
CHAPTER 5 

UNIFORMLY DISTRIBUTED SIMPLEX SLIDING-MODE 

CONTROL WITH GREY PREDICTION 

This chapter proposes a novel design method of the uniformly distributed simplex 

sliding-mode control (UDSSMC) combined with grey prediction, which is used to 

predict the matched disturbances. Section 5.1 gives an introduction and Section 5.2 

shows the system description. In Section 5.3, the grey prediction is briefly introduced. 

Then, the UDSSMC incorporated with grey prediction is developed in Section 5.4 and 

a numeric example is shown in Section 5.5 for demonstration. 

5.1 Introduction 

From the previous chapters, it is explicitly shown that the developed uniformly 

distributed simplex sliding-mode control (UDSSMC) is an effective control algorithm 

for systems suffering from matched disturbances under the condition their upper 

bounds are given. However, it is not an easy work to precisely estimate these upper 

bounds in practice. In order to get rid of the matched disturbances, their upper bounds 

are often over-estimated or too conservative. As a result, the control algorithm has to 

increase largely and maybe unreasonable. In case the upper bounds are not well 

estimated, the control algorithm could be inadequate to suppress the matched 

disturbances, which makes the control unsuccessful. Obviously, it is important to 

effectively predict the matched disturbances when the UDSSMC is applied. 
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To tackle this problem, we will propose a novel design method of the UDSSMC 

combined with grey prediction, which is used to predict the matched disturbances. By 

means of grey prediction, the matched disturbances can be suppressed without any 

prior information concerning their upper bounds. In this chapter, the system description 

is given in Section 5.2 and the grey prediction is briefly introduced in Section 5.3. Then, 

the UDSSMC incorporated with grey prediction is developed in Section 5.4. Finally, a 

numeric example is shown in Section 5.5 to demonstrate the advantage of the 

UDSSMC incorporated with grey prediction. 

5.2 System Description 

In general, a linear time-invariant system suffering from matched disturbance is 

described as 

 ( t,xBdBuAxx + )+=&  (5.1) 

where  is the system state,  is the system input, and  

represents the matched disturbance. In addition, the pair (A,B) is assumed to be 

controllable and B is of full rank. The matched disturbance, represented by 

nℜ∈x mu ℜ∈ ( ) mt, ℜ∈xd

( ) ( ) ( ) ( )[ T
r xxxxd t,dt,dt,dt, L21= ] mℜ∈ , is considered to be of the form [52] 

 ( ) ( ) ( )ttt, fxAxd += ∆  (5.2) 

which possesses state-dependent uncertainty ( )xA t∆  and external unknown input f(t). 

Since both ( )tA∆  and f(t) are not obtainable, thus the matched disturbance  ),( txd
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can not be eliminated by simply letting ( )t,xdu −= . To tackle such problem, 

investigators have successfully developed several robust control technologies, such as 

adaptive control, H∞ control, and sliding-mode control, which could effectively 

suppress the matched disturbance . ),( txd

Similar to the sliding-mode control, the UDSSMC could completely get rid of the 

matched disturbance when the upper bounds of ( )tA∆  and ( )tf  are given. 

Unfortunately, appropriate upper bounds of ( )tA∆  and ( )tf  are often hard to 

estimate. In fact, these upper bounds could not be under-estimated; otherwise the 

system will be out of control. In general, they are over-estimated and even too 

conservative, which often result in unreasonable tremendous control inputs. To improve 

the above drawbacks, this chapter employs the grey prediction technology for the 

matched disturbance , which will be briefly introduced in the next section. ),( txd

5.3 Grey Prediction 

This section first shows three basic operations related to grey prediction and then 

gives the famous GM(1,1) model, which will be adopted in the sliding-mode control. 

Consider a positive data sequence ( ) ( ) 00 >ky  for p,,,k L21=  where p is 

chosen as  [33]. The grey prediction technology is employed to establish a 

mathematic model that can properly represent this positive data sequence and, most 

importantly, can well predict the data coming after 

4≥p

( ) ( )py 0 , denoted as  ( ) ( )qpŷ +0
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where . Three basic operations are required in the process of the data 

sequence, named as the accumulated generating operation, the inverse accumulated 

operation, and the mean operation. 

,...,q 21=

The accumulated generating operation is defined as 

  (5.3) ( ) ( ) ( ) ( ) p,...,,k,lyky
k

l
21               

1

01 == ∑
=

which accumulates the data sequence ( ) ( )ky 0 . The inverse accumulated generating 

operation is defined as 

  (5.4) 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) p,,,k,kykyky

yy
L32               1

11
110

10

=−−=

=

which is an inverse process of the accumulated generating operation (5.3). As for the 

mean operation, it simply takes the average value of ( ) ( )ky 1  and ( ) ( 11 −ky ) , i.e., 

 ( ) ( ) ( ) ( ) ( ) ( )[ ] p,,,k,kykykz L321
2
1 111 =−+=  (5.5) 

With the above three basic operations, the famous grey model GM(1,1) is constructed 

to suitably represent the positive sequence ( ) ( )ky 0  as below [33]:  

  (5.6) ( ) ( ) ( ) ( ) p,,kb,kazky L210 ==+

where  is the mean operation as given in (5.5). Both a and b are constants to be 

determined, where a is called the developing coefficient and b is treated as the grey 

input. It is noticed that the establishment of GM(1,1) model is mainly based on an ideal 

model which imitates the first-order differential equation as follows 

( ) ( )kz 1
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( ) ( ) ( ) ( ) btay
dt

tdy
=+ 1

1

 (5.7) 

Clearly,  in (5.6) is similar to the first term ( ) ( )ky 0
( ) ( )
dt

tdy 1

 in (5.7) and called the 

grey derivative. Rewriting (5.6) into a matrix form leads to 

  (5.8) ⎥
⎦

⎤
⎢
⎣

⎡
⋅=

b
a

Fy
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According to the least square method, a and b can be solved as 

  (5.9) ( ) yFFF TT 1−
=⎥

⎦

⎤
⎢
⎣

⎡
b
a

The GM(1,1) model is then obtained and the predicted values of  is 

achieved as [33] 

( ) ( qpy +1 )

 ( ) ( ) ( ) ( )
a
be

a
byqpŷ )q( +⎟

⎠
⎞

⎜
⎝
⎛ −=+ −+− 101 1 pa  (5.10) 

where q=1,2,…, called the predictive step. Note that (5.10) is derived in a way by 

setting t=p+q to the solution of (5.7) with initial condition ( ) ( )10y  at t=1. It is obvious 

that for the first predictive step, i.e. q=1, we have 

 ( ) ( ) ( ) ( )
a
be

a
bypŷ p +⎟

⎠
⎞

⎜
⎝
⎛ −=+ −a11 01  (5.11) 

Further using the inverse accumulated generating operation (5.4) yields 

 ( ) ( ) ( ) ( ) ( ) pe
a
byepŷ aa −⋅⎟

⎠
⎞

⎜
⎝
⎛ −⋅−=+ 111 00  (5.12) 

Clearly, this is the first predictive value of the data sequence ( ) ( ) p,,,k,ky L21  0 = . 

 61



It should be noticed that the grey prediction model GM(1,1) introduced above is 

only suitable for positive data sequences. If a sequence with negative data is processed, 

it should be modified into a positive data sequence first. The most common way is 

adding a bias, such as 

 ( ) ( )kyminbias
p

0

1
 

=
=

k
 (5.13) 

to the original data sequence and then a new positive sequence is formed and expressed 

as 

  (5.14) ( ) ( ) ( ) ( ) biaskyky += 00
m

Now, its GM(1,1) model could be directly established by the procedure from (5.6) to 

(5.12) and the first predictive value is 

 ( ) ( ) ( ) ( ) ( ) p
mm e

a
byepŷ aa −⋅⎟

⎠
⎞

⎜
⎝
⎛ −⋅−=+ 111 00  (5.15) 

After taking away the bias, the first predictive value of the original sequence ( ) ( )ky 0  

is then found as 

  (5.16) ( ) ( ) biaspŷpŷ )()( −+=+ 11 00
m

which will be employed to predict the matched disturbance d(x,t) in (5.2), since a 

disturbance is intrinsically unknown and, of course, not necessary to be positive. 
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5.4 A novel UDSSMC incorporated with Grey Prediction 

5.4.1 Design of The New UDSSMC Controller 

Consider the multi-input linear time-invariant system described in (5.1), which 

encounters matched disturbance d(x,t). From the design of the UDSSMC described in 

Chatper 4, it is known that the UDSSMC could theoretically suppress the matched 

disturbance whose prior information concerning the upper bounds of the matched 

disturbance, denoted as ( )
max

t,xd  or ( )
max

t,d xi , i=1,2,…,m, are required. However, 

appropriate upper bound ( )
max

t,xd  and ( )
max

t,d xi  are not so easy to estimate. They 

are often over-estimated and thus make the control inputs increased largely, sometimes 

even unreasonably. To avoid such problem, the grey prediction is used to directly 

predict the matched disturbance d(x,t). 

The first step of the UDSSMC design is to choose an appropriate sliding vector. 

Let the sliding vector  be of the form as mℜ∈σ

 σ = ( Cx (5.17) ) 1−CB

where . Note that  is a coefficient matrix and 

 must exist. For the selection of the sliding vector, the UDSSMC adopts the 

virtual eigenvalue method proposed by Chang and Chen [49], which is revealed in 

Section 4.2. 

[ ]T
mσσσ L21=σ nC ×ℜ∈ m

( ) 1−CB

Next, let’s start to design the control algorithm of the UDSSMC combined with 
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grey prediction. First, further taking the first derivative of (5.17) yields 

 ( ) ( ) ( )t,xduCAxCBxCCB ++== −− 11 &&σ  (5.18) 

Based on the design of the UDSSMC described in Chapter 4, the control algorithm is 

selected as 

  uKxu +−=   (5.19) 

with 

( )
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 (5.20) 

where  is defined as (4.39),  for i=1,2,…,m+1 represent the uniformly 

distributed simplex set described in Chapter 3, and 

mindist iu

iΣ  are the disjointed open 

sub-regions given in (2.4). Based on the derivation of Section 4.3, it is verified that the 

UDSSMC algorithm (5.19) and (5.20) can efficiently suppress the matched disturbance. 

However, for the implementation of (5.20), it is necessary to obtain the prior 

information concerning the upper bounds of the matched disturbance. To tackle this 

problem, the control algorithm (5.19) is modified as 

  (qT )d̂uKxu −+−=   for ( )[ )TqqT,t 1 +∈  (5.21) 

where T is the prediction period and ( )qTd̂  is the predicted value of  at t=qT . ( t,xd )
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Besides, (5.20) for  becomes ( )[ )TqqT,t 1 +∈

( ) ( )

( ) ( )
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⎩
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 (5.22) 

Note that the value of (qT )d̂  will be obtained by employing the grey prediction, 

which will be explained later. Similar to the stability proof described in Section 4.3, it 

is easy to show that the control algorithm (5.21) and (5.22) can guarantees the system 

trajectory to reach the sliding mode 0=σ  in a finite time. 

Now, let’s compare the new controller (5.21) and (5.22) with the conventional 

one (5.19) and (5.20). Obviously, the term ( )qTd̂  in (5.21) is not adopted in the 

conventional UDSSMC control algorithm (5.19). On the other hand, the upper bound 

value ( )
max

t,xd  in (5.20) should be changed into ( ) ( )
max

qTˆt, dxd − . In other words, 

the design of in (5.22) no longer depends on the upper bound ( )
max

t,xd  unlike the 

conventional UDSSMC control algorithm. In fact, it depends on ( ) ( )
max

qTˆt, dxd − , 

the maximum value of the difference between ( )t,xd  and (qT )d̂  for 

. It is clear that the magnitude of (5.22) could be chosen to be a small 

value if  at t=qT is well predicted by 

( )[ )TqqT,t 1 +∈

( t,xd ) ( )qTd̂ . 
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5.4.2 Grey Prediction for Disturbances 

Next, let’s concentrate on the grey prediction for ( )qTd̂ , used in (5.21) for 

. First, each component of ( )[ )TqqT,t 1 +∈ ( )qTd̂  can be expressed as 

( ) m,,i,qTd̂ L1 =i . From the grey prediction introduced in Section 5.3, for a sequence 

data , where  and , it can obtain its first predictive value 

 as given in (5.16). Clearly, if 

( ) ( )ky 0 p,,,k L21= 4≥p

( ) ( 10 +pŷ ) ( )t,d xi

) )

)Tkpq,Tkpqd

 at t=(q-p)T,(q-p+1)T,…,(q-1)T, can 

be calculated from other measurable variables, then they will form a data sequence as  

     for   j = p,(p-1), …,2,1 (5.23) ( )( ) (( Tjq,Tjqd −−xi

For convenience, the above expression is changed into 

 ( )( ) (( )+−−+−− 11xi p,,,k L21    for  =  (5.24) 

Let =( ) ( )ky 0 ( )( ) ( )( Tkpq,Tkpqd )+−−+−− 11xi , p,,,k L21= , be the data sequence 

to be processed. Following the grey prediction procedure, the first predictive value 

 in (5.16) is achieved and then is assigned as the value for  at t=qT, 

denoted as 

( ) ( 10 +pŷ ) )( t,d xi

( )( )qT,qTd̂ xi  or as ( )qTd̂ i  for simplicity. This is the term used in the 

control algorithm (5.22) for ( )[ )TqqT,t 1 +∈ . 

Then, let’s show the way how to calculate the sequence of ( )t,d xi  at t=(q-p)T,( q 

-p+1)T,…,( q -1)T. Substituting (5.21) into (5.18), it leads to 

( ) ( ) ( )
( ) ( ) ( ) ( t,qTˆ

t,qT

)
ˆ

xdduxBKACCB

xdduKxCAxCB

+−+−=

+−+−=
−

−

1

1

   

σ&
,  for ( )[ )TqqT,t 1 +∈  (5.25) 

Further changing (5.25) into the component form as 
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( ) ( )[ ] ( ) ( )t,dqTd̂uσ xxBKACCB iiiii +−+−= −1& ,  for ( )[ )TqqT,t 1 +∈  (5.26) 

where . And, m,,i L1= ( ) ( )[ ]ixBKACCB −−1  represents the i-th row vector of 

. Clearly, the value of ( ) ( )xBKACCB −−1 ( )t,d xi  at t=qT could be derived as 

( )( ) ( ) ( ) ( ) ( )[ ] ( ) (qTd )ˆqTuqTqTσqT,qTd iiiii xBKACCBx +−−−= −1&  (5.27) 

That means the data sequence (5.23) can be calculated as 

( )( ) ( )( )
( )( ) ( ) ( ) ( )( )[ ] ( )( ) ( )( )Tjqd̂TjquTjqTjqσ

Tjq,Tjqd

−+−−−−−−=

−−
−

iiii

i

xBKACCB

x
1&

 (5.28) 

where j=p,(p−1),…,2,1. Unfortunately, the term ( )( )Tjq−iσ&  is not measurable; 

instead, it is approximated as the following simplest way 

  ( )( ) ( )( ) ( )( )
T

TjqTjqTjq −−+−
≈− ii

i
σσσ 1

&   (5.29) 

for j=p,(p−1),…,3,2. Note that the above approximation is not applicable to the case of 

j=1, i.e. ( )( Tq 1−i )σ& , since ( )( ) ( ) ( )( )
T

TqqTTq 11 −−
≈− ii

i
σσσ& , approximated by 

(5.29), requires the term (qTi )σ  at t=qT. In other words, the calculation of 

 also requires the term ( )( ) ( )( Tq,Tqd 11 −−xi ) ( )qTiσ  at t=qT. That means the 

establishment of the data sequence (5.28) has to use the term ( )qTiσ  at t=qT if (5.29) 

is employed. It is noticed that the first predictive value ( )qTd̂ i  obtained from the data 

sequence (5.28) will be adopted in the control algorithm (5.21) for , 

which includes the moment that 

( )[ )TqqT,t 1 +∈

( )qTiσ  is attained at t=qT. Obviously, it is 

impossible to adopt a value (qTd )ˆ
i  at t=qT, which should be calculated from a value 

(qTi )σ  also at the same moment t=qT. In order to avoid such situation, the term 
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( )( Tq 1−i )σ&  is approximated as ( )( ) ( )( )
T.

TqT.q
50

150 −−− ii σσ . Here, we assume that the 

predictive value (qTd )ˆ
i  can be achieved within ( )( )qTT,.qt  50−∈ . Hence, the 

sequence (5.23) is obtained approximately as 

( )( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( )( )[ ]
( )( ) ( )( )
( )( ) ( )( ) ( ) ( ) ( )( )[ ]
( )( ) ( )( )⎪

⎪
⎪
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⎪
⎪

⎨

⎧

=−+−−
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1for      
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T
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TjqT.jq
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ii

i
ii

ii

i
ii

i

xBKACCB

xBKACCB

x

σσ

σσ

 (5.30) 

which is used for the grey prediction of ( )qTd̂ i . Next, a numeric example will be 

simulated to demonstrate the usefulness of the new UDSSMC algorithm combined 

with grey prediction. 

5.5 Simulation Results 

Consider a linear time-invariant system (5.1) suffering from the matched 

disturbance, with the following numeric data: 
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The control input and system state are respectively represented by  and 

. The matched disturbance 

[ Tu 21 uu= ]

][ Tx 4321 xxxx= ( ) ( ) ( )[ ]Tt,dt,dt, xxxd 21=  is 
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assumed as 

  ( ) ( ) ( ) ( )
( ) ( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
+×+

+×+
=

43

21

2310
502210

xxtsintcos
xxt.costsin

t,xd  (5.31) 

Apparently, the upper bound of the matched disturbance are obtained as 

  ( ) ( ) 4321 2220 xxxxtt, max ++++=≤ δxd  (5.32) 

The first step of the UDSSMC design is to choose a sliding vector  as 

given in (4.10). Based on the design procedure described in Section 4.2, the 

eigenvalues for A−BK are assigned to be 

( ) CxCB 1−=σ

 5   2  1 2121 −==−=−= ωωλλ ,,  (5.33) 

where 21  and ωω  are purposely set to be the same and negative. By the aid of 

MATLAB, the state-feedback gain K and the left eigenvectors of A−BK corresponding 

to 21  and ωω  could be calculated as 

  ⎥
⎦

⎤
⎢
⎣

⎡
−

=
469700.1894-0.2864-0.1622

0.37892.7990-0.1194-2.3642
 

.
K

and  

  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−−

−−
=−

09510031100513002520
053204955003260473801

....
....

CCB

According to the sliding vector design described in Section 4.2, it is evident that the 

system stability in the sliding mode is guaranteed since all the eigenvalues are allocated 

in the left half plane. Based on the new construction proposed in Section 3.3, the 

uniformly distributed simplex set for m=2 can be selected as 
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Further choose the parameters 101 .=ξ , and 202 .=ξ  for the smoothing strategy. 

Besides, let the predictive step be T=0.01 sec. To demonstrate the usefulness of grey 

prediction, these numeric values are simulated for the UDSSMC algorithm (5.19) and 

(5.20) without any prediction, named as “Controller 1”, and the proposed UDSSMC 

algorithm (5.21) and (5.22) with grey prediction, named as “Controller 2”. Therefore, 

the difference between Controller 1 and Controller 2 is just the term (mTd )ˆ
i , which is 

set to be zero for Controller 1. For comparison, the magnitudes of (5.20) and (5.22) in 

Control 1 and Control 2 are purposely set as 

  ( ) i,. Σσ in  is  for          52 1CxCBuu i −==  (5.35) 

Apparently, the upper bound (5.32) of the matched disturbance is larger than the 

magnitude of (5.35). Theoretically, Controller 1 is no longer suitable for this case since 

the values of (5.35) is not chosen large enough to overcome the upper bound of the 

matched disturbance. As a result, Figure 5.1 shows that Controller 1 fails to drive the 

system trajectory to the sliding mode. As for Controller 2, Figures 5.2 to 5.5 

demonstrate the success of the UDSSMC combined with grey prediction. Figure 5.2 

shows the time response of the sliding vector [ ]T
21 σσ=σ  and Figure 5.3 gives the 

trajectory of sliding vector in the σ  space. It is clear that Controller 2 could steer the 
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system trajectory into the sliding layer after a few predictive steps without any prior 

information of the upper bound of the matched disturbance. Figure 5.4 and Figure 5.5 

are respectively the time response of the state variables and the control input. In Figure 

5.4, it illustrates the system state variables all converge to x=0. Figure 5.5 is the time 

response of the control input. From simulation, it is obvious that the developed 

UDSSMC algorithm combined with grey prediction could successfully controls the 

system even though without any prior information of the upper bound of the matched 

disturbance. 
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Figure 5.1 Time response of the sliding vector for Controller 1 

 

Figure 5.2 Time response of the sliding vector for Controller 2 
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σ1

σ2

Figure 5.3 The trajectory of the sliding vector in the σ space for Controller 2 

 

Figure 5.4 State variables x1-x4 for Controller 2 
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Figure 5.5 Control Inputs for Controller 2 
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