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Abstract 

The increment of vehicle number and life quality request lead to develop ITS in 
the recent years. ATIS needs traffic flow model to provide real time prediction. ATMS 
needs traffic flow models to analyze traffic flow properties so that they can provide 
better traffic control strategies. Thus, this dissertation aims to develop a simple 
car-following model which can analyze traffic properties, represent traffic flow 
phenomena, save execution time, and have potential for extending to macroscopic 
models. 

The proposed model employs driver’s individual maximum speed as an 
exogenous variable to reflect the external environment and driver’s characteristics. 
The proposed model can explain why speeds and spacing differ among drivers even 
when the driving conditions are identical.  

This dissertation discusses the equilibrium and disequilibrium states of the 
proposed model, local stability between two moving cars, and relaxation time of 
different equilibrium states. The stability analysis indicates that traffic is stable if 
driver’s individual maximum speed is close to the equilibrium speed. Otherwise, if the 
difference between the individual maximum speed and the equilibrium speed is large, 
traffic may be unstable. It can explain why heavy traffic is unstable. Furthermore, 
numerical examples show that relaxation time increases if the difference between the 
individual maximum speed and the equilibrium speed increases. 

This dissertation derives the equilibrium state of the proposed model, and it 
indicates that equilibrium state is only dependent on the individual maximum speed 
and the equilibrium speed, not on initial conditions. A driver with higher individual 
maximum speed is more aggressive and keeps shorter equilibrium spacing under 
identical equilibrium speed. Fundamental diagrams based on microscopic equilibrium 
state and homogeneous drivers are also discussed. The capacity increases with free 
flow speed, and different parameter values result in different fundamental diagram 
patterns.  

Some traffic phenomena of disequilibrium states are discussed, such as 
closing-in, shying-away, stop-and-go, and traffic hysteresis. The mathematical 
analysis indicates that aggressive drivers may decide to accelerate while conservative 
drivers may decide to decelerate under identical driving condition. The speed-spacing 
relationships for acceleration and deceleration traffic are different. Different initial 
conditions and boundary conditions result in various traffic hysteresis patterns. 
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Glossary of Symbols 

1, +tnV  : speed of the following vehicle at time step t+1 

dn,ν  
: individual maximum speed of the following vehicle 

tnV ,  
: speed of the following vehicle n at time step t 

tnV ,1−  
: speed of the lead vehicle n-1 at time step t 

tnH ,  
: spacing between vehicle n-1 and vehicle n at time step t 

nS  : safe standstill spacing of the following vehicle n 
λ  : positive parameter 
α  : positive parameter 
β  : positive parameter 
γ  : positive parameter 
L  : positive parameter 
T  : length of a time interval, it equals reaction time of drivers 

dna ,  
:  desired start acceleration of the following vehicle n 

nZ  : minimum start spacing, nn SZ >  

nH ,ψ  : sensitivity to tnH ,  

1, −nVψ  : sensitivity to tnV ,1−  

nV ,ψ  : sensitivity to tnV ,  

enV ,  : equilibrium speed of the following vehicle 

enH ,  : equilibrium spacing  

enV ,1−  : equilibrium speed of the lead vehicle 

atnV ,,  : tnV ,  value for acceleration traffic 

dtnV ,,  : tnV ,  value for deceleration traffic 

atnV ,,1−  : tnV ,1−  value for acceleration traffic 

dtnV ,,1−  : tnV ,1−  value for deceleration traffic 

atnH ,,  : tnH ,  value for acceleration traffic 

dtnH ,,  : tnH ,  value for deceleration traffic 

nD  : dnenV ,, /ν  
q  : flow 
k  : density 
u  : space-mean speed 

eq  : equilibrium flow 

ek  : equilibrium density 

eu  : equilibrium space-mean speed 
τ  : time length of observation 
X  : road length of observation 

ix  : travel distance of vehicle i 

it  : travel time of vehicle i 
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Chapter 1  
Introduction 

1.1 Problem Statement 

The increment of vehicle number and life quality request lead to develop ITS 

(Intelligent Transportation Systems) in the recent years. ATMS (Advanced Traffic 

Management System) and ATIS (Advanced Traveler Information System) are two 

sub-systems of ITS. Information systems need traffic flow model to provide 

prediction, such as travel time prediction. Traffic management systems need traffic 

flow models to analyze traffic flow properties so that they can provide better traffic 

control strategies. 

Microscopic traffic flow models describe vehicles interaction at a high level of 

detail, and they have behavioral meanings. Since microscopic models describe traffic 

flow in detail, they can describe complicated vehicle interaction, and predict traffic 

flow more accurate. But they need more computation time. Hence, they can hardly 

provide real-time prediction, especially in large-scale traffic network [Zhang and 

Owen, 1998]. 

Macroscopic traffic flow models describe vehicles and their interaction at a low 

level of detail. Contrary to microscopic models, most macroscopic models are derived 

from physical models, they lack for behavioral meanings more, and take less 

computation time.  

Some simple microscopic models which have one or few functions, such as 

safe-distance models and stimulus-response models, cannot represent some traffic 

phenomena. On the other hand, it is easier to analyze traffic flow based on these 

simple models, such as traffic stability can be derived from stimulus-response models. 

It is also easier to extend to macroscopic traffic flow models based on simple 

car-following models, such as stimulus-response models can extend to Greenshield, 

Greenberg models based on different parameters. The models which have different 

rules for different conditions describe traffic flow better. The computing is more 

complicated and it is difficult to analyze traffic flow properties or extend to 

macroscopic models from them. 
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LWR model is a simple macroscopic model, and it assumes that traffic flow 

conforms to equilibrium speed-density relationships at all time. However, 

speed-density relationships of equilibrium state and disequilibrium state are different. 

Besides, LWR model cannot represent some complex traffic flow phenomena such as 

stop-and-go waves in long queues. In order to solve the problems of LWR model, 

higher order models are developed. Daganzo [1994] mentioned that although the 

results of higher order models are a little better than first order models, it needs more 

computation. He also pointed out higher order models bring the wrong result; that is, 

in some cases, vehicle speed will be negative. Some macroscopic models are derived 

from physical models, and some physical variables cannot correspond to traffic flow 

measurement value, such as traffic field. Hence, some macroscopic traffic flow 

models can be hardly applied to real world nowadays. 

According to the aforementioned research background, the problems concerned 

in this dissertation are listed below. 

1. ITS need a traffic flow model that can provide real time prediction and can 
analyze traffic flow properties. 

2. Microscopic models can describe traffic flow at a high level of detail, but it 
takes more time. Simple models cannot represent some traffic phenomena. 
As the complexity of a model increases, the more phenomena can be 
represented and the more computation time. 

3. Under complicated vehicle interaction, such as: weaving section, and 
signalized intersection, microscopic simulation can provide better prediction. 
Thus, microscopic traffic flow models are necessary for information systems 
under some traffic conditions. 

4. Most macroscopic traffic flow models are derived from physical models, they 
lack of behavioral discussion, and they have some deficiencies in describing 
some basic traffic phenomena, such as LWR model cannot represent 
disequilibrium traffic state, and higher order models may make vehicle speed 
be negative.  

1.2 Research Motivations and Objectives 

Macroscopic traffic flow models lack for behavioral discussion, and it is better to 

apply microscopic models under some conditions, such as complicated vehicle 

interaction section. This research try to develop a simple car-following model that 

employs one rule or fewer rules, and it can solve aforementioned problems: 
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1. Less execution time: It is simple for save execution time, and it has the 
potential for extending to macroscopic models. Thus, it can provide real time 
prediction of large-scale traffic network. 

2. Reproducing traffic phenomena: It can describe equilibrium and 
disequilibrium traffic phenomena. 

3. Traffic properties: It can be a tool to analyze traffic properties. 

1.3 Framework of Research 

In order to achieve research objectives, the framework of this research is shown 

as Figure 1-1. 

1. Car-following model development 
A simple car-following will be developed. It can: 

 reflect the difference among different drivers,   

 avoid some deficiencies of traditional car-following models, such as 

drivers have to determine the deceleration capability of their lead 

vehicle, and 

 reproduce equilibrium and disequilibrium traffic phenomena. 

2. Sensitivity analysis 
It will discuss how the proposed model output varies with changes in 

model inputs. 

3. Stability analysis 
Local stability between two moving cars will be discussed. The 

discussion is on the stability of a following vehicle when its lead vehicle is in 

equilibrium state and the following vehicle has no acceleration limit. A 

method of discussing linearized stability of a dynamical system will be 

applied. 

4. Equilibrium state discussion 
A system is either in equilibrium or in disequilibrium. A vehicle is in 

equilibrium state if its speed and spacing never change as time passes. The 

microscopic and macroscopic equilibrium states of the proposed 

car-following model will be discussed. Fundamental diagram based on the 

microscopic equilibrium state will be also discussed. 
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5. Disequilibrium state discussion 
Some traffic phenomena of disequilibrium state will be discussed, such 

as closing-in, shying-away, stop-and-go, and traffic hysteresis. Simulation 

examples will be provided. 

6. Relaxation time discussion 
Relaxation time refers to the time needed for a system to relax under 

external stimuli. When a perturbation occurs at an equilibrium system, the 

system will depart from equilibrium state. This study discusses how much 

time the system needs to return to the equilibrium state. 

7. Parameters discussion and mathematical analysis 
This study possesses analytical properties that are logical in representing 

physical phenomena, and prove that some traffic phenomena still hold under 

any parameters or some traffic phenomena have various patterns under 

different parameter values. 
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Figure 1-1 Framework of research 
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Chapter 2  
Literature Review 

The research purpose of this dissertation is to develop a simple car-following 

model which can analyze traffic properties, represent traffic flow phenomena, save 

execution time, and have potential for extending to macroscopic models. Thus, traffic 

flow characteristics are reviewed in section 2.1. Section 2.2 reviews some 

car-following models. Section 2.3 presents some static macroscopic traffic flow 

models. Section 2.4 review linearized stability of dynamical systems. Finally, a brief 

summary and discussion is given in section 2.5. 

2.1 Traffic Flow Characteristics 

A system is either in equilibrium state or disequilibrium state. Section 2.1.1 

reviews traffic stability that discusses whether a following car will reach the 

equilibrium state or not. Section 2.1.2 reviews some traffic phenomena of 

disequilibrium states. 

2.1.1 Traffic Stability 

Car-following models describe both the space-time behavior of vehicles and their 

interactions individually on a single lane. After car-following for a long time, the 

speed or spacing of the vehicle might be kept at a particular value (i.e., stable traffic) 

or changed again and again over time (i.e., unstable traffic). The fundamental diagram 

(as shown in Fig. 2-1.) of traffic flow indicates that traffic flow is unstable at low 

speed (i.e., under heavy traffic), and stable at high speed. 

 

Critical 
Speed

Critical 
Density

Density

Speed

Unstable flow
Stable flow

 
Figure 2-1 Relationship among speed and density [Mschane & Roess, 1990]. 
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Traffic stability can be analyzed from the viewpoint of macroscopic traffic flow. 

Zhang [1999b] found that various instability criteria can be reduced to a single 

criterion derived from first order waves traveling faster than slow second order waves 

in the higher order theories. Nagatani [2000] pointed out when the density is larger 

than a critical value, the traffic becomes unstable. Yi et al [2003] derived a nonlinear 

traffic flow stability criterion using a wavefront expansion technique. Jiang and Wu 

[2003] found that stability depends on the equilibrium speed density relationship, and 

it is also affected by the sensitivity parameters in the corresponding car-following 

model. 

Some researchers analyzed traffic stability from the viewpoint of microscopic 

traffic. It is found that unstable traffic is likely to occur under higher reaction time and 

higher sensitivity response based on stimulus-response models [Herman et al, 1959; 

May, 1990; Zhang & Jarret, 1997; Holland, 1998]. This cannot explain why heavy 

traffic is unstable, unless drivers have different reaction time or different sensitivity 

response under different spacings. 

2.1.2 Disequilibrium Traffic Flow 

A following car is in equilibrium state if it keeps its velocity and spacing at some 

particular value. If a following car is in disequilibrium state, it implies the car is 

accelerating or decelerating. This section reviews some traffic phenomena of 

acceleration and deceleration traffic.  

A. Closing-in and Shying-away 

Sometimes the following vehicle accelerates despite the lead vehicle 

traveling slower than it is (i.e. closing-in), and sometimes the follower 

decelerates even its speed is slower than its lead vehicle’s speed (i.e. 

shying-away) [Chakroborty & Kikuchi, 1999]. Figure 2-2 shows that in about 

20% of the points in the second and fourth quadrants of the car-following 

process, they are closing-in or shying-away. Since closing-in and shying-away 

often occur in a car-following process, a car-following model should be able 

to describe closing-in and shying-away. 
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Figure 2-2 Acceleration/Deceleration rate of the following vehicle at time t versus the 

relative speed of the lead and following vehicles at time t-1 [Chakroborty & Kikuchi, 

1999] (reproduced) 

B. Hysteresis 

Static macroscopic traffic flow models describe the relationship between 

speed and density. These relationship models frequently serve as a state 

equation in dynamic macroscopic traffic flow models. However, 

speed-density relationships of equilibrium state and disequilibrium state are 

different. In fact, when traffic flow is not in an equilibrium state (i.e. 

acceleration or deceleration), the speed-density relationship is not one-to-one. 

The acceleration curve differs from the deceleration curve, known as the 

traffic hysteresis phenomenon. Igarashi [Igarashi et al, 2001] said that 

hysteresis phenomena associated with discontinuous phase transitions. Figure 

2-4 is the speed-density relationship obtained by Treiterer and Meyers [Zhang, 

1999a]. It indicates that speed-density curve for transient traffic is not unique 

[Zhang, 1999a]. Such curves contain two branches for acceleration and 

deceleration traffic, respectively. The curves form two hysteresis loops. The 

acceleration curve lies above the deceleration curve under low density 

whereas the deceleration curve lies above the acceleration curve under high 

density. Maes’ observation is shown as Figure 2-3, and he observed that the 

deceleration curve lies above the acceleration curve under light and heavy 

density.  
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Zhang [1999a, 2001] proposed a mathematical theory of traffic 

hysteresis, and the model presented that acceleration and deceleration curves 

lies on both sides of the equilibrium curve. These two branches meet with the 

equilibrium curve.  

Other researchers also proposed models to reproduce hysteresis. 

Heidemann [2001] proposed a queueing theory, Daganzo [2002] proposed a 

macroscopic behavioral theory, and Zhao and Gao [2005] presented a full 

velocity and acceleration difference model. Wong and Wong [2002] indicated 

that multi-class LWR model can reproduce hysteresis.  

Density

Velocity

 

Figure 2-3 Trajectory for density vs. velocity obtained by Maes (reproduced) 

Density

Velocity

 
Figure 2-4 Trajectory for density vs. velocity obtained by Treiterer and Meyers 

(reproduced) 
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2.2 Microscopic Traffic Flow Models 

According to the level of detail, traffic flow models can be divided into 

microscopic, mesoscopic, and macroscopic models [Hoogendoorn & Bovey, 2001]. 

Microscopic traffic flow includes car-following and lane-changing. This study focuses 

on car-following. Various car-following models are reviewed and discussed below. 

Pipes [1953] proposed a safe-distance model, and applied a very simple rule. The 

PITT [Wicks & Andrews, 1980] model is also a type of safe-distance model. This 

model assumes that the vehicle follows its leader by maintaining some spacing. It 

employed a sensitivity factor to describe different driver behaviors. The 

stimulus-response model [Chandler, 1958; Gazis, 1959; Herman, 1959; Edie, 1961] 

expresses the concept that a driver of a vehicle responds to a given stimulus based on 

the stimulus and its sensitivity. The psycho-physical spacing model [Widemann, 1974; 

Leutzbach, 1986, 1988] divides the car-following process into several behavior zones, 

each with its own behavioral rules. Benekohal proposed the CARSIM model 

[Benekohal & Treiterer, 1988], which computes various acceleration rates for 

different situations and chooses the most suitable one. Fuzzy models [Kikuchi & 

Chakroborty, 1992; McDonald et al, 1997] comprise a set of fuzzy inference rules 

related to specific driving environments. The intelligent driver model [Treiber et al, 

2000] possesses only a few intuitive parameters with realistic values; the model 

reproduces a realistic collective dynamics, and leads to the plausible microscopic 

acceleration and deceleration behavior of single drivers. Newell [2002] designed a 

very simple car-following rule for a homogeneous highway in which a vehicle follows 

the same trajectory as its lead vehicle except for a translation in space and time. 

However, it did not deal with the question of what determines speed. Zhang & Kim 

[2005] developed a theory for explaining car-following behaviors in multiphase traffic 

flow. It specifies different functional forms of gap-time for different spacings, and it 

can reproduce both the so-called capacity drop and traffic hysteresis. 

Some microscopic traffic flow models are reviewed in detail as following. 

(1). Stimulus-Response Car-Following Model 

Stimulus-response models were first derived from Reuschel [1950] and Pipes 

[1953]. Chandler et al [1958] derived the stimulus-response function: 
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( ) ( ) ( )( )txtxTtx nnn ′−′=+′′ ++ 11 λ          (2.1) 

where λ  is a constant, T denotes the reaction time, ( )txn  denotes the position 

of the lead vehicle at time t, and ( )txn 1+  denotes the position of the following vehicle 

at time t. 

A series of stimulus-response models were developed later, these models can be 
summarized as Table 2.1 

Table 2.1 Governing equations of car-following models 
Model Governing equation 

Chandler et al. [1958] ( ) ( ) ( )( )txtxTtx nnn ′−′=+′′ +1λ  

California Chandler et al. [1958] ( ) ( ) ( ) ( )[ ]txTctxtxTtx nnnn ′−+−=+′′ + 11λ  

Gazis et al. [1959] ( ) ( ) ( )( )
( ) ( )( )txtx

txtxTtx
nn

nn
n −

′−′
=+′′

+

+

1

1λ  

Herman et al. [1959] ( ) [ ] [ ]
21 2211 TtnnTtnnn xxxxTtx −+−+ ′−′+′−′=+′′ λλ  

Edie [1961] ( ) ( ) ( )( )
( ) ( )( )21

1

txtx
txtxxTtx

nn

nnn
n −

′−′′
=+′′

+

+λ  

Newell [1961] ( ) ( ) ( )( )txtxVTtx nnn −=+′′ +1  

Gazis et al. [1961] 
(General Form) 

( ) ( )( ) ( ) ( )( )
( ) ( )( )mnn

nn
l

n
n txtx

txtxtxTtx
−

′−′′
=+′′

+

+

1

1λ  

Bando et al. [1995] ( ) ( ) ( )( ) ( )[ ]txtxtxVaTtx nnnn ′−−=+′′ +1  

Some macroscopic traffic flow models can be derived from stimulus-response 

models. Gazis’s model [1961] is a general form of stimulus-response models. The 

case 0=m , 2=l  can be identified with a model developed by Greenshield [1934]. 

The case for 0=m  and 1=l  generates a steady-state relation that was developed 

by Greenberg [1959]. When 1=m  and 2=l , the stimulus-response model can be 

lead to Edie’s model. While 1=m  and 3=l , the model can be lead to Edie’s model. 

The deficiencies of stimulus-response are described as following [Chakroborty, 

1999]. 

1. Response to stimuli in car-following is asymmetric, but stimulus-response 

model is symmetric. 

2. It cannot represent closing-in and shying-away phenomena. 

3. Stable distance headway of stimulus-response model is dependent on number 

of factors, such as initial conditions, but the stable distance is actually only dependent  
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on the final speed. 

4. It ignores the acceleration capability of a vehicle. 

(2). PITT Model 

PITT is a FRESIM model in CORSIM which was developed by FHWA. Its 

theory is keeping specific space headway [Wicks & Andrews, 1980]: 

( )FLFL VVkbVkLH −××++×+= 10         (2.2) 

In Eq. (2.2): 

H : space headway(ft) 

VF : the velocity of the following car at end of time step 

VL : the velocity of the lead car at the end of time step 

LL : the length of the lead car 

k : the sensitivity of a driver 

b : constant, when VL=VF ≤ 10, b=0.1,otherwise, b=0 

For keeping above-mentioned space headway, the acceleration of the follower is: 

( ) ( )[ ]
( )TkT

VVkbTkVLXXA
i

FL
i

F
i
FL

F ××+
−××−××−−−−

=
2

102
2

2

    (2.3) 

In Eq. (2.3): 

AF : the acceleration of the following car 

XL : the position of the lead car 
i
FX  : the position of the follower at the beginning of time step 

i
FV  ：velocity of the follower at the beginning of time step 

T ：time step 

Considering the reaction time of following car c, the velocity of follower should 

be ( )cTAVV F
i

FF −×+= . To avoid traffic accident, PITT designs three constraint 

functions for different traffic conditions. 

The deficiencies of PITT are described as following [Benekohal, 1988] [Aycin, 

1999]. 

1. It dose not take into account the star-up delay of stopped vehicles. 
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2. The dual behavior of traffic in congested and non-congested conditions has not 

been taken into consideration. 

3. It is difficult to reflect all traffic condition since only one type of spacing 

equation is applied for different conditions such as stop-and-go and noncongested 

traffic. 

4. It performs car-following by considering emergency braking of the lead 

vehicle, but a follower cannot have the information about the deceleration capability 

of its leader. 

5. It considers driver’s reaction time, and it results in a driver with higher 

reaction time keeps longer spacing. 

(3). Psycho-Physical Spacing Models 

Stimulus-response models presume that the following driver reacts to very small 

changes in relative velocity even when the spacing is very large. On the other hand, if 

the relative velocity is zero, the follower’s response is zero even the spacing is very 

small or large. Researchers developed psycho-physical spacing models to remedy 

these unreasonable assumptions. The basis of psycho-physical spacing models is: 

1. at large spacings, the follower is not influenced by the relative velocity, and  

2. at small spacings, there are some combinations of relative speeds and spacings 

do not yield a response of the follower, because the relative motion is too small. 

This implies that there is a perceptual threshold. Only when thresholds are 

reached, the following driver can perceive the changes in the relative speed or spacing. 

Such perceptual thresholds are shown as Figure 2-5. 

Widemann [1974] introduces the Psycho-Physical Spacing Model into 

microscopic simulator and design the INTAC Model to be Behavioral Threshold 

Model. Traffic flow is classified into several reaction zones (as shown in Figure 2-6). 

The meaning of each threshold is [Fellendorf, 1997]: 

A. Standstill spacing (AX): the desired distance between two cars in a standing 

queue. 

B. Minimum safe spacing (BX): the minimum safe spacing when the velocity of 

follower is close to its lead vehicle. 
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C. Perceptual velocity difference threshold (SDV): action point where a driver 

consciously observes that he approaches a slower lead vehicle. SDV 

increases with speed difference. 

D. Maximum car-following spacing (SDX): concerning the difference among 

different drivers, the range of SDX is about 1.5-2.5 times BX. 

E. OPDV: action point where a driver notices that he is slower than the lead 

vehicle and starts to accelerate again. 

Spacing
dX

+dV-dV

Perceptual 
threshold

Zone with 
reaction

Zone with 
reaction

Relative Velocity

Zone 
without 
reaction

Perceptual 
threshold

 
Figure 2-5 Perceptual thresholds of car-following process 

 

DX

SDX
SDV

CLDV BX
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OPDV

+DV-DV
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Spacing
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unconscious 
reaction

no reaction perception 
threshold

reaction

deceleration
collision

 
Figure 2-6 Behavioral zones of behavioral threshold model 
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(4). CARSIM  

CARSIM (CAR-Following Simulation Model) is developed by Benekohal 

[1988]. Several acceleration or deceleration rates are computed for different 

conditions, and the most suitable one is selected for each vehicle in each time interval. 

Each condition is described as following. 

A1: The following vehicle is moving but has not reached its speed limit or 

desired speed. 

A2: The following vehicle has reached its speed limit or desired speed. 

A3: The follower was stopped and has to start from a standing still position 

A4: The follower’s performance is governed by the car-following algorithm 

while space headway constraint is satisfied. The acceleration is computed from the 

following equation 

( ) ( )( )( ) KLDTADTVXX LFFL +≥++− 245.0 ,      (2.4) 

where 

XL : the position of the lead vehicle 

XF : the position of the following vehicle 

LL : the length of the lead vehicle 

K : the buffer space between vehicles 

DT : the simulation scanning time interval (1 second) 

A4 : the acceleration or deceleration in the condition 

A5: The following vehicle is advanced according to the car-following algorithm 

with non-collision constraint. The following equation is used to assure that enough 

spacing is provided. 

( ) ( )( )( )
( )( )[ ]( )

( )( )[ ]( ) ( )( )[ ]
( ) ( )⎥⎦

⎤
⎢
⎣

⎡
−

+
++

+

≥−−++−

LMX
X

FMX
DTAVBRTDTAV

BRTDTAV
KLDTADTVXX

LF
F

F

LFFL

.2.2
55 

,5

 of maximum

55.0

22

2

  (2.5) 

where: 

BRT : brake-reaction time of a driver 



 16

VL : velocity of the lead car at the end of time interval 

MX.F : maximum deceleration rate of the following car 

MX.L : maximum deceleration rate of the lead car 

A5 : the acceleration and deceleration in the condition 

The strengths of CARSIM are described as following [Benekohal, 1988]. 

1. The vehicles’ acceleration and deceleration rates were kept with the reasonable 

values observed in actual traffic conditions, and marginally safe spacings were 

provided for all vehicles. 

2. The delay in response of the follower to the lead vehicle’s deceleration was 

taken into account. The delay is equal to the reaction time of the driver. 

3. The start-up delay of a stopped vehicle was taken into consideration. 

4. The dual behavior of traffic in congested and non-congested conditions is 

taken into account. 

5. CARSIM uses varying reaction times for an individual driver and different 

reaction times for different drivers. The reaction time of a driver in congested traffic is 

less than the reaction time of light traffic. 

6. CARSIM can simulate stop-and-go condition. 

The deficiencies of CARSIM are described as following [Aycin, 1999]. 

1. CARSIM performs car-following by considering emergency braking of the 

lead vehicle, but a follower cannot have the information about the deceleration 

capability of its leader. 

2. CARSIM considers driver’s reaction time, and it results in a driver with higher 

reaction time keeps longer spacing. 

(5). Fuzzy Models 

Kakuchi [Kakuchi, 1992, Chakroborty, 1999] proposed a fuzzy inference 

car-following model. It consists of 396 rules which are based on the relative speed, 

the spacing, and the acceleration of the lead vehicle. After defuzzifying, the model 

outputs the acceleration of the following vehicle. 
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McDonald [1997] proposed another fuzzy model, and it includes car-following 

and lane-changing. The model takes into account desired car-following spacing, and 

the inference rules are based on distance divergence and relative velocity.  

Most of traditional car-following models are deterministic, but drivers do not 

completely follow any deterministic behavior. Fuzzy models represent an approximate 

nature behavior. They represent the natural language based “rules-of-thumb” of 

driving which is believed to be reasonable and uses the compromise of more than one 

rule of behavior. 

The strengths of fuzzy models are described as following. 

1. Car-following is an approximate nature behavior, and fuzzy models represent 

the property. 

2. Fuzzy models can describe closing-in and shying-away phenomena.  

3. The response of fuzzy models is asymmetric. 

4. In fact, stable distance headway is only dependent on final speed, and fuzzy 

models represent it. 

2.3 Static Macroscopic Traffic Flow Models 

Macroscopic traffic flow models discuss flow, density, and speed. The 

relationship between these variables is kuq = , where q denotes flow, k denotes 

density, and u denotes velocity. 

Some researchers discussed the relationship between density and velocity based 

on filed data or some theory. Greenshield [1934], as one of the early investigators of 

traffic characteristics, proposed a linear relationship. Greenberg [1959], using a 

theoretical background, has postulated a logarithmic speed-density model. 

Greenberg’s model is useful under high density but not under low density. Underwood 

[1961] proposed a speed-density model for low density traffic. Later, Pipes [1967] and 

Munjal [1971] developed a general family of speed-density models of which the 

linear model is a special case. Drew [1968] proposed a family of models of which 

Greenberg’s logarithmic model is a special case. 

As some aforementioned models are only useful under some traffic condition, 

some researchers proposed multi-regime models. Edie [1961] described a model that 
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is a composite of Greenberg and Underwood models, where Greenberg is useful at 

high density and Underwood is useful at low density. Other research results of the 

static macroscopic model are summarized in Table 2.2 and Table 2.3 May [1990]. 

Table 2.2 Table of single-regime models 
Single-regime models Equations 

 
Greenshields model (1934) u u

k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1  

 
Greenberg model (1959) u u

k

k
j=

⎛

⎝
⎜

⎞

⎠
⎟0 ln  

Underwood model (1961) u u ef
k k= − 0  

Northwestern's model (1967) ( )u u ef
k ko= −1 2

2

 
 

Drew model (1968) 
( )

u u
k

k
f

j

n
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⎛

⎝
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⎞

⎠
⎟

⎡

⎣

⎢
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⎤

⎦

⎥
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1
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Pipes-Munjal model (1967) 

⎥
⎥

⎦

⎤

⎢
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⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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n

j
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kuu 1  

 
 

fu ：free flow speed  jk ：congested density
ou ：critical speed   k o ：critical density 

Table 2.3 Table of multi-regime models 
Multiregime models Free-flow regime Transitional-flow 

regime 
Congested-flow 
regime 

Edie model 
(1961) 

u u ef
k k= − 0  

( )k ko≤  

 
－ u u

k

k
j=

⎛

⎝
⎜

⎞

⎠
⎟0 ln

( )k ko≥  
Two-regime linear model 

(1967) u u
k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1  

( )k k≤ 1  

 
－ u u

k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1

( )k k≥ 1  
Modified Greenberg 

model (1967) 
constant speed 

( )k k≤ 2  

 
－ u u

k

k
j=

⎛

⎝
⎜

⎞

⎠
⎟0 ln  

( )k k≥ 2  
Three-regime linear model 

(1967) u u
k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1  

( )k k≤ 3  

u u
k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1  

( )k k4 ≤ ≤ k3  

u u
k

k
f

j

= −
⎛

⎝
⎜

⎞

⎠
⎟1

( )k k≥ 4  
 

ik ：specified traffic density ，i=1.2.3.4 
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Different free-flow speeds result in different speed-flow relationships. Figure 2-7 

indicates that average speed under the same flow rate increases with free-flow speed. 

The speed is insensitive to flow in the low to moderate range. 
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Figure 2-7 Speed-flow relationships (reproduced) [TRB, 2000] 
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2.4 Linearized Stability of Dynamical Systems 

The general forms for dynamical system are shown as Eqs. (2.6) and (2.7) . 

( )xx f='          for continuous time,       (2.6) 

( )kk f xx =+1       for discrete time,        (2.7) 

where nR∈x .  

x  is the state of the continuous dynamical system, and kx  is the state of the 

discrete dynamical system at time k. f  is the state-transition function. For any initial 

state 0x , Eq (2.7) uniquely determines the state trajectory, kx , 0≥k . 

Any state of a dynamical system is either an equilibrium state or a disequilibrium 

state. An equilibrium state of a dynamical system is a state x  with the property that 

if the system is ever in the state x , it will remain in that state for all time until 

perturbation occurs. 

The equilibrium solution of a continuous dynamical system is ( ) 0=xf .The 

equilibrium solution of a discrete dynamical system is ( )xx f=  

An equilibrium state x  is called stable or marginally stable if for arbitrary 

0>ε , there is a 0>δ  such that δ<− xx0  implies that for all 0≥k , 

ε<− xxk . An equilibrium state is asymptotically stable if it is marginally stable and 

there exists a 0>∆  such that ∆<− xx0  implies that xx →k  as ∞→k . An 

equilibrium is globally asymptotically stable if it is marginally stable and xx →k  as 

∞→k  with any arbitrary initial state 0x  [ Li & Szidarovszky, 1999].  

x  is asymptotically stable if all eigenvalues of ( )xDf  have negative real parts 

for a continuous dynamical system [Wiggins, 1990]. For a discrete dynamical system, 

x  is asymptotically stable if all eigenvalues of ( )xDf  are less than 1. 
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2.5 Summary and Discussion 

According to the above-mentioned review, some traffic phenomena are 

summarized as following. 

(1) Equilibrium spacing: If a following vehicle reaches and keeps at a particular 

spacing, the particular spacing is only dependent on final speed. Hence, a 

driver with higher reaction time has longer equilibrium spacing is not very 

reasonable, since the equilibrium spacing is not dependent on driver’s 

reaction time.  

(2) Traffic stability: From the viewpoint of microscopic traffic flow, higher 

reaction time makes unstable traffic likely to occur.  

(3) Closing-in and shying-away: Relative speed cannot ensure the acceleration is 

positive or negative. 

(4) Traffic hysteresis: Speed-density relationships for acceleration and 

deceleration traffic are different. 

(5) Driver characteristics: Different drivers have different behaviors. Some 

drivers are aggressive, some are not. Drivers may keep different velocities or 

different spacings under the same conditions. 

(6) Stable traffic versus unstable traffic: unstable traffic occurs at high density.   

Some strengths or deficiencies of car-following models are summarized as 

following.  

(1) Relative speed form: If driver’s acceleration is only dependent on relative 

speed, the model cannot represent closing-in and shying-away phenomena, 

and cannot describe asymmetric response. 

(2) Considering enough spacing: If a driver takes enough spacing into account, 

he must consider emergency braking of the lead vehicle, but he cannot have 

the information about the deceleration capability of his leader. Furthermore, 

he should consider his reaction time, and it results in a driver with higher 

reaction time keeps longer spacing. 
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(3) Driver characteristics: Some traditional car-following models cannot reflect 

the difference between drivers. Some models employ sensitivity or 

aggressiveness factor to describe the diver difference. However, these factors 

cannot be measured directly.  

(4) Simple models versus complex models: simple models that have one or few 

functions, such as safe-distance models and stimulus-response model, cannot 

describe some traffic phenomena. On the other hand, simple models can 

extend to macroscopic traffic flow more easily. For example, 

stimulus-response model can extend to macroscopic models, such as 

Greenshield’s model, Greenberg’s model, and Edie’s model [May, 1990]. The 

models that have different rules for different conditions describe the traffic 

flow better, but their computations are more complicated. It is difficult to 

develop a macroscopic traffic flow model based on these models. It is also 

difficult to derive traffic properties from complex models. 

Static macroscopic traffic flow models frequently serve as a state equation in 

dynamic macroscopic traffic flow models, and they are regarded as the equilibrium 

state of traffic flow. According to aforementioned, static traffic flow models may be 

developed based on disequilibrium field data, i.e., include acceleration and 

deceleration traffic. For example, Greenberg proposed his model for high density 

traffic, but heavy traffic could hardly reach its equilibrium state. 
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Chapter 3 
Car-Following Model 

A simple car-following model is developed in this section, and the model should 

achieve the following objectives. First, the model should describe microscopic 

car-following phenomena, such as closing-in, shying-away, and traffic hysteresis. 

Second, the model should reflect differences among individual drivers. Third, it 

should avoid certain deficiencies mentioned in Chapter 2, such as drivers having to 

determine the deceleration capability of their lead vehicle. Finally, the model should 

minimize the number of rules employed to facilitate its extension to macroscopic 

traffic flow models. 

3.1 Model Assumption 

The car-following process is influenced by driver characteristics, external 

environment, and lead vehicle. If there is no lead vehicle, a vehicle will run at a 

specific speed (its individual maximum speed) influenced only by driver 

characteristics and external environment. Hence, an individual maximum speed of a 

vehicle is influenced by driver characteristics and external environment. In other 

words, the influence of driver characteristics and external environment on a vehicle is 

presented in the individual maximum speed of the vehicle. Driving alone, different 

drivers may run at different speeds on the same road, implying that different drivers 

(i.e. different driver characteristics) have different individual maximum speeds. 

Driver individual maximum speed may vary with external environment, such as 

freeway, urban street, and sunny versus rainy days. As driver characteristics and 

external environment are difficult to measure, the proposed model considers 

individual maximum speed to help reflecting the influence of driver characteristics 

and external environment. The individual maximum speed of a vehicle can be 

measured under certain situations. Where no lead vehicle is present, the vehicle speed 

is the individual maximum speed. Otherwise, if the speed of the following vehicle 

does not change with lead vehicle speed or spacing, its speed is considered to be its 

individual maximum speed. 

If there is a lead vehicle, and as the spacing decreases, the following vehicle may 

slow down so that it cannot run at its individual maximum speed. According to the 

literature, following vehicle speed depends on the speed of the lead vehicle, the speed 
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of itself, and the spacing between vehicles. Hence, the variables of the proposed 

model are individual maximum speed, the speed of the lead vehicle, the speed of itself, 

and the spacing between vehicles. 

To model the aforementioned phenomena, the proposed model assumes that 

repulsion and thrust act on the following vehicle, which then sets an appropriate speed 

accordingly. Figure 3-1 presents the proposed model. The model assumptions are 

listed below: 

Lead 
Vehic le

Following 
Vehicle

RepulsionThrust
( Individual Maximum Speed)

 
Figure 3-1 Illustration of the car-following concept 

(1) Aggressiveness 

The proposed model assumes that driver aggression increases with individual 

maximum speed. Drivers with high individual maximum speed maintain a higher 

speed or shorter spacing than do drivers with low individual maximum speed 

under identical conditions, and also have faster acceleration or deceleration. 

(2) Velocity Decision 

The following vehicle decides its appropriate velocity based on existing thrust 

and repulsion, with the appropriate velocity equaling thrust minus repulsion. 

(3) Thrust 

Each vehicle has its own individual maximum speed, which is regarded as the 

thrust. The individual maximum speed thus becomes the force driving the 

following vehicle forward. If there is no lead vehicle, the vehicle will run at its 

individual maximum speed dn,ν . Individual maximum speed depends on external 

environment and driver characteristics, which are not determined by car-following 

process. Individual maximum speed thus is an exogenous variable. 

(4) Repulsion 

Because the lead vehicle can prevent the following vehicle from running at its 

individual maximum speed dn ,ν , the lead vehicle is considered to be repelling the 

follower. Since the following vehicle speed is influenced by the lead vehicle speed 

tnV ,1− , the follower speed tnV , , and the spacing tnH , , the repulsion is related to 

these factors.  
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(a) Spacing tnH ,  

(i) Given longer spacing tnH , , the repulsion should be reduced because a 

driver will maintain higher velocity 1, +tnV  under no changes in the lead 

vehicle speed tnV ,1−  and the following vehicle speed tnV , . 

(ii) The following vehicle speed 1, +tnV  varies with changes in thespacing tnH , . 

The variation of tnH ,  in 1, +tnV  is regarded as the sensitivity to tnH , , and 

nH ,ψ  denotes the sensitivity. At a large spacing tnH , , the following vehicle 

is not influenced by the lead vehicle, and thus 1, +tnV  is not sensitive to the 

changes in tnH , , i.e. the sensitivity nH ,ψ  is zero. On the other hand, when 

the spacing tnH ,  is shorter, a driver is more sensitive to the changes in 

spacing. Hence, the sensitivity nH ,ψ  increases with reducing spacing.  

(iii) Continued from the preceding assumption (ii), when spacing is very short, 

a following driver may be very sensitive to or not sensitive to the changes in 

spacing. Because a driver may perceive that the spacing is too short, 

running at a very low velocity 1, +tnV  is his unique choice even though the 

spacing becomes slightly longer. Hence, the sensitivity nH ,ψ  may be very 

large or very small at short tnH , . 

(iv) If the spacing is in some specific car-following distance, the following 

vehicle is influenced by its leader. Otherwise, if the spacing is out of some 

specific car-following distance, the following vehicle is not influenced by 

its leader. The specific car-following distance is defined as critical 

car-following distance. At identical following vehicle speed tnV , , the 

critical car-following distance increases with reducing lead vehicle speed 

tnV ,1− . 

(v) At identical lead vehicle speed tnV ,1− , the critical car-following distance 

increases with the following vehicle speed. 

(vi) At identical following vehicle speed, lower lead vehicle speed tnV ,1−  

makes drivers be more sensitive to the movement of the lead vehicle. Thus, 



 26

drivers are more sensitive to the changes in spacing, i.e. the sensitivity 

nH ,ψ  increases as the lead vehicle speed tnV ,1−  decreases. 

(vii) Continued from the preceding assumption (vi), if the spacing is very short, 

running at a very low velocity 1, +tnV  is the only choice for the driver whose 

lead vehicle speed tnV ,1−  is low. Otherwise, if the lead vehicle speed is 

faster, a driver has more flexibility in choosing his vehicle speed 1, +tnV  

after a reaction time. Faster lead vehicle speed tnV ,1−  makes drivers have 

more flexibility in choosing their speed 1, +tnV  at short spacing, so drivers 

are more sensitive to the movement of their lead vehicles. Hence, the 

sensitivity nH ,ψ  increases with the lead vehicle speed tnV ,1−  at short 

spacing. 

(viii) At identical lead vehicle speed tnV ,1− , a driver with higher vehicle speed 

tnV ,  is more sensitive to the movement of the lead vehicle, and thus he is 

more sensitive to the changes in spacing, i.e. the sensitivity nH ,ψ  increases 

with the following vehicle speed. 

(ix) Continued from the preceding assumption (viii), if the spacing is very short, 

running at a very low velocity 1, +tnV  is the only choice for the driver whose 

previous vehicle speed tnV ,  is fast. Otherwise, if his previous vehicle speed 

tnV ,  is slower, a driver has more flexibility in choosing his vehicle speed 

1, +tnV . Higher vehicle speed tnV ,  makes drivers have less flexibility in 

choosing their speed 1, +tnV  at short spacing. Hence, the sensitivity  nH ,ψ  

increases with reducing tnV ,  at short spacing. 

(b) Lead vehicle speed tnV ,1−  

(i) Under identical traffic conditions, drivers maintain higher velocity 1, +tnV  at 

higher lead vehicle speed tnV ,1− , and the repulsion should be reduced. 

(ii) The following vehicle speed 1, +tnV  varies with changes in the lead vehicle 

speed tnV ,1− . The variation of tnV ,1−  in 1, +tnV  is regarded as the sensitivity 
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to tnV ,1−  and 1, −nVψ  denotes the sensitivity. If tnV ,1−  approaches infinity, 

a driver may not perceive the obstacle created by the lead vehicle. Hence, 

1, +tnV  is not sensitive to the changes in tnV ,1− , i.e. the sensitivity 1, −nVψ  is 

zero. On the other hand, when tnV ,1−  is small, a driver is very sensitive to 

the changes in tnV ,1− . Hence, the sensitivity 1, −nVψ decreases as tnV ,1−  

increases.  

(iii) Continued from the preceding assumption (ii), when tnV ,1−  is very small, 

following driver may be very sensitive to the changes in tnV ,1−  or not 

sensitive. Because a driver may perceive that the lead vehicle is too slow, 

running at a very low velocity is his unique choice even though the lead 

vehicle runs slightly faster. Hence, the sensitivity 1, −nVψ  may be very large 

or very small at low tnV ,1− . 

(iv) At identical following vehicle speed tnV , , lower spacing makes drivers pay 

more attention to the movement of their lead vehicles, and thus be more 

sensitive to the changes in lead vehicle speeds tnV ,1− , i.e. the sensitivity 

1, −nVψ  increases with reducing spacing. 

(v) Continued from the preceding assumption (iv), if the lead vehicle speed 

tnV ,1−  is very low, running at a very low velocity 1, +tnV  is the only choice 

for the driver whose spacing is short. Otherwise, if the spacing is longer, a 

driver has more flexibility in choosing his vehicle speed 1, +tnV  after a 

reaction time. Longer spacing makes drivers have more flexibility in 

choosing their speed 1, +tnV  at low lead vehicle speed tnV ,1− , so drivers are 

more sensitive to the movement of their lead vehicles. Hence, the sensitivity 

1, −nVψ  increases with spacing at low lead vehicle speed tnV ,1− . 

(vi) At identical spacing, a driver with higher velocity tnV ,  pay more attention 

to the movement of his lead vehicle, and thus he is more sensitive to the 

changes in the lead vehicle speed tnV ,1− , i.e. the sensitivity 1, −nVψ  

increases with the following vehicle speed tnV , . 
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(vii) Continued from the preceding assumption (vi), if the lead vehicle runs too 

slow, running at a very low velocity 1, +tnV  is the only choice for the driver 

whose previous vehicle speed tnV ,  is high. Otherwise, if his previous 

vehicle speed tnV ,  is slower, a driver has more flexibility in choosing his 

vehicle speed 1, +tnV . Higher vehicle speed tnV ,  makes drivers have less 

flexibility in choosing their speed 1, +tnV  at short spacing. Hence, the 

sensitivity 1, −nVψ  increases with reducing tnV ,  at low lead vehicle speed 

tnV ,1− . 

(c) Following vehicle speed tnV ,  

(i) A driver may slow down if his speed tnV ,  is too fast, and may speed up if 

his speed tnV ,  is too slow. Hence, the repulsion increases with the follower 

speed tnV , . 

(ii) The following vehicle speed 1, +tnV  varies with changes in the lead vehicle 

speed tnV , . The variation of tnV ,  in 1, +tnV  is regarded as the sensitivity to 

tnV , , and nV ,ψ  denotes the sensitivity. When tnV ,  is very large or very 

small, a driver may perceive that his speed is too fast or too slow. Thus, 

running at a low or high speed is his unique choice, and 1, +tnV  is not very 

sensitive to the changes in tnV , . 

(iii) When the lead vehicle and the following vehicle speeds are identical, the 

critical car-following distance increases with vehicles speed tnV ,  or 

different speeds result in identical critical car-following distance. 

(iv) When the lead vehicle and the following vehicle speeds are identical, a 

driver with higher vehicle speed perceives the repulsion more. 

As an aggressive driver may perceive the obstacle created by the lead vehicle 

as being of greater significance, it is also assumed that a driver with a higher 

individual maximum speed will perceive higher repulsion under the same traffic 

conditions. 

(5) Safety 
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Since some drivers exhibit unsafe behaviors, the proposed model assumes 

that moving vehicles do not consider safe distance. Drivers only consider the 

standstill spacing. 

 

3.2 Modeling 

When both the lead vehicle and the following vehicle are moving, the following 

vehicle decides its appropriate velocity based on existing thrust and repulsion, with 

the appropriate velocity equaling thrust minus repulsion. The repulsion is related to 

the speed of the lead vehicle, the speed of the follower, and the spacing. Hence, 

repulsion is a function of tnV ,1− , tnV , , tnH ,  and the vehicle speed can be represented 

as 

( )tntntndntn HVVRV ,,,1,1, ,,~
−+ −=ν ,         (3.1) 

where ( )tntntn HVVR ,,,1 ,,−  is the repulsion. A driver with a higher individual maximum 

speed perceives higher repulsion under identical traffic conditions. Hence the 

repulsion is expressed as  

( ) ( )tntntndntntntn HVVrHVVR ,,,1,,,,1 ,,,, −− =ν .       (3.2) 

Therefore, the vehicle speed is  

( )( )tntntndntn HVVrV ,,,1,1, ,,1~
−+ −=ν ,         (3.3) 

and the range of ( )tntntn HVVr ,,,1 ,,−  is shown as Eq. (3.4): 

( ) 1,,0 ,,,1 << − tntntn HVVr  .          (3.4) 

Let 

( ) ( )( )tntntntntntn HVVPIHVVr ,,,1,,,1 ,,,, −− = .        (3.5) 

The repulsion increases with reducing tnV ,1−  or tnH , , and it also increases with 

tnV , . To describe closing-in and shying-away phenomena, the relative speed form is 

not selected because it cannot decide whether the acceleration of the following vehicle 

is positive or negative. Therefore, ( )tntntn HVVr ,,,1 ,,−  is represented as Eq. (3.6): 
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where L,,, γβα  are positive parameters. Since drivers take standstill distance nS  

into account, ntn SH −,  is the gap that a driver perceives. As speed and spacing have 

different units, the model employs the parameter L  to standardize.  

Since dntnV ,1,10 −− ≤< ν , dntnV ,1,0 −≤< ν , and tnn HS ,≤ , the range of 

( )tntntn HVVP ,,,1 ,,−  is  

( )tntntn HVVP ,,,1 ,,0 −≤ .            (3.7) 

( )tntntn HVVP ,,,1 ,,−  is any arbitrary nonnegative number. As Eqs. (3.4), (3.5) and 

(3.7), ( )tntntn HVVr ,,,1 ,,−  is represented as  

( ) ( )tntntn HVVPtntntn HVVr
,,,1 ,,,,,1

1,,
−Κ

=− ,         (3.8) 

where Κ  is a constant and 1>Κ . Let 

( )λexp=Κ ,             (3.9) 

where λ  is a positive model parameter, and then ( )tntntn HVVr ,,,1 ,,−  can be expressed 

as 

( ) ( )( )tntntntntntn HVVPHVVr ,,,1,,,1 ,,exp,, −− −= λ .      (3.10) 

As Eqs (3.3), (3.6) and (3.10), the vehicle speed 1,
~

+tnV  can be expressed as  
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More detail discussions about Eq. (3.11) and assumption (4) are discussed in 

section 3.3. 

If both the lead and following vehicles are running, the follower will choose an 

appropriate speed, which equals thrust minus repulsion (as shown in Eq.(3.11)). 

Sometimes the same condition results in different speeds for different drivers, the 

difference is indicated by Eq. (3.11). 

If the speed of the lead vehicle is zero, the following vehicle decelerates its speed 

so that it can stop before a collision occurs. The distance that the following vehicle 

can move before collision is ntn SH −, . Hence,  

( ) ( )ntntntn SHaV −+= ,,
2

, 20 ,          (3.12) 
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where tna ,  is the acceleration. Thus, the acceleration tna ,  is 

( )
ntn

tn
tn SH

V
a

−
−=

,

2
,

, .            (3.13) 

Hence, the following vehicle speed at the next time step (i.e., after a reaction time T ) 

is 

( )
( )TSH

V
VV

ntn

tn
tntn −
−=+

,

2
,

,1, 2
~ .          (3.14) 

Under identical condition, the following vehicle speed should increase with its 

lead vehicle speed. As Eq. (3.14) implicitly assumes 0,1 =− tnV , the vehicle speed of 

Eq. (3.11) should be greater than the one of Eq. (3.14), i.e. 
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But inequality (3.15) cannot always hold. For example, if tnV ,1−  in Eq. (3.11) 

approaches zero, the solution of Eq. (3.11) may approach zero. But the solution of Eq. 

(3.14) may not approach zero. Let inequality (3.15) hold, and then 
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If inequality (3.16) holds, inequality (3.15) holds. Thus, if tnV ,1−  in Eq. (3.11) is 

greater than the RHS of (3.16), a following vehicle with a moving leading car will 

choose a higher speed than it with a stopped leading car under identical spacing and 

identical following vehicle speed. Hence, the premise of Eq. (3.11) is 

thresholdntn VV ,1,1 −− >  and 
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On the other hand, the premise of Eq. (3.14) is thresholdntn VV ,1,1 −− ≤ , although Eq. 

(3.14) implicitly assumes 0,1 =− tnV . If the lead vehicle runs at a low speed, the 

following vehicle may regard its leader as a stopped vehicle. Thus the following 

vehicle starts to slow down and Eq. (3.14) is employed. 
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thresholdnV ,1−  depends on the spacing tnH , , the follower speed tnV , , and the 

individual maximum speed dn,ν . Under identical spacing and follower speed, 

different drivers have different thresholdnV ,1− , and thresholdnV ,1−  varies with dn,ν , that is 
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                (3.18) 

Eq. (3.18) indicates that a driver with higher individual maximum speed has 

lower thresholdnV ,1− . It implies that conservative drivers regard a fast lead vehicle as a 

stopped vehicle under identical spacing and follower speed, and start to slow down. 

While an aggressive driver only regards a very slow lead vehicle as a stopped vehicle. 

This conforms to the model assumption (1) that aggressive drivers keep higher 

velocity under identical traffic condition. 

If the lead vehicle is moving and the following vehicle is stopped, the follower 

will not start to move immediately. The follower usually remains stopped, and only 

moves once the spacing is greater than a specific spacing nZ  (i.e. the start spacing). 

The follower then moves at the next time step, with its acceleration equaling its 

desired start acceleration (as shown in Eq. (3.21)). Finally, if the following vehicle 

stops and the spacing is less than the start spacing nZ , the follower remains stopped 

at the next time step (as shown in Eq. (3.22)). 
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ntntntndntn ZHVVforTaV ≥=≠= −+ ,,,1,1,  & 0  &  0                 ,~    (3.21) 

ntntntn ZHVforV <==+ ,,1,  &  0                         ,0~       (3.22) 
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Aside from the repulsion and thrust, the speed of the following vehicle also 

depends on its capability. Vehicle acceleration should be between the maximum and 

minimum acceleration of that vehicle. Therefore, the proposed model should be 

modified as shown in Eq. (3.23), where max,na  denotes the maximum acceleration of 

the follower, min,na  represents the minimum acceleration (i.e. maximum deceleration) 

of the follower, and T is the length of the time interval. 

min,1,min,,1,
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3.3 Sensitivity Analysis 

This section discusses how the proposed model output varies with changes in 

model inputs. The total increment of 1,
~

+tnV  is  
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1,
~

+tnV  varies with the spacing tnH , , the lead vehicle speed tnV ,1− , and the following 

vehicle speed tnV , . Next, each model input is discussed. 

(1) spacing tnH ,  

The variation of tnH ,  in 1, +tnV  is regarded as the sensitivity to tnH , , and nH ,ψ  

denotes the sensitivity. Thus  
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Eq. (3.25) indicates that 0, ≥nHψ . Since driver maintains higher velocity 1, +tnV  

with higher spacing, nH ,ψ  is greater than zero. But a driver has his maximum speed 

dn ,ν  and dntnV ,1, ν≤+ , a driver cannot always increase his speed with spacing. Thus, 

0, =nHψ  occurs at large spacing. On the other hand, when the spacing approaches 

infinity, the following vehicle is not influenced by the lead vehicle. Hence, 1, +tnV  is 

not sensitive to the changes in tnH , , and then 0, =nHψ . When spacing approaches 

infinity, the sensitivity nH ,ψ  is  
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As spacing tnH ,  approaches infinity, nH ,ψ  equals zero under any positive parameter 

values. Eq. (3.26) conforms to assumption (4.a.ii).  

Shorter spacing makes drivers pay more attention to the movement of their lead 

vehicles, and thus the sensitivity nH ,ψ  varies with spacing. The variation of tnH ,  in 

nH ,ψ  is 
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The term 
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 may occur at short spacing tnH , . Figs. 3-2 and 3-3 show examples of the 

relationship between 1, +tnV  and tnH ,  and the relationship between nH ,ψ  and tnH , . 

Both (a) and (b) diagram of Figs 3-2 and 3-3 indicate that when the spacing is not 



 35

very short, a driver is more sensitive to the changes in spacing. Hence, the sensitivity 

nH ,ψ  increases with reducing spacing.     

(a) 1≤γ  

Spacing (Hn,t)

Sp
ee

d 
(V

n,
t+

1)

(b) 1>γ  

Spacing (Hn,t)

Sp
ee

d 
(V

n,
t+

1)

Figure 3-2 Examples of the relationship between 1, +tnV  and tnH ,  under no changes 
in tnV ,  and tnV ,1−  

 
1≤γ  

Spacing (Hn,t)

1>γ  

Spacing (Hn,t)

Figure 3-3 Examples of the relationship between nH ,ψ  and tnH ,  under no changes 
in tnV ,  and tnV ,1−  

Parameter γ  of (a) and (b) diagram in Figs 3-2 and 3-3 are different. They 

reflect the model assumption (4.a.iii). When spacing is very short, a driver may 

perceive that the spacing is too short, running at a very low velocity 1, +tnV  is his 

unique choice even though the spacing becomes slightly longer. Hence, the sensitivity 

nH ,ψ  may be very large or very small at short tnH ,  

At identical following vehicle speed tnV , , drivers pay different attention to the 

lead vehicles with different speeds tnV ,1− . The sensitivity nH ,ψ  varies with lead 

vehicle speed tnV ,1− : 
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occurs at long spacing tnH , . It implies that the sensitivity nH ,ψ  increases with lead 

vehicle tnV ,1−  at short spacing, and nH ,ψ  increases with reducing lead vehicle tnV ,1−  

at long spacing. This conforms to the model assumption (4.a.vi) and (4.a.vii). Drivers 

pay closer attention to the lead vehicle with lower speed tnV ,1−  than to the lead 

vehicle with higher speed tnV ,1−  at long spacing. Thus, lower lead vehicle speed 

tnV ,1−  makes drivers be more sensitive to the movement of the lead vehicle. On the 

other hand, if the spacing is very short, running at a very low velocity 1, +tnV  is the 

only choice for the driver whose lead vehicle speed tnV ,1−  is low. Otherwise, if the 

lead vehicle speed is faster, a driver has more flexibility in choosing his vehicle speed 

1, +tnV . Higher lead vehicle speed tnV ,1−  makes drivers have more flexibility in 

choosing their speed 1, +tnV  at short spacing, so drivers are more sensitive to the 

movement of their lead vehicles. Hence, the sensitivity nH ,ψ  increases with lead 

vehicle speed tnV ,1−  at short spacing. Examples of the relationship between 1, +tnV  

and tnH ,  and the relationship between nH ,ψ  and tnH ,  with different lead vehicle 

speed are shown in Figs. 3-4 and 3-5. 
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Spacing(Hn,t)

Sp
ee
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Lower lead vehicle speed
Higher lead vehicle speed

Critical car-following disance
with lower lead vehicle speed

Critical car-following disance
with faster lead vehicle speed

 
Figure 3-4 Examples of the relationship between 1, +tnV  and tnH ,  with different 

tnV ,1−  
 

Spacing(Hn,t)

Lower lead vehicle speed
Higher lead vehicle speed

Critical car-following disance
with lower lead vehicle speed

Critical car-following disance
with higer lead vehicle speed

 
Figure 3-5 Examples of the relationship between nH ,ψ  and tnH ,  with different 

tnV ,1−  

Figs. 3-4 and 3-5 show examples of the relationship between 1, +tnV and tnH ,  and 

the relationship between nH ,ψ  and tnH ,  with different lead vehicle speed. They not 

only indicate sensitivity nH ,ψ  varies with lead vehicle speed but also indicate that 

critical car-following distance varies with lead vehicle speed. As sensitivity nH ,ψ  

decreases with increasing lead vehicle speed tnV ,1−  at long spacing, the critical 

car-following distance increases with reducing lead vehicle speed tnV ,1− , and it 

conforms to the assumption (4.a.iv). 
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At identical lead vehicle speed tnV ,1− , drivers with different speeds tnV ,  pay 

different attention to the lead vehicles, and thus the sensitivity nH ,ψ  varies with 

vehicle speed tnV , : 
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The term 
( )
( ) 1,
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tn decides whether 
tn
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∂
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 is positive or negative. 

At identical tnV ,1− , 0
,

, <
∂
∂

tn

nH

V
ψ

 occurs at short spacing tnH , , while 0
,1

, >
∂
∂

− tn

nH

V
ψ

 

occurs at long spacing tnH , . It implies that the sensitivity nH ,ψ  increases with 

reducing vehicle speed tnV ,  at short spacing, and nH ,ψ  increases with vehicle speed 

tnV ,  at long spacing. This conforms to the model assumption (4.a.viii) and (4.a.ix). 

Drivers with higher speed tnV ,  pay closer attention to the lead vehicle. Thus, higher 

vehicle speed tnV ,  makes drivers be more sensitive to the movement of the lead 

vehicle. On the other hand, if the spacing is too short, running at a very low velocity 

1, +tnV  is the unique choice for the driver whose vehicle speed tnV ,  is high. Otherwise, 

a driver with lower speed tnV ,  has more flexibility in choosing his speed 1, +tnV , and 

thus the sensitivity nH ,ψ  increases with reducing tnV , . Examples of the relationship 

between 1, +tnV  and tnH ,  and the relationship between nH ,ψ  and tnH ,  with 

different vehicle speed tnV ,  are shown in Figs. 3-6 and 3-7. 

Figs. 3-6 and 3-7 show examples of the relationship between 1, +tnV  and tnH ,  

and the relationship between nH ,ψ  and tnH ,  with different vehicle speed tnV , . They 

not only indicate sensitivity nH ,ψ  varies with vehicle speed tnV ,  but also indicate 

that critical car-following distance varies with vehicle speed tnV , . As sensitivity nH ,ψ  
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increases with vehicle speed tnV ,  at high spacing, the critical car-following distance 

increases with vehicle speed tnV , , and it conforms to the assumption (4.a.v). 
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Figure 3-6 Examples of the relationship between 1, +tnV  and tnH ,  with different tnV ,  

 

 
Figure 3-7 Examples of the relationship between nH ,ψ  and tnH ,  with different tnV ,  
 
(2) Lead vehicle speed tnV ,1−  

The variation of tnV ,1−  in 1, +tnV  is regarded as the sensitivity to tnV ,1− , and 

1, −nVψ  denotes the sensitivity. Thus  
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Eq. (3.30) indicates that 01, ≥−nVψ . Since driver maintains higher velocity 1, +tnV  

with higher lead vehicle speed tnV ,1− , 1, −nVψ  is greater than zero. If the lead vehicle 

speed could approach infinity, a driver may not perceive the obstacle created by the 

lead vehicle. Hence, 1, +tnV  is not sensitive to the changes in tnV ,1− , and then 

01, =−nVψ . When lead vehicle speed approaches infinity, the sensitivity 1, −nVψ  is  

( ) 0,, ,,,1
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As lead vehicle speed tnV ,1−  approaches infinity, 1, −nVψ  equals zero under any 

positive parameter values. Eq. (3.31) conforms to assumption (4.b.ii).  

Lower lead vehicle speed makes drivers pay more attention to the movement of 

their lead vehicles, and thus the sensitivity 1, −nVψ  varies with lead vehicle speed. The 

variation of tnV ,1−  in 1, −nVψ  is 
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The term 
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 is positive or 

negative. If 1≤α , 
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 is always less than or equal to 0. When 1>α , 

0
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1, >
∂
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−

tn

nV

V
ψ

 may occur at low tnV ,1− . The relationship between 1, +tnV and tnV ,1−  and 

the relationship between 1, −nVψ  and tnV ,1−  are similar to Figs. 3-2 and 3-3 (i.e., if 

1≤α , they are similar to Figs. 3-2(a) and 3-3(a), and otherwise they are similar to 

Figs. 3-2(b) and 3-3(b) ). When the lead vehicle speed is not very low, a driver is 

more sensitive to the changes in lead vehicle speed. Hence, the sensitivity 1, −nVψ  

increases with reducing lead vehicle speed.  

Figs. 3-2 and 3-3 reflect the model assumptions (4.b.ii) and (4.b.iii). When lead 

vehicle speed is very low, a driver may perceive that the lead vehicle is too slow, 
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running at a very low velocity 1, +tnV  is his unique choice even though the lead 

vehicle becomes slightly faster. Hence, the sensitivity 1, −nVψ  may be very large or 

very small at low tnV ,1− . 

At identical following vehicle speed tnV , , drivers pay different attention to the 

lead vehicles with different spacing. The sensitivity 1, −nVψ  varies with spacing, that 

is 
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Eq. (3.33) equals Eq. (3.28). The term 
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∂
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tn

nV

H
ψ

 occurs at lower 

tnV ,1− , while 0
,

1, <
∂
∂ −

tn

nV

H
ψ

 occurs at higher tnV ,1− . It implies that the sensitivity 

1, −nVψ  increases with spacing at lower tnV ,1− , and 1, −nVψ  increases with reducing 

spacing at higher tnV ,1− . This conforms to the model assumption (4.b.iv) and (4.b.v). 

If the lead vehicle speed is not very low, drivers pay closer attention to the movement 

of the lead vehicle at shorter spacing. Otherwise, if the lead vehicle runs very slow, 

drivers have more flexibility in choosing their vehicle speed 1, +tnV  at longer spacing.

 Hence, the sensitivity 1, −nVψ  increases with spacing at low lead vehicle speed 

tnV ,1− , and increases with reducing spacing at high lead vehicle speed. Examples of 

the relationship between 1, +tnV and tnV ,1− , and the relationship between 1, −nVψ  and 

tnV ,1−  at different spacing are shown in Figs. 3-8 and 3-9. 
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Figure 3-8 Examples of the relationship between 1, +tnV  and tnV ,1−  with different 

spacings 

Lead vehicle speed (Vn-1,t)
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Figure 3-9 Examples of the relationship between 1, −nVψ  and tnV ,1−  with different 

spacings 

At identical spacing, drivers with different speeds tnV ,  pay different attention to 

the lead vehicles. The sensitivity 1, −nVψ  varies with vehicle speed tnV , : 
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The term 
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 occurs at low lead vehicle speed tnV ,1− , while 

0
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V
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 occurs at high lead vehicle speed tnV ,1− . It implies that the sensitivity 

1, −nVψ  increases with reducing vehicle speed tnV ,  at low tnV ,1− , and 1, −nVψ  

increases with vehicle speed tnV ,  at high lead vehicle speed tnV ,1− . This conforms to 

the model assumption (4.b.vi) and (4.b.vii). Drivers with higher speed tnV ,  pay closer 

attention to his lead vehicle if his lead vehicle speed is not very low. Thus, higher 

vehicle speed tnV ,  makes drivers be more sensitive to the movement of the lead 

vehicle. On the other hand, if his lead vehicle runs at a very low speed, running at a 

very low velocity 1, +tnV  is the only choice for the driver whose vehicle speed tnV ,  is 

high. Otherwise, a driver with lower speed tnV ,  has more flexibility in choosing his 

speed, and thus the sensitivity 1, −nVψ  increases with reducing tnV , . Examples of the 

relationship between 1, +tnV and tnH ,  and the relationship between 1, −nVψ  and tnH ,  

with different vehicle speed tnV ,  are shown in Figs. 3-10 and 3-11. 
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Figure 3-10 Examples of the relationship between 1, +tnV  and tnV ,1−  with different 

tnV ,  
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Lead vehicle speed (Vn-1,t)

Lower vehicle speed
Higher vehicle speed

 
Figure 3-11 Examples of the relationship between 1, −nVψ  and tnV ,1−  with different 

tnV ,  
 
(3) Following vehicle speed tnV ,  

The variation of tnV ,  in 1, +tnV  is regarded as the sensitivity to tnV , , and nV ,ψ  

denotes the sensitivity. Thus  
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Eq. (3.35) indicates that 0, ≤nVψ . Since a driver may slow down if his speed 

tnV ,  is too high, and may speed up if he runs too slow. If the spacing approaches 

infinity, the spacing is out of critical car-following spacing, and then 0, =nVψ . Thus, 

nV ,ψ  is less than or equal to zero. The sensitivity nV ,ψ  varies with spacing. The 

variation of tnV ,  in nH ,ψ  is 
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tn ). If *
,, tntn VV < , the absolute value of sensitivity 

nV ,ψ  decreases as tnV ,  decreases, and if *
,, tntn VV > , the absolute value of sensitivity 

nV ,ψ  decreases as tnV ,  increases. When tnV ,  is very large (i.e., *
,, tntn VV >> ) or very 

small (i.e., *
,, tntn VV << ), a driver may consider that he runs too fast or too slow, and 

thus has less flexibility in choosing his speed 1, +tnV . Finally, 1, +tnV  is not very 

sensitive to the changes in tnV ,  while tnV ,  is very large or very small. On the other 

hand, a driver is sensitive to its lead vehicle, if he does not run very fast or very slow. 

At identical lead vehicle speed tnV ,1− , suppose 
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with *
,tnH . According to aforementioned analysis, if *

,, tntn VV > , the driver may 

consider that he runs very fast or too fast. When the spacing is short, a driver may 

think that he runs very fast even though his speed is not very high, and thus *
,tnV  

occurs at low value. The relationship between 1, +tnV and tnV ,  and the relationship 

between nV ,ψ  and tnV ,  with different spacings are shown in Figs. 3-12 and 3-13. 
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Figure 3-12 the relationship between 1, +tnV  and tnV ,  with different spacings 
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Figure 3-13 the relationship between nV ,ψ  and tnV ,  with different spacings 

When the lead vehicle and the following vehicle speeds are identical, the 

proposed model is represented as 
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0<− βα  implies driver with higher vehicle speed perceives the repulsion more, and 

0=− βα  implies drivers with different speed result in the same repulsion. The 

following vehicle and its leader have identical speed often occurs in equilibrium state. 

Next section, this dissertation will discuss the equilibrium state.  

 

 



 47

Chapter 4 
Equilibrium State and Stability Analysis 

In this chapter, the equilibrium state and local stability between two moving cars 

are discussed. The discussion is on the stability of a following vehicle when its lead 

vehicle is in equilibrium state and the following vehicle has no acceleration limit. If 

the lead vehicle is not in equilibrium state, the following vehicle never keeps in 

equilibrium state. 

4.1 Equilibrium State 

4.1.1 Microscopic Equilibrium State 
A system is either in equilibrium state or disequilibrium state. A vehicle is in 

equilibrium state if its speed and spacing never change as time passes. Equilibrium 

state is discussed below. A car-following process can be considered as a dynamical 

system. The process of a car following a leader that runs at equilibrium velocity is the 

dynamical system presented as Eqs. (4.1) to (4.3). 
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enV ,1−  is the equilibrium velocity of the lead vehicle. According to (4.2) and 

(4.3), the equilibrium state occurs when 1,,1,, +− === tnenentn VVVV . Hence, Eq. (4.2) 

becomes 
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when the following vehicle is in equilibrium state. Thus, the equilibrium spacing 

between vehicle n-1 and vehicle n is shown as Eq. (4.4). 
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Hence, the equilibrium state of the proposed car-following model is 
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Eq. (4.4) indicates that the equilibrium spacing is only dependent on the 

individual maximum speed of the following vehicle and the equilibrium speed of the 

lead vehicle. This conforms to Chakroborty’s finding [Chakroborty & Kikuchi, 1999] 

that equilibrium spacing is only dependent on the final speed. Chakroborty’s research 

did not discuss the difference among drivers, but the proposed model considers it. 

Thus, different drivers have different equilibrium spacing under identical equilibrium 

speed, and aggressive drivers have shorter equilibrium spacings. 

If the individual maximum speed of the following vehicle is less than the 

equilibrium speed, Eq. (4.4) becomes meaningless. This is reasonable, because the 

following vehicle will maintain its speed as its individual maximum speed and depart 

from car-following process. 

A driver may have different critical car-following distances under different 

external environments. For example, the critical car-following distance of freeway is 

longer than the one of urban street. This study employs individual maximum speed 

dn,ν  to reflect the influence of external environment. Let the individual maximum 

speeds of urban street and freeway be dan,ν  and dbn,ν , respectively, and dbndan ,, νν < . 

The critical car-following distance of urban street aD is 
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and the critical car-following distance of freeway bD  is 

( ) n
dbn

dbn
dbnb SLD

r

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= −−

→

1

,

,
,

1

1
1lnlim ν

εν
ενλ αβ

ε
.     (4.6) 

The ratio of na SD −  to nb SD −  is 
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Different parameter values result in different ratios of critical car-following distance. 

If 0=−αβ , it implies the critical car-following distances of freeway and urban 

street are identical. If 0>−αβ , it implies the critical car-following distance of 

freeway is longer than the one of urban street. Fig. 4-1 is an example of the 

equilibrium speed-spacing relationships under different maximum speed.   
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Figure 4-1 Example of equilibrium speed-spacing relationships under different 

maximum speeds ( 2.0=−αβ , 1=γ ) 

4.1.2 Fundamental Diagram Based on Microscopic Equilibrium State 
A vehicle is in equilibrium state if its speed and spacing never change as time 

passes. Eq. (4.4) is the microscopic equilibrium state, and it represents that a 

following vehicle keeps a specific equilibrium spacing if the equilibrium speed is 

enV ,1− . If every driver has identical driver behavior (i.e., identical individual maximum 

speed), the macroscopic equilibrium state can be derived easily from Eq. (4.4). The 

reciprocal of spacing is density, thus flow equals speed divides spacing, and the flow 

rate can be represented as 
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where eq  is the equilibrium flow rate, eV  is the equilibrium speed, dν  denotes 

drivers’ maximum speed, and S denotes drivers’ standstill distance. When every 

driver has the same individual maximum speed, the free-flow speed equals the 

individual maximum speed. Fig. 4-2 is the equilibrium speed-flow relationship as 

estimated by the proposed model. It is assumed that driver characteristics are 

homogenous. It shows different free-flow speeds result in different speed-flow curve. 
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Figure 4-2 Estimated speed-flow relationships. 
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Figure 4-3 Estimated speed-density relationships. 

Fig. 2-7 is the speed-flow relationship of the undersaturated traffic flow for basic 

freeway segments. The undersaturated flow is regarded as stable traffic, i.e., traffic 

flow reaches the equilibrium state. Fig. 2-7 indicates that the average speed under 

identical flow rate and the capacity increases with free-flow speed. The speed is 
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insensitive to flow in the low range. Fig. 4-2 shows that the relationship between 

free-flow speed and average speed or capacity is similar to that shown in Fig. 2-7. The 

estimated speed is also insensitive to flow in the low range. 

Fig. 4-3 is the speed-density relationship as estimated by the proposed model. It 

indicates that the difference between different drivers or different environments 

increases with reducing density, since drivers could behave their desired behavior 

under low density. On the other hand, when the density becomes jam density, no 

matter what kind of drivers (i.e., aggressive or conservative drivers) and what kind of 

environments (e.g., urban streets or freeways), the unique choice for drivers is to stop. 

Since different parameters αβ −  and γ  result in different eq  under identical 

equilibrium speed, different parameters result in different fundamental diagram 

patterns. Fig. 4-4 are different fundamental diagram patterns under different 

parameters. No matter what the parameter values are, all fundamental diagrams 

indicate that the difference between different drivers or different environments 

increases with reducing density. 
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Figure 4-4 Estimated fundamental diagrams under different parameters. 
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Figure 4-4 Estimated fundamental diagrams under different parameters (con.) 



 53

4.2 Necessary and Sufficient Conditions for Linearized 

Stability 

In this section, the linearized stability is discussed. If equilibrium state is 

asymptotically stable, all nearby solutions actually converge to the equilibrium state 

as time tends to infinity [Wiggins, 1990]. If equilibrium state is asymptotically stable, 

the car-following process will lead to equilibrium state (local stability and asymptotic 

stability) and traffic is regarded as stable traffic. Necessary and sufficient conditions 

for linearized stability are provided. 

Theorem 

(a) Necessary Condition for linearized stability 

If equilibrium state ( )Tenenen HV ,,, ,=X  of the dynamical system presented as 

Eqs. (4.1) to (4.3) is asymptotically stable, 
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equilibrium state ( )Tenenen HV ,,, ,=X  of the dynamical system presented as Eqs. (4.1) 

to (4.3) is asymptotically stable. 

Proof: 

The Jacobian matrix of the proposed dynamical system is shown as Eq. (4.9). 
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If all absolute values of eigenvalues of ( )e,nD XF  are less than 1, equilibrium state 
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is asymptotically stable [Alligood et al, 1997]. If equilibrium state is stable, all 

absolute values of eigenvalues of ( )e,nD XF  are less than or equal to 1 [Li & 

Szidarovszky, 1999] 

The eigenvalues of ( )e,nDF X  are the roots of the following characteristic 

equation. 
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42 cbb −±−
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Necessary Condition for 1<Λ  

If 042 <− cb , Λ  is a complex number and the absolute value of Λ  is c . 

Hence, if 1<Λ , it implies  

1<c               (4.12) 

If 042 ≥− cb , there are two cases: 0≥b  and 0<b .  

If 0≥b  and all 1<Λ  , according to (4.11), it implies  

cbb 42 2 −−−<−              (4.13a) 

 1<− cb                (4.13b) 

If 0<b , and all 1<Λ , according to (4.11), it implies  

242 <−+− cbb               (4.14a) 

1−>+ cb                (4.14b) 

(4.12), (4.13), and (4.14) are necessary conditions for 1<Λ  under different 

conditions. 

If 042 <− cb  

( ) ( ) 0141 22 ≥−=−+ cccQ           (4.15) 

( )22 1 cb +<∴              (4.16) 

If 042 ≥− cb  

1<ΛQ  

4 2 <∴b               (4.17) 

Since (4.13), (4.14), and (4.17), 1<c  ∩  cb +< 1  is the necessary 

condition for 1<Λ  under 042 ≥− cb .  

Hence, 1<c  ∩  cb +< 1 is the necessary condition for 1<Λ  under all 

conditions. 

Sufficient Condition for 1<Λ  

1<c  ∩  cb +< 1  is also the sufficient condition for 1<Λ . The proof is 

provided as follows. 

If 042 <− cb , 
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Q c=Λ , and 1<c  

∴ 1 <Λ  

Q (4.15), (4.16) and above-mentioned proof 

 ∴ 1<c  ∩  cb +< 1  is the sufficient condition for 1<Λ  under 

042 <− cb . 

If 042 ≥− cb  and 0≥b , 

Q cb +< 1  ∩  1<c  

( ) ( )222 14140 ccccb −=−+<−≤          (4.18) 

( ) 041 2 ≤−−<−− cbc            (4.19) 

Q cb +< 1  ∩  1<c  

( ) ( )cbc +<<+− 11             (4.20) 

( ) 01 ≤−<+− bc              (4.21) 

Q(4.19) and (4.21) 

042 2 ≤−−−<− cbb  

1<Λ  

If 042 ≥− cb  and 0<b , 

Q cb +< 1 , 1<c , and (4.18) 

ccb −<−≤ 140 2             (4.22) 

Q ( )22 1 cb +< , 1<c , and (4.20) 

cb +<−< 10              (4.23) 

Q(4.22) and (4.23) 

240 2 <−+−< cbb  

1<Λ  

Hence, 1<c  ∩  cb +< 1  is the sufficient condition for 1<Λ  under all 

conditions. 

Necessary Condition for the linearized stability of the proposed dynamical system 

According to the theorem derived by Li & Szidarovszky [1999] and 

aforementioned proof, if the proposed dynamical system is stable, it implies 
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Sufficient Condition for the linearized stability of the proposed dynamical system 

According to the theorem [Alligood, 1997] and aforementioned proof, if the 

presented dynamical system is stable, it implies cb +< 1  and 1<c  
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Both Eqs. (4.25) and (4.26) are the necessary conditions for linearized stability. 

Eqs. (4.28) and (4.29) are the sufficient conditions. 

■ 

From Eqs. (4.25), (4.26), (4.28), and (4.29) some traffic characteristics can be 

found. 

1. Higher 
dn

enV

,

,

ν
 makes traffic stable, lower 

dn

enV

,

,

ν
 makes traffic unstable: When 

the individual maximum speed of the following vehicle is close to the equilibrium 

speed of its lead vehicle (i.e. the speed is also its equilibrium speed), traffic will lead 

to equilibrium state, i.e. stable traffic. Otherwise, when the difference between the 

individual maximum speed of the following vehicle and the equilibrium speed of its 

lead vehicle is great, traffic may be unstable. The unstable traffic is often observed 
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under heavy traffic. From the proposed model, it can be explained that unstable 

heavy traffic may be due to the large difference between the driver’s individual 

maximum speed and equilibrium speed. 

2. Lower T  makes traffic stable, higher T  makes traffic unstable: When the 

driver’s reaction time is less, traffic will be stable. Otherwise, when the driver’s 

reaction time is high, unstable traffic is likely to occur. The similar result of the 

influence of driver’s reaction time on traffic stability is also found in GM model and 

other classical models [Herman et al, 1959; May, 1995; Zhang & Jarrett, 1997; 

Holland, 1998]. Furthermore, under the same equilibrium speed and with a lower 

dn

enV

,

,

ν
, the reaction time should be less to make stable traffic possible. It implies when 

the individual maximum speed of the following vehicle isn’t close to equilibrium 

speed, drivers should react more frequently. Otherwise, traffic may be unstable. 

4.3 Numerical examples 

Examples for stable traffic and unstable traffic are presented in this section.The 

model parameters for these simulations are: ,1=λ  ,1=α  ,1.1=β  1=γ  20=L  

(they have not been calibrated), m5=nS , sec5.0=T , amax = 5m/s2, and amin = 

-5m/s2. 

4.3.1 Stable Traffic 
The fact that the spacing between the lead vehicle and the following vehicle 

reaches a particular value after perturbation (to the spacing) caused by the actions of 

the lead vehicle is referred to as the stability in car-following behavior [May, 1990; 

Chakroborty & Kikuchi, 1999]. Researchers identified two types of traffic stability: 

local stability and asymptotic stability. Local stability is concerned with the 

car-following behavior of just two vehicles: the lead vehicle and one following 

vehicle. Asymptotic stability is concerned with the car-following behavior of a line of 

vehicles [May, 1990; Chakroborty & Kikuchi, 1999]. 

An example of movement process of four vehicles is illustrated below. The 

individual maximum speeds of the first vehicle, the second one, the third one, and the 

last one are 50, 60, 70, and 80km/hr, respectively. The initial speeds of these vehicles 
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are their individual maximum speeds. The initial spacings between these vehicles are 

100m. 

Figure 4-5 shows car-following trajectories of these four vehicles. As there is no 

vehicle in front of the first vehicle, the first vehicle runs at its individual maximum 

speed (i.e. 50km/hr). According to Section 4.2, following vehicles satisfy the 

necessary and sufficient condition for linearized stability, therefore, they finally run at 

equilibrium state. They run at their individual maximum speed initially, and decelerate 

later and finally keep their speed at 50km/hr. The platoon is then stable. 
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Figure 4-5 Car-following trajectories. 
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Figure 4-6 Spacings between vehicles. 

Figure 4-6 shows the spacing between these vehicles. All spacing reaches a 

particular value finally (i.e. equilibrium spacing), and this is asymptotic stability. As 

mentioned in Section 3, Figure 4-6 also reflects the model assumption that the driver 
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with higher individual maximum speed maintains a higher speed or a shorter spacing 

under the same condition. It is a common traffic phenomenon that different drivers 

may keep different spacing under the same condition. 

The stable spacing (i.e. equilibrium spacing) is only dependent on the final speed 

(or stable speed) and not on anything else [Chakroborty & Kikuchi, 1999]. The 

following example shows that the same lead vehicle and the same following vehicle 

will result in the same equilibrium spacing under different initial conditions. The 

individual maximum speeds of the lead vehicle and the follower are 50 and 60km/hr, 

respectively. The initial conditions include initial spacing and initial speed of the 

following vehicle. Six initial condition examples are listed below. 

A: spacing = 50m, speed = 60km/hr. 

B: spacing = 50m, speed = 30km/hr. 

C: spacing = 100m, speed = 60km/hr. 

D: spacing = 100m, speed = 30km/hr. 

E: spacing = 10m, speed = 60km/hr. 

F: spacing = 10m, speed = 30km/hr. 

Figures 4-7 and 4-8 are the simulation results. Figure 4-7 indicates that the same 

lead vehicle and the same following vehicle results in the same equilibrium speed of 

the follower. Figure 4-8 indicates that the spacing reaches the same equilibrium 

spacing under different initial conditions. Figures 4-7 and 4-8 indicate that 

equilibrium spacing is only dependent on the final speed and not on initial condition. 
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Figure 4-7 Speeds of the following vehicle under different initial conditions. 
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Figure 4-8 Spacings under different initial conditions. 

 

4.3.2 Unstable Traffic 
Traffic flow does not always lead to equilibrium state; sometimes unstable traffic 

occurs. The speed and spacing may change again and again over time. For example, 

when the traffic condition is heavy, vehicles sometimes fall into the stop-and-go 

situation. An example is shown to illustrate that the proposed model cannot only 

describe stable traffic, but also describe unstable traffic. In the following example, the 

individual maximum speed of the first vehicle is assumed to be 5km/hr so that it will 

run at 5km/hr to simulate the heavy traffic condition. All the individual maximum 

speeds of the following vehicles are 90km/hr. All of the initial spacings between a 

lead vehicle and a following one are 150m. All following vehicles don’t satisfy the 

necessary condition for stability because ( )  1exp1
11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

β
nDnD . Thus, traffic is 

unstable. Figure 4-9 is the velocity profile for the first six following vehicles in the 

platoon ( the second vehicle is the first following vehicle). It shows the stop-and-go 

traffic condition that vehicles sometimes stop and sometimes move. 
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Figure 4-9 Velocity profile under unstable traffic  

4.3.3 Relaxation Time 
Section 4.2 discusses the stability of equilibrium state, and if all nearby states 

converge to equilibrium state as time tends to infinity, the equilibrium state is 

regarded as asymptotically stable. In fact, one cannot observe traffic flow for infinite 

time. If the traffic converges to the equilibrium state takes much time, the equilibrium 

state may be hardly observed, and thus it may be regarded as unstable state. For 

example, if all drivers have identical individual maximum speed 100km/hr, the 

equilibrium speed-density relationship is shown as Fig. 4-10. The equilibrium state 

below 17km/hr, i.e. the dashed line in Fig.4-10, is regarded as unstable traffic by the 
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stability analysis mentioned in Section 4.2. But according to field data, velocity 

higher than 17 km/hr may be regarded as unstable traffic. For instance, the dotted line 

may be regarded as unstable traffic since it is hardly observed.   
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Figure 4-10 Speed-density relationship 

This section discusses the relaxation time of different equilibrium states. Figs. 

4-11 and 4-12 presents 12 examples, and all initial conditions are equilibrium states. 

The lead vehicle and the following vehicle run at identical velocity (i.e. equilibrium 

speed enV , ). First, a perturbation occurs at the 3rd time step. In Fig. 4-11, the lead 

vehicle accelerates its velocity to 5, +enV , decelerates its velocity to enV ,  at the 4th 

time step, and keeps its velocity at enV ,  finally. In Fig. 4-12, the lead vehicle 

decelerates its velocity to 5, −enV , accelerates its velocity to enV ,  at the 4th time step, 

and keeps its velocity at enV ,  finally. Since the lead vehicle changes its velocity, the 

following vehicle cannot keep its velocity as enV , . No matter the perturbation is 

acceleration or deceleration, the velocity profiles after perturbations indicate that the 

relaxation time increases with reducing 
dn

en
n

V
D

,

,

ν
= . 
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Fig 4-11 Velocity profile of the following vehicle after perturbation (+5km/hr) 
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Fig 4-12 Velocity profile of the following vehicle after perturbation (-5km/hr) 

 



 67

Chapter 5 
Disequilibrium State 

Some traffic phenomena of disequilibrium state will be discussed in this section. 

This section possesses analytical properties that are logical in representing physical 

phenomena first. The mathematical analysis guarantees that the disequilibrium 

phenomena hold under any parameters. Finally, simulation examples are provided. 

Parameters of these examples are the same as Section 4.3. 

5.1 Closing-in and Shying-away  

This section discusses closing-in and shying-away. When the following vehicle 

accelerates even its speed is faster than its leading vehicle’s speed, the phenomenon is 

closing-in. On the contrary, when the follower decelerates even it is slower than its 

leader, this is shying-away.  

Eq. (5.1) is the proposed model, 
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If the vehicle keeps its speed at the next time step, Eq. (5.2) becomes 
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the following vehicle will accelerate at the next time step. Otherwise, if  
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the following vehicle will decelerate at the next time step. 

If Eq. (5.4) holds and 1<ε , it implies tntn VV ,,1 <− , but the following vehicle 

accelerates at the next time step. This is the so-called closing-in. Otherwise, if Eq. 

(5.5) holds and 1>ε , it implies tntn VV ,,1 >− , but the following vehicle decelerates at 

the next time step. This is the so-called shying-away. 

Let tn,Φ  denotes the RHS of Eq. (5.3). Since tn,Φ  is a function of dn,ν , 

different drivers have different tn,Φ  under identical traffic condition. tn,Φ  varies 

with dn,ν , and  
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Eq. (5.6) indicates that drivers with higher individual maximum speed have lower 

tn,Φ . The following vehicle decides to accelerate at the next time step under 

tntnH ,, Φ> , and decides to decelerate under tntnH ,, Φ< . Thus, drivers with higher 

individual maximum speed may decide to accelerate and drivers with lower individual 

maximum speed may decide to decelerate under identical traffic condition. This 

conforms to the model assumption (1) that aggressive drivers keep higher velocity 

under identical traffic condition. 

Two illustrative examples of closing-in and shying-away are presented. It 

assumes the lead vehicle keeps its speed at 5 km/hr, the individual maxim speed of the 

following vehicle is 90 km/hr, and the initial spacing is 50 meters. Fig. 5-1 shows the 

simulation result from the 5th to the 13th time steps (Relative Speed = tntn VV ,,1 −− ). At 

T=2.5, the following vehicle speed is 15 km/hr, and it is faster than its lead vehicle. 

The right-hand side of Eq. (5.3) is 19.34 meters, it implies that the vehicle keeps its 

speed as 15km/hr at T=3 if the spacing is 19.34 meters at T=2.5. But the spacing is 

25.35 meters at T=2.5, it is longer than 19.34 meters. Thus, the following vehicle 

accelerates at T=3 although it is faster than its leader. The similar situations occur at 

T=3.5, T=4.5, and T=5.5, and the phenomenon is closing-in. 
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Fig. 5-2 shows an example of shying-away. The individual maximum speed of 

the lead and following vehicles are 50 km/hr and 70 km/hr, respectively, and the 

initial spacing is 20 meters. At T=1, the following vehicle speed is 42 km/hr, and it is 

slower than its lead vehicle. The right-hand side of Eq. (5.3) is 27.37 meters, it 

implies that the vehicle keeps its speed as 42 km/hr at T=2 if the spacing is 27.37 

meters at T=1. But the spacing is 19.02 meters at T=1, it is shorter than 27.37 meters. 

Thus, the following vehicle decelerates at T=3 although it is slower than its leader. At 

T=2, T=3, and T=4 the similar situations occur. This is the so-called shying-away 

phenomenon. 
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Figure 5-1 Acceleration and relative velocity (closing-in phenomenon) 
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Figure 5-2 Acceleration and relative velocity (shying-away phenomenon) 
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5.2 Traffic Hysteresis 

This section discusses traffic hysteresis pattern based on field data first. Then, 

the properties of the proposed model and general models are discussed. Microscopic 

and macroscopic traffic hysteresis examples are provided finally. 

5.2.1 Empirical Data of Traffic Hysteresis 
Fig. 5-3 is the empirical speed-occupancy data. The data were obtained from 

detectors using a 5 minute sampling time interval and aggregated across lanes. The 

solid and dashed lines are guidance lines illustrating the acceleration and deceleration 

trends. Fig 5-3 illustrates certain traffic characteristics, as follows: 

1. The acceleration curve differs from the deceleration curve. 

2. Regardless of whether traffic is heavy or light, the acceleration curve may lie 

above the deceleration curve, and may also lie below deceleration curve.  

When the observational object is a road section, a state ( )vk,  (where k denotes 

density, and v denotes speed) may accelerate or decelerate at the next time step. The 

velocity of a road section increases or decreases depends not only on the state of that 

section, but also on upstream and downstream traffic conditions. When the 

observation object is a vehicle, a vehicle with any state ( )tntn VH ,, ,  may accelerate or 

decelerate at the next time step. It’s because 1, +tnV  is influenced by the lead vehicle. 
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Figure 5-3 Empirical speed-occupancy relationship (1) 
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Fig. 5-3 indicates that other traffic hysteresis patterns exist aside from the two 

pattern types obtained by Treiterer and Maes. Kerner [2006] pointed out that traffic 

flow has three phases (i.e., free flow, synchronized flow, and traffic jam [1997, 1998]), 

and different phase transitions result in a variety of hysteresis phenomena. This study 

obtained two hysteresis pattern types differing from Figs. 2-3 and 2-4. Fig. 5-4(a) is 

contrary to Fig. 2-3, and Fig. 5-4(b) is contrary to Fig. 2-4. 
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Figure 5-4 Empirical speed-occupancy relationships (2) 

5.2.2 Traffic Hysteresis Discussion 
In this section, analytical properties of traffic hysteresis are discussed. Firstly, the 

proposed model is discussed. Secondly, a general model that guarantees the existence 

of traffic hysteresis is discussed. 

(1)The proposed model 

Traffic hysteresis implies that the speed-spacing relationships of acceleration and 

deceleration traffic are not identical. This section discusses the relationships between 

1, +tnV  and 1, +tnH  under acceleration and deceleration traffic. Since it is focus on 



 72

acceleration and deceleration traffic, stop conditions are not concerned. Hence, the 

speed and spacing are shown as Eqs (5.7) and (5.8). 
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1, +tnH  is function of 1, +tnV , and Eq. (5.8) can be represented as  

( ) 1,1,1,1,1, 0.5, +++++ −== tntntntntn TVZVZWH ,       (5.9) 

where ( )tntntntntn VVVTHZ ,1,1,1,1, 0.5 −++= +−−+ . 

Before reaching the equilibrium state, a disequilibrium state ( )1,1, , ++ tntn HV  may occur 

at acceleration or deceleration traffic, i.e. acceleration and deceleration traffic may 

have identical 1, +tnV , identical 1, +tnH , and identical 1, +tnZ . If the speed-spacing 

relationships of acceleration and deceleration traffic are identical, the first derivative 

of W  function at the point ( )1,1, , ++ tntn VZ  are identical. The first partial derivative of 

W  function at the point ( )1,1, , ++ tntn VZ  with respect to tnV ,  is 
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The first partial derivative of W  function at the point ( )1,1, , ++ tntn VZ  with respect to 

tnH ,  is 
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If the speed-spacing relationships of acceleration and deceleration traffic are identical, 

acceleration and deceleration traffic should have identical ( )1,1,
,

, ++∂
∂

tntn
tn

VZ
V
W , and 

identical ( )1,1,
,

, ++∂
∂

tntn
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H
W , and thus acceleration and deceleration traffic have 

identical 
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,
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∂ + . 
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Let 

( ) ( )dtndtndtntnatnatnatn VVHEVVVHE ,,1,,,,1,,,1,,,, ,,,, −+− == .     (5.12) 

where atnH ,,  denotes tnH ,  value for acceleration traffic, dtnH ,,  denotes tnH ,  

value for deceleration traffic , atnV ,,  denotes tnV ,  value for acceleration traffic, 

dtnV ,,  denotes tnV ,  value for deceleration traffic, atnV ,,1−  denotes tnV ,1−  value for 

acceleration traffic, dtnV ,,1−  denotes tnV ,1−  value for deceleration traffic. If the 

speed-spacing relationships of acceleration and deceleration traffic are identical,  
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Eq. (5.12) implies that 
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The first partial derivative of E  function at the acceleration traffic state 

( )atnatnatn VVH ,,1,,,, ,, −  is  
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The first partial derivative of E  function at the deceleration traffic state 

( )dtndtndtn VVH ,,1,,,, ,, −  is 
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atnV ,,  and dtnV ,,  denote tnV ,  for the acceleration and deceleration traffic 

respectively, and they accelerate or decelerate to the same velocity (i.e. Eq. (5.12)). 

Hence,  

1
,,

1
,,

−− Ω≠Ω dtnatn VV ,           (5.19) 

and Eq. (5.13) cannot hold. Consequently, the speed-spacing relationships of 

acceleration and deceleration traffic are different, and traffic hysteresis occurs. Thus, 

the proposed model always can represent traffic hysteresis under any arbitrary 

parameters values and any disequilibrium traffic conditions. 

 

(2) General models discussion 

This section discusses the speed-spacing relationship of a general model. 

Assumptions of the general model are listed below. 

1. The speed of a following vehicle 1, +tnV  is influenced by the lead vehicle 

speed tnV ,1− , the follower speed tnV , , and the spacing tnH , .  

2. If there are no changes in tnV ,1−  and tnV , , the vehicle speed 1, +tnV  increases 

with spacing tnH , .  

3. tnV ,1−  and tnV ,  influence 1, +tnV . Under different total effects of tnV ,1−  and 

tnV , , identical spacing still result in different 1, +tnV  while ntn SH >, . 
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4. If ntn SH =, , the vehicle will decide to stop under any arbitrary tnV ,1−  and 

tnV , . 

5. Let 1, +tnV  is a function of tnH , , tnV , , tnV ,1− , that is 

( )tntntntn VVHYV ,1,,1, ,, −+ =           (5.20) 

where ntn SH ≥, , 0, ≥tnV , 0,1 ≥− tnV . ( )tntntn VVHY ,1,, ,, −  is differentiable on 

its entire domain. 

6. Vehicles have no acceleration limit. 

 

Thus, the general traffic flow model is represented as following. 

1. ( ) 0,, ,1,,
,
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VVH
H
Y , ntn SH ≥∀ ,        (5.21) 

2. Let 1,,tnV , 2,,tnV  denote any arbitrary value of tnV , , 1,,1 tnV − , 2,,1 tnV −  represent 

any arbitrary  value of tnV ,1− , 1,,tnH  denotes any arbitrary  value of tnH ,  

but ntn SH >1,, , and ( ) ( )2,,12,,1,,1,,11,,1,, ,,,, tntntntntntn VVHYVVHY −− ≠ . Then,  

( ) ( )2,,12,,,1,,11,,, ,,,, tntntntntntn VVHYVVHY −− =  if and only if ntn SH =, . 

Let 2,,tnH  denotes any arbitrary value of tnH , , and 2,,1,, tntn HH ≠ . If  

( ) ( )2,,12,,2,,1,,11,,1,, ,,,, tntntntntntn VVHYVVHY −− = ,       (5.22) 

it implies Eq. (5.12) hold. If Eq. (5.14) holds, that is 

( ) ( )2,,12,,2,,
,

1,,11,,1,,
,

,,,, tntntn
tn

tntntn
tn

VVH
H
YVVH

H
Y

−− ∂
∂

=
∂
∂ .     (5.23) 

If Eq. (5.23) cannot always hold, traffic hysteresis occurs under some conditions. 

Next, this research proves that Eq. (5.23) cannot always hold. Suppose  

( ) ( )2,,12,,
0

1,,11,,
0

,,,, limlim tntnntntnn VVSYVVSY −
→

−
→

++=+
++

δεε
εε

    (5.24) 

where 0>δ . If Eq. (5.23) always holds, that implies 
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and the following equation holds 
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( ) ( )2,,12,,1,,11,, ,,,, tntnntntnn VVSYVVSY −− += δ .       (5.26) 

As ( ) ( )2,,12,,1,,11,, ,,,, tntnntntnn VVSYVVSY −− =  and Eq. (5.26) holds, the following 

equation holds 

( ) ( )2,,12,,2,,12,, ,,,, tntnntntnn VVSYVVSY −− += δ .       (5.27) 

Since 0>δ and Eq. (5.21), Eq. (5.27) cannot hold. Thus, Eq.(5.26) cannot hold, and 

then Eq. (5.25) cannot hold. It implies Eq. (5.23) cannot always hold, and thus traffic 

hysteresis exists.  
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5.2.3 Microscopic Traffic Hysteresis Example 
An example of movement process of two vehicles is illustrated below. The 

individual maximum speeds of these vehicles are 60km/hr. The initial speeds of these 

vehicles are their individual maximum speeds, and the initial spacing is 150m. Fig. 

5-5 is the speed-spacing trajectory, the solid and dashed lines represent acceleration 

and deceleration traffic, respectively. Fig. 5-5 indicates that acceleration and 

deceleration curves forms two loop. The acceleration curve lies above the deceleration 

curve at long spacing, and it lies below deceleration curve at short spacing. 

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160 180
Spacing (m)

Sp
ee

d 
(k

m
/h

r)

Deceleration
Acceleration

 

Figure 5-5 Speed-spacing trajectory 

 

5.2.4 Macroscopic Traffic Hysteresis Examples 
This section presents microscopic traffic flow simulation examples and 

aggregates individual data to reproduce traffic hysteresis. Leutzbach [1988] developed 

a generalized method to measure macroscopic traffic flow data from microscopic 

traffic flow data. The flow is measured as 

X
x

q i

⋅
= ∑
τ

,             (5.28) 

where τ  denotes the time length of observation, X  represents road length of 

observation, and ix  is the travel distance of vehicle i . The density is measured as 

X
t

k i

⋅
= ∑
τ

,             (5.29) 
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where it  denotes the travel time of vehicle i. Since ukq ⋅= , the space-mean 

speed is 

∑
∑=

i

i

t
x

u .             (5.30) 

 

All simulation examples describe traffic flow on a single lane with length of 

2000 meters. All drivers have identical driving behavior (i.e., identical individual 

maximum speed). The initial conditions are an equilibrium state, and the density is 

identical to the boundary condition at the start of the simulation. Road section traffic 

flow is influenced by upstream and downstream traffic, and thus the boundary 

conditions include both upstream and downstream boundary conditions. When the 

upstream boundary condition is upk veh/km, a new vehicle arrives with a spacing 

upk/1000  meters between it and the lasted vehicle. Meanwhile, when the downstream 

boundary condition is downk  veh/km, the lead vehicle of the simulation road keeps its 

speed as the equilibrium speed of density .downk  Furthermore, if the downstream 

boundary condition is 0 veh/km, the lead vehicle runs at its individual maximum 

speed. The relationship between equilibrium speed and equilibrium spacing is shown 

as Eq. (4.4). 

The boundary condition of example A is illustrated as Fig. 5-6(a). The 

downstream boundary is vehicle free. The road density changes with changes in the 

upstream boundary condition. Hence, road sections cannot keep their states as 

equilibrium states, and instead decelerate followed by accelerating. The trajectory for 

the speed-density of the section between 500m and 1500m (the position of upstream 

boundary is 0m, and that of downstream boundary is 2000m) is as shown in 

Fig.5-6(b). The solid and dashed lines of Fig. 5-6(b) are guidance lines illustrating the 

acceleration and deceleration trends. The solid and dashed lines form a hysteresis loop, 

and the deceleration line lies above acceleration line. It is similar to the observation 

result obtained by Maes (as shown in Fig. 2-3). 
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Figure 5-6 Boundary condition and speed-density relationship of example A: (a) 

Boundary condition (b) Speed-density relationship (t=0~3600sec) 

Fig. 5-7 illustrates the boundary condition and speed-density trajectory of 

example B. The hysteresis pattern resembles the observation results obtained by 

Treiterer and Meyers (as shown in Fig. 2-4). 

As aforementioned, there are at leas two types of hysteresis patterns differing 

from Treiterer and Maes’ observations. The proposed car-following model can also 

represent the two hysteresis pattern types illustrated in Fig. 5-4. In example C, there is 

no vehicle at the downstream boundary, and the upstream boundary has very low 

density, with vehicles entering the system at a speed approaching their maximum. An 

incident occurs at 1250m between 1000 and 2500 seconds which prevents vehicles 

passing. The trajectory for the speed-density of the section between 750m and 1250m 

is as shown in Fig. 5-8, and the hysteresis pattern is similar to Fig. 5-4(a) while 

differing from Fig. 2-3 
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Figure 5-7 Boundary condition and speed-density relationship of example B: (a) 

Boundary condition (b) Speed-density relationship (t=0~3600sec) 

Fig. 5-9 shows example D, which has a hysteresis pattern similar to Fig. 5-4(b) 

and contrary to Fig. 2-4. 

Zhang and Kim [2005] developed a car-following model which employed 

different rules for acceleration and deceleration traffic, and thus his car-following 

model can represent traffic hysteresis. The proposed model employ only one behavior 

rule for both acceleration and deceleration traffic when the lead and following 

vehicles are moving. Although all vehicles of Example A, B, D are moving vehicles 

which employ Eq. (5.1) regardless acceleration and deceleration, the proposed model 

still represent various traffic hysteresis pattern types. 
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Figure 5-8 Speed-density relationship of example C. (t=0~3600sec) 
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Figure 5-9 Boundary condition and speed-density relationship of example D 
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Chapter 6 
Conclusions and Perspectives 

This chapter includes the conclusions of this dissertation and discusses some 

future research topics. 

6.1 Conclusions 

This dissertation develops a simple car-following model. Sensitivity analysis, 

stability analysis, equilibrium state, disequilibrium state, and relaxation time are 

discussed. Results of this research are summarized as follows. 

(1) Car-following model 

The proposed model considers that a driver has different behaviors under 

different external environments, and different drivers have different behaviors. The 

individual maximum speed which is an exogenous variable is employed to 

describe different drivers and different external environment.  

(2) Sensitivity analysis 

Vehicle speed 1, +tnV  varies with the spacing tnH ,  , the lead vehicle speed 

tnV ,1− , and the following vehicle speed tnV , . The sensitivity to each variable is 

discussed. Sensitivity analysis results indicate that sensitivity varies with all 

variables, and different parameter values represents different driver behaviors. 

(3) Stability analysis 

When the individual maximum speed of the following vehicle is close to the 

equilibrium speed of its lead vehicle, traffic will lead to equilibrium state. 

Otherwise, when the difference between the individual maximum speed of the 

following vehicle and the equilibrium speed of its lead vehicle is great, traffic may 

be unstable. Unstable heavy traffic may be due to the large difference between the 

driver’s individual maximum speed and the equilibrium speed. 

The stability is also dependent on driver’s reaction time. When the driver’s 

reaction time is less, traffic will be stable. Otherwise, when the driver’s reaction 

time is high, unstable traffic is likely to occur. When the individual maximum 

speed of the following vehicle is not close to the equilibrium speed, drivers should 

react more frequently. Otherwise, traffic may be unstable. 

(4) Equilibrium state 
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Equilibrium spacing is dependent on the equilibrium speed and the individual 

maximum speed of the following vehicle. Thus, different drivers have different 

equilibrium spacing under identical equilibrium speed, and aggressive drivers have 

shorter equilibrium spacing. 

Fundamental diagram based on the microscopic equilibrium state is also 

discussed. The numerical examples indicate that different parameter values result 

in different fundamental diagram patterns, and the capacity increases with 

free-flow speed.  

(5) Disequilibrium state 

Some traffic phenomena of disequilibrium state are discussed, such as 

closing-in, shying-away, stop-and-go, and traffic hysteresis. This dissertation 

identified at least two types of hysteresis patterns differing from Treiterer and 

Maes’ observations based on filed data. Simulation results demonstrate that the 

proposed model can describe the four hysteresis pattern types. 

The mathematical analysis of closing-in, shying-away, and traffic hysteresis 

are provided, and they guarantee that the disequilibrium phenomena still hold 

under any parameter values. A general traffic flow model that guarantees the 

existence of traffic hysteresis is also provided. 

(6) Relaxation time 

When a perturbation occurs at an equilibrium system, the system will depart 

from equilibrium state. This study discusses how much time the system needs to 

return to the equilibrium state. No matter the perturbation is acceleration or 

deceleration, the velocity profiles after perturbations indicate that the relaxation 

time increases with reducing 
dn

en
n

V
D

,

,

ν
= . 

6.2 Perspectives 

This research develops a simple car-following model. The original research 

motivation is to develop a microscopic traffic flow model that can extend to 

macroscopic traffic flow model and can be a tool to analyze traffic properties. Thus, it 

can provide real time information for ATIS, and provide better traffic control 

strategies for ATMS. This dissertation is a fundamental research for a long-term 

research. The long-term research objectives include: 
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(1) Traffic information prediction: The long-term objective is to develop a simulator 

that can provide real time prediction of large-scale traffic network, and the 

simulator is based on a proposed traffic flow model. In order to achieve the 

objective, the research procedure is: (a) to develop a microscopic traffic flow 

model, (b) to develop a mesoscopic traffic flow model, (c) to develop a 

macroscopic traffic flow model, (d) to develop a simulator. To take advantages of 

microscopic and macroscopic traffic flow models, the simulator can be based on a 

combined model. 

(2) Traffic control strategies: As the proposed model provide some traffic flow 

analysis, new concepts could be introduced to design traffic control strategies. 

The long-term research objectives and future studying topics are shown in Fig. 

6-1. Next, each studying topic is discussed. 

Microscopic traffic 
flow model

(presented in Fig. 6-2)

Mesoscopic traffic 
flow model

Macroscopic traffic 
flow model

Simulator based on 
combined model

Traffic Information
(based on traffic flow model)

Traffic Control Strategies
(based on traffic flow analysis)

Variable speed limit

Adaptive signal 
control

 

Figure 6-1 Long-term research objectives and future studying topics 
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(1) Traffic flow model extension 

In order to develop a simulator that can provide real time information of 

large-scale traffic network, traffic flow model should be extended. 

(a) Lane-changing model  

Microscopic traffic flow includes car-following and lane-changing. This 

dissertation only develops a simple car-following model, and thus 

lane-changing model should be developed.  

(b)Longitudinal movement model for nonmotorized vehicle 

In Taiwan, the traffic flow in most urban streets is mixed traffic flow. 

Mixed traffic flow contains standard vehicle types such as passenger cars, 

buses, and trucks, as well as nonstandard vehicles such as motorcycles and 

bicycles. The behaviors of standard vehicle type and nonstandard vehicle type 

are different. In the motorcycle lane, the way motorcycles move is not the 

same as cars, which follow one after another. Thus, longitudinal movement of 

nonmotorized vehicles differs from car-following of motorized vehicles. 

(c)Lateral movement model for nonmotorized vehicle 

Nonmotorized vehicles can overtake on the same lane. Therefore, lateral 

movement of nonmotorized vehicles differs from lane-changing of motorized 

vehicles. 

(d) Mixed traffic flow model 

Microscopic traffic flow models for motorized vehicles and nonmotorized 

vehicles could be integrated as a microscopic mixed traffic flow model. 

(e) Calibration and validation 

All the aforementioned models should be calibrated and validated. Then, a 

microscopic traffic flow simulator can be developed. Studying topics of 

microscopic traffic simulator is shown in Fig. 6-2. 
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Mixed traffic flow model

Car-following model
(presented in this 

dissertation)

Motorized Vehicle

Lane-changing model

Longitudinal 
movement model

Nonmotorized Vehicle

Lateral movement 
model

Calibration and 
Validation

Microscopic traffic 
flow simulator

 

Figure 6-2 Studying topics of microscopic traffic simulator 

 
(f) Mesoscopic traffic flow model 

This dissertation discusses the microscopic equilibrium state, and the 

macroscopic equilibrium state based on the microscopic equilibrium state for 

homogeneous drivers. In fact, there are various drivers on the road, and thus 

equilibrium and disequilibrium states for heterogeneous drivers could be a 

research topic. 

As aforementioned, different drivers have different equilibrium spacing 

under identical equilibrium speed. Thus, the equilibrium spacing for 

heterogeneous drivers under some specific equilibrium speed is a distribution. 
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The speed of the lead vehicle of a platoon is the equilibrium speed of the 

platoon under uninterrupted traffic. If there are many vehicles on a road, they 

will form several platoons. Thus, different individual maximum speed 

distributions result in different lead vehicle speed distributions, and then result 

in different equilibrium speed distributions for uninterrupted traffic. Hence, the 

equilibrium state for heterogeneous drivers is not a specific value, it is a 

distribution. 

Furthermore, before reaching equilibrium state, Boltzmann transport 

equation could be developed to describe disequilibrium traffic.  

(g) Macroscopic traffic flow model 

A dynamic macroscopic traffic flow model can be developed based on the 

aforementioned mesoscopic traffic flow model. Density, flow, and speed can 

be derived from the vehicle speed distribution function of Boltzmann transport 

equation.  

(h) Traffic flow simulator based on combined models 

As microscopic and macroscopic traffic flow models have their own 

strengths, traffic flow simulator could be developed based on combined models. 

For example, microscopic traffic flow model can describe vehicle interaction 

in detail, and macroscopic traffic flow model has less execution time. 

Microscopic traffic flow model could be employed to simulate urban 

intersections, freeway weaving sections, and ramp junctions. Macroscopic 

traffic flow model could be employed to simulate basic freeway sections.  

(2) Traffic control strategy 

(a) Variable speed limit 

As mentioned in stability analysis, the difference between individual 

maximum speed and equilibrium speed influence traffic stability. If the difference 

is large, unstable traffic is likely to occur.  

Different equilibrium density results in different equilibrium speed, and then 

results in different difference between individual maximum speed and equilibrium 

speed. Speed limit may affect individual maximum speed. Thus, if the speed limit 

can vary with traffic condition, traffic may be stable under high density.  

(b) Adaptive signal control 
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As mentioned in Chapter 5, the speed-density relationships for acceleration 

and deceleration traffic are different. Thus, the flow-density relationship of 

acceleration traffic differs from the one of deceleration traffic. As shockwave 

speed is dependent on the flow-density relationship and some adaptive signal 

control strategies consider shockwave speed, traffic hysteresis concept could be 

introduced to design adaptive signal control strategies. 
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