CHAPTER 6
ROBOTIC MANIPULATOR CONTROL BASED ON
UNIFORMLY DISTRIBUTED SIMPLEX SLIDING-MODE

CONTROL

In this chapter, the UDSSMC algorithm is developed to deal with the position
tracking control of the robotic manipulators suffering from the system uncertainty and
external disturbance. Section 6.1 gives the problem formulation and Section 6.2
proposes the UDSSMC algorithm for the tracking control of robotic manipulators.
Finally, a two-link robotic manipulator as an example is simulated to demonstrate the

success of the proposed UDSSMC. algorithm in Section 6.3.

6.1 Problem Formulation

In general, the dynamic equation of an' m-link robotic manipulator is expressed
as [53]

M(a)d +B(a.q)4+G(a)=u+d(r) (6.1)
where @, (q,§ € R" respectively represent the joint position, velocity, and acceleration
vectors. Besides, M(q)e R™™ is a positive-definite and symmetric inertia matrix,
B(0,q)e R™™ is a matrix containing the Coriolis force and centrifugal terms,
G(q)e R™ is a vector of gravitational terms, and ue€R" is composed of the joint

torque or forces. Note that M(q) and B(q,§) must satisfy the following condition:

2" (M(q)-2B(q,9))z =0 (6.2)
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where ze®R™. In other words, M(q)-2B(q,q) belongs to a skew-symmetric matrix,
which the elements in the diagonal are all equal to zero. Furthermore, since the
uncertainties exist in the system (6.1), the matrices M(q) B(q,q),andG(q) are

decomposed into

M(q)=M,(a)+AM(q)
B(q.d)=B,(q.d)+AB(q.4) (6.3)

where AM(q), AB(q,§), and AG(q) are respectively the uncertainties deviated from the
nominal parts M,(q), B,(q,4),and G,(q), which is available. As to d(x,z)e R", it
represents the external disturbance. For these uncertainties and disturbance, they are

constrained by

[AM (@) <8y, [AB(ca)| < G(@)
[AG(a) < 5. [d(x.)ff=d,

(6.4)
where these upper bounds 0o,,, ; (q ) 0s,and 0, are available.

Since the considered problem here is the position tracking control, let’s first
define the tracking error as
e=0q-0q4(t) (6.5)
where q, (t) means the desired trajectory. As a result, the sliding vector is selected as
o=¢+Ce (6.6)
where o=[o, o, - o,] €eR™, M(q) is the inertia matrix in (6.1), and

C:diag{cl,cz,---,cm} is a diagonal matrix with diagonal terms ¢; >0 for
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i=1,--,m. Clearly, when the system is successfully controlled to stay on the sliding
surface 0=0, its trajectory must satisfy

€+Ce=0 (6.7)
or

é+ce =0, i=12--m (6.8)
With the fact of ¢, >0, it can be obtained from (6.8) that e, - 0 as t - oo. For this
reason, €=0—0, (t)—)O as t > oo. Therefore, the tracking q—q, is successfully
achieved when the system is completely restricted in the sliding mode o=0. Next, it
will focus on the development of UDSSMC algorithm to drive (6.1) to reach the sliding

mode o=0 in a finite time and then'stay thereafter.

6.2 UDSSMC algorithm
With the tracking error (6.5), the dynamic equation of the robot manipulator (6.1)
can be rearranged as
M(q) +B(a.q)e =u-+d(r)- M(a)i, - B(a.d)d, ~G(a) (6.9)
Since M (q) is positive-definite, the candidate of Lyapunov function can be selected
as
V =c"M(q)s/2 (6.10)

From (6.2) and (6.6), taking the first derivative of V leads to
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Y, =0'TM(q)o"+0'TM(q)0'/2
=c"M(q)&+Cé)+a"B(q,G)e+Ce) (6.11)
=o'[M(a)+B(a.dk+M(q)Ce + B(q,q)Ce]

With the use of (6.3) and (6.9), (6.11) becomes
V =0 [u+d(r)-G(a)+M(q)Ce -t )+ B(a.q)Ce -, )]
=0 [u+d()-(G,(a)+ AG(q))+(M,(a)+AM (q))Ceé —d ) (6.12)
+(By(a.6)+ AB(g.a){Ce ~ )]

For this reason, the UDSSMC algorithm is designed as

u=G,(q)-M,(a)Ce-d,)-B,(a.qNCe—-d,)+T (6.13)

T =(m-(5, + 4 + 6y |C&— |+ 55 Ce —dy[)+ ', e >0, for o in X, (6.14)
where J,4,d;,0,,,and o5 are respectively the upper bounds of the uncertainties and
disturbances given in (6.4). Note that U'; i=1;2,.,m+1, represent the uniformly
distributed simplex set described in#Chapter 3 .and 2, are the disjointed open

sub-regions given in (2.4). With use of the uniformly distributed simplex set, the sliding

vector o could be represented as

m+l1

o= Yyru=Uy, 7,>0 (6.15)

j=1,j#i

where Ui:[ul coou™ U um+l]and 7i:[71 c Yia Yim 7m+1]T'

Hence, it leads to
o'u =y'U'u (6.16)

To employ the truth of (ui)Tuj = —l, i,j=12,---,m+1, i# j,(6.16)resultsin
m
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o'u'=[y, -y rw o Vealslmo o —Um]
" (6.17)

1
=—;(71+-~+7i_l it V)

Since the 1-norm of any vector possesses the maximum value in all norm definitions,

(6.17) leads to
i 1 1
o u :__(7/1 Tt Yia tia +"'""7/m+1)S __”O'” (6.18)
m m
Now, substituting (6.13) and (6.14) into (6.12) yields

V =0 |(m-(5, + S5 + S, [[Cé + 6y | + 55 [Co — o)+ £
+d(¢)-AG(q)+AM(q)(Cé -G, 1+ AB(q.G)Ce —d, )]

e . : (6.19)
= (m (5d + 35 + Oy ||Ce ] + 5[ CE= ||)+ g)aTu
+o'(d(r)-AG(q)+AM{(g)Ce ~Gy) +AB(q,6)Ce — 4, )
By means of (6.18), (6.19) becomes
. 1 . .
V < —;(m (5d + 35 + 0y |Ce + by || + 55 Ce — ¢ ||)+ g)|0'|| (6.20)

+lo(ja @) +[ac @)+ [am(@)(Ce - )|+ |AB(a.)(Ce ~d, ))
With the use of (6.4), it leads to
V<-Eo] (6.21)
m
where £>0. It means V is negative until o =0. Therefore, V is really a Lyapunov
function and decreases all the time and reaches zero in a finite time. In other words, the
UDSSMC algorithm (6.13) and (6.14) could drive the system (6.1) to reach the sliding

mode 0=0 in a finite time.
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Similarly, the control algorithm (6.14) still inevitably confronts with the
chattering problem, which happens not only in the sliding mode but also in the

approach mode. Applied the smoothing strategy described in Section 4.4, it leads to

In the approaching mode :

- { (- (S, + 8 + 8 |[C& =Gy + Sa[[Ce — Gy )+ e’ if dist,;, > &

Unchanged if dist ,, <&,
In the sliding mode: (6.22)
o] (8, + 86 +8, [Ce~diy |+ G Ce - gy} e’ if o],
Unchanged if ||0'|| <,

where ocel2,, &,&, >0 and dist,,, is defined as (4.39). Next, a numeric example

will demonstrate the success of UDSSMC in suppressing the uncertainties and matched

disturbance.
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6.3 Numeric Example and Simulation Results
For the demonstration of UDSSMC algorithm for robotic manipulators, we

consider the position tracking control of a two-link robotic manipulator model shown in

Figure 4.1 as an example.

YV A
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\

Figure 6.1 Two-link robotic manipulator model

The dynamic equation of a two-link robotic manipulator is given as [53]

M(a)i+B(a.q)4+G(a)=u+d() (6.23)
where
a=[o ¢
M = (m1+ m, )rlz+ m,ry +2myrr, cos@+J,  myr, +m,nr, cosd
m, 1y +m,rr, cos ¢ m,ry+J,
B - M, 1, ¢5sin¢ —m,hr, (9+¢)Sm¢
| mynr, Osing 0

G=

_[(ml +m, )”1 cos@+m,r, cos(t9 + ¢)]g}
[mzrz COS(H + ¢)]g

The corresponding parameters in (6.23) are selected as follows:
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rn=lm, r,=0.8m, m =lkg m,=0.6~0.8kg,

sin(2t
J,=J,=5kg-m’, d(t):[cos((Stﬂ nt-m

For the robotic manipulator (6.23), the nominal parts represent the condition that the tip

of robotic manipulator is without payload, i.e. m, =0.6kg . Hence, the upper bound of

the uncertainties and disturbance could be obtained as

||AM (q)|£ Oy =Am,r +4Amyr, +4Am,rr, =1.352,
|AB(q,4)| < 54 (0)=2Am,rr,x (6 + 6)=0.32x(6+ ),
|AG(q)|< 5 = Am, (1 +27,)g =5.096,

[d(x.2)| <8, =~2

(6.24)

In addition, the desired position vector is chosen as

0, sin(3t)
Qq (t ) = =
by | cos(t)
With the use of the tracking error, the parameter of the sliding vector given in (6.6) is

selected as

05 O
C=
% o0

Hence, the state variables are chosen as

X, 0-6,
-0

X = Yol d
X3 ¢ — Py

Xy P — Py

Further following the systematic procedure described in Section 6.2, the uniformly

distributed simplex vectors can be found as
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u' =l of
w=[1/2 34|
w =12 —Ja/4]

To improve the chattering phenomenon, the control algorithm (6.22) with the proposed
smoothing strategy is adopted in this simulation. For this simulation, the thickness
values in (6.22) are chosen as & =0.1,&, =0.2. Figure 6.2 to Figure 6.6 are simulation
results with the initial condition x(0)=[z/2 0 z/2 O] . Figure 6.2 shows the
motion of the norm of the sliding vector and Figure 6.3 gives the trajectory of the
sliding vector in the sliding plane. It is clear that the two-link robotic manipulator is
successfully driven to the layer ||0'|| <&, . In Figure 6.4, it illustrates the tracking error
e=0q-0q, (t) all converge near Zzero. Figure 6.5 shows the trajectories of the practical
and desired joint positions ( =[¢9 ¢]T . From simulation results, it reveals that the
developed UDSSMC algorithm has been successfully tracked the desired joint position
for the two-link robotic manipulator model. From Figure 6.6, it is also evident that the
proposed smoothing strategy (6.22) can efficiently improve the high frequency

chattering problem.
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Figure 6.2 The norm value of the.sliding vector

Figure 6.3 The trajectory of the sliding vector in the o space
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Figure 6.4 Trackingerror (a)x; =68, (b)x,=¢—¢,
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Figure 6.5 The trajectories of the desired and actual joint positions (a) 8,8, (b)@, ¢,
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Figure 6.6 Control Inputs
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