CHAPTER 4
UNIFORMLY DISTRIBUTED SIMPLEX SLIDING-MODE

CONTROL FOR MATCHED DISTURBANCES

Based on the uniformly distributed simplex set presented in Chapter 3, a novel
simplex sliding-mode control, uniformly distributed simplex sliding-mode control
(UDSSMQ), is introduced in this chapter. The system description is indicted in Section
4.1. Section 4.2 shows the sliding vector design. In Section 4.3, the UDSSMC
algorithm is developed to guarantee system trajectory could reach the sliding mode in a
finite time. Besides, a new smoothing strategy is employed to solve the chattering
caused by the UDSSMC in Section-4.4: Finally, a numeric example is simulated to

demonstrate the usefulness of the:developed . UDSSMC in Section 4.5.

4.1 System Description

Consider a linear time-invariant system encountering matched disturbance,
expressed as
x = Ax + Bu+ Bd(x,1) (4.1)
where x e R" is the state, u e R" is the control input, and d(x,)e R" represents
the matched disturbance. Without loss of generality, the pair (4,B) is assumed to be
controllable and B is of full rank. Besides, the matched disturbance is constrained by
ld(x,2)] < 8,0 (.2) (4.2)

where the upper bound o (x,t) is available. Similar to the conventional simplex

max

27



sliding-mode control (SSMC), the design procedure of the uniformly distributed
simplex sliding-mode Control (UDSSMC) is mainly divided into two steps. In the first
step, an appropriate sliding vector is selected such that the system is stabilized in the
sliding mode. In the second step, the UDSSMC algorithm is derived such that the
system trajectory could reach the sliding mode in a finite time and then stay thereafter.

Next, these two steps will be respectively discussed in detail.

4.2 Sliding Vector Design

To efficiently eliminate the matched disturbance, the method proposed by
Chang and Chen [49] will be employedrin the UDSSMC to choose the sliding vector.
In this section, it will be briefly introducedas below.

Since (4.1) is controllable and " Bisfull rank, a state-feedback gain K could
be obtained from the pole-placement method by assigning » eigenvalues
A, A, .0, 0, to A—BK[50]. To design the sliding vector, {@,,--,®,, }
are purposely set to be the same and negative, i.e., ®=w<0 for j=1,2,...,m, and
{4, 4, | are selected to be 4,<0 for i=1,2,...,n-m and A,=4 for i=j. Besides, let 4,
#m, 1.., @ is not in the spectrum of 4. Chang and Chen then presented the sliding
vector as

o=Cx (4.3)

where C consists of m independent left eigenvectors of 4—BK corresponding to a, i.e.,
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C(4-BK)=aC (4.4)
To rearrange (4.4), it becomes

CA - oC = CBK (4.5)
Since the matrix C includes m independent eigenvectors, i.e. Rank(C)=m. Based on the
fact which the chosen eigenvalue w isn’t in the spectrum of A4, it is derived

Rank(C)= Rank(CA — oC )=Rank(CBK)=m (4.6)
By utilizing the matrix theory [51], it leads to

Rank(CB)> m (4.7)
In view of the fact CB e R™", it must coincide with

Rank(CB)< m (4.8)
From (4.7) and (4.8), it results in

Rank(CB) = m (4.9)
In other words, it shows the fact that the mxm square matrix CB is invertible, i.e.,
(CB)™ exists. Because of the fact that w=w<0for j=1.2,...m and A<0 for
i=1,2,...,n-m, the chosen sliding vector (4.3) could guarantee that the system trajectory
will approach the destination along the sliding surface when the system is in the sliding
surface.

Based on (4.3) and the truth that (CB)™ exists, a modified sliding vector will be

employed in the UDSSMC, expressed as
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o=(CB)" Cx (4.10)
where o-:[a1 g, - 0O, ]T e R™. Apparently, the system trajectory will be also
reach the destination in the sliding mode by employing the modified sliding vector

(4.10).

4.3 UDSSMC Algorithm
This section will develop the UDSSMC algorithm using (4.10) as the sliding
vector. Let the control law be
u=-Kx+u (4.11)

with

g:[ %.aw(x,t)wJu", g0, for o=(CB)"Cx isinX, (4.12)
m

where ' for i=1,2,...,m+1 represent the uniformly distributed simplex set S, described
in Chapter 3. By means of the uniformly distributed simplex set, the sliding vector

ocR™ in X, can be uniquely expressed as

m+1

o= Y yu.,y, >0 (4.13)

Jj#i,j=1

Note that the use of ‘/Z_ml .5, (x,)+& will be explained later.
m+

The most important thing for the use of (4.12) is to determine which sub-region

2, the sliding vector o belongs to. Actually, this is not an easy job, especially when

the number of control inputs is increased higher than 3. To deal with such problem, an
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efficient scheme is proposed as below.
First, reviewing an important equation (3.3) derived from the uniformly
m

distributed  simplex set, it has {—(UM—V

T
m+1 m+l) :|Um+l = Imxm Where

U, = [ul,uz,n-,u’“] and V, , = [u'”*l,um+1,--~,u’"+l] . It also implies
m T
— -V, =1 4,14
Um +1[ m+ 1 (Um+1 m+1 ) j| mxm ( )

Then, define a checking vector p' =[y/,74,---.7"] as

y’ = (Um+1 -V,

m+1

) o (4.15)
With this checking vector, the sub-region X, can be easily determined according to
the following lemma:

Lemma I: Let y be the smallest elementof y' ={y;,7;.---, 7.1 ie, y 2y, for
1<j<m.If y, >0, the sliding"vector o ~belongsto X2, .. If y, <0 and y’ >y
for j= p, then the sliding vector o belongs to % . Otherwise, the sliding vector
o doesn’t belong to any open sub-regions X, i=1,2,...,m+1. It is on one of the
boundaries of these m+1 open sub-regions.

Proof:

into (4.15) becomes

m+1

From (4.14), pre-multiplying My
m+1

m ' m r. 1 1.2 r_m m C ’ /
o=—-U =——\pnuw +yu +--+y u")=—— u’ 4.16
— o Una? m+1(71 Vs yu") m+l;7’ (4.16)

Clearly, if y;, >0 then y' >y >0 for;j=12,...,msince y; isthe smallest element.

This implies that the sliding vector o can be expressed by a linear combination of u*,
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u’, ..., u™ with positive coefficients. Due to (4.13), it is easy to find that the sliding

by directly setting y, = iy} :

vector o belongsto X2
m+1

m+1

If y,<0 and y’; >y, for j=p, then it has y}+

Yol>7, +‘y;‘=0 for
Jj# p.Now, by letting y,,,=0 and y, =il(]/;+‘]/;") for i=1,2,...,m+1, (4.16) can
m+

be rearranged as

m+1 m+1

o+ 7, E w=yu+yu’+ty u"t = E }/ju-i (4.17)
m+1 =1 j#p.j=1
m ’ ’ m ’ m ’ ’
Where }/p:m(}/p‘F}/p ):O v Vs :m]/p and }/j:m(]/j‘F}/p )>O for

m+l

j# p. From (3.11) and (3.12), it can be obtained that Zui =0. Hence, (4.17)

i=1

becomes

m+1

o= Yyu,y, >0 (4.18)
J#p.JAL '
According to (4.13), the sliding vector “o belongsto 2.
For the other cases, i.e., when y’ =0 orwhen y’ =y <0 forsome j=p, it
is not difficult to find that the sliding vector o doesn’t belong to any sub-regions X'

because in additionto y, =0, at least one of the coefficients »,, j=# p, iszero.

aaa

According to the proposed checking vector (4.15) and Lemmel, it can be easily to

determine which sub-region X the sliding vector o belongs to. Next, let’s show that
the system (4.1) will be driven to the sliding mode o =0in a finite time by using the

UDSSMC algorithm (4.11) and (4.12).
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For the system (4.1) encountering matched disturbance d, the use of control input
(4.11) leads to
x=(A—BK)x+ Bu + Bd(x,t) (4.19)
with u given in (4.12). Let the sliding vector o be chosen as (4.10), then its first
derivative becomes

6=(CB)" Cx
=(CB)'C(4-BK)x+u+d (4.20)
=w(CB) ' Cx+u+d

=woc+u-+d

where (4.4) has been adopted. Without loss of generality, let’s consider the following

case that the sliding vector o is:currently in 2 ,"1<p<m+1,ie.,

m+l

o= Z}/juj =U,y,=. ¥ >0 (4.21)
J#p.j=l
where U, is defined in (3.1) and y, :[;/1 .ty . 7m+1]T. Hence, it leads
to
g=| |25 (xi)+e u? (4.22)
m+1l "

where 5max(x,t) means the upper bound of the matched disturbance given in (4.2).

Furthermore, the truth of detU, =0 in (C1) implies that all the columns of U, form a

basis of R™, and then the matched disturbance d can be uniquely expressed as

m+l
d= Y ou' =UJ, (4.23)

J#p.j=1

o ]T. Note that all the elements of &, are

p+l

o

m+1

where §p:[§1 e 0

p-1
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unknown and may be negative. Now, by pre-multiplying (") into (4.23) for k=p, it

leads to

(uk—u”)T (u —u ) miié‘u (u —u )Tuk :5k(m—+1j (4.24)
m

J#p.j=1

where (u* —u?) u’ =0 for k#j. Clearly,
| k|—ﬁ(u —-u )Td‘ﬁiluuk—u"”-é' (1) (4.25)

where |d|<,,,(x.f) . With the use of (C3) and (C4), it causes that

Huk —”pHZ _ (u" _up)r (uk _u”): g[m_*lj . That means Huk _upH - 2[”1_”} and
m

then (4.25) is rewritten as
m m+1 2m
|5k|ﬁj 2l —= |8, (x0)===-5. (x1) (4.26)
m

Now, substituting (4.21), (4.22), and (4:23) into (4.20) yields

2 g (i) gJup +U,8, (4.27)

Upyp :a)Up}/p +[ —)

Similar to (4.24), by pre-multiplying (4.27) with (u*—u”)" for k+p, it becomes

Vi =), —( 2m S5, (x,0)+ 8]+5k <oy, —¢€ (4.28)
m+1

where the truth of (4.26) is adopted. Since y, >0 for k#p in X', the candidate of

Lyapunov function can be selected as

m+1

V=>7 (4.29)

k#p

From (4.28), taking the first derivative of V" leads to
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m+l m+l

V= E 7?k£a)z y,—me=oV-me (4.30)
k=1 k=1
k#p k#p

Since w<0, it leads to

V<-me (4.31)
Obviously, V is really a Lyapunov function. Besides, it has been shown that V' is
continuous, i.e., ¥ doesn’t change discontinuously when o switches from X to the

other sub-regions X', j=p [18]. Therefore, J" decreases all the time and will become

zero in a finite time, i.e., V(f)=0 for r—1>t’, where 1, is the initial time and

m+1
t'=V(t,)/me . Note that V(1)=0 implies =0 for k=1,2,...m+lor o= > yu’=0.In

Jj#p.j=1

other words, the system trajectory: will reach-the sliding mode =0 in a finite time.

4.4 Smoothing Strategy for-ubDSSMC

By virtue of the above derivation, it demonstrates that the developed UDSSMC
algorithms (4.11) and (4.12) could efficiently suppress the matched disturbance.
However, it still inevitably confronts with the chattering problem, which happens not
only in the sliding mode but also in the approach mode. If the concept of sliding layer

is directly adopted, which modifies (4.12) as

2m ; .
o [m-émax(x,t)+‘9)u, foroce’, |f||0'||2§

(4.32)
Unchanged if o <&

then (4.32) could only smooth away the chattering in the sliding layer |o|<¢ . As for
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the chattering in the approaching mode, (4.32) is still unable to suppress such unwanted
high frequency behavior. In fact, such chattering before the sliding mode exists due to
the switching function in the UDSSMC, which is excited when the system trajectory
moves around two connected open sub-regions given in (2.4).

In order to improve the above weakness, a novel scheme with two different
strategies is proposed here. First, let the system trajectory be currently in X,

1<i<m+1, i.e., the sliding vector can be expressed as

m+1

o= Yyu =Uy, 7,>0 (4.33)
j#ij
where U; is defined in (3.1) and 7, =[nle:- 7., 7y - 7.a] . Further

rearrange (4.33) as

m+l m+l
o=yu+ Yy, >y X, (4.34)
=1 =1,

J#i.%q i

m+l

where g=#i and X, = o-l.q‘o-,.q: 27/juj,7j>0 represents the sub-region
Jj=I

J#i.0
formed by the simplex vectors u’/, 1<j<m+1, j#iq. Actually, X. is the

q

boundary separating X, and X, which is depicted in Figure 4.1 as an example.
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Figure 4.1. The sub-region formed by the uniformly distributed simplex set

Now, let’s define the distance between the sliding, vectors o and the boundary 2 by

introducing the following unit vector

. u'-u
niq - ui —uqH (435)

m+1

Note that any vector in X can be expressed as o,, = Zyjuf and the inner product

J=1,
J#ij#q

o, 'h, Iisthen attained as

iq
m+l u —ul m+l 71( u'_”j.”q)
27, H H — =0  (4.36)
Jit J¢q

J¢l J¢‘I

where the truth of &’ -u’—u’-u? =0 can be seen from (C4). It is clear that n,, is
perpendicular to %, , i.e., n, 1 X, . Hence, the distance between the sliding vectors

o and the boundary X, can be implemented as
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m+1

, N P q Jl.pn | = q ‘N
dlSl‘(O',Ziq)—‘O' n,|=|yu"+ Z}/A/u n, —‘(7/,,u +0',.q)n,.q

= (4.37)
J#ELj#q
= }/quq . ﬁiq
which can be further calculated from (C3) and (C4) as
i_ .4

dist(O',Z'iq):yqu‘l -ﬁ’.q = (}/qu")- u

Ju' o]
=7q(—1—1J/\/2+2 (4.38)

m m

e e s

Furthermore, the minimum distance between the sliding vector o and the boundaries

for the region 2, could be defined as‘below:

_7 1
Lmin 1 + = (4.39)
min [

dist
where y,. is the minimum value“among 7, =, - 7., Via - Va) fOF

m+1

o= Z;/_/.u«" =U,y,€Z;. In other words, if y,. =y, then the minimum distance

J#i,j=1

dist,, = \/_ 1+l represents the distance between the sliding vector o and X,

which is the boundaries of %, and Z;.

To totally get rid of the chattering problem for the simplex sliding mode control,

the novel scheme, which includes two different strategies, is designed as
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In the approaching mode :

m+1

g

Unchanged

In the sliding mode :

m+1

2m ;
T ( —-5mlv(x,t)+gJu,

Unchanged

where dist, .

= [ 2_m'5max(x’t)+8jui’

foroceX, ifdist,, 2&

if dist;,, <&,

force’, if ||0'|| >,

if o] <&,

the layer illustrated in Figure 4.2 for the case of m=2.

Figure 4.2 The novel smoothing strategy
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4.5 Numeric Example and Simulation Results

In this section, two examples with different dimensions of control inputs are
simulated to demonstrate the usefulness of UDSSMC in suppressing the matched
disturbance. Next, these examples and simulation results will be explicitly shown in the

following.

Example 4.1
Consider a linear time-invariant system (4.1) suffering from the matched

disturbance, with the following numeric data:

—0.0506 0 -1 0.2380
_|-0.7374 -1.3345 | 0.3696 0
| o001 0.1074 ~=0.3320 0

0 1 0 0
0.0409 0
1.2714 —20.3106
and B=
-2.0625 1.3350

0 0
The control input and system state are respectively represented by u = [ul uz]T and

x=[x, x, x x,]'. The matched disturbance d(x,t)=[d,(x,t) d,(x,¢)] is

assumed as
d(x.0)= sin(2t)+ 0.200s.(0.5t)>< X, (4.41)
cos(3t)+0.2sin(t)x x,
Apparently, the upper bound of the matched disturbance are obtained as
ld(x,t)| < 3, ()= 2+ 0.2]x; |+ 0.2/, (4.42)
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The first step of the UDSSMC design is to choose a sliding vector o =(CB)"Cx as
given in (4.10). Following the procedure described in Section 4.2, the eigenvalues for
A-BK are assigned to be

A=-1 A, ==2, &, =w,=-5 (4.43)
where @, and @, are purposely set to be the same and negative. By the aid of

MATLAB, the state-feedback gain K and the left eigenvectors of A—BK corresponding

to o, and @, could be calculated as

2.3642 -0.1194 -2.7990 0.3789
0.1622 -0.2864 -0.1894 -0.4697

and

0.2581 -0.4385 -0.3104 --0.8030
-0.3152 -0.3758 0.2914 -~ =0.8213

Hence, it obtains

. [04738 -0.0326 -0.4955 0.0532
(cB)'C =

0.0252 -0.0513 -0.0311 -0.0951

According to the sliding vector design described in Section 4.2, it is evident that the
system stability in the sliding mode is guaranteed since all the eigenvalues are allocated
in the left half plane. Based on the new construction proposed in Section 3.3, the

uniformly distributed simplex set for m =2 can be selected as

w=[1 o]
w'=|-1/2 3/2] (4.44)
w=l12 —3s2f

For m=2 and (4.42), the corresponding coefficient in (4.12) is chosen as
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2m s (xi)+e=25+ 0.25]x, |+ 0.25)x;| (4.45)
m+1
To demonstrate the effectiveness of the UDSSMC and the new smoothing strategy

described in Section 4.4, there are three cases to simulate in the following:

Case 1: In this case, the UDSSMC control algorithm without any smooth strategy is

adopted. Due to (4.45), the UDSSMC control algorithm is

u=—Kx+u

7 =(25+0.25x,|+0.25x,|Ju’, £>0, for o=(CB)"Cx isin %, (4.40)

Figure 4.3 to Figure 4.6 are simulation results with initial condition
x(0)=[5 5 -7 5] for Case 1. Figure4:3.shows the time response of the sliding
vector o = [0'1 o, ]T and Figure 4.4 gives'the trajectory of sliding vector in the o
space. It is clear that the systerm is successfully driven to the destination, i.e. o=20.
Figure 4.5 and Figure 4.6 are respectively‘the time response of the state variables and
the control input. In Figure 4.5, it illustrates the system state variables all converge to
x=0. However, Figure 4.6 shows the control input with serious chattering problem. To
overcome the chattering problem, the following cases are simulated to test the

feasibility of the smoothing strategies, the conventional sliding layer (4.32) and the new

smoothing strategy (4.40).

Case 2: To improve the chattering phenomenon, the conventional sliding layer is

adopted in this case. For this reason, the control algorithm in Case 2 becomes
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u=—-Kx+u
. (2.5+0.25x,|+0.25|x,|Ju’, forceX, if|o|>¢ (4.47)
Unchanged if o <&

With the use of initial condition x(0)=[5 5 -7 5] and &=0.02, Figure 4.7 to
Figure 4.10 show simulation results for Case 2. Figure 4.7 and Figure 4.8 respectively
illustrate the time response of the sliding vector o and the trajectory of sliding vector
inthe o space. Figure 4.9 gives the trajectory of the state variables and Figure 4.10 is
the time response of the control input. From simulation results, it is obvious that the
conventional sliding layer could only smooth away the chattering in the sliding layer
lo| < & . However, it still exists the_chattering phenomenon before the sliding mode. In
other words, it implies that the conventionalsliding layer is unable to totally suppress

the chattering caused by the SSMC.

Case 3: To verify the usefulness of the new smoothing strategy, the UDSSMC control
algorithm (4.40) is applied in Case 3. With the use of (4.45), the control algorithm in

this case is

u=—Kx+u
and
In the approaching mode::
- { (2.5+0.25]x,|+0.25]x;|Ju’, foro e, if qzszmin > .
Unchanged if dist,,, <&
In the sliding mode :
_ [ (25+0.28x,|+0.25x,| ', forceZ, if|o]z¢,
‘e { Unchanged if o] <&,
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Figure 4.11 to Figure 4.14 are simulation results for Case 3 under the same conditions
of x(0)=[5 5 -7 5], £=001, and & =0.02. In Figure 4.11 and Figure 4.12,
it respectively shows the time response of the sliding vector o and the trajectory of
sliding vector in the o space. Figure 4.13 is the trajectory of the state variables and
Figure 4.14 gives the time response of the control inputs. From these simulation results,
it illustrates that the new smoothing strategy could really get rid of the chattering
problem caused by the switching function in the UDSSMC not only in the sliding mode
but also in the approach mode.
Example 4.2

To demonstrate the usefulness of the UDSSME for the high-dimension system,
the considered system in this example 15 the linear time-invariant system (4.1) with the

following numeric data:

[ -0.7872 2.1790 -6.8820 2.6148 15.2879 -16.3675 6.9081]
-0.0254 -0.3073 1.0126 -1.7008 -2.9374 3.8520 -1.4969
-0.0402 -0.3638 -1.4163 2.5400 3.5547 -4.7931 2.2363
A=| 0.2033 -0.5108 -0.3787 1.3152 0.5825 -1.1385 0.7788
-0.1071 -0.7761 -2.1877 4.1729 5.5411 -7.5789 3.5906
-0.1372 -0.5795 -0.2683 1.0650 0.8279 -1.3620 0.7549

| -0.3000 2.2109 -1.5576 -0.6625 4.5384 -4.4192 1.0167 (4.49)
[ 2.6512 0.1492 1.9140 1.3748] '

1.4108 0.9988 -1.9156 -2.5232
1.2948 -1.2088 1.4372 1.7348
and B=| 0.7752 1.6712 -1.0328 -0.3252
1.4236 1.2760 1.1072 1.6308
1.1012 2.3764 -1.2796 -0.5728
1.2104 1.8576 -1.6344 -1.2808 |
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Clearly, the system state x=[x, x, x, x, x x, x| R’ and there are four

control variables, denoted as w=[u, u, u, u,]' . Besides, the pair (4,B) is

controllable. Then, the matched disturbance will be chosen as

0.5sin(7¢)
g 0.5cos(3¢)+ osé;(ﬁ;;(z)ﬁm(o.&) (450)
0.5cos(4t)+0.5(x(3)+ x(4))sin(z)

Obviously, the upper bound of the matched disturbance could be obtained as

ld(x,2)| < 8, () = 2+ 0.5|x(L)+ x(2) + 0.5 x(3) + x(4) (4.51)

Now, choose a sliding vector o=(CB)'Cx as given in (4.10). Based on the

procedure described in Section 4.2, the eigenvalues for A—BK are assigned to be

==L A, =-4, L, =50 =0, =0, =0, =06 (4.52)

where w;, i=1,2,3,4, are the same."By the aid of MATLAB, it gets

-0.7115 3.9350 -1.1581 14.4688 8.0927 -18.4880 4.0333
Ko 2.3067 0.6071 -8.2486 11.0521 8.3284 -15.9111 4.2407
3.9504 1.3034 -10.1507 -6.5267 9.7626 -9.9789 5.6934
-2.1713 -2.4858 5.8846 9.7104 -3.8529 2.2005 -3.2839

and

-0.2343 0.6595 -0.0550 2.0352 1.1045 -2.6746 0.4604
(CB)C - 0.3511 -0.1555 -0.8990 1.6897 0.4117 -1.6285 0.2890
0.8008 -0.3884 -0.9273 -0.8262 -0.1436 -0.0152 0.4025

-0.4835 0.0489 0.6094 1.1667 0.2529 -0.3239 -0.3999

Note that the system stability in the sliding mode is guaranteed since all the eigenvalues

are allocated in the left half plane. Further, the uniformly distributed simplex set can be

found as
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u=[ 1 0 0 o J

w'=[1/4 J15/4 0 o [
w=[1/4 —15/12  30/6 o [ (4.53)

' =|-1/4 —15/12 —V30/12 90 /12
uw=[-1/4 —15/12 —30/12 —+/90 /12|

from the systematic procedure described in Section 4.3. Due to the fact of m=4 and

(4.51), the corresponding coefficient in (4.12) is chosen as

, /2—’”1 8, (X,1)+ & = 2.6+ 0.7|x(L)+ x(2) + 0.7|x(3)+ x(4) (4.54)
m+
Hence, the UDSSMC algorithm in (4.11) and (4.40) becomes

u=—Kx+u
and
In the approaching mode:

ﬁ:{ (2.6+O.7|xl+x2|+0.7|x3+x4|)ui, forceX ifdist, >2&

Unchanged if dist,, <& (4.55)

In the sliding mode :
- (2.6+0.7|x, + x,| + 0.7]x, ¥y Jul “for o e =, if o2,
Unchanged if o] <&,

Figure 4.15 to Figure 4.18 are simulation results with the condition of

x(0)=[05 -05 1 0 -05 1 1", &=0.05, and & =0.1. Figure 4.15 shows

the sliding vector o,,i=1---,4 and Figure 4.16 gives the trajectory of the norm of the
sliding vector, |o]|. From simulation results, it is demonstrably that the system is
successfully driven to the sliding layer |oj|<¢. Figure 4.17 and Figure 4.18 are
respectively the trajectories of the state variables and control inputs. In Figure 4.17, it

illustrates the system state variables all converge to x=0. From simulation results, it
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demonstrates the practicability of the developed UDSSMC for high-dimension systems

even the number of the control input is increased higher than three. In addition, it also

reveals that the chattering problem could be effectively improved by the UDSSMC

algorithm (4.55).

47



T T T T T T T T T
‘ ‘
' '
'
5 ______ T P [ Locoonn dooo oo T [ [ —
|
'
'
e LT T e T e T —
1 1 .
' '
' '
' '
— ' '
= ' ‘
3 SO L N SO S _
' '
= ' ‘
= ' '
= - -
= ' ‘
o1 2 k- _-_+_-_-_-..-------.-------..------%------4: ........................... —
‘ ‘
' '
' '
' '
' '
' '
1 _______ P, . [ P dommm o m P [ [ —
| |
' '
' '
'
'
'
'
'
0 '
'
| | | | | | | | |

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Timeisec.)

Figure 4.3 Time response of thesliding vector for Case 1 of Example 1
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Figure 4.4 The trajectory of the sliding vector in the o space for Case 1 of Example 1
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Figure 4.6 Control Inputs for Case 1 of Example 1
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Figure 4.7 Time response of thesliding vector for Case 2 of Example 1
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Figure 4.8 The trajectory of the sliding vector in the o space for Case 2 of Example 1
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Figure 4.9 State variables x;-x4 for Case 2 of Example 1
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Figure 4.10 Control Inputs for Case 2 of Example 1
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Figure 4.11 Time response ofithesliding:vector for Case 3 of Example 1
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Figure 4.12 The trajectory of the sliding vector in the o space for Case 3 of Example 1
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Figure 4.14 Control Inputs for Case 3 of Example 1
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Figure 4.15 Time response:of the sliding vector o,-o, for Example 2
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Figure 4.16 The norm of the sliding vector for Example 2
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Figure 4.17 State variables x;-x7 for Example 2
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Figure 4.18'Control Inputs for Example 2
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