
CHAPTER 4 

UNIFORMLY DISTRIBUTED SIMPLEX SLIDING-MODE 

CONTROL FOR MATCHED DISTURBANCES 

Based on the uniformly distributed simplex set presented in Chapter 3, a novel 

simplex sliding-mode control, uniformly distributed simplex sliding-mode control 

(UDSSMC), is introduced in this chapter. The system description is indicted in Section 

4.1. Section 4.2 shows the sliding vector design. In Section 4.3, the UDSSMC 

algorithm is developed to guarantee system trajectory could reach the sliding mode in a 

finite time. Besides, a new smoothing strategy is employed to solve the chattering 

caused by the UDSSMC in Section 4.4. Finally, a numeric example is simulated to 

demonstrate the usefulness of the developed UDSSMC in Section 4.5. 

4.1 System Description 

Consider a linear time-invariant system encountering matched disturbance, 

expressed as 

  ( t,xBdBuAxx + )+=&  (4.1) 

where  is the state,  is the control input, and nℜ∈x mℜ∈u ( ) mt, ℜ∈xd  represents 

the matched disturbance. Without loss of generality, the pair (A,B) is assumed to be 

controllable and B is of full rank. Besides, the matched disturbance is constrained by 

  ( ) ( t,t, max xxd δ≤ )

)

  (4.2) 

where the upper bound ( t,max xδ  is available. Similar to the conventional simplex 
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sliding-mode control (SSMC), the design procedure of the uniformly distributed 

simplex sliding-mode Control (UDSSMC) is mainly divided into two steps. In the first 

step, an appropriate sliding vector is selected such that the system is stabilized in the 

sliding mode. In the second step, the UDSSMC algorithm is derived such that the 

system trajectory could reach the sliding mode in a finite time and then stay thereafter. 

Next, these two steps will be respectively discussed in detail. 

4.2 Sliding Vector Design 

To efficiently eliminate the matched disturbance, the method proposed by 

Chang and Chen [49] will be employed in the UDSSMC to choose the sliding vector. 

In this section, it will be briefly introduced as below. 

Since (4.1) is controllable and  is full rank, a state-feedback gain B K  could 

be obtained from the pole-placement method by assigning n eigenvalues 

{ } 11 mmn ωωλλ ,,,,, LL − BKA − to [50]. To design the sliding vector, { }mωω ,,L1  

are purposely set to be the same and negative, i.e., ωj=ω<0 for j=1,2,…,m, and 

{  1 mn− }λλ ,,L are selected to be λi<0 for i=1,2,…,n-m and λi ≠λj for i≠j. Besides, let λi 

≠ω, i.e., ω  is not in the spectrum of A. Chang and Chen then presented the sliding 

vector as 

  σ=Cx (4.3) 

where C consists of m independent left eigenvectors of A−BK corresponding to ω, i.e., 
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  ( ) CBKAC ω=−  (4.4) 

To rearrange (4.4), it becomes 

  CBKCCA =− ω   (4.5) 

Since the matrix C includes m independent eigenvectors, i.e. Rank(C)=m. Based on the 

fact which the chosen eigenvalue ω isn’t in the spectrum of A, it is derived 

  Rank(C)= Rank( CCA ω− )=Rank(CBK)=m (4.6) 

By utilizing the matrix theory [51], it leads to 

    (4.7) ( ) m≥CBRank

In view of the fact , it must coincide with mmCB ×ℜ∈

    (4.8) ( ) m≤CBRank

From (4.7) and (4.8), it results in 

   (4.9) ( ) m=CBRank

In other words, it shows the fact that the m×m square matrix CB is invertible, i.e., 

 exists. Because of the fact that ω( ) 1−CB j=ω<0 for j=1,2,…,m and λi<0 for 

i=1,2,…,n-m, the chosen sliding vector (4.3) could guarantee that the system trajectory 

will approach the destination along the sliding surface when the system is in the sliding 

surface. 

Based on (4.3) and the truth that ( ) 1−CB  exists, a modified sliding vector will be 

employed in the UDSSMC, expressed as 
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  ( )  (4.10) CxCB 1−=σ

where . Apparently, the system trajectory will be also 

reach the destination in the sliding mode by employing the modified sliding vector 

(4.10). 

[ mσσσ ℜ∈= T
mL21σ ]

4.3 UDSSMC Algorithm 

This section will develop the UDSSMC algorithm using (4.10) as the sliding 

vector. Let the control law be 

  uKxu +−=   (4.11) 

with 

 ( ) ( ) imax ,t,
m

m Σσ in  is  for      0,   
1

2 1CxCBuxu i −=>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+
= εεδ  (4.12) 

where for i=1,2,…,m+1 represent the uniformly distributed simplex set Siu U described 

in Chapter 3. By means of the uniformly distributed simplex set, the sliding vector 

 in mℜ∈σ iΣ  can be uniquely expressed as 

   (4.13) 0 
1

1
>= ∑

+

=≠
j

m

j,j

j
j ,γγ

i
uσ

Note that the use of ( ) εδ +⋅
+

t,
m

m
max x

1
2  will be explained later. 

The most important thing for the use of (4.12) is to determine which sub-region 

iΣ  the sliding vector σ  belongs to. Actually, this is not an easy job, especially when 

the number of control inputs is increased higher than 3. To deal with such problem, an 
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efficient scheme is proposed as below. 

First, reviewing an important equation (3.3) derived from the uniformly 

distributed simplex set, it has ( ) mmm
T

mmm
m

×+++ =⎥⎦
⎤

⎢⎣
⎡ −

+
IUVU 1111

 where 

 and [ ]m
m ,,, uuuU    21

1 L=+ [ ]111
1    +++

+ = mmm
m ,,, uuuV L . It also implies 

 ( ) mm
T

mmm m
m

×+++ =⎥⎦
⎤

⎢⎣
⎡ −

+
IVUU 111 1

 (4.14) 

Then, define a checking vector [ ]T
m,,, γγγ ′′′=′    21 Lγ  as 

  (4.15) ( σT
mm 11 ++ −=′ VUγ )

With this checking vector, the sub-region iΣ  can be easily determined according to 

the following lemma: 

Lemma 1:  Let pγ ′  be the smallest element of [ ]T
m,,, γγγ ′′′=′    21 Lγ , i.e., pγγ ′≥′j  for 

 If mj ≤≤1 . 0>′pγ , the sliding vector σ  belongs to 1+mΣ . If 0<′pγ  and pγγ ′>′j  

for pj ≠ , then the sliding vector σ  belongs to p\Σ . Otherwise, the sliding vector 

σ  doesn’t belong to any open sub-regions iΣ , i=1,2,…,m+1. It is on one of the 

boundaries of these m+1 open sub-regions. 

Proof: 

From (4.14), pre-multiplying 11 ++ mU
m

m  into (4.15) becomes 

  ( ) ∑
=

+ ′
+

=′++′+′
+

=′
+

=
m

j

j
j

m
mm m

m
m

m
m

m
1

2
2

1
11 111

uuuuγU γγγγ Lσ  (4.16) 

Clearly, if 0>′pγ  then 0>′≥′ pγγ j  for j=1,2,…,m since pγ ′  is the smallest element. 

This implies that the sliding vector σ  can be expressed by a linear combination of u1, 
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u2, …, um with positive coefficients. Due to (4.13), it is easy to find that the sliding 

vector σ  belongs to 1+mΣ  by directly setting jj m
m γγ ′
+

=
1

.  

If 0<′pγ  and pγγ ′>′j  for pj ≠ , then it has 0=′+′>′+′ ppp γγγγ j  for 

pj ≠ . Now, by letting 01 =′ +mγ  and ( )pγγγ ′+′
+

= ii m
m

1
 for i=1,2,…,m+1, (4.16) can 

be rearranged as 

  ∑∑
+

=≠

+
+

+

=

=+++=′
+

+
1

1

1
1

2
2

1
1

1

11

m

j,j

j
j

m
m

m

j

j

m
m

p
p uuuuu γγγγγ Lσ  (4.17) 

where ( ) 0
1

=′+′
+

= ppp γγγ
m

m , pγγ ′
+

=+ 11 m
m

m  and ( ) 0
1

>′+′
+

= pγγγ jj m
m  for 

pj ≠ . From (3.11) and (3.12), it can be obtained that . Hence, (4.17) 

becomes 

0
1

1
=∑

+

=

m

i

iu

   (4.18) 0
1

1
>= ∑

+

=≠
j

m

j,j

j
j ,γγ

p
uσ

According to (4.13), the sliding vector σ  belongs to pΣ . 

For the other cases, i.e., when 0=′pγ  or when 0<′=′ pγγ j  for some pj ≠ , it 

is not difficult to find that the sliding vector σ  doesn’t belong to any sub-regions iΣ  

because in addition to 0=pγ , at least one of the coefficients jγ , pj ≠ , is zero. 

  

According to the proposed checking vector (4.15) and Lemme1, it can be easily to 

determine which sub-region iΣ  the sliding vector σ  belongs to. Next, let’s show that 

the system (4.1) will be driven to the sliding mode 0=σ in a finite time by using the 

UDSSMC algorithm (4.11) and (4.12). 
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For the system (4.1) encountering matched disturbance d, the use of control input 

(4.11) leads to 

  ( ) ( )t,xBduBxBKAx ++−=&  (4.19) 

with u  given in (4.12). Let the sliding vector σ  be chosen as (4.10), then its first 

derivative becomes 

  

( )
( ) ( )
( )

du
duCxCB

duxBKACCB

xCCB

++=
++=

++−=

=

−

−

−

σ

σ

ω
ω

   
   

    
1

1

1 &&

 (4.20) 

where (4.4) has been adopted. Without loss of generality, let’s consider the following 

case that the sliding vector σ  is currently in pΣ , 11 +≤≤ mp , i.e., 

   (4.21) 0        
1

1
>== ∑

+

=≠
jpp

m

jp,j

j
j , γγ γσ Uu

where Up is defined in (3.1) and [ ]Tmppp 1111 ++−= γγγγ LLγ . Hence, it leads 

to 

  ( ) p
max t,

m
m uxu ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅

+
= εδ

1
2  (4.22) 

where ( t,max x )δ  means the upper bound of the matched disturbance given in (4.2). 

Furthermore, the truth of 0≠pdetU  in (C1) implies that all the columns of Up form a 

basis of , and then the matched disturbance d can be uniquely expressed as mℜ

   (4.23) pp

m

jp,j

j
j δUud == ∑

+

=≠

1

1
δ

where . Note that all the elements of δ[ T
mppp 1111 ++−= δδδδ LLδ ] p are 

 33



unknown and may be negative. Now, by pre-multiplying (uk−up)T into (4.23) for k≠p, it 

leads to 

  ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

=−=−=− ∑
+

=≠ m
m

k
kTpk

k

m

jp,j

j
j

TpkTpk 11

1
δδδ uuuuuuduu  (4.24) 

where  for k≠j. Clearly, ( ) 0=− jTpk uuu

  ( ) ( t,
m

m
m

m
max

pkTpk
k xuuduu δδ ⋅−

+
≤−

+
=

11
)  (4.25) 

where ( )t,max xd δ< . With the use of (C3) and (C4), it causes that 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +

=−−=−
m

mpkTpkpk 12
2

uuuuuu . That means ⎟
⎠
⎞

⎜
⎝
⎛ +

=−
m

mpk 12uu  and 

then (4.25) is rewritten as 

  ( ) ( t,
m

mt,
m

m
m

m
maxmaxk xx δδδ ⋅

+
=⋅⎟

⎠
⎞

⎜
⎝
⎛ +

+
≤

1
212

1
)  (4.26) 

Now, substituting (4.21), (4.22), and (4.23) into (4.20) yields 

  ( ) pp
p

maxpppp t,
m

m δγγ UuxUU +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+
+= εδω

1
2

&  (4.27) 

Similar to (4.24), by pre-multiplying (4.27) with (uk−up)T for k≠p, it becomes 

  ( ) εωγδεδωγγ −≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+
−= kkmaxkk t,

m
m x

1
2

&  (4.28) 

where the truth of (4.26) is adopted. Since 0>kγ  for k≠p in pΣ , the candidate of 

Lyapunov function can be selected as 

∑
+

≠
=

=
1

1

m

pk
k

kV γ  (4.29) 

From (4.28), taking the first derivative of V leads to 
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εωεγωγ mVmV
m

pk
k

k

m

pk
k

k −=−≤= ∑∑
+

≠
=

+

≠
=

1

1

1

1

&&  (4.30) 

Since ω<0, it leads to 

   (4.31) εmV −<&

Obviously, V is really a Lyapunov function. Besides, it has been shown that V is 

continuous, i.e., V doesn’t change discontinuously when σ switches from pΣ  to the 

other sub-regions jΣ , j≠p [18]. Therefore, V decreases all the time and will become 

zero in a finite time, i.e., V(t)≡0 for t−t0>t’, where t0 is the initial time and 

( ) εmtVt 0=′ . Note that V(t)≡0 implies γk=0 for k=1,2,…,m+1 or . In 

other words, the system trajectory will reach the sliding mode σ=0 in a finite time. 

0
1

1
== ∑

+

=≠

m

jp,j

j
juγσ

4.4 Smoothing Strategy for UDSSMC 

By virtue of the above derivation, it demonstrates that the developed UDSSMC 

algorithms (4.11) and (4.12) could efficiently suppress the matched disturbance. 

However, it still inevitably confronts with the chattering problem, which happens not 

only in the sliding mode but also in the approach mode. If the concept of sliding layer 

is directly adopted, which modifies (4.12) as 

  ( )
⎪
⎩

⎪
⎨

⎧

<

≥∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+=
ξ

ξεδ

σ

σΣσ

 if                      Unchanged                    

 iffor     
1

2
     imax ,,t

m
m iux

u  (4.32) 

then (4.32) could only smooth away the chattering in the sliding layer ξ≤σ . As for 
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the chattering in the approaching mode, (4.32) is still unable to suppress such unwanted 

high frequency behavior. In fact, such chattering before the sliding mode exists due to 

the switching function in the UDSSMC, which is excited when the system trajectory 

moves around two connected open sub-regions given in (2.4). 

In order to improve the above weakness, a novel scheme with two different 

strategies is proposed here. First, let the system trajectory be currently in iΣ , 

, i.e., the sliding vector can be expressed as 11 +≤≤ mi

   (4.33) 0        
1

1
>== ∑

+

=≠
j

m

j,j

j
j , γγ ii

i
Uu γσ

where Ui is defined in (3.1) and [ ]T
m 1111 ++−= γγγγ LL iiiγ . Further 

rearrange (4.33) as 

    (4.34) iq

qiqi

q
q uuu Σσ ∈+= ∑∑

+

≠≠
=

+

≠≠
=

1

1

1

1
             

m

j,j
,j

j
j

m

j,j
,j

j
j , γγγ

where  and iq ≠
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>== ∑
+

≠≠
=

1

0  
m

qjij

j
j

jqqq u
,
1,j

iii ,γγσσΣ  represents the sub-region 

formed by the simplex vectors , ju 11 +≤≤ mj , qi,j ≠ . Actually, iqΣ  is the 

boundary separating iΣ  and qΣ , which is depicted in Figure 4.1 as an example. 
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iqn̂
iΣ

ikD

iqD

 

Figure 4.1. The sub-region formed by the uniformly distributed simplex set 

Now, let’s define the distance between the sliding vectors σ and the boundary iqΣ  by 

introducing the following unit vector 

  
qi

qi

iq uu
uun

−
−

=ˆ  (4.35) 

Note that any vector in iqΣ  can be expressed as and the inner product ∑
+

≠≠
=

=
1m

qjij

j
jq u

,
1,j

i γσ

iqiq n̂⋅σ  is then attained as 

  
( )

0
11

=
−

⋅−⋅
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⋅ ∑∑

+

≠≠
=

+

≠≠
=

m

qjij

qi

qjij
j

qi

qim

qjij

j
jiqiq uu

uuuu
uu
uuun

,
1,j

,
1,j

ˆ
γ

γσ  (4.36) 

where the truth of  can be seen from (C4). It is clear that  is 

perpendicular to 

0=⋅−⋅ qjij uuuu iqn̂

iqΣ , i.e., iqiqn Σ⊥ˆ . Hence, the distance between the sliding vectors 

σ  and the boundary iqΣ  can be implemented as 
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( ) ( )

iq
q

q

iqiq
q

qiq

qi

q
qiqiq

nu

nunuun

ˆ

ˆˆˆ,dist
m

j,j
j

j
j

⋅=

⋅+=⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=⋅= ∑

+

≠≠
=

γ

γγγ

                 

1

1
σσΣσ

 (4.37) 

which can be further calculated from (C3) and (C4) as 

( ) ( )

mmm

mm

ˆ,dist

11
2

2211              

2211              

 

+=+⎟
⎠
⎞

⎜
⎝
⎛ +=

+⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

⋅=⋅=

q
q

q

qi

qi
q

qiq
q

qiq uu
uuunu

γ
γ

γ

γγΣσ

 (4.38) 

Furthermore, the minimum distance between the sliding vector σ  and the boundaries 

for the region iΣ  could be defined as below:  

  
m

dist min
min

11
2

+=
γ  (4.39) 

where minγ  is the minimum value among [ ]T
m 1111 ++−= γγγγ LL iiiγ  for 

. In other words, if iii
i

Uu Σγσ ∈== ∑
+

=≠

1

1

m

j,j

j
jγ jγγ =min , then the minimum distance 

m
distmin

11
2

+= jγ
 represents the distance between the sliding vector σ  and ijΣ , 

which is the boundaries of iΣ  and jΣ . 

To totally get rid of the chattering problem for the simplex sliding mode control, 

the novel scheme, which includes two different strategies, is designed as 
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( )

( )
⎪
⎩

⎪
⎨

⎧

<

≥∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+=

⎪
⎩

⎪
⎨

⎧

<

≥∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+=

2

2

1min

1min

 if                      Unchanged                    

 iffor     
1

2
           

:mode sliding In the
 if                      Unchanged                    

 if for     
1

2
            

:mode gapproachin In the

ξ

ξεδ

ξ

ξεδ

σ

σΣσ

Σσ

imax

imax

,t,
m

m

dist

dist,t,
m

m

i

i

ux
u

uxu

 (4.40) 

where  is defined as (4.39). In addition, mindist 021 >ξξ , are treated as the thickness of 

the layer illustrated in Figure 4.2 for the case of m=2. 

 

s1

u1

u2

u3

∑3

∑1

∑2

s2

ξ2

ξ1

ξ1

ξ1

 

Figure 4.2 The novel smoothing strategy 
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4.5 Numeric Example and Simulation Results 

In this section, two examples with different dimensions of control inputs are 

simulated to demonstrate the usefulness of UDSSMC in suppressing the matched 

disturbance. Next, these examples and simulation results will be explicitly shown in the 

following. 

Example 4.1 

Consider a linear time-invariant system (4.1) suffering from the matched 

disturbance, with the following numeric data: 

   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−

=

00
3350106252

31062027141
004090

   and

0010
03320010740010
0369603345173740

238001005060

..
..

.

...
...

..

B

A

The control input and system state are respectively represented by  and 

. The matched disturbance 

[ Tu 21 uu= ]

][ Tx 4321 xxxx= ( ) ( ) ( )[ ]Tt,dt,dt, xxxd 21=  is 

assumed as 

  ( ) ( ) ( )
( ) ( ) ⎥

⎦

⎤
⎢
⎣

⎡
×+

×+
=

3

1

203
50202

xtsin.tcos
xt.cos.tsin

t,xd  (4.41) 

Apparently, the upper bound of the matched disturbance are obtained as  

  ( ) ( ) 31 20202 x.x.tt, max ++=≤ δxd  (4.42) 
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The first step of the UDSSMC design is to choose a sliding vector  as 

given in (4.10). Following the procedure described in Section 4.2, the eigenvalues for 

A−BK are assigned to be 

( ) CxCB 1−=σ

 5   2  1 2121 −==−=−= ωωλλ ,,  (4.43) 

where 21  and ωω  are purposely set to be the same and negative. By the aid of 

MATLAB, the state-feedback gain K and the left eigenvectors of A−BK corresponding 

to 21  and ωω  could be calculated as 

  ⎥
⎦

⎤
⎢
⎣

⎡
−

=
469700.1894-0.2864-0.1622

0.37892.7990-0.1194-2.3642
 

.
K

and  

  ⎥
⎦

⎤
⎢
⎣

⎡
−

=
821300.29140.3758-0.3152-

0.8030-0.3104-0.4385-0.2581
 

.
C

Hence, it obtains 

  ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−−

−−
=−

09510031100513002520
053204955003260473801

....
....

CCB

According to the sliding vector design described in Section 4.2, it is evident that the 

system stability in the sliding mode is guaranteed since all the eigenvalues are allocated 

in the left half plane. Based on the new construction proposed in Section 3.3, the 

uniformly distributed simplex set for 2=m  can be selected as 

 

[ ]
[ ]
[ ]T

T

T

u

u

u

2321

2321

01

3

2

1

//

//

−−=

−=

=

 (4.44) 

For  and (4.42), the corresponding coefficient in (4.12) is chosen as 2=m
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  ( ) 31 25025052
1

2 xxx ...t,
m

m
max ++=+⋅

+
εδ  (4.45) 

To demonstrate the effectiveness of the UDSSMC and the new smoothing strategy 

described in Section 4.4, there are three cases to simulate in the following: 

Case 1: In this case, the UDSSMC control algorithm without any smooth strategy is 

adopted. Due to (4.45), the UDSSMC control algorithm is 

 ( ) ( ) i,... Σσ in  is  for      0,   25025052 1
31 CxCBuxxu

uKxu
i −=>++=

+−=

ε
 (4.46) 

Figure 4.3 to Figure 4.6 are simulation results with initial condition 

 for Case 1. Figure 4.3 shows the time response of the sliding 

vector  and Figure 4.4 gives the trajectory of sliding vector in the 

( ) [ Tx 57550 −= ]

][ T
21 σσ=σ σ  

space. It is clear that the system is successfully driven to the destination, i.e. 0=σ . 

Figure 4.5 and Figure 4.6 are respectively the time response of the state variables and 

the control input. In Figure 4.5, it illustrates the system state variables all converge to 

x=0. However, Figure 4.6 shows the control input with serious chattering problem. To 

overcome the chattering problem, the following cases are simulated to test the 

feasibility of the smoothing strategies, the conventional sliding layer (4.32) and the new 

smoothing strategy (4.40). 

Case 2: To improve the chattering phenomenon, the conventional sliding layer is 

adopted in this case. For this reason, the control algorithm in Case 2 becomes 
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 ( )
⎩
⎨
⎧

<
≥∈++

=

+−=

ξ
ξ

σ
σΣσ

 if                      Unchanged                    
 iffor     25025052

   

 

31 i,... iuxx
u

uKxu

 (4.47) 

With the use of initial condition ( ) [ ]Tx 57550 −=  and 020.=ξ , Figure 4.7 to 

Figure 4.10 show simulation results for Case 2. Figure 4.7 and Figure 4.8 respectively 

illustrate the time response of the sliding vector σ  and the trajectory of sliding vector 

in the σ  space. Figure 4.9 gives the trajectory of the state variables and Figure 4.10 is 

the time response of the control input. From simulation results, it is obvious that the 

conventional sliding layer could only smooth away the chattering in the sliding layer 

ξ≤σ . However, it still exists the chattering phenomenon before the sliding mode. In 

other words, it implies that the conventional sliding layer is unable to totally suppress 

the chattering caused by the SSMC. 

Case 3: To verify the usefulness of the new smoothing strategy, the UDSSMC control 

algorithm (4.40) is applied in Case 3. With the use of (4.45), the control algorithm in 

this case is 

( )

( )
⎩
⎨
⎧

<
≥∈++

=

⎩
⎨
⎧

<
≥∈++

=

+−=

2

231

1min

1min31

 if                      Unchanged                    
 iffor     25025052

           

:mode sliding In the     
 if                      Unchanged                    
 if for     25025052

            

:mode gapproachin In the     
and
     

ξ
ξ

ξ
ξ

σ
σΣσ

Σσ

i

i

,...

dist
dist,...

i

i

uxx
u

uxx
u

uKxu

  (4.48) 
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Figure 4.11 to Figure 4.14 are simulation results for Case 3 under the same conditions 

of , ( ) [ ]Tx 57550 −= 0101 .=ξ , and 0202 .=ξ . In Figure 4.11 and Figure 4.12, 

it respectively shows the time response of the sliding vector σ  and the trajectory of 

sliding vector in the σ  space. Figure 4.13 is the trajectory of the state variables and 

Figure 4.14 gives the time response of the control inputs. From these simulation results, 

it illustrates that the new smoothing strategy could really get rid of the chattering 

problem caused by the switching function in the UDSSMC not only in the sliding mode 

but also in the approach mode. 

Example 4.2 

To demonstrate the usefulness of the UDSSMC for the high-dimension system, 

the considered system in this example is the linear time-invariant system (4.1) with the 

following numeric data: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1.2808-   1.6344-   1.8576    1.2104    
0.5728-   1.2796-   2.3764    1.1012    

1.6308     1.1072    1.2760    1.4236    
0.3252-   1.0328-   1.6712    0.7752    
1.7348     1.4372    1.2088-   1.2948    
2.5232-   1.9156-   0.9988    1.4108    
1.3748     1.9140    0.1492    2.6512    

    and

    

1.0167    4.4192-   4.5384    0.6625-   1.5576-   2.2109    0.3000-   
0.7549    1.3620-   0.8279    1.0650    0.2683-   0.5795-   0.1372-   
3.5906    7.5789-   5.5411    4.1729    2.1877-   0.7761-   0.1071-   
0.7788     1.1385-   0.5825    1.3152    0.3787-   0.5108-   0.2033    
2.2363    4.7931-   3.5547    2.5400    1.4163-   0.3638-   0.0402-   
1.4969-   3.8520    2.9374-   1.7008-   1.0126    0.3073-   0.0254-   
6.9081    16.3675-  15.2879   2.6148    6.8820-   2.1790    0.7872-   

B

A

 (4.49) 
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Clearly, the system state  and there are four 

control variables, denoted as 

[ ] 7
7654321 ℜ∈= Tx xxxxxxx

[ ]Tu 4321 uuuu= . Besides, the pair (A,B) is 

controllable. Then, the matched disturbance will be chosen as 

 

( )
( ) ( ) ( )( ) (

( )
( ) ( ) ( )( ) ( ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

++
=

tsin.tcos.
tsin.

t.sin.tcos.
tsin.

4350450
750

502150350
750

xx

xx
d

)

)

 (4.50) 

Obviously, the upper bound of the matched disturbance could be obtained as 

 ( ) ( ) ( ) ( ) ( ) ( )435021502 xxxxxd ++++=≤ ..tt, maxδ  (4.51) 

Now, choose a sliding vector ( ) CxCB 1−=σ  as given in (4.10). Based on the 

procedure described in Section 4.2, the eigenvalues for A−BK are assigned to be 

 6  5  4  1 4321321 −====−=−=−= ωωωωλλλ ,,,  (4.52) 

where ωi, i=1,2,3,4, are the same. By the aid of MATLAB, it gets 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3.2839-   2.2005    3.8529-   9.7104    5.8846    2.4858-   2.1713-   
5.6934    9.9789-   9.7626    6.5267-   10.1507-  1.3034    3.9504    
4.2407     15.9111-  8.3284    11.0521   8.2486-   0.6071    2.3067    
4.0333    18.4880-  8.0927    14.4688   1.1581-   3.9350    0.7115-  

K  

and  

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−

0.3999-   0.3239-   0.2529     1.1667      0.6094    0.0489    0.4835-   
0.4025    0.0152-   0.1436-   0.8262-   0.9273-   0.3884-   0.8008    
0.2890     1.6285-    0.4117     1.6897    0.8990-   0.1555-   0.3511    
0.4604     2.6746-   1.1045     2.0352    0.0550-    0.6595    0.2343-  

1CCB  

Note that the system stability in the sliding mode is guaranteed since all the eigenvalues 

are allocated in the left half plane. Further, the uniformly distributed simplex set can be 

found as 
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[ ]
[ ]
[ ]
[ ]
[ ]T

T

T

T

T

u

u

u

u

u

12901230121541

1290   1230121541

    0           630    121541

    0              0           415    41

    0              0              0            1      

5

4

3

2

1

////

////

///

//

−−−−=

−−−=

−−=

−=

=

 (4.53) 

from the systematic procedure described in Section 4.3. Due to the fact of m=4 and 

(4.51), the corresponding coefficient in (4.12) is chosen as 

 ( ) ( ) ( ) ( ) ( )4370217062
1

2 xxxxx ++++=+⋅
+

...t,
m

m
max εδ  (4.54) 

Hence, the UDSSMC algorithm in (4.11) and (4.40) becomes 

( )

( )
⎩
⎨
⎧

<
≥∈++++

=

⎩
⎨
⎧

<
≥∈++++

=

+−=

2

24321

1min

1min4321

 if                      Unchanged                    
 iffor     707062

           

:mode sliding In the     
 if                      Unchanged                    

 if for     707062
            

:mode gapproachin In the     
and

      

ξ
ξ

ξ
ξ

σ
σΣσ

Σσ

i

i

,...

dist
dist,...

i

i

uxxxx
u

uxxxx
u

uKxu

 (4.55) 

Figure 4.15 to Figure 4.18 are simulation results with the condition of 

, ( ) [ Tx 11500150500 ... −−= ] 0501 .=ξ , and 102 .=ξ . Figure 4.15 shows 

the sliding vector  41 ,,i, L=iσ and Figure 4.16 gives the trajectory of the norm of the 

sliding vector, σ . From simulation results, it is demonstrably that the system is 

successfully driven to the sliding layer ξ<σ . Figure 4.17 and Figure 4.18 are 

respectively the trajectories of the state variables and control inputs. In Figure 4.17, it 

illustrates the system state variables all converge to x=0. From simulation results, it 
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demonstrates the practicability of the developed UDSSMC for high-dimension systems 

even the number of the control input is increased higher than three. In addition, it also 

reveals that the chattering problem could be effectively improved by the UDSSMC 

algorithm (4.55). 
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Figure 4.3 Time response of the sliding vector for Case 1 of Example 1 

σ1

σ2

 

Figure 4.4 The trajectory of the sliding vector in the σ space for Case 1 of Example 1 

 48



 

Figure 4.5 State variables x1-x4 for Case 1 of Example 1 

 

Figure 4.6 Control Inputs for Case 1 of Example 1 
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Figure 4.7 Time response of the sliding vector for Case 2 of Example 1 

σ1

σ2

 

Figure 4.8 The trajectory of the sliding vector in the σ space for Case 2 of Example 1 
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Figure 4.9 State variables x1-x4 for Case 2 of Example 1 

 

Figure 4.10 Control Inputs for Case 2 of Example 1 
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Figure 4.11 Time response of the sliding vector for Case 3 of Example 1 

σ1

σ2

 

Figure 4.12 The trajectory of the sliding vector in the σ space for Case 3 of Example 1 
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Figure 4.13 State variables x1-x4 for Case 3 of Example 1 

 

Figure 4.14 Control Inputs for Case 3 of Example 1 
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Figure 4.15 Time response of the sliding vector 1σ - 4σ  for Example 2 

 

Figure 4.16 The norm of the sliding vector for Example 2 
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Figure 4.17 State variables x1-x7 for Example 2 

 55



 

Figure 4.18 Control Inputs for Example 2 
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