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a b s t r a c t

In this paper we combine the main concepts of estimation of distribution algorithms (EDAs) and immune
algorithms (IAs) to be a hybrid algorithm called immune-estimation of distribution algorithms (IEDA).
Both EDAs and IAs are extended from genetic algorithms (GAs). EDAs eliminate the genetic operation
including crossover and mutation from the GAs and places more emphasis on the relation between gene
loci. It adopts the distribution of selected individuals in search space and models the probability distri-
butions to generate the next population. However, the primary gap of EDAs is lock of diversity between
individuals. Hence, we introduce the IAs that is a new branch in computational intelligence. The main
concepts of IAs are suppression and hypermutation that make the individuals be more diversity. More-
over, the primary gap of IAs is to pay no attention to the relation between individuals. Therefore, we com-
bine the main concepts of two algorithms to improve the gaps each other. The classification risk of data
mining is applied by this paper and compares the results between IEDA and general GAs in the experi-
ments. We adopt the thyroid gland data set from UCI databases. Based on the obtained results, our
research absolute is better than general GAs including accuracy, type I error and type II error. The results
show not only the excellence of accuracy but also the robustness of the proposed algorithm. In this paper
we have got high quality results which can be used as reference for hospital decision making and research
workers.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we attempt to propose the hybrid algorithm that
considers the advantage of estimation of distribution algorithms
(EDAs) and immune algorithms (IAs). The EDAs was first intro-
duced by Larranaga and Lozano (2001). It is a search method that
eliminates crossover and mutation from the genetic algorithms
(GAs) and places more emphasis on the relation between gene loci.
More precisely, it generates the next generation based on probabil-
ity distribution of N superior population samples. In this way, the
probability distribution estimated at each generation is progres-
sively converted into a probability distribution that generates
more superior individuals (Chen & Zhao, 2008). In addition, many
combinatorial optimization algorithms have no mechanism for
capturing the relationships among the variables of the problem
(Inza, Larranaga, & Sierra, 2001). The EDAs considers the interac-
tions between individuals that are performed by probability distri-
bution, hence, this is main improvement from general GAs.
ll rights reserved.

Chang).
IAs emerged in the 1990s as a new branch in computational
intelligence. The biological immune system is a complex adaptive
system that has evolved in vertebrates to protect them from invad-
ing pathogens (Dipankar, 2006). The operative mechanisms of im-
mune system are very efficient from a computational standpoint.
The immune system mostly consists of the immune cells that most
are lymphocytes. We can summarize the two main concepts of IAs;
first, the immune response to secondary encounters could be con-
siderably enhanced by storing some high affinity antibody produc-
ing cells from the first infection (memory cells), so as to form a
large initial clone for subsequent encounters. Second, the process
of hypermutation that means the mutation processes in lympho-
cytes. Random changes (mutations) take place in the variable re-
gion genes of antibody molecules. These random changes are
mutational events and cause structurally different cells (Engin &
Döyen, 2004). According to the above, we known the major ideas
of two algorithms were the representation of probability model
in EDAs and the mechanism of physiological immune systems in
IAs. In addition, the main drawback in IAs is not to consider the
interaction of variables that causes the phenomenon of local opti-
mal. Therefore, we combined the two major ideas to be a hybrid
algorithm called immune-estimation of distribution algorithms

http://dx.doi.org/10.1016/j.eswa.2009.06.100
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(IEDA) that was proven much effective and efficient in the
experiments.

With the rapid growth of databases, data mining has become
an increasingly important approach for data analysis (Yeh, Chang,
& Chung, 2008). The operations research community has contrib-
uted significantly to this field, especially through the formulation
and solution of numerous data mining problems such as optimi-
zation problems. Several operations research applications have
also be addressed using data mining methods. One of the impor-
tant tasks in data mining is classification (Olafsson, Li, & Wu,
2008). In classification, there is a target variable which is parti-
tioned into predefined groups or classes. The classification system
takes labeled data instances and generates a model that deter-
mines the target variable of new data instances. The discovered
knowledge is usually represented in the form of if – then predic-
tion rules, which have the advantage of being a high level, sym-
bolic knowledge representation, contributing to the
comprehensibility of the discovered knowledge (Mohamadi, Hab-
ibi, Abadeh, & Saadi, 2008).

The health care related data mining is one of the most reward-
ing and challenging area of application in data mining and knowl-
edge discovery. The challenges are due to the data sets which are
large, complex, heterogeneous, hierarchical, time series and of
varying quality. The available healthcare data sets are fragmented
and distributed in nature, thereby making the process of data inte-
gration is a highly challenging task (Delen & Patil, 2006). Moreover,
data classification method has been applied in problems of medi-
cine, social science, management, and engineering (Ryu, Chandr-
asekaran, & Jacob, 2007). In this paper, we adopt IEDA to
discover the classification rules that the thyroid gland data from
UCI database is applied. We will compare the effectiveness be-
tween IEDA and general GAs in experiments.
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Fig. 1. The flowchart of a typical immune network algorithm (Timmis, 2007).
2. Literature review

2.1. Estimation of distribution algorithms

The EDAs emerged as a generalization of genetic algorithms
(GAs), for the purpose of overcoming the two main problems:
poor performance in certain deceptive problems and the difficulty
of mathematically modeling a huge number of algorithm variants
(Sun, Zhang, & Tsang, 2005). The primary concept was to extracts
directly the global statistical information about the search space
from the search so far and builds a probability model of promis-
ing solutions. New solutions are sampled from the model thus
built (Gonzalez, Lozano, & Larranaga, 2002). Hence, the represen-
tation of probability model was a crucial process in EDAs. An
appropriate probability model could ensure the effectiveness
and efficient of algorithm. However, it was difficult and compli-
cated to build an appropriate probability model. From now, many
references had proposed various methodologies to build an
appropriate probability model. The concept of EDAs was first
introduced by Muhlenbein and Paas (1996) in 1996 and was later
termed by Larranaga and Lozano (2001) in 2001. EDAs derive
optimal solutions by developing probability models of each pop-
ulation. Compared with GAs, EDAs do not require genetic opera-
tions such as crossover and mutation to estimate the next
generation. Instead, EDAs rely on selected individuals to model
the joint probability distribution that can reflect the important
feature of EDAs—precise description of the association between
variables. General evolutional algorithms are not equipped with
any mechanism that can correctly capture the global statistics
in the previous search as a basis for future searches. EDAs develop
probability distributions and use sampling and estimation to
generate new generation solutions and improve the above draw-
backs. Besides, the absence of crossover and mutation operators
in EDAs can avoid the problem of prematurity and is thus an
important contribution.
2.2. Immune algorithms

IAs also extend from GAs and use ideas gleaned from immunol-
ogy to develop intelligent systems capable of learning and adapt-
ing, and have been widely applied to the various areas (Zuo &
Fan, 2006). IAs is evolutionary algorithms based on physiological
immune systems that have mechanisms to enable them to elimi-
nate foreign substances. The mechanisms work by first recognizing
foreign substances known as antigens. The immune systems then
generate a set of antibodies to eliminate the antigens. These anti-
bodies interact with the antigens to produce different results.
The mechanisms are able to recognize which antibodies are better
at eliminating the antigens and produce more variations of those
antibodies in the next generation of antibodies (Alisantoso, Khoo,
& Jiang, 2003). Fig. 1 shows the flowchart of a typical immune net-
work algorithm (Timmis, 2007).

Therefore, in this paper we combine the main viewpoint of two
algorithms to be a hybrid algorithm. This algorithm not only con-
siders the interaction between individuals but also maintain the
diversity between individuals.
3. The procedure of IEDA

We described the detailed steps of IEDA in the following:

Step 0: Set the three number TL; TC and TU where 0 < TL <

TC < TU < 1.
Step 1: Generate an initial solution randomly labeled by P1.
Step 2: Evaluate the fitness of individuals and arranged in an

order.
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Step 3: Select individuals of the best d%; M-inds and put them
into the memory pool. We adopt each dimension of indi-
viduals in memory pool to build a probability model;
Mi � Probj where i = 1, . . . ,m, j = 1, . . . ,n.

Step 4: Select individuals of the worst d%; S-inds and put them
into the suppress pool. We adopt each dimension of
individuals in suppress pool to build a reverse probabil-
ity model; Si � Probj where i = 1, . . . ,m, j = 1 . . . ,n.

Step 5: Generate a random number; f where 0 < f 6 1.
Step 6: If 0 < f 6 TL then kept the present variable.
Step 7: If TL < f 6 TC then generate a variable via Mi � Probj.
Step 8: If TC < f 6 TU then generate a variable via Si � Probj.
Step 9: If TU < f 6 1 then generate a random variable; n where

the domain of n depended on the problem.
Step 10: Weather the criterion of stopping is reached or not? If

not then goto Step 2.
Step 11: End algorithm.

In the step 4, we not only achieve the effect of suppression but
also maintain the diversity between individuals. Since, we still
keep the worse individuals and build the reverse probability mod-
el. The different combination of variables may create better indi-
viduals, therefore in proposed IEDA does not eliminate worse
individuals to maintain the diversity between individuals. We
adopt the reciprocal of original probability and recalculate new
probability of each dimension. Afterward we build the new proba-
bility model called reverse probability model. The example of Table
1 shows this process in detail. We assume the domain of dimen-
sion j to be 1, 2 and 3. At first, we sum up the number of each var-
iable, and then we derive the original probabilities; 0.5, 0.333 and
0.167, respectively. Second, we transform the original probabilities
into the type of reciprocal; 2, 3 and 6, respectively. Finally, we use
these reciprocals to build the new probability model called reverse
probability model. Hence, this process not only improves the diver-
sity between individuals but also considers the mechanism of sup-
pression. Fig. 2 shows the process of IEDA in detail.

4. IEDA for mining thyroid data set

4.1. Introduction of data set

This paper adopts the thyroid gland data from UCI database.
Number of instances is 215 and includes five features and one class
that is showed by Table 2. The data set contains 150 to be Normal
(class = 1), 70 Hyper (class = 2), and the reminders is Hypo
(class = 3).

4.2. Data preprocessing

We rearrange the configuration of data set according to the or-
der. Since the original type of data set is floating point in part. The
Table 1
The process of reversing probability distribution.

Dimension j

Individual 1 2
Individual 2 3
Individual 3 2
Individual 4 1
Individual 5 1
Individual 6 1
Variable 1 2 3
Count 3 2 1
Original probability 0.5 0.333 0.167
Reciprocal 2 3 6
New probability 0.182 0.273 0.545
way of transformation is to convert the original data set to be inte-
gers according to order. For example, the feature of f1 that the first
value is ‘‘65”, and we convert ‘‘65” to be ‘‘1” and so on. It is conve-
nient to be executed by IEDA. Table 3 shows parts of new data set
via transformation.

4.3. Encoding

This paper adopts the Yeh et al.’s (2008) approach that the
method of encoding is showed by Fig. 3. We define the feasible
End

Fig. 2. The flowchart of IEDA.

Table 2
The features of thyroid gland dataset.

Feature name Domain Simplified form

T3-resin uptake test 65—144 f1

Total serum thyroxin 0:5—25:3 f2

Total serum triiodothyronine 0:2—10 f3

Basal thyroid-stimulating hormone 0:1—56:4 f4

Maximal absolute difference of TSH value �0:7 to 56:3 f5

Class 1,2,3 Y
Class 1: Normal, class 2: Hyper, class 3: Hypo



Table 3
Parts of results via transformation.

Original dataset Transformed dataset

1 f1 f2 f3 f4 f5 f1 f2 f3 f4 f5

2 65 25.3 5.8 1.3 0.2 1 88 47 12 8
3 65 18.2 10 1.3 0.1 1 101 42 12 9
4 67 23.3 7.4 1.8 �0.6 2 98 45 17 2
5 68 14.7 7.8 0.6 �0.2 3 76 46 5 5
6 76 25.3 4.5 1.2 �0.1 4 101 37 11 6
7 79 19 5.5 0.9 0.3 5 90 41 8 10
8 80 23 10 0.9 �0.1 6 97 47 8 6
9 84 21.5 2.7 1.1 �0.6 7 89 36 10 4
10 84 18.5 4.4 1.1 �0.3 7 94 26 10 2
Domain 65—144 0:5—25:3 0:2—10 0:1—56:4 �0:7 to 56:3 1—54 1—101 1—47 1—47 1—85
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Fig. 3. The form of encoding.

Table 4
The TP, TN, FP and FN rate parameters.

Actual state Predicted patient state

Classified as ‘‘true”
(Positive)

Classified as ‘‘false”
(Negative)

Class is ‘‘true” (Positive) TP FN
Class is ‘‘false” (Negative) FP TN
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Fig. 4. The process of mining thyroid gland data set by IEDA.
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solution like that is a 1�(3m + 1) array called an ‘‘individual” and
the grids called ‘‘dimensions”. The first dimension represents the
amounts of features that are chosen by IEDA. The second dimen-
sion represents the variable 1, third dimension that uses ‘‘1” repre-
sents ‘‘>”, ‘‘2” represents ‘‘=” and ‘‘3” represents ‘‘<” and forth
dimension represents threshold.

4.4. Fitness function

We can calculate the accuracy that represents the fitness value
of each individual. The equation of accuracy, sensitivity and spec-
ificity are showed by the following. In terms of relative reference,
we define the TP, TN, FP and FN rate parameters to show in the Ta-
ble 4. The calculation of accuracy is the amount of the ‘‘class<> 1”
to be select correctly plus the amount of the ‘‘class = 1” to be not
select that divide the amount of data (Yeh et al., 2008).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Sensitivity ¼ TP
TP þ FN

Specificity ¼ TN
TN þ FP
4.5. The process of IEDA

We divide the raw data set into training data set and testing
data set. The number of training data set is 142, and the remain-
ders are testing data set. We adopt the method of 10-fold-valida-
tion (Chen & Hsu, 2006) to perform the robustness and reliability
of algorithm. The process of mining thyroid gland data set by IEDA
shows in Fig. 4.
5. Experiment

In our experiment, we want to classify between ‘‘Normal” and
‘‘Hyper” and between ‘‘Normal” and ‘‘Hypo”. Hence, we divide
the two parts that the purpose of first part is to find rules to classify
between ‘‘Normal” and ‘‘Hyper”, and the second part is to find rules
to classify between ‘‘Normal” and ‘‘Hypo”. Table 5 shows the re-
sults of first part that classify between ‘‘Normal” and ‘‘Hyper”.
We find the best and average accuracy of classification by IEDA
to be better than by GAs. The best and average accuracy by IEDA
are 0.9839 and 0.96775, respectively. Besides, the best and average
accuracy by GAs are 0.9516 and 0.90805, respectively. In the sec-
ond part, we want to find the classification rules between ‘‘Nor-
mal” and ‘‘Hypo”. Similarly, both the best and average accuracy



Table 5
The results of first part.

Rule Accuracy of training Accuracy of testing Type I error Type II error

The results of IEDA
1 f2 > 69 and f5 > 3 0.8943 0.9839 0 1
2 f2 > 59 and f5 < 21 0.9675 0.9355 4 0
3 f2 > 55, f4 < 21 and f5 < 15 0.9675 0.9839 1 0
4 f2 > 77; f 3 < 47 and f4 < 19 0.9106 0.9516 0 3
5 f2 > 68 and f5 < 20 0.9675 0.9839 0 1
6 f2 > 75 and f5 > 3 0.9106 0.9516 0 3
7 f2 > 70 and f5 < 24 0.9593 0.9839 0 1
8 f2 > 76 and f3 < 48 0.9268 0.9516 0 3
9 f2 > 70 and f3 > 15 0.9675 0.9677 0 2
10 f2 > 68 and f5 < 20 0.9675 0.9839 0 1
Average 0.94391 0.96775 0.5 1.5
Std. 0.0298 0.018639

The results of GAs
1 f2 > 87 and f5 > 1 0.9187 0.8387 0 10
2 f3 > 27 and f5 > 3 0.935 0.8871 1 6
3 f2 > 38, f 3 < 45 and f5 < 11 0.9187 0.8548 7 2
4 f3 > 26 0.935 0.9032 1 5
5 f3 > 27 and f5 > 3 0.935 0.8871 1 6
6 f2 > 75 and f5 > 3 0.9106 0.9516 0 3
7 f2 > 77; f 3 < 47 and f4 < 19 0.9106 0.9516 0 3
8 f2 > 74 and f3 < 44 0.9024 0.9516 0 3
9 f3 > 26 0.935 0.9032 1 5
10 f2 > 75 and f5 > 3 0.9106 0.9516 0 3
Average 0.92116 0.90805 1.1 4.6
Std. 0.012757 0.042369

Table 6
The results of second part.

Rule Accuracy of training Accuracy of testing Type I error Type II error

The results of IEDA
1 f2 < 22 0.9667 0.9833 0 1
2 f2 < 21 and f5 < 83 0.95 0.95 2 1
3 f3 > 0 and f5 > 63 0.9417 0.9333 3 1
4 f4 > 25 0.9667 0.9667 2 0
5 f2 < 20 and f4 < 45 0.9333 0.9667 2 0
6 f2 < 22 and f3 < 28 0.9667 0.9833 0 1
7 f2 < 28 and f5 > 45 0.9667 0.9833 1 0
8 f2 < 63 and f4 > 24 0.9667 0.95 2 1
9 f1 > 13 and f4 > 25 0.9667 0.9667 2 0
10 f2 < 22 0.9667 0.9833 0 1
Average 0.94391 0.96775 1.5 0.5
Std. 0.0298 0.018639

The results of GAs
1 f2 < 46; f3 < 9 and f5 < 83 0.8917 0.9167 5 0
2 f3 < 11; f4 > 29 and f5 < 85 0.8917 0.9333 4 0
3 f4 < 47 and f5 > 69 0.9083 0.9167 5 0
4 f2 < 21 and f5 < 84 0.9583 0.95 2 1
5 f2 > 2 and f5 > 61 0.9167 0.9167 4 1
6 f2 < 63 and f4 > 24 0.9667 0.95 2 1
7 f3 < 13; f4 < 48 and f5 > 55 0.925 0.9333 4 0
8 f3 < 21; f4 > 20 and f5 > 26 0.9583 0.9333 2 2
9 f2 < 16; f3 < 28 and f4 < 46 0.9083 0.9333 4 0
10 f1 > 18; f3 > 5 and f4 > 23 0.9333 0.9 5 1
Average 0.92116 0.90805 4.6 1.1
Std. 0.012757 0.042369

Table 7
The comparisons of IEDA and GAs.

Algorithm Best rule Best accuracy Type I error Type II error

Part 1 IEDA f2 > 55, f4 < 21 and f5 < 15 0.9839 1 0
GAs f2 > 75 and f5 > 3 0.9516 0 3

Part 2 IEDA f2 < 28 and f5 > 45 0.9833 1 0
GAs f2 < 63 and f4 > 24 0.95 2 1
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Table 8
The type I and type II error of IEDA and GAs.

Actual class Classified class

I(Normal) II(Hyper)

Part 1
I(Normal) IEDA 49(98.00%) 1(2.00%)

GAs 50(100.00%) 0(0.00%)
II(Hyper) IEDA 0(0%) 12(100.00%)

GAs 3(0.25%) 9(0.75%)

Part 2
I(Normal) IEDA 49(98.00%) 1(2.00%)

GAs 49(98.00%) 1(2.00%)
II(Hypo) IEDA 0(0%) 10(100.00%)

GAs 2(0.20%) 8(0.80%)

Table 9
The average type I and type II error of IEDA and GAs.

Average type I error (%) Average type II error (%)

Part 1
IEDA 1 12.5
GAs 2.2 38.3

Part 2
IEDA 3 5
GAs 9.2 11
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of classification by IEDA are better than by GAs. The details of re-
sult are showed in Table 6. Table 7 lists the best results in IEDA
and GAs, respectively. In addition, Table 8 shows the best type I er-
ror and type II error of IEDA are better than GAs. Table 9 shows the
average type I error and type II error of IEDA are also better than
GAs.

6. Conclusion

Data mining is the search for valuable information in large vol-
umes of data (Xiong, Kim, Baek, Rhee, & Kim, 2005). In this paper,
we propose the hybrid algorithm that combines the immune algo-
rithm and estimation distribution of algorithm called immune-
estimation distribution of algorithm; IEDA and successfully applied
to the classification risk of UCI thyroid gland data set. We compare
the results between IEDA and traditional GAs. Based on the ob-
tained results, our research absolute is better than GAs including
accuracy, type I error and type II error. The results show not only
the excellence of accuracy but also the robustness of the proposed
algorithm. In this paper we have got high quality results which can
be used as reference for hospital decision making and research
workers. In future research, we will improve the effectiveness
and efficiency of IEDA and make it apply more domains. Hence,
we will draw the concept of estimation distribution of algorithm
for continuous problems to our IEDA, and consider the conditional
probability in establishing probability distribution of the IEDA. It
will improve the IEDA to be more effective.
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