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Abstract

It is important for cargo carriers to dispatch their vehicles efficiently and
effectively. There are several advantages for efficient and effective dispatches. First,
shortening the dispatching time could save the personnel expenses and make better
human resources utilization. Secondly, shortening the travel distance of vehicles can
reduce the operation and maintenance costs of vehicles. Moreover, the cargo carrier
could serve more customers and inqp@gs‘e' their reyenues due to higher utilization rate.
Therefore, it is important to devg.ljé p ’-6pt§fnrzaﬁbg Iﬁqdels and algorithms for such
decision making. - j:\“ e I ) E

We construct an optimizati.'egl‘}«mbé&l:fon pi.‘ckuﬁ;'élnd delivery problem with time
windows in this research. This modells basec} o;ir:'ﬂnlﬁe dispatching rule, and takes
current operation status into account. We apply the over-constrained and
under-constrained method to deal with the nonlinear time window constraint. The
over-constrained method offer an upper bound (a feasible solution) while the
under-constrained method provides a lower bound for the solution. In order to
approximate the optimal solution, we use the time window partitioning method to

narrow the gap between the upper bound and lower bound.

In addition, we use a small example to verify the accuracy and rationality of our
model. We also generate our test instances from Solomon’s benchmark test samples
for VRPTW to evaluate our solving method. The testing results show that our

proposed model and solution techniques are suitable for solving this problem.

Keywords: Pickup and Delivery Problem, Time Window Constraints, Time

Window Partitioning.
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Chapter1 Introduction
1.1 Motivation

It is important for cargo carriers to dispatch their vehicles efficiently and
effectively. The companies usually face a sequence of uncertain service requests for
vehicles dispatching. There are several advantages for efficient and effective
dispatches. First, shortening the dispatching time could save the personnel expenses
and make better human resources utilization. Secondly, shortening the travel distance
of vehicles can reduce the operation and maintenance costs. Moreover, the cargo
carrier could serve more customers and increase their revenues due to higher

utilization rate.

It is not an easy task for largé::_éélrgqﬁrrie'fs t(;"'manage their fleet dispatching

jobs. Normally, there are many fajlétors ne.e.;qiﬁ')}:be ébq:s:idered simultaneously.

. b '

However, it is not feasible for these cbx‘_;iipé’r-ri‘é's“tolhifé sufficient number of skilled

people for this purpose. o

Therefore, it is important to develop optimization models and algorithms for
such decision making. These methods are often described under banners like vehicle
routing, work assignment or fleet management, allow the computer to make

recommendations regarding work assignment and truck routing and scheduling [1].
1.2 Objectives

The objective of this research is to propose an optimization model for pickup and
delivery problem with time windows. This model is based on the dispatching rule, and
takes current operation status into account. We also propose an algorithm for solving

this model.



1.3 Scope

The problem we address requires the fulfillment of a set of customer’s pickup
and delivery requests on a single depot network. All requests must be executed
without violating the vehicle capacity and the customer time window stipulated at

each node.

We consider pickup and delivery as separate jobs. That is, there is no need to
execute each pair of pickup and delivery load successively. It is possible to insert any
job between each pair of pickup and delivery load. Because the size of fleet is fixed,
the objective here is to serve as many requests as possible, while minimizing the total

travel cost. We do not consider the possibility of future demands.
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Figure 1.1 Study Flowchart

As shown in figure 1.1, we first observe the operations of a certain company and
define the problem. Next we will review relevant literatures of modeling and solving

techniques of this problem to know the current status of this research.



Afterward, we define the required parameters and construct the model. Then we
propose a method for solving this model. Finally, we generate test instances to
evaluate our model and the solution techniques. By analyzing the testing results, we
will keep modifying our model until satisfied. Finally, some conclusions are drawn for

this research.




Capter2 Literature Review

In this chapter we review the literatures of general pickup and delivery problem.
In section2.1, we review literatures of various pickup and delivery problems.

Section2.2 gives an overview of solution approaches that have been proposed.

2.1 Review of Characteristics of Pickup and Delivery Problem with Time

Windows

The pickup and delivery problems with time windows (PDPTW) involve the
satisfaction of a set of transportation requests by a vehicle fleet housed at one or
several depots. A transportation request consists of picking up a customer (or load) at
the pickup node within a departure interval, and transporting to the delivery node

within the arrival interval. The dié}l%éi:}idq Tjobiérhcyvith time windows (DARPTW) is

a PDPTW in which the loads to= “ trein's"‘p!(). %@;;}éfirésqnt people. Therefore, we

usually speak of customers or cIj_épts“jjhéié‘a%g{ltrarys_ﬁortation requests and all load

sizes are equal to zero. , mm—

L 1Lk

The PDPTW is a special case of vehicle routing problem with time window
(VRPTW), which is a high-complexity problem. The solution space is discrete
because the decision variables are integer variables. VRPTW was proved to be
NP-hard problems [2]. Thus, the possibility of finding a polynomial algorithm is

extremely low.

The PDPTW involves a series of constraints: visiting constraints which ensure
that each pickup and delivery node is visited exactly once; time window constraints to
be satisfied at each node; capacity constraints on each vehicle; coupling constraints
stating that a pair of pickup and delivery job must be served by the same vehicle; and

precedence constraints imposing that each customer (or load) must be picked-up



before the delivery [3].
2.1.1 Transportation Requests

A very important characteristic of routing problem is the way in which
transportation requests become available. In a static situation, all requests are known
at the time the routes have to be constructed. In a dynamic situation, some of the
requests are known at the time the routes have to be constructed and the other requests
become available in real time during execution of the routes. Most vehicle routing

problems are static, whereas most pickup and delivery problems are dynamic. [4]
2.1.2 Time constraints

Apart from the vehicle capacity.qqnsltraj‘rllft:s..and the intrinsic precedence
constraints related to pickup anddehveryi_Tlde f"(.%.g?figfr?ints related to time arise in
almost every practical pickup an(i deliver.}.{-,‘;.si'ﬁfa,tioh.‘ {%lthough time constraints have

- Pl =
become an integral part of modeTsforveEiclé—rwtlng ‘problems, they play an even
more prominent role in pickup and‘:.("i‘énl.ilveirf -pfol:;'lgms. Because the most studied

pickup and delivery problem is the dial-a-ride problem, which deals with the

transportation of people who specify desired pickup or delivery times.

The presence of time window constraints complicates the problem considerably.
In the presence of time constraints the problem of finding a feasible pickup and
delivery plan is NP-hard [4]. Consequently, it may be difficult to construct a feasible
plan, especially when time constraints are restrictive. On the other hand, an
optimization method may benefit from the presence of time constraints, since the

solution space may be much smaller.



2.1.3 Objective Functions

A wide variety of objective functions is found in pickup and delivery problem.

The most common ones are discussed below.

(A) Minimize duration

The duration time of a route is the total time a vehicle needs to execute the route.
Route duration includes travel times, waiting times, loading and unloading times, and

breaking times.

(B) Minimize travel time

The travel time of a route refers to the total time spent on actual traveling

between different nodes.

(C) Minimize route length ;'-'.;‘“:.

=N~ -
The length of route is the total Hi_fétaﬁcé"-t-ra\(.e}e_iﬂ between different nodes.

(D) Minimize client inconvenience

In dial-a-ride systems, client inconvenience is measured in terms of pickup time
deviation, i.e., the difference between the actual pickup time and the desired pickup
time. Different kinds of functions, linear as well as nonlinear, have been proposed to

model client inconvenience.
(E) Minimize the number of vehicles

This function is almost always used in dial-a-ride systems combined with one of
the above functions. Dial-a-ride systems are normally subsidized systems for
transportation of the elderly and handicapped. Because drivers and vehicles are the

most expensive in a dial-a-ride system, minimizing the number of vehicles to serve all



requests is usually the main objective.
(F) Maximize profit

This function, which can use all of the above functions, can be used in a system
where the dispatcher has the possibility of rejecting a transportation request when it is
unfavorable to transport corresponding load. A model based on this objective function
should not only incorporate the costs, but also the revenues associated with the

transportation of loads. [4]
2.2 Review of Solving Techniques for Pickup and Delivery Problem
2.2.1 The Static Pickup and Delivery Problem

(A) The Static Multi-Vehicle Pickup¥ind Délivery Problem without Time

Windows o EHAENA
=ty | gl =

Cullen, Jarvis and Ratliff [5] per'Qse‘-&q—mteracu:ve approach for the
multi-vehicle dial-a-ride problem.b&ifh'.‘élgmo%gnééa-s fleet, i1.e., equal vehicle
capacities. The problem is decomposed into a clustering part and a chaining part. Both
parts are solved in an interactive setting, i.e., man and machine cooperate to obtain
high quality solutions. The algorithmic approach in both parts is based on set

partitioning and column generation.

The clustering problem, i.e., the problem of constructing and selecting clusters
to serve all the clients, can be formulated as a set partitioning problem. Let J be the

set of all possible clusters, i.e., seed arcs and assignments of clients to seed arcs. For

each j e J,let ¢, denote the approximate cost of serving the cluster, and for each

i€N,let a, beabinary constant indicating whether client i is a member of



cluster j or not. Furthermore, introduce a binary decision variable y,, to indicate

whether a cluster is selected or not. The clustering problem is now to

Minimize Z c,y;
j

Subject to Zaijyj =1Vie N
J

v, elolvjed

Because the set of all possible clusters is extremely large, a column generation
scheme is used to solve the linear programming relaxation of this set partitioning

problem.

(B) The Static Multi-Vehicle Pic_:lr("li"i;:'éingl Dellvel‘y Problem with Time Windows

!i N
Dumas, Desrosies and So@fnis [6] preséﬁ% a set partitioning formulation for the
- Pl
static pickup and delivery problém“with}':tifhé '\iv-indcfiﬁs and a column generation
scheme to solve it to optimality. The 'é‘pprbéch-ié' very robust in the sense that it can be

adapted easily to handle different objective functions and variants with multiple

depots and an inhomogeneous fleet of vehicles.

Desrosies [4] presents a nonlinear- mathematical formulation of the multiple
depots multiple vehicle types pickup and delivery problem with time windows, and
use Dantzig-Wolfe decomposition algorithm to solve it. The master problem results in
the linear relaxation of a set partitioning type model, while feasible routes or columns
are generated by a subproblem modeled as a shortest path problem with precedence,

time window and capacity constraints.

Haibing Li and Andrew Lin [7] propose a metaheuristic to solve the static pickup

and delivery problem with time windows. The approach is a tabu-embedded simulated

9



annealing algorithm which restarts a search procedure from the current best solution

after several non-improving search iterations.

William P. Nanry and J. Wesley Barnes [8] present a reactive tabu search
approach using three distinct move neighborhoods. A hierarchical search methodology
is used to dynamically alternate between neiborhoods in order to negotiate different

regins of solution space and adjust search trajectories.
2.2.2 The Dynamic Pickup and Delivery Problem
(A) The Dynamic Single-Vehicle Pickup and Delivery Problem

Psaraftis [9] extends the dynamic programming algorithm for the static

immediate request dial-a-ride problem tg the dynamic case. Indefinite deferment of

customers, i.e., continuously reasnsighing"sﬁrviée of 4 customer to the last position in
the pickup and delivery sequencfe;,‘ is preventéd with aspecial priority constraint.

The dynamic problem is solved ;in_éf"a s‘equence*of static problems. Each time a
new request for service is received, a élﬂiéhtI“}Iluﬁlédiﬁed instance of the static problem
is solved to update the current route. Obviously, all clients that have already been
picked up and delivered can be discarded and the new client has to be incorporated.
The starting location the vehicle and the origins of the clients that have been picked
up but not yet delivered have to be set to the location of the vehicle at the time of he

update.
(B) The Dynamic Multi-Vehicle Pickup and Delivery Problem

Psaraftis [10] develops an algorithm for the Dynamic multi-vehicle problem in
which vehicles are in fact ships. In this case, the capacity of ports also has to be

considered in order to avoid waiting times when loads are to be picked or delivered.

10



The algorithm is based on rolling horizon principle. Let ¢, the current time, i.e., the
time at the £ th iteration of the procedure. At time ¢, the algorithm only considers
those known loads i whose earliest pickup time e, falls between ¢, and?, +L,
where L , the length of rolling horizon, is an user input. The algorithm then makes a

tentative assignment of loads to eligible ships.

Powell and Frantzeskakis [11] propose an algorithm which is developed based on
network flow representation of the problem. To anticipate future requests, the network
is extended with stochastic links. These stochastic links correspond to future uncertain
trajectories of vehicles. A maximum profit flow in this extended network not only
represents a deterministic allocation of vehicles to load known at =0, but also

assigns vehicles to regions in order to serye future requests at minimal cost.

11



Chapter3 Model Building

In this chapter we propose a linear model for pickup and delivery problems with
time windows (PDPTW). This model considers precedence, coupling, capacity, and
time window constraints. In addition, we use the over-constrained and
under-constrained method to deal with the non-linear time window constraints. A time

window partitioning method is used to approximate the optimal solution.
3.1 Definitions and Assumptions

Let N be a set of transportation requests. For each transportation request

i € N,aload of size ¢, has to be transported from an origin N, (i.e., pickup node)

to a destination N (i.e., delivery node)aNetiee that ¢, is positive for pickups and
negative for deliveries. Define N - u,g N f:“"-"ds the set of all pickup nodes and

= Pl =
N™ =0,y N, asthe set of all delivefymodesilet'V .= N* UN". Define O as the
depot. Let W =V U O.Forall i, ]e 7 et ', "~ denote the travel time from i to j.
Furthermore, let A be the set of vehicles. Each vehicle k& € M has a capacity Q, .

Note that a node means either a pickup or delivery job. Therefore, we will use node or

job to represent a pickup or delivery task.

Foreach ieV atime window [e,,/,] is introduced denoting the time interval

in which service at node i must take place. Given a pickup and delivery plan, we

define 7, as the service time of job i. Note that the service duration of the pickups

and deliveries can be incorporated in the travel times and hence will not be considered

explicitly in this research [12], [13]. That is, 7, includes the time vehicles travel

from job i tojob j,and the service duration of job ;. We define trips as the

12



process of executing a series of pickup and delivery jobs. Step means the process that
a vehicle travels form one job to another in its trip. Let R be the set of all steps. The
range of steps is from 1 to the maximum number of steps ( /) that a vehicle can make
in a trip. Note that / can be decided by the decision maker in deferent cases. In the
extreme case where all jobs can be served by a single vehicle, H should be set to the

number of total jobs in order to prevent the missing of the optimal solution.

Each vehicle stops at the last job of its trip. We allow the vehicle to wait if it
arrives before the earliest time of the time window. Furthermore, we allow the vehicle

to leave if it completes the job before the latest time of time window.
3.2 Problem Formulation

The variables of the MIP mq@éi%fe gieﬁned as follows:
¥ EHEHW\ .

Z,.: The binary variable indicates thie locatlon of V(;"hicles. Z, =1 ifvehicle k

ST S

makes a pickup or delivery.é:if-;ﬁpdg. i aﬂ'é.f""m’h step of its trip, and 0

otherwise.

X, :The binary variable indicates whether vehicle k travels from node i to
node j at m" step ofits trip. X f“ ; =1 if vehicle k travels from node i

tonode j at m” step, and O otherwise.

th

Y*: The continuous variable specifies the load of vehicle & afterits m” step.

Using above notations, the formulation of the MIP model is given below:

Min 322 2 Xosi ty +L-ON= 2. 2.2 Z,,)

keM meRieW jeW keM meR jeV

Subject to:

13



> >z, <1 vjeV

meR keM
>z, <1 VkeM,meR
jev
> ZX“J = VkeM
zeV\ jEV
ZW:X,M” <Z, VkeM,meR,jeV

=2 X VkeM,meR,jeV

iew
DZh =220 VkeM,ie N
meR meR
z Z(l Z Z Z(m Zk Vie N
keM IeR keM meR AVETER

=>q,-Z ‘v’keM-'
jev
k k
=Y+ 9,2,
Jjev

Yh <ot VkeM,meR
QX ) (T +t,-T,)<0 VieV,jeV,keM
meR
e, <T <1 VielV
Yi>o0 VkeM,meR

ZE X5 =0 or 1

mj ° m,i,j

The first term of the objective function represents the total travel time for all

(1

2)

3)

“)

()

(6)

(7)

(®)

)

(10)

(11)

(12)

(13)

(14)

vehicles. L is a large number which penalizes for unserved jobs. That is, the objective

is to minimize the total travel time while serving as many as jobs possible.

14



Constraint (1) ensures that a job can be served once at most. Note that the left
hand side of the constraint can be zero, which means the request is not served.
Constraint (2) ensures that a vehicle cannot be at more than one node at the end of
each step of its trip. Notice that the left hand side of the constraint can be zero in
which case either the vehicle is not used or must have finished its trip in a previous

step. Constraint (3) requires that each vehicle departs its trip from the depot.

The constraints given by equation (4) and equation (5) establish the link between

the variables Z,. and X, .Ifvehicle k atnode j after completing m” step

of its trip, in which case Z ,'fy. =1, equation (4) implies that it can travel to another

unserved node from node ; ; otherwise it can not travel to any node originating from
node j at m+1" step.In each__s,téﬁ,‘ ‘the 10c@ﬁ6n-.pf a vehicle is determined by

. - d=cl5x\ o
equation (5), namely a vehicle is at.node - ‘..'gg the end of m™ step if a trip is made

o
1!

to that node at m" step of the procdss-by thatvehiele, i.e. X, =1 forsome i.

mi,j

Constraint (6) is the coupling constraint which ensures that each pair of pickup
and delivery should be served by the same vehicle. Constraint (7) is the precedence
constraint which ensures the pickup must be made before delivery. Note that if the left
hand side and the right hand side are both equal to zero, it means vehicle & does not

serve request 1.

The constraints given by equation (8)-(10) are the capacity constraints.
Constraint (11) enforces the temporal relationship of consecutive jobs. Constraint (12)

specifies the time window constraints. [14]
3.3 Modifications of the Model

There are two modifications in this section. First we reduce the number of binary

15



variables. Secondly, we apply the over-constrained and under-constrained methods to
deal with the non-linear time constraints. Therefore, we can get a linear model with
reasonable number of binary variables. In addition, we use the time window

partitioning method to approximate the optimal solution.
3.3.1 Variable Redefinition

Two modifications are made in our model. The first modification is the

redefining of variables X fq,i,j. In above model, these variables are defined as binary

variables. However, the model structure automatically implies that they can only be
binary values without any binary constraint. This can be seen by simultaneously

considering constraint (2), constraint (4) and constraint (5). Notice that constraint (2)
ai I | L F ™

implies that forany & and m, J

( i
| :!r .

]

i

= [fog_all 4, except at most one node.
Therefore, we can see that if Z% =0 : X,

= gl

=0f01:: all i.Suppose Z,, =1,then

.-j ‘.‘d:,'
m,i,j )

X% =0 forall J except j :JQ

L | -
Iggan

k

m,i, jg

On the other hand, there can be at most one i for which X # 0, because if

Xy, #0 and X, . #0 forsome i and i,,constraint (4) implies that
Z,fH,l.] =1 and Z,lfH,fz =1 which contradicts constraint (2). Therefore, there is at

mostone i and one j for which X ,’:” ; # 0. Constraint (5) then implies that

k

k .
X mi,j 18

is binary since Z r’;/ is binary. Therefore, the need for defining X

binary variable is eliminated. [14]

After redefining X’ . as continuous variables, the only binary variables

m,i,j
remaining in the model are the location variables Z :1_/ . In this modified model, the
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total number of binary variables is reduced to K -H -C where K is the number of
vehicles, H is the maximum number of steps that a vehicle can make in a trip, and

C is the number of jobs which need to be served.
3.3.2 Over-constrained and Under-constrained Methods [15]

Because models with nonlinear expressions are much more difficult to solve than
linear models, the second modification is to deal with the non-linear time window
constraints. Suppose we consider only the end points of the time window of both the
first- and the second-job when we set up links between two jobs, then we obtain a
solution space that ignores some possible links. We refer to this method as
over-constrained method. Suppose we consider only the starting point of the time
window of the first job and the end paiﬁf of thé:'time window of the second job when
we set up the link between two }obs thenjvlle. obtam a solutlon space that includes

some infeasible links. We refer to thls method as the uhder-constralned method. The

. % 18 =] g
over-constrained method makes us,;co (_)btam a feas;ble solution while the

under-constrained method provides a lower bound for the solution.

The solid lines in Figure 3.1 and 3.2 show the feasible links excluded and

infeasible links included in these two methods. It is not possible to reach job ; after

leaving at the latest time in the time window for job i (see the dot line in figure 3.1).

However, as shown in figure 3.1, it is possible to serve job j after serving job i in

the early part of the time window. Comparatively, as shown in figure 3.2, it is possible
to reach job j after leaving at the earliest time in the time window for job i (see

the dot line in figure 3.2). But it is impossible to serve job j after leaving load i in

the later part of the time window for job i.
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time

B time

Figure 3.2 Under-constrained Method (infeasible links included) [15]

While using over- constrained method, we replace constraint (11) and (12) with

the following:

mi,j

(ZXk )- (L +t,=1,)<0 VieV,jeV,keM

While using under- constrained method, we replace constraint (11) and (12) with

the following:
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QX ) (e, +1;,—-1,)<0 VieV,jeV,keM

m,i, j

If we use the formulation for the under-constrained method, there are some
infeasible solutions included in the solution space. While using over-constrained
method, some feasible solutions are excluded. As a result, the optimal solution of the

formulation by the under-constrained method Z ,, over-constrained method Z, ,

and the global optimal solution Z,, can be placed in the following order:

After using the over-constrained and under-constrained methods, we can solve

the linear models using mathematical programming packages to get Z,, and Z

[15].

3.3.3 Time Window Partitioning fi5]
'_.- ‘.‘ . i o

The under-constrained method is _{‘ilsed to e\ka:l.l-‘iéite the optimality of the feasible

solution obtained by the over-constrained method. Thus, the optimal solution is found

only when Z , =Z, . We apply a method for approximating the optimal solution

based on this idea.

The time window partitioning method is based on the observation that the gap

between Z,, and Z, isreduced if the time windows are smaller. In general, the
larger the time windows, the larger the gap between Z,, and Z, , as well as the gap
between Z, and Z, . Sometimes the gap between Z,, and Z, is too large to

produce an acceptable solution. Thus, we need to partition the original time windows
into several smaller ones. Each partition is considered as a sub-job. At most one of the

sub-jobs could be served. The vehicle must enter and leave the same sub-job. By
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doing this, the number of feasible links excluded by the over- constrained method is
reduced, and the number of infeasible links included in the under-constrained method

1s also reduced.

The issue is to select the width for time window partitioning. Smaller widths may
leads to better solutions but also generate larger problem sizes. If the ratio between
upper bound and lower bound is unacceptable, it means the selected width is too large.

In this case, we select a smaller width and solve the problem again.

We partition the time window in the following way. Suppose the pre-selected

width for partitioning is d, and the load has time window [el. 1, ] First, determinate
the number of sub-jobs for by taking the smallest integer greater than (/, —e,;)/d .
Then, partition the time window in‘ge-@isl haaﬁy‘:payts evenly (see figure 3.3). After

doing this, each job is partitioneﬁjhto sef;l\{éirdl sﬁb;j“qb_s. Each sub-job has its own time

window. The set of all sub-j obs{c"gm be qgﬁ‘éiﬁder_“ea' as "Iiew set of jobs which need to be
WEETTTE &

served, so the problem size is relatlvely' larger fhapniiie original formulation.

L 1Lk

[(li _ei)/d]

=6

Figure 3.3 Example of Time Window Partitioning

The formulation after time window partitioning can be modified as follows:
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Min ZZZZXWJ -t; +L-(2[N|- ZZZZ

m ieS jeS m jeS

Subject to:

¥z <1 VieV

meR keM jeb(i)

>zl <1 VkeM,meR

Jjes

z ZXM = VkeM

ieS\ jeS

Y X <2y, VkeM,meR,jeS

ieS
ZXmU VkeM,meR,jeS
ieS

2 2 Zu=2 2 Zay

meR ped(N;) meR ge(N; )

SY Y a7y ¥

keM leR geO(N;) keM  meR pEQ(N;

VieN

=>4q,-Z, VkeM

jes

Y=Y +>4q, Z, VkeM,m>?2

jes

Y <o* VkeM,meR

m

QX5 ) (T +1,-T)<0 VieS,jeSkeM

meR

e, <T <I VieS§

YF>0 VkeM,meR

Z5XE =0 or 1

mj m,i,j
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6(i) denotes the original job associated with sub-job i, S is the set ofall

sub-jobs. Constraint (1-1) enforces that at most one sub-job can be served for each job,
and other constraints remain the same with minor modification regarding part of the

summation terms due to the time window partitioning.
We summarize the solving procedure below:
1. Select a series of partition widths (from large to small).
2. Partition the time window using the first unused width.
3. Solve the over-constrained and under-constrained formulations.

4. If the ratio between lower bound and upper bound is acceptable or no smaller

width is available, the algorithm.‘sgc‘_iio"s'ébi‘iﬁerwise, return to step2.
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Chapter4 Model Testing and Analysis

In this chapter we test and evaluate our model. We analyze accuracy and
rationality using a small example. By checking the solution obtained by our method,
we verify the accuracy and rationality of our model. Finally, we generate testing

instances to evaluate the performance of our model and solution method.
4.1 Accuracy and Rationality Analysis

In the test cases we mention later, we all set H (the maximum number of steps
that a vehicle can make in a trip) as the most conservative value. That is the number

of jobs which need to be served.

To test the accuracy and ratlonahty, ey choose a small instance with four pairs of
jobs (four pickup and four dehvery Jobs} a d th,‘ree Vehlcles Table 4.1, 4.2 and 4.3

shows the data we assume in thls mstance Notlce that .job i is a pickup job and job

N~ " S

[ - is the associated delivery job?1We QSSume that theibeginning time is 0.
s, =

FEP
L i L
'R ]

Table 4.1 Vehicle Capacity

Vehicle number 1 2 3

Capacity 5 7 15

Table 4.2 Load and Time Window of Each Job

Job 1 2 3 4 1- 2- 3- 4-
Load 7 4 6 8 -7 -4 -6 -8
Time

window
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Table 4.3 Distance Matrix

0 1 2 3 4 - |2 |3 |4
0 I 05 |1 2 I I I I
i I i | I 05 |2 2 I
2 05 |1 2 I 2 05 |2 I
3 I I 2 I 2 05 |1 2
4 2 I I I I 05 |2 2
- |1 05 |2 2 I I 2 I
AL

> |1 2 05 2 1.5
3 |1 2 2 '-':;;I 2 |
4 |1 I i “ 15 |1

There are several criteria for verifying the accuracy and rationality:
A. The comparison with optimal solution.

To verify the accuracy of our methods in this instance, we compare Z, , and
Z,, with the optimal solution. We check if the optimal solution is between Z,

and Z, , Then, we compute the error ratio of our solution in this instance.

B. Precedence constraints of pair jobs.

We verify if each pair job is served by the same vehicle. We also check if the

pickup job is served before the delivery job.
C. Vehicle capacity constraints.
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We check if the capacity restriction is not violated at every step of trips.

D. Time window constraints.

Each job has a time window [el. W, ] We verify if every job could be executed

within its time interval.

The results we obtained from the over-constrained and under-constrained

methods are shown in Table 4.4 and Table 4.5.

Table 4.4 Solution Obtained by the Over-constrained Method: Z, =7

Table 4.5 Solution Obtained by the Under-constrained Method: Z , =6

1 None
2 0O—>3->3-
3 0->2-52->54->51-51-—->4-

According to the criteria, the testing results satisfy our dispatching rules. First,
the pair jobs are served in correct sequence and there is no pickup or delivery job in

reverse order. Secondly, each vehicle at any step of its trip does not violate the
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capacity constraints, (see table 4.6, 4.7). Thirdly, with the solution of over-constrained

method, every job can be served during its time window (see table 4.8).

Table 4.6 Load at Each Step (Over-constrained Method)

1 5 0—>4—->0
2 7 0—>6—>0
3 15 0>7—>15—-58—>0

2 7 0560

3 15 0>4—>0->8—>15->8—>0

Table 4.8 Service Time of Each Job (Over-constrained Method)

1 none —>[2,5] > [8,10] 0>2->8
2 none — [1,4] — [6,8] 0>1—>6
3 none —> (3,71 —>[59] —>[7,10]1 >[9,12] | 0 >3 >5—>7>9
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Notice that the solution obtained by the under-constrained method is not a
feasible solution. Time window constraint is violated when vehicle3 travels from job4
to jobl. Note that vehicle3 leaves job4 at the time 8.5. It is impossible to serve jobl in
time, (see figure 4.1, 4.2). Because of the time window constraint of the under
constraint method, the link from job4 to job1 becomes a feasible link (see the dot line

in figure4.2).

[2, 5]

Figure 4.1 Solution of the Under-constrained Method
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job4 jobl
time

v

Figure 4.2 The Infeasible Links Included by the under-constrained method

In addition, the optimal value of over-constrained method Z, is 7, which is
kind of close to Z,, = 6. There is no need to partition the time window any further in

this small example. The solution Wé{SB’[&Li(ﬂéd i§""‘37"', and our error ratio in this example

is at most 7+6=1.167. In fact; wescan obtaifi the optimal value Z, =7 of this
] 1 ‘ :,l,

problem by simply observation. Thus,the ¥éféfiogshii) Zy<Z,<Z, canbe

L 1Lk

verified.
4.2 Test Instance Generation

There is no comprehensive benchmark test sample available for our problem.
However, from the literature of VRPTW, there are well-established benchmark test
samples for VRPTW by Solomon [16]. The geographical data are randomly
generated in problem sets R1 and R2, clustered in problem sets C1 and C2, and a mix
of random and clustered structures in problem sets by RC1 and RC2. Problem sets R1,
CI1 and RCI1 have a short scheduling horizon and allow only a few customers per
route (approximately 5 to 10). In contrast, the sets R2, C2 and RC2 have a long

scheduling horizon permitting many customers (more than 30) to be served by the
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same vehicle. In this section we present how we adapt Solomon’s instances to

generate our test instances.

Unlike VRPTW in which jobs have no coupling and precedence constraints, a
PDPTW does. If we generate our test instances from Solomon’s benchmark instances
by randomly pairing up the nodes, it may be impossible to obtain a feasible solution
for serving all jobs. For example, if we randomly pair up a pickup job i with time
window [200, 300] and a delivery job j with time window [0, 150]. It is impossible
to serve job i before job ;. If this happens, the pickup and delivery pair (P-D pair)
we generate would become unmeaningful. Therefore, the issue is how to generate

reasonable pickup and delivery pairs.

To avoid the condition we mem:mned above, we need to confirm that every P-D

pair can be served without Vlolatlpg tlme !vwirmdow con,stramt To do this, we check the

time window constraint of over-,constrhﬁ'_“Md fpr!each P-D pair. Our procedure is
R L 5y G y ;‘,-

as shown below:
Procedure GENERATE:
k=1
Do until &= number of P-D pairs need to generate
1. Randomly select two jobs (7, j) to be paired.

2. It [, +1t, >1, returnto stepl, else go to next step.

3. Randomly select either i or j’sload as pickup and delivery load for both i

and j. k=k+I1.
Because of the time window constraint of over-constraint method is tighter than
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under-constraint method, the P-D pairs we generate by this procedure will be valid for

both two methods.

4.3 Performance Evaluation

In this section we first test the quality of the solution without time window
partitioning. Then we evaluate the performance of time window partitioning method
using different partitioning widths. By observing the tightness of the upper bound and

lower bound, we evaluate the effect of time window partitioning method.
4.3.1 Performance without Using Time Window Partitioning Method

Using the test instance generation procedure discussed in section 4.2, we
generate 20 instances from Solomon’s benchmark instances. Instance 1 to 10 are
generated from R1 type, and 1nstanCe 11 to 20 are gcnerated from R2 type .Each
instance consists of 2 vehicles w1th capacity 50 and 1@ pickup and delivery jobs. We

solve the problem using LINGO8 O W1thnv$pemal modlﬁcatlons All tests are run on

a desktop computer with 2.4 GHZ Pentlum 1V CPU and 512 MB RAM.

Table 4.9 shows the results of 20 instances without using time window
partitioning technique. Because R2 type problems have a long scheduling horizon, the
time windows generated from R2 usually have larger width. Therefore, the gap

between Z, and Z , is larger for instance 11 to 20.
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Table 4.9 Result without Using Time Window Partitioning Technique

Instance Id | 1 2 3 4 5 6 7 8 9 10

(From R1)

Z, 220 205 [202 |205 270 [197 |196 |[197 |290 | 188
Z, 189 | 191 | 179 [163 |214 |177 |163 |158 |254 |152
Ratio 0.859 | 0.932 | 0.886 | 0.796 | 0.793 | 0.898 | 0.832 | 0.802 | 0.875 | 0.809
Instance Id | 11 12 13 14 15 16 17 18 19 20

(From R2)

Z, 387 248 290 |274 |258 |287 |286 |228 [293 |252
Z, 300 210 217 |209 |182 [246 |211 |213 [259 |178
Ratio 0.775 | 0.847 0.748-'-':.("):.;6,2. 0706 0.857 | 0.738 | 0.934 | 0.884 | 0.706

Because the solution space of und.

|
Ha

= ]
e
I'I . b 1

er-coﬁétraiﬁt rr_'liethod is relatively larger, the
- o b =

time required to obtain the lowei"‘f}éouﬂnd; r;l‘ay be len;g-fhy. In order to reduce the

solution time, the solution obtained from thé bver-constrained method is used as a cut

off point for the branch and bound algorithm. A good hurdle value can greatly narrow

the searching space for the optimum and reduce the solution time of the

under-constrained formulation. The solution times for these instances are all within 8

minutes.

4.3.2 Performance of Time Window Partitioning Method

We test 10 instances using time window partitioning method in this section. Each

instance is generated from R1 type with 3 vehicles (capacity =50) and 10 pickup and
delivery jobs. With different time window partitioning widths (None, 30, 20, 10), we

try to approximate the optimal solution of each instance. The ratioof Z,, and Z,

are provided in table 4.10. The number of sub-jobs means the total number of
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sub-jobs after partitioning the time windows using a specific partitioning width. Note

that we stop the solving procedure when any one of the following conditions is

reached:

1. The optimal solution is found (ratio =1).

2. The pre-selected partitioning widths are run out.

Table 4.10 Test of Time Window Partitioning Method

1 None

214

166

None

1,30

30

214

166

1,53

32

1,402
108, 482
3 None 323 249 0.771 None 1, 853
30 297 297 1 25 307, 967
4 None 266 215 0.808 None 1,384
30 266 266 1 23 401, 784
5 None 114 107 0.939 None 1,240
30 107 107 1 27 678, 1055
6 None 160 137 0.856 None 1,76
30 160 147 0.919 11 5,24
20 160 147 0.919 13 6, 50
10 147 147 1 29 846, 886
7 None 172 128 0.736 None 1,294
30 161 161 1 27 216, 1732




8 None 255 200 0.784 None 2,491
30 255 221 0.867 12 3,31
20 236 221 0.936 13 7,49
10 236 221 0.936 26 83,482

9 None 227 209 0.921 None 1, 846
30 227 227 1 11 6,23

10 None 290 217 0.748 None 1, 1521
30 290 290 1 14 6,175

Figure 4.3 shows that the same series of partitioning widths makes different
convergence effect on different instances. Optimal solutions are found on 7 out of 10

instances in early partitioning procedures (with partitioning width 30).

Because the original time windowswidthof each job is not the same, a

partitioning width often leads to.di-fferentiﬂurriﬁér 6f'sub-j obs on each instance. Thus,
an instance consists of many jobs with largé fime window width can be partitioned
= y P b =

into more number of sub-jobs eventhorigﬁthe partmonmg width is the same. It will
make the problem size expand quicl;i;/.dﬁé&;vég}e;;.it does not necessarily mean that we
can obtain a rapid improvement of the solution. Another observation is that these
solution procedures consume a lot of computation time when a “too small”
partitioning width is used. That is, we expand unnecessary problem sizes for solving

to its optimality. Therefore, it is important to construct a good partitioning strategy for

different instances to avoid the issues mentioned above.
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Figure 4.3 Effect of Time Window Partitioning Method

Ratio

Partitioning
widths:

* None

= 30
20

x 10

1 3 5
Instance
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ChapterS Conclusions and Suggestions
5.1 Conclusions

In this research, we have constructed a MIP model for pickup and delivery
problems with time windows. We use the over-constrained and under-constrained
method to deal with the nonlinear time window constraint. The under-constrained
method yields a lower bound which is used to evaluate the optimality of the feasible
solution yielded by the over-constrained method. Therefore, the models we present to
obtain the upper bound and lower bound are both linear mathematical formulations so

that they could be solved by using general LP solvers.

The optimal solution is found only when the upper bound (Z,, ) equals to lower
bound (Z,, ). In order to approxima{é:;therdpﬁqi:ﬁl" solution, we use the time window

partitioning method to narrow thegap beéwi'eénZov \qnd Z,, . This method provides

a way to compromise between theoptl'mal‘-kt-j,iuand spl_ﬁtion time.
In addition, we use a small ex'ér'np"l'é to I{ﬁefify the accuracy and rationality of our
model. Then we generate our test instances from Solomon’s benchmark test samples
for VRPTW. We evaluate our solving method by observing the ratio of Z, and Z ,.
In the tests without using time window partitioning method, the ratio is all above 0.7,

and the average ratio is 0.822. In the tests of time window partitioning method, most

instances yield the optimal solution.
5.2 Suggestions

1. Since we have constructed a linear mathematical formulation of PDPTW, this
formulation can also be modified to deal with dial-a-ride problems. For example,
modify the objective function to minimize the customer inconvenience, or to
minimize the number of vehicles.
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Although we use the solution of over-constraint formulation as a hurdle value
when solving the under-constraint formulation, the time to find a feasible
solution and the lower bound is still lengthy. In fact, the time to find a lower
bound can be reduced by some techniques, such as solving the LP relaxation of
the under-constrained or original formulation. Notice that the under-constraint
method may provide a much tighter lower bound than LP relaxation in some

situations.

The LP solver we use is LINGO8.0, other commercial optimization packages
such as CPLEX, DOT, GAMS, or later version of such kind of software may

have shorter solution times for mixed integer programming problems.

Small partitioning width can narrow-the!gap between Z,, and Z,,, but also
generate larger problem s1zes Howflﬂ)i chOQSe "a.;7'g00d partitioning width to get the
best trade-off would be an ﬁs"sﬁe for further r-e.séafch.

"-"_-5,1.'- LB

The computational experien.c.::(:%::;vif?. the_ I}l'odéllfll-lsing LINGOS.0 indicates that
problems involving less than 30 sub-jobs can be solved without much difficulty.
But it is still troublesome for solving large problems because the problem size
expands too fast, especially when using time partitioning method. Further
research can focus on the speeding up techniques like branch-and-cut algorithm

to deal with large problems.
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