structure ‘of the neural fuzzy increment controller (NFIC)

set — {Low, Moderate, High}, thus we have six nodes in layer two, and five nodes in layer
four for the term set {VerySmall (T1), Small (1), Medium (T3), Big (Ty), VeryBig (Ts)}
of T'. The nodes in layer three are rule nodes; each node represents one fuzzy rule and all
nodes form a fuzzy rule base. There are nine nodes in layer three with respect to the rule
base shown in Table 5.1. The links in layer three and layer four, accompanied by the nodes
in both layers, can function as an inference engine — layer-three links define preconditions
of the rule nodes and layer-four links define consequences of the rule nodes. Thus, the links
and nodes in layer three would execute the fuzzy AND operation while the links and nodes in
layer four perform the fuzzy OR operation to integrate the fired strength of rules that have
the same consequence. Accordingly, the fuzzy reasoning is done by the nodes and links in

both layer three and four. The links in layer two and layer five are fully connected between
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the linguistic nodes nodes and their respective term nodes. They can, accompanied by the

nodes in both layers, achieve the fuzzification and defuzzification functions, respectively.

5.4.2 Reinforcement Learning

The diagram of the reinforcement learning for NFIC is shown in Fig. 5.7, where the ATM
system offers statistics of Ay and Ag input to NFIC, provides a reinforcement signal r as
a desired output to NFIC, and receives the updating increment value T from NFIC. The
reinforcement signal is defined as

r=P;— Py, (5.6)

where P; denotes the desired cell loss ratio and Py is the actually measured cell loss ratio.

ATM Systems

Reinforcement
Signal, r

Figure 5.7: The configuration of the reinforcement learning for NFIC

Based on this connectionist structure established in Fig. 5.6, the reinforcement learning is
applied to optimally adjust parameters of input and output membership functions, according

to the input training data, the reinforcement signal, the fuzzy partition, and the fuzzy logic
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rules. It derives updating rules for the mean and the standard deviation of the bell-shaped
membership functions so as to minimize the error function, defined as

1 1,
E = §r2 = 5(Pd — Py (5.7)

For each training data set, starting at the input nodes, the down —up operation can compute
to obtain the actual output of increment T. On the opposite direction, starting at the output
node, the up — down operation is used to compute ?Ti for all hidden nodes, where w is the
adjustable parameters such as the mean and the standard deviation for the input and output
bell-shaped membership functions. We adopt the general learning rule to do the adjustment,
which is given by

oF

wn+1) =wn)+n- (—%), (5.8)

where 7 is the learning rate. The updating rules for parameters are layer by layer listed

below.

0)

Layer 5: The updating rule for mg- ine thisilayer-can-be obtained by

0),(5)
©) _ 0 95 Wi .
J

g

and the updating rule for UJ(O) is given by

m Oy (> a(.o)u(5)) - ugf) (X m(o)a(o)u(5))

o o ij ij ij
J]( )(n—l—l)zaj(- )(n)+7]~7“- J Y — ONEN J _J U (5.10)
(X505 ug)
The error signal, 8, to be propagated to the proceeding layer, is given by
60 =1, (5.11)

Layer 4: In this layer, only the error signal, 554), needs to be computed and propagated. 51(4) is

derived as
005, o) — o5, mO0 )
1"‘ .

©),,6) )2

§W —
Z (>0

(5.12)
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Layer 3: As in layer 4, only the error signal, 5§3), needs to be computed as

5. (5.13)

Layer 2: The adaptive rule of mg) is derived as

m o+ 1) = mf ) -6 A7 SO, (5.14)
]
and the adaptive rule of Ui(j ) becomes
oot 1) = o) g Ky
]
where 5§2) = —>Lqr; and ¢ = —6,(:’) if a§2) is minimum in kth rule node’s inputs,

qr = 0 otherwise.

5.5 Simulation Results and Discussions

We verify the effectiveness of the intelligent-leaky bucket algorithms for TS-UPC by
comparing to the conventional leaky bucket algorithm. In the simulations, the primitive
connection model as shown in Fig. 5.1 is adopted as the system model while a 2-state Markov
modulated deterministic process (MMDP), a 2-state Markov modulated Bernoulli process
(MMBP), and a VBR MPEG video “Star Wars” are employed as three different source
models for the verification. We set the 2-state MMDP and the 2-state MMBP sources to
have the mean active duration of 350 msec, the mean silence duration of 650 msec, and the
mean cell rate Ayeq, = 21.875 cells/sec. The holding time of each state of the two source
models follows a geometric distribution. During the active state, the 2-state MMDP source
is a deterministic process which transmits cells at a fixed packetization interval of Tpcr = 16
msec, whereas the 2-state MMBP source is a Bernoulli process which, for every fixed time

interval Tpcgr = 1.6 msec, is likely to transmit a cell with probability of 0.1. The peak cell
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rate of the VBR MPEG video is 4000 cells/sec, and the mean cell rate A,eqn = 975 cells/sec.
The window size for calculating the short-term mean rate is set to be ten times the sum of
the mean active duration and mean silent duration, i.e., window size = 10 % (350 + 650) msec
= 10 sec.

The primitive connection model with TS-UPC is shown in Fig. 5.1.

In the simulations, C is set to be 1.1, thus for MMDP and MMBP sources, Ascr =
C'* Nppean = 24.0625 cells/sec. The increment T for the conventional leaky bucket algorithm,
which is taken to be the inverse of the sustainable cell rate, equals 0.041558, and the threshold
Tscr of the leaky bucket equals 7757 + T4op, Where gy = [(MBS — 1)(Tscr — Trer)|
and 7505 = Tscor for MMDP and MMBP. In order to compare the performance under the
MMDP and MMBP sources, 75cr for the MMBP source is set to be the same as the MMDP
source. To calculate 7757 for the MMDP source, we need the maximum burst size of the
source. We set the allowed MBS for the MMDP: source to be ten times the mean number
of cell arrivals during the active state, 1.c;; MBS = 103#(350/16) = 218.75 cells. Then Tscr
can be calculated as 5.607. For the'VBR'MPEG video source, 7scr is set to be 3.79, and
MBS = 4870. For simplicity of simulation ‘and not to distract our attention, the queue in
TS is assumed to be of infinite capacity.

In the chapter, we define Source o as the ratio of the actual mean cell rate to the
sustainable cell rate of the traffic source. There are three regions for Source o: non-violation
region, intermediate region, and wiolation region. The non-violation region ranges from
Source ¢ = 0 to Source ¢ = 1/C, where C is the magnifying factor. The user within
this region is a legal user and is guaranteed a zero cell dropping (or tagging) probability
imposed by UPC and a negligible queueing delay introduced by TS. The intermediate region
is the region between Source ¢ = 1/C and Source 0 = 1. Any user within this region is

also a legal user and can still have zero cell dropping probability, but it does not have a
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Figure 5.8: The correspondence between TS o, UPC ¢, and Source o

satisfactory queueing delay. Finallysthe|vidlation region is from those beyond Source o = 1.
The user whose Source ¢ is located in this region is an illegal user, and both the cell dropping
probability and queueing delay are not guaranteed by ‘I'S-UPC.

A connection with Source o may have corresponding T'S o and UPC ¢ for TS and UPC,
respectively, where T'S o (UPC o) is defined as the ratio of the allowed mean cell rate to the
sustainable cell rate at TS (UPC). As can be seen from Fig. 5.8, UPC ¢ is always held 1 for
all Source o’s such that UPC can pass legal cells but drop (tag) illegal cells. TS o is fixed
at 1 for Source 0 < 1, denoting that legal cells can pass TS transparently; TS 0 = Source
o for Source o > 1, denoting that the illegal calls can still pass TS in the sense that the
badly-behaved user of the connection enlarges TS o and intends to illegally enjoy a higher
bit-rate service. If the user had not changed TS o, then the cell stream passed by TS would
have been conforming even though Source o > 1, but there would be tremendous queueing
delay incurred.

Fig. 5.9(a), Fig. 5.9(b), and Fig. 5.9(c) show the selectivity for the conventional leaky
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bucket algorithm, the fuzzy leaky bucket algorithm, and the neural fuzzy leaky bucket al-
gorithm, under the 2-state MMDP traffic source, the 2-state MMBP traffic source, and the
MPEG video traffic source, respectively. The ideal curve of cell loss ratio is P; = 1—1/Source
o for Source o > 1 and P; = 0 for Source 0 < 1. As it can be seen, the three algorithms
present a zero cell loss ratio for Source ¢ < 1. But for Source o > 1, the neural fuzzy leaky
bucket algorithm has a cell loss ratio closest to the ideal curve, then the fuzzy leaky bucket
algorithm and the conventional leaky bucket algorithm. And in the case of MPEG video
traffic source, the difference phenomenon is more significant. It is because MPEG video
traffic is burstier than MMDP and MMBP traffic sources and the intelligent TS-UPCs can
be more adaptive than the conventional T'S-UPC in dynamic, non-stationary systems.

Fig. 5.10(a), Fig. 5.10(b), and Fig. 5.10(c) show the responsiveness behavior of the three
leaky bucket algorithms under the 2-state MMDP traffic source, the 2-state MMBP traffic
source, and the MPEG video traffic source, for.Source 0 = 1.5. The responsiveness is
illustrated in terms of the cell loss=ratio versus time. From the figures, it can be seen that
the intelligent leaky bucket algorithms not only haye a shorter response time (i.e., the time
it takes control action to start dropping the eells of a violating connection) which is about
1.5 sec., as compared to 4 sec. of the conventional leaky bucket algorithm, but also has a
higher detection rate (i.e., the rate the cell loss ratio grows) than the conventional leaky
bucket algorithm, under the MMDP, the MMBP, and the MPEG video traffic sources. It
is because the adopted intelligent techniques have the ability to quickly express the control
structure system using a priori knowledge; they are less dependent on the availability of
a precise model of the controlled process and are more capable of handing non-linearities.
Also, the neural fuzzy leaky bucket algorithm performs better than the fuzzy leaky bucket
algorithm. It is because the neural fuzzy network is a neural network structured on the

basis of fuzzy logics; it integrates intelligent learning and computation of neural networks
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into fuzzy logic systems. Note that the fuzzy and neural fuzzy leaky bucket algorithms have
similar detection rate to the fuzzy policer proposed in [46], but the former two have much
earlier response time than the latter.

Fig. 5.11 shows the mean queueing delay versus different Source ¢’s under the 2-state
MMDP, the 2-state MMBP, and the MPEG video traffic sources. We only consider the
queueing delay of a connection with Source ¢ < 1 because the mean queueing delay of a
violating connection needs not to be concerned. The figure reveals that the intelligent leaky
bucket algorithms have the queueing delay more satisfactory than the conventional leaky
bucket algorithm, regardless of the traffic source model used. This improvement owes to
the fact that the intelligent leaky bucket algorithms further consider two system parameters,
namely, the long-term and short-term mean rates. With these two parameters, the intelligent
leaky bucket algorithms can know thatithe connection is conforming, so they set the incre-
ment to be very small in order to reduc¢e the probability of cells being stored in the queue
and thus decrease the mean queueing delay. Besides, the'neural fuzzy leaky bucket algorithm
has almost the same mean queueing delay as the fuzzy leaky bucket algorithm. Apparently,
since the traffic source is legal, nearly nothing ‘can be learned from the reinforcement learning

by the neural fuzzy leaky bucket algorithm to improve its performance.

5.6 Concluding Remarks

In this chapter we employ intelligent techniques, which are the fuzzy logic controller and
neural fuzzy networks, to design two intelligent usage parameter controllers for policing the
sustainable-cell-rate of multimedia transmissions in ATM networks. The first algorithm we
proposed is the fuzzy leaky bucket algorithm, which as the name implies, employs a fuzzy
increment controller (FIC) in conjunction with the conventional leaky bucket algorithm. The

FIC monitors the long-term mean rate and the short-term mean rate of a connection and
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uses the fuzzification, inference rules and defuzzification to process them in order to derive
the optimal increment value. The other intelligent leaky bucket algorithm we proposed is
the neural fuzzy leaky bucket algorithm, which utilizes a neural fuzzy increment controller
(NFIC) to dynamically adjust the increment value. The NFIC is basically an FIC except
that it further employs a neural network to optimize its fuzzy logic system through the
reinforcement learning.

Simulation results show that, regardless of the traffic sources chosen, both intelligent
leaky bucket algorithms achieve better performances in terms of selectivity, responsiveness
and mean queueing delay as compared to the conventional leaky bucket algorithm. The
performance gain of the intelligent algorithms is a result of employing fuzzy logic and neural
fuzzy controllers as well as taking the long-term and short-term mean rates as the feedback
information. Based on the feedback imformation, both intelligent algorithms can adapt to
the time-varying and non-stationary traffic,|and thus enhance their performances.

Simulation results also show that the neural fuzzy leaky bucket algorithm achieves better
performances than the fuzzy leaky "bucket algorithm:in all aspects especially the respon-
siveness. Despite the fuzzy logic is excellent in dealing with real-world impression and is
capable of adapting itself to dynamic and bursty environments, it lacks the capability of au-
tomatically constructing its rule structure and membership functions to achieve the optimal
performance. On the other hand, the neural fuzzy leaky bucket algorithm has perfected the
impairment of the fuzzy leaky bucket algorithm by utilizing the learning capability of the
neural network to continuously update the membership functions of the fuzzy logic system.
However, the implementation cost of the neural fuzzy leaky bucket algorithm could be higher

than that of the fuzzy leaky bucket algorithm.
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Chapter 6

An Enhanced Traffic Conditioner for
Multimedia High-speed DiffServ IP
Networks

As the UPC is the traffic policing function defined in ATM networks,
the policing function for the IP_networks is the traffic conditioning function
handled by the traffic conditioner propased . the differentiated services (Diff-
Serv) model. In this chapter, an enhanced traffic marker (ETM) based on the
Two-Rate-Three-Color-Marker (TRTCM) scheme is proposed for the traffic
conditioner to perform traffic policing by praoperly determining the conform-
ing level of the incoming packet amd making a corresponding color notation
on the packet. For the conventional traffic conditioner, the marking fairness
among all connections within the aggregate traffic is not quaranteed because
the processing is in the sense of an aggregate connection only. In addition,
the end-to-end QoS of the applications would be degraded since the only na-
tive demotion processing would make the traffic rate of the high conforming
level decline along the communication route when the traffics traverse across
several network hops or domains [55]. The proposed ETM scheme introduces
the features of aggressive promotion and fair share marking, and incorporates
them into the existing traffic policing function. Simulation results show that
the ETM scheme can fairly allocates the color notations among connections
within an aggregate one and achieves a higher throughput for the traffic of

each conforming level than the (conventional) TRTCM scheme does.
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6.1 Introduction

There are increasing demands for the supporting of quality-of-service (QoS) over Internet.
However, the IP network is basically originated on the “best-effort” service model and can
hardly provides QoS guarantees for any connection because the bandwidth resources are
allocated in a competition sense among all connections. Accordingly, Internet Engineering
Task Force (IETF) has proposed two QoS-provisioning service models, named the Integrated
Services (IntServ) [49] and the Differentiated Services (DiffServ) [50], respectively, to support
Internet QoS. The IntServ model reserves the network resource before using it. It ensures
the end-to-end QoS for each application (i.e. micro-flow) but has the scalability problem
[51]. The DiffServ model focuses on the QoS of the aggregate connections and support only a
set of finite number of predefined QoS classesyin order to reduce the complexity and provide
a promising solution to scalability. The conmections that require a similar QoS level would
be assigned to the same class, and thus (virtually) form an aggregate connection with a
unique QoS processing including traffic tonditiening. In a DiffServ network, an edge router
is responsible for classifying the traffic into several aggregate connections associated with
different QoS classes, conditioning the classified aggregate connections with respect to their
traffic contract, and also processing the packet according to the QoS requirement defined
for each class. The conditioning and processing functions are handled by a model named a
traffic conditioner.

The traffic conditioner, consisting of a meter, a marker and a shaper (or a dropper), would
continually determine the conforming level of the incoming traffic of an aggregate connection
according to the measured traffic flow and its traffic contract [50], [51]. After that, a notation
would be made on the traffic packets by the marker to indicate the conforming level, and
a corresponding processing action such as dropping, shaping and bypassing is then taken

upon the packets by the traffic shaper or dropper. The packet notation assigned by the
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traffic marker in DiffServ networks is defined as three colors, denoted as green, yellow, and
red, which are corresponding to three different pre-defined conforming levels for the packet
with respect to the traffic contract. The packets assigned a green notation can be called as
green packets for simplicity, and so do the packets marked a yellow or a red notation. The
green packets stand for that these packets belong to the best conforming level and have the
lowest dropping precedence (or the shortest shaping delay); the red packets, on the contrary,
represents that these packets are judged to be with the worst conforming level (e.g. the
violation level) and have the highest dropping precedence (or the longest shaping delay).

Several traffic conditioning schemes such as Single-Rate-Three-Color-Marker (SRTCM)
[52], Two-Rate-Three-Color-Marker (TRTCM) [53] and Time-Sliding-Window-Three-Color-
Marker (TSWTCM) [54] were proposed in RFC to implement the traffic conditioner. The
TRTCM, which is popular because oftits simplicity and effectiveness, adopts a couple of
token buckets to police two rate properties of-a traffic. source simultaneously. The output
traffic rate of green packets as well-as the aggregate output rate of green and yellow packets
are both ensured individually to conform to the traffic-profile, where the green traffic rate is
usually corresponding to the policed mean “(or'sustainable) rate of the incoming traffic and
the aggregated green and yellow traffic rate represents the policed peak rate of the incoming
traffic.

In addition to the color-blind operation mode, where the color marking decisions are
based on only the metering results against the traffic contract, the alternative color-aware
operation mode of the TRTCM performs the color marking according to not only the me-
tering results against the traffic contract, but also the existing color notation of the packets,
simultaneously. The purpose and operation principle of the color-aware mode is to maintain
the existing color notation of the policed packets as best as it can while still conforming to

the traffic contract. This is because, as noted above, the color notation of the packets can
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represent the conforming level and correspond to the pre-defined QoS-provisioning packet
processing behaviors. A packet may originally have its first color notation assigned by the
output shaping function at the source node according to not only the metered results but
also the importance of the packet’s content. By properly allocating color notations represent-
ing higher conforming level and better QoS-provisioning packet processing behaviors to the
packets with application critical contents, the QoS of each application is then expected to be
quite improved while the traffic contract remains assured, since the packets with important
application data are supported and served with better QoS. For example, the I-frame in
the MPEG video is more vital than the other two coding frames, the B-frame and P-frame,
because it serves as the base frame to reconstruct a series of video frames. The packets con-
taining I-frame data can be assigned with the color notation representing higher conforming
level and better QoS-provisioning packet processing.behaviors so that the quality of the re-
played video at the destination canbe improved. Accordingly, the TRTCM operating in the
color-aware mode can support better QoS for the applications than the TRTCM running in
the color-blind mode.

As the TRTCM is a scheme to implement ‘the traffic policing function in DiffServ IP
networks, the packet demotion capability that re-marks a packet with a color notation corre-
sponding to a lower conforming level than its existing one is inevitable and natural. However,
a packet that is demoted due to occasionally short-term congestions or a locally stricter traf-
fic profile may not have the chance to restore its existing or even the original conforming
level. It has also been observed that the output rate of green packets might be impaired by
the excessive incoming yellow packets: many packets with existing green notation are thus
demoted to be with red color directly because the token resources are excessively consumed
by the incoming yellow packets with the rate exceeding the traffic profile. These facts would

result in the end-to-end QoS degradations for the applications since more packets carrying
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critical application data and originally denoted with a high conforming level maybe treated
by worse packet processing behaviors due to the demotions. Also, the marking fairness
among all connections within a (virtual) aggregate traffic is uncertain.

Similar performance objectives such as the selectivity, responsiveness and queueing delay
introduced in the UPC of ATM networks can also be employed to verify the efficiency of
the traffic conditioner. In addition, because the processing of the traffic conditioner is based
on the aggregate connection, the marking fairness for resource share among all connections
within the (virtual) aggregate one could be taken into consideration as another performance
objective. On the other hand, the IP network would be a world-wide network constituted by
several interworking network systems which are hosted by different network service providers
(NSPs). The network management policies of different NSPs may be varied and thus the
definitions of a specific DiffServ QoS.€lass can be.distinct. Therefore, the traffic profile
and the associated QoS-provisioning processing of an aggregate connection corresponding to
the same QoS class may change from network domains'to domains. As noted above in the
TRTCM scheme, the packets might be demoted due to a locally stricter traffic profile and thus
the end-to-end QoS of the applications would be'degraded since the only demotion processing
would make the traffic rate corresponding to the high conforming level decline along the
communication route when the traffic traverse across several network hops or domains [55].
Consequently, a traffic promotion function is also considered as an objective for the traffic
conditioner to not only restore the conforming levels of the previously demoted packets,
but also aggressively promote the packets to higher conforming levels, if possible, for better
application QoSs, while the traffic contract is still be respected. The aggressive promotion
processing can then be equivalently regarded as fully utilizing the network resources to drive
the traffic of each conforming level to achieve as high rate as possible by packet promotions

while conforming to the traffic contract.
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A random early demotion and promotion (REDP) technique [55] was proposed to over-
come the unfair-marking problem. It implements a packet promotion function in addition
to the demotion nature of the RED-In/Out (RIO) [56] marking mechanism, and achieves
marking fairness by appropriately allocating the demotion/promotion probabilities among
packets during the packet demotion and promotion procedures. In order to fully utilize the
network resources for better application QoSs and provide marking fairness among all con-
nections within the (virtual) aggregate one for TRTCM, a TC_PFG marking scheme [57]
was proposed. However, in TC_PFG, only the packets belonging to the yellow conforming
level is allowed to be promoted and this limits its application. Moreover, TC_PFG has the
problem of unjust-promotion that the previously demoted packets can not be guaranteed to
be promoted first when the network resource condition is available to perform the packet
promotion function.

In this chapter, we proposed an enhanéed traffic:marker (ETM) based on the Two-
Rate-Three-Color-Marker (TRTCM) scheme for the traffic conditioner to perform traffic
policing by properly determining the conforming level of the incoming packet and making
a corresponding color notation on the packet." “The proposed ETM scheme introduces the
features of aggressive promotion and fair share marking, and incorporates them into the
existing traffic policing function. Simulation results show that the ETM scheme can fairly
allocates the color notations among connections (micro-flows) within an aggregate one and
achieves a higher throughput for the traffic of each conforming level than the (conventional)
TRTCM scheme does.

The chapter is organized as follows. In Section 6.2, the design of the proposed ETM
scheme is introduced and well described. In Section 6.3, the performance measures about
marking accuracy and fairness of the ETM and conventional TRTCM schemes are evaluated

and compared. Finally, some concluding remarks are presented in Section 6.4.
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6.2 Enhanced Traffic Marker

The ETM is based on TRTCM scheme. It adopts the concept of RED [55] and pro-
vides functions of promotion, fairness-guarantee, and green-packet protection. The promo-
tion function remarks the low-conforming packets into high-conforming ones when there are
excessive resources of the network, and this would improve the throughput of the aggregate
flow. Based on the natural demotion capability and the proposed promotion function, the
fairness-guarantee function further improves the fair share among the connections of an ag-
gregate one by appropriately determining reasonable demotion/promotion probabilities for
the green and yellow packets of each individual connection. The green-packet protection
function allows the token number in the bucket to be in deficit for incoming green packets
to protect them from being affected by excessive incoming yellow packets.

TRTCM is composed of two token bucketsidenoted as Tp and T;. The Peak Information
Rate (PIR), the Peak Burst Size (PBS), the Committed Information Rate (CIR), and the
Committed Burst Size (CBS) are four parameters-to be configured. The size and the token
generation rate of Tp (T¢) are set to be PBS and PIR (CBS and CIR), respectively. Initially,
both the token buckets Tp and T are set to be full. An incoming packet is marked as green
if both T» and T are not empty. A packet is marked as yellow if Tp is not empty and T¢
is empty. If T is empty, the incoming packet is marked as red. After marking, the number
of tokens consumed from Tp and T is depend on the size of the packet.

The functional block diagram of the proposed ETM is illustrated in Fig. 6.1. We adopt
the same architecture and parameters used in TRTCM, but modify its marking algorithm.
The ETM also consists of two token buckets, denoted as Tp and T¢, respectively, and a
marking algorithm processor, the fair traffic marker with aggressive promotion (FTM_AP).
The size and token generation rate of Tp (T¢) are also set to be PBS and PIR (CBS and

CIR), respectively. The FTM_AP works with a record unit and a promotion/demotion
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Figure6.1: ETM scheme

probability generator. The record unit stores‘the flow-id, the existing color, and the arrival
time for incoming packets every At. The number of green, yellow, and red packets of an
individual connection j, denoted by ¢(j), ¥(9), and r(7), respectively, are then recorded. The
promotion/demotion probability generator uses the statistics to estimate the distribution of
incoming packets and determines the promotion/demotion probability for each individual
connection based on the available tokens.

FTM_AP supports the promotion of yellow and red packets to enhance the throughput
as well as achieve better marking fairness. FTM_AP further the original color to reduce the
unjust promotion. For each incoming packet, currently unused (CU) bits in the DS field [50]
are used to store the information of its original color and current color. The original color
is assigned at the source end and the current color could be remarked at any intermediate
node. For simplicity, the G, Y, and R are used to denote the green, yellow, and red original

colors, respectively. Y, for example, can be regarded as a compound color which represents
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that the current color is yellow and the original color is green.

Twelve thresholds are defined and are further categorized into four groups, denoted by
Tuc, Tro, Thp, and Tp, respectively. Tyco and Tre are used in Ty and they divide T¢
into the promotion, balance, and demotion regions. Similarly, Typ and Ty p divide Tp into
three regions. Each threshold group defines three sub-thresholds for packets with different
original color. For example, the thresholds Tyc_ ¢, Tuo_y, and Tye_r defined in the group
Tyc are specified for the original color of green, yellow and red packet, respectively. In order
to mitigate the influence of unjust promotion, the constraint Tx ¢ < Tx_y < Tx_gr, where X
€ {HP, LP, HC, LC'}, should be met. The constraint is to assure that a packet with a higher
original conforming level color at the source would be demoted with a lower probability.

Assume T (t) and Tp(t) denote the number of tokens in T and Tp observed at time
t, respectively. In our design, FTM_AP demotes an incoming packet from green to yellow
when T¢(t) < Tre. The demotion probability B% is given by

Tre x —1c(t)

PY = Mag§ X
Tre x

, (6.1)

where Max§ is the maximum demotion ratiowdefined by the system and X € {G,Y, R} is
corresponding to the original color of the incoming packet. It can be found that a large Tr¢
will result in a higher demotion probability. The demotion probability is increased as the
decrease of available tokens. We further use P and the packet number statistics g(i) to
estimate the actual demotion probability applied on the incoming green packet. At first,
we can obtain the amount of green packets that can pass through ETM without demotion,

denoted by gpqss, by
gpasszzg(i) X (1_PdG)7 (62)
i=1
where ¢(i) is the amount of green packets of the individual connection i; n is the total

number of the individual connection within an aggregate connection. According to the max-

min fairness [58], we have to guarantee the sending rate of the “micro-flow that need less
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(MFNL)” traffic first. The remaining resource is then equally shared by the “micro-flow that
need more (MFNM)” traffic. It means that we shall not demote any green packet for each
individual MFNL connection and then share the remaining resource of gp.ss to the MENM
connections. Assume that there are ny;pyy MEFNM connections and the remaining resource
of gpass 15 gmurnam. Then we can recursively obtain the demotion probability of the green

packet for individual connection j until the following condition is fulfilled:

PG(i) — 0 if 7 belongs to MFNL traffic,
a(7) = 1 — louenp/muens) i 5 pelongs to MENM traffic.

9(7)

(6.3)

That is, for an individual connection containing more green packets (i.e. larger g(j)), its
green packets will have a higher probability to be demoted in ETM.
Similarly, a yellow packet is demoted to be red when Tp(t) < Trp. The demotion

probability P} is given by

Gl Yl BT (¢
P’ = Maz) x M, (6.4)
Tip'x

where Maz) is the maximum demotion ratio defined by the system and X € {G,Y, R} is
corresponding to the original color of the'incoming packet. The amount of yellow packets

that can pass through ETM without demotion, denoted by ¥p,ss, is then given by

Ypass = iy(i)xu —P)). (6.5)

And we can recursively obtain the demotion probability of the yellow packet for individual

connection j as

PY () — 0 if 7 belongs to MFNL traffic,
1 (7) = 1 — WmrNm/nvrNa) if § belongs to MFNM traffic.

y(7)

(6.6)

We will promote the yellow and red packets when there is available resource (i.e. sufficient
token number in Tp and T). Based on the concept of max-min fairness, the individual

connection ¢ that consumes the smallest resource among the connections within the aggregate
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one will be promoted first. In ETM, a packet is promoted by FTM_AP from yellow to green

when T¢(t) > Tye. The promotion probability P) is given by

Te(t) — Tae_x
CBS —Tye_ x’

PY = Maz) X (6.7)

where M aa:}; is the maximum promotion ratio defined by the system and X € {G,Y, R}
is corresponding to the original color of the incoming packet. It can be found that the
promotion probability is raised along with the increase of the available tokens. The excess
resource to be spent for supporting the promotion of yellow packets, denoted as ypom, can

be obtained by
Yprom = Z;y(i) x P (6.8)
The excess resource is then equally shared by the connections whose green traffic after
accumulating the distributed resource does not violate their traffic profiles. We can recur-
sively obtain the promotion probability of the yellow. packet for the individual connection 7,

denoted as Pg/ (7), until the following condition is-fulfilled:

0 if .J violates its traffic profile,
. k
Py (4) = ((ym-ong(i)) / k) ~40) (6.9)
lzly(j) otherwise,

where k is the total number of connections whose green traffic after accumulating the dis-
tributed resource still respect to their traffic profiles.
Similarly, a red packet can be promoted to be yellow when Th(t) > Typ. The promotion

probability Pf is given by

PR = Maz? x Te(t) — Thp x

1
P » X CBS = Typx’ (6.10)

where M axf is the maximum promotion ratio defined by the system and X € {G,Y, R} is
corresponding to the original color of the incoming packet. The excess bandwidth results

from the promotion of red packets, denoted as
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The excess resource to be spent for supporting the promotion of red packets, denoted as

Tprom, 15 obtained by
n

Torom = Y_1(i) X By, (6.11)

i=1

The promotion probability of red packets for the individual connection j, denoted as PpR( 7),

is given by
0 if 7 violates its traffic profile,
. k
P(j) = ((rmomx (g<i>+y(z'>>) / k)—(g(j)+y(j)> (6.12)
=1 : : otherwise.
9(5)+y()

In this equation, k is the total number of connections whose traffic profiles are still be
respected after accumulating the distributed resource and g(j) +y(j) is the resource volume

that has been used by the individual connection j.

6.3 Simulation Results and. Discussions

In this section, two simulation scenarios were presented to verify the marking accuracy and
fairness of the ETM. The results were then compared with the (conventional) TRTCM. The
network configuration for simulation is demonstrated in Fig. 6.2. N micro-flows belonging to
the same service class originate from the sources and traverse across three DiffServ domains
to reach their destinations (i.e. the “sink” node). The link capacity and delay parameter for
each link are directly noted in the figure, and the round trip time (RTT) of a connection is

assumed to be 36ms.

6.3.1 Accuracy of the Marking

The first simulation scenario we take is to verify the marking accuracy of traffic markers. In
this scenario, only single traffic source is necessary (i.e. N = 1in Fig. 6.2.) but diverse traffic
parameter conditions of the source would be considered to explore the marker’s performance

on accuracy. In this chapter, a Pareto traffic source with ten different traffic rate combination
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Table 6.1: System parameters of scenario 1

’ Scheme \ Parameters \ Value
CBS 60 packets

TRTCM PBS 60 packets
Tr p 17 packets
At 0.432 ms
CBS 60 packets
PBS 60 packets

ETM (Max§ ,Mazx¥ Maz¥, Maz®) | (1,1, 1, 1)

(Trea, Trooy, Tro r) (10, 17, 24) packets
(Trp.ay Tupy, Top_r) (10, 17, 24) packets
(Tuc_ay Tucy, Tue r) (36, 43, 50) packets
(Tup_c, Tup_y, Tur_r) (36, 43, 50) packets

conditions is employed. The QoS profile specified at the ER1 is CIR equals to 5Mbps and PIR
equals to 10Mbps and no profiles are specified at ER2 and ER3. That is, the maximum ideal
green and yellow rates observed at:the output:of ER1 are 5Mbps and 5Mbps, respectively,
and the ER2 and ER3 are transparent for-the traffic." The other system parameters and
the simulation results are listed in Table 6.1 and Table 6.2, respectively, and the results are

observed and measured at the output of ERT.

‘— DiffServ Domain 1 —V<— DiffServ Domain 2 —V
f (DS1) i (DS2)

10Mbps m 2Mbps 10Mbps m 2.2Mbps
CR1 CR2

ER1 ER2 ER3
* (ms) \/ (5ms) (2ms) v (5ms)
10Mbps (2ms) i 10Mbps (2 \‘i

ﬁ/@
%

%3
%

Figure 6.2: Simulation topology

In Table 6.2, it can be found that the ETM and TRTCM have similar results in traffic
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conditions 1, 3, and 4. Traffic condition 2 demonstrates the case that a greedy source
generates an excess amount of yellow packets than its QoS profile. In this case, the TRTCM
does not take action for the excess yellow packets. Therefore, the yellow packets consume
most of the tokens in Tp and result in the starvation of green packets. With ETM, it can
be found that both the green and yellow packets are conformed to the QoS profile. Traffic
conditions 5, 8, 9, and 10 simulate the congestion at source nodes such that the input green
rate is smaller than the QoS profile. It’s found that the ETM marks more green packets
via aggressive promotion to meet the profile. In summary, the proposed ETM meets the
traffic profile and achieves a highest throughput for the traffic of each conforming level than

TRTCM does.

6.3.2 Fairness of the Marking

The second simulation scenario.ds to verify the fair share making capability of traffic
markers. Therefore, several connections with different traffic characteristics and parameters
are employed. The QoS profile in DiffServ demain 1 (DS1) is then configured as the bot-
tleneck for the incoming green traffic. Thus; seme of the green packets would be demoted
or discarded. Besides, the Multiple-RED (MRED) [56] scheme is adopted in the core router
(CR1 and CR2) to handle the congestion for both TRTCM and ETM. In MRED, packets
marked as the lowest conforming level will be dropped first if congestion happens.

In the simulation, 45,000 packets (about 20 seconds) were simulated and the size of all
packets is 512 bytes. Four UDP and two TCP connections are assumed. The UDP sources
are implemented as Constant Bit Rate (CBR) traffic. The TCP sources are adaptive traffic
with varied sending rates. The round trip time (RTT) of a TCP connection is assumed to be
36ms. The traffic parameters, the output (green, yellow, red) traffic rate in Mbps, for each
source are as follows: UDP1=(1.9, 0.3, 0.3), UDP2=(1.0, 0.9, 0.9), UDP3=(0.7, 0.35, 0.35),
UDP4=(0.3, 0.35, 0.35), TCP1=(1.0, 0.5, 0.5) and TCP2=(1.0, 0.5, 0.5). The QoS profile in
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each edge router is the same and is set as CIR = 2.0 Mbps and PIR = 2.5 Mbps. The other
system parameters including the parameters for both of the TRTCM and ETM schemes used
in the simulation are the same with those defined in Table 6.1 for the simulation scenario 1.

In order to evaluate the marking fairness among all of the connections within the same

aggregate one, we adopt the fairness_indexr defined by [59]

achieved_rate;
i = , 6.13
. ideal _rate; ( )

(==) o

n x>y a?
7

fairness_indexr =

where achieved_rate; and ideal_rate; are the practical average throughput and the ideal
throughput for the individual connection i, respectively; n is the number of active con-
nections. The fairness_index falls into,the range between 0 and 1. For the perfect fairness,
the fairness_inder should be equal to 1.

The average throughput of each-conforming level for-every traffic source obtained during
the simulation is shown in Fig. 6.3 In"Fig."6.3,"the fairness_index of TRTCM and ETM
are 55.51% and 97.13%, respectively. It's‘Because that TRTCM does not protect the TCP
traffic and, thus, a large number of packets are demoted in ER1 and dropped in the core
routers. This leads to the re-transmission mechanism of TCP and results in a low throughput
for TCP users; therefore, the fairness_index is decreased. Here, we can also observe the
unfair marking due to phase effect [60] in traditional marking algorithm among the adaptive
and non-adaptive traffic sources: the CBR UDP traffic source, UDP3, suffers the lowest
throughput for both of the green and yellow levels, since the packet demotion may happen
in a periodic sense which is just corresponding to the constant packet rate of UDP3. The
result shows that the ETM could more effectively mitigate the unfair marking caused by the
phase effect than the TRTCM does. In the simulation, we also studied the effect of unjust

promotion for TC_PFG and ETM. It is found that the ETM may also mitigate the unjust
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promotion problem.
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Figure 6.3: Throughput distribution of différent traffic marker schemes in simulation scenario
2: (a) TRTCM scheme, (b) ETM scheme

6.4 Concluding Remarks

In this chapter, we proposed an enhanced traffic marker (ETM) for the TRTCM-based
traffic conditioner to perform the traffic policing function in DiffServ IP networks. The
primary feature of the proposed ETM is that it can fairly allocate the color notations among
connections within an aggregate one. It also enhances the throughput of each conforming
level for the aggregate connection to achieve as high rate as possible by not only restore
the conforming levels of the previously demoted packets, but also aggressively promote the

packets to higher conforming levels if the network resource condition is available, so that the
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end-to-end QoS of the applications would be substantially improved while the traffic contract
is still be respected. The operations of the ETM scheme as well as the computations of the
promotion/demotion probabilities are carefully defined. The performances of the proposed
ETM scheme were verified via simulations and the simulation results were compared with
the conventional TRTCM scheme. Simulation results show the ETM scheme outperform
the TRTCM scheme in both aspects of marking fairness and traffic throughput of each

conforming level under congested and under-loaded networks.
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Table 6.2: Simulation results of scenario 1

Scenario 1 | Input QoS Output rate | Output rate
Traffic Rate Profile of TRTCM of ETM
Conditions | (Mbps) | (Mbps) (Mbps) (Mbps)
Green |5.0 5.0 4.9145 4.9461
1 | Yellow |5.0 5.0 4.8082 4.7701
Red 2.0 — 2.2773 2.2838
Green |5.0 5.0 4.5504 5.0033
2 | Yellow |[8.0 5.0 5.1563 4.8674
Red 2.0 — 5.2934 5.1293
Green 8.0 5.0 4.9371 4.9941
3 | Yellow |5.0 5.0 4.8152 4.8559
Red 2.0 — 5.2477 5.1500
Green 10.0 5.0 4.9605 5.0010
4 | Yellow [12.0 5.0 4.9035 4.9313
Red 2.0 — 14.1359 14.0678
Green |[4.0 5.0 3.7645 4.8717
5 | Yellow |8.0 5.0 6.0348 4.9541
Red 2.0 - 4.2008 4.1742
Green |[3.0 5.0 2.9781 4.7209
6 | Yellow [6.0 5.0 5.8557 4.2170
Red 2.0 — 2.1662 2.0621
Green |[6.0 5.0 4.9578 4.9787
7 | Yellow |3.0 5.0 3.8930 4.0682
Red 2.0 — 2.1492 1.9531
Green |3.0 5.0 3.0488 4.6262
8 | Yellow |2.0 5.0 2.0203 3.2920
Red 6.0 — 5.9309 3.0818
Green |[3.0 5.0 3.0447 4.6838
9 |Yellow 4.0 5.0 4.0328 3.1402
Red 2.0 — 1.9195 1.1760
Green |[2.0 5.0 1.9969 4.1533
10 | Yellow |2.0 5.0 1.9582 1.3479
Red 2.0 — 2.0449 0.4988
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Chapter 7

Conclusions and Future Works

In this dissertation, the traffic control functions involving the connection admission con-
trol and the traffic policing for multimedia high-speed networks are studied by employing
the neural/fuzzy intelligent techniques or a sophisticated computation algorithm, including a
neural fuzzy connection admission controller, a power-spectrum-based neural-net connection
admission controller, a fuzzy increment| controller..a 'neural fuzzy increment controller and
a enhanced traffic marker. Both ATM and IP networks which can be utilized to construct
the multimedia high-speed networks are considered.in*this dissertation. The CAC schemes
which make the admission control decisions according to the time-domain and frequency-
domain traffic parameters are both discussed where the intelligent techniques are chosen
to implement the CAC controllers. Also, the enhanced algorithms which implement the
traffic policing function by incorporating the intelligent techniques and a elaborate compu-
tation procedure into existing algorithms for ATM and IP networks respectively are both
well explored.

In Chapter 3, a neural fuzzy connection admission control (NFCAC) scheme which based
on the time-domain traffic parameters and provides QoS guarantees for ATM networks is
proposed. The NFCAC scheme combines the linguistic control capability of a fuzzy logic
controller and the learning ability of a neural network. This type of integrated neural fuzzy

system can automatically construct a rule structure by learning from training examples
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and can self-calibrate parameters of membership functions. It not only provides a robust
framework to mimic experts’ knowledge embodied in existing traffic control techniques but
also constructs intelligent computational algorithms for traffic control. It can be easily
trained and enhances system utilization. Simulation results show that the proposed NFCAC
scheme provides system utilization about 32% and 11% higher than the EBCAC and FLCAC
schemes proposed in [10] and [18], respectively, and the NFCAC scheme requires only a
fraction of the 10® order and the 10! order of training cycles, consumed by the NNCAC
scheme proposed in [23] and RBFCAC scheme, respectively. An NFCAC scheme such as the
one introduced here may be the answer to the problem of designing a coherent call admission
controller for ATM systems.

In Chapter 4, we propose a power-spectrum-based neural-net connection admission con-
trol (PNCAC) scheme for ATM networks: The PNGAC method adopts the converted power-
spectrum parameters of traffic source to represent.itsitraffic characteristics and uses neural
network to implement the connection admission control. The frequency-domain power-
spectrum parameters of traffic souree possess additiye property and can capture the cor-
relation and burstiness behavior more than the'time-domain parameters such as peak rate,
mean rate, and peak rate duration. The neural network has the learning/adapting capabili-
ties so that the boundary of the decision hyperplane for the connection admission control can
be adjusted optimally and dynamically. Simulation results show that the proposed PNCAC
enhances significantly the system utilization while fulfilling QoS requirements. Not only is
it superior to the conventional equivalent capacity CAC scheme (ECCAC), it also obtains
more flexibility and robustness than Hiramatsu’s NNCAC.

However, the practical traffic characteristics of multimedia services in broadband net-
works may change very fast and abruptly with large volume. Also, several researches demon-

strate that the multimedia traffic possesses self-similar or chaotic property, and present a
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long-range dependence (LRD). The conventional traffic control algorithms based on current
system performance measures may not perform well because of the fast varying dynamic
traffic; the control decision would be obsolete and inappropriate due to delayed react to
such a fast dynamic traffic. It is necessary to capture the next-step system performance,
that is, the predicted information about the system status due to traffic change should be
provided. Accordingly, a predictive intelligent traffic controller for broadband multimedia
systems could be proposed as the future work for the CAC. It considers predicted system
performance measures, instead of present ones, to well capture the oncoming effects in the
future, besides also adopting the neural fuzzy network for the CAC decision making as well
as the fuzzy logic controller for both of the equivalent capacity estimation of the new call and
congestion estimation of the system. A pipelined recurrent neural network with extended
recursive least square learning algorithm (PRNN/ERLS) [61], [62], which can efficiently re-
duce the prediction error for the statistical flictuations of the system, could be employed
to implement the predictors to well attain-the advanee information of the system. It is
expected that the predictive intelligent traffic controller with predicted system measured
statistics would achieves better performances than that of the conventional CAC schemes
without prediction.

In Chapter 5, we employ two intelligent techniques, the fuzzy logic systems and the
neural fuzzy networks, to design two intelligent leaky bucket algorithms, respectively, for
sustainable-cell-rate usage parameter control of multimedia transmission in ATM networks.
The first algorithm we proposed is the fuzzy leaky bucket algorithm, which as the name im-
plies, employs a fuzzy increment controller (FIC) in conjunction with the conventional leaky
bucket algorithm. The FIC monitors the long-term mean rate and the short-term mean
rate of a connection and uses the fuzzification, inference rules and defuzzification to process

them in order to derive the optimal increment value. The other intelligent leaky bucket
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algorithm we proposed is the neural fuzzy leaky bucket algorithm, which utilizes a neural
fuzzy increment controller (NFIC) to dynamically adjust the increment value. The NFIC is
basically an FIC except that it further employs a neural network to optimize its fuzzy logic
system through the reinforcement learning. Simulation results show that, regardless of the
traffic sources chosen, both intelligent leaky bucket algorithms achieve better performances
in terms of selectivity, responsiveness and mean queueing delay as compared to the conven-
tional leaky bucket algorithm by responding about 160% faster when taking control actions
against a non-conforming connection, while reducing as much as 50% of the queueing delay
experienced by a conforming connection. The performance gain of the intelligent algorithms
is a result of employing fuzzy logic and neural fuzzy controllers where the measured system
statistics, the long-term and short-term mean rates, are introduced as the feedback infor-
mation and served as the inputs of thefintelligent controllers to form a robust and adaptive
close-loop control system. Accordingly,/ both intelligent algorithms can adapt to the time-
varying and non-stationary traffic;and thus enhance their performances. In addition, the
simulation results also show that the meural fuzzy leaky bucket algorithm outperforms the
fuzzy one by achieving better performance in“all ‘aspects especially the responsiveness.

In Chapter 6, we proposed an enhanced traffic marker (ETM) for the TRTCM-based
traffic conditioner to perform the traffic policing function in DiffServ IP networks. The
primary feature of the proposed ETM is that it can fairly allocate the color notations among
connections within an aggregate one. It also enhances the throughput of each conforming
level for the aggregate connection to achieve as high rate as possible by not only restore
the conforming levels of the previously demoted packets, but also aggressively promote the
packets to higher conforming levels if the network resource condition is available, so that the
end-to-end QoS of the applications would be substantially improved while the traffic contract

is still be respected. The operations of the ETM scheme as well as the computations of the
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promotion/demotion probabilities are carefully defined. The performances of the proposed
ETM scheme were verified via simulations and the simulation results were compared with
the conventional TRTCM scheme. Simulation results show the ETM scheme outperform
the TRTCM scheme in both aspects of marking fairness and traffic throughput of each

conforming level under congested and under-loaded networks.
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