
CHAPTER 4

UNIFORMLY DISTRIBUTED SIMPLEX SLIDING-MODE

CONTROL FOR MATCHED DISTURBANCES

Based on the uniformly distributed simplex set presented in Chapter 3, a novel

simplex sliding-mode control, uniformly distributed simplex sliding-mode control

(UDSSMC), is introduced in this chapter. The system description is indicted in Section

4.1. Section 4.2 shows the sliding vector design. In Section 4.3, the UDSSMC

algorithm is developed to guarantee system trajectory could reach the sliding mode in a

finite time. Besides, a new smoothing strategy is employed to solve the chattering

caused by the UDSSMC in Section 4.4. Finally, a numeric example is simulated to

demonstrate the usefulness of the developed UDSSMC in Section 4.5.

4.1 System Description

Consider a linear time-invariant system encountering matched disturbance,

expressed as

 (t,xBdBuAxx +)+=& (4.1)

where is the state, is the control input, and nℜ∈x mℜ∈u () mt, ℜ∈xd represents

the matched disturbance. Without loss of generality, the pair (A,B) is assumed to be

controllable and B is of full rank. Besides, the matched disturbance is constrained by

 () (t,t, max xxd δ≤)

)

 (4.2)

where the upper bound (t,max xδ is available. Similar to the conventional simplex

 27

sliding-mode control (SSMC), the design procedure of the uniformly distributed

simplex sliding-mode Control (UDSSMC) is mainly divided into two steps. In the first

step, an appropriate sliding vector is selected such that the system is stabilized in the

sliding mode. In the second step, the UDSSMC algorithm is derived such that the

system trajectory could reach the sliding mode in a finite time and then stay thereafter.

Next, these two steps will be respectively discussed in detail.

4.2 Sliding Vector Design

To efficiently eliminate the matched disturbance, the method proposed by

Chang and Chen [49] will be employed in the UDSSMC to choose the sliding vector.

In this section, it will be briefly introduced as below.

Since (4.1) is controllable and is full rank, a state-feedback gain B K could

be obtained from the pole-placement method by assigning n eigenvalues

{ } 11 mmn ωωλλ ,,,,, LL − BKA − to [50]. To design the sliding vector, { }mωω ,,L1

are purposely set to be the same and negative, i.e., ωj=ω<0 for j=1,2,…,m, and

{ 1 mn− }λλ ,,L are selected to be λi<0 for i=1,2,…,n-m and λi ≠λj for i≠j. Besides, let λi

≠ω, i.e., ω is not in the spectrum of A. Chang and Chen then presented the sliding

vector as

 σ=Cx (4.3)

where C consists of m independent left eigenvectors of A−BK corresponding to ω, i.e.,

 28

 () CBKAC ω=− (4.4)

To rearrange (4.4), it becomes

 CBKCCA =− ω (4.5)

Since the matrix C includes m independent eigenvectors, i.e. Rank(C)=m. Based on the

fact which the chosen eigenvalue ω isn’t in the spectrum of A, it is derived

 Rank(C)= Rank(CCA ω−)=Rank(CBK)=m (4.6)

By utilizing the matrix theory [51], it leads to

 (4.7) () m≥CBRank

In view of the fact , it must coincide with mmCB ×ℜ∈

 (4.8) () m≤CBRank

From (4.7) and (4.8), it results in

 (4.9) () m=CBRank

In other words, it shows the fact that the m×m square matrix CB is invertible, i.e.,

 exists. Because of the fact that ω() 1−CB j=ω<0 for j=1,2,…,m and λi<0 for

i=1,2,…,n-m, the chosen sliding vector (4.3) could guarantee that the system trajectory

will approach the destination along the sliding surface when the system is in the sliding

surface.

Based on (4.3) and the truth that () 1−CB exists, a modified sliding vector will be

employed in the UDSSMC, expressed as

 29

 () (4.10) CxCB 1−=σ

where . Apparently, the system trajectory will be also

reach the destination in the sliding mode by employing the modified sliding vector

(4.10).

[mσσσ ℜ∈= T
mL21σ]

4.3 UDSSMC Algorithm

This section will develop the UDSSMC algorithm using (4.10) as the sliding

vector. Let the control law be

 uKxu +−= (4.11)

with

 () () imax ,t,
m

m Σσ in is for 0,
1

2 1CxCBuxu i −=>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+
= εεδ (4.12)

where for i=1,2,…,m+1 represent the uniformly distributed simplex set Siu U described

in Chapter 3. By means of the uniformly distributed simplex set, the sliding vector

 in mℜ∈σ iΣ can be uniquely expressed as

 (4.13) 0
1

1
>= ∑

+

=≠
j

m

j,j

j
j ,γγ

i
uσ

Note that the use of () εδ +⋅
+

t,
m

m
max x

1
2 will be explained later.

The most important thing for the use of (4.12) is to determine which sub-region

iΣ the sliding vector σ belongs to. Actually, this is not an easy job, especially when

the number of control inputs is increased higher than 3. To deal with such problem, an

 30

efficient scheme is proposed as below.

First, reviewing an important equation (3.3) derived from the uniformly

distributed simplex set, it has () mmm
T

mmm
m

×+++ =⎥⎦
⎤

⎢⎣
⎡ −

+
IUVU 1111

 where

 and []m
m ,,, uuuU 21

1 L=+ []111
1 +++

+ = mmm
m ,,, uuuV L . It also implies

 () mm
T

mmm m
m

×+++ =⎥⎦
⎤

⎢⎣
⎡ −

+
IVUU 111 1

 (4.14)

Then, define a checking vector []T
m,,, γγγ ′′′=′ 21 Lγ as

 (4.15) (σT
mm 11 ++ −=′ VUγ)

With this checking vector, the sub-region iΣ can be easily determined according to

the following lemma:

Lemma 1: Let pγ ′ be the smallest element of []T
m,,, γγγ ′′′=′ 21 Lγ , i.e., pγγ ′≥′j for

 If mj ≤≤1 . 0>′pγ , the sliding vector σ belongs to 1+mΣ . If 0<′pγ and pγγ ′>′j

for pj ≠ , then the sliding vector σ belongs to p\Σ . Otherwise, the sliding vector

σ doesn’t belong to any open sub-regions iΣ , i=1,2,…,m+1. It is on one of the

boundaries of these m+1 open sub-regions.

Proof:

From (4.14), pre-multiplying 11 ++ mU
m

m into (4.15) becomes

 () ∑
=

+ ′
+

=′++′+′
+

=′
+

=
m

j

j
j

m
mm m

m
m

m
m

m
1

2
2

1
11 111

uuuuγU γγγγ Lσ (4.16)

Clearly, if 0>′pγ then 0>′≥′ pγγ j for j=1,2,…,m since pγ ′ is the smallest element.

This implies that the sliding vector σ can be expressed by a linear combination of u1,

 31

u2, …, um with positive coefficients. Due to (4.13), it is easy to find that the sliding

vector σ belongs to 1+mΣ by directly setting jj m
m γγ ′
+

=
1

.

If 0<′pγ and pγγ ′>′j for pj ≠ , then it has 0=′+′>′+′ ppp γγγγ j for

pj ≠ . Now, by letting 01 =′ +mγ and ()pγγγ ′+′
+

= ii m
m

1
 for i=1,2,…,m+1, (4.16) can

be rearranged as

 ∑∑
+

=≠

+
+

+

=

=+++=′
+

+
1

1

1
1

2
2

1
1

1

11

m

j,j

j
j

m
m

m

j

j

m
m

p
p uuuuu γγγγγ Lσ (4.17)

where () 0
1

=′+′
+

= ppp γγγ
m

m , pγγ ′
+

=+ 11 m
m

m and () 0
1

>′+′
+

= pγγγ jj m
m for

pj ≠ . From (3.11) and (3.12), it can be obtained that . Hence, (4.17)

becomes

0
1

1
=∑

+

=

m

i

iu

 (4.18) 0
1

1
>= ∑

+

=≠
j

m

j,j

j
j ,γγ

p
uσ

According to (4.13), the sliding vector σ belongs to pΣ .

For the other cases, i.e., when 0=′pγ or when 0<′=′ pγγ j for some pj ≠ , it

is not difficult to find that the sliding vector σ doesn’t belong to any sub-regions iΣ

because in addition to 0=pγ , at least one of the coefficients jγ , pj ≠ , is zero.

According to the proposed checking vector (4.15) and Lemme1, it can be easily to

determine which sub-region iΣ the sliding vector σ belongs to. Next, let’s show that

the system (4.1) will be driven to the sliding mode 0=σ in a finite time by using the

UDSSMC algorithm (4.11) and (4.12).

 32

For the system (4.1) encountering matched disturbance d, the use of control input

(4.11) leads to

 () ()t,xBduBxBKAx ++−=& (4.19)

with u given in (4.12). Let the sliding vector σ be chosen as (4.10), then its first

derivative becomes

()
() ()
()

du
duCxCB

duxBKACCB

xCCB

++=
++=

++−=

=

−

−

−

σ

σ

ω
ω

1

1

1 &&

 (4.20)

where (4.4) has been adopted. Without loss of generality, let’s consider the following

case that the sliding vector σ is currently in pΣ , 11 +≤≤ mp , i.e.,

 (4.21) 0
1

1
>== ∑

+

=≠
jpp

m

jp,j

j
j , γγ γσ Uu

where Up is defined in (3.1) and []Tmppp 1111 ++−= γγγγ LLγ . Hence, it leads

to

 () p
max t,

m
m uxu ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⋅

+
= εδ

1
2 (4.22)

where (t,max x)δ means the upper bound of the matched disturbance given in (4.2).

Furthermore, the truth of 0≠pdetU in (C1) implies that all the columns of Up form a

basis of , and then the matched disturbance d can be uniquely expressed as mℜ

 (4.23) pp

m

jp,j

j
j δUud == ∑

+

=≠

1

1
δ

where . Note that all the elements of δ[T
mppp 1111 ++−= δδδδ LLδ] p are

 33

unknown and may be negative. Now, by pre-multiplying (uk−up)T into (4.23) for k≠p, it

leads to

 () () () ⎟
⎠
⎞

⎜
⎝
⎛ +

=−=−=− ∑
+

=≠ m
m

k
kTpk

k

m

jp,j

j
j

TpkTpk 11

1
δδδ uuuuuuduu (4.24)

where for k≠j. Clearly, () 0=− jTpk uuu

 () (t,
m

m
m

m
max

pkTpk
k xuuduu δδ ⋅−

+
≤−

+
=

11
) (4.25)

where ()t,max xd δ< . With the use of (C3) and (C4), it causes that

() () ⎟
⎠
⎞

⎜
⎝
⎛ +

=−−=−
m

mpkTpkpk 12
2

uuuuuu . That means ⎟
⎠
⎞

⎜
⎝
⎛ +

=−
m

mpk 12uu and

then (4.25) is rewritten as

 () (t,
m

mt,
m

m
m

m
maxmaxk xx δδδ ⋅

+
=⋅⎟

⎠
⎞

⎜
⎝
⎛ +

+
≤

1
212

1
) (4.26)

Now, substituting (4.21), (4.22), and (4.23) into (4.20) yields

 () pp
p

maxpppp t,
m

m δγγ UuxUU +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+
+= εδω

1
2

& (4.27)

Similar to (4.24), by pre-multiplying (4.27) with (uk−up)T for k≠p, it becomes

 () εωγδεδωγγ −≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+
−= kkmaxkk t,

m
m x

1
2

& (4.28)

where the truth of (4.26) is adopted. Since 0>kγ for k≠p in pΣ , the candidate of

Lyapunov function can be selected as

∑
+

≠
=

=
1

1

m

pk
k

kV γ (4.29)

From (4.28), taking the first derivative of V leads to

 34

εωεγωγ mVmV
m

pk
k

k

m

pk
k

k −=−≤= ∑∑
+

≠
=

+

≠
=

1

1

1

1

&& (4.30)

Since ω<0, it leads to

 (4.31) εmV −<&

Obviously, V is really a Lyapunov function. Besides, it has been shown that V is

continuous, i.e., V doesn’t change discontinuously when σ switches from pΣ to the

other sub-regions jΣ , j≠p [18]. Therefore, V decreases all the time and will become

zero in a finite time, i.e., V(t)≡0 for t−t0>t’, where t0 is the initial time and

() εmtVt 0=′ . Note that V(t)≡0 implies γk=0 for k=1,2,…,m+1 or . In

other words, the system trajectory will reach the sliding mode σ=0 in a finite time.

0
1

1
== ∑

+

=≠

m

jp,j

j
juγσ

4.4 Smoothing Strategy for UDSSMC

By virtue of the above derivation, it demonstrates that the developed UDSSMC

algorithms (4.11) and (4.12) could efficiently suppress the matched disturbance.

However, it still inevitably confronts with the chattering problem, which happens not

only in the sliding mode but also in the approach mode. If the concept of sliding layer

is directly adopted, which modifies (4.12) as

 ()
⎪
⎩

⎪
⎨

⎧

<

≥∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+=
ξ

ξεδ

σ

σΣσ

 if Unchanged

 iffor
1

2
 imax ,,t

m
m iux

u (4.32)

then (4.32) could only smooth away the chattering in the sliding layer ξ≤σ . As for

 35

the chattering in the approaching mode, (4.32) is still unable to suppress such unwanted

high frequency behavior. In fact, such chattering before the sliding mode exists due to

the switching function in the UDSSMC, which is excited when the system trajectory

moves around two connected open sub-regions given in (2.4).

In order to improve the above weakness, a novel scheme with two different

strategies is proposed here. First, let the system trajectory be currently in iΣ ,

, i.e., the sliding vector can be expressed as 11 +≤≤ mi

 (4.33) 0
1

1
>== ∑

+

=≠
j

m

j,j

j
j , γγ ii

i
Uu γσ

where Ui is defined in (3.1) and []T
m 1111 ++−= γγγγ LL iiiγ . Further

rearrange (4.33) as

 (4.34) iq

qiqi

q
q uuu Σσ ∈+= ∑∑

+

≠≠
=

+

≠≠
=

1

1

1

1

m

j,j
,j

j
j

m

j,j
,j

j
j , γγγ

where and iq ≠
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>== ∑
+

≠≠
=

1

0
m

qjij

j
j

jqqq u
,
1,j

iii ,γγσσΣ represents the sub-region

formed by the simplex vectors , ju 11 +≤≤ mj , qi,j ≠ . Actually, iqΣ is the

boundary separating iΣ and qΣ , which is depicted in Figure 4.1 as an example.

 36

Σik

σ

o

Σiq

ξ2

ξ2

ikn̂

iqn̂
iΣ

ikD

iqD

Figure 4.1. The sub-region formed by the uniformly distributed simplex set

Now, let’s define the distance between the sliding vectors σ and the boundary iqΣ by

introducing the following unit vector

qi

qi

iq uu
uun

−
−

=ˆ (4.35)

Note that any vector in iqΣ can be expressed as and the inner product ∑
+

≠≠
=

=
1m

qjij

j
jq u

,
1,j

i γσ

iqiq n̂⋅σ is then attained as

()

0
11

=
−

⋅−⋅
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⋅ ∑∑

+

≠≠
=

+

≠≠
=

m

qjij

qi

qjij
j

qi

qim

qjij

j
jiqiq uu

uuuu
uu
uuun

,
1,j

,
1,j

ˆ
γ

γσ (4.36)

where the truth of can be seen from (C4). It is clear that is

perpendicular to

0=⋅−⋅ qjij uuuu iqn̂

iqΣ , i.e., iqiqn Σ⊥ˆ . Hence, the distance between the sliding vectors

σ and the boundary iqΣ can be implemented as

 37

() ()

iq
q

q

iqiq
q

qiq

qi

q
qiqiq

nu

nunuun

ˆ

ˆˆˆ,dist
m

j,j
j

j
j

⋅=

⋅+=⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+=⋅= ∑

+

≠≠
=

γ

γγγ

1

1
σσΣσ

 (4.37)

which can be further calculated from (C3) and (C4) as

() ()

mmm

mm

ˆ,dist

11
2

2211

2211

+=+⎟
⎠
⎞

⎜
⎝
⎛ +=

+⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

⋅=⋅=

q
q

q

qi

qi
q

qiq
q

qiq uu
uuunu

γ
γ

γ

γγΣσ

 (4.38)

Furthermore, the minimum distance between the sliding vector σ and the boundaries

for the region iΣ could be defined as below:

m

dist min
min

11
2

+=
γ (4.39)

where minγ is the minimum value among []T
m 1111 ++−= γγγγ LL iiiγ for

. In other words, if iii
i

Uu Σγσ ∈== ∑
+

=≠

1

1

m

j,j

j
jγ jγγ =min , then the minimum distance

m
distmin

11
2

+= jγ
 represents the distance between the sliding vector σ and ijΣ ,

which is the boundaries of iΣ and jΣ .

To totally get rid of the chattering problem for the simplex sliding mode control,

the novel scheme, which includes two different strategies, is designed as

 38

()

()
⎪
⎩

⎪
⎨

⎧

<

≥∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+=

⎪
⎩

⎪
⎨

⎧

<

≥∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅

+=

2

2

1min

1min

 if Unchanged

 iffor
1

2

:mode sliding In the
 if Unchanged

 if for
1

2

:mode gapproachin In the

ξ

ξεδ

ξ

ξεδ

σ

σΣσ

Σσ

imax

imax

,t,
m

m

dist

dist,t,
m

m

i

i

ux
u

uxu

 (4.40)

where is defined as (4.39). In addition, mindist 021 >ξξ , are treated as the thickness of

the layer illustrated in Figure 4.2 for the case of m=2.

s1

u1

u2

u3

∑3

∑1

∑2

s2

ξ2

ξ1

ξ1

ξ1

Figure 4.2 The novel smoothing strategy

 39

4.5 Numeric Example and Simulation Results

In this section, two examples with different dimensions of control inputs are

simulated to demonstrate the usefulness of UDSSMC in suppressing the matched

disturbance. Next, these examples and simulation results will be explicitly shown in the

following.

Example 4.1

Consider a linear time-invariant system (4.1) suffering from the matched

disturbance, with the following numeric data:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−

=

00
3350106252

31062027141
004090

 and

0010
03320010740010
0369603345173740

238001005060

..
..

.

...
...

..

B

A

The control input and system state are respectively represented by and

. The matched disturbance

[Tu 21 uu=]

][Tx 4321 xxxx= () () ()[]Tt,dt,dt, xxxd 21= is

assumed as

 () () ()
() () ⎥

⎦

⎤
⎢
⎣

⎡
×+

×+
=

3

1

203
50202

xtsin.tcos
xt.cos.tsin

t,xd (4.41)

Apparently, the upper bound of the matched disturbance are obtained as

 () () 31 20202 x.x.tt, max ++=≤ δxd (4.42)

 40

The first step of the UDSSMC design is to choose a sliding vector as

given in (4.10). Following the procedure described in Section 4.2, the eigenvalues for

A−BK are assigned to be

() CxCB 1−=σ

 5 2 1 2121 −==−=−= ωωλλ ,, (4.43)

where 21 and ωω are purposely set to be the same and negative. By the aid of

MATLAB, the state-feedback gain K and the left eigenvectors of A−BK corresponding

to 21 and ωω could be calculated as

 ⎥
⎦

⎤
⎢
⎣

⎡
−

=
469700.1894-0.2864-0.1622

0.37892.7990-0.1194-2.3642

.
K

and

 ⎥
⎦

⎤
⎢
⎣

⎡
−

=
821300.29140.3758-0.3152-

0.8030-0.3104-0.4385-0.2581

.
C

Hence, it obtains

 () ⎥
⎦

⎤
⎢
⎣

⎡
−−−

−−
=−

09510031100513002520
053204955003260473801

....
....

CCB

According to the sliding vector design described in Section 4.2, it is evident that the

system stability in the sliding mode is guaranteed since all the eigenvalues are allocated

in the left half plane. Based on the new construction proposed in Section 3.3, the

uniformly distributed simplex set for 2=m can be selected as

[]
[]
[]T

T

T

u

u

u

2321

2321

01

3

2

1

//

//

−−=

−=

=

 (4.44)

For and (4.42), the corresponding coefficient in (4.12) is chosen as 2=m

 41

 () 31 25025052
1

2 xxx ...t,
m

m
max ++=+⋅

+
εδ (4.45)

To demonstrate the effectiveness of the UDSSMC and the new smoothing strategy

described in Section 4.4, there are three cases to simulate in the following:

Case 1: In this case, the UDSSMC control algorithm without any smooth strategy is

adopted. Due to (4.45), the UDSSMC control algorithm is

 () () i,... Σσ in is for 0, 25025052 1
31 CxCBuxxu

uKxu
i −=>++=

+−=

ε
 (4.46)

Figure 4.3 to Figure 4.6 are simulation results with initial condition

 for Case 1. Figure 4.3 shows the time response of the sliding

vector and Figure 4.4 gives the trajectory of sliding vector in the

() [Tx 57550 −=]

][T
21 σσ=σ σ

space. It is clear that the system is successfully driven to the destination, i.e. 0=σ .

Figure 4.5 and Figure 4.6 are respectively the time response of the state variables and

the control input. In Figure 4.5, it illustrates the system state variables all converge to

x=0. However, Figure 4.6 shows the control input with serious chattering problem. To

overcome the chattering problem, the following cases are simulated to test the

feasibility of the smoothing strategies, the conventional sliding layer (4.32) and the new

smoothing strategy (4.40).

Case 2: To improve the chattering phenomenon, the conventional sliding layer is

adopted in this case. For this reason, the control algorithm in Case 2 becomes

 42

 ()
⎩
⎨
⎧

<
≥∈++

=

+−=

ξ
ξ

σ
σΣσ

 if Unchanged
 iffor 25025052

31 i,... iuxx
u

uKxu

 (4.47)

With the use of initial condition () []Tx 57550 −= and 020.=ξ , Figure 4.7 to

Figure 4.10 show simulation results for Case 2. Figure 4.7 and Figure 4.8 respectively

illustrate the time response of the sliding vector σ and the trajectory of sliding vector

in the σ space. Figure 4.9 gives the trajectory of the state variables and Figure 4.10 is

the time response of the control input. From simulation results, it is obvious that the

conventional sliding layer could only smooth away the chattering in the sliding layer

ξ≤σ . However, it still exists the chattering phenomenon before the sliding mode. In

other words, it implies that the conventional sliding layer is unable to totally suppress

the chattering caused by the SSMC.

Case 3: To verify the usefulness of the new smoothing strategy, the UDSSMC control

algorithm (4.40) is applied in Case 3. With the use of (4.45), the control algorithm in

this case is

()

()
⎩
⎨
⎧

<
≥∈++

=

⎩
⎨
⎧

<
≥∈++

=

+−=

2

231

1min

1min31

 if Unchanged
 iffor 25025052

:mode sliding In the
 if Unchanged
 if for 25025052

:mode gapproachin In the
and

ξ
ξ

ξ
ξ

σ
σΣσ

Σσ

i

i

,...

dist
dist,...

i

i

uxx
u

uxx
u

uKxu

 (4.48)

 43

Figure 4.11 to Figure 4.14 are simulation results for Case 3 under the same conditions

of , () []Tx 57550 −= 0101 .=ξ , and 0202 .=ξ . In Figure 4.11 and Figure 4.12,

it respectively shows the time response of the sliding vector σ and the trajectory of

sliding vector in the σ space. Figure 4.13 is the trajectory of the state variables and

Figure 4.14 gives the time response of the control inputs. From these simulation results,

it illustrates that the new smoothing strategy could really get rid of the chattering

problem caused by the switching function in the UDSSMC not only in the sliding mode

but also in the approach mode.

Example 4.2

To demonstrate the usefulness of the UDSSMC for the high-dimension system,

the considered system in this example is the linear time-invariant system (4.1) with the

following numeric data:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1.2808- 1.6344- 1.8576 1.2104
0.5728- 1.2796- 2.3764 1.1012

1.6308 1.1072 1.2760 1.4236
0.3252- 1.0328- 1.6712 0.7752
1.7348 1.4372 1.2088- 1.2948
2.5232- 1.9156- 0.9988 1.4108
1.3748 1.9140 0.1492 2.6512

 and

1.0167 4.4192- 4.5384 0.6625- 1.5576- 2.2109 0.3000-
0.7549 1.3620- 0.8279 1.0650 0.2683- 0.5795- 0.1372-
3.5906 7.5789- 5.5411 4.1729 2.1877- 0.7761- 0.1071-
0.7788 1.1385- 0.5825 1.3152 0.3787- 0.5108- 0.2033
2.2363 4.7931- 3.5547 2.5400 1.4163- 0.3638- 0.0402-
1.4969- 3.8520 2.9374- 1.7008- 1.0126 0.3073- 0.0254-
6.9081 16.3675- 15.2879 2.6148 6.8820- 2.1790 0.7872-

B

A

 (4.49)

 44

Clearly, the system state and there are four

control variables, denoted as

[] 7
7654321 ℜ∈= Tx xxxxxxx

[]Tu 4321 uuuu= . Besides, the pair (A,B) is

controllable. Then, the matched disturbance will be chosen as

()
() () ()() (

()
() () ()() (⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

++
=

tsin.tcos.
tsin.

t.sin.tcos.
tsin.

4350450
750

502150350
750

xx

xx
d

)

)

 (4.50)

Obviously, the upper bound of the matched disturbance could be obtained as

 () () () () () ()435021502 xxxxxd ++++=≤ ..tt, maxδ (4.51)

Now, choose a sliding vector () CxCB 1−=σ as given in (4.10). Based on the

procedure described in Section 4.2, the eigenvalues for A−BK are assigned to be

 6 5 4 1 4321321 −====−=−=−= ωωωωλλλ ,,, (4.52)

where ωi, i=1,2,3,4, are the same. By the aid of MATLAB, it gets

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3.2839- 2.2005 3.8529- 9.7104 5.8846 2.4858- 2.1713-
5.6934 9.9789- 9.7626 6.5267- 10.1507- 1.3034 3.9504
4.2407 15.9111- 8.3284 11.0521 8.2486- 0.6071 2.3067
4.0333 18.4880- 8.0927 14.4688 1.1581- 3.9350 0.7115-

K

and

()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−

0.3999- 0.3239- 0.2529 1.1667 0.6094 0.0489 0.4835-
0.4025 0.0152- 0.1436- 0.8262- 0.9273- 0.3884- 0.8008
0.2890 1.6285- 0.4117 1.6897 0.8990- 0.1555- 0.3511
0.4604 2.6746- 1.1045 2.0352 0.0550- 0.6595 0.2343-

1CCB

Note that the system stability in the sliding mode is guaranteed since all the eigenvalues

are allocated in the left half plane. Further, the uniformly distributed simplex set can be

found as

 45

[]
[]
[]
[]
[]T

T

T

T

T

u

u

u

u

u

12901230121541

1290 1230121541

 0 630 121541

 0 0 415 41

 0 0 0 1

5

4

3

2

1

////

////

///

//

−−−−=

−−−=

−−=

−=

=

 (4.53)

from the systematic procedure described in Section 4.3. Due to the fact of m=4 and

(4.51), the corresponding coefficient in (4.12) is chosen as

 () () () () ()4370217062
1

2 xxxxx ++++=+⋅
+

...t,
m

m
max εδ (4.54)

Hence, the UDSSMC algorithm in (4.11) and (4.40) becomes

()

()
⎩
⎨
⎧

<
≥∈++++

=

⎩
⎨
⎧

<
≥∈++++

=

+−=

2

24321

1min

1min4321

 if Unchanged
 iffor 707062

:mode sliding In the
 if Unchanged

 if for 707062

:mode gapproachin In the
and

ξ
ξ

ξ
ξ

σ
σΣσ

Σσ

i

i

,...

dist
dist,...

i

i

uxxxx
u

uxxxx
u

uKxu

 (4.55)

Figure 4.15 to Figure 4.18 are simulation results with the condition of

, () [Tx 11500150500 ... −−=] 0501 .=ξ , and 102 .=ξ . Figure 4.15 shows

the sliding vector 41 ,,i, L=iσ and Figure 4.16 gives the trajectory of the norm of the

sliding vector, σ . From simulation results, it is demonstrably that the system is

successfully driven to the sliding layer ξ<σ . Figure 4.17 and Figure 4.18 are

respectively the trajectories of the state variables and control inputs. In Figure 4.17, it

illustrates the system state variables all converge to x=0. From simulation results, it

 46

demonstrates the practicability of the developed UDSSMC for high-dimension systems

even the number of the control input is increased higher than three. In addition, it also

reveals that the chattering problem could be effectively improved by the UDSSMC

algorithm (4.55).

 47

Figure 4.3 Time response of the sliding vector for Case 1 of Example 1

σ1

σ2

Figure 4.4 The trajectory of the sliding vector in the σ space for Case 1 of Example 1

 48

Figure 4.5 State variables x1-x4 for Case 1 of Example 1

Figure 4.6 Control Inputs for Case 1 of Example 1

 49

Figure 4.7 Time response of the sliding vector for Case 2 of Example 1

σ1

σ2

Figure 4.8 The trajectory of the sliding vector in the σ space for Case 2 of Example 1

 50

Figure 4.9 State variables x1-x4 for Case 2 of Example 1

Figure 4.10 Control Inputs for Case 2 of Example 1

 51

Figure 4.11 Time response of the sliding vector for Case 3 of Example 1

σ1

σ2

Figure 4.12 The trajectory of the sliding vector in the σ space for Case 3 of Example 1

 52

Figure 4.13 State variables x1-x4 for Case 3 of Example 1

Figure 4.14 Control Inputs for Case 3 of Example 1

 53

Figure 4.15 Time response of the sliding vector 1σ - 4σ for Example 2

Figure 4.16 The norm of the sliding vector for Example 2

 54

Figure 4.17 State variables x1-x7 for Example 2

 55

Figure 4.18 Control Inputs for Example 2

 56

	Example 4.1
	Example 4.2

