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摘 要       
 
 
 本研究目地在發展一套新的動態巨觀車流模式，並且導入交通場與機動

力的概念構建此模式。在本研究中，交通場又可分為外場與內場，前者收

道路外在環境之影響，後者則跟相鄰兩車之間的互動有關，交通場的大小

決定了車輛在道路上的加減速行為。機動力在本研究中代表不同駕駛習慣

之參數，它將扮演一個重要的因子，且所有車輛行為都將受其影響，不管

是交通場的選擇門檻或者是加減速與變換車道的行為。為了讓所有模式中

的變數與參數有其物理意義，本研究在構建巨觀模式之前，先行根據交通

場與機動力的概念設計一微觀車流模式，並且藉由本研究設計之模擬器校

估此微觀模式中各參數以及變數之間的關係，最後再將其推導成巨觀模

式。我們應用蒙地卡羅法決定模擬時車輛的速度變化。除此之外，本研究

處理多車道車輛行為時加入一車輛慣性之變數，此變數可以描述駕駛者在

不同車道間變換所產生的衝擊，包括對他自己以及其他駕駛的影響。 
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ABSTRACT 

 The purpose of this research is to develop a new dynamic macroscopic 

model. In this research, we introduce the traffic fields and mobility into this new 

model. The traffic field is subdivided into external field and internal field, the 

external field is caused by the external conditions in the roads and the internal 

field is caused by the interactions between the adjacent cars. We assume that all 

cars move fast or slowly according to the magnitude of traffic field. Mobility is 

a key factor to affect the behaviors of vehicles and the thresholds of traffic fields. 

We design a microscopic model first and calibrate the model by the result of our 

simulator. The simulator is designed based on CA model. We define the 

magnitude of acceleration and deceleration in the simulator according to Monte 

Carlo computing technique. After that, we derive the macroscopic model from 

the microscopic one. It is the reason that every variables and parameters in this 

research are meaningful. Besides, we define a new variable, Driver’s inertia, to 

describe the shock caused by the lane-changing behaviors.  
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CHAPTER 1  

Introduction 
 

Intelligent transportation systems (ITS) are the systems that employ advanced 

information and communication technologies to the operations of existing transportation 

systems in order to ensure traffic safety, improve traffic congestion, and decrease 

environmental impacts. For the purpose of ITS applications, a real-time prediction is needed. 

Managing traffic real-time in congested road or networks requires a clear understanding of 

traffic flow operations. For this purpose, during the past fifty years, there were a wide range 

of traffic flow theories and models, which were developed to answer these research questions. 

 

1.1 Research Motivation and Objection 
 

Traffic flow models are classified into microscopic and macroscopic models. The former 

model can use to describe slight movements of vehicles and to correct the model itself 

according to the behaviors of drivers. But using microscopic models wastes much time to 

simulate all traces of vehicles. That is the reason why simulator can’t be used as real-time 

prediction, especially in large scale network. Even though the development of computer 

decreases the simulation time in recent years, we still can’t use microscopic models to do 

real-time prediction. Macroscopic models based on fluid dynamic equations have been 

proposed by a large number of groups (ref. Lighthill, Whitham [27], and Payne [43]). 

However, there is a huger controversy over the applicability of traffic flow and the validity in 

these models.  

There are many immeasurable parameters and variables in the past macroscopic models 

such as relaxation time. Though most of the models are focused on no-signal and 

one-dimension traffic flow, there are some problems in the backward traffic flow. Also, the 

behaviors between adjacent cars are neglected in these models. Even though the purpose of 

many new macroscopic models was to overcome most drawbacks of old ones in recent years, 

it complicates the models at the same time. We can’t find the answer of the complicated 

models analytically unless using some numerical methods. Finite difference method is the 

most famous way to solve these models, but it reduces the efficiency of simulator especially 

for solving speed. Another problem of complicated models occurs because these models 

introduce many assumptions from gas kinetic field. The variables and parameters of gas 

kinetic field can’t be explained well in traffic field.  
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We define a new variable called traffic field in this research. The traffic field is 

subdivided into external field and internal field, the former field is caused by the external 

conditions in roads and the latter field is caused by the interactions between adjacent cars. We 

assume that all cars move fast or slowly according to the magnitude of traffic field and derive 

a new macroscopic model from a microscopic one. The method ensures physic meanings of 

all variables and parameters. Finally, we define a variable called mobility to represents the 

behaviors of different drivers. 
 

1.2 Research Scope and Procedure 
 
 In the evolution of transportation, dynamic traffic management seems to be a feasible 

way to relieve congestion. According to the types of field data and applications, dynamic 

traffic researches can be classified into three categories, that is the dynamic origin/destination 

(dynamic O/D) estimation, the dynamic traffic flow theory, and the dynamic traffic 

assignment. A complete dynamic management system includes three kernels, and the relation 

between them is illustrated in Figure 1.1. Since whole procedure is a cycle, each part can be 

an initial step. If the dynamic travel cost (or travel time) of each path in the network is known, 

the dynamic origin/destination table will be generated from the dynamic O/D model. If the 

dynamic travel cost (or travel time) of each link and the dynamic O/D table in the network are 

known, the path flow will be obtained by the dynamic assignment model. If flow on each path 

is known, travel time and dynamic link flow are obtained from dynamic traffic flow model. 

This research derives a traffic flow model to predict travel time. The scope of the 

research is showed as the dotted frame in Fig1-1. 

 Because we define the traffic fields and the mobility in this research to derive a 

macroscopic model, we explain the meanings of them first. After that, we discuss the 

movements of cars caused by traffic fields and derive a model according to the movements. 

Finally, we design a simulator to prove our assumptions and calibrate all parameters in the 

models. The flowchart of this research is illustrated in Fig 1-2. 
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Figure 1-2 The flowchart of this research  
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CHAPTER 2 
Literature Review 

  

 To develop a macroscopic traffic flow model, we derive it from a microscopic 

one in this research. For the purpose, we start with past microscopic and macroscopic 

models in this chapter. For developing a simulator based on CA models, they would 

be reviewed briefly later. A brief summary of traffic flow model would be described in 

the end of this chapter. 

 

2.1 Microscopic Traffic Flow Models 
 
 The movements of all vehicles in the road are described in microscopic models 

more completely than in macroscopic ones. We could adjust all behaviors slightly 

base on microscopic models. We review some important microscopic traffic flow 

models from 1950 and focus on car-following behaviors to be the basis of simulator in 

this section. 

 

2.1.1 Stimulus – Reaction Function 

 Microscopic models are designed based on car-following theory which is derived 

from Reuschel(1950)[47] and Pipes(1953)[46]. Gazis, Herman, and Potts[15] 

explained  the car-following theory completely in 1959. They assumed all cars move 

in alignment and keep a safe distance from each other to avoid incidents. For keeping 

a safe distance, the velocity of following car should be adjusted according to the 

leading car. We derive Eq. (2.1) from stimulus-reaction function:  
( ) ( ) ∆−++ −= tnnn xxtxM 11 &&&& λ         (2.1) 

 )(txn  denotes the location of nth car, M denotes the weight of car, λ  denotes a 

sensitive parameter, and ∆  denotes the reaction time. If divers situate in equilibrium 

traffic flow, we can combine M with λ  to be a sensitive term. In steady state, if the 

leading car changes its’ velocity to be u , the following car will also move with 

velocity u . We let the distance between adjacent cars to be 1+−= nnn xxh  and obtain 

λ/)( 00 uuMhh −=−  from the initial condition. Because the distance is the 

reciprocal of density, we can derive Eq. (2.2) from above-mentioned equations: 
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λ/)( 0
1

0
1 uuMkk −=− −−  or ))(/( 11

0
−− −+= jkkMuu λ      (2-2) 

 kj  denotes the jam density. Except the discussion of basic theory, Gazis[16] 

also derived the sensitive term showed as Eq. (2.3): 

( )
( ) ( )( )l

nn

m
n

txtx
tx

1

1

+

+

−
×=

&&
αλ

       (2.3) 

 α denotes the constant, m denotes the power parameter to response to the relation 

between the reaction time and the sensitive term, and l denotes the power parameter to 

response to the relation between the gap and the sensitive term. 

 

2.1.2 Four Restrictive Functions 

 The purpose of these functions is keeping a minimum safe distance between two 

adjacent cars. If the following car maintains a safe distance from the leading car, it 

can move and brake safely. All restrictions are described as follows: 

A. Spacing Restriction 

 The following car must keep a safe distance for the purpose of safety: 

    
C

D
VVKVKPS LF

F ×
−

++=
2

22

21
     (2.4) 

In Eq. (2.4): 
S ：Safe distance 
P ：Effective length of the leading car 
K1 ：Reaction time of the following car 
K2 ：Constant，1m/s in MKS 
VF ：Velocity of the following car 
VL ：Velocity of the leading car 
D ：Average deceleration of the following car 
C ：Constant，when VF > VL , C=1 , otherwise , C=0 

 

B. Acceleration Restriction 

 The maximum distance that general car can reach in a unit time. 

C. Stopping Restriction 

The distance that cars can reach in a unit time when they meet a red light or some 

other conditions to induce them to decelerate 

D. Turning Restriction 

 When drivers make a turn and receive a centrifugal force at the same time. They 
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must decelerate to avoid losing the control of car. 

 Above-mentioned restrictions are the limit of the maximum distance that general 

cars can move in a unit time. 

 

2.1.3 PITT Model 

 PITT is a FRESIM model in CORSIM developed by FHEA. Its’ theory is 

keeping a space headway: 

( )FLFL VVkbVkLH −××++×+= 10     (2.5) 

In Eq. (2.5): 
H ：Space headway(ft) 
VF ：Velocity of the following car 
VL ：Velocity of the leading car 
LL ：Length of the leading car 
k ：Sensitivity of the driver 
b ：Constant, when VL=VF ≤ 10,C=0.1, otherwise, C=0 

 

For keeping above-mentioned gap, the acceleration of the leading car is: 

( ) ( )[ ]
( )TkT

VVkbTkVLXXA
i

FL
i

F
i
FL

F ××+
−××−××−−−−

=
2

102
2

2

  (2.6) 

In Eq. (2.6): 
AF ：Acceleration of the following car 
XL ：Location of the leading car 

i
FX  ：Original location of the following car 

i
FV  ：Original velocity of the following car 

T ：Scanning gap(sec) 
 

, The velocity of the following car is ( )cTAVV F
i

FF −×+=  when we take the 

reaction time into account. To avoid traffic accident, PITT designs three constricted 

functions [25]. 

 

2.1.4 Behavioral Threshold Model 

 There are two unreasonable assumptions in stimulus-reaction function:  

1. There are interactions between adjacent cars no matter how long the distance 

between them is.  

2. When relative velocity is constant, the velocity of the following car is 
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constant.  

The following car, in fact, will accelerate when the distance or the relative 

velocity between the leading car and itself is large. If the distance between two cars is 

large enough, the movements of following car would be unrestricted. The 

above-mentioned behaviors represent a special car-following phenomenon showed as 

Fig 2-1[26]:  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Relative movement between leading and following cars 

 

 Wiwdemann[53] introduced the Psycho-Physical Spacing Model into 

microscopic simulator and designed the INTAC Model to be the Behavioral Threshold 

Model. He assumed that cars move in single lane and have no lane-changing 

behaviors. In Behavioral Threshold Model, traffic flow conditions are classified into 

three reaction areas: (1) Perceived Reaction (2) Unconscious Reaction (3) No 

Reaction. Above-mentioned phenomenon is showed in Fig. 2.2: 
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Figure 2-2 Relation of behavioral threshold model 

 

The meaning of each threshold is: 

A. AX: Desire distance between two cars when the following car is static. 

B. BX: When the velocity difference between two cars is small, it is a 

minimum distance that following car desire. 

C. SDV: It is the velocity difference perceived threshold of following car 

when the distance between two cars is large. 

D. SDX: The range of SDX is 1.5~2.5 according to the difference 

between different drivers. 

E. CLDV: It is a velocity threshold when the gap between two cars is 

small and the velocity of the following car is larger than the leading 

one. It is calculated from SDV and random factors. 

F. OPDV: It is a velocity threshold when the gap between two cars is 

small and the velocity of the following car is smaller than the leading 

one.  
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2.1.5 CARSIM 

 CARSIM(CAR-Following Simulation Model) was developed by Benekohal[4].  

Vehicles are classified into five classes in CARSIM showed as follows: 

A1: General driving behaviors with the velocity which is under the 

maximum velocity 

A2: General driving behaviors with the velocity which is equal to 

maximum velocity 

   A3: The vehicles which are starting to move  

   A4: The driving behaviors with enough gap: 

( ) ( )( )( ) KLDTADTVXX LFFL +≥++− 245.0    (2.7) 

In Eq. (2.7)： 
XL ：Location of the leading car 
XF ：Location of the following car 
LL ：Length of the leading car 
K ：Buffer distance between two cars 
DT ：Scanning gap(sec) 
A4 ：The acceleration and deceleration in this condition 

 

A5: The driving behaviors which limit to safe constraints 

A5 is a combination of A4 and some safe constraints showed as follows: 

( ) ( )( )( )
( )( )[ ]( )

( )( )[ ]( ) ( )( )[ ]
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
−

+
++

+

≥−−++−

LMX
X

FMX
DTAVBRTDTAV

BRTDTAV
KLDTADTVXX

LF
F

F

LFFL

.2.2
55 

,5

 of maximum

55.0

22

2

 

            (2.8) 
In Eq. (2.8)： 

BRT ：Reaction time to brake safely 
VL ：Velocity of the leading car in the end of time step 
MX.F ：Maximum deceleration of the following car 
MX.L ：Maximum deceleration of the leading car 
A5 ：The acceleration and deceleration in this condition 

 

2.2 Static Macroscopic Traffic Flow Models 
 

 Velocity, density, and flow are three important factors in macroscopic 
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models. Their relation showed as Eq. (2.9):  

kuq =        (2.9) 

 Greenshield [20](1934) and Olcott [41](1955) showed that an approximate linear 

relationship between speed and density of traffic exists, whereby, as the average 

speeds of vehicles increase, the density of the traffic stream decreases. Greenberg 

[19](1959) suggested that an equation describing the steady state relation between Q 

and k, or between u, the velocity of the stream, and k could be derived by assuming a 

particular equation of state for the fluid. Characteristics and distributions of hourly 

volumes and average speed are discussed by Vaughan [52](1970) , Gazis, and Knapp 

[14](1971) , Makigami, Newell, and Rothery [28](1971). Other research results of the 

static macroscopic traffic flow model are summarized in Table 2-1 and Table 2-2. 

 
Table 2-1 Table of single-regime models 

Single-regime models Equations 

 

Greenshields model (1934) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

j
f k

kuu 1  

 

Greenberg model (1959) 
u u

k

k
j=

⎛

⎝
⎜

⎞

⎠
⎟0 ln  

Underwood model (1961) u u ef
k k= − 0  

Northwestern's model (1967) 
( )u u ef
k ko= −1 2

2

 

 

Drew model (1968) 
( )

u u
k

k
f

j

n

= −
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+

1

1 2

 

 

Pipes-Munjal  model (1967)
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

n

j
f k

kuu 1  

 

 

fu ：free flow speed  jk ：congested density

ou ：critical speed   k o ：critical density 
reference: May(1990) 
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Table 2-2 Table of multi-regime models 

Multiregime models Free-flow regime Transitional-flow 

regime 

Congested-flow 

regime 

Edie model 

(1961) 

u u ef
k k= − 0  

( )k ko≤  

 

－ 
u u

k

k
j=

⎛

⎝
⎜

⎞

⎠
⎟0 ln

( )k ko≥  
Two-regime linear model 

(1967) 
u u

k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1  

( )k k≤ 1  

 

－ 
u u

k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1

( )k k≥ 1  
Modified Greenberg 

model (1967) 

constant speed 

( )k k≤ 2  

 

－ 
u u

k

k
j=

⎛

⎝
⎜

⎞

⎠
⎟0 ln  

( )k k≥ 2  
Three-regime linear model 

(1967) 
u u

k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1  

( )k k≤ 3  

u u
k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1  

( )k k4 ≤ ≤ k3  

u u
k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1

( )k k≥ 4  
 ik ：specified traffic density ，i=1.2.3.4 

reference: May[29](1990) 

 

2.3 CA Models 
 

A more recent addition to the development of vehicular traffic flow theory is 

cellular automation (CA) or particle hopping method. Although CA is first proposed 

long ago (Gerlough)[17](1956), CA has begun to receive wide attention of statistical 

physics community only after the simple formulation by Nagel and Schreckemberg 

[37](1992). In CA, a road is represented as a string of cells, which are either empty or 

occupied by exactly one vehicle. Movement takes place by hopping between cells.  

CA is defined as follows. Each vehicle can have an integer velocity between 0 

and maxu . The complete configuration at time step t is stored, and the configuration at 

time step t+2 is computed from that, i.e., using a parallel or synchronous update. All 

vehicles execute in parallel the following steps: 
(i) Let g (gap) equal the number of empty sites ahead. 

(ii) If u>g (too fast), then slow down to u=g (rule 1); otherwise if u<g (enough 
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headway) and mazuu < , then accelerate by one u=u+1 (rule 2). 

(iii) Randomization: If after the above steps the velocity is larger than zero (u>0), 

then, with probability p, reduce u by one (rule 3). 

(iv) Vehicle propagation: Each vehicle moves u sites ahead (rule 4). 

 Pesheva et al. [44](1997) proposed a CA (particle hopping) to describe 1D traffic 

flow under a bottleneck situation. Then Rickert [50](1996) extended CA to a two lane 

traffic condition. Furthermore, Chowdhury [5](1997) a two-lane traffic with two kinds 

of vehicles. CA also can be built as a control model. Hattori [22](1999) and Jin et al. 

[24](1999) applied CA to signalize intersection with periodic boundary condition. 

With respect to the capacity of the signalized intersection, Nagel [36](1996) and 

Nagatani [35](1996) considered the several different acceleration effects of vehicles in 

CA models.  

Nagel [36](1996) compared the other models to CA and made some conclusions 

as follow:  
(i) Robust computing: CA is known to be numerically robust especially in 

complex geometries.  

(ii) University: Intuitively, a relatively simple microscopic model should be able 

to show the essential features of traffic jams. One might even speculate that 

the critical exponents of traffic jam formation are universal.  

(iii) Towards minimal models: The present results show that close-up 

car-following behavior is not the most important aspect to traffic model. The 

important crucial aspect is to model deviations from the optimal (smooth) 

behavior and the ways in which they lead to jam formation. Another 

important aspect, which seems far from obvious, is the acceleration behavior, 

especially when there are other vehicles ahead, since it is the acceleration 

behavior that mostly determines the maximum flow out of a jam (which may 

be a simple traffic light). 

(iv) Traffic dynamics: Fast running and easy to implement CA can be very useful 

in interpreting measurements.  

(v) Microscopic simulation: CA is inherently microscopic, which allows one to 

add individual properties to each vehicle. 

(vi) Stochastic and fluctuations: Last but not least, CA are stochastic in nature, 

thus producing different results when using different random seeds even 
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when starting from identical initial conditions. The traffic system is 

inherently stochastic and the variance of the outcomes is an important 

variable itself.  

CA is a kind of microscopic models and inherits the advantages and 

disadvantages of them. Although its concept is posed many years ago, the physical 

models are presented recently. It is claimed that it has the potential to model and 

describe real problems well. However, in motorcycles and vehicles mixed traffic, 

motorcycles are not restricted in single lane. Their motion should be treated as 

two-dimensional behavior. As researches, which are proposed by car-following theory 

in Taiwan, the model may become very complicate and the behavior may not be easily 

modeled anymore. In addition, the more complicate CA induce much more robust 

numeric can be forecasted. 

 

2.4 Dynamic Macroscopic Traffic Flow Models 
 

 Lighthill and Whitham [27](1955) and Richards [49](1956) are the first 

people that presented the macroscopic kinetic traffic flow model. The basic theory of 

their model is that traffic is conversed and that there exists a one-to-one relation 

between velocity and density. The LWR model can be viewed as a good and basic 

approximation. Mathematically, LWR model states that the density k and flow Q 

satisfy  
( ) ( ) 0,,

=⋅∇+
∂

∂ txQ
t

txk                   (2.10) 

 where t denotes time and x denotes position. Eq. (2.10) expresses the 

conservation of vehicles. In addition, Q, k and velocity u are assumed to satisfy 

Q=ku(k). From these assumptions, Eq. (2.10) has the solution k=F(x-ct), where F is 

an arbitrary function (the initial condition), c is the wave speed and dkdQc = . Eq. 

(2.10) implies that in homogeneities, such as changes in density of cars, propagate 

along a stream of cars with constant wave speed c with respect to a stationary 

observer. 

 The assumption of u=u(k) is a steady state assumption of velocity, which 

means that velocity changes instantaneously as density changes. It is certainly not 
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valid in some traffic flow situations. To overcome the steady state assumption of 

velocity, Payne [43](1979) used a motion equation to obtain time variant speed.  

( ) ( )( ) ( )( )ukukP
k

uu
t
u

ee −+⋅∇−=⋅∇+
∂
∂

τ
11                 (2.11) 

 where ( )kue  is an equilibrium speed-density relation and τ  is the relaxation 

time. Parpageorgiou[42](1982) used Euler-like discrete Form which shows as Eq. 

(2.12) to improve the efficiency of Payne’s models in computer. 
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Michalopoulos, Yi, and Lyrintzis [34](1993) developed a semi-viscous model, 

which substitutes a viscosity term into Eq. (2.11), show as Eq. (2.13) and (2.14): 
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 Michalopoulos and Pisharody [31](1980) and Michalopoulos et al. [32](1980, 

1981) also employed the LWR model and shock wave analysis to derive an isolated 

real time signal control. Del Castillo et al. [10](1994) proposed an expression for the 

reaction time of drivers as a function of traffic density in the PW model. Later, Del 

Castillo, and Benitez [12](1995a, 1995b) presented a functional form for the 

speed-density relationship. This functional form is made up of a nondimensional 

spacing the equivalent spacing and of a function, the generating function, whose 

argument is the equivalent spacing. This functional form is derived by means of two 

different arguments. The first argument is based on the set of properties that the 

volume-speed-density relationship should satisfy. The second one arises when applied 

to a dimensional analysis of a generic car-following model.  

In addition to the LWR model, Baker [1](1981) and Daganzo [7](1994) brought 

up different dynamic macroscopic traffic flow models. Baker considered the 

continuity, jam-packed, diffusivity, and fluidity of the traffic flow. He used the speed 

as the main viewpoint, and introduced the concept of velocity field to construct 

velocity potential model. Moreover, Baker [2](1983) derived the hydrodynamic model 

of the traffic flow. The key point of the model still lay on the conditions of crowded 
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traffic flow and fleet diffusion. The model is a molecule dispersive equation which 

uses the end of the road as the boundary conditions of the free traffic flow. It is used 

to analyze the periodic traffic flow characteristics of signal intersections. It is as well 

as the Schrodinger equation in the quantum physics. Daganzo use the concept of cell 

propagation to construct the time-space variations of traffic flow of a single 

entrance/exit highway, concluding the formation, propagation and diffusion of fleet. 

The purpose of using cell propagation is to find the locations where the density 

changed, that is, the locations where the density is not continuous, just as the shock 

wave analysis does. 

 

2.5 Summary 
 
 A useful dynamic model must support a correct data about flow and travel time. 

Obviously, we find some drawbacks in past literatures: 

A. There is no relation between variables in static models. 

B. Scholars usually introduce static model or experiential model into motion 

equation and neglect whether they have physic meanings. 

C. There is lack of the descriptions of each factor in past motion equations. 

 We overcome above-mentioned drawbacks to design a new dynamic traffic 

models. 
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CHAPTER 3 

Single Lane Traffic Flow Model 
 

 For describing the movements affected by vertical distance between cars, 

macroscopic models are usually designed as one-dimension models. These models also 

represent the effects caused by speed difference between leading and following cars. 

There are four sections in this chapter: (1)We explain the meanings of the traffic fields 

and mobility in first section and design a general microscopic model based on Newton’s 

laws and some practical behaviors. (2)We describe the details of our simulator and the 

assumptions about moving behaviors of cars in second section. (3)We use the data of 

the simulator to verify the model designed in first section. (4)We derive a macroscopic 

model from microscopic one in latest section. The studies about muti-lane would be 

discussed in next chapter. 

 

3.1 Traffic Fields and Mobility 
 

 We assume all cars would be affected by a external field according to Newton’s 

laws in this research. The magnitude of field is based on all external factors such as 

gradient, number of lane, geometrical design, and so on. Moreover, there is a force 

between two adjacent cars which is defined as internal field in our study. It is the reason 

that car equivalent, and the distance and the speed difference between cars are the 

factors to affect the magnitude of internal field. We believe that the acceleration is 

affected by internal fields according to Newton’s laws. It is the reason that we define the 

force to put cars moving in light traffic called external field and the extra-force in heavy 

traffic called internal field. So we define a total field showed as Eq. (3.1): 

internalexternaltotal EEE +=       (3.1) 

3.1.1 Internal Field 

 In last section, we describe the fields affected by distance between cars which are 

defined to be inverse proportion in Newton’s laws. There are some problems in above 

assumption. For example, if two cars move closely, the following car would decelerate 
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based on Newton’s laws. But we know that if cars move closely, the following driver 

would maintain his velocity to be the same as the leading car if he contains a safe 

distance. Another special example is that if two cars move apart a long distance but the 

leading car move much slower than the following one. The following car would 

decelerate even though the distance between them is large. Because of above-mentioned 

reasons, we determine the field not only affected by distance in this research. 

 We observe the practical behaviors to find that drivers make decisions to decelerate 

or accelerate according to the time that they would bump into the leading car if both two 

cars contain constant velocity. We define it to be the probability of bump (POB). The 

internal fields and POB must be direct proportion by the definitions. 

 Before finding the correct relation between internal field and POB, we assume that 
POB to the power of γ  and the internal field are direct proportion. Another issue is 

about the relation between the same lane and different lanes. Lateral movements of cars 

are not like vertical ones. No matter car or bus, lateral movements are lane-changing 

behaviors. It is better to define a threshold to control the movements about 

lane-changing behaviors. Because the problem about motorcycles in Taiwan is heavier 

and heavier, we retain the possibility to study the movements of motorcycles. For the 

purpose, we subdivide internal field into vertical and lateral field: 

VerticalLateral EEE ,In,InInternal +=       (3.2) 

 Figure 3-1 represents the lateral and vertical fields of vehicle 0 caused by vehicle 1 

and vehicle 2: 
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Figure 3-1 Internal fields between vehicles 
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 For simplifying the model, we define the magnitude of vertical field to be M times 

of the lateral one. That is because drivers are more sensitive to vertical change in 

practical condition. A special phenomenon is that vertical fields must produce lateral 

force in traffic. It means that drivers will change lane if the leading cars move slowly or 

the distance between them is smaller than their safe distance. We assume the internal 

fields of vehicle 0 in Fig. 3-1 to be: 

γ

ε
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,,0 xx

uueE xx
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In Eq. (3.3a) and (3.3b), ε  denotes the effect parameter,  10e  and 20e  denote the 

equivalents of vehicle 1 and vehicle 2 relative to vehicle 0. It must be especially noticed, 

the particle not only be affected by adjacent particles but all particles in the space in 

Newton’s laws. However, cars are only affected by adjacent cars.  
 

 At the beginning of this section, we discuss two special cases to describe why we 

can’t use Newton’s laws in traffic. In Eq. (3.3a) and Eq. (3.3b), we neglect these two 

problems between adjacent cars. So we overcome the problems by defining e to be the 

function of speed difference between cars in this research. We also define a new 

variable δ. If the speed of the leading car is δ meter/second higher than the following car, 

still the following car accelerates even though they move closely. δ denotes a function 

of distance between adjacent cars. The relation between δ and the distance is inverse 

proportion. Because of above-mentioned assumptions, Eq. (3.3a) can be subdivided into 
Eq (3.3c) and Eq (3.3d)： 

 

γ

ε
δ )()]([

01

100110
,,0 xx

uuxxuuE VerticalIn −
−−+−

=  if 0)( 0110 ≥−+− xxuu δ  (3.3c) 

0,,0 =VerticalInE        if 0)( 0110 <−+− xxuu δ  (3.3d) 

 

The factors to affect δ will be discussed in following sections. 
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3.1.2 External Field 

 In section 3.1, we define the external field to be affected by external environments. 

Another evidence to prove the existence of external fields is that vehicle must accelerate 

or decelerate even though there is no car near it. It is convenient to define external field 

to be a function of desire speed. Unless driver reaches his desire speed, he would 

continue to change his velocity. The external field shows as follows: 

d

d
VerticalEx t

uuE 0
,

−
=        (3.4) 

 In Eq. (3.4), ......),,( 21 ppkuu dd = , p denotes an environmental parameter, which 

includes gradient, weather, and so on. dt  denotes the time which the cars need to 

change it’s velocity from 0u  to du . 

 

3.1.3 Mobility 

 In this research, the meaning of mobility is the potential of drivers to change their 

status. It means the potential to accelerate, decelerate, and change lane. In following 

sections, mobility is a key parameter in traffic flow models. It decides each driver’s 

choice about lane-changing behaviors and the magnitude of desired speed. The details 

of mobility will be discussed in following sections. 

 Before next section, it must be noticed that we don’t care about lateral field. So the 

fields in following sections represent vertical (the way car moving) fields. 
  

3.2 Behaviors and Simulator of Microscopic Models 
 

 One-dimension traffic flow models are most popular models, LWR and PW models 

are the most well-know two. In one-dimension models, cars are moving in alignment. It 

distributes all density in one line and simplifies traffic problems. We will calibrate the 

parameters in latest section and discuss the problems about muti-lane in next chapter. 

 We design a microscopic simulator to calibrate all parameters and verify the model 
which we have designed in last section. The assumptions in simulator are showed as 

follows: 

(1) Transfer the density to be the amount of cars and put them in the road 

according to normal distribution.  
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(2) Distance between each car must be larger than a smallest distance (8 meters). 

(3) The arrival of cars is based on Poisson distribution. 

(4) The time step of the simulator is 3 seconds. 

(5) The behaviors of cars refer to CA models. 

We don’t refer to Greenshields’ or Greenberg’s models in our simulator, so we need to 

define a series of reasonable moving behaviors: 

(1) Each car has a maximum speed (free flow speed). 

(2) Distance between each car must be larger than 8 meters. 

(3) The speed of the following car shows as follows: 

 

 

(3.5) 

(4) rand in Eq. (3.5) is calculated by Monte Carlo computing technique. 

rand denotes a magnitude of acceleration. We calculate it by Monte Carlo computing 

technique to find the measurement of area in speed-time diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3-2 

Speed-time diagram about Monte Carlo computing technique 
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 We use Fig. 3-2 to define the magnitude of rand. In Fig. 3-2, the vertical axis 

denotes speed and the lateral axis denotes time, the measurement of area in Fig. 3-2 
denotes distance. A, B, C, D, E represent areas, 23L , 45L , and 51 ~ LL  represent lines. 

fu  denotes free flow speed, 0u  denotes the speed of the following car at time 0, and 

rt  denotes the time step of simulator. The meanings of each lines are showed as table 

3-1: 

 

 

1L  Maximum accelerating line of the following car 

2L  The upper-bound keeps the following car to avoid bumping into the leading car

3L  The line represents that the following car maintains a constant speed 

4L  The lower-bound keeps the following car to avoid bumping into the leading car

5L  Maximum decelerating line of the following car 

 

 Fig. 3-2 is an example for explaining the meanings of each line. All procedures are 

described as follows: 

1.  The bound condition which avoids accident is showed as Eq. (3.6): 

2
)()(()()()( ttututtxtxttu leadlead

lagleadfollow
∆++⋅∆

×+−≤∆⋅ λ  （3.6） 

 If Eq. (3.6) is satisfied, we simulate the accelerate area because no accident 

happens. On the other hand, if any accident happens, we simulate the 

decelerate area. 

 

2. We set a variable k=0 and put N points in accelerating area (or decelerate area 

according to step 1) randomly. After that, we connect every point to origin 

(where time and speed equal to 0). Once a connecting line limits to maximum 

accelerating line to avoid bumping into leading car, set k=k+1. (In Fig. 3-2,  

B represents the accelerating area and C represents the decelerating area where 

the following cars would not bump into the leading car.) Finally, 

×N
k accelerating area (or decelerating area) is the satisfied area. 

 

Table 3-1 The meanings of each line in Fig.3-2 
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3. The satisfied area calculated in step 2 and original area (C, D, and E if in 

accelerating area, E if in decelerating area) are combined to be a total area. We 
draw an approximate line ( 4523  and LL  in Fig. 3-2) and get an area around 

approximate line and 3L . If the area is the same as total area, the approximate 

line will be the acceleration at that time step. 

  

 The maximum difference between Eq. (3.6) and CA models is the latest term in Eq. 

(3.6). We introduce λ (mobility) into latest term to represent drivers’ perception of the 

leading cars. The range of mobility is from 0 to 1. Besides, for describing drivers’ 

behaviors well, time step of simulator is designed to be 3 seconds. That is because cars 

need enough time to react to the leading cars such as to decelerate or change lane. But 3 

seconds is too long for the version of CA. If we don’t introduce mobility into the latest 

term of Eq. (3.6), cars will move 3 seconds and stop 3 seconds when traffic is heavy. 

The magnitude of mobility is defined randomly in the simulator. The flowchart of 

simulator is showed as Fig. 3-3: 
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Figure 3-3 The flowchart of 1-D simulator 
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3.3 Calibration of the Parameters and Verification of the Model 
 

 In this section, we calibrate all parameters in the models based on the simulator 

designed in last section. Main equations are (3.3c) and (3.3d) and main parameters are 

ε  and δ .  

 

3.3.1 Calibration of δ  

 δ  is a magnitude of speed. When the speed of the leading car is δ  meter/ second 

larger than the following one, the following car will accelerate even though two 

adjacent cars are near. It is obvious that δ  and the distance between two cars must be 

inverse proportion. It means that when two cars are nearer, speed of the leading car must 

be higher to make the following one to accelerate. Of course, δ  is not only affected by 

the distance between two cars. We can find out the other factors rely on simulator. 

 For simplifying the data, we sift useless data from the output of the simulator. The 

data we need must satisfy the following constraints: 

1. Accelerating behaviors 

2. Total magnitude of acceleration must be larger than the magnitude only caused 

by external field. 

After that, we get Fig. 3-4: 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 

The relation between the distance and speed difference of two adjacent cars 

The distance between two cars (m) 

The speed difference between two cars
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 In Fig. 3-4, the lateral axis denotes the distance between two adjacent cars and the 

vertical axis denotes the speed difference between them. The free flow speed is 60 Km / 

hour and the jam density is 125 vehicle /Km. The range of mobility is from 0.1 to 0.4. 

We can find that the gradient of straight line in Fig. 3-4 is δ  and which is calculated in 

Eq. (3.7): 

t
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f ∆
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For finding out the relation between δ  and mobility, we subdivide Fig. 3-4 into Fig. 

3-5: 
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Figure 3-5 

The relation between δ and mobility
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Because we only retain the data with no internal field, Fig. 3-5 is an expected result. We 

know that the behaviors of drivers are affected by mobility if the internal fields exit (see 

Eq. 3.5). The phenomenon is proved again by the result of simulator. 
 

3.3.2 Calibration of γ  

 γ  denotes a parameter which represents the relation between the POB and the 

internal fields. We rewrite Eq. (3.3) to get Eq. (3.8) 
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We change the vertical and lateral axis to obtain Fig. 3-6: 
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Figure 3-6 

Unreasonable relation between POB and the internal fields 
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 In Fig 3-6, the vertical axis denotes the POB which is calculated from 

10

01
uu

xx
−

− . The unit of it is second. The Lateral axis is calculated from 

))(( 2110

In0,
xxuu

E
−+− δ . 

The result of Fig. 3-6 is unreasonable because the points in the frame should not exit. It 

means that to calculate POB from 
10

01
uu

xx
−

− is unsuitable. There is high speed in 

these points to lead to smaller 10 uu − . The phenomenon also leads to a larger POB 

indirectly but it should not exit in practical condition.  

 The unreasonable phenomenon exits because we neglect the effects of mobility 

when we calculate the POB. In practical condition, the following driver has an ability to 

predict the trace of the leading car. Once the driver of the following car can predict the 

trace of the leading car, the POB will be smaller. Mobility also affects the ability to 

predict. Radical drivers (with high mobility) have smaller POB but conservative drivers 

(low mobility) have higher POB. According to the assumptions, we must redefine the 

formulation of POB showed as Eq. (3.9)  
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According to Eq. (3.9), we obtain Fig. 3-7 from Fig. 3-6: 
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 There is an important message in Fig. 3-7. For the purpose to analyze the relation 

between the POB and the internal fields, we must discuss two conditions separately. 

These two conditions depend on whether the POB is larger than the time step. Because 

time step is 3 seconds in this research, Fig. 3-7 must be segmented into Fig. 3-8 and Fig. 

3-9: 
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Figure 3-7 

Reasonable relation between the POB and the internal fields 
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Figure 3-8 

The relation between the POB and the internal fields 

(When the POB is larger than the time step) 

Figure 3-9 

The relation between the POB and the internal fields 

(When the POB is smaller than the time step) 
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 In Fig. 3-8, when the POB is smaller, deceleration is larger and vice versa. In Fig. 

3-9, it seems that the distribution of points is irregular. In fact, if the POB is smaller 

than the time step, drivers must decelerate to avoid bumping into the leading cars. When 

the time step is smaller, the phenomenon is more obvious. When mobility is larger, the 

phenomenon is more unobvious. So, we formulate the relation between the POB and the 

internal fields showed as Eq. (3.10a) and Eq. (3.10b): 
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 We also finds out that when mobilityλ  is larger, γ  is larger from the result of 

simulator. According to the curves in Fig. 3-8, we define λγ 101+=  roughly to 

calibrate ε  in next section. 

 

3.3.3 Calibration of ε  

 Before calibrating ε , we review Eq. (3.3), (3.7), and (3.10) to formulate  
microscopic internal fields showed as Eq. (3.11): 
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 According to Eq. (3.11) and the result of simulator, the calibration of ε
1  is 

showed as Fig. 3-10 
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 In Fig. 3-10, the vertical axis denotes different samples and the lateral axis denotes 

the magnitude of ε
1 . It is obviously that ε

1  is affected by mobility. For simplifying 

models, we define different magnitude of ε
1  according to different mobility. The 

result of simulator is showed in Table 3-2: 

 
 

Magnitude of mobility Average of ε1  Standard deviation of ε1

0.1 10.20 3.84 

0.2 22.14 15.84 

0.3 35.58 20.25 

0.4 75.52 43.20 

  

 

 

 

10.=λ

20.=λ  

30.=λ  

40.=λ  

Table3-2 Statistic date of ε
1  and mobility 

Figure 3-10 The magnitude of ε
1  with different mobility 
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3.4 Macroscopic Single-Lane Models 
 

 Eq. (3.4) and (3.11) represent microscopic models. For calculating real-time 

informations, macroscopic models are needed especially to simulate large scale 

network. 

 

3.4.1 Macroscopic Internal Fields 

 The distance between cars in microscopic models is a reciprocal of the density in 

macroscopic ones. The derivation of macroscopic internal fields is showed as follows: 
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Conditional parts are showed as follows: 
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According to above-mentioned derivations, Eq. (3.12a) is obtained: 
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In Eq. (3.12a), 1+=′ γγ , )k(δ ′ , )(λη , and ∆  are additional variables and 

parameters. 

According to Eq. (3.7): 
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∆  denotes the time step. According to above-mentioned derivations, we obtain: 
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Because the range of λ  is from 0 to 1, )(λη  must be larger than 1. The result of 

simulator is showed in Table 3-3: 
 

 

Mobility Average of )(λη   Standard deviation of )(λη  

0.1 1.295 0.254 

0.2 1.242 0.383 

0.3 1.386 0.512 

0.4 1.360 0.659 

Table3-3 Statistic data of )(λη  and mobility 
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 Table 3-3 represents that the standard deviation of )(λη  only be affected by 

mobility. If the internal fields are Eq. (3.11b) and (3.11c), we obtain: 
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x
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∂
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x
u)(λη   (3.12b) 

0In =E     if 0<′+
∂
∂ )k(

x
u δ        (3.12c) 

In Eq. (3.12a) and (3.12b), δ ′  and δ  can also be represented by )1( kδ ′  and 

)1( kδ . 

 

3.4.2 Macroscopic External Field 

 We define the microscopic external field to be a function of each driver’s desire 

speed. But it needs aggregate variables to represent macroscopic models. We introduce 

the well-know relaxation-term to describe the external field in this research. It must be 

noticed that the equilibrium velocity would not only be the function of density. Some 

external environments must be taken into account, too. Formulation of the external field 

is showed as Eq. (3.13): 

T
uuE e

VerticalEx
−

=,       (3.13) 

 In Eq. (3.13), ......)p,p,k(uu ee 21= , p denotes the external environments such as 

gradient, weather, and so on. Because there is no data to calibrate equilibrium velocity, 

we introduce May’s definition (1967): 

50.

j
fe )

k
kexp(uu −=      (3.14) 

3.4.3 Summary 

 All procedures about simulation are showed as follows: 

（1） Define the type of the internal field according to the different thresholds. 
（2） Choice a magnitude of )(λη  according to Table 3-5 

（3） Choice a magnitude of ε
1  according to Table 3-4 

（4） Define the behaviors of cars according to the external fields and some other 
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parameters. 

The macroscopic model is showed as Eq. (3.15): 
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CHAPTER 4 
Multi-Lane Traffic Flow Model 

  

 We derive a multi-lane traffic flow model in Chapter 4, which is combined with 

several 1-demension single lane traffic flow models. These kinds of models had been 

published by Michalopoulos, etc. (1980), maximum difference of these kinds of models 

is that the right-hand-side term of the conservation equation is not zero. Lane-changing 

flow rate must be defined in these kinds of models. But we think not only conservation 

equation should be corrected but also motion equation, too.  

 The key point is that the shock caused by different lanes is larger than the shock 

caused by original lane when the amount of changing density is the same: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 4-1 represents the change of density when the lane-changing behaviors happen. 

In Fig. 4-1, the vertical axis denotes the time, and the lateral one denotes velocity. If the 

initial velocity of inside and outside lane are the same and the density are ckk +  and k. 

ct  is the time that the lane-changing behaviors happen. Before ct , the velocity of 

Figure 4-1 The shock caused by lane-changing behaviors 
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inside and outside lane change toward its’ equilibrium velocity. After ct , the amount of 

density(kc) shifts from inside lane to outside lane and causes large shock to traffic. So, 

we adjust not only conservation equation but also motion equation to satisfy 

above-mentioned phenomenon. We will describe the details of multi-lane simulator in 

the first section of this chapter. We design a microscopic multi-lane traffic flow model 

and discuss the shock caused by lane-changing behaviors in the second section. We 

transfer the microscopic model to be the macroscopic one and verify its’ parameter in 

latest section. 

 

4.1 Microscopic Behaviors and Simulator 
 

 In this section, we describe the behaviors of drivers in multi-lane models and 

define the lane-changing constraints. The relation between mobility and the 

lane-changing behaviors will be discussed, too. Besides, an additional variable “driver’s 

inertia” will be explained in 4.1.2. 

 

4.1.1 The Lane-Changing Constraints 

 There is a series of constraints for drivers to judge whether they change lane in the 

multi-lane models. In this research, we define three constraints: 

1. When drivers do lane-changing behaviors, it must increase the distance 

between them and the leading car. 

2. If a driver wants to change lane, he must consider the distance between him 

and the car behind him in target lane. 

3. There must be an interval of designed time between each lane-changing 

behaviors of the same car. It means that drivers can not change lane at every 

time step, 

The purpose of third constraint is to avoid ping-pong phenomenon. Of course, all 

constraints will be affected by mobility in this research. 
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In Fig.4-2, vehicle 2 is our target. If vehicle 2 wants to change lane, it must satisfy the 

following constraints: 

)]([)xx(xx max 22321 1 λλ −+⋅−≥−     (4.1) 

2
020

02
t]u)(u[

xx max ∆⋅⋅−+
≥−

λλ
    (4.2) 

nochangenochange tt ⋅−≥ )( 2max,2 λλ      (4.3) 

In Eq. (4.1), (4.2). and (4.3), maxλ  is 1 in our simulator (the range of mobility is from 0 

to 1). It is obviously that drivers with high mobility have low thresholds to limit them 

doing lane-changing behaviors. 

 

4.1.2 Driver’s Inertia 

 When the following cars move with constant leading cars for a long time, drivers 

of the following cars can predict the behaviors of the leading cars more exactly. Driver’s 

inertia represents above-mentioned phenomenon. The magnitude of driver’s inertia will 

increase when the following time increases. In the single lane models, driver’s inertia is 

1. But the lane-changing behaviors appear in multi-lane models. Once a driver change 

lane, he can not predict the behaviors of the car in front of him well immediately. So, we 

adjust Eq. (3.5) to be Eq. (4.4): 

Figure 4-2 
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(4.4) 

φ  denotes the driver’s inertia. We define that every drivers need three time steps to 

predict the behaviors of the leading cars completely. So, Eq. (4.5) is obtained: 

 ]t,[Min 31 ′=φ       (4.5) 

t ′  is the number of time step. 

 

4.1.3 The Procedures of Simulator 

 According to 4.1.1 and 4.1.2, the assumptions of microscopic multi-lane models 

are: 

(1) Transfer the density to be the amount of cars and put them in the road 

according to normal distribution.  

(2) The distance between each car must be larger than a smallest distance (8 

meters). 

(3) The arrival of cars is defined based on Poisson distribution. 

(4) The time step of simulator is 3 seconds. 

(5) The behaviors of cars refer to CA models. 

(6) In a time step, cars move forward first and then change lane. 

We don’t refer to Greenshields’ or Greenberg’s models in our simulator, so we define a 

series of reasonable moving behaviors: 

(1) Each car has a maximum speed (free flow speed). 

(2) The distance between each car must be larger than 8 meters. 

(3) Eq. (4.4) represents the speed of following car.  

(4) rand in Eq. (4.4) is calculated by Monte Carlo computing technique which 

has been described in chapter 3. 

(5) Eq. (4.1), (4.2), and (4.3) must be satisfied if cars want to change lane. 
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The flowchart of simulator is showed as follows: 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3 

The flowchart of multi-lane simulator 
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The details of lane-changing behaviors are showed in Fig. (4-4): 
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Figure 4-4 

Flowchart of the lane-changing judgment 
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4.2 Microscopic Multi-Lane Traffic Flow Model 
 

 There are different internal fields from single lane models in multi-lane models . 

We review the internal fields of the single lane models: 
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First, we introduce driver’s inertia into Eq. (3.11a): 
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It is obviously that driver has a high mobility is more sensitive to driver’s inertia. 

Besides, we derive Eq. (4.7) because of 1≤φ : 
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In Eq. (4.7), drivers who just do lane-changing behaviors make a larger initial field than 

drivers who have change lane for a long time to the cars behind them. It proves the 

assumptions in the beginning of this chapter.  

 Although the meanings of parameters are identical between single and multi-lane 

models, some of them must be calibrated again in multi-lane models. We discuss these 

parameters in next chapter. 
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4.2 Macroscopic Model and Calibration of the Parameters 
 

 We derive the model from Eq. (4.6): 
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To obtain Eq. (4.7): 
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It must be noticed that Eq. (4.7) represnts that all cars just change lane for a short time. 

It is unreasonable to introduce Eq. (4.7) into our macroscopic mode. 

 Because the amount of lane-changing behaviors is expressed by density, we 

assume original density is k and shift ck  to adjacent lanes. Eq. (4.8) is derived from Eq. 

(4.7): 
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Eq. (4.8) is a kind of proportional representation. When the amount of lane-changing 

behaviors is larger, the shock caused by it is larger.  

 )(λη′  is define in Eq. (4.9) 
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According to the result of simulator, statistical data about )(λη′  is showed in Table 

4-1: 
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Mobility Average of )(λη′   Standard deviation of )(λη′

0.1 1.317 0.273 

0.2 1.282 0.447 

0.3 1.497 0.659 

0.4 1.520 0.952 

 

When mobility is larger, the standard deviation of )(λη′  is larger. 

 We don’t define a new equation to calculate the amount of lane-changing behaviors. 

So, we introduce Michalopoulos’method into this research to obtain our macroscopic 

model: 
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Table 4-1 Statistical data between )(λη′  and mobility 
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In Eq. (4.10), i denotes the number of car. Eq. (3.10) is the models of middle lane. If 

someone wants to describe the inside lane, he must adjust 1±i  to i+1. If someone 

wants to describe the outside lane, he must adjust 1±i  to i-1.  
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CHAPTER 5 
Contribution and Future Works 

 
5.1 Contribution 
 

 We derive a new macroscopic traffic flow model based on microscopic one. It 

makes all variables and parameters having physic meanings. If physic meanings exit, 

field data can help us to calibrate the parameters conveniently. Variables in the model 

can also be adjusted to fit different condition easily.  

 We introduce traffic fields and mobility into the new model. The traffic fields 

represent the power that push cars to accelerate or decelerate. Dividing the fields into 

the internal field and the external field can simplify the movements of cars. Different 

magnitudes of mobility can be applied to describe different driving behaviors in the 

same road (Drivers in inside lane must have different mobility from in outside lane). 

 There is no backward flow in this new traffic flow model because of the 

definitions about thresholds. For example, we have three kinks of the internal fields in 

different situations. 

  

5.2 Future Works 
 

1. We don’t verify the fitness of equilibrium velocity. It should be calibrate 

according to field data. 

2. Mobility should not be the only factor to affect ε . Maybe some other 

factors are neglected when we design the models.  

3. The .aAmount of lane-changing behaviors is still calculated from past 

methods. It should be designed according to the field data. 

4. We don’t discuss the rationality about numerical simulation in this research. 

It could be verified through a suitable finite difference method. 

5. Two-dimension model is needed to analyze the behaviors of motorcycle. We 

define the meanings of the fields. The meaning of energy in traffic should 
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be defined in future work. Energy could be the threshold of lane-changing 

behaviors. 

6. Mixed flow is the final work to describe real behaviors of vehicles. 
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