
CHAPTER 6 

ROBOTIC MANIPULATOR CONTROL BASED ON 

UNIFORMLY DISTRIBUTED SIMPLEX SLIDING-MODE 

CONTROL 

In this chapter, the UDSSMC algorithm is developed to deal with the position 

tracking control of the robotic manipulators suffering from the system uncertainty and 

external disturbance. Section 6.1 gives the problem formulation and Section 6.2 

proposes the UDSSMC algorithm for the tracking control of robotic manipulators. 

Finally, a two-link robotic manipulator as an example is simulated to demonstrate the 

success of the proposed UDSSMC algorithm in Section 6.3. 

6.1 Problem Formulation 

In general, the dynamic equation of an m-link robotic manipulator is expressed 

as [53] 

  ( ) ( ) ( ) ( )t, duqGqqqBqqM +=++ &&&&  (6.1) 

where respectively represent the joint position, velocity, and acceleration 

vectors. Besides,  is a positive-definite and symmetric inertia matrix, 

 is a matrix containing the Coriolis force and centrifugal terms, 

 is a vector of gravitational terms, and  is composed of the joint 

torque or forces. Note that  and 

mqqq ℜ∈&&&   ,,

( ) mmqM ×ℜ∈

( ) mmqqB ×ℜ∈&,

( ) mqG ℜ∈ mℜ∈u

( )qM ( )qqB &,  must satisfy the following condition: 

  ( ) ( )( ) 02 =− zqqBqMzT && ,  (6.2) 
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where . In other words, mz ℜ∈ ( ) ( )qqBqM && ,2−  belongs to a skew-symmetric matrix, 

which the elements in the diagonal are all equal to zero. Furthermore, since the 

uncertainties exist in the system (6.1), the matrices ( ) ( ) (qGqqBqM  and  ,,, & )

)

 are 

decomposed into 
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where ( ) ( ) qGqqBqM ∆ and ∆ ∆ ,,, & ( ) are respectively the uncertainties deviated from the 

nominal parts ( ) ( ) ( )qGqqBqM  and  ,,, & 000 , which is available. As to , it 

represents the external disturbance. For these uncertainties and disturbance, they are 

constrained by 
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where these upper bounds ( ) dGBM q δδδδ  and   ,,, &  are available. 

Since the considered problem here is the position tracking control, let’s first 

define the tracking error as 

 ( )tdqqe −=   (6.5) 

where  means the desired trajectory. As a result, the sliding vector is selected as ( )tdq

  Cee += &σ   (6.6) 

where , [ mT
m ℜ∈= σσσ L21σ ] ( )qM  is the inertia matrix in (6.1), and 

 is a diagonal matrix with diagonal terms  for { mC c,,c,cdiag L21= } 0>ic

 76



m,,i L1 = . Clearly, when the system is successfully controlled to stay on the sliding 

surface σ=0, its trajectory must satisfy 

    (6.7) 0=+Cee&

or 

  m,,,i,ece ii L& 21       0 ==+i  (6.8) 

With the fact of , it can be obtained from (6.8) that . For this 

reason, 

0>ic ∞→→ te   as  0i

( ) ∞→→−= ttd   as  0qqe . Therefore, the tracking  is successfully 

achieved when the system is completely restricted in the sliding mode σ=0. Next, it 

will focus on the development of UDSSMC algorithm to drive (6.1) to reach the sliding 

mode σ=0 in a finite time and then stay thereafter. 

dqq →

6.2 UDSSMC algorithm 

With the tracking error (6.5), the dynamic equation of the robot manipulator (6.1) 

can be rearranged as 

  ( ) ( ) ( ) ( ) ( ) ( )qGqqqBqqMdueqqBeqM dd −−−+=+ &&&&&&&& ,t,  (6.9) 

Since  is positive-definite, the candidate of Lyapunov function can be selected 

as 

( )qM

  ( ) 2σσ qMV Τ=   (6.10) 

From (6.2) and (6.6), taking the first derivative of V leads to 
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With the use of (6.3) and (6.9), (6.11) becomes 
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For this reason, the UDSSMC algorithm is designed as 

 ( ) ( )( ) ( )( ) uqCeqqBqeCqMqGu dd +−−−−= &&&&& ,000  (6.13) 

( )( ) i,m Σσ in   for      0, >+−+−++⋅= εεδδδδ i
dBdMGd uqCeqeCu &&&&  (6.14) 

where BMd δδδδ  and   G ,,,  are respectively the upper bounds of the uncertainties and 

disturbances given in (6.4). Note that , i=1,2,…,m+1, represent the uniformly 

distributed simplex set described in Chapter 3 and 

iu

iΣ  are the disjointed open 

sub-regions given in (2.4). With use of the uniformly distributed simplex set, the sliding 

vector σ  could be represented as 
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where [ ]1111 ++−= mii uuuuUi LL and [ ]Tm 1111 ++−= γγγγ LL iiiγ . 

Hence, it leads to 
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Since the 1-norm of any vector possesses the maximum value in all norm definitions, 

(6.17) leads to 

  ( ) σσ
mm m
11 1111 −≤+++++−= ++− γγγγ LL ii

iT u  (6.18) 

Now, substituting (6.13) and (6.14) into (6.12) yields 
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By means of (6.18), (6.19) becomes 
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With the use of (6.4), it leads to 

  σ
m
ε

−≤V&   (6.21) 

where 0>ε . It means  is negative until V& 0=σ . Therefore, V is really a Lyapunov 

function and decreases all the time and reaches zero in a finite time. In other words, the 

UDSSMC algorithm (6.13) and (6.14) could drive the system (6.1) to reach the sliding 

mode σ=0 in a finite time. 
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Similarly, the control algorithm (6.14) still inevitably confronts with the 

chattering problem, which happens not only in the sliding mode but also in the 

approach mode. Applied the smoothing strategy described in Section 4.4, it leads to 
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 (6.22) 

where iΣσ ∈ , 021 >ξξ ,  and  is defined as (4.39). Next, a numeric example 

will demonstrate the success of UDSSMC in suppressing the uncertainties and matched 

disturbance. 

mindist

 

 80



6.3 Numeric Example and Simulation Results 

For the demonstration of UDSSMC algorithm for robotic manipulators, we 

consider the position tracking control of a two-link robotic manipulator model shown in 

Figure 4.1 as an example. 
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Figure 6.1 Two-link robotic manipulator model 

The dynamic equation of a two-link robotic manipulator is given as [53] 

  ( ) ( ) ( ) ( )t, duqGqqqBqqM +=++ &&&&  (6.23) 

where 
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The corresponding parameters in (6.23) are selected as follows: 
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For the robotic manipulator (6.23), the nominal parts represent the condition that the tip 

of robotic manipulator is without payload, i.e. kg.m 602 = . Hence, the upper bound of 

the uncertainties and disturbance could be obtained as 
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In addition, the desired position vector is chosen as 
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With the use of the tracking error, the parameter of the sliding vector given in (6.6) is 

selected as 
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Hence, the state variables are chosen as 
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Further following the systematic procedure described in Section 6.2, the uniformly 

distributed simplex vectors can be found as 
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To improve the chattering phenomenon, the control algorithm (6.22) with the proposed 

smoothing strategy is adopted in this simulation. For this simulation, the thickness 

values in (6.22) are chosen as 20 10 21 .,. == ξξ . Figure 6.2 to Figure 6.6 are simulation 

results with the initial condition ( ) [ ]Tx 02020 // ππ= . Figure 6.2 shows the 

motion of the norm of the sliding vector and Figure 6.3 gives the trajectory of the 

sliding vector in the sliding plane. It is clear that the two-link robotic manipulator is 

successfully driven to the layer 2ξ<σ . In Figure 6.4, it illustrates the tracking error 

 all converge near zero. Figure 6.5 shows the trajectories of the practical 

and desired joint positions 

( )tdqqe −=

[ ]Tq φθ= . From simulation results, it reveals that the 

developed UDSSMC algorithm has been successfully tracked the desired joint position 

for the two-link robotic manipulator model. From Figure 6.6, it is also evident that the 

proposed smoothing strategy (6.22) can efficiently improve the high frequency 

chattering problem. 
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Figure 6.2 The norm value of the sliding vector 

σ1

σ2

Figure 6.3 The trajectory of the sliding vector in the σ space 
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Figure 6.4 Tracking error (a) dθθ −=1x  (b) dφφ −=3x  

 

Figure 6.5 The trajectories of the desired and actual joint positions (a) d θθ ,  (b) d φφ ,  
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Figure 6.6 Control Inputs 

 

 

 86


