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熵應用於交通資料融合之研究 

學生 : 吳欣潔                             指導教授 : 王晉元 

國立交通大學運輸科技管理學系碩士班 

摘   要 

在許多智慧型運輸系統(ITS)的應用中，即時資訊的需求越來越高，為了能提供

正確可靠的資訊，ITS 應用所提供的資訊必須持續更新，意謂著資料收集與處理過程

必須持續進行。然而，由於資料來源(如偵測器、探針車等)有偵測範圍的限制且資料

量通常不大，易造成資料的可靠度降低。藉著資料融合的過程，可以改善以上問題。 

資料融合的觀念始於 1980 年左右，而在近年才有許多資料融合方法的發展與應

用。回顧在 ITS 領域中相關的資料融合研究，主要可以將這些技術分成三個層級，其

中，層級二的資料融合技術能夠提供由原始資料而來的推論以及更完備資訊，因此本

研究的目的是在發展層級二的資料融合模式。 

熵值的應用是由 C. Shannon 在 1948 年所提出，最早被用於“信息理論＂，之後，

熵值被廣泛地應用於量測不確定性，本模式中，提出了資料分級的方式使得熵值可以

應用在量測各資料來源的不確定性。而由於熵值所代表的含意為不確定性，模式也更

進一步推導權重與熵值的關係，給予每個資料來源最佳的權重。 

為了測試模式的適用性，我們設計了一連串的實際測試。而在資料收集不易以及

資料量不大的情況下，我們亦使用模擬的資料來進行測試。測試結果證實本研究所提

出的資料融合方法在實務上具有可行性。 
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Abstract 

Real-time travel information is becoming increasingly important in many intelligent 
transportation system (ITS) applications. In order to provide reliable information to the 
users, traffic information in all the ITS applications should be comprehensive and 
continually updated. It means that a continuous real-time data collection and processing 
effort is essential to provide the required information. However, data sometimes is not 
reliable since every source has a certain detecting range and the data volume is often small. 
These problems can be addressed by data fusion process. 

Data fusion technology started in the late 1980s and many data fusion approaches had 
been developed and applied in recent years. In reviewing data fusion techniques in ITS 
field, the techniques can be divided into three levels. In our model, we propose data fusion 
techniques focus on the level two since level two data fusion provides a higher level of 
inference and delivers additional interpretive meaning suggested from the raw data. 

Entropy is a concept proposed by C. Shannon in the 1948 and is used in “ Information 
Theory” first. Shannon’s entropy function has been used extensively as a measure of 
uncertainty. We propose a classifying approach so that we can cite the entropy to measure 
the uncertainty of the collected traffic data. Since entropy represents the uncertainty, we 
form an optimal weight scheme and use entropy to derive the weight of each sensor. 

We perform a series of tests for model evaluation purpose. Since collecting real data is 
hard in practice and the volume of real data is often small, we also use simulated data to 
test our model. The testing results show that our proposed entropy data fusion technique is 
suitable in practice. 
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Chapter 1 Introduction 

1.1 Motivation 

Real-time travel information is becoming increasingly important in many intelligent 

transportation system (ITS) applications such as route guidance, commercial vehicle routing, 

and pre-trip information. The real-time information helps travelers to determine routes, 

departure times, transportation mode, and other factors to have better travel experiences. In 

order to provide reliable information to users, traffic information in all ITS applications 

should be comprehensive and continually updated. It means that a continuous real-time data 

collection and processing mechanism are essential to provide such information. 

There are many available techniques to collect real-time traffic information, such as 

inductance loop, infrared, video camera, closed-circuit television (CCTV), probe vehicles 

(with GPS installed), and drivers reports (e.g. cellular phone calls). Each of these sources 

provides an unique stream of traffic surveillance data, including vehicle volumes, time mean 

speeds, headways, lane occupancy, azimuth, and vehicle positions, etc. [10] [11] [16] [17] [18] 

[19]. However, every source may have its limitations. For example, inductive loop detectors 

provide traffic data only at particular points and cameras may perform poorly in bad weather. 

Furthermore, the number of detectors tends to be small because the implementation and 

maintenance of such equipments are usually costly. So the data are often insufficient to derive 

meaningful information and are bias due to noise, accuracy, … etc. So, directly using these 

data may cause inaccurate, even wrong information. Therefore, collecting data from a single 

source is sometimes a challenging problem. The problem becomes even more difficult when 

the available data is incomplete, inconsistent or imprecise. 

Data fusion seeks to combine data from a multiple number of sources to perform 

inferences that may not be possible from a single sensor alone. The data fusion process takes 
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the collective data from a series of sensors to collect, organize, analyze and integrate by some 

rules to create new information. Through data fusion process, Advanced Traveler Information 

System (ATIS) and Advanced Traffic Management Systems (ATMS) services can provide 

more valuable and reliable information than traditional methods do [13][14][15]. 

Since this task may involve the acquisition of sensory data which might be of different nature 

and possibly in conflict, it is rather a challenge to find ways by which these data can be 

aggregated and how to be aggregated.  

1.2 Objectives 

The objective of this research is to propose a data fusion technique to combine traffic 

data from different sources into an integrated one. This approach is expected to provide a 

fusion algorithm that takes the original traffic data gathered by each source, such as time 

mean speed, traffic volume, and position, … etc. as the input. Then, transform these incoming 

data into reliable information. Since collecting data is time consuming and difficult and it is 

hard to ensure that the data collected is accurate, consistent, and complete, this research is 

expected to overcome these difficulties through a data fusion approach. The fused data of the 

approach can be viewed as a more reliable source for the ATIS and ATMS services.  

           

1.3 Scope 

The scope of this research is to fuse the data from multiple traffic data sources, such as 

loop detectors, probe vehicles, video camera, CCTV, etc. ATMS and ATIS require the 

availability of accurate and reliable traffic data. And in most urban centers, multiple sources 

of traffic data exist, offering different spatial and temporal coverage. It is expected that the 

simultaneous consideration of all available data sources would provide a more accurate 

description of traffic conditions than the reliance on only a single data source.    
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We fuse data from multiple sources and do not consider the condition that there is only 

one source available. That is, we assume that there are at least two sources available in our 

fusing model.  

We often collect data during a long time period in order to acquire large amount of data. 

So, these data we collect may include peak hour data and off-peak data. The data we really 

need are those similar to the present traffic condition. How to cut out the unneeded data is the 

data-cutting problem. The data-cutting problem is not considered in our research scope since 

there are some discussions about this issue in Hui-Wen Chang’s research in 2002 [20]. Her 

model uses the change point analysis of statistics theory to find a cutting point where the data 

has significant difference. 
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1.4 Study Flowchart 
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Figure 1.4-1 Study Flowchart 
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    As shown in Figure 1.4-1, we first define the target problem. After realizing the problem, 

we review relevant literatures of data fusion models especially in transportation and ITS areas 

to understand the current developments. 

    A data fusion model is then proposed for integrating data from different sources. A series 

of tests will be performed for model evaluation purpose. The testing data include both real 

and simulated data.  

    According to the results of the testing experiments, model will be modified until we are 

satisfied. Finally, we draw some conclusions and provide some suggestions for future 

research. 
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Chapter 2 Literature Review 

2.1 Review of Data Fusion Developments 

2.1.1 Introduction to Data Fusion 

Multi-sensor data fusion is the integration of data from multiple sensors to perform 

inferences which are more accurate and specific than that available by processing 

single-sensor data. In recent years, many data fusion approaches have been developed and 

applied, individually and in combination, providing users with various levels of information 

detail including tactical resource management, and strategic warning, as well as non-military 

applications. In reviewing data fusion techniques in ITS field, the techniques can be divided 

into three levels as follows [8]: 

 First level: information processing according to single sensor or multiple sensors, this 

level relates to the independent data, such as instantaneous location of vehicles. 

 Second level: level two data fusion provides a higher level of inference and delivers 

additional interpretive meaning suggested from the raw data. At this level, correlated 

and integrated data are provided to the user. 

 Third level: level three data fusion is designed to make assessments and provide 

recommendations to the system users, much as occurs in knowledge-based expert 

systems (KBES). 

Data fusion technology started in the late 1980s and has continued to the present. It has 

been given much attention in the engineering literature, yet relatively few articles discuss its 

potential usefulness for transportation management or ITS. In Linn and Hall’s research in 

1991 [1], several common data fusion techniques are identified as Table 2.1-1 shows. And the 

number of available algorithms versus the primary data fusion function is as illustrated in 

6 



Figure 2.1 [12]: 

 

Table 2.1-1 Common data fusion techniques 

Fusion Level General Method Specific Technique 

Data association 
Figure of merit (FOM) 

Gating techniques Level one 

Positional estimation Kalman filters 

Identity fusion 

Bayesian decision theory 

Dempster-Schafer evidential reasoning (DSER) 

Adaptive neural networks Level two 

Pattern recognition Cluster methods 

Level three Artificial intelligence 

Expert systems 

Blackboard architecture 

Fuzzy logic 
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Association Estimation Pattern

Recognition

Identity Fusion Knowledge-

based systems

Other
number of available algorithms

 

         Figure 2.1 A Variety Of Algorithms Have Been Developed Which Are   
  Readily Applicable to the ITS Data Fusion Field 
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2.1.2 Benefits of Data Fusion 

    According to Sarma and Raju’s 1991 research of data fusion, the benefits of multiple 

sensor data fusion are as follows [3]: 

 Extended Spatial Coverage: One sensor can look where other sensors cannot. 

 Extended Temporal Coverage: One sensor can detect a target when other sensors cannot. 

 Increased Confidence: More than one sensor confirm to the same target. 

 Reduced Ambiguity: Joint information from multiple measurements reduces the set of 

hypotheses about the target. 

 Improved Detection: Integration of multiple measurements of the same target improves 

the assurance of the detection. 

 Robust the Performance: One sensor can contribute information when other sensors are 

unavailable, jammed, or broken. 

And the benefits are also the reference goals of data fusion researches. 

    According to the Joint Directorate of Laboratories Data Fusion Subpanel, level two data 

fusion represents an advance beyond the creation of raw sensor data, as occurs at the first 

level, and supports the synthesis of more meaningful information for guiding human 

decision-making. In this research, we will focus on level two data fusion techniques. 

2.2 Review of Level two Data Fusion Algorithms 

2.2.1 The Team Consensus Approach 

The team consensus approach is proposed by Albert C.S. Chung, Helen C. Shent, and 

Otman B. Basir in 1992 [5] [6] to integrate multisensory data. In order to enable the robots to 

interact with the environment more efficiently, robots are measured the physical properties 

such as electric, magnetic, and optical by some sensors. Since these sensors have limitations, 
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for example, bandwidth and accuracy, there exists uncertainty of the data got from them. The 

team consensus approach can be used to reduce the uncertainty to fuse the data. In the model, 

each sensor i should be given an initial utility expected function  first, where )(0 γiU γ is the 

component of the possible actions setΓ＝ ( )Mγγγ ,.....,, 21 . Every  would be 

influenced by the others, so there needs revisal to these initial expected utility functions. That 

is to update the expected utility function by the following formula until every expected utility 

function converge： , , where 

)(0 γiU

∑
=

−=
N

j

k
jji

k
i UWU

1

1
, )()()( γγγ 0, ≥jiW )(, γjiW  is a weight assigned 

by sensor  to sensor . In other words, the goal is to find a vector iS jS ),...,()( 1 Nκκγκ =  

so that can converge to )(, γk
jiW )(γκ . The algorithm of finding )(γκ  is important in this 

approach.  

This approach introduces the concept of entropy, which represents uncertainty. Entropy 

is a concept proposed by C. Shannon in the 1948 and is used in “ Information Theory ” first. 

The definition of entropy is：  and the  is the 

notation of the entropy in the sample space . This approach optimizes the 

objective function , subject to , 

∑
=

−=
n

i
iin ppppH

1
1 log),...,( ),...,( 1 nppH

),...,,( 1 nppX

∑
∈

×=
Ss

ijjii
j

hWR )()()( 2
|

2
, γγγ ∑

=

=
N

j
jiW

1
, 1)(γ 0)(, >γjiW  yield 

the optimal weighting scheme：

∑
∈

=

Sk ik
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h
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1)(

1)(
2
|

2
|

,

γ
γ

γ , where  is the 

conditional-entropy between sensor,  and sensor . 

)(2
| γijh

iS jS

Thus, the value of the vector )(γκ  is determined by solving the linear equation 

)()()( γκγγκ =W , subject to . ∑
=

=
N

i
i

1
1)(γκ
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After reviewing these literatures above and [2][7], we find that entropy can be used to 

measure the uncertainties of sensors and the calculations of entropies are simple. We refer to 

the concept of entropy to form our model. 

2.2.2 Introduction to Entropy 

The word entropy was coined by Rudolf Clausius and was first used on thermodynamics 

around 1865 in Germany [9]. It was used as a measure of the amount of energy in a 

thermodynamics system. 

The word entropy was introduced to the domain of physics in 1948 when Claude 

Shannon was developing his theory of communication at Bell Laboratories. Let 

 be a probability distribution associated with n possible outcomes, 

denoted by . Denote its entropy by . In order to reflect 

the uncertainty of an experiment,  should satisfy the axioms as follows: 

T
npppP ),...,,( 21≡

T
nxxxX ),...,,( 21≡ ),...,,( 21 npppH

),...,,( 21 npppH

1.  should be a continuous function. ),...,,( 21 npppH

2.  should be a monotonically increasing function of n. ),...,,( 21 npppH

3. If an experiment is divided into several sub-experiments,  is 

calculated as the weighted sum of each sub-experiment. 

),...,,( 21 npppH

It turns out that the unique function that satisfies these axioms has the form of 

, where k is a positive constant. Shannon chose 

 to represent his concept of entropy. 

∑
=

−=
n

j
jjn ppkpppH

1
21 ln),...,,(

∑
=

−
n

j
jj pp

1

ln

There are some properties of entropy stated as follows: 

1. Shannon’s measure is nonnegative and concave in . nppp ,...,, 21

2. The inclusion of a zero-probability outcome does not change the measure. 

3. The entropy of a probability distribution representing a completely certain outcome 
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is 0, and that of any probability distribution representing uncertain outcomes is 

positive. 

4. Given any fixed number of outcomes, the maximum possible entropy is that of the 

uniform distribution. 

5. The entropy of the joint distribution of two independent distributions is the sum of 

the individual entropies. 

6. The entropy of the joint distribution of two dependent distributions is no greater 

than the sum of the two individual entropies. 
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Chapter 3 Model Building 

    This section explains the principle of the proposed data fusion model. We divide the 

model into two parts, entropy calculation and weight derivation. The entropy measures the 

uncertainty and the randomness of the collected data. Classifying these data should be 

accomplished before calculating the entropy. The concept of data classifying is described in 

section 3.1. Then the concept of entropy calculating is explained in section 3.2. 

    We use entropy to derive the weight of each sensor. Given the entropy matrix, we can 

determine appropriate weights for each sensor through the optimal weighting scheme. The 

optimal weighting scheme and the fusion result are explained in section 3.3. 

    The flowchart of the proposed model is shown in figure 3.1. 

 

Data Collected 
From Sensor 1 

Data Classifying

Entropy Calculation

Data Collected 
From Sensor i 

Weight Derivation

Data Fusion

Data Classifying

Entropy Calculation

 

 

…… 

Figure 3.1 The Flowchart of the Proposed Model 
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3.1 The Concept of Data Classifying  

    We use the standards of service levels [4] to classify the collected data. The data 

collected from multi sensors are time mean speed, traffic volume, and position, … etc. In our 

model, we only consider the time mean speed.  

    According to the range of average travel speed shown in table 3.1, we can divide the 

collected data into six service levels. However, six service levels are not practical to our 

model since the calculated entropy will be insignificant. We merge two continuous levels into 

one level because the difference between them is not sensitive to drivers. Also decreasing the 

number of service levels can reduce the complexity of the model. Adjusting the upper bounds 

and the lower bounds of each level slightly to make calculation easier and clearer. The new 

service level standards as shown in table 3.2.  

    Sometimes the data of a sensor are classified to several service levels because its mean 

falls near the boundary of the service level even its standard deviation is small. In order to 

reduce the impacts of boundaries, we shift these data with the following steps before 

classifying the data: 

1. Calculate the average of the data for each sensor i, denoted by Vi; 

2. Find the service level in the table 3.2 that Vi is belonged to; 

3. Shift the distribution of data of each sensor i to the middle of the service level. In 

other words, all the data of each sensor Si are added by the difference of the mean of 

that service level minus Vi. If the averages of sensors fall in the different ranges of 

service levels, we shift all the distributions to the middle of the same range- service 

level B. 

The classifying process can be explained in figure 3.2.  

According to the range of average travel speed shown in table 3.2, we categorize the 

shifted data into three service levels. 
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    After classifying these data, we record the number of data in each level for every sensor. 

For example, in table 3.3, the number 24 means that there are 24 data located in service level 

A. 

 
 

    20  22       25           30 

Level B Level A Level C 

 
 
 
 
 
 
 
 
 
 

Figure 3.2 Shifting the Distribution of Data 

 

Table 3.1 Service Level Standards 

Road grade Ⅰ Ⅱ Ⅲ 
Free flow speed，kph 55 45 40 

Service level 
Average travel speed 

kph 
Average travel speed 

kph 
Average travel speed 

kph 
A ~51 ~43 ~33 

B 51~39 43~32 33~25 

C 39~34 32~27 25~20 

D 34~29 27~23 20~16 

E 29~21 23~17 16~10 

F 21~ 17~ 10~ 
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Table 3.2 New Service Level Standards 

Road grade Ⅰ Ⅱ Ⅲ 
Free flow speed，kph 55 45 40 

Service level 
Average travel speed 

kph 
Average travel speed 

kph 
Average travel speed 

kph 
A ~40 ~30 ~25 

B 40~30 30~20 25~16 

C 30~ 20~ 16~ 

 

Table 3.3 The Number of Data Belonged to                            

Each Service Level for Sensor 1 

 Number 

A 24 
B 65 
C 48 

Sum 137 

 
 

    

3.2 The Concept of Entropy Calculating 

    Entropy is a concept proposed by C. Shannon in the 1948 and is used in “ Information 

Theory” first. Shannon’s entropy function has been used extensively as a measure of 

uncertainty. We use entropy to measure the uncertainty and the randomness of the collected 

data. The definition of entropy is 

∑
=

−=
n

i
iin ppppH

1
1 log),...,(                                     (3.1) 

where  is the notation of the entropy and p),...,( 1 nppH i is the probability of each possible 

outcome i. 

    In our model, we introduce the concept of entropy with the conditional probability [5]. 

And we assume that any two sensors are independent. The entropy of sensor, Si, denoted by 
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)(γih  is given by  

)|(log)|()( γθγθγ
θθ

jji PPh
j

∑
∈

−=
                               (3.2) 

where )|( γθ jP  is the probability of occurrence of the state jθ  given the observed state γ . 

In the model, γ  represents the service level of the actual average speed and jθ  represents 

the service levels of the classified data for each sensor. 

   For example, we assume that the data in table 3.3 are collected during the time period T. If 

the actual service level is B, let γ  equals to B. The probability of the data in service level A 

is 0.175 since there are 24 out of 137 data are located in service level A. Similarly, the 

probabilities of the data in service level B and C are 0.475 and 0.35, respectively. Notice that 

these probabilities are the conditional probabilities given the actual service level is B. 

Equation (2) can be used to calculate the entropy of sensor 1.  

3.3 The optimal weighting scheme 

We use entropy to derive the weight of each sensor. Given the entropy matrix, we can 

determine appropriate weights for each sensor through the optimal weighting scheme. For 

each sensor, we minimize its entropy. This implies that sensors with lower entropies will be 

assigned higher weights and vice versa. Since any two sensors are independent, we ignore the 

conditional-entropy. The conditional-entropy is a measure of the state of uncertainty of a 

sensor given the information of another sensor [5]. Hence, the minimization problem [5] can 

be adjusted as follows: 
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Minimize  

          ∑
∈Si

ii hW )]()([ 22 γγ

Subject to  

          , ∑
=

=
N

i
iW

1

1)(γ

          0)( >γiW  

where )(γiW  is the weight assigned to sensor i given the actual service level γ . Optimizing 

the above objective function will yield the following optimal weighting scheme: 

∑
∈

=

Sj j
i

i

h
h

W

)(
1)(

1)(

2
2

γ
γ

γ                             (3.3) 

In Equation (3.3), the value of the summation term in the denominator is the same for all 

)(γiW . Hence, the weight for each sensor is inversely proportional to the square of its entropy. 

The larger the entropy is, the smaller the weight assigned.  

However, we find that the weights are square inverse proportion to entropy and it is too 

exceeding. In table 3.4, weight 1 are the weights that are inverse proportion to entropy, weight 

2 are the weights that are square inverse proportion to entropy, and weight 3 are the weights 

that are radical inverse proportion to entropy. In test 1 and test 2, the difference between the 

entropies of sensor 1 and sensor 2 are small, so the difference between the weights of sensor 1 

and sensor 2 are also small. In test 3 and test 4, since the entropies of sensor 2 are 9~10 times 

larger than that of sensor 1, the differences between the weights are larger than those in test 1 

and test 2. However, in the column weight 2, the difference of sensor 1 and sensor 2 is equal 

to 0.98-0.02=0.96, it is too exceeding. This condition is reduced in the column weight 1. The 

difference in the column weight 1 is equal to 0.88-0.12=0.76. Similarly, the difference is equal 

to 0.73-0.27=0.46 in the column weight 3. The differences are reduced from 0.96 to 0.76 and 

0.46. The difference of 0.2 (0.96-0.76) is the reasonable one because the difference of 0.5 
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(0.96-0.46) is too much and may conceal the effect of entropy. So we modify it to inverse 

proportion to entropy. The minimization problem and equation 3.3 can be modified as follow:  

Minimize  

          ∑
∈Si

ii hW )]()([ 2 γγ

Subject to  

          , ∑
=

=
N

i
iW

1

1)(γ

          0)( >γiW  

The optimal weighting scheme: 

∑
∈

=

Sj j
i

i

h
h

W

)(
1)(

1)(

γ
γ

γ                             (3.4) 

After calculating the weight of each sensor, we can fuse these collected data. The fusion 

result can be obtained by summing up the products of the average of collected data and the 

weight of the sensor. That is, the fusion result, denoted by V can be calculated by the 

following equation: 

                                                         (3.5) ∑
=

=
N

i
iiVWV

1

where  is the average of the data for each sensor i calculated in section 3.1. iV

    Notice that  is the average of the data for each sensor i before we shift the data. It is 

different form the average of updated data. 

iV
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Table 3.4 The Weights of Different Weighting Schemes 

Test Number Sensor Entropy Weight 1 Weight 2 Weight 3

Sensor 1 0.146 0.53 0.55 0.51 
Test 1 

Sensor 2 0.162 0.47 0.45 0.49 

Sensor 1 0.146 0.54 0.58 0.52 
Test 2 

Sensor 2 0.171 0.46 0.42 0.48 

Sensor 1 0.049 0.88 0.98 0.73 
Test 3 

Sensor 2 0.365 0.12 0.02 0.27 

Sensor 1 0.049 0.91 0.99 0.76 
Test 4 

Sensor 2 0.474 0.09 0.01 0.24 
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Chapter 4 Model Testing 

    In this section, we perform a series of tests for model evaluation purpose. The sources of 

urban traffic information are loops, probe vehicles, VD, …,etc. and we only consider probe 

vehicles and VD in the testing. We collect lidar data and data from other sources 

simultaneously. The lidar data is considered as the correct data and is compared with the 

fusing result of our model. However, collecting real data is hard in practice and the volume of 

real data is often small. Thus, we also use simulated data to test our model. The data 

collection, generation, and analysis are explained in section 4.1. 

We use these data as the input of our data fusion model. The steps of calculating the 

entropies and deriving the weights are explained in section 4.2.Finally, we explain the fusion 

results and compare them with the lidar data in section 4.2. 

4.1 Data Collection and Generation 

    Probe vehicles and VD are the sources of urban traffic information used in our testing. 

The characterizations of these sources are as follows: 

Table 4.1 Properties of probe vehicles and VD. 

Probe Vehicle Characterization  Source 

Bus Taxi 
VD 

Quantity 250 125 2 

Data Frequency Every 30 seconds Every 60 seconds Every 300 seconds

Precision (compared with 

lidar data) 
Average error 5 ㎞/hr Average error 5 ㎞/hr Average error 3 ㎞/hr
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4.1.1 Dynamic Bus Information Acquirement and Analysis 

    The dynamic bus information is provided by Taichung City Government. The 

information includes ID of on board units, name of the public transit company, route ID, name 

of the terminal stations, and speeds. The data updates every 30 seconds. 

    The data processing can be divided into two parts, data reading and data filtration. The 

steps of the data processing are explained as follows: 

1. Data reading: 

The information of the Taichung city bus is given in string format as shown in figure 

4.1. Each item is separated by a comma. The first item is “ ID of the on board unit”, 

“ name of the public transit company and the route of the bus”, “ name of the next 

approaching station”, “ name of the terminal station”, “longitude”, “latitude”, and 

“ azimuth of the bus”. 

2. Data filtration: 

       The speeds decrease while buses stop to pick up and drop passengers. Hence, some 

of these speeds are too low to reflect the real travel speed. There are many relevant paper 

discuss methods to filter low speed data. Almost every method requires large amount of 

data. However, the data we collected are too low in volume to use these methods. So we 

simply delete the speed which is lower than 5 ㎞/hr. 
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Figure 4.1 The Raw Data of Taichung City Bus Dynamic Information. 

4.1.2 Dynamic Taxi Information Acquirement and Analysis 

    The dynamic taxi information is provided by Geda Telecommunication Co., Ltd. The 

information includes time, longitude and latitude coordinates, speeds, ID of on board units, 

and azimuth. The data updates every 60 seconds. 

    The data processing of dynamic taxi information is similar to that of dynamic bus 

information. The data reading and data filtration process are explained as follows: 

1. Data reading: 

The raw data of the taxi information is given in string format as shown in figure 4.2. 

Each item is separated by comma. The first item is “time”, the second item is “longitude”, 

and the following items are “latitude”, ”speed”, ”ID of the on board unit”, ”azimuth”, and 

“ID of a specific road”. 

2. Data filtration: 

Taxi also has to stop to pick up and drop passengers and these stops cause low-speed 
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data. As the same reason of processing bus data, the amount of data is not large enough to use 

filter methods found in literatures. So we still use the simple rule by deleting data whose 

speed is lower than 5 ㎞/hr. 

    We regard the bus data and the taxi data as the same probe source. So we merge the 

filtered bus data and taxi data into one. We calculate the average of the merged data and it is 

the representation speed of the road provided by probe vehicles. The process of probe vehicle 

speed filtering is as shown in figure 4.3. 

 

 
Figure 4.2 The Raw Data of Dynamic Taxi Information (Provided 

by Geda Telecommunication Co., Ltd.) 
  

23 



 

 

Low Speed Data Filtering

Speed < 5 km/hr

Average Calculation

No

Road Average Travel Speed Output

Data DeletionYes

The Raw Data of Dynamic 
Bus Information

The Raw Data of Dynamic 
Taxi Information

 
Figure 4.3 The Probe Vehicle Speed Filtering. 

 

4.1.3 Dynamic VD Information Acquirement and Analysis 

    We use VD as the source of detectors. The raw data of VD is shown in figure 4.4. The 

first column is the ID of the VD, and the following columns are time of the latest received 

data, data sending cycle, ID of the lane, traffic volume, average travel speed, average 

occupancy, volume of small cars, volume of middle cars, and volume of large cars. 

    The VD is installed near an intersection. When the vehicle is stopped by the traffic light, 

the data obtained from VD is not usable. So we delete the data whose speed are lower than 5 

㎞/hr. 
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    Based on our experiences, we sometimes find extraordinary and isolated data which is 

much higher than the average speed. We suspect these abnormal data is due to the mechanical 

failure or some other reason. So we also delete the speeds which are higher than 80 km/hr. 

    We calculate the average of the remaining VD data and it is the representation speed of 

the road provided by detectors. The process of VD data filtering is as shown in figure 4.5. 

 
Figure 4.4 The Raw Data of Dynamic VD Information. 
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The Raw Data of Dynamic 
VD Information

Data Filtering

Speed < 5 km/hr  or
Speed > 80 km/hr 

Data DeletionYes

Average Calculation

No

Road Average Travel Speed Output

 
 

Figure 4.5 The VD Speed Filtration. 
 

4.1.4 Data Simulation and Analysis 

    Since collecting real data is hard in practice and the volume of real data is often small, 

we also use simulated data to test our model. The simulated data is expected to follow the 

same distribution as that of the data we collected from real sensors. So we perform the 

goodness-of-fit test to find the distribution of real data. We find that the real data is following 

normal distribution.  

    We assume the length of the target road is 360 meters and the buses’ arrival follow 

Poison distribution. The arrival rate of buses is 0.5 per minute and the frequency of data 
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sending is 4 times per minute. The speed follows normal distribution and the average speed 

and standard deviation are adjustable. The simulation time lasts for 2 hours. 

    We use the similar way to simulate data obtained from VD. The additional assumption is 

that the arrival rate of vehicle is 10 per minute. 

    We adjust the average and standard deviation to generate data representing different 

service levels. The different service level scenario can represent different situations in the real 

world in order to have more comprehensive test. 

The simulation process of the probe vehicle data is explained in figure 4.6. In this 

flowchart, tj is the time when the probe vehicle sending its GPS data to the center. Total 

distance is the length of the target road and its initial value is 360 meters. T is the simulation 

time, which is set to be 10800 seconds.  Vj is the average speed during the time period tj - tj-1.

    The simulation process of the VD data is explained in figure 4.7. In the flowchart, ti and 

Vj are the time and speed, respectively when a vehicle passes by VD; T is the simulation time 

and it is set to be10800 seconds.  
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Generate  time t
0
 of a bus with the arrival rate 0.5 per 

minute which follows Poison distribution

Total distance=Total distance - (t
0
x average speed) ;

j=1

tj=tj-1 +15

Total distance >0 Stop simulating this bus No

Generate speed Vj 

Yes

t
j
 > T Yes Stop simulating

No

Total distance=Total distance - (15 x V
j 
) ;

j++

 

Figure 4.6 The Flowchart of Simulate Probe Vehicle Date. 
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Generate  time t
i
 of a vehicle with the arrival rate 10 

per minute which follows Poison distribution

t = t + ti

Generate speed Vi

t > T Yes Stop simulating

No

 

Figure 4.7 The Flowchart of Simulate VD Date. 

4.2 Model Testing Implementations 

    In this section, we use both real data and simulated data to test our model. Section 4.2.1 

explains the fusing steps using real data and section 4.2.2 explains those using simulated data. 

4.2.1 Model Testing Using Real Data 

    Some descriptions of real data are as follows: 

1. Collection time: November 14, 2003. P.M. 16:00 ~ P.M.19:00. 

2. Collection site: Taichung Chung Cheng Road (near the intersection of Taichung 

Harbor Road). 

3. Collected Data: The real data collected include probe vehicle data and VD data. The 

probe vehicle data are composed of bus speeds and taxi speeds. 

The steps of calculating the entropies and deriving the weights are explained as follows: 

Step 1: 
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We use the definitions of service levels in table 3.2 to classify the collected data. The result of 

classification is shown in table 4.2.1 and table 4.2.2. The average speeds of probe vehicle data 

and VD data are 21.88 km/hr and 23.91 km /hr, respectively. 

Table 4.2.1 The Amount of the Prove Vehicle Data 

Service Level Amount 

A 24 

B 65 

C 48 

Total 137 

Table 4.2.2 The Amount of the VD Data 

Service Level Amount 

A 7 

B 19 

C 7 

Total 33 

Step 2: 

There are 1636 lidar data and the average of these data is 27.39 km /hr. That means the 

(real) service level of our test site is B. Hence, the γ  in equation 3.2 can be represented by 

B̂ . Then we calculate the probability of occurrence of the state jθ  given the observed state 

B̂  for each sensor. The probability is given by 

)ˆ|( BP jθ , 

jθ =A,B,C,…. 
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    Let’s take probe vehicle data as an example to illustrate how to calculate these 

probabilities.  represents the probability that the service level of the probe vehicle 

data is A when the actual service level is B, which is equals to 

)ˆ|( BAP

486524
24

++
= 0.175. The 

other calculation results of probabilities are shown in table 4.2.3 and table 4.2.4. 

Table 4.2.3 The Conditional Probabilities of the Prove Vehicle Data 

Service Level Probability 

)ˆ|( BAP  0.175 

)ˆ|( BBP  0.475 

)ˆ|( BCP  0.350 

Total 1 

Table 4.2.4 The Conditional Probabilities of the VD Data 

Service Level Probability 

)ˆ|( BAP  0.212 

)ˆ|( BBP  0.576 

)ˆ|( BCP  0.212 

Total 1 

    Then we use equation 3.2 to calculate the entropy of each sensor.  represents the  

entropy of probe vehicle when the real service level is B, which is equals to   

.            

The results of entropy calculating are shown in table 4.2.5. 

)(1 Bh

446.0)35.0log35.0475.0log475.0175.0log175.0()|(log)|( =++−=− ∑ BPBP θθ
∈

jj
j θθ
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Table 4.2.5 The Entropy of Each Sensor 

Sensor Entropy 

Probe Vehicle 0.446 

VD 0.424 

 

 
 
 

Step 3: 

    Given the entropies, we can determine appropriate weights for each sensor through 

equation 3.4.  represents the weight of probe vehicle when the real service level is B, 

which is equals to 

)(1 BW

487.0

424.0
1

446.0
1446.0

1

)(
1

)(
1)(

1

21
1

=
⎟
⎠
⎞

⎜
⎝
⎛ +

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

BhBh
Bh

. The calculation 

results are shown in table 4.2.6. 

Table 4.2.6 The Optimal Weight of Each Sensor 

Sensor Weight 

Probe Vehicle 0.487 

VD 0.513 

 

 
 
 
 

Step 4: 

After calculating the weight of each sensor, we can fuse these collected data. The fusion 

result can be obtained by summing up the products of the average of collected data and the 

weight of the associated sensor. So the fusing result is:  

92.22513.091.23487.088.21 =×+×    km /hr 

    The difference between the fusing result and the real speed collected from lidar is equals 

to 27.39－22.92＝4.47 km/hr. Since the standard deviation of the lidar data is 7.125 km/hr 

and the difference 4.47 km/hr which falls within the range of the standard deviation. 

Generally speaking, we consider it is an acceptable difference. 
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4.2.2 Model Testing Using Simulated Data 

    We use different scenarios to represent different service levels in the real world. These 

scenarios have different averages or standard deviations. Since the calculation procedures are 

the same, we only show the results of each step in this section. There are seven testing 

scenarios as follows: 

1. Two sensors with same average and standard deviation.  

2. Two sensors with same standard deviation and small difference of averages. 

We use the same simulated data of sensor 1 and replace the data of sensor 2 by 

the data with different average. 

3. Two sensors with same standard deviation and large difference of averages. 

Similar to test 2, we replace the data of sensor 2 by the data with different 

averages. 

4. Two sensors with same average and small difference of standard deviations. 

We simulate two new sets of data which have same average with different 

standard deviations.                                                             

5. Two sensors with same average and large difference of standard deviations. 

Similar to test 4, we replace the data of sensor 2 by the data with large 

difference of standard deviation. 

6. Two sensors with different averages and standard deviations. 

We test our model with two data sets which have different averages and 

standard deviations 

7. Three sensors with same average and different standard deviations. 

 We use three data sets to test our model. These data have same average with 

different standard deviations. 
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The average speeds and standard deviations of sensor 1(simulate probe vehicle data), 

sensor 2(simulate VD data), and sensor 3(simulate VD data) for each test are shown in table 

4.2.7. 

Table 4.2.7 Averages and Standard Deviations of Sensors 

Test Number Sensor Average Speed Standard Deviation 

Sensor 1 25.07 2.91 
Test 1 

Sensor 2 25.06 2.96 

Sensor 1 25.07 2.91 
Test 2 

Sensor 2 21.97 3.02 

Sensor 1 25.07 2.91 
Test 3 

Sensor 2 14.95 2.98 

Sensor 1 25.15 1.98 
Test 4 

Sensor 2 24.92 5.02 

Sensor 1 25.15 1.98 
Test 5 

Sensor 2 24.72 10.04 

Sensor 1 25.07 2.91 
Test 6 

Sensor 2 22.05 5.05 

Sensor 1 24.91 1.05 

Sensor 2 25.07 2.96 Test 7 

Sensor 3 24.92 5.02 
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The results of shifting the averages to the middle of the service level and classifying are 

shown in table 4.2.8. 

Table 4.2.8 The Amount of Data 

Test Number Sensor Service Level A Service Level B Service Level C Total

Sensor 1 9 239 12 260 
Test 1 

Sensor 2 123 2173 100 2396

Sensor 1 9 239 12 260 
Test 2 

Sensor 2 113 2152 126 2391

Sensor 1 9 239 12 260 
Test 3 

Sensor 2 102 2126 109 2373

Sensor 1 2 144 1 147 
Test 4 

Sensor 2 381 1640 374 2395

Sensor 1 2 144 1 147 
Test 5 

Sensor 2 720 906 696 2322

Sensor 1 9 239 12 260 
Test 6 

Sensor 2 396 1636 395 2427

Sensor 1 267 0 0 267 

Sensor 2 123 2173 100 2396Test 7 

Sensor 3 381 1640 374 2395
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We assume the real travel speed is in service level B. The conditional probabilities can be 

calculated as shown in table 4.2.9. 

Table 4.2.9 The Conditional Probabilities of Each Sensor 

Test Number Sensor )ˆ|( BAP  )ˆ|( BBP  )ˆ|( BCP  Total

Sensor 1 0.0346 0.9192 0.0462 1 
Test 1 

Sensor 2 0.0513 0.9070 0.0417 1 

Sensor 1 0.0346 0.9192 0.0462 1 
Test 2 

Sensor 2 0.047 0.9 0.053 1 

Sensor 1 0.0346 0.9192 0.0462 1 
Test 3 

Sensor 2 0.043 0.911 0.046 1 

Sensor 1 0.0136 0.9796 0.0068 1 
Test 4 

Sensor 2 0.159 0.685 0.156 1 

Sensor 1 0.0136 0.9796 0.0068 1 
Test 5 

Sensor 2 0.310 0.390 0.30 1 

Sensor 1 0.0346 0.9192 0.0462 1 
Test 6 

Sensor 2 0.163 0.674 0.163 1 

Sensor 1 1 0 0 1 

Sensor 2 0.0513 0.9070 0.0417 1 Test 7 

Sensor 3 0.159 0.685 0.156 1 
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Then we use equation 3.2 to calculate the entropy of each sensor and the results are 

shown in table 4.2.10. 

Table 4.2.10 The Entropy of Each Sensor 

Test Number Sensor Entropy 

Sensor 1 0.146 
Test 1 

Sensor 2 0.162 

Sensor 1 0.146 
Test 2 

Sensor 2 0.171 

Sensor 1 0.146 
Test 3 

Sensor 2 0.157 

Sensor 1 0.049 
Test 4 

Sensor 2 0.365 

Sensor 1 0.049 
Test 5 

Sensor 2 0.474 

Sensor 1 0.146 
Test 6 

Sensor 2 0.372 

Sensor 1 0.0001 

Sensor 2 0.1622 Test 7 

Sensor 3 0.365 
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We can determine weights for each sensor through equation 3.4. The calculation results 

are shown in table 4.2.11. 

Table 4.2.11 The Optimal Weight of Each Sensor 

Test Number Sensor Weight Total 

Sensor 1 0.527 
Test 1 

Sensor 2 0.473 
1 

Sensor 1 0.54 
Test 2 

Sensor 2 0.46 
1 

Sensor 1 0.519 
Test 3 

Sensor 2 0.481 
1 

Sensor 1 0.882 
Test 4 

Sensor 2 0.118 
1 

Sensor 1 0.907 
Test 5 

Sensor 2 0.093 
1 

Sensor 1 0.719 
Test 6 

Sensor 2 0.281 
1 

Sensor 1 0.9991 

Sensor 2 0.0006 Test 7 

Sensor 3 0.0003 

1 
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The fusing results of each test are shown in table 4.2.12: 

Table 4.2.12 Fusing Results of Each Test 

Test Number Fusing Result 

Test 1 07.25473.006.25527.007.25 =×+×    km /hr 

Test 2 64.2346.097.2154.007.25 =×+×    km /hr 

Test 3 20.20481.095.14519.007.25 =×+×    km /hr 

Test 4 12.25118.092.24882.015.25 =×+×    km /hr 

Test 5 11.25093.072.24907.015.25 =×+×    km /hr 

Test 6 22.24281.005.22719.007.25 =×+×    km /hr 

Test 7 91.240003.092.240006.007.259991.091.24 =×+×+×    km /hr

 

    We can find that entropy can reflect the uncertainty of a sensor. That is, when the 

standard deviation is large, the entropy tends be large. Then we will assign lower weight to 

the sensor.  

4.3 Conclusions About Fusion Results 

    According to the results of the tests in section 4.2 and 4.2, we draw some conclusions as 

follows: 

1. The probe vehicle data is small in volume and sometimes the historical database is 

needed. 

2. The entropy of VD data is smaller than that of the probe vehicle data, so the VD is 

considered a more reliable source than probe vehicles. 

3. The average speeds of lidar data are sometimes high since we do not detect motionless 
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vehicles. So the fusion result is lower than the average of lidar data.  

4. The entropy is sensitive to the dispersion of data. That is, when the standard deviation of 

data of a sensor is slightly larger than that of another sensor, the entropy of the former is 

much larger than that of the latter. 

5. The high entropies are sometimes due to the classification standards. Even the standard 

deviations of the two sensors are same, the entropies of them may be significant different. 

These cases can be reduced through shifting the distribution of data of each sensor to the 

middle of the service level.  

6. When the averages of sensors are significant different, we can’t know which of the sensor 

is accurate. So the sensors should be checked their accuracy before fusion. 
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Chapter 5 Conclusions and Suggestions 

    In this section, we offer some conclusions and some suggestions regarding this research. 

Section 5.1 and 5.2 discuss conclusions and suggestions, respectively. 

5.1 The Conclusions 

    We draw some conclusions about our model as follows: 

1. According to the testing results, our model is suitable in general. Entropies 

represent the uncertainties of sensors. There is no requirement that these sensors 

must have the same amount of data. 

2. Our model can be used to reflect sudden changes of speeds. The changes of traffic 

conditions are considered continuance. However, a sudden change in speed during a 

short period of time sometimes occurs. We use scenarios of different standard 

deviations to simulate the changes of speeds. We find that the entropy is high when 

standard deviation is large and vice versa. Hence, the sudden changes of speeds can 

be reflected by entropy. 

3. This approach is used to reflect the irregular degree of data and can’t represent the 

accuracy of data. That is, when the whole data of a sensor are lower or higher than 

the normal speed, entropy cannot reveal this fact. 

4. Sometimes the value of entropy is influenced by the classification standards. In our 

model, these cases can be reduced through shifting the distribution of data of each 

sensor to the middle of the service level. 

5. This approach can be extended to multi-source data fusion. The entropy is 

calculated through the probabilities of classified data of the target sensor and has no 

relationship with the probabilities of other sensors. Hence, there is no limitation in 

the number of sensors in this fusion model. 
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6. The fusion result is close to the average of the data of sensors when the averages of 

each sensor are in small difference. 

7. The effect of entropy is obvious when the variations of data are large. The entropy 

is large when the variation of data is large and vice versa. When the entropy of a 

sensor is much larger than others, its weight is obviously smaller than others. 

5.2 The Suggestions 

    In this section, we offer some suggestions about data fusion for the future researches 

stated as follows: 

1. To address weakness of entropy failing to reflect whether the row data is correct or 

not, we can consider another variable while calculating the weights. For example, 

use the historical database to acquire the average speed during a specific time period. 

We can compare the average of historical data and the average of the fused data. If 

the difference between these two averages is large, we can adjust the entropy value. 

Then the weights can reflect the accuracy of sensors. 

2. We use the average of lidar data as the accurate value to compare with our fusing 

results. However, the lidar data is another source of traffic information and there are 

also errors when we acquire them. If the research time and funds are enough, the 

video camera may be a more accurate source for comparison purpose. 

3. The classifying method can be modified. Shifting the distribution of data of each 

sensor to the middle of the service level can solve a portion of the problem due to 

the classification standards. However, there still room for modifying the 

classification standards to reduce its impacts. 

4. The filtering method is too simple. Since the emphasis on our model is the fusion 

method, we do not spend sufficient time on surveying the filtering method of the 

raw data. So we simply filter out the exceeding values. The fusion model will be a 
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more complete one if there is a better filtering algorithm. 

5. The optimal weight scheme can be modified. According to some results of 

experiments, we conclude that the weight of a sensor is inverse proportion to its 

entropy. However, there may be other factors that we do not discover which 

influence the relationship between entropy and weight. Future researches can 

modify the optimal weight scheme to reflect these factors. 
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