
CHAPTER 2 

CONVENTIONAL SIMPLEX SLIDING-MODE CONTROL 

As preliminaries, the conventional simplex sliding-mode control (SSMC) is 

briefly introduced in this chapter. In the beginning, the history and features of the 

conventional SSMC are described in Section 2.1. Then, Section 2.2 presents the 

definition and properties of the simplex set and Section 2.3 shows the design procedure 

of the SSMC. 

2.1 Introduction 

The design procedure of the sliding-mode control (SMC) is mainly divided into 

two steps [1-4]. In the first step, an appropriate sliding function σ  should be suitably 

selected to make sure the system trajectory is stabilized in the sliding mode 0=σ . In 

the second step, it is required to design the control algorithm to guarantee the reaching 

condition, which means the system trajectory would reach the sliding mode in a finite 

time and stay thereafter. For example, consider a system in a form as 

  (2.1) ( uxfx t,,=& )

where  is the state,  is the control input, and  f  represents a 

function which has integral in the domain of continuity of u. For the SMC algorithm, it 

uses a discontinuous feedback control 
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and both  and  are continuous functions. However, these 

discontinuity surfaces 

( t,u xi
+ ) )( t,u xi

−

m,,i, L1 0 ==iσ  divide the system space into 2m sub-regions 

and 2m distinct control vectors are generated correspondingly. 

Based on a simplex set, the simplex sliding mode control (SSMC) was proposed 

to partition the system space into m+1 sub-regions and generate m+1 control vectors. 

Obviously, when comparing to the conventional SMC, the number of the sub-regions is 

reduced from 2m to m+1, so is the number of the control vectors. The SSMC was first 

developed by Baida and Izosimov for multi-input continuous systems [18]. Then, 

Diong further extended the SSMC to linear multivariable systems [19] and Bartolini et 

al. applied the SSMC to nonlinear control systems with uncertainties [24-27]. Next, a 

general design procedure of the SSMC will be introduced. 

2.2 Simplex Set 

The main feature of the SSMC is to adopt a minimum number of distinct control 

vectors, called the simplex set. For a system with the control input 

, Baida and Izosimov [18] proposed the simplex set as [ ] mℜ∈T
muuu L21=u

{ }121 += m
U uuu ,,,S L , where [ ]Ti

m
iii uuu L21=u mℜ∈  for . The 

simplex set S

121 += m,,,i L

U must satisfy the two conditions as below: 

(C1) , 0≠idetU 121 += m,,,i L , where Ui is a square matrix containing m 

column vectors without ui, expressed as 
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Note that (C1) implies that any m vectors in SU are linearly independent and (C2) leads 

to the fact that any vector v  can be expressed as , which is not a 

unique express since any m vectors in S

mℜ∈ j
m

j
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U form a basis in . For the SSMC, a unique 

express of v is required, which is purposely set as  with 
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Therefore, based on the simplex set { }121 += m
U uuu ,,,S L  satisfying (C1) and 

(C2), the space  can be divided into m+1 disjointed open sub-regions as below mℜ
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where the vector  in mv ℜ∈ iΣ  is uniquely determined as a linear combination of m 

vectors in SU without . For example, the vectors uiu 1, u2, and u3 illustrated in Figure 

2.1 shows a simplex set for 2=m  with disjointed open sub-regions 1Σ , 2Σ , and 

3Σ . 
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Figure 2.1 Simplex set for 2=m  

2.3 Conventional Simplex Sliding-Mode Control Design 

This section introduces the design procedure of the conventional SSMC using the 

simplex set described in Section 2.2 [19]. Consider a linear time-invariant system 

expressed as 

   (2.5) ( t,xBdBuAxx ++=& )

where  is the state,  represents the control input, and  

represents the matched disturbance. Without loss of generality, the pair (A,B) is 

assumed to be controllable and B is of full rank. 

nℜ∈x mℜ∈u ( ) mt, ℜ∈xd

Similar to the conventional SMC, the design procedure of the SSMC is divided 

into two steps [19]. The first step is to select an appropriate sliding vector σ  such that 

the system is stabilized in the sliding mode 0=σ . In the second step, the SSMC 

control algorithm is designed to guarantee that the system trajectory would reach the 
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sliding mode in a finite time and then stay thereafter. Next, these two steps will be 

respectively discussed. 

For the first step, the sliding vector  is generally selected as mℜ∈σ

  Cx=σ   (2.6) 

where  and  is a coefficient matrix. For the 

coefficient matrix C, it must satisfy the additional condition that the m×m square matrix 

CB is invertible, i.e.,  exists. Note that the sliding vector (2.6) has been widely 

adopted in most of the sliding-mode control. Further, many approaches have been 

proposed to design the coefficient matrix C, such as the transformation matrix method 

[41], the eigenstructure assignment method [42], and the Lyapunov-based method [43]. 

Fortunately, these developed approaches can be directly applied to the design of C for 

the SSMC since the SMC and SSMC have the same objective to guarantee the system 

stability in the sliding surface 

[ ] mσσσ ℜ∈= T
mL21σ nm×ℜ∈C

( ) 1−CB

0=σ . Therefore, this section will not discuss how to 

design C, but assume C could be suitably selected. Instead, this section will focus on 

the second step to design the SSMC algorithm such that the system trajectory could 

reach the sliding mode 0=σ  in a finite time. 

Now, for the system (2.5), taking the first derivative of the selected sliding vector 

(2.6) yields 

  ( )t,xCBdCBuCAxxC ++== &&σ  (2.7) 
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To simplify the design process, the condition ICB =  is usually considered into the 

design of C [44,45]. For this reason, (2.7) becomes 

  ( )t,xduCAx ++=σ&   (2.8) 

Apparently, the truth of (2.8) implies the controller u can directly influence the 

variation of the sliding vector σ. As a result, with the use of the simplex set described in 

Section 2.2, the SSMC control algorithm is designed as 

    (2.9) i
iuu Σσ ∈= for        ,

where ui for  represents the component of the simplex set described in 

Section 2.2 and 

121 += m,,,i L

iΣ  belongs to the disjointed open sub-region given in (2.4). For 

illustration, Figure 2.2 shows the SSMC control algorithm (2.9) by using the simplex 

set with regard to the sub-regions 1Σ , 2Σ , and 3Σ  for 2=m . 
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Figure 2.2 The SSMC control algorithm for 2=m  

Next, let’s show that the system (2.5) will be driven to the sliding mode 0σ =  in a 
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finite time by utilizing the control algorithm (2.9). To reach this goal, two important 

assumptions must be satisfied as follows: 

Assumption 2.1 [19]: The vector ui for 121 += m,,,i L  in the simplex set SU are 

selected so that none of the switching surfaces belongs to an unstable invariant 

subspace of the open-loop autonomous system, i.e. Axx =& . 

Assumption 2.2 [19]: There exist for all time , real numbers 0≥t ( )t,,    i
i uxκ  and ξ  

such that the evolution of x, as determined by (2.5) and (2.9), satisfies 
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 (2.10) 

where ui for  represents the simplex set 121 += m,,,i L { }121 += m
U uuu ,,,S L . Then, it 

is necessary to verify the closed-loop system described by (2.5) and (2.9) will achieve 

sliding mode 0=σ  in a finite time when the above two assumptions are satisfied. 

Without loss of generality, let’s consider the following case that the sliding vector 

σ  is currently in pΣ , 11 +≤≤ mp . With the use of the simplex set, the sliding vector 

σ  can be expressed as 
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Then, the candidate of Lyapunov function can be selected as 

  ( )   (2.12) ∑
+

≠=

=
1

 1

m

pjj
jV

,
φσ

In fact, it is easy to find that ( ) 0  as  0 == σσV  and for ( )  0
1

 1
>= ∑

+

≠=

m

pjj
jV

,
φσ

 14



0any  ≠σ . Besides, it has been shown that V is continuous, i.e., V doesn’t change 

discontinuously when σ  switches from pΣ  to the other sub-regions jΣ , j≠p [18]. 

For this reason, ( )σV  can be treated as a Lyapunov function. On the other hand, the 

truth of , 0
1

1
=∑

+

=

i
m

i
i uψ 0>iψ  in (C2) implies the control input can be represented 

as 

pu
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By virtue of (2.3), (2.11), (2.12), and (2.13) are rewritten as 
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With use of Assmuption 2.2, (2.10) can be derived as 
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where . By using (2.14), further taking the first 

derivative of the sliding vector σ  yields 

[ T
mppp 1111 ++−= κκκκ LLκ ]
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    (2.18) ppU φσ && =

Based on (2.8), (2.16), and (2.17), (2.18) is rearranged as 
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With the use of the matrix form, (2.19) becomes 
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Now, further taking the first derivative of (2.12) yields 

   (2.21) 1111 ++− +++++= mppV φφφφ &L&&L&&

By means of the row-by-row summation of (2.20), (2.21) leads to 
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Therefore, V decreases all the time and will decrease to zero in a finite time. In other 

words, it is evident that the closed-loop system described by (2.5) and (2.9) will 
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achieve sliding mode 0σ =  in a finite time when Assumption 2.1 is satisfied. 

Although the SSMC algorithm has been theoretically derived, some problems still 

exist and should be further improved. First, though the definition of the simplex set is 

explicitly given in (C1) and (C2), the conventional SSMC doesn’t provide any method 

for selecting an appropriate simplex set. Second, to fulfill the SSMC algorithm (2.9), it 

is necessary to determine the sub-region where the current sliding vector σ  belongs, 

i.e. iΣσ ∈ . For this step, it would become a thorny problem as the number of inputs is 

highly increased and makes the implementation of an SSMC more difficult and 

sometimes infeasible. The third problem is how to suitably eliminate the chattering 

which exists in the SSMC. Actually, it is inevitably faced with the chattering 

phenomenon for the SSMC due to the use of switching functions. The chattering 

caused by the SSMC happens not only in the sliding mode, but also during the 

approach mode. Next, we will attempt to solve the three problems by employing a 

specific simplex set, uniformly distributed simplex set. 

 17


