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The Application of Entropy on Data Fusion of Traffic Information
Student : Hsin-Chieh Wu Advisor : Jin-Yuan Wang
Department of Transportation Technology and Management
National Chiao Tung University

Abstract

Real-time travel information is becoming increasingly important in many intelligent
transportation system (ITS) applications. In order to provide reliable information to the
users, traffic information in all the ITS applications should be comprehensive and
continually updated. It means that a continuous real-time data collection and processing
effort is essential to provide the required information. However, data sometimes is not
reliable since every source has a certain detecting range and the data volume is often small.
These problems can be addressed by data fusion process.

Data fusion technology started in the late 1980s and many data fusion approaches had
been developed and applied in recent years.-Ih reviewing data fusion techniques in ITS
field, the techniques can be divided into threerlevels. In our model, we propose data fusion
techniques focus on the level two since level two-data fusion provides a higher level of
inference and delivers additional interpretive meaning suggested from the raw data.

Entropy is a concept proposed by C. Shannon in the 1948 and is used in “ Information
Theory” first. Shannon’s entropy function has been used extensively as a measure of
uncertainty. We propose a classifying approach so that we can cite the entropy to measure
the uncertainty of the collected traffic data. Since entropy represents the uncertainty, we
form an optimal weight scheme and use entropy to derive the weight of each sensor.

We perform a series of tests for model evaluation purpose. Since collecting real data is
hard in practice and the volume of real data is often small, we also use simulated data to
test our model. The testing results show that our proposed entropy data fusion technique is
suitable in practice.

Keyword: Traveler Information, Data Fusion, ITS, ATIS, Entropy
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Chapter 1 Introduction

1.1 Motivation

Real-time travel information is becoming increasingly important in many intelligent
transportation system (ITS) applications such as route guidance, commercial vehicle routing,
and pre-trip information. The real-time information helps travelers to determine routes,
departure times, transportation mode, and other factors to have better travel experiences. In
order to provide reliable information to users, traffic information in all ITS applications
should be comprehensive and continually updated. It means that a continuous real-time data
collection and processing mechanism are essential to provide such information.

There are many available techniques, to collect real-time traffic information, such as
inductance loop, infrared, video camera, closed=circuit television (CCTV), probe vehicles
(with GPS installed), and drivers-reports (e.g. cellular phone calls). Each of these sources
provides an unique stream of traffic:surveillance data; including vehicle volumes, time mean
speeds, headways, lane occupancy, azimuth, and vehicle positions, etc. [10] [11] [16] [17] [18]
[19]. However, every source may have its limitations. For example, inductive loop detectors
provide traffic data only at particular points and cameras may perform poorly in bad weather.
Furthermore, the number of detectors tends to be small because the implementation and
maintenance of such equipments are usually costly. So the data are often insufficient to derive
meaningful information and are bias due to noise, accuracy, ... etc. So, directly using these
data may cause inaccurate, even wrong information. Therefore, collecting data from a single
source is sometimes a challenging problem. The problem becomes even more difficult when
the available data is incomplete, inconsistent or imprecise.

Data fusion seeks to combine data from a multiple number of sources to perform

inferences that may not be possible from a single sensor alone. The data fusion process takes



the collective data from a series of sensors to collect, organize, analyze and integrate by some
rules to create new information. Through data fusion process, Advanced Traveler Information
System (ATIS) and Advanced Traffic Management Systems (ATMS) services can provide
more valuable and reliable information than traditional methods do [13][14][15].

Since this task may involve the acquisition of sensory data which might be of different nature
and possibly in conflict, it is rather a challenge to find ways by which these data can be

aggregated and how to be aggregated.

1.2 Objectives

The objective of this research is to propose a data fusion technique to combine traffic
data from different sources into an integrated one. This approach is expected to provide a
fusion algorithm that takes the original traffic data gathered by each source, such as time
mean speed, traffic volume, and position, ... etc. as.the input. Then, transform these incoming
data into reliable information. Since cellecting.data is time consuming and difficult and it is
hard to ensure that the data collected is accurate; consistent, and complete, this research is
expected to overcome these difficulties through a data fusion approach. The fused data of the

approach can be viewed as a more reliable source for the ATIS and ATMS services.

1.3 Scope

The scope of this research is to fuse the data from multiple traffic data sources, such as
loop detectors, probe vehicles, video camera, CCTV, etc. ATMS and ATIS require the
availability of accurate and reliable traffic data. And in most urban centers, multiple sources
of traffic data exist, offering different spatial and temporal coverage. It is expected that the
simultaneous consideration of all available data sources would provide a more accurate
description of traffic conditions than the reliance on only a single data source.

2



We fuse data from multiple sources and do not consider the condition that there is only
one source available. That is, we assume that there are at least two sources available in our
fusing model.

We often collect data during a long time period in order to acquire large amount of data.
So, these data we collect may include peak hour data and off-peak data. The data we really
need are those similar to the present traffic condition. How to cut out the unneeded data is the
data-cutting problem. The data-cutting problem is not considered in our research scope since
there are some discussions about this issue in Hui-Wen Chang’s research in 2002 [20]. Her
model uses the change point analysis of statistics theory to find a cutting point where the data

has significant difference.
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As shown in Figure 1.4-1, we first define the target problem. After realizing the problem,
we review relevant literatures of data fusion models especially in transportation and ITS areas
to understand the current developments.

A data fusion model is then proposed for integrating data from different sources. A series
of tests will be performed for model evaluation purpose. The testing data include both real
and simulated data.

According to the results of the testing experiments, model will be modified until we are
satisfied. Finally, we draw some conclusions and provide some suggestions for future

research.



Chapter 2 Literature Review

2.1 Review of Data Fusion Developments

2.1.1 Introduction to Data Fusion

Multi-sensor data fusion is the integration of data from multiple sensors to perform
inferences which are more accurate and specific than that available by processing
single-sensor data. In recent years, many data fusion approaches have been developed and
applied, individually and in combination, providing users with various levels of information
detail including tactical resource management, and strategic warning, as well as non-military
applications. In reviewing data fusion techniques in ITS field, the techniques can be divided
into three levels as follows [8]:

® First level: information processing accerding to Single sensor or multiple sensors, this
level relates to the independent data, such-as instantaneous location of vehicles.

® Second level: level two data fusion‘provides a higher level of inference and delivers
additional interpretive meaning suggested from the raw data. At this level, correlated
and integrated data are provided to the user.

® Third level: level three data fusion is designed to make assessments and provide
recommendations to the system users, much as occurs in knowledge-based expert
systems (KBES).

Data fusion technology started in the late 1980s and has continued to the present. It has
been given much attention in the engineering literature, yet relatively few articles discuss its
potential usefulness for transportation management or ITS. In Linn and Hall’s research in
1991 [1], several common data fusion techniques are identified as Table 2.1-1 shows. And the

number of available algorithms versus the primary data fusion function is as illustrated in



Figure 2.1 [12]:

Table 2.1-1 Common data fusion techniques

Fusion Level |General Method Specific Technique

Figure of merit (FOM)

Data association Gating techniques

Level one
Positional estimation |Kalman filters
Bayesian decision theory
Identity fusion Dempster-Schafer evidential reasoning (DSER)
Level two Adaptive neural networks

Pattern recognition Cluster methods

Expert systems

Level three  |Artificial intelligence +|Blackboard architecture

Fuzzy logic

251
201
15
10F

5 L

0 . 1 . .

Assoctation Estimatior Pattern Identity Fusion Knowledge- Other
O number of available algorithms Recognition based systems

Figure 2.1 A Variety Of Algorithms Have Been Developed Which Are
Readily Applicable to the ITS Data Fusion Field



2.1.2 Benefits of Data Fusion

According to Sarma and Raju’s 1991 research of data fusion, the benefits of multiple
sensor data fusion are as follows [3]:
® Extended Spatial Coverage: One sensor can look where other sensors cannot.
® Extended Temporal Coverage: One sensor can detect a target when other sensors cannot.
® Increased Confidence: More than one sensor confirm to the same target.
® Reduced Ambiguity: Joint information from multiple measurements reduces the set of
hypotheses about the target.
® Improved Detection: Integration of multiple measurements of the same target improves
the assurance of the detection.
® Robust the Performance: One sensor can contribute information when other sensors are
unavailable, jammed, or broken.
And the benefits are also the reference goals.of data fusion researches.
According to the Joint Directorate of Laboratories Data Fusion Subpanel, level two data
fusion represents an advance beyond the creation of raw sensor data, as occurs at the first
level, and supports the synthesis of more meaningful information for guiding human

decision-making. In this research, we will focus on level two data fusion techniques.

2.2 Review of Level two Data Fusion Algorithms

2.2.1 The Team Consensus Approach

The team consensus approach is proposed by Albert C.S. Chung, Helen C. Shent, and
Otman B. Basir in 1992 [5] [6] to integrate multisensory data. In order to enable the robots to
interact with the environment more efficiently, robots are measured the physical properties
such as electric, magnetic, and optical by some sensors. Since these sensors have limitations,

8



for example, bandwidth and accuracy, there exists uncertainty of the data got from them. The

team consensus approach can be used to reduce the uncertainty to fuse the data. In the model,

each sensor i should be given an initial utility expected function U°(y) first, where yis the

component of the possible actions setI” = (yl,yz, ..... I ) Every U?(y) would be

influenced by the others, so there needs revisal to these initial expected utility functions. That

is to update the expected utility function by the following formula until every expected utility

N
function converge : U () = D W, ;(»))U (7). W,; 20, where W, () is aweight assigned

ij =
j=1

by sensor S; tosensor S;. Inother words, the goal is to find a vector «(y) = (x,,...,xy)

so that Wifj (y) can converge to x(y) . The algorithm of finding «(y) isimportant in this

approach.
This approach introduces the .concept of-entropy,-which represents uncertainty. Entropy

is a concept proposed by C. Shannon in the'1948 and is used in “ Information Theory ” first.

The definition of entropy is : H(pj,.«.p,) = —Z p,log p, andthe H(p,,...,p,) isthe

i=1

notation of the entropy in the sample space (X, p;,..., p,) . This approach optimizes the

N
objective function R;(y) =Y W/ (r) xh2(»), subjectto D W, () =1, W, () >0 vyield

s;es j=1

, where hZ(y) isthe

the optimal weighting scheme : W, ;(y) = i

) 1

conditional-entropy between sensor, S; and sensor S;.
Thus, the value of the vector x(y) is determined by solving the linear equation

k()W (y) = x(r), subject to D" x;(y) =1.

i=1



After reviewing these literatures above and [2][7], we find that entropy can be used to
measure the uncertainties of sensors and the calculations of entropies are simple. We refer to

the concept of entropy to form our model.
2.2.2 Introduction to Entropy

The word entropy was coined by Rudolf Clausius and was first used on thermodynamics
around 1865 in Germany [9]. It was used as a measure of the amount of energy in a
thermodynamics system.

The word entropy was introduced to the domain of physics in 1948 when Claude

Shannon was developing his theory of communication at Bell Laboratories. Let

P=(p,, P, Pp,)" beaprobability distribution associated with n possible outcomes,

denoted by X =(x,,X,,..,X,)" . Denote-itslentropy by H(p,, p,,..., p,). In order to reflect

the uncertainty of an experiment; H(p,, P55, p,) should satisfy the axioms as follows:
1. H(p, P, p,) shouldbe a‘continuous function.
2. H(p, p,,.- p,) should be a monotonically increasing function of n.
3. Ifan experiment is divided into several sub-experiments, H(p,, p,,.... p,) IS
calculated as the weighted sum of each sub-experiment.

It turns out that the unique function that satisfies these axioms has the form of

H(p,, Py Py) = —kz p;Inp;, wherek is a positive constant. Shannon chose
j=1
— z p;Inp; torepresent his concept of entropy.

=t

There are some properties of entropy stated as follows:

1. Shannon’s measure is nonnegative and concave in  p,, P,,..., P, -
2. The inclusion of a zero-probability outcome does not change the measure.

3. The entropy of a probability distribution representing a completely certain outcome

10



is 0, and that of any probability distribution representing uncertain outcomes is
positive.

Given any fixed number of outcomes, the maximum possible entropy is that of the
uniform distribution.

The entropy of the joint distribution of two independent distributions is the sum of
the individual entropies.

The entropy of the joint distribution of two dependent distributions is no greater

than the sum of the two individual entropies.

11



Chapter 3 Model Building

This section explains the principle of the proposed data fusion model. We divide the
model into two parts, entropy calculation and weight derivation. The entropy measures the
uncertainty and the randomness of the collected data. Classifying these data should be
accomplished before calculating the entropy. The concept of data classifying is described in
section 3.1. Then the concept of entropy calculating is explained in section 3.2.

We use entropy to derive the weight of each sensor. Given the entropy matrix, we can
determine appropriate weights for each sensor through the optimal weighting scheme. The
optimal weighting scheme and the fusion result are explained in section 3.3.

The flowchart of the proposed model is shown in figure 3.1.

Data Collected
From Sensor 7

Data Collected
From Sensor 1

Data Classifying | Data Classifying

Entropy Calculation

Entropy Calculation

4

Weight Derivation

Figure 3.1 The Flowchart of the Proposed Model
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3.1 The Concept of Data Classifying

We use the standards of service levels [4] to classify the collected data. The data
collected from multi sensors are time mean speed, traffic volume, and position, ... etc. In our
model, we only consider the time mean speed.

According to the range of average travel speed shown in table 3.1, we can divide the
collected data into six service levels. However, six service levels are not practical to our
model since the calculated entropy will be insignificant. We merge two continuous levels into
one level because the difference between them is not sensitive to drivers. Also decreasing the
number of service levels can reduce the complexity of the model. Adjusting the upper bounds
and the lower bounds of each level slightly to make calculation easier and clearer. The new
service level standards as shown in table 3.2.

Sometimes the data of a sensor.are classified to several service levels because its mean
falls near the boundary of the service leveleven.its standard deviation is small. In order to
reduce the impacts of boundaries, we shift thesedata with the following steps before
classifying the data:

1. Calculate the average of the data for each sensor i, denoted by V;;

2. Find the service level in the table 3.2 that V; is belonged to;

3. Shift the distribution of data of each sensor i to the middle of the service level. In
other words, all the data of each sensor S; are added by the difference of the mean of
that service level minus V;. If the averages of sensors fall in the different ranges of
service levels, we shift all the distributions to the middle of the same range- service
level B.

The classifying process can be explained in figure 3.2.

According to the range of average travel speed shown in table 3.2, we categorize the

shifted data into three service levels.

13



After classifying these data, we record the number of data in each level for every sensor.

For example, in table 3.3, the number 24 means that there are 24 data located in service level

A.
>
—/ \
I I .
20 22 25 éO
< | < > >
Level C Level B Level A
Figure 3.2 Shifting the Distribution of Data
Table 3.1-Service Level Standards
Road grade I il II
Free flow speed - kph 55 45 40
i Average travel speed | Average travel speed | Average travel speed
Service level
kph kph kph
A ~51 ~43 ~33
B 51~39 43~32 33~25
C 39~34 32~27 25~20
D 34~29 27~23 20~16
E 29~21 23~17 16~10
F 21~ 17~ 10~

14



Table 3.2 New Service Level Standards

Road grade I I I
Free flow speed - kph 55 45 40
i Average travel speed | Average travel speed | Average travel speed
Service level
kph kph kph

A ~40 ~30 ~25

B 40~30 30~20 25~16

C 30~ 20~ 16~

Table 3.3 The Number of Data Belonged to

Each Service Level for Sensor 1

Number
A 24
B 65
C 48
Sum 137

3.2 The Concept of Entropy Calculating

Entropy is a concept proposed by C. Shannon in the 1948 and is used in *“ Information

Theory” first. Shannon’s entropy function has been used extensively as a measure of

uncertainty. We use entropy to measure the uncertainty and the randomness of the collected

data. The definition of entropy is

n

H(p,..... p,) == p; log p,

i=1

(3.1)

where H(p,,..., p,) Is the notation of the entropy and p; is the probability of each possible

outcome i.

In our model, we introduce the concept of entropy with the conditional probability [5].

And we assume that any two sensors are independent. The entropy of sensor, S;, denoted by

15



h,(7) isgiven by

h(7) ==2_P(6; | )logP(9; | 7)
%10 (3.2)

where P(&; |y) is the probability of occurrence of the state &; given the observed state .

In the model, » represents the service level of the actual average speed and &, represents

the service levels of the classified data for each sensor.

For example, we assume that the data in table 3.3 are collected during the time period T. If
the actual service level is B, let » equals to B. The probability of the data in service level A
is 0.175 since there are 24 out of 137 data are located in service level A. Similarly, the
probabilities of the data in service level B and C are 0.475 and 0.35, respectively. Notice that
these probabilities are the conditional probabilities given the actual service level is B.

Equation (2) can be used to calculate the entropy of.sensor 1.

3.3 The optimal weighting:scheme

We use entropy to derive the weight of each sensor. Given the entropy matrix, we can
determine appropriate weights for each sensor through the optimal weighting scheme. For
each sensor, we minimize its entropy. This implies that sensors with lower entropies will be
assigned higher weights and vice versa. Since any two sensors are independent, we ignore the
conditional-entropy. The conditional-entropy is a measure of the state of uncertainty of a
sensor given the information of another sensor [5]. Hence, the minimization problem [5] can

be adjusted as follows:
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Minimize

Z[Wiz(V)hiz ()]

ieS
Subject to
N
ZWi (r) =1,
i=1
Wi () >0
where W, (y) is the weight assigned to sensor i given the actual service level y. Optimizing

the above objective function will yield the following optimal weighting scheme:

W) =——— (33)
hi (7)Jezshz(7)

In Equation (3.3), the value of the:summation term in the denominator is the same for all

W. (7). Hence, the weight for each'sensor is inversely-proportional to the square of its entropy.

The larger the entropy is, the smaller the weight assigned.

However, we find that the weights.are square inverse proportion to entropy and it is too
exceeding. In table 3.4, weight 1 are the weights that are inverse proportion to entropy, weight
2 are the weights that are square inverse proportion to entropy, and weight 3 are the weights
that are radical inverse proportion to entropy. In test 1 and test 2, the difference between the
entropies of sensor 1 and sensor 2 are small, so the difference between the weights of sensor 1
and sensor 2 are also small. In test 3 and test 4, since the entropies of sensor 2 are 9~10 times
larger than that of sensor 1, the differences between the weights are larger than those in test 1
and test 2. However, in the column weight 2, the difference of sensor 1 and sensor 2 is equal
to 0.98-0.02=0.96, it is too exceeding. This condition is reduced in the column weight 1. The
difference in the column weight 1 is equal to 0.88-0.12=0.76. Similarly, the difference is equal
to 0.73-0.27=0.46 in the column weight 3. The differences are reduced from 0.96 to 0.76 and
0.46. The difference of 0.2 (0.96-0.76) is the reasonable one because the difference of 0.5

17



(0.96-0.46) is too much and may conceal the effect of entropy. So we modify it to inverse

proportion to entropy. The minimization problem and equation 3.3 can be modified as follow:

Minimize
S W ()
Subject to
Zw () =1,
V\_/i (»)>0

The optimal weighting scheme:

W)= (3.4)
h; (}/);‘h- @)

After calculating the weight of each sensor, we can fuse these collected data. The fusion
result can be obtained by summing up ‘the products'of the average of collected data and the
weight of the sensor. That is, the fusion result, denoted by V can be calculated by the

following equation:

vziww (3.5)

i=1

where V, is the average of the data for each sensor i calculated in section 3.1.

Notice that V, is the average of the data for each sensor i before we shift the data. It is

different form the average of updated data.
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Table 3.4 The Weights of Different Weighting Schemes

Test Number Sensor Entropy | Weight 1 | Weight 2 | Weight 3
Sensor 1 0.146 0.53 0.55 0.51
Test 1
Sensor 2 0.162 0.47 0.45 0.49
Sensor 1 0.146 0.54 0.58 0.52
Test 2
Sensor 2 0.171 0.46 0.42 0.48
Sensor 1 0.049 0.88 0.98 0.73
Test 3
Sensor 2 0.365 0.12 0.02 0.27
Sensor 1 0.049 0.91 0.99 0.76
Test 4
Sensor 2 0.474 0.09 0.01 0.24
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Chapter 4 Model Testing

In this section, we perform a series of tests for model evaluation purpose. The sources of
urban traffic information are loops, probe vehicles, VD, ...,etc. and we only consider probe
vehicles and VD in the testing. We collect lidar data and data from other sources
simultaneously. The lidar data is considered as the correct data and is compared with the
fusing result of our model. However, collecting real data is hard in practice and the volume of
real data is often small. Thus, we also use simulated data to test our model. The data
collection, generation, and analysis are explained in section 4.1.

We use these data as the input of our data fusion model. The steps of calculating the
entropies and deriving the weights are explained in section 4.2.Finally, we explain the fusion

results and compare them with the lidar:data in‘section 4.2.

4.1 Data Collection and Géneration

Probe vehicles and VD are the.sources of urbantraffic information used in our testing.

The characterizations of these sources are as follows:

Table 4.1 Properties of probe vehicles and VD.

Characterizatior\_Source Probe \ehicle
VD
Bus Taxi
Quantity 250 125 2
Data Frequency Every 30 seconds Every 60 seconds | Every 300 seconds

Precision (compared with
Average error 5 km/hr|Average error 5 km/hr|Average error 3 km/hr

lidar data)
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4.1.1 Dynamic Bus Information Acquirement and Analysis

The dynamic bus information is provided by Taichung City Government. The
information includes ID of on board units, name of the public transit company, route 1D, name
of the terminal stations, and speeds. The data updates every 30 seconds.

The data processing can be divided into two parts, data reading and data filtration. The
steps of the data processing are explained as follows:

1. Data reading:

The information of the Taichung city bus is given in string format as shown in figure
4.1. Each item is separated by a comma. The first item is “ ID of the on board unit”,

“ name of the public transit company and the route of the bus”, “ name of the next
approaching station”, *“ name of.the terminal station”, “longitude”, “latitude”, and
“ azimuth of the bus”.

2. Data filtration:

The speeds decrease while buses stop.to pick up and drop passengers. Hence, some
of these speeds are too low to reflect the real travel speed. There are many relevant paper
discuss methods to filter low speed data. Almost every method requires large amount of
data. However, the data we collected are too low in volume to use these methods. So we

simply delete the speed which is lower than 5 km/hr.
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01002 ,00000700, 12035.011,2414.272, 35, 39,44
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02002, 00000368, 12040. 864, 24058, 362, 0, 41, 25H%FEE, o2

ooooz, 00007510, 2125, 3EFERE L SENAEE, an

Figure 4.1 The Raw Data of Taichung City Bus Dynamic Information.
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4.1.2 Dynamic Taxi Information Acquirement and Analysis

The dynamic taxi information is provided by Geda Telecommunication Co., Ltd. The
information includes time, longitude and latitude coordinates, speeds, 1D of on board units,
and azimuth. The data updates every 60 seconds.

The data processing of dynamic taxi information is similar to that of dynamic bus
information. The data reading and data filtration process are explained as follows:

1. Data reading:
The raw data of the taxi information is given in string format as shown in figure 4.2.
Each item is separated by comma. The first item is “time”, the second item is “longitude”,
and the following items are “latitude”, ”speed”, ”ID of the on board unit”, ”azimuth”, and
“ID of a specific road”.

2. Data filtration:

Taxi also has to stop to pick up and drop passengers and these stops cause low-speed
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data. As the same reason of processing bus data, the amount of data is not large enough to use
filter methods found in literatures. So we still use the simple rule by deleting data whose

speed is lower than 5 kn/hr.

We regard the bus data and the taxi data as the same probe source. So we merge the
filtered bus data and taxi data into one. We calculate the average of the merged data and it is
the representation speed of the road provided by probe vehicles. The process of probe vehicle

speed filtering is as shown in figure 4.3.

1830, 12040. 48, 2405. 680,35, 540, 125, 2599
z 1020,12040.51, 2408, 73,42, 779,304, 2599
31020, 12040.51, 2408, 73,42, 779,304, 2599
41020,12040.51, 2408, 73,42, 779,304, 2599
51020, 12040.51, 2408 . 73,42, 779, 304, 2599
6 1020, 12040. 51, 2408. 73,42, 779,304, 2599
7 1020, 12040.51, 2408, 73,42, 779,304, 2599
8 1020, 12040. 54, 2408. 73,27, 326,312, 2599
9 1020, 12040.51, 2408, 73,42, 779,304, 2599

10 1020, 12040.54,2408.73,27,328,312,2599

11 1020,12040.51,2408.73,42,779,5304, 2599

1z 1020, 12040,54,2408.73,27,328,312,2509

13 1020,12040.51,2403.73, 42,779,304, 2599

14 1020,12040.54,2408.73,27,328,312,2599

15 1030, 12040.51,2403.73, 42,779,304, 2599

16 1030, 12040.54,2408.73,27,328,5312,2599

17 1030, 12040.51,2408.73, 42,779,304, 2599

18 1030, 12040.54,2408.73,27,328,5312, 2599

18 1030, 12040.51,2408.73, 42,779,304, 2599

20 1030, 12040.54,2403.73,27,328,5312,2599

z1 1030,12040.51,2408.73, 42,779,304, 2599

£z 1030, 12040.54,2405.73,27,328,312,2599

23 1030, 12040.54,2408.73,27,328,5312,2599

24 1030, 12040,54,2408.73,27,328,312, 2599

25 1030, 12040.54,2403.73,27,328,5312,2599

26 1030,12040,54,2408.73,27,328,312,2509

Figure 4.2 The Raw Data of Dynamic Taxi Information (Provided
by Geda Telecommunication Co., Ltd.)
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The Raw Data of Dynamic
Tax1 Information

The Raw Data of Dynamic
Bus Information

4

Low Speed Data Filtering

Speed < 5 km/hr

No

v

-| Average Calculation

Road Average Travel Speed Output '

Figure 4.3 The Probe Vehicle Speed Filtering.

4.1.3 Dynamic VD Information Acquirement and Analysis

We use VD as the source of detectors. The raw data of VD is shown in figure 4.4. The

first column is the ID of the VD, and the following columns are time of the latest received

data, data sending cycle, ID of the lane, traffic volume, average travel speed, average

occupancy, volume of small cars, volume of middle cars, and volume of large cars.

The VD is installed near an intersection. When the vehicle is stopped by the traffic light,

the data obtained from VD is not usable. So we delete the data whose speed are lower than 5
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Based on our experiences, we sometimes find extraordinary and isolated data which is
much higher than the average speed. We suspect these abnormal data is due to the mechanical
failure or some other reason. So we also delete the speeds which are higher than 80 km/hr.

We calculate the average of the remaining VD data and it is the representation speed of

the road provided by detectors. The process of VD data filtering is as shown in figure 4.5.

recy_date tire_interval lane_id volume avg_speed ave_0occu small_car med_car hig_car
1§ 20031115 FF 5 3 3 ]
2 1 20031 1/8 T4 03:55:14 300 2 47 13 12.3 34 13 1]
ERL 20031 1/8 F9F 035513 300 1 43 20 2061 63 19 11
4|2 20031145 F4F 035511 300 7 Eld) 23 f.64 28 4] 3
5|2 20031 1/5 F4F 03:55:10 300 4] 46 29 6.74 34 T 4]
6 |2 20031 1/8 F4F 03:55.09 300 b} a7 27 8.3 44 g 4]
7|2 20031 1/5 T 03:55.08 300 4 44 32 5.66 37 G 1
g |2 2003111/5 T4 03:55:07 300 3 54 20 1377 42 7 g
9|2 2003111/6 T 03:55:08 200 2 78 25 61.62 46 14 17
1012 20031 1/6 T 03:55:05 200 1 46 25 6.35 38 5] 2
1111 20031 1/6 T 03:60:13 200 3 ji1d) 25 7832 a7 7 11
1214 20031145 FF 0350012 300 2 G0 18 18.46 a7 16 7
131 20031145 T4 03:50:11 300 1 a1 16 23.24 3] 17 g
142 20031 1/5 F4F 03:60:10 300 7 18 23 4.1 12 2 4
152 20031 1/5 F4F 03:50:09 300 4] Fii} 29 4.69 16 4] 4
162 20031 1/5 F4F 03:50:08 300 b} Eld) 29 5.76 29 4 3
17 |2 20031 1/8 F4F 03:60:07 300 4 a8 27 3.32 35 3 1]
182 20031 1/5 T 03:50:06 300 3 43 7 5.57 37 3 3
191+ NI 10E FLE OTANNA ann kl RE e AA D A =] 12

3items in dbowd_interval_data

Figure 4.4 The.Raw-Data of Dynamic VD Information.
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The Raw Data of Dynamic
VD Information
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Speed < 5 km/hr or
Speed > 80 km/hr

No
v

Average Calculation
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Figure 4.5 The VD Speed Filtration.

4.1.4 Data Simulation and Analysis

Since collecting real data is hard in practice and the volume of real data is often small,
we also use simulated data to test our model. The simulated data is expected to follow the
same distribution as that of the data we collected from real sensors. So we perform the
goodness-of-fit test to find the distribution of real data. We find that the real data is following
normal distribution.

We assume the length of the target road is 360 meters and the buses’ arrival follow

Poison distribution. The arrival rate of buses is 0.5 per minute and the frequency of data
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sending is 4 times per minute. The speed follows normal distribution and the average speed
and standard deviation are adjustable. The simulation time lasts for 2 hours.

We use the similar way to simulate data obtained from VD. The additional assumption is
that the arrival rate of vehicle is 10 per minute.

We adjust the average and standard deviation to generate data representing different
service levels. The different service level scenario can represent different situations in the real
world in order to have more comprehensive test.

The simulation process of the probe vehicle data is explained in figure 4.6. In this
flowchart, t; is the time when the probe vehicle sending its GPS data to the center. Total
distance is the length of the target road and its initial value is 360 meters. T is the simulation
time, which is set to be 10800 seconds. Vj is the average speed during the time period tj - t.1.

The simulation process of the VD data is explained in figure 4.7. In the flowchart, ti and
V] are the time and speed, respectively when a.vehicle-passes by VD; T is the simulation time

and it is set to be10800 seconds.
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Generate time t,, of a bus with the arrival rate 0.5 per
minute which follows Poison distribution

Total distance=Total distance - (t, X average speed) ;
=1

.

Yes—» Stop simulating '

No
Total distance >0 & No—> Stop simulating this bus '

E ,.'.;Yes_i_ "—

Generate speed V i

Total distance=Total distance - (15 X Vj) ;
JH

Figure 4.6 The Flowchart of Simulate Probe Vehicle Date.
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Generate time t, of a vehicle with the arrival rate 10
per minute which follows Poison distribution

Yes—» Stop simulating '

No

v

Generate speed V.

Figure 4.7 The Flowchart of Simulate VD Date.

4.2 Model Testing Implementations

In this section, we use both real data and:simulated data to test our model. Section 4.2.1

explains the fusing steps using real dataand section 4.2.2 explains those using simulated data.
4.2.1 Model Testing Using Real Data

Some descriptions of real data are as follows:

1. Collection time: November 14, 2003. P.M. 16:00 ~ P.M.19:00.

2. Collection site: Taichung Chung Cheng Road (near the intersection of Taichung
Harbor Road).

3. Collected Data: The real data collected include probe vehicle data and VD data. The
probe vehicle data are composed of bus speeds and taxi speeds.

The steps of calculating the entropies and deriving the weights are explained as follows:

Step 1:
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We use the definitions of service levels in table 3.2 to classify the collected data. The result of
classification is shown in table 4.2.1 and table 4.2.2. The average speeds of probe vehicle data

and VD data are 21.88 km/hr and 23.91 km /hr, respectively.

Table 4.2.1 The Amount of the Prove \ehicle Data

Service Level Amount
A 24
B 65
C 48
Total 137

Table4:2.2 The Amount of the VD Data

Service Level Amount
A 7
B 19
C 7
Total 33

Step 2:
There are 1636 lidar data and the average of these data is 27.39 km /hr. That means the

(real) service level of our test site is B. Hence, the y in equation 3.2 can be represented by

[vs Y

. Then we calculate the probability of occurrence of the state @; given the observed state
B for each sensor. The probability is given by

P(,18B),

9,=AB,C,....
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Let’s take probe vehicle data as an example to illustrate how to calculate these

probabilities. P(A| é) represents the probability that the service level of the probe vehicle

data is A when the actual service level is B, which is equals to 4 . 0.175. The

24 +65+48

other calculation results of probabilities are shown in table 4.2.3 and table 4.2.4.

Table 4.2.3 The Conditional Probabilities of the Prove Vehicle Data

Service Level Probability
P(A|B) 0.175
P(B|B) 0.475
P(C|B) 0.350

Total 1

Table 4.2.4 The.Conditional Probabilities of the VD Data

Service Level Probability
P(A|B) 0.212
P(B|B) 0.576
P(C|B) 0.212

Total 1

Then we use equation 3.2 to calculate the entropy of each sensor. h,(B) represents the

entropy of probe vehicle when the real service level is B, which is equals to

~ > P(6, | B)log P(6, | B) = —(0.17510g 0.175 + 0.47510g 0.475 + 0.35l0g 0.35) = 0.446 .

0;e0
The results of entropy calculating are shown in table 4.2.5.
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Table 4.2.5 The Entropy of Each Sensor

Sensor Entropy
Probe Vehicle 0.446
VD 0.424

Step 3:
Given the entropies, we can determine appropriate weights for each sensor through

equation 3.4. W, (B) represents the weight of probe vehicle when the real service level is B,

which is equals to 1 = 1 =0.487 . The calculation

1 1 1
hl(B)( h, (B) " hz(B)j 46[0.446 ’ 0.424]

results are shown in table 4.2.6.

Table 4:2.6/The Optimal Weight of Each Sensor

Sensor Weight
Probe Vehicle 0.487
VD 0.513

Step 4:

After calculating the weight of each sensor, we can fuse these collected data. The fusion
result can be obtained by summing up the products of the average of collected data and the
weight of the associated sensor. So the fusing result is:

21.88x0.487+23.91x0.513=22.92  km /hr

The difference between the fusing result and the real speed collected from lidar is equals
to 27.39—22.92=4.47 km/hr. Since the standard deviation of the lidar data is 7.125 km/hr
and the difference 4.47 km/hr which falls within the range of the standard deviation.

Generally speaking, we consider it is an acceptable difference.
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4.2.2 Model Testing Using Simulated Data

We use different scenarios to represent different service levels in the real world. These
scenarios have different averages or standard deviations. Since the calculation procedures are
the same, we only show the results of each step in this section. There are seven testing
scenarios as follows:

1.  Two sensors with same average and standard deviation.

2. Two sensors with same standard deviation and small difference of averages.

We use the same simulated data of sensor 1 and replace the data of sensor 2 by
the data with different average.

3. Two sensors with same standard deviation and large difference of averages.

Similar to test 2, we replace the data-of sensor 2 by the data with different
averages.

4.  Two sensors with same-average and.small difference of standard deviations.

We simulate two new'sets.of datawhich have same average with different
standard deviations.

5. Two sensors with same average and large difference of standard deviations.

Similar to test 4, we replace the data of sensor 2 by the data with large
difference of standard deviation.

6.  Two sensors with different averages and standard deviations.

We test our model with two data sets which have different averages and
standard deviations

7.  Three sensors with same average and different standard deviations.

We use three data sets to test our model. These data have same average with

different standard deviations.
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The average speeds and standard deviations of sensor 1(simulate probe vehicle data),
sensor 2(simulate VD data), and sensor 3(simulate VD data) for each test are shown in table

4.2.7.

Table 4.2.7 Averages and Standard Deviations of Sensors

Test Number Sensor Average Speed | Standard Deviation

Sensor 1 25.07 2.91
Test 1

Sensor 2 25.06 2.96

Sensor 1 25.07 2.91
Test 2

Sensor 2 21.97 3.02

Sensor 1 25.07 2.91
Test 3

Sensor: 2 14.95 2.98

Sensor 1 25.15 1.98
Test 4

Sensor 2 24.92 5.02

Sensor 1 25.15 1.98
Test 5

Sensor 2 24.72 10.04

Sensor 1 25.07 2.91
Test 6

Sensor 2 22.05 5.05

Sensor 1 24.91 1.05
Test 7 Sensor 2 25.07 2.96

Sensor 3 24.92 5.02
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The results of shifting the averages to the middle of the service level and classifying are

shown in table 4.2.8.

Table 4.2.8 The Amount of Data

Test Number| Sensor | Service Level A | Service Level B | Service Level C | Total
Sensor 1 9 239 12 260

Test 1
Sensor 2 123 2173 100 2396
Sensor 1 9 239 12 260

Test 2
Sensor 2 113 2152 126 2391
Sensor 1 9 239 12 260

Test 3
Sensor 2 102 2126 109 2373
Sensor 1 2 144 1 147

Test 4
Sensor 2 381 1640 374 2395
Sensor 1 2 144 1 147

Test 5
Sensor 2 720 906 696 2322
Sensor 1 9 239 12 260

Test 6
Sensor 2 396 1636 395 2427
Sensor 1 267 0 0 267
Test 7 Sensor 2 123 2173 100 2396
Sensor 3 381 1640 374 2395
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We assume the real travel speed is in service level B. The conditional probabilities can be

calculated as shown in table 4.2.9.

Table 4.2.9 The Conditional Probabilities of Each Sensor

Test Number| Sensor P(A|B) P(B|B) P(C|B) Total

Sensor 1 0.0346 0.9192 0.0462 1
Test 1

Sensor 2 0.0513 0.9070 0.0417 1

Sensor 1 0.0346 0.9192 0.0462 1
Test 2

Sensor 2 0.047 0.9 0.053 1

Sensor 1 0.0346 0.9192 0.0462 1
Test 3

Sensor 2 0.043 0.911 0.046 1

Sensor 1 010136 0:9796 0.0068 1
Test 4

Sensor 2 0.159 0.685 0.156 1

Sensor 1 0.0136 0.9796 0.0068 1
Test 5

Sensor 2 0.310 0.390 0.30 1

Sensor 1 0.0346 0.9192 0.0462 1
Test 6

Sensor 2 0.163 0.674 0.163 1

Sensor 1 1 0 0 1
Test 7 Sensor 2 0.0513 0.9070 0.0417 1

Sensor 3 0.159 0.685 0.156 1
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Then we use equation 3.2 to calculate the entropy of each sensor and the results are

shown in table 4.2.10.

Table 4.2.10 The Entropy of Each Sensor

Test Number Sensor Entropy
Sensor 1 0.146
Test 1
Sensor 2 0.162
Sensor 1 0.146
Test 2
Sensor 2 0.171
Sensor 1 0.146
Test 3
Sensor 2 0.157
Sensor 1 0.049
Test 4
Sensor 2 0.365
Sensor1 0.049
Test 5
Sensor 2 0.474
Sensor 1 0.146
Test 6
Sensor 2 0.372
Sensor 1 0.0001
Test 7 Sensor 2 0.1622
Sensor 3 0.365

37



We can determine weights for each sensor through equation 3.4. The calculation results

are shown in table 4.2.11.

Table 4.2.11 The Optimal Weight of Each Sensor

Test Number Sensor Weight Total

Sensor 1 0.527

Test 1 1
Sensor 2 0.473
Sensor 1 0.54

Test 2 1
Sensor 2 0.46
Sensor 1 0.519

Test 3 1
Sensor 2 0.481
Sensor-1 0.882

Test 4 1
Sensor 2 0:118
Sensor-1 0.907

Test5 1
Sensor 2 0.093
Sensor 1 0.719

Test 6 1
Sensor 2 0.281
Sensor 1 0.9991

Test 7 Sensor 2 0.0006 1
Sensor 3 0.0003
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The fusing results of each test are shown in table 4.2.12:

Table 4.2.12 Fusing Results of Each Test

Test Number Fusing Result

Test 1 25.07x0.527+25.06 x0.473=25.07  km /hr

Test 2 25.07x0.54+21.97x0.46 =23.64  km /hr

Test 3 25.07x0.519+14.95%x0.481=20.20  km /hr

Test 4 25.15%x0.882+24.92x0.118=25.12  km /hr

Test 5 25.15x0.907 +24.72x0.093=25.11  km /hr

Test 6 25.07x0.719+22.05x0.281=24.22  km /hr

Test 7 24.91x0.9991+25.07 x 0.0006 + 24.92x 0.0003=24.91  km /hr

We can find that entropy can reflect the uncertainty of a sensor. That is, when the

standard deviation is large, the entropy tends be large. Then we will assign lower weight to

the sensor.

4.3 Conclusions About Fusion Results

According to the results of the tests in section 4.2 and 4.2, we draw some conclusions as

follows:

1.

needed.

considered a more reliable source than probe vehicles.
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The probe vehicle data is small in volume and sometimes the historical database is

The entropy of VD data is smaller than that of the probe vehicle data, so the VD is

The average speeds of lidar data are sometimes high since we do not detect motionless



vehicles. So the fusion result is lower than the average of lidar data.

4. The entropy is sensitive to the dispersion of data. That is, when the standard deviation of
data of a sensor is slightly larger than that of another sensor, the entropy of the former is
much larger than that of the latter.

5. The high entropies are sometimes due to the classification standards. Even the standard
deviations of the two sensors are same, the entropies of them may be significant different.
These cases can be reduced through shifting the distribution of data of each sensor to the
middle of the service level.

6. When the averages of sensors are significant different, we can’t know which of the sensor

Is accurate. So the sensors should be checked their accuracy before fusion.
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Chapter 5 Conclusions and Suggestions

In this section, we offer some conclusions and some suggestions regarding this research.

Section 5.1 and 5.2 discuss conclusions and suggestions, respectively.

5.1 The Conclusions

We draw some conclusions about our model as follows:

1.

According to the testing results, our model is suitable in general. Entropies
represent the uncertainties of sensors. There is no requirement that these sensors
must have the same amount of data.

Our model can be used to reflect sudden changes of speeds. The changes of traffic
conditions are considered continuance. However, a sudden change in speed during a
short period of time sometimes, aceurs:. \We'use scenarios of different standard
deviations to simulate thée'changes of Speeds.:We find that the entropy is high when
standard deviation is large and.vice versa.'Hence, the sudden changes of speeds can
be reflected by entropy.

This approach is used to reflect the irregular degree of data and can’t represent the
accuracy of data. That is, when the whole data of a sensor are lower or higher than
the normal speed, entropy cannot reveal this fact.

Sometimes the value of entropy is influenced by the classification standards. In our
model, these cases can be reduced through shifting the distribution of data of each
sensor to the middle of the service level.

This approach can be extended to multi-source data fusion. The entropy is
calculated through the probabilities of classified data of the target sensor and has no
relationship with the probabilities of other sensors. Hence, there is no limitation in

the number of sensors in this fusion model.
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6. The fusion result is close to the average of the data of sensors when the averages of
each sensor are in small difference.

7. The effect of entropy is obvious when the variations of data are large. The entropy
is large when the variation of data is large and vice versa. When the entropy of a

sensor is much larger than others, its weight is obviously smaller than others.

5.2 The Suggestions

In this section, we offer some suggestions about data fusion for the future researches

stated as follows:

1. To address weakness of entropy failing to reflect whether the row data is correct or
not, we can consider another variable while calculating the weights. For example,
use the historical database:to acquire the average speed during a specific time period.
We can compare the average of historical data and the average of the fused data. If
the difference between'these.two averages is large, we can adjust the entropy value.
Then the weights can reflect the accuracy of sensors.

2. We use the average of lidar data as the accurate value to compare with our fusing
results. However, the lidar data is another source of traffic information and there are
also errors when we acquire them. If the research time and funds are enough, the
video camera may be a more accurate source for comparison purpose.

3. The classifying method can be modified. Shifting the distribution of data of each
sensor to the middle of the service level can solve a portion of the problem due to
the classification standards. However, there still room for modifying the
classification standards to reduce its impacts.

4.  The filtering method is too simple. Since the emphasis on our model is the fusion
method, we do not spend sufficient time on surveying the filtering method of the
raw data. So we simply filter out the exceeding values. The fusion model will be a

42



more complete one if there is a better filtering algorithm.

The optimal weight scheme can be modified. According to some results of
experiments, we conclude that the weight of a sensor is inverse proportion to its
entropy. However, there may be other factors that we do not discover which
influence the relationship between entropy and weight. Future researches can

modify the optimal weight scheme to reflect these factors.
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