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SUMMARY

Conventional operating systems employ a kernel-controlled caching strategy that cannot properly serve
all access-pattern types used by applications. When running under these systems, many memory-intensive
applications with mis-matching access patterns cause excessive page faults and page replacements that
reduce the application’s performance. This paper presents the hipec system, which allows applications to
have their own caching strategies for managing page frames with negligible overhead. Since application
designers know the access patterns of their applications, the specific caching strategies can be tuned to
meet the needs of each application. Empirical results show that the hipec system significantly improves
application performance and system throughput. 1997 John Wiley & Sons, Ltd.
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INTRODUCTION

Conventional virtual-memory management schemes provide each application with a large
address space by sharing a page frame pool among all applications. System kernels manage
the page frame pool to cache each application’s virtual memory. As the kernels do not know
the applications’ access patterns, the caching decisions of kernels cannot properly serve
all application needs. Many memory-intensive applications run poorly under conventional
systems when decisions taken do not meet their access-pattern requirements.1,2,3,4

Since application designers know their applications’ access patterns, their knowledge can
be used to make intelligent cache management decisions. One approach is to implement a
collection of popular caching strategies in the kernel. Applications could then inform the
kernel of their caching strategies by selecting one strategy from that collection. Since the
strategies supported are finite, some applications may not be able to take advantage of this
approach, because their preferred strategies were not implemented in the collection. Lack of
flexibility is thus the major drawback of this approach.

Another alternative is to partition the management of page frames to the kernel and user
applications. The kernel only handles the allocation of page frames, while the applications are
responsible for making page-replacement decisions. When free page frames are exhausted, the
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kernel selects victim applications and asks them to surrender page frames. User applications
can then decide which page frames to give up in line with their specific access patterns.
Previous systems5,6,7 generally employed domain-crossing approaches to request the user-level
replacement decisions. Unfortunately, domain-crossing approaches usually add significant
complexity to the kernel, and create significant performance overhead for applications.

Problems of domain-crossing

Existing systems that employ the domain-crossing approaches generally implement asyn-
chronous communication schemes to delegate the caching decisions to applications.6,7,8,9 The
purpose is to prevent the kernel from synchronously waiting for user-level managers’ re-
spondence. The implementation, however, added significant complexity to the kernel. The
increased complexity comes from the extra flags added to the kernel-maintained data, the
lengthy processing routines and the scattered checking statements. If a system wants to dele-
gate applications, not only the page-replacement decisions but also other finer-grained caching
decisions, the kernel complexity will be further increased.

Performance overhead is another problem for the domain-crossing approaches. To cross
domains needs to do a context switch, which needs to flush the TLB, the cache memory,
to allocate user-level stacks10 and to update many kernel-maintained data, such as the task,
thread, the virtual memory management data and the kernel stack. The impact due to flushing
the TLB and cache memory is not small and cannot be ignored.11,12 Moreover, the user-level
decision-making managers are subjected to scheduling delay. Other applications compete with
the managers for the CPU when the managers want to make their caching decisions. This delay
is unbounded, and depends only upon when the managers are scheduled to run.

User applications generally need kernel-maintained data in making their specific caching
decisions. The information needed includes, for instance, the referenced and modified bits of
each page frame and the caching status indicating which regions of virtual memory have been
cached. On the one hand, the kernel needs to provide an interface so that applications can
invoke the interface to access the necessary information. The invocations, however, increase
the incidences of domain-crossing and scheduling delay. On the other hand, applications have
to maintain user-level data for keeping information; thus, they can make caching decisions
accordingly. To maintain the user-level data is another overhead cost for the applications.

Motivation

The operations to cross domain between the kernel and applications only cost hundreds of
microseconds. The domain-crossing overhead, however, is far larger than the time taken to
perform domain-crossing operations. Moreover, the degradation of application performance
usually causes applications to occupy page frames for a longer time. The longer occupation
time will incur higher page frame competition and increase the opportunities of page replace-
ments, which usually incurs more disk I/O operations. From the reported values of previous
systems, the incurred overhead is about 10–15% to the application’s performance.6,7

The original purpose of delegating caching decisions to applications is to incorporate the
applications’ knowledge into the memory cache management. Based on this, whether or not
to perform domain-crossing operations is not important in achieving such a goal. If there is
a mechanism whereby the kernel can be informed of the applications’ knowledge without
performing domain-crossing operations, the impacts due to domain-crossing overhead can be
minimized.
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Figure 1. Overview of hipec system

This paper presents a high performance external virtual-memory caching (hipec) system that
supports application-specific virtual-memory cache management without domain-crossing
overhead. Under the hipec system, each specific caching strategy is represented by a sequence
of macro-like commands, called hipec commands. By loading the strategies into the kernel
address space, the kernel is informed of the applications’ caching decisions. When needed,
the kernel synchronously interprets the caching strategies and performs the corresponding
page-frame management operations for applications. The time needed to interpret a command
is hundreds of nanoseconds, which can almost be ignored.

SYSTEM OVERVIEW

The hipec system is implemented on the Mach-based8 OSF/1 MK5 operating system and uses
the Mach External Memory Management (EMM) interface to perform paging operations on the
memory-mapped regions. Caching operations on each virtual-memory region are performed
by the hipec system, but under the direction of each application. The core of the hipec system
is its representation of application-specific caching strategies, and the interpretation of the
strategies to obtain the caching decision from each application. Rather than using a domain-
crossing approach, hipec employs an in-kernel strategy interpretation approach to perform
application-controlled virtual-memory cache management.

Figure 1 illustrates the design of in-kernel strategy interpretation. The application-specific
caching strategies are loaded into the kernel when applications initialize the caching man-
agement of each virtual-memory region. When a page fault occurs, the page-fault handler
allocates a free page frame to the faulting application, as in the DBMS shown in Figure 1,
and calls interpretation routines to interpret the application’s caching strategy. The DBMS
uses that handling strategy to inform the page-fault handler of the designated actions to be
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performed on the allocated page frames. For example, if this page frame is used to cache
referenced-once data, the DBMS would tend to assign it a low priority, because this page
frame is less important than frequently referenced pages.

When the number of free page frames is below a certain threshold, the frame manager
starts reclaiming pages from applications. The frame manager selects victim applications and
interprets their caching strategies to reclaim less important page frames. For instance, when
the DBMS is selected to return page frames, it would tend to return the referenced-once pages
on the low-priority list because those page frames are referenced only once, and will not be
referenced again. The page-frame assignment and reclamation decisions of the DBMS are
directed by its specific caching strategy. The page-fault handler and frame manager interpret
that strategy and perform the designated operations for the DBMS.

Privileged and unprivileged applications

If applications are allocated sufficient page frames to meet their working set size, and the
allocated page frames are not to be reclaimed during execution, the applications can run
with a minimum numbers of page faults. As some applications are more critical than others,
applications are designated as privileged and unprivileged under the hipec system. In hipec, the
requested page frames are allocated to privileged applications upon initialization of the hipec
services, and are free from reclamation during application execution. Allocation requests
from a privileged application will be rejected only when the remaining free page frames
are insufficient and all other page frames are possessed by privileged applications. Only
privileged users are admitted to execute the privileged applications. By contrast, unprivileged
hipec applications must share page frames with other unprivileged applications.

Other components

In addition to the in-kernel interpretation scheme, hipec employs a FIFO2-MR (First In,
First Out, with Second-chance, Movement and Recovery) page-frame reclamation policy to
globally share page frames among applications. Hipec also includes a detection mechanism
to protect the system from any ill-programmed caching strategy, and auxiliary tools to help
application designers in designing their specific caching strategies.

CACHING STRATEGY REPRESENTATION

Each specific caching strategy is represented as a sequence ofhipec commands. Each command
represents a basic virtual-memory management operation for managing page frames. Hipec
introduces a new kernel object, the hipec container, in which to store hipec-related information.
The hipec commands, container and the caching-strategy structure are introduced in following
sections.

Hipec commands

The hipec commands are a set of 32-bit commands, composed of an 8-bit operator code
and up to two operands. A major concern in the design of hipec commands is deciding how
many and what kinds of commands are sufficient for applications to implement their caching
strategies. The command set should be at least as flexible as the kernel in that various caching
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Table I. The hipec command set

No. Command Binary Operations
1. Return 00000000 The end of execution.
2. Arith 00000001 Arithmetic operation.
3. Comp 00000010 Comparison operation.
4. Logic 00000011 Logical operation.
5. EmptQ 00000100 Test whether a specified queue is empty.
6. InQ 00000101 Test whether a specified page is on the specified queue.
7. Jump 00000110 Branch to the next command.
8. Dequeue 00000111 Move a page from a queue.
9. EnQueue 00001000 Add a page to a specified queue.

10. Request 00001001 Request page frames from the system.
11. Release 00001010 Release page frames to the system.
12. Flush 00001011 Flush a page frame.
13. Set 00001100 Set or reset the referenced or modified bits.
14. Ref 00001101 Test whether a specified page has been referenced.
15. Mod 00001110 Test whether a specified page has been modified.
16. FindVA 00001111 Find the virtual address of a specified page.
17. FindPA 00010000 Find the physical page when given its virtual address.
18. Map 00010001 Map a page to a specified virtual address.
19. UnMap 00010010 Unmap a specified virtual page.
20. Call 00010011 Invoke another policy event.

strategies can be implemented in the command set without limitations. A coarse-grained
interface, such as that exported by Reference 14, is sufficient to support most applications.
However, it is not sufficient to support sophisticated caching strategies, such as the strategies
for assigning different priorities to different segments of a file. On the other hand, since hipec is
designed to support user-controlled virtual-memory cache management, it is not necessary to
supply a fine-grained interface to operate the hardware architecture and the operating system
internals. The hipec command set, as listed in Table I, should be flexible enough to support
most virtual-memory caching strategies.

Hipec container

The most important mission of the hipec container is to act as an operand pool. As hipec
commands are defined to support basic page-frame management operations, the data types
of the command operands are limited to Integer and pointers to Integer, Page and Queue.
The Page is the data structure that the Mach kernel uses to manage physical memory, and the
Queue is a data structure used as the header node of any page-frame list. The operand variables
are stored in the operand array of the hipec container. Each operand field of hipec commands
stores an index to the operand array to indicate the accessed operands. When applications
invoke the hipec service, a caching strategy segment, the Init event, is interpreted by the kernel
to initialize the operand array. The initialization fills in the initial values of integer operands
and creates queue headers for the pointer-to-Queue operands. The relationship among the
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Figure 2. The hipec container

hipec commands, the hipec container and the operands is shown in Figure 2.

Application-specific caching strategies

Each specific caching strategy contains at least three hipec command segments: the Init
event, the PageFault event and the Replace event. When the hipec service is initialized, the
Init event is interpreted by the kernel to initialize the operand variables, as described in the
previous section. When a page fault occurs, the pager-fault handler maps a page frame to
the faulted address, and invokes interpretation routines to interpret the PageFault event of
the faulting application. User applications use the PageFault event to instruct the page-fault
handler to perform necessary management operations on the allocated page frames, such as
recording the physical and virtual addresses of mapped page frames or assigning priority to
them.

The Replace event is interpreted under different conditions for privileged and unprivileged
applications. A privileged application’s Replace events are interpreted when the allocated
number of free page frames has been exhausted. Privileged applications use the Replace
event to request more page frames from the system, or to do page replacements from their
private page-frame pools. An unprivileged application’s Replace events are interpreted when
the number of free page frames of the system is low. The frame manager selects victim
applications and starts reclaiming page frames from them by interpreting their Replace events.
The difference comes from the fact that privileged applications are allocated private page-
frame pools when the hipec service is initialized, while unprivileged applications must share
the page-frame pool with other unprivileged applications. Such applications use the Replace
event to select the least important pages for replacement. Figure 3 gives an example of a
specific caching strategy.
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Figure 3. Example of implementing the privileged First-In, First-Out with Second-chance caching strategy
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vm_pageout_scan(){
while(vm_page_free_count < vm_page_free_target) {

page = dequeue(vm_page_inactive_queue);

reclaim_page = interpreter(current_task->map->object->container->Replace);

if(reclaim_page != page) {

set_timeout(timeout_detecting_function, TimeQuantiumOfScheduling);

reset_timeout(timeout_detecting_function);

page = reclaim_page;}

}
}

enqueue(vm_page_inactive_queue);
page->referenced = FALSE;

pmap_is_referenced (page->phys_addr)) {

pmap_clear_reference(page->phys_addr);
page = dequeue(vm_page_active_queue);

while (vm_page_inactive_count < vm_page_inactive_target) {
}

if (page->dirty) flush(page);
enqueue_(vm_page_free_queue, page);

}

if (page->hipec == UNPRIVILEGED) {

insert_recovery(page, reclaim_page);
location_movement(*page, *reclaim_page);

} else {

}

enqueue (vm_page_active_queue, page);

if(page->referenced | |   (page->hipec == PRIVILEGED) | | 

Figure 4. FIFO2-MR page-frame reclamation policy

PAGE FRAME RECLAMATION

The page-frame management model of the hipec system leaves allocation responsibility to
the kernel and delegates caching decisions to user applications. Obviously, different page-
frame reclamation policies have different impacts on application performance as well as
whole-system throughput. Hipec aims to provide unprivileged applications with a fair share
of page frames by employing the FIFO2-MR policy, detailed in Figure 4. The FIFO2-MR
policy was adapted from the Mach FIFO2 policy by adding the fundamental concept of
the LRU-SP file-system allocation strategy.13,14 The LRU-SP was selected because this policy
maintains the fairness of page-frame allocation and prevents applications from having to suffer
because of other applications’ ill-advised caching decisions. The fundamentals, evaluations
and implementations of LRU-SP are described in References 13 and 14.

Implementation

The Mach kernel manages page frames in the active, inactive and free queues, and employs
the FIFO2 page replacement policy15 to reclaim page frames. The hipec system also maintains
the free, active and inactive queues to manage the page-frame pool, and employs the FIFO2
policy to select victim page frames. Unlike Mach, the hipec frame manager does not reclaim
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victim page frames directly. If the selected victim page frame belongs to a privileged appli-
cation, the frame manager will select the next page frame as a victim page and proceed with
checking. If the victim page frame belongs to an unprivileged hipec application, the frame
manager will interpret the Replace event of that victim application and reclaim the page frame
specified by the Replace event.

The concepts of Swap and Place Holder in the LRU-SP policy have been imported into the
FIFO2-MR. Before reclaiming application-suggested page frames, hipec moves the frame-
manager-selected page from the head of the inactive queue to the location of the application-
suggested page. This operation is called location movement, because only one page frame
is moved. The application-suggested page is then reclaimed and placed in the free queue.
Without the location movement, the same page frame would be repeatedly selected as a victim
page, thus causing the same application to be repeatedly selected as the victim application.

An application-specific caching strategy is ill-advised if the replaced page is referenced
before the original frame-manager-selected victim page. An ill-advised caching strategy will
cause the application to create repeated page faults, and to be allocated excessive page frames
due to the repeated faults. The excessive allocation will result in competition for page frames
among applications, and cause other applications to suffer from excessive page replacements.
To ease the impact of ill-advised strategies, a recovery hash table, motivated by the LRU-SP
Place Holder, helps in recovery from ill-advised caching decisions. The recovery hash table is
a 64-entry array that is created for each virtual-memory region when the caching management
service of that region is initialized. Each entry in the hash table points to a list of recovery data
structures that record user-controlled page reclamation decisions, as indicated in Figure 5.
When the frame manager finds that an application-suggested page frame is different from
a frame manager-selected victim page, the offsets to the virtual-memory region of the two
page frames are recorded in the recovery data structure. When a page fault occurs, the page-
fault handler hashes into the recovery hash table to check whether a recovery data structure
was built for the faulty address. If one exists, and the referenced bit of the select but resident
page is not set, the page-fault handler will reverse the ill-advised page replacement decision by
reclaiming the select but resident page, mapping its physical page frame to the faulted address
and clearing the recovery data structure. This recovery operation prevents applications with
ill-advised caching strategies from monopolizing system page-frame resources and protects
applications from being penalized by the ill-advised page replacement decisions of other
applications.

PROTECTION MECHANISM

Hipec protects system resources from direct accesses by applications. User applications can
only inform the kernel of their caching decisions using hipec commands. Page-frame manage-
ment operations are performed by the kernel, and applications cannot directly modify kernel
resources. However, it may still be necessary to protect the system further because of possible
misbehaved caching strategies. The potential safety problems and the protection mechanisms
are discussed as follows.

Dangling references in hipec commands

As with any other programming language, the operand fields of hipec commands may refer
to non-existent variables. If it receives erroneous commands, the system will refer to wrong
operands or destroy other kernel data. To avoid dangling references, hipec checks the syntax
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...vm_offset select_but_resident

vm_offset reclaimed

64
63

.

...

1
2

hash_function(virtual address of page fault)

vm_object

...

...
...
...

...

...

...

Figure 5. Recovery data structure

of the commands when loading any caching strategy into the kernel. As each operand variable
is initialized prior to loading the caching strategy, the hipec system can check the existence
and data type of every operand.

Infinite strategy interpretation

Another safety problem the hipec system deals with is long or infinite execution time for
interpreting application-specific caching strategies. Since the interpretation is executed in
kernel mode by the page-fault handler or by the frame manager, the interpretation operations
cannot be preempted unless the interpretation is finished. The system will be monopolized
by interpretation operations if a caching strategy interpretation forms an infinite loop. Hipec
implements a detection mechanism to avoid infinite strategy interpretations.

When a page fault happens, the page-fault handler interprets the PageFault event of the
faulting application. Before starting the interpretation, a detection function is initiated in the
callout table.16 When the registered duration expires, an interrupt is generated to interrupt the
strategy interpretation and sets a overtime flag in the hipec container. Because the interpreta-
tion routine checks the overtime flag before interpreting a command, the interpreting routine
will notice the expiration and invoke blocking routines to relinquish the processor. A com-
mand counter indicating the command currently being interrupted is saved into the container.
The blocked application will be re-directed to a correct location in the process-run queue
by examining its system resource consumption, and be scheduled to continue the strategy
interpretation. This detection mechanism repeats as long as the interpretation continues. Only
the application itself suffers from its infinite strategy interpretation.

When the frame manager invokes the interpretation routine to interpret a Replace event
from an unprivileged application, the overtime-detection mechanism is similar to that of the
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page-fault handler. The difference is that, when the interpretation of a Replace event is not
finished within the legal duration, the frame manager will give up the interpretation, reclaim
the original-selected victim page directly, and record the reclamation information in the hipec
container to inform the application about the reclamation. The time spent in interpreting the
Replace event is counted when calculating the scheduling priority for each victim application.

AUXILIARY TOOLS

Hipec supplies two auxiliary tools to help application designers prepare their specific caching
strategies. The first is the hipec profiler for identifying performance problems with particular
applications. The second is the pseudo-code translator, used to translate pseudo-code programs
into hipec commands. Both tools are integrated into a single development environment.
Application designers can directly write or modify their caching strategies, translate them into
hipec commands and run the hipec profiler. After identifying any performance problems with
the profiler, the application designers can then use the pseudo-code editing panel to modify
their caching strategies.

Hipec profiler

The hipec profiler is a visual tool to help application designers view the caching behavior of
their particular memory caching strategies. The inputs to the hipec profiler are the application
trace files and the specific caching strategies in hipec commands. The output is a graphic
display that shows the number of page faults in each virtual-memory region. Given the
starting and ending time, the profiler graphically shows the page-fault numbers for that
time window. Application designers can use the scroll bar to isolate a region of virtual
address space and identify regions with high page-fault rates. Unlike a previous related
implementation,5 the hipec profiler simulates multiple applications simultaneously. Both the
process scheduling policy and global page-frame allocation policy can be customized to
experiment with interactions between simulated applications and the system. By selecting any
application of interest from a scrolled list, users can observe its paging behavior in the bottom
portion of the window, as illustrated in Figure 6. The top portion of the window in Figure 6
displays the paging behaviors of all the applications.

The hipec profiler also dynamically shows the page frame allocations of all the applications.
In Figure 7, each bar represents a simulated virtual address space, and the shadowed area shows
the regions cached by page frames. By specifying the starting and ending time, page frame
allocations and competition among applications are displayed for the assigned time window.
This tool helps application designers and system administrators view interactions among
competing applications, and modify the caching strategies, scheduling policies and the global
page-frame allocation policies to increase system throughput. A case study is described in the
following paragraph.

Three trace files are selected from our experimental benchmarks. They are a Random Data
Retrieval (RDR) operator that uses a tree-structure index, a Nested-Loop Join (NLJ) operator
and a sequential MPEG (SMPEG) player . The detailed descriptions of the behaviors of the
benchmarks are described in the section on performance evaluations. The RDR operator runs
with a 16 MB index file and a 64 MB of data. The NLJ operator has 16 MB of outer relations
and 2 KB of inter relations. The SMPEG player plays a 4.17 MB MPEG video file. The global
page-frame allocation policies include the FIFO2-MR and modified Automatic Working Set
Trimming (AWST) policies. The AWST policy was adapted from the replacement policy used
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Figure 6. Graphical display of page faults

by Windows NT.17 The profiler runs with the same round-robin scheduling policy but with
different job-submit orders for the simulated benchmarks. The simulated results are shown in
Figure 8.

The modified AWST requires two parameters to allocate page frames to applications, a min
allocation and a max allocation. The modified AWST employs the FIFO page replacement
policy to reclaim page frames, but each application is guaranteed an allocation of at least the
min number of page frames, and can get at most the max number of pages during execution.
The graphic output of page frame allocation shows the NLJ operator to be sensitive to the
max value and to competition from other applications. The other two benchmarks are not so
sensitive to the max value if it is not too small. Based on this information, the AWST can be
modified to support different min/max values adapted to different applications. By extending
the max value of the NLJ operator to 16 MB and restricting the max value of the other two
applications to 1 MB each, the system will minimize the number of page faults, as is shown in
Figure 8, which depicts the AWST(512K, x M) policy. Though the dynamic AWST performed
better than FIFO2-MR in our simulation, this policy is not implemented in the hipec system.
The dynamic AWST is not fair in allocating page frames to applications. In addition, it is hard
to determine the right min/max values for applications.
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Figure 7. Graphical display of page-frame allocations

Pseudo-code translator

A Pseudo-Code Translator (PCT) is included in hipec to help application designers design
their specific caching strategies in C-like programming language. PCT translates each segment
of pseudo code into a sequence of hipec commands and can feed them directly into the profiler.
Although the exported operations, data types and language constructs are limited to hipec
commands, the PCT eases the programming of specific strategies for allocating operands and
assigning corresponding operand numbers.

PERFORMANCE EVALUATIONS

Several aspects of the hipec system were evaluated. First, the page-fault processing time and the
elapsed time of an experimental benchmark were used to evaluate hipec overhead. The second
experiment gave the time to perform a domain-crossing operation, to interpret a command and
the disk transfer time. Following that experiment, hipec was further investigated by evaluating
the RDR operator. The performance improvements in RDR resulting from applying the strategy
interpretation and domain-crossing approaches were compared. In addition, the overhead
created by the recovery scheme was evaluated. Following this series of overhead analyses,
the next experiment evaluated three privileged hipec applications. These applications have
common access patterns,18,19 and showed great performance improvements when intelligent
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Figure 8. Simulation results under FIFO2-MR and AWST policies

cache management was added. The hipec system throughput was also compared to that of the
Mach with these applications running concurrently. Finally, the recovery scheme was proven
to significantly protect applications from ill-advised strategies in the last experiment. An Acer
486-33 PC was used as our experimental platform.

System overhead

The hipec overhead includes the time required to interpret hipec commands, to do the
necessary checking, and the time required for performing recovery operations and detecting
infinite strategy interpretation. An experimental benchmark that implements the same Mach
FIFO2 caching strategy was employed in this experiment, running as an unprivileged hipec
application. The page-fault processing time of hipec and Mach is listed in Table II. Note that
the time listed does not include the time for doing disk I/O. As shown in Table II, only 2% of
the page-fault processing time was increased, much less than the reported value in a previous
study.20

This evaluation only highlights hipec system overhead in processing page faults. To further
investigate hipec overhead in performing application-specific cache management, the elapsed
time of the benchmark was evaluated. This benchmark sequentially wrote data to a 60 MB
virtual-memory region that created page faults and dirty pages. When free page frames were
exhausted, the dirty pages were replaced and flushed to disks, thus causing disk I/O operations.
Since the free page frames are about 58 MB in size, sequentially writing data to a 60 MB
region definitely causes page replacements. Table II shows that less then 2% of the page-fault
processing time was created by the hipec system. Though the listed value cannot be used to
predict the hipec overhead for all applications, the value can at least be used as an indicator to
show that the hipec system creates only negligible overhead, which can be easily compensated
for by eliminating a few disk I/O operations.
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Table II. hipec overhead

Averaged elapsed time
Evaluations Overhead
Page-fault processing time of hipec system 400.60 �sec
Page-fault processing time of Mach 392.24 �sec
hipec-created overhead 2.06%
60 MB sequential access
Running under original Mach kernel 83515.6 msec
Running under hipec system 85102.4 msec
hipec-created overhead 1.9%

System parameters

This evaluation gave a rough comparison of the domain-crossing approaches and the in-
terpretation scheme. Table III lists the time required to interpret a hipec command and the
time for performing a message-passing IPC and a system call. The system call is evaluated
as a reference to Upcall. Upcall needs to allocate user stacks before transferring control from
kernel to application,10 which creates more overhead than the system call. As listed in Tables II
and III, the time required to process a page fault is close to the time needed to perform a single
IPC operation. This means that, if the kernel delegates the caching decisions to applications
in processing a page fault, the cost to perform an IPC cannot be ignored. However, the time to
interpret a hipec command is much shorter than required by any domain-crossing approach.

There might still be concerns about the benefit of employing the strategy-interpretation
approach. If applications can intelligently manage page frames to earn huge performance
gains from reducing the number of disk I/O operations, the domain-crossing overhead would
be negligible. Based on this suspicion, the averaged disk I/O transfer time was evaluated for
comparison with the time required for domain-crossing.

The disk I/O bandwidths were evaluated by sequentially reading 10 MB of data via the raw
OSF/1 MK5 device interface. Two different SCSI disk devices were evaluated. One was a
Segate 31230n disk plus an AHA-1742 adapter, the other was an IBM Pegasus disk and an
AHA-2940 adapter. As shown in Table III, the averaged disk I/O transfer time for 4 KB of data
is only about 3–5 times greater than the time used by the Mach IPC and 38–60 times greater
than that required for system calls. Thus, applications with sophisticated caching strategies that
require huge kernel/application interactions would incur significant domain-crossing overhead
that cannot be ignored in evaluating application performance. This overhead can, of course,
be reduced by applying the strategy-interpretation approach. The next experiment identified
the performance improvements achieved by applying the strategy-interpretation approach.

Performance improvements yielded by strategy interpretation

In this experiment, the hipec system was modified in several ways to employ domain-
crossing approaches for comparison with strategy interpretation. First, the functions of the
basic hipec commands were implemented as system calls. Second, application-specific caching
strategies were implemented as executable programs which would invoke the additional system
calls for getting kernel-maintained information. Third, the hipec system used message-passing
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Table III. Time for domain-crossing and disk I/O

Evaluations Averaged Time
hipec Command Interpretation smaller than 150 n sec
Single Null System Call 19.4 �sec
Single System Call with 32 byte arguments 24.8 �sec
Single Null IPC Call 292.3 �sec
Single IPC Call with 32 byte arguments 317.9 �sec
SCSI Disk I/O bandwidth (Segate 31230N+AHA1742) 2.6 MB/sec
Averaged transferred time (4 KB) 1502.4 �sec
SCSI Disk I/O bandwidth (IBM Pegasus+AHA2940) 4.1 MB/sec
Averaged transferred time (4 KB) 952.7 �sec

IPC to transfer control to applications. When notified by the kernel, the applications executed
their caching strategies and informed the kernel of their caching decisions using system calls.

The Random Data Retrieval (RDR) operator is used to exemplify the performance difference.
The RDR randomly retrieves data tuples via a 16 MB index file. The structure of the index file
is a highly balanced binary tree. Each index record is 64 bytes long, and consists of a primary
index key, and pointers to data tuples and left/right index records. The data file has 64 MB of
data and each data tuple is 64 bytes long.

The RDR ran as an unprivileged application and used the multi-queues, prioritized, FIFO2
caching strategy (MPFIFO2), as shown in Figure 9, to manage page frames. Page frames that
cache the index records from the same index-tree level have the same priority and are linked
in the same queue. The index-tree level of the index record is defined as the length of the
path from the root record to the index record by traversing the tree-structure index file. The
queues for linking page frames with low index-tree levels have high priorities and will not be
selected to return page frames if any non-empty lower-priority queues exist. Each prioritized
queue is independently managed by a FIFO2 caching strategy. The RDR was evaluated using
combinations of different numbers of retrieved tuples and system page-frame sizes. As shown
in Table IV, the rows hipec and hipec+domain-crossing represent, respectively, evaluations of
the hipec and the modified hipec using domain-crossing techniques. Evaluation results were
normalized using data from the row original Mach, which are the results obtained when the
RDR ran under the Mach system.

The results shown in Table IV demonstrate that the intelligent MPFIFO2 caching strategy
does reduce the number of block I/Os for the RDR when compared with the number required
by the Mach FIFO2 policy. No matter whether a domain-crossing approach or strategy inter-
pretation was used, the RDR induced almost the same number of block I/Os; the difference
is smaller than 0.1%. The elapsed time for the RDR, however, differed when using strategy-
interpretation instead of domain-crossing. The difference, ranging from 1–5%, was caused
by the domain-crossing overhead. This overhead is significant to the RDR operator, since the
RDR only benefited from 1.5–15% of elapsed-time reduction yielded by the hipec system.
Particularly, the performance difference will be further increased if the EMM interface is
replaced by the hipec commands. The current hipec system uses the Mach EMM interface to
perform disk I/O operations. However, the EMM is implemented by asynchronous IPC which
caused large domain-crossing overhead.
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Table IV. Evaluations of the RDR operator

Page-frame size
No. of 12 MB 16 MB 12 MB 16 MB
accessed Elapsed time (in sec/normalized) No. of block I/O

Original Mach 8916.42 1.0000 6008.17 1.0000 203,833 137,287
hipec 8440.28 0.9466 5917.32 0.9849 171,278 124,088

105 hipec+domain crossing 8713.42 0.9772 6140.95 1.0220 171,334 124,160
hipec-recovery 8057.77 0.9034 5722.78 0.9525 171,133 123,921

hipec+recovery(1024) 8082.75 0.9065 5738.23 0.9551 171,199 124,003
Original Mach 98114.17 1.0000 60313.42 1.0000 2,242,611 1,378,580

hipec 84378.31 0.8600 51296.06 0.8505 1,712,216 1,040,931
106 hipec+domain crossing 85457.44 0.8710 52167.70 0.8649 1,714,239 1,043,316

hipec-recovery 80990.60 0.8255 49583.66 0.8221 1,710,121 1,038,928
hipec+recovery(1024) 81217.37 0.8278 49653.08 0.8233 1,710,381 1,039,339

Recovery scheme overhead

Recovery scheme overhead is another important factor that would dominate the performance
improvements achieved by the hipec system. Recovery overhead results from inserting recov-
ery information into the recovery table, and checking for any ill-advised caching decisions by
searching the link lists of the recovery hash table.

The hipec-recovery row in Table IV lists evaluation results obtained using the same RDR
operator, but disabling the recovery scheme functions. By comparing these results with those in
the hipec rows, there are almost 3–4% savings in elapsed time. We suspect that most recovery
scheme overhead comes from recovery-checking performed when searching recovery-link
lists. When an application manages a large virtual address space, many recovery nodes will
be created that cannot be hashed to only 64 entries without causing hashing conflicts. As a
result, long-link lists are created to queue the recovery information.

Based on this suspicion, the recovery hash table was extended to 1024 entries to re-
examine the recovery scheme overhead. The results thus obtained are presented in the row
hipec+recovery(1024) of Table IV. The recovery overhead was greatly reduced compared to
results obtained without extending the number of recovery entries. Extending the recovery
hash table seems a good choice to reduce the recovery scheme overhead. The extension, how-
ever, is a trade-off between the memory size and elapsed time. The 1024-entry hash table is
large enough for the RDR to access 105 and 106 tuples, but possibly insufficient for accessing
more tuples.

Performance improvements of privileged applications

Privileged applications can own page frames during execution without competing with
other applications. They also do not incur any recovery scheme overhead, and should run with
maximum performance if granted enough page frames. In this experiment, the RDR operator,
Nested-Loop Join (NLJ) operator and a MPEG (SMPEG) video player were used to explore
performance improvements in privileged applications.
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page =  FindPA ( FaultedAddress) ;

Indicator = 25 ;

if ( EmptyQ (Indicator) ) {

} else do {

PageFault(){

}
Replace(){

CreateQ ( IndexLevel ); 

return ;

if ( Ref (page) ) {

}

Indicator =   Indicator   -   1 ;

}

page = DeQueue ( Indicator,   HEAD );

Set (page,   REFERENCE,   RESET) ;
EnQueue( Indicator,   TAIL ) ;

Flush (  page  ) ;

Release (  page  ) ;

if (  EmptyQ( IndexLevel )  );

Set ( page,   IndexLevel,   TAIL ) ;
EnQueue ( page,  IndexLevel,  TAIL );

goto   NextLevel;

NextLevel:

} else  if ( Mod(page) ) {

}  while (TRUE) ;

Figure 9. The pseudo code of multi-queues, prioritized, FIFO2 caching strategy

The NLJ operator is one of the most important operations in relational DataBase Manage-
ment Systems (DBMS). When running under the hipec system, the NLJ operator implements
a MRU-like caching strategy. The inner relation of the NLJ operator is 4 KB long, and the
size of the outer relation is 60 MB. Each tuple in both relations is 64 bytes long. The NLJ
operator was evaluated using different number of allocated page frames.

The SMPEG player has a sequential access pattern that reads a 12.96 MB video data.
SMPEG ran concurrently with a DataBase Generator (DBG) to show that system performance
can benefit from privileged hipec service by eliminating page-frame competition. The video
player uses a FIFO caching strategy with 16 page frames allocated. The DBG sequentially
builds a 60 MB database, which is a general application that does not invoke the hipec service.

Because Mach consumes about 6 MB of physical memory after booting the system, the
available memory left for applications is about 58, 42, 26 and 10 MB, respectively, when the
Mach is booted with 64, 48, 32 and 16 MB of physical memory. To make the comparison fair,
the applications were allocated 58, 42, 26 and 10 MB of physical memory, respectively, when
running as privileged hipec applications.

By using the hipec system to reduce the number of page replacements and disk I/O op-
erations, the performance improvements in each application are evident, as shown in Tables
V, VI and VII. There was 16–95% of elapsed-time reduction for the NLJ operator and 4–13%
for the concurrently run SMPEG player, and DBG generator. For the RDR operator, elapsed-
time reductions ranged from 9–15% when the number of randomly retrieved tuples was 106.
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Table V. Elapsed time of NLJ operator

Allocated page frame size (MB)
64 48 32 16

Elapsed time (in seconds)
Mach LRU 12571.80 12749.97 12735.72 12779.17
hipec MRU 593.19 3817.52 7239.93 10694.29

Ratio 4.72% 29.94% 56.85% 83.69%

The RDR operator gained little performance improvement when the number of randomly
retrieved tuples was small. Most of the accessed tuples could be cached by the allocated page
frames, causing few page replacement operations. The intelligent caching strategy of the RDR
operator helped a little under this condition.

The SMPEG accessed the video data in a sequential read-only pattern. Consequently, the
SMPEG player could reuse its recently-accessed page frames so that 16 page frames were
enough for it to play the video. Without privileged, application-specific cache management,
the SMPEG would normally request free page frames from the system, causing more DBG
dirty pages to be reclaimed. Reclaiming the dirty pages would require flushing them first, thus
degrading system performance.

Table VI. Elapsed time of RDR operator

Allocated page frame size (MB)
Access size 64 48 32 16

Elapsed time (in seconds)
Original 12.00 12.43 11.98 19.95

102 hipec 12.07 12.13 12.18 17.47
Ratio 100.58% 97.59% 101.67% 87.57%

Original 52.94 54.05 61.67 82.75
103 hipec 51.33 56.11 61.88 81.01

Ratio 96.96% 103.81% 100.34% 97.99%
Original 283.80 319.49 385.52 621.71

104 hipec 279.29 321.39 384.27 616.53
Ratio 98.41% 100.59% 99.68% 99.17%

Original 1656.75 2344.04 3393.79 6008.17
105 hipec 1621.13 2299.00 3328.06 5917.32

Ratio 97.85% 98.08% 98.06% 98.49%
Original 15279.53 22338.70 33497.12 60313.42

106 hipec 13953.89 19997.67 28907.42 51296.06
Ratio 91.32% 89.52% 86.30% 85.05%
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Table VII. Total elapsed time of SMPEG and DBG

Allocated page frame size (MB)
64 48 32 16

Elapsed Time (in seconds)
Mach LRU 1133.72 1193.92 1236.53 1349.26
hipec FIFO 1087.33 1095.50 1137.64 1169.91

Ratio 95.91% 91.76% 92.00% 86.71%

Overall improvements in system performance

The previously presented benchmarks were used to assess the overall improvement in
system performance. When running under the hipec system, all applications, except the DBG
generator, ran as unprivileged applications. The concurrently run applications included the
NLJ operator (J) with a 60 MB outer relation and a 4 KB inner relation, the RDR operator
(R) for randomly accessing 105 tuples, the SMPEG video player (S) for playing 129.58 MB
MPEG video data at an averaged 31.16 KB/sec, access rate, and finally, the sequential-write
DBG generator (G) for building a 60 MB database. As shown in Table VIII, the elapsed time
reductions ranged from 7–40% for different application combinations.

Ill-advised applications

The hipec system recovery scheme protects applications from any ill-advised application
(i.e. applications that make wrong caching decisions.). Two issues related to the recovery
scheme were investigated in this experiment. The first was whether the recovery scheme helped
the ill-advised application in reducing the number of page replacements. The second was to find
out whether the recovery scheme protects applications from inducing extra page replacements
when these applications ran concurrently with an ill-advised application. The RDR operator
with the MPFIFO2 caching strategy was used to explore these issues. The MPFIFO2 caching
strategy was modified to act like an ill-advised caching strategy by replacing the page frames
with the highest priorities. The ill-advised RDR operator ran as an unprivileged application
and randomly retrieved 105 and 106 tuples in each evaluation. The system was booted with
12 and 16 MB of physical memory for the evaluations.

By comparing the rows hipec+ill-advised-recovery and hipec+ill-advised+recovery in Ta-
ble IX, the recovery scheme is seen to have been helpful in reducing the elapsed time and the
number of block I/Os for the ill-advised RDR. Without a recovery scheme, wrong caching
decisions always keep low-priority data cached. Because low-priority data has little possibility
of being re-accessed, keeping them cached will cause most of the page frames to be occupied
by rarely used data and reduce the page-frame utilization. As a result, more page-replacement
operations are induced. The recovery scheme recovered the ill-advised caching decisions such
that page-frame utilization was not reduced. The RDR operator, however, still suffered from
wrong caching decisions, because they induced recovery processing overhead and extra disk
I/O operations. The performance difference in the RDR was not significant when the number
of accessed tuples was small (i.e. 105).

Table X shows how the recovery scheme protected other applications from an ill-advised
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Table VIII. Elapsed time for concurrently run multiple applications

Allocated page frame size (MB)
Application combination 64 48 32 16

Elapsed time (in minute)
Original 279.67 285.31 289.44 344.46

J+S hipec 174.07 206.25 251.67 317.84
Ratio 62.24% 72.29% 86.95% 92.27%

Original 118.82 128.21 147.95 216.99
R+S hipec 108.91 114.07 126.56 176.14

Ratio 91.66% 88.97% 85.54% 81.17%
Original 316.10 353.07 374.68 489.66

J+R+S hipec 211.17 263.24 313.14 408.35
Ratio 66.80% 78.56% 83.58% 83.39%

Original 245.81 251.67 267.33 274.61
J+G hipec 148.61 166.14 198.44 252.59

Ratio 60.46% 66.02% 74.23% 91.98%
Original 84.06 101.13 119.68 232.77

R+G hipec 67.79 83.81 96.68 181.15
Ratio 80.64% 82.87% 80.78% 77.82%

Original 278.90 314.17 356.39 444.50
J+R+G hipec 173.37 229.31 284.16 397.93

Ratio 62.16% 72.99% 79.73% 89.52%
Original 379.95 422.59 456.08 572.30

J+R+S+G hipec 245.51 303.10 341.60 482.79
Ratio 64.63% 71.72% 74.90% 84.36%

application. In this experiment, the ill-advised RDR operator ran concurrently with other
applications, including the NLJ operator, the SMPEG player and the DBG generator. When
running under the hipec system, only the RDR operator ran as an unprivileged hipec appli-
cation. Other applications ran as a general application that did not invoke any hipec services.
The system was booted with 64 MB for the evaluation.

Table IX. Evaluations of ill-advised RDR operator

Page frame size (MB)
No. of 12 16 12 16
accessed Elapsed time (in sec/normalized) No. of block I/O

original Mach 8916.42 1.0000 6008.17 1.0000 203833 137287
105 hipec+ill-advised-recovery 9415.34 1.0600 6250.99 1.0404 211267 141509

hipec+ill-advised+recovery 9118.82 1.0227 6154.77 1.0244 203959 137774
original Mach 98114.17 1.0000 60313.42 1.0000 2242611 1378580

106 hipec+ill-advised-recovery 117432.85 1.1969 68522.28 1.1361 2580348 1549661
hipec+ill-advised+recovery 108043.62 1.1012 65633.67 1.0882 2423375 1474116
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Table X. Evaluating the system performance with an ill-advised application

Applications
J M G J M G

booted with 64 MB Elapsed time (in min) No. of block I/O
under Mach 379.83 93.42 6.98 67515 33173 15360

under hipec-recovery 491.70 104.41 9.67 74238 33173 15360
under hipec+recovery 440.77 101.35 9.06 67916 33173 15360

Evaluations results show that the recovery scheme did limit the impact of the ill-advised
RDR operator. Without the recovery scheme, the number of block I/Os from the NLJ operator
was greatly increased. When the recovery scheme was enabled, the NLJ operator caused
approximately the same number of block I/Os as when evaluated under the Mach kernel.

However, the elapsed time of the NLJ was increased by the ill-advised RDR operator.
The elapsed time reduction of the NLJ operator was due to the heavier loading on the disk
device such that the NLJ operator had to wait for the device. In addition, the ill-advised RDR
took longer to finish its job and occupied page frames for longer periods. The occupation
caused more page-frame competition, degrading the performance of the NLJ operator. Similar
results from the SMPEG player and the DBG generator were also seen. These experimental
results hint that the system must have a protection mechanism that revokes hipec services for
ill-advised applications. An ill-advised application can be detected by the recovery scheme
if it is monitored for excessive wrong caching decisions.14 Revocation management is an
interesting topic that requires further research to decide on threshold numbers for judging
when an application is ill-advised.

RELATED WORK

Many research prototypes and development systems have addressed memory caching prob-
lems. Mach8 exports the EMM interface to manage the paging operations of each memory-
mapped region, but it lacks an interface for supporting application-specific cache management.
The work of PREMO6 employs message-passing IPC to extend the EMM interface to accom-
modate user-level page-replacement policies. The referenced and modified bits (R&M) for
page frames can be obtained from the kernel by invoking new system calls, but only the R&M
information can be retrieved in their implementation. Another work, called the POD,7 further
extends the Mach system to support user-level physical-memory management using message-
passing IPC. In that implementation, applications can directly access kernel resources, but
only trusted applications are allowed to invoke the POD interface. Neither PREMO nor POD
address any system performance considerations and page-frame reclamation policy.

V++20 uses the Segment Manager (SM) to manage physical memory, and has an interface to
migrate page frames among different segments. A Memory Market (MM) approach21 is used
to allocate page frames among applications. All the operations of V++ involve transferring
control among address spaces using IPC, such that huge IPC communication overhead is
expected. The system performance of V++ is not addressed in its literature. The recent
Cache Kernel questions the flexibility of existing microkernel operating systems.22 Cache
kernel proposes a new kernel architecture that allows applications to build their own specific
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Application Kernel (AK) to meet their needs. Cache kernel uses memory-mapping IPC to
communicate with the AK by loading and unloading kernel-object descriptors. To context-
switch the AKs is time-consuming in loading and in unloading huge numbers of kernel-object
descriptors.

The SPIN23 system can dynamically extend system services to meet application require-
ments. Specific applications can dynamically load object codes into the kernel and link them
to specialize the system to meet their needs, which would create the least overhead in system
extension. SPIN guarantees system safety by using a secure programming language, Modula-
3, to implement any extended service. The loaded object codes can access kernel resources
directly by using unforgeable capabilities. Another development system, the Exokernel,24,25

uses software fault isolation techniques26 to export low-level hardware services to applica-
tions. Conventional operating system services, such as virtual-memory management and IPC,
are implemented as libraries that can easily be specialized to meet application needs. SPIN and
Exokernel are both targeted at providing applications with fine-grained management of system
resources. Applications can directly manage hardware resources, such as the processor, the
interrupts and the physical memory, etc.

The work of two-level file cache management,13,14 built on top of the conventional file
system, allows applications to select page replacement policies for each opened file, and
introduces the LRU-SP policy to fairly share page frames among applications. Since conven-
tional file systems do not support multiple caching buffers for each single file, simultaneously
sharing a file among applications with different replacement policies is not supported in their
implementation.

There are network studies27,28,29 that use the interpretation approach in packet demultiplex-
ing. Applications can program their packet filters using the filter language. When any packet
comes into the system, the network driver interprets the filter and forwards the packets to
its destination application. The interpretation overhead is negligible as compared to the long
latency time of network I/O operations.

CONCLUDING REMARKS

It is impossible to implement one particular caching strategy within a kernel that can adequately
serve all applications. The goal of the hipec system is to make use of application knowledge to
reduce the number of page faults. Since page faults usually cause disk I/O operations, reducing
the number of page faults means reducing disk I/O operations, Thus application performance
and system throughput is increased.

The hipec system supports applications accessing data by memory-mapping the data into
the address space of each application. Since data are cached in the address space of each
application, even when a file is shared, each application can implement its own specific
caching strategy to manage its memory-mapped region without any conflicts.

Hipec employs the FIFO2-MR policy to fairly share page frames among applications to re-
duce the impact from ill-advised applications. Auxiliary tools in the hipec implementation can
help application designers identify performance bottlenecks and prepare intelligent caching
strategies. Based on empirical results, the hipec system has proven to be applicable and able
to achieve the claimed expectations.

However, a concern about the hipec system is whether there is significant benefit in em-
ploying the in-kernel strategy interpretation scheme. The answer to this concern is positive.
The interpretation scheme is simpler than any domain-crossing approaches that can reduce the
kernel complexity. This approach is also efficient in supporting applications to manage their
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virtual memory cache without domain-crossing overhead. An experiment was used to explore
the significance of strategy interpretation by evaluating the RDR benchmark. By concluding
from the results listed in Table IV, the strategy interpretation was proven to create a significant
performance gain to application performance. In addition, since the page-frame management
operations are performed by the kernel, each operation performed is trustworthy. Protecting
systems from any misbehaving application will be easier than with advanced techniques that
use secure programming languages.

Whether the current hipec commands are sufficient to implement any specific caching strat-
egy is another concern for hipec implementation. Since hipec commands are derived from
basic virtual-memory management operations, they can currently be used to implement any
caching strategy that conventional kernels can. However, the hipec command set does not
include any commands related to data prefetching.30 The purpose of data prefetching is to
initiate I/O requests as soon as possible, so that I/O latency can be reduced by parallelizing
application computation and data fetching. The performance gain resulting from data prefetch-
ing, as reported by other research,31 is dominated by the disk-scheduling policies, and will be
another interesting topic, but is beyond the scope of this paper.
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