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Student : Yuh-Ting Wu Advisor : Hsun-Jung Cho

Department of Transportation Technology and Management
National Chiao Tung University

Abstract

The increment of vehicle number and life quality request lead to develop ITS in
the recent years. ATIS needs traffic flow model to provide real time prediction. ATMS
needs traffic flow models to analyze traffic flow properties so that they can provide
better traffic control strategies. Thus, this dissertation aims to develop a simple
car-following model which can analyze traffic properties, represent traffic flow
phenomena, save execution time, and have potential for extending to macroscopic
models.

The proposed model employs driver’s individual maximum speed as an
exogenous variable to reflect the external environment and driver’s characteristics.
The proposed model can explain‘why speedsand Spacing differ among drivers even
when the driving conditions are:identical.

This dissertation discusses the equilibrium and disequilibrium states of the
proposed model, local stability: betweentwormoving cars, and relaxation time of
different equilibrium states. The'.stability analysis indicates that traffic is stable if
driver’s individual maximum speed is‘close to:the equilibrium speed. Otherwise, if the
difference between the individual maximum speed and the equilibrium speed is large,
traffic may be unstable. It can explain why heavy traffic is unstable. Furthermore,
numerical examples show that relaxation time increases if the difference between the
individual maximum speed and the equilibrium speed increases.

This dissertation derives the equilibrium state of the proposed model, and it
indicates that equilibrium state is only dependent on the individual maximum speed
and the equilibrium speed, not on initial conditions. A driver with higher individual
maximum speed is more aggressive and keeps shorter equilibrium spacing under
identical equilibrium speed. Fundamental diagrams based on microscopic equilibrium
state and homogeneous drivers are also discussed. The capacity increases with free
flow speed, and different parameter values result in different fundamental diagram
patterns.

Some traffic phenomena of disequilibrium states are discussed, such as
closing-in, shying-away, stop-and-go, and traffic hysteresis. The mathematical
analysis indicates that aggressive drivers may decide to accelerate while conservative
drivers may decide to decelerate under identical driving condition. The speed-spacing
relationships for acceleration and deceleration traffic are different. Different initial
conditions and boundary conditions result in various traffic hysteresis patterns.
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Chapter 1
Introduction

1.1 Problem Statement

The increment of vehicle number and life quality request lead to develop ITS
(Intelligent Transportation Systems) in the recent years. ATMS (Advanced Traffic
Management System) and ATIS (Advanced Traveler Information System) are two
sub-systems of ITS. Information systems need traffic flow model to provide
prediction, such as travel time prediction. Traffic management systems need traffic
flow models to analyze traffic flow properties so that they can provide better traffic

control strategies.

Microscopic traffic flow models describe vehicles interaction at a high level of
detail, and they have behavioral meanings. Since microscopic models describe traffic
flow in detail, they can describe complicated vehicle interaction, and predict traffic
flow more accurate. But they need moré computation time. Hence, they can hardly
provide real-time prediction, especially in-large-scale traffic network [Zhang and

Owen, 1998].

Macroscopic traffic flow models-describe vehicles and their interaction at a low
level of detail. Contrary to microscopic models, most macroscopic models are derived
from physical models, they lack for behavioral meanings more, and take less

computation time.

Some simple microscopic models which have one or few functions, such as
safe-distance models and stimulus-response models, cannot represent some traffic
phenomena. On the other hand, it is easier to analyze traffic flow based on these
simple models, such as traffic stability can be derived from stimulus-response models.
It is also easier to extend to macroscopic traffic flow models based on simple
car-following models, such as stimulus-response models can extend to Greenshield,
Greenberg models based on different parameters. The models which have different
rules for different conditions describe traffic flow better. The computing is more
complicated and it is difficult to analyze traffic flow properties or extend to

macroscopic models from them.



LWR model is a simple macroscopic model, and it assumes that traffic flow
conforms to equilibrium speed-density relationships at all time. However,
speed-density relationships of equilibrium state and disequilibrium state are different.
Besides, LWR model cannot represent some complex traffic flow phenomena such as
stop-and-go waves in long queues. In order to solve the problems of LWR model,
higher order models are developed. Daganzo [1994] mentioned that although the
results of higher order models are a little better than first order models, it needs more
computation. He also pointed out higher order models bring the wrong result; that is,
in some cases, vehicle speed will be negative. Some macroscopic models are derived
from physical models, and some physical variables cannot correspond to traffic flow
measurement value, such as traffic field. Hence, some macroscopic traffic flow

models can be hardly applied to real world nowadays.

According to the aforementioned research background, the problems concerned

in this dissertation are listed below.

1. ITS need a traffic flow model that can provide real time prediction and can
analyze traffic flow properties.

2. Microscopic models can describe traffic flow at a high level of detail, but it
takes more time. Simple models cannot represent some traffic phenomena.
As the complexity of @ model increases, the more phenomena can be
represented and the more computation time.

3. Under complicated vehicle interaction, such as: weaving section, and
signalized intersection, microscopic simulation can provide better prediction.
Thus, microscopic traffic flow models are necessary for information systems
under some traffic conditions.

4. Most macroscopic traffic flow models are derived from physical models, they
lack of behavioral discussion, and they have some deficiencies in describing
some basic traffic phenomena, such as LWR model cannot represent
disequilibrium traffic state, and higher order models may make vehicle speed

be negative.

1.2 Research Motivations and Objectives

Macroscopic traffic flow models lack for behavioral discussion, and it is better to
apply microscopic models under some conditions, such as complicated vehicle
interaction section. This research try to develop a simple car-following model that

employs one rule or fewer rules, and it can solve aforementioned problems:

2



1. Less execution time: It is simple for save execution time, and it has the
potential for extending to macroscopic models. Thus, it can provide real time
prediction of large-scale traffic network.

2. Reproducing traffic phenomena: It can describe equilibrium and
disequilibrium traffic phenomena.

3. Traffic properties: It can be a tool to analyze traffic properties.

1.3 Framework of Research

In order to achieve research objectives, the framework of this research is shown

as Figure 1-1.

1. Car-following model development

A simple car-following will be developed. It can:
B reflect the difference among different drivers,

B avoid some deficiencies of traditional car-following models, such as
drivers have to determiine the ‘deceleration capability of their lead

vehicle, and
B reproduce equilibrium and disequilibrium traffic phenomena.

2. Sensitivity analysis

It will discuss how the propesed model output varies with changes in

model inputs.

3. Stability analysis

Local stability between two moving cars will be discussed. The
discussion is on the stability of a following vehicle when its lead vehicle is in
equilibrium state and the following vehicle has no acceleration limit. A
method of discussing linearized stability of a dynamical system will be

applied.

4. Equilibrium state discussion

A system is either in equilibrium or in disequilibrium. A vehicle is in
equilibrium state if its speed and spacing never change as time passes. The
microscopic and macroscopic equilibrium states of the proposed
car-following model will be discussed. Fundamental diagram based on the

microscopic equilibrium state will be also discussed.



5. Disequilibrium state discussion

Some traffic phenomena of disequilibrium state will be discussed, such
as closing-in, shying-away, stop-and-go, and traffic hysteresis. Simulation

examples will be provided.

6. Relaxation time discussion

Relaxation time refers to the time needed for a system to relax under
external stimuli. When a perturbation occurs at an equilibrium system, the
system will depart from equilibrium state. This study discusses how much

time the system needs to return to the equilibrium state.

7. Parameters discussion and mathematical analysis

This study possesses analytical properties that are logical in representing
physical phenomena, and prove that some traffic phenomena still hold under
any parameters or some traffic phenomena have various patterns under

different parameter values.
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Chapter 2
Literature Review

The research purpose of this dissertation is to develop a simple car-following
model which can analyze traffic properties, represent traffic flow phenomena, save
execution time, and have potential for extending to macroscopic models. Thus, traffic
flow characteristics are reviewed in section 2.1. Section 2.2 reviews some
car-following models. Section 2.3 presents some static macroscopic traffic flow
models. Section 2.4 review linearized stability of dynamical systems. Finally, a brief

summary and discussion is given in section 2.5.

2.1 Traffic Flow Characteristics

A system is either in equilibrium state or disequilibrium state. Section 2.1.1
reviews traffic stability that discusses whether a following car will reach the
equilibrium state or not. Section.#2.1.2- teviews some traffic phenomena of

disequilibrium states.

2.1.1 Traffic Stability

Car-following models describe both the space-time behavior of vehicles and their
interactions individually on a single lane. After car-following for a long time, the
speed or spacing of the vehicle might be kept at a particular value (i.e., stable traffic)
or changed again and again over time (i.e., unstable traffic). The fundamental diagram
(as shown in Fig. 2-1.) of traffic flow indicates that traffic flow is unstable at low

speed (i.e., under heavy traffic), and stable at high speed.

DensityA
| =emsmaa Unstable flow
v —  Stable flow
\
\ )
LY
A\ )
A )
.. ‘\
Critical
Density \\
— >
Critical
Speed
Speed pee

Figure 2-1 Relationship among speed and density [Mschane & Roess, 1990].



Traffic stability can be analyzed from the viewpoint of macroscopic traffic flow.
Zhang [1999b] found that various instability criteria can be reduced to a single
criterion derived from first order waves traveling faster than slow second order waves
in the higher order theories. Nagatani [2000] pointed out when the density is larger
than a critical value, the traffic becomes unstable. Yi et al [2003] derived a nonlinear
traffic flow stability criterion using a wavefront expansion technique. Jiang and Wu
[2003] found that stability depends on the equilibrium speed density relationship, and
it is also affected by the sensitivity parameters in the corresponding car-following

model.

Some researchers analyzed traffic stability from the viewpoint of microscopic
traffic. It is found that unstable traffic is likely to occur under higher reaction time and
higher sensitivity response based on stimulus-response models [Herman et al, 1959;
May, 1990; Zhang & Jarret, 1997; Holland, 1998]. This cannot explain why heavy
traffic is unstable, unless drivers have different reaction time or different sensitivity

response under different spacings.

2.1.2 Disequilibrium Traffi¢ Flow

A following car is in equilibrium state if it-keeps its velocity and spacing at some
particular value. If a following <car is in disequilibrium state, it implies the car is
accelerating or decelerating. This section ‘reviews some traffic phenomena of

acceleration and deceleration traffic.
A. Closing-in and Shying-away

Sometimes the following vehicle accelerates despite the lead vehicle
traveling slower than it is (i.e. closing-in), and sometimes the follower
decelerates even its speed is slower than its lead vehicle’s speed (i.e.
shying-away) [Chakroborty & Kikuchi, 1999]. Figure 2-2 shows that in about
20% of the points in the second and fourth quadrants of the car-following
process, they are closing-in or shying-away. Since closing-in and shying-away
often occur in a car-following process, a car-following model should be able

to describe closing-in and shying-away.
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Figure 2-2 Acceleration/Deceleration rate of the following vehicle at time t versus the
relative speed of the lead and following vehicles at time t-1 [Chakroborty & Kikuchi,
1999] (reproduced)

B. Hysteresis

Static macroscopic traffic flow.models describe the relationship between
speed and density. These relationship models frequently serve as a state
equation in dynami€ macroseopic traffic flow models. However,
speed-density relationships ofrequilibrium state and disequilibrium state are
different. In fact, when traffic. flow"is not in an equilibrium state (i.e.
acceleration or deceleration), the speed-density relationship is not one-to-one.
The acceleration curve differs from the deceleration curve, known as the
traffic hysteresis phenomenon. Igarashi [Igarashi et al, 2001] said that
hysteresis phenomena associated with discontinuous phase transitions. Figure
2-4 is the speed-density relationship obtained by Treiterer and Meyers [Zhang,
1999a]. It indicates that speed-density curve for transient traffic is not unique
[Zhang, 1999a]. Such curves contain two branches for acceleration and
deceleration traffic, respectively. The curves form two hysteresis loops. The
acceleration curve lies above the deceleration curve under low density
whereas the deceleration curve lies above the acceleration curve under high
density. Maes’ observation is shown as Figure 2-3, and he observed that the
deceleration curve lies above the acceleration curve under light and heavy

density.



Zhang [1999a, 2001] proposed a mathematical theory of traffic
hysteresis, and the model presented that acceleration and deceleration curves
lies on both sides of the equilibrium curve. These two branches meet with the

equilibrium curve.

Other researchers also proposed models to reproduce hysteresis.
Heidemann [2001] proposed a queueing theory, Daganzo [2002] proposed a
macroscopic behavioral theory, and Zhao and Gao [2005] presented a full
velocity and acceleration difference model. Wong and Wong [2002] indicated

that multi-class LWR model can reproduce hysteresis.

A
Velocity

.
-

Density

Figure 2-3 Trajectory for density vs. velocity obtained by Maes (reproduced)

A
Velocity

.
-

Density

Figure 2-4 Trajectory for density vs. velocity obtained by Treiterer and Meyers
(reproduced)



2.2 Microscopic Traffic Flow Models

According to the level of detail, traffic flow models can be divided into
microscopic, mesoscopic, and macroscopic models [Hoogendoorn & Bovey, 2001].
Microscopic traffic flow includes car-following and lane-changing. This study focuses

on car-following. Various car-following models are reviewed and discussed below.

Pipes [1953] proposed a safe-distance model, and applied a very simple rule. The
PITT [Wicks & Andrews, 1980] model is also a type of safe-distance model. This
model assumes that the vehicle follows its leader by maintaining some spacing. It
employed a sensitivity factor to describe different driver behaviors. The
stimulus-response model [Chandler, 1958; Gazis, 1959; Herman, 1959; Edie, 1961]
expresses the concept that a driver of a vehicle responds to a given stimulus based on
the stimulus and its sensitivity. The psycho-physical spacing model [Widemann, 1974;
Leutzbach, 1986, 1988] divides the car-following process into several behavior zones,
each with its own behavioral rules. Benekohal proposed the CARSIM model
[Benekohal & Treiterer, 1988], which- computes. various acceleration rates for
different situations and chooses the most suitable one. Fuzzy models [Kikuchi &
Chakroborty, 1992; McDonald et al, 1997] comprise a set of fuzzy inference rules
related to specific driving environments. The-intelligent driver model [Treiber et al,
2000] possesses only a few intuitive parameters with realistic values; the model
reproduces a realistic collective dynamics, and leads to the plausible microscopic
acceleration and deceleration behavior of single drivers. Newell [2002] designed a
very simple car-following rule for a homogeneous highway in which a vehicle follows
the same trajectory as its lead vehicle except for a translation in space and time.
However, it did not deal with the question of what determines speed. Zhang & Kim
[2005] developed a theory for explaining car-following behaviors in multiphase traffic
flow. It specifies different functional forms of gap-time for different spacings, and it

can reproduce both the so-called capacity drop and traffic hysteresis.

Some microscopic traffic flow models are reviewed in detail as following.

(1). Stimulus-Response Car-Following Model

Stimulus-response models were first derived from Reuschel [1950] and Pipes

[1953]. Chandler et al [1958] derived the stimulus-response function:

10



X (t+T) = 206, (1) x; (1)
where A is a constant, T denotes the reaction time, X, (t) denotes the position

of the lead vehicle at time t, and X, ,,(t) denotes the position of the following vehicle

at time t.

A series of stimulus-response models were developed later, these models can be

summarized as Table 2.1

2.1)

Table 2.1 Governing equations of car-following models

Model

Governing equation

Chandler et al. [1958] Xp(t+T)=A(x),, (t)-x; ()
California Chandler et al. [1958] X0t +T)=Ax,., (t)-x,({t)+c-Tx ()]
A%, (t) = x (1))
- X"t +T)= 2 U~ X
Gazis et al. [1959] i () —x. )

Herman et al. [1959]

Edie [1961]

FACMOETA0)
(),

Newell [1961]

Gazis et al. [1961]
(General Form)

(1) (%5 (1) - %3 (1))

Bando et al. [1995]

X (t+T) =alV (x,, ()X, () - x; (1)

Some macroscopic traffic flow models' can be derived from stimulus-response
models. Gazis’s model [1961] is a general form of stimulus-response models. The
case m=0, | =2 can be identified with a model developed by Greenshield [1934].
The case for m=0 and | =1 generates a steady-state relation that was developed
by Greenberg [1959]. When m=1 and | =2, the stimulus-response model can be
lead to Edie’s model. While m=1 and | =3, the model can be lead to Edie’s model.

The deficiencies of stimulus-response are described as following [Chakroborty,

1999].

1. Response to stimuli in car-following is asymmetric, but stimulus-response

model is symmetric.

2. It cannot represent closing-in and shying-away phenomena.

3. Stable distance headway of stimulus-response model is dependent on number

of factors, such as initial conditions, but the stable distance is actually only dependent
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on the final speed.

4. Tt ignores the acceleration capability of a vehicle.

(2). PITT Model

PITT is a FRESIM model in CORSIM which was developed by FHWA. Its
theory is keeping specific space headway [Wicks & Andrews, 1980]:

H=L +kxV, +10+bxkx(V, -V,) (2.2)
In Eq. (2.2):

H : space headway({t)

Ve : the velocity of the following car at end of time step
V. : the velocity of the lead car at the end of time step
L. : the length of the lead car

k :the sensitivity of a driver

b : constant, when Vi =Ve < 10, b=0.1,otherwise, b=0

For keeping above-mentioned space headway, the acceleration of the follower is:

2[X, = XL ~L—102, x(kxT)=bxkxfv, v, |
' (T2+2><k><T) |

A = (23)

In Eq. (2.3):

Ar : the acceleration of the following car
XL : the position of the lead car

X : the position of the follower at the beginning of time step
V! velocity of the follower at the beginning of time step

T ! time step
Considering the reaction time of following car c, the velocity of follower should
be V. =V, +A ><(T —C). To avoid traffic accident, PITT designs three constraint

functions for different traffic conditions.

The deficiencies of PITT are described as following [Benekohal, 1988] [Aycin,
1999].

1. It dose not take into account the star-up delay of stopped vehicles.
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2. The dual behavior of traffic in congested and non-congested conditions has not

been taken into consideration.

3. It is difficult to reflect all traffic condition since only one type of spacing
equation is applied for different conditions such as stop-and-go and noncongested

traffic.

4. It performs car-following by considering emergency braking of the lead
vehicle, but a follower cannot have the information about the deceleration capability

of its leader.

5. It considers driver’s reaction time, and it results in a driver with higher

reaction time keeps longer spacing.

(3). Psycho-Physical Spacing Models

Stimulus-response models presume that the following driver reacts to very small
changes in relative velocity even when the spacing is very large. On the other hand, if
the relative velocity is zero, the follower’s response is zero even the spacing is very
small or large. Researchers developed psycho-physical spacing models to remedy

these unreasonable assumptions. The basis of psycho-physical spacing models is:
1. at large spacings, the follower 18 not influeneed by the relative velocity, and

2. at small spacings, there are some combinations of relative speeds and spacings

do not yield a response of the follower, because the relative motion is too small.

This implies that there is a perceptual threshold. Only when thresholds are
reached, the following driver can perceive the changes in the relative speed or spacing.

Such perceptual thresholds are shown as Figure 2-5.

Widemann [1974] introduces the Psycho-Physical Spacing Model into
microscopic simulator and design the INTAC Model to be Behavioral Threshold

Model. Traffic flow is classified into several reaction zones (as shown in Figure 2-6).
The meaning of each threshold is [Fellendorf, 1997]:

A. Standstill spacing (AX): the desired distance between two cars in a standing

queue.

B. Minimum safe spacing (BX): the minimum safe spacing when the velocity of

follower is close to its lead vehicle.
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C.

Perceptual velocity difference threshold (SDV): action point where a driver
consciously observes that he approaches a slower lead vehicle. SDV

increases with speed difference.

Maximum car-following spacing (SDX): concerning the difference among

different drivers, the range of SDX is about 1.5-2.5 times BX.

OPDYV: action point where a driver notices that he is slower than the lead

vehicle and starts to accelerate again.

Perceptual Spacing Perceptual
threshold dX threshold
Zone
without Y
reaction
Zone with Zone with
reaction reaction
- >
-dVv Relative Velocity +dV

Figure 2-5 Perceptual thresholds of car-following process

DX
Spacing
MAXDXT—
' perception
no reaction SDV, threshold
SDX
/—/ ‘ reaction
unconscious /'~ py BX

reaction

deceleration AX
« collision ‘
) P | R Relative Velocity DV
increasing spacing decreasing spacing

Figure 2-6 Behavioral zones of behavioral threshold model
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(4). CARSIM
CARSIM (CAR-Following Simulation Model) is developed by Benekohal

[1988]. Several acceleration or deceleration rates are computed for different
conditions, and the most suitable one is selected for each vehicle in each time interval.

Each condition is described as following.

Al: The following vehicle is moving but has not reached its speed limit or

desired speed.
A2: The following vehicle has reached its speed limit or desired speed.
A3: The follower was stopped and has to start from a standing still position

A4: The follower’s performance is governed by the car-following algorithm
while space headway constraint is satisfied. The acceleration is computed from the

following equation
X, = (X, +V, (DT)+0.5(A4) DDP)SUE4K | (2.4)
where

XL : the position-of the lead vehicle
X : the position of thefollowing vehicle
L. : the length of the lead vehicle
K : the buffer space between vehicles
DT : the simulation scanning time interval (1 second)
A4 : the acceleration or deceleration in the condition
AS: The following vehicle is advanced according to the car-following algorithm
with non-collision constraint. The following equation is used to assure that enough

spacing is provided.

X, —(X; +V, (DT)+0.5(AS)DT ) )-L, -K >
Ve +(As)DT)JBRT),

maximum of NF + ( AS)(DT )](BRT )+ NF ;L((Ial)j( )(::3;' )]2 B 2( I\)/I()'-: L)

(2.5)

where:

BRT : brake-reaction time of a driver
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Vi : velocity of the lead car at the end of time interval
MX.F : maximum deceleration rate of the following car
MX.L : maximum deceleration rate of the lead car

A5  :the acceleration and deceleration in the condition

The strengths of CARSIM are described as following [Benekohal, 1988].

1. The vehicles’ acceleration and deceleration rates were kept with the reasonable
values observed in actual traffic conditions, and marginally safe spacings were

provided for all vehicles.

2. The delay in response of the follower to the lead vehicle’s deceleration was

taken into account. The delay is equal to the reaction time of the driver.
3. The start-up delay of a stopped vehicle was taken into consideration.

4. The dual behavior of traffic in congested and non-congested conditions is

taken into account.

5. CARSIM uses varying reaction times for.an individual driver and different
reaction times for different drivers. The reaction time.of a driver in congested traffic is

less than the reaction time of light traffic.
6. CARSIM can simulate stop-and-go condition.
The deficiencies of CARSIM are described as following [Aycin, 1999].

1. CARSIM performs car-following by considering emergency braking of the
lead vehicle, but a follower cannot have the information about the deceleration

capability of its leader.

2. CARSIM considers driver’s reaction time, and it results in a driver with higher

reaction time keeps longer spacing.

(5). Fuzzy Models
Kakuchi [Kakuchi, 1992, Chakroborty, 1999] proposed a fuzzy inference

car-following model. It consists of 396 rules which are based on the relative speed,
the spacing, and the acceleration of the lead vehicle. After defuzzifying, the model

outputs the acceleration of the following vehicle.
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McDonald [1997] proposed another fuzzy model, and it includes car-following
and lane-changing. The model takes into account desired car-following spacing, and

the inference rules are based on distance divergence and relative velocity.

Most of traditional car-following models are deterministic, but drivers do not
completely follow any deterministic behavior. Fuzzy models represent an approximate
nature behavior. They represent the natural language based ‘“rules-of-thumb” of
driving which is believed to be reasonable and uses the compromise of more than one

rule of behavior.
The strengths of fuzzy models are described as following.

1. Car-following is an approximate nature behavior, and fuzzy models represent

the property.
2. Fuzzy models can describe closing-in and shying-away phenomena.
3. The response of fuzzy models is asymmetric.

4. In fact, stable distance headway is only dependent on final speed, and fuzzy

models represent it.

2.3 Static Macroscopic-Traffic-Flow Models

Macroscopic traffic flow models "discuss flow, density, and speed. The

relationship between these variables is q=ku, where q denotes flow, k denotes

density, and u denotes velocity.

Some researchers discussed the relationship between density and velocity based
on filed data or some theory. Greenshield [1934], as one of the early investigators of
traffic characteristics, proposed a linear relationship. Greenberg [1959], using a
theoretical background, has postulated a logarithmic speed-density model.
Greenberg’s model is useful under high density but not under low density. Underwood
[1961] proposed a speed-density model for low density traffic. Later, Pipes [1967] and
Munjal [1971] developed a general family of speed-density models of which the
linear model is a special case. Drew [1968] proposed a family of models of which

Greenberg’s logarithmic model is a special case.

As some aforementioned models are only useful under some traffic condition,

some researchers proposed multi-regime models. Edie [1961] described a model that
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is a composite of Greenberg and Underwood models, where Greenberg is useful at

high density and Underwood is useful at low density. Other research results of the

static macroscopic model are summarized in Table 2.2 and Table 2.3 May [1990].

Table 2.2 Table of single-regime models

Single-regime models

Equations

Greenshields model (1934)

k
u= uf[l—k—j
;

5
u=u,ln ?

Greenberg model (1959)
Underwood model (1961) u=ue ~k/k
Northwestern's model (1967) 4 6—1/2(&»/&»0)2
—Yr

Drew model (1968)

(k](ﬂﬂ)/Z
u=u,l- -

Pipes-Munjal model (1967)

Ug * free flow speed kj congested density

Uy i critical speed K, : critical density

Table 2.3 Table of multi-regime models

Multiregime models | Free-flow regime Transitional-flow |Congested-flow
regime regime
Edie model u=u, o K1k ( ](j.j
1961 — u=uy,ln| —
(%ol (k<k,) Tk
(k>k,)
Two-regime linear model ( r i
(1967) u=u,|l—-— — u=u,l-——
k ; k J
(k<k) (k>k))
Modified Greenberg constant speed ( [(J,j
del (1967 — u=uyln —
model ( ) (k < kz) oM
(k>k,)
Three-regime linear model ¥ r r
(1967) u=u[[1——J u=u[(1——j uzuf(l——]
k J k J k J
(k <k,) (k,<k<k;) [(k>k,)
k; : specified traffic density > i=1.2.3.4
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Different free-flow speeds result in different speed-flow relationships. Figure 2-7
indicates that average speed under the same flow rate increases with free-flow speed.

The speed is insensitive to flow in the low to moderate range.
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=
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Flow Rate (pcu/hr/In)

Figure 2-7 Speed-flow relationships (reproduced) [TRB, 2000]
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2.4 Linearized Stability of Dynamical Systems

The general forms for dynamical system are shown as Egs. (2.6) and (2.7) .

X' = f(x) for continuous time, (2.6)
X, = F(x,) for discrete time, (2.7)

where xe R".

X 1is the state of the continuous dynamical system, and X, is the state of the
discrete dynamical system at time kK. f is the state-transition function. For any initial
state X,, Eq (2.7) uniquely determines the state trajectory, X,, k=0.

Any state of a dynamical system is either an equilibrium state or a disequilibrium
state. An equilibrium state of a dynamical system is a state X with the property that
if the system is ever in the state X, it will remain in that state for all time until
perturbation occurs.

The equilibrium solution~of-a continuous ~dynamical system is f(X)=0.The

equilibrium solution of a discrete dynamical system'is X = f (7)

An equilibrium state X is called.stable or marginally stable if for arbitrary
>0, there is a 6>0 such that ||X0 —X” <o 1implies that for all k>0,
||Xk —X" < ¢ . An equilibrium state is asymptotically stable if it is marginally stable and
there exists a A>0 such that ||X0 —i” <A implies that X, >X as K—>o. An
equilibrium is globally asymptotically stable if it is marginally stable and X, - X as
k — oo with any arbitrary initial state X, [ Li & Szidarovszky, 1999].

X is asymptotically stable if all eigenvalues of Df (X) have negative real parts

for a continuous dynamical system [Wiggins, 1990]. For a discrete dynamical system,

X is asymptotically stable if all eigenvalues of Df (X) are less than 1.
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2.5 Summary and Discussion

According to the above-mentioned review, some traffic phenomena are

summarized as following.

(1) Equilibrium spacing: If a following vehicle reaches and keeps at a particular
spacing, the particular spacing is only dependent on final speed. Hence, a
driver with higher reaction time has longer equilibrium spacing is not very
reasonable, since the equilibrium spacing is not dependent on driver’s

reaction time.

(2) Traffic stability: From the viewpoint of microscopic traffic flow, higher

reaction time makes unstable traffic likely to occur.

(3) Closing-in and shying-away: Relative speed cannot ensure the acceleration is

positive or negative.

(4) Traffic hysteresis: Speed-density telationships for acceleration and

deceleration traffic are different.

(5) Driver characteristics: Different «drivers have different behaviors. Some
drivers are aggressive, some-are not--Drivers may keep different velocities or

different spacings under the same-conditions.
(6) Stable traffic versus unstable traffic: unstable traffic occurs at high density.

Some strengths or deficiencies of car-following models are summarized as

following.

(1) Relative speed form: If driver’s acceleration is only dependent on relative
speed, the model cannot represent closing-in and shying-away phenomena,

and cannot describe asymmetric response.

(2) Considering enough spacing: If a driver takes enough spacing into account,
he must consider emergency braking of the lead vehicle, but he cannot have
the information about the deceleration capability of his leader. Furthermore,
he should consider his reaction time, and it results in a driver with higher

reaction time keeps longer spacing.
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(3) Driver characteristics: Some traditional car-following models cannot reflect
the difference between drivers. Some models employ sensitivity or
aggressiveness factor to describe the diver difference. However, these factors

cannot be measured directly.

(4) Simple models versus complex models: simple models that have one or few
functions, such as safe-distance models and stimulus-response model, cannot
describe some traffic phenomena. On the other hand, simple models can
extend to macroscopic traffic flow more easily. For example,
stimulus-response model can extend to macroscopic models, such as
Greenshield’s model, Greenberg’s model, and Edie’s model [May, 1990]. The
models that have different rules for different conditions describe the traffic
flow better, but their computations are more complicated. It is difficult to
develop a macroscopic traffic flow model based on these models. It is also

difficult to derive traffic properties from complex models.

Static macroscopic traffic flow models frequently serve as a state equation in
dynamic macroscopic traffic flow models, -and they. are regarded as the equilibrium
state of traffic flow. According:to aforementioned, static traffic flow models may be
developed based on disequilibrium field data, i.e., include acceleration and
deceleration traffic. For example,” Greenberg proposed his model for high density

traffic, but heavy traffic could hardly reach its equilibrium state.

22



Chapter 3
Car-Following Model

A simple car-following model is developed in this section, and the model should
achieve the following objectives. First, the model should describe microscopic
car-following phenomena, such as closing-in, shying-away, and traffic hysteresis.
Second, the model should reflect differences among individual drivers. Third, it
should avoid certain deficiencies mentioned in Chapter 2, such as drivers having to
determine the deceleration capability of their lead vehicle. Finally, the model should
minimize the number of rules employed to facilitate its extension to macroscopic

traffic flow models.

3.1 Model Assumption

The car-following process is influenced by driver characteristics, external
environment, and lead vehicle. If there is no lead vehicle, a vehicle will run at a
specific speed (its individual maximum  speed) influenced only by driver
characteristics and external environment.-Hence, an. individual maximum speed of a
vehicle is influenced by driver characteristics and-external environment. In other
words, the influence of driver characteristies-and external environment on a vehicle is
presented in the individual maximum speed of the vehicle. Driving alone, different
drivers may run at different speeds on the same road, implying that different drivers
(i.e. different driver characteristics) have different individual maximum speeds.
Driver individual maximum speed may vary with external environment, such as
freeway, urban street, and sunny versus rainy days. As driver characteristics and
external environment are difficult to measure, the proposed model considers
individual maximum speed to help reflecting the influence of driver characteristics
and external environment. The individual maximum speed of a vehicle can be
measured under certain situations. Where no lead vehicle is present, the vehicle speed
is the individual maximum speed. Otherwise, if the speed of the following vehicle
does not change with lead vehicle speed or spacing, its speed is considered to be its

individual maximum speed.

If there is a lead vehicle, and as the spacing decreases, the following vehicle may
slow down so that it cannot run at its individual maximum speed. According to the

literature, following vehicle speed depends on the speed of the lead vehicle, the speed
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of itself, and the spacing between vehicles. Hence, the variables of the proposed
model are individual maximum speed, the speed of the lead vehicle, the speed of itself,

and the spacing between vehicles.

To model the aforementioned phenomena, the proposed model assumes that
repulsion and thrust act on the following vehicle, which then sets an appropriate speed
accordingly. Figure 3-1 presents the proposed model. The model assumptions are

listed below:

Thrust Following | ¢ Repulsion Lead
(Individual Maximum Speed) |__Vehicle Vehicle

Figure 3-1 Illustration of the car-following concept
(1) Aggressiveness

The proposed model assumes that driver aggression increases with individual
maximum speed. Drivers with high individual maximum speed maintain a higher
speed or shorter spacing than do drivers with low individual maximum speed

under identical conditions, and also have faster-acceleration or deceleration.

(2) Velocity Decision

The following vehicle decides its‘appropriate:-velocity based on existing thrust

and repulsion, with the appropriate velocity equaling thrust minus repulsion.
(3) Thrust
Each vehicle has its own individual maximum speed, which is regarded as the
thrust. The individual maximum speed thus becomes the force driving the
following vehicle forward. If there is no lead vehicle, the vehicle will run at its

individual maximum speed v, ;. Individual maximum speed depends on external

environment and driver characteristics, which are not determined by car-following

process. Individual maximum speed thus is an exogenous variable.

(4) Repulsion
Because the lead vehicle can prevent the following vehicle from running at its

individual maximum speed v, ,, the lead vehicle is considered to be repelling the

follower. Since the following vehicle speed is influenced by the lead vehicle speed

V, ..., the follower speed V, , and the spacing H, , the repulsion is related to

nt? nt?

these factors.
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(a) Spacing H,,
(i) Given longer spacing H, ., the repulsion should be reduced because a

driver will maintain higher velocity V, ., under no changes in the lead

vehicle speed V,_,, and the following vehicle speed V, .

(ii) The following vehicle speed V

n,t+1

varies with changes in thespacing H,,.

The variation of H , in V is regarded as the sensitivity to H, , and

n,t+1

vy, denotes the sensitivity. At a large spacing H, ,, the following vehicle

nt?

is not influenced by the lead vehicle, and thus V, IS not sensitive to the

n,t+1

changes in H, , i.e. the sensitivity w,, . is zero. On the other hand, when

nt?

the spacing H,, is shorter, a driver is more sensitive to the changes in

spacing. Hence, the sensitivity w,, , increases with reducing spacing.

(iii) Continued from the preceding assumption (ii), when spacing is very short,
a following driver may:be very sensitive to or not sensitive to the changes in
spacing. Because a driver may perceive-that the spacing is too short,

running at a very low:velagity -V, ...—is his unique choice even though the
spacing becomes slightly longer. Hence, the sensitivity ,, . may be very
large or very small at short H, ;.

(iv) If the spacing is in some specific car-following distance, the following
vehicle is influenced by its leader. Otherwise, if the spacing is out of some
specific car-following distance, the following vehicle is not influenced by

its leader. The specific car-following distance is defined as critical

car-following distance. At identical following vehicle speed V. ., the

nt s
critical car-following distance increases with reducing lead vehicle speed
\Ap

(v) At identical lead vehicle speed V,_,,, the critical car-following distance
increases with the following vehicle speed.

(vi) At identical following vehicle speed, lower lead vehicle speed V,_,,

makes drivers be more sensitive to the movement of the lead vehicle. Thus,
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drivers are more sensitive to the changes in spacing, i.e. the sensitivity

Wy, Increases as the lead vehicle speed V,_,, decreases.

(vii) Continued from the preceding assumption (vi), if the spacing is very short,

running at a very low velocity V

n,t+1

is the only choice for the driver whose
lead vehicle speed V,_,, is low. Otherwise, if the lead vehicle speed is

faster, a driver has more flexibility in choosing his vehicle speed V,

n,t+1

after a reaction time. Faster lead vehicle speed V,_,, makes drivers have

more flexibility in choosing their speed V, at short spacing, so drivers

n,t+1
are more sensitive to the movement of their lead vehicles. Hence, the

sensitivity ,, , increases with the lead vehicle speed V,,, at short
spacing.
(viii) At identical lead vehicle speed V,_,,, a driver with higher vehicle speed

V_. is more sensitive to_the movement of the lead vehicle, and thus he is

n,t
more sensitive to the changes inspacing, I.e. the sensitivity w,  increases
with the following vehicle speed.

(ix) Continued from the preceding assumption (viii), if the spacing is very short,

running at a very low velocity: V/

nt+1

is the only choice for the driver whose
previous vehicle speed V,  is fast. Otherwise, if his previous vehicle speed

V_. is slower, a driver has more flexibility in choosing his vehicle speed

n,t

\Y Higher vehicle speed V,, makes drivers have less flexibility in

nt+l *

choosing their speed V at short spacing. Hence, the sensitivity y,, ,

n,t+1

increases with reducing V, , at short spacing.
(b) Lead vehicle speed V,_,

(i) Under identical traffic conditions, drivers maintain higher velocity V at

n,t+1

higher lead vehicle speed V, _,, and the repulsion should be reduced.

(ii) The following vehicle speed V, varies with changes in the lead vehicle

n,t+1

speed V,_, . The variation of V,_,, in V, ., isregarded as the sensitivity
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to V,,, and w, ,, denotes the sensitivity. If V, _  approaches infinity,

a driver may not perceive the obstacle created by the lead vehicle. Hence,

V is not sensitive to the changes in V,_,, i.e. the sensitivity v, ., is

nt+1

zero. On the other hand, when V, _,, is small, a driver is very sensitive to
the changes in V,,,. Hence, the sensitivity y, , ,decreases as V,_,,
increases.

(iii) Continued from the preceding assumption (ii), when V,_,, is very small,
following driver may be very sensitive to the changes in V,_,, or not

sensitive. Because a driver may perceive that the lead vehicle is too slow,
running at a very low velocity is his unique choice even though the lead

vehicle runs slightly faster. Hence, the sensitivity y, .., may be very large

or very small at low V,__, .

(iv) At identical following vehicle'speed V. ., lower spacing makes drivers pay

n,t?
more attention to the movement .of theirlead vehicles, and thus be more

sensitive to the changes in lead vehicle speeds V i.e. the sensitivity

n-1,t?

W, .1 increases with reducing spacing:

(v) Continued from the preceding ‘assumption (iv), if the lead vehicle speed

V,... is very low, running at a very low velocity V, is the only choice

n,t+1
for the driver whose spacing is short. Otherwise, if the spacing is longer, a

driver has more flexibility in choosing his vehicle speed V, ., after a

reaction time. Longer spacing makes drivers have more flexibility in

choosing their speed V, ., at low lead vehicle speed V,_,, so drivers are

n,t+
more sensitive to the movement of their lead vehicles. Hence, the sensitivity
W, .1 increases with spacing at low lead vehicle speed V, ;.

(vi) At identical spacing, a driver with higher velocity V, , pay more attention

to the movement of his lead vehicle, and thus he is more sensitive to the

changes in the lead vehicle speed V,,,, i.e. the sensitivity v,

increases with the following vehicle speed V, ..
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(vii) Continued from the preceding assumption (vi), if the lead vehicle runs too

slow, running at a very low velocity V,,,, is the only choice for the driver

n,t+

whose previous vehicle speed V, . is high. Otherwise, if his previous
vehicle speed V, , is slower, a driver has more flexibility in choosing his

vehicle speed V Higher vehicle speed V,, makes drivers have less

nt+l "

flexibility in choosing their speed V at short spacing. Hence, the

n,t+1

sensitivity v, ., increases with reducing V,, at low lead vehicle speed
Vn—l,t )
(c) Following vehicle speed V,

(i) A driver may slow down if his speed V, , is too fast, and may speed up if
his speed V, , is too slow. Hence, the repulsion increases with the follower

speed V..

(ii) The following vehicle:speed V.

n,t+1

varies with changes in the lead vehicle

speed V, . The variation-of V_.“in 'V

n,t+1

is regarded as the sensitivity to
V,.,» and w, , denotes the sensitivity.'When V, is very large or very

small, a driver may perceive ithat his speed is too fast or too slow. Thus,

running at a low or high speed is his unique choice, and V.

n,t+1

is not very

sensitive to the changesin V.

(iii) When the lead vehicle and the following vehicle speeds are identical, the
critical car-following distance increases with vehicles speed V,  or
different speeds result in identical critical car-following distance.

(iv) When the lead vehicle and the following vehicle speeds are identical, a
driver with higher vehicle speed perceives the repulsion more.

As an aggressive driver may perceive the obstacle created by the lead vehicle

as being of greater significance, it is also assumed that a driver with a higher

individual maximum speed will perceive higher repulsion under the same traffic

conditions.

(5) Safety
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Since some drivers exhibit unsafe behaviors, the proposed model assumes
that moving vehicles do not consider safe distance. Drivers only consider the

standstill spacing.

3.2 Modeling

When both the lead vehicle and the following vehicle are moving, the following
vehicle decides its appropriate velocity based on existing thrust and repulsion, with
the appropriate velocity equaling thrust minus repulsion. The repulsion is related to
the speed of the lead vehicle, the speed of the follower, and the spacing. Hence,
H

repulsion is a function of Vv, , V, and the vehicle speed can be represented

nt? n,t

as
\7n,t+l = Vn,d - R6/n—l,t ’Vn,t’ Hn,t)’ (31)
where R(Vn—l,t’vn,t’ Hn,t) is the repulsion. A driver with a higher individual maximum

speed perceives higher repulsion under identical traffic conditions. Hence the

repulsion is expressed as

R(Vn—l,t AV o ) =Vna r(vn—l,t Vi it ) (3.2)
Therefore, the vehicle speed’is
\7n,t+1 = Vn,d (1_ r(Vn—l,'[ 'Vn,t! Hn,t))’ (33)

and the range of r(vn—l,t’vn,t' Hn,t) is shown as Eq. (3.4):

0<rlV, Vo H, )<l . (3.4)
Let
(Vs Vo Hod) = HPV, Vo H ). (35)

The repulsion increases with reducing V, ,, or H_,, and it also increases with
V, . To describe closing-in and shying-away phenomena, the relative speed form is

not selected because it cannot decide whether the acceleration of the following vehicle

is positive or negative. Therefore, r(vn,lyt,vn,t, Hn,t) is represented as Eq. (3.6):

P(Vn—l,t’vn,t’ Hn,t): (\(<;lt)ga [Hn,tL_ Snj ' (36)
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where «, f,7,L are positive parameters. Since drivers take standstill distance S,
into account, H,_ —S, isthe gap that a driver perceives. As speed and spacing have
different units, the model employs the parameter L to standardize.

Since 0<V,, <v,,4, 0<V, <v,,,, and S <H_ ., the range of

n-1t — nt —

P(V, ..V, . H,,) is
0<PV,, V, o Hy)- 3.7)
P(Vn—l,t RV ant) Is any arbitrary nonnegative number. As Egs. (3.4), (3.5) and
(3.7), r(Vn—l,t’Vn,t'Hn,t) is represented as

1
r(Vn—l,t Vot Hn,t): K PV Vo Ho ) (3.8)

where K isaconstantand K >1. Let
K =exp(2), (3.9)

where A is a positive model parameter, and then r(vn,lyt,vnyt, HM) can be expressed

as
VLoV, o H )= exp(= APV, u Ve o H ). (3.10)
As Eqs (3.3), (3.6) and (3.10), the.vehicle speed \Zw,u-l can be expressed as
y
Vo =EV Vo H )= vy [1 exp[— yl (\(</1tt)2“ ( H”vtL_ S j J] (3.11)
More detail discussions about Eq. (3.11) and assumption (4) are discussed in
section 3.3.

If both the lead and following vehicles are running, the follower will choose an
appropriate speed, which equals thrust minus repulsion (as shown in Eq.(3.11)).
Sometimes the same condition results in different speeds for different drivers, the
difference is indicated by Eq. (3.11).

If the speed of the lead vehicle is zero, the following vehicle decelerates its speed
so that it can stop before a collision occurs. The distance that the following vehicle

can move before collisionis H_ . —S, . Hence,

0=, f +2a,(H,, ~S,). (3.12)
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where a_, is the acceleration. Thus, the acceleration a,, is

WS
ar"t = —m . (313)

Hence, the following vehicle speed at the next time step (i.e., after a reaction time T )

V,a =V, — i T. (3.14)

Under identical condition, the following vehicle speed should increase with its

lead vehicle speed. As Eq. (3.14) implicitly assumes V,_,, =0, the vehicle speed of
Eqg. (3.11) should be greater than the one of Eq. (3.14), i.e.

(Vn—l,t)d Hn,t_sn ’ (Vn,'[)2
vn‘d[lexp[;t (ant)ﬁ [ C j >V”’t_mT' (3.15)

But inequality (3.15) cannot always hold. For example, if V, in Eq. (3.11)

approaches zero, the solution of £q. (3.11) may approach zero. But the solution of Eq.
(3.14) may not approach zero. L-et inequality (3.15) hold, and then

Ya
H . -S)" 1 Vv, 2
Vo > =AW, P n - =V, ——" T ||| . 3.16
{ (n,t)ﬁ[ - J ( V{ T m (3.16)

If inequality (3.16) holds, inequality (3.15) holds. Thus, if V,,, in Eq. (3.11) is

greater than the RHS of (3.16), a following vehicle with a moving leading car will
choose a higher speed than it with a stopped leading car under identical spacing and
identical following vehicle speed. Hence, the premise of Eqg. (3.11) is

Vn—l,t >Vn—l,threshold and

b
B} H .-S. )’ 1 VAR
Vn—l,threshold = [/1 l(vnt)ﬁ(tfj In[l_v_(vn,t ﬁT\JJJ : (317)
n,d n,t n

On the other hand, the premise of Eq. (3.14) is V, ;; <V, yresnaid » although Eq.
(3.14) implicitly assumes V, , =0. If the lead vehicle runs at a low speed, the

following vehicle may regard its leader as a stopped vehicle. Thus the following
vehicle starts to slow down and Eq. (3.14) is employed.
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V. 1mesnos d€PENds on the spacing H, ., the follower speed V, , and the

nt? nt?

individual maximum speed v,,. Under identical spacing and follower speed,

different drivers have different V, _, ; coiq> @8N Ve Varies with v, that is

¥y-1
vV, H.-S, ) Vv, 2
n-1,threshold 21 _ﬂ’_l(vnt)ﬁ n,t n |n 1— 1 Vnt _ n,t T
aVn,d a ’ L Vad ’ Hn,t - Sn

(3.18)

Eq. (3.18) indicates that a driver with higher individual maximum speed has

lower V, _ iresnoiq - It iMplies that conservative drivers regard a fast lead vehicle as a

stopped vehicle under identical spacing and follower speed, and start to slow down.
While an aggressive driver only regards.avery slow:lead vehicle as a stopped vehicle.
This conforms to the model assumption (1) that -aggressive drivers keep higher
velocity under identical traffic condition;

If the lead vehicle is moving .and the following vehicle is stopped, the follower
will not start to move immediately. The follower usually remains stopped, and only
moves once the spacing is greater than a specific spacing Z, (i.e. the start spacing).
The follower then moves at the next time step, with its acceleration equaling its
desired start acceleration (as shown in Eq. (3.21)). Finally, if the following vehicle

stops and the spacing is less than the start spacing Z,, the follower remains stopped

at the next time step (as shown in Eq. (3.22)).

~ vV H,.-S,Y
Vn,t+1 = Vn,d [l exp[_ A ((\;—1&)2& ( H,IL nj }J ) for Vn—l,t >Vn—l,thresho|d & Vn,t #0
n,t

(3.19)
_ Vn
nt+l =Vn,t _Z%)T' for Vn—l,t SVn—l,threshold & Vn,t =0 (320)
/o in =a, T, for V., #0 &V, =0&H,, >Z, (3.21)
/1 =0, for V., =0 &H,, <Z, (3.22)
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Aside from the repulsion and thrust, the speed of the following vehicle also
depends on its capability. Vehicle acceleration should be between the maximum and
minimum acceleration of that vehicle. Therefore, the proposed model should be

modified as shown in Eq. (3.23), where a, . denotes the maximum acceleration of

ax

the follower, a represents the minimum acceleration (i.e. maximum deceleration)

n,min

of the follower, and T is the length of the time interval.

Vn,t+1’

V
V
Vi1 =Var + 2, minT for a,.,<a

n,min " 1

<a <a

n,min — “n,t+1 — “'n,max

for a

nt+1 =

=V, +a, T, fora ., >a

n,max ° !

(3.23)

nt+1 n, max

n,min

3.3 Sensitivity Analysis
This section discusses how the proposed model output varies with changes in
model inputs. The total increment of \7"’t+1 is
~ oE oE
an,t+l = —(Vn—l,t ’Vn,t' Hn,t)dvn—l.t -= —(Vn—l,t ’Vn,t' H n,t)dvn,t
8\/n—lt aVnt
aE’ ’ : (3.24)
+8H—(Vn—1,tvvn,t’Hn,t)an,t

n,t

V varies with the spacing H_ ., the lead vehicle speed V,_,,, and the following

n,t+1 nt?

vehicle speed V, .. Next, each model input is discussed.

(1) spacing H,,

The variation of H_, in V, is regarded as the sensitivity to H,_, and v, ,

n,t+1
denotes the sensitivity. Thus

oE
oH

n,t

_Vn,dyﬂ’ (Vn—l,t)a Hn,t_Sn o _ (Vn—l,t)a Hn,t_Sn g
== ((Vnt)ﬂ( C ]exp( ﬂ(\/t ( 1 j . (3.25)

(Vn—l,t ’V H )

nt? nt

Yin =




Eq. (3.25) indicates that w,, , >0. Since driver maintains higher velocity V, .,
with higher spacing, v, , is greater than zero. But a driver has his maximum speed
v,q and V, ., <v ., adriver cannot always increase his speed with spacing. Thus,
¥y, =0 occurs at large spacing. On the other hand, when the spacing approaches
infinity, the following vehicle is not influenced by the lead vehicle. Hence, V, ., is

not sensitive to the changes in H_ ., and then y,,  =0. When spacing approaches

infinity, the sensitivity v, | is

oE

lim aH—(anl,an,u H,.)=0. (3.26)
Hpi—o nt

As spacing H, . approaches infinity, v, = equals zero under any positive parameter
values. Eg. (3.26) conforms to assumption (4.a.ii).

Shorter spacing makes drivers pay more attention to the movement of their lead

vehicles, and thus the sensitivity wqy - varies with spacing. The variation of H_ , in

Wi 1
ow,, 0°E
L. V...V H.
aHnyt aHnYtz( n-1,t? n,t ,t)

(3.27)

V... J(H, =S, Y : 0 : -
The term —/17/( ”‘“) ( nt ”j +y—1 decides whether Whn s positive or
v\ L oH

n,t

OWy

negative. If » <1, is always less than or equal to 0. When y>1,

n,t

0 . .
# >0 may occur at short spacing H, . Figs. 3-2 and 3-3 show examples of the

nt
relationship between V, ., and H,, and the relationship between w, and H .

Both (a) and (b) diagram of Figs 3-2 and 3-3 indicate that when the spacing is not
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very short, a driver is more sensitive to the changes in spacing. Hence, the sensitivity

vy, Increases with reducing spacing.

@yr<1 (b)y>1

Speed (Vn,t+1)
Speed (Vn,t+1)

Spacing (Hn,t) Spacing (Hn,t)
Figure 3-2 Examples of the relationship between V, ., and H,, under no changes
in V. and V

y<1 y>1

‘//H,n l//H,n

Spacing (Hn,t) Spacing (Hn.t)
Figure 3-3 Examples of the relationship between v, . and H,_  under no changes
in V,fand"V, _,
Parameter y of (a) and (b) diagram in Figs 3-2 and 3-3 are different. They
reflect the model assumption (4.a.iii). When spacing is very short, a driver may
perceive that the spacing is too short, running at a very low velocity V is his

n,t+1
unique choice even though the spacing becomes slightly longer. Hence, the sensitivity

vy, May be very large or very small at short H

At identical following vehicle speed V. ., drivers pay different attention to the

nt?

lead vehicles with different speeds V, . The sensitivity y,, , varies with lead

vehicle speed V,_,:
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oWy,  O°E
aVn—l,t aVn—l,taH nt

— Vn,dﬂ’ay (Vn—l,t )a_l ( Hn,t B Sn j7_1 1_1 (Vn—l,t)a ( Hn,t B Sn ]7 . (328)
L v

b

\ H, -S.) . 0 N :
The term l—i( ““)C( ”'tL ”J decides whether # is positive or negative.

n-1t

(Vn—l,t 7Vn,t’ H n,t)

I 0 : .0
At identical V,, a\"/yﬁ>0 occurs at short spacing H, , while Wun

n-1t n-1,t

<0

occurs at long spacing H, . It implies that the sensitivity w, ,increases with lead
vehicle V,_,, atshort spacing, and v, , increases with reducing lead vehicle V, _,

at long spacing. This conforms to the model assumption (4.a.vi) and (4.a.vii). Drivers

pay closer attention to the lead vehicle with lower speed V, ,, than to the lead
vehicle with higher speed V, ¢ at long spacing..Thus, lower lead vehicle speed
V,.., makes drivers be more sensitive to-the movement of the lead vehicle. On the

other hand, if the spacing is very short, running.at-a very low velocity V is the

nt+1

only choice for the driver whose lead“vehicle speed V, ,, is low. Otherwise, if the

lead vehicle speed is faster, a driver has more flexibility in choosing his vehicle speed

V Higher lead vehicle speed V, . makes drivers have more flexibility in

nit+l -
choosing their speed V, ., at short spacing, so drivers are more sensitive to the
movement of their lead vehicles. Hence, the sensitivity y,, =~ increases with lead
vehicle speed V,_,, at short spacing. Examples of the relationship between V.,

and H,, and the relationship between w, and H_ . with different lead vehicle

speed are shown in Figs. 3-4 and 3-5.
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— Lower lead vehicle speed
Higher lead vehicle speed

Speed(Vn,t+1)

Critical car-following disance  Critical car-following disance
with faster lead vehicle speed  with lower lead vehicle speed

v v

Spacing(Hn,t)
Figure 3-4 Examples of the relationship between V
Vn—l,t

. and H . with different

n,t+

— Lower lead vehicle speed
Higher lead vehicle speed

¥, Critical car-following disance Critical car-following disance
with higer lead vehicle speed with lower lead vehicle speed

\
Spacing(Hn.t)

Figure 3-5 Examples of the relationship between v, = and H,_, with different

n-1t

Figs. 3-4 and 3-5 show examples of the relationship between V, . andH,, and

nt+l
the relationship between v, =~ and H,, with different lead vehicle speed. They not
only indicate sensitivity w,, , varies with lead vehicle speed but also indicate that
critical car-following distance varies with lead vehicle speed. As sensitivity w,, ,
decreases with increasing lead vehicle speed V,_,, at long spacing, the critical

car-following distance increases with reducing lead vehicle speed V, ., and it

conforms to the assumption (4.a.iv).
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At identical lead vehicle speed V,_,, drivers with different speeds V,  pay
different attention to the lead vehicles, and thus the sensitivity w,, , varies with

vehicle speed V, :

o,  OE
oV oV, 0H,

ABy (Vn—l,t )a (Hn,tL_ S, jyl(/i (Vn—l,t)a ( Ho =S, jy _1} , (3.29)

=Vaa [ vy
e

Y% H, -S, Y\ _ 0 : i :
The term /1( “1")0[ ”"L “] —1decides whether # is positive or negative.

Vo)

At identical V

(Vn—l,t ’Vn,t ' H n,t)

n,t

0 . G,
R (;(//“'” <0 occurs at short spacing H_ ., while Whn

nt n-1t

>0

occurs at long spacing H, . It .implies that the sensitivity y,, . increases with
reducing vehicle speed V, , at short spacing, and 'y, , increases with vehicle speed
V, . at long spacing. This conforms to-the model assumption (4.a.viii) and (4.a.ix).
Drivers with higher speed V,, pay closer attention to the lead vehicle. Thus, higher
vehicle speed V,, makes drivers be more sensitive to the movement of the lead

vehicle. On the other hand, if the spacing is too short, running at a very low velocity
V, .. Isthe unique choice for the driver whose vehicle speed V, , is high. Otherwise,
a driver with lower speed V, , has more flexibility in choosing his speed V, ., , and
thus the sensitivity y,, , increases with reducing V, . Examples of the relationship

between V, ., and H, , and the relationship between w, and H_ with

different vehicle speed V, , are shown in Figs. 3-6 and 3-7.

Figs. 3-6 and 3-7 show examples of the relationship between V, ., and H

n,t+
and the relationship between v, . and H,_, with different vehicle speed V, . They
not only indicate sensitivity y,, , varies with vehicle speed V,, but also indicate

that critical car-following distance varies with vehicle speed V, . As sensitivity w,, ,
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increases with vehicle speed V, , at high spacing, the critical car-following distance

increases with vehicle speed V_., and it conforms to the assumption (4.a.v).

nt?

— Lower vehicle speed
Higher vehicle speed

Speed (Vn,t+1)

Critical car-following disance Critical car-following disance
with lower vehicle speed with higher vehicle speed

Spacing (Hn,t)

Figure 3-6 Examples of the relationship between V and H,, withdifferent V,

n,t+1

— Lower vehicle speed
Higher vehicle speed

v, Critical car-following disance |, Critical car-followihg disance
’ with lower vehicle speed with higher vehicle speed

N

Spacing (Hn,t)

Figure 3-7 Examples of the relationship between v, . and H,, withdifferent V,

(2) Lead vehicle speed V, ,,

The variation of V_ _,, inV, is regarded as the sensitivity to V,_,, and

n,t+1

W, ... denotes the sensitivity. Thus

oE

Wyna1= M(an,t 'Vn,t’ H n,t)

ol g5

39

(3.30)




Eq. (3.30) indicates that y,, ,, > 0. Since driver maintains higher velocity V,

n,t+1

with higher lead vehicle speed V,_,,, w, ,, is greater than zero. If the lead vehicle

speed could approach infinity, a driver may not perceive the obstacle created by the

lead vehicle. Hence, V, ., is not sensitive to the changes in V,_, , and then

¥, ... = 0. When lead vehicle speed approaches infinity, the sensitivity w,, . , is

oE

lim aV—(VH,t Vo Hy)=0. (3.31)
Vn—l,t — % n-1,t

As lead vehicle speed V,_,, approaches infinity, y ., equals zero under any
positive parameter values. Eg. (3.31) conforms to assumption (4.b.ii).

Lower lead vehicle speed makes drivers pay more attention to the movement of

their lead vehicles, and thus the sensitivity v, ,, varies with lead vehicle speed. The

variationof V, . in w, , is

oy, n1

_ (Vn—l,t)m_2 Hn,t_Sn ’ (Vn—l,t)a Hn,t_Sn ’
avn—l,t _VnYd/la (Vn,t)ﬂ ( L j —ﬂa (Vn,t)ﬂ ( L j +a_1

vV . f(H =S Y _ 0 . "
The term —;ta( ”‘“) ( ML ”j +a—-1 decides whether VL g positive or

Ve )

negative. If o<1,

n-1t

is always less than or equal to 0. When a>1,

aWv,n—l

v >0 may occur at low V, . The relationship between V, ,and V,,, and

n-1t
the relationship between y, ., and V,_,  are similar to Figs. 3-2 and 3-3 (i.e., if
a <1, they are similar to Figs. 3-2(a) and 3-3(a), and otherwise they are similar to
Figs. 3-2(b) and 3-3(b) ). When the lead vehicle speed is not very low, a driver is
more sensitive to the changes in lead vehicle speed. Hence, the sensitivity w,
increases with reducing lead vehicle speed.

Figs. 3-2 and 3-3 reflect the model assumptions (4.b.ii) and (4.b.iii). When lead

vehicle speed is very low, a driver may perceive that the lead vehicle is too slow,
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running at a very low velocity V is his unique choice even though the lead

n,t+1

vehicle becomes slightly faster. Hence, the sensitivity v, ., may be very large or

very small at low V..

At identical following vehicle speed V.., drivers pay different attention to the

nt?
lead vehicles with different spacing. The sensitivity w, ., varies with spacing, that
§

OWyna 0°E

= VvV ..V H_. ) 3.33
aH avn_lYtaHnYt ( n-1t n;t ﬂ,t) ( )

n;t

e
Eq. (3.33) equals Eq. (3.28). The term 1—/1(\/”‘1")Za (H”"L S”] decides whether

(V..
P ) . i L 0
—(;/Ij_‘l"”‘l is positive or negative. At identical V,,, 2% >0 occurs at lower
nt n,t
V., While Wvnt 0 occurs.at higher ‘Wz, . It implies that the sensitivity

n,t

W, ... increases with spacing-atilower V ., and-y,  , increases with reducing
spacing at higher V,_, . This conforms:to;the-model assumption (4.b.iv) and (4.b.v).

If the lead vehicle speed is not very-low, drivers pay closer attention to the movement
of the lead vehicle at shorter spacing. Otherwise, if the lead vehicle runs very slow,

drivers have more flexibility in choosing their vehicle speed V,,,, at longer spacing.

n,t+

Hence, the sensitivity y, ,_, increases with spacing at low lead vehicle speed
V,_.;» and increases with reducing spacing at high lead vehicle speed. Examples of
the relationship between V, . and V, ., and the relationship between y, ,_, and

V... atdifferent spacing are shown in Figs. 3-8 and 3-9.
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— Shorter spacing
Longer spacing

Speed (Vn,t+1)

Lead vehicle speed (Vn-1,t)
Figure 3-8 Examples of the relationship between V, ., and V,_,, with different
spacings

— Shorter spacing
Longer spacing

'I’V,n 1

\

AN

Lead vehicle speed (Mn-1,t)
Figure 3-9 Examples of the relationship between w, ., and V,_ . with different
spacings

At identical spacing, drivers with different speeds V_. pay different attention to

n,t

the lead vehicles. The sensitivity v, ,_, varies with vehicle speed V, :

OWy n1 0 ’E
oV OV, 1.0V,

= Vn,dﬂvaﬂ (\(<;1,t)lill (Hn,tL_ Sn ]7(2 (Vn—l,t)a ( Hn,t - Sn jy _1} . (334)

)

(Vn—l,t 7Vn,t’ H n,t)

n;t
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V.. S (H,.-S, Y _ 0 o :
The term /1( ”‘“) ( "’tL ”] —1decides whether % is positive or negative.

Vo)

nt

— 0 _ |

At identical spacing, —2""% <0 occurs at low lead vehicle speed V..., While
n,t

—2/\\;'”‘1 >0 occurs at high lead vehicle speed V,_,,. It implies that the sensitivity

nt

W, ... Increases with reducing vehicle speed V, , at low V ., and w, .,
increases with vehicle speed V,  at high lead vehicle speed V,_, . This conforms to
the model assumption (4.b.vi) and (4.b.vii). Drivers with higher speed V, , pay closer

attention to his lead vehicle if his lead vehicle speed is not very low. Thus, higher

vehicle speed V,, makes drivers be more sensitive to the movement of the lead

vehicle. On the other hand, if his lead vehicle runs at a very low speed, running at a

very low velocity V is the only choice for the driver whose vehicle speed V,, is

n,t+1

high. Otherwise, a driver with lower speed V . has more flexibility in choosing his
speed, and thus the sensitivity .,..., increases with reducing V, .. Examples of the

relationship between V, ., and“H  .and the relationship between v, ., and H,,

n,t+1

with different vehicle speed V, , are shown in-Figs. 3-10 and 3-11.

— Lower vehicle speed
Higher vehicle speed

Speed (Vn,t+1)

Lead vehicle speed (Vn-1,t)
Figure 3-10 Examples of the relationship between V, ., and V,, with different
V,

n,t
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— Lower vehicle speed
Higher vehicle speed

WV,H +1

N

Lead vehicle speed (Vn-1,t)
Figure 3-11 Examples of the relationship between v, ., and V,_,, with different
V,

n,t

(3) Following vehicle speed V, ,

The variation of V. in V, ., is regarded as the sensitivity to V, ., and w, ,

denotes the sensitivity. Thus
oE (

l//v,n = aT Vn—l,t’Vn,t’ Hn,t)

n;t

AR ]

Eq. (3.35) indicates that y, , <0. Since a driver may slow down if his speed

V, . Is too high, and may speed up if he runs too slow. If the spacing approaches

infinity, the spacing is out of critical car-following spacing, and then y,, , =0. Thus,
W, Is less than or equal to zero. The sensitivity y, , varies with spacing. The

variation of V, . in w, s

OV, _ O°E
P = Vi Hi)

nt n;t

_ (Vn—l,t)a Hn,t_Sn ’ (Vn—l,t)a Hn,t_sn 7_ _11. 3.36
et v e L v o RV
.exp{— 2 (\(Ch)r [H n,tL_ S j J
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Wn—lt)a Hnt_Sn ’ . al//\/n . .-
The term Af ’ ' — f—-1=0 decides whether N = is positive or

v LU oL

\ H, —-S, Y
negative. When iﬂ( “‘“)a( ot S“j -p-1=0,

v,/ Lot

(H,.-S, Y e
Suppose the term A3 6(/”“) [ nt ”j —B—1=0 occurs at the point V', (i.e.,

V) UL

\/ H, —S,Y . o
/1,6’( ”‘“)H( ”'tL ”j -B-1=0). If V, <V, ,, the absolute value of sensitivity

o)

w, . decreases as V,, decreases, and if V,, >V, , the absolute value of sensitivity

n,t

8‘//v,n

n,t

has its local maximum.

v, , decreasesas V,, increases. When V., is very large (i.e., V,, >>V,,) or very
small (i.e., V,, <<V,,), a driver may consider that he runs too fast or too slow, and
thus has less flexibility in choosing his speed V, .. Finally, V, ., is not very
sensitive to the changes in V, . while'V, “iSwery large or very small. On the other

hand, a driver is sensitive to its lead vehicle, if he does not run very fast or very slow.

: : : (Vn—lt)a Hnt - Sn ’
At identical lead vehicle speed V, ,,Suppose Af (V )ﬁ YL -p-1=0
n,t

* * - V H* _S ’ * -
occurs at V., and H_ . (e, ;tﬂ( ”‘“)a( o ”J -p-1=0), V,, increases

A
with H;,. According to aforementioned analysis, if V,,>V.,, the driver may
consider that he runs very fast or too fast. When the spacing is short, a driver may

think that he runs very fast even though his speed is not very high, and thus ant

occurs at low value. The relationship between V, . ;and V,  and the relationship

nt+1

between v, , and V, with different spacings are shown in Figs. 3-12 and 3-13.
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— Shorter spacing
Logner spacing

Speed (Vn,t+1)

Vehicle speed (Vn,t)

Figure 3-12 the relationship between V, ., and V,  with different spacings

-

— Shorter spacing
Longer spacing

Vehicle'speed (Vn,t)

Figure 3-13 the relationship between v, . and V,  with different spacings

When the lead vehicle and the following vehicle speeds are identical, the
proposed model is represented as

Ve
\Z'],t+1 = E(Vn—l,t ’Vn,t’ Hn,t): Vn,d [1_ exp(_ Z(\/n,t)a_ﬁ{l-lmf_snj JJ . (337)

a — <0 implies driver with higher vehicle speed perceives the repulsion more, and
a— =0 implies drivers with different speed result in the same repulsion. The

following vehicle and its leader have identical speed often occurs in equilibrium state.
Next section, this dissertation will discuss the equilibrium state.
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Chapter 4
Equilibrium State and Stability Analysis

In this chapter, the equilibrium state and local stability between two moving cars
are discussed. The discussion is on the stability of a following vehicle when its lead
vehicle is in equilibrium state and the following vehicle has no acceleration limit. If
the lead vehicle is not in equilibrium state, the following vehicle never keeps in

equilibrium state.

4.1 Equilibrium State

4.1.1 Microscopic Equilibrium State

A system is either in equilibrium state or disequilibrium state. A vehicle is in
equilibrium state if its speed and spacing never change as time passes. Equilibrium
state is discussed below. A car-following process can be considered as a dynamical
system. The process of a car followinga leader that runs at equilibrium velocity is the

dynamical system presented as Egs. (4.1)t0(4.3).

Vv Vv
Xn,t+1 = |:H”~H1 :| = F(Xn,t): I:|:Hn,t :l (41)

n,t+1 nst

\ H, -S.Y
Vn,t+1 = f (Vn,t’ Hn,t)= Vn,d {1 - exp(— A ((\Z’lt’e)ﬂ)a [ n,tL . J JJ (42)

Hn,t+l = g(vn,t’Hn,t): Hn,t +0'5T(V

_Vn,t +Vn—1,e _Vn,t+1) (43)

n-1,e

V... 1s the equilibrium velocity of the lead vehicle. According to (4.2) and

(4.3), the equilibrium state occurs when V, =V, =V, =V Hence, Eq. (4.2)

n,e n-1,e = Yn,¢t+1-°

becomes

4
v
n-l,e

when the following vehicle is in equilibrium state. Thus, the equilibrium spacing

between vehicle n-1 and vehicle n is shown as Eq. (4.4).

(4.4)
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Hence, the equilibrium state of the proposed -car-following model is

V
ln{l - ”‘l’e]
v
RPN

—alv A

n-le

, and it is the unique equilibrium

state.

Eq. (4.4) indicates that the equilibrium spacing is only dependent on the
individual maximum speed of the following vehicle and the equilibrium speed of the
lead vehicle. This conforms to Chakroborty’s finding [Chakroborty & Kikuchi, 1999]
that equilibrium spacing is only dependent on the final speed. Chakroborty’s research
did not discuss the difference among drivers, but the proposed model considers it.
Thus, different drivers have different equilibrium spacing under identical equilibrium

speed, and aggressive drivers have shorter equilibrium spacings.

If the individual maximum speed ,of,the following vehicle is less than the
equilibrium speed, Eq. (4.4) becomes meaningless. This is reasonable, because the
following vehicle will maintain‘its speed as-its'individual maximum speed and depart
from car-following process.

A driver may have different critical car-following distances under different
external environments. For example, the ¢ritical car-following distance of freeway is
longer than the one of urban street. This study employs individual maximum speed

V,q to reflect the influence of external environment. Let the individual maximum

speeds of urban street and freeway be v,,, and v, , respectively, and v, 4, <V, 4, -

a

The critical car-following distance of urban street D, is

%
D, =lim L(— e, o) ln[l ~nge D +S,, (4.5)
Id! Vn,da
and the critical car-following distance of freeway D, is
gV 4
D, =1im L[— Il(gvn db)ﬁ_” ln[l —Znd J] +5S,. (4.6)
e—1 | Vn,db

The ratioof D, -S, to D,-S, 1is
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%
L - (gvn,da y ln[l Vs J o
Da -S Vi da Vida

oo =lim o @)

Db n e—>1 B EVi b " Vodo
L —ﬂ"l(gvn’db)ﬁ “In| 1——" ’

Vi.db

Different parameter values result in different ratios of critical car-following distance.

If f—a=0, it implies the critical car-following distances of freeway and urban
street are identical. If f—a >0, it implies the critical car-following distance of

freeway is longer than the one of urban street. Fig. 4-1 is an example of the

equilibrium speed-spacing relationships under different maximum speed.

140

120 © Maximum Speed = 120km/hr

100 -

80 r

60 r

Speed (km/hr)

Maximum Speed = 40km/hr

0 50 100 150 200 250 300 350 400 450 500
Spacing-(m)

Figure 4-1 Example of equilibrium speed-spacing relationships under different

maximum speeds (f—a =02, y=1)

4.1.2 Fundamental Diagram Based on Microscopic Equilibrium State

A vehicle is in equilibrium state if its speed and spacing never change as time
passes. Eq. (4.4) is the microscopic equilibrium state, and it represents that a
following vehicle keeps a specific equilibrium spacing if the equilibrium speed is

V,_.. - If every driver has identical driver behavior (i.e., identical individual maximum

speed), the macroscopic equilibrium state can be derived easily from Eq. (4.4). The
reciprocal of spacing is density, thus flow equals speed divides spacing, and the flow

rate can be represented as
-1
“hy VB-a V
a, V{Lr\/—/i (V) 1{1--&} + SJ , (4.8)
Vq
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where ¢, is the equilibrium flow rate, V, is the equilibrium speed, v, denotes

drivers’ maximum speed, and S denotes drivers’ standstill distance. When every
driver has the same individual maximum speed, the free-flow speed equals the
individual maximum speed. Fig. 4-2 is the equilibrium speed-flow relationship as
estimated by the proposed model. It is assumed that driver characteristics are

homogenous. It shows different free-flow speeds result in different speed-flow curve.
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Figure 4-2 Estimated speed-flow relationships.
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Figure 4-3 Estimated speed-density relationships.

Fig. 2-7 is the speed-flow relationship of the undersaturated traffic flow for basic
freeway segments. The undersaturated flow is regarded as stable traffic, i.e., traffic
flow reaches the equilibrium state. Fig. 2-7 indicates that the average speed under

identical flow rate and the capacity increases with free-flow speed. The speed is
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insensitive to flow in the low range. Fig. 4-2 shows that the relationship between
free-flow speed and average speed or capacity is similar to that shown in Fig. 2-7. The

estimated speed is also insensitive to flow in the low range.

Fig. 4-3 is the speed-density relationship as estimated by the proposed model. It
indicates that the difference between different drivers or different environments
increases with reducing density, since drivers could behave their desired behavior
under low density. On the other hand, when the density becomes jam density, no
matter what kind of drivers (i.e., aggressive or conservative drivers) and what kind of

environments (e.g., urban streets or freeways), the unique choice for drivers is to stop.
Since different parameters S —«a and y result in different ¢, under identical

equilibrium speed, different parameters result in different fundamental diagram
patterns. Fig. 4-4 are different fundamental diagram patterns under different
parameters. No matter what the parameter values are, all fundamental diagrams
indicate that the difference between different drivers or different environments

increases with reducing density.
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Figure 4-4 Estimated fundamental diagrams under different parameters.
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Figure 4-4 Estimated fundamental diagrams under different parameters (con.)
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4.2 Necessary and Sufficient Conditions for Linearized

Stability

In this section, the linearized stability is discussed. If equilibrium state is
asymptotically stable, all nearby solutions actually converge to the equilibrium state
as time tends to infinity [Wiggins, 1990]. If equilibrium state is asymptotically stable,
the car-following process will lead to equilibrium state (local stability and asymptotic
stability) and traffic is regarded as stable traffic. Necessary and sufficient conditions

for linearized stability are provided.
Theorem
(a) Necessary Condition for linearized stability
If equilibrium state X, (\/n e H, )T of the dynamical system presented as

Egs. (4.1) to (4.3) is asymptotically stable,

-0ty o< o) | (2

n,e

Vn,d

where D, =

(b) Sufficient Condition for linearized stability

It

(1-D, )[“a%} < exp(%} NT < {1 - (ﬁ(DLJ[m@ -D,)[1-D, )]IJ , [M(F;;/,:’e— S, )j ’

equilibrium state X (\/ H, ) of the dynamical system presented as Eqs. (4.1)

n.e n.e>

to (4.3) is asymptotically stable.

Proof:

The Jacobian matrix of the proposed dynamical system is shown as Eq. (4.9).

oV, H,.) oV ,H,.,)

n,t>

v, oH,
O ot ) o) 49
oV, oH,

If all absolute values of eigenvalues of DF(Xn,e) are less than 1, equilibrium state
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is asymptotically stable [Alligood et al, 1997]. If equilibrium state is stable, all

absolute values of eigenvalues of DF(XM) are less than or equal to 1 [Li &

Szidarovszky, 1999]

The eigenvalues of DF(XM) are the roots of the following characteristic

equation.

2 of og of og
8o ) o ) )

_i(\/n,eﬂHn,e)aag (Vn e’H ): 0

aHn,t n,t
(4.10)
Let
__ o _ 09
b - avn’t (Vn,eJHn,e) aHn’t (Vn e’H )
o og of og
= v, , Ve He )GHM Ve Hy o) oH, Ve H )avn,t Vs Hie)
where
af " Vn—l,e . Vn—l,e . \ﬂ
aVn,t (Vn,e’H”,E)_ﬂ( vn,d J(l Vn,d jln[l Vn,d ]
of _ Wn,e of
aHn,t (Vn,e’ Hn,e)_ ,B(Hn,e _ Sn)GVn (Vn e’ H e)
g _ 1 of
avn,t (Vn e’H )_ 2T[1 + avm (Vn e’H )]
o9 1 of
)13 T )
Hence,
A :W 4.11)
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Necessary Condition for |A|<1

If b>-4c<0, A isa complex number and the absolute value of A is Je.

Hence, if |A| <1, it implies
c<l1 (4.12)
If b*—4c >0, there are two cases: b>0 and b<O0.

If b>0 andall |A| <1 ,according to (4.11), it implies

—2<-b—-+b*>—4c (4.13a)
2 b-c<l1 (4.13b)
If b<0,andall |A| <1, according to (4.11), it implies

—b++/b>—4c<2 (4.14a)

2>b+c>-1 (4.14b)

(4.12), (4.13), and (4.14) are necessary conditions for |A|<1 under different

conditions.
If b>°-4c<0
w(l+cf —dc=(14ef >0 (4.15)
b’ <(1+c) (4.16)
If b>°-4c>0
lAl<1
~b? <4 (4.17)

Since (4.13), (4.14), and (4.17), c<1 N |b| <1+cC isthe necessary
condition for [A|<1 under b’>-4c>0.
Hence, c<1 N |b| <1+ cis the necessary condition for |A| <1 under all

conditions.

Sufficient Condition for |A| <1

c<l m |b| <1+c is also the sufficient condition for |A| <1. The proof'is

provided as follows.

If b*—4c<0,
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o |A|=+e ,and c<1
- lAl<1
. (4.15), (4.16) and above-mentioned proof

<l nm |b| <1+ c 1is the sufficient condition for |A| <1 under

b*—4c<0.
If b>*-4c>0 and b>0,

o p<l+c N oc<l
>0<b>—4c<(1+cf—4c=(1-c) (4.18)
>-(1-c)<—b>—4c <0 (4.19)
v bl<l+c n oc<l
>—(1+c)<b<(1+c) (4.20)
>-(1+c)<-b<0 (4.21)
"+ (4.19) and (4.21)
~2<-b-+b>—4c <0
>|Al<1

If b>—4c>0 and b<0,
"+ |p<1+c, c<1,and (4.18)
S>0<b?—4c<l-c (4.22)

b><(1+c), c<1,and (4.20)

2>0<-b<l+c (4.23)
.+ (4.22) and (4.23)

0<-b++b*—4c<2
>Al<1
Hence, c<1 N |b| < 1+c is the sufficient condition for |A| <1 wunder all

conditions.

Necessary Condition for the linearized stability of the proposed dynamical system

According to the theorem derived by Li & Szidarovszky [1999] and

aforementioned proof, if the proposed dynamical system is stable, it implies
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|b|£l+c and c<1.

|b| <l+c
of P ’
B &g
[ avn,t (Vn,e’ Hn,e) aHn,t (\/n765 H e )J S

(-0,)"%) p[ j

f (V... H,. )= 1.

n.t

it implies
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=>T< [1 - [ﬁ{Dln][ln(l -D,)[1-D, )U : (%‘S)] : (4.26)

Sufficient Condition for the linearized stability of the proposed dynamical system

According to the theorem [Alligood, 1997] and aforementioned proof, if the

presented dynamical system is stable, it implies |b| <l+c and c<l1

bl<1+c
of
= (V.. H,.)> 1. (4.27)
If
1— D )( <exp( ] (4.28)

Hoo)> 1.

n,e>

. ) of
1t implies \'%
PHES v v

n,t

c<l1
=T< {1 - ( ﬂ(DiJ[ln@ - D)J-D, )J1] : (%‘S)] : (4.29)

Both Egs. (4.25) and (4.26) are the necessary conditions for linearized stability.
Egs. (4.28) and (4.29) are the sufficient conditions.

From Egs. (4.25), (4.26), (4.28), and (4.29) some traffic characteristics can be

found.

Vv Vv
1. Higher —% makes traffic stable, lower —= makes traffic unstable: When
Vn,d Vn,d

the individual maximum speed of the following vehicle is close to the equilibrium
speed of its lead vehicle (i.e. the speed is also its equilibrium speed), traffic will lead
to equilibrium state, i.e. stable traffic. Otherwise, when the difference between the
individual maximum speed of the following vehicle and the equilibrium speed of its

lead vehicle is great, traffic may be unstable. The unstable traffic is often observed
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under heavy traffic. From the proposed model, it can be explained that unstable
heavy traffic may be due to the large difference between the driver’s individual
maximum speed and equilibrium speed.

2. Lower T makes traffic stable, higher T makes traffic unstable: When the
driver’s reaction time is less, traffic will be stable. Otherwise, when the driver’s
reaction time is high, unstable traffic is likely to occur. The similar result of the
influence of driver’s reaction time on traffic stability is also found in GM model and
other classical models [Herman et al, 1959; May, 1995; Zhang & Jarrett, 1997;

Holland, 1998]. Furthermore, under the same equilibrium speed and with a lower

n,e

Vn,d

, the reaction time should be less to make stable traffic possible. It implies when

the individual maximum speed of the following vehicle isn’t close to equilibrium

speed, drivers should react more frequently. Otherwise, traffic may be unstable.

4.3 Numerical examples

Examples for stable traffic and unstable traffic are presented in this section.The

model parameters for these simulations are: A=1 a=1, g=1.1, y=1 L=20
(they have not been calibrated), S,=5my7T:=0.5sec, Amax = 5m/sz, and Ay, =

-5m/s’.

4.3.1 Stable Traffic

The fact that the spacing between the lead vehicle and the following vehicle
reaches a particular value after perturbation (to the spacing) caused by the actions of
the lead vehicle is referred to as the stability in car-following behavior [May, 1990;
Chakroborty & Kikuchi, 1999]. Researchers identified two types of traffic stability:
local stability and asymptotic stability. Local stability is concerned with the
car-following behavior of just two vehicles: the lead vehicle and one following
vehicle. Asymptotic stability is concerned with the car-following behavior of a line of

vehicles [May, 1990; Chakroborty & Kikuchi, 1999].

An example of movement process of four vehicles is illustrated below. The
individual maximum speeds of the first vehicle, the second one, the third one, and the

last one are 50, 60, 70, and 80km/hr, respectively. The initial speeds of these vehicles
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are their individual maximum speeds. The initial spacings between these vehicles are

100m.

Figure 4-5 shows car-following trajectories of these four vehicles. As there is no
vehicle in front of the first vehicle, the first vehicle runs at its individual maximum
speed (i.e. 50km/hr). According to Section 4.2, following vehicles satisfy the
necessary and sufficient condition for linearized stability, therefore, they finally run at
equilibrium state. They run at their individual maximum speed initially, and decelerate

later and finally keep their speed at S0km/hr. The platoon is then stable.
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Figure 4-5 Car-following trajectories.
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Figure 4-6 Spacings between vehicles.

Figure 4-6 shows the spacing between these vehicles. All spacing reaches a
particular value finally (i.e. equilibrium spacing), and this is asymptotic stability. As

mentioned in Section 3, Figure 4-6 also reflects the model assumption that the driver
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with higher individual maximum speed maintains a higher speed or a shorter spacing
under the same condition. It is a common traffic phenomenon that different drivers
may keep different spacing under the same condition.

The stable spacing (i.e. equilibrium spacing) is only dependent on the final speed
(or stable speed) and not on anything else [Chakroborty & Kikuchi, 1999]. The
following example shows that the same lead vehicle and the same following vehicle
will result in the same equilibrium spacing under different initial conditions. The
individual maximum speeds of the lead vehicle and the follower are 50 and 60km/hr,
respectively. The initial conditions include initial spacing and initial speed of the

following vehicle. Six initial condition examples are listed below.

A: spacing = 50m, speed = 60km/hr.

B: spacing = 50m, speed = 30km/hr.

C: spacing = 100m, speed = 60km/hr.

D: spacing = 100m, speed = 30km/hr.

E: spacing = 10m, speed = 60km/hr.

F: spacing = 10m, speed =-30km/hr.

Figures 4-7 and 4-8 are the simulation results. Figure 4-7 indicates that the same
lead vehicle and the same following vehicle results in the same equilibrium speed of
the follower. Figure 4-8 indicates that“the" spacing reaches the same equilibrium

spacing under different initial conditions. Figures 4-7 and 4-8 indicate that

equilibrium spacing is only dependent on the final speed and not on initial condition.
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Figure 4-7 Speeds of the following vehicle under different initial conditions.
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Figure 4-8 Spacings under different initial conditions.

4.3.2 Unstable Traffic

Traffic flow does not always lead to equilibrium state; sometimes unstable traffic
occurs. The speed and spacingmay change again and again over time. For example,
when the traffic condition is heavy, wvehicles sometimes fall into the stop-and-go
situation. An example is shown to“illustrate that the proposed model cannot only
describe stable traffic, but also describe unstable traffic. In the following example, the
individual maximum speed of the first vehicle is assumed to be Skm/hr so that it will
run at Skm/hr to simulate the heavy traffic condition. All the individual maximum
speeds of the following vehicles are 90km/hr. All of the initial spacings between a
lead vehicle and a following one are 150m. All following vehicles don’t satisfy the

1

necessary condition for stability because (1-D, )[lfoinj >exp(%) . Thus, traffic is

unstable. Figure 4-9 is the velocity profile for the first six following vehicles in the
platoon ( the second vehicle is the first following vehicle). It shows the stop-and-go

traffic condition that vehicles sometimes stop and sometimes move.
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Figure 4-9 Velocity profile under unstable traffic

4.3.3 Relaxation Time

Section 4.2 discusses the stability of equilibrium state, and if all nearby states

converge to equilibrium state as time tends to infinity, the equilibrium state is

regarded as asymptotically stable. In fact, one cannot observe traffic flow for infinite

time. If the traffic converges to the equilibrium state takes much time, the equilibrium

state may be hardly observed, and thus it may be regarded as unstable state. For

example, if all drivers have identical individual maximum speed 100km/hr, the

equilibrium speed-density relationship is shown as Fig. 4-10. The equilibrium state

below 17km/hr, i.e. the dashed line in Fig.4-10, is regarded as unstable traffic by the



stability analysis mentioned in Section 4.2. But according to field data, velocity
higher than 17 km/hr may be regarded as unstable traffic. For instance, the dotted line

may be regarded as unstable traffic since it is hardly observed.
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Figure 4-10 Speed-dénsity relationship

This section discusses the:relaxation time:of different equilibrium states. Figs.
4-11 and 4-12 presents 12 examples, and all initial conditions are equilibrium states.
The lead vehicle and the following vehicle rum at identical velocity (i.e. equilibrium

speed V, . ). First, a perturbation oceurs at the 3 time step. In Fig. 4-11, the lead
vehicle accelerates its velocity to V, . +5, decelerates its velocity to V, . at the 4"
time step, and keeps its velocity at V. finally. In Fig. 4-12, the lead vehicle
decelerates its velocity to V, . — 5, accelerates its velocity to V, . at the 4™ time step,
and keeps its velocity at V, . finally. Since the lead vehicle changes its velocity, the
following vehicle cannot keep its velocity as V, .. No matter the perturbation is

acceleration or deceleration, the velocity profiles after perturbations indicate that the

n,e

Vn,d

relaxation time increases with reducing D, =
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Fig 4-11 Velocity profile of the following vehicle after perturbation (+5km/hr)
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Chapter 5
Disequilibrium State

Some traffic phenomena of disequilibrium state will be discussed in this section.
This section possesses analytical properties that are logical in representing physical
phenomena first. The mathematical analysis guarantees that the disequilibrium
phenomena hold under any parameters. Finally, simulation examples are provided.

Parameters of these examples are the same as Section 4.3.

5.1 Closing-in and Shying-away

This section discusses closing-in and shying-away. When the following vehicle
accelerates even its speed is faster than its leading vehicle’s speed, the phenomenon is
closing-in. On the contrary, when the follower decelerates even it is slower than its

leader, this is shying-away.

Eq. (5.1) is the proposed model,

Vit = Vad {1 exp(— A (\(</“)g ( H“"L_ % H] : (5.1)

Let V., =&V, ,and thus

Vn,t+1 = Vn,d {1 exp(_ 2’ (E\ynt)ﬂ [ Hn,tL_ Sn J}/ JJ . (52)

If the vehicle keeps its speed at the next time step, Eq. (5.2) becomes

1

H, = L(— i VA P |n[1— Vi D +5, . (5.3)

Vn,d

Hence, if

1

Hm>L[ N g“ln( . Dr+sn, (5.4)

the following vehicle will accelerate at the next time step. Otherwise, if

1
V r
Hn,t < L[— l_l(\/n,t )ﬂ’ag—a In[l— nt J] + Sn , (55)

Vn,d
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the following vehicle will decelerate at the next time step.
If Eq. (5.4) holds and ¢ <1, it implies V,_,, <V, ,, but the following vehicle

accelerates at the next time step. This is the so-called closing-in. Otherwise, if Eq.

(5.5) holds and ¢>1, it implies V,_,, >V, , but the following vehicle decelerates at

nt?
the next time step. This is the so-called shying-away.

Let @ . denotes the RHS of Eq. (5.3). Since @ . is a function of v, ,,
different drivers have different @ . under identical traffic condition. @ , varies

with v, , and

1

0Dy, _1 L(— PR AN P In(l _ Vo Brl(— i, Yee)

OVyy I Vod

-1
Y, Vv
. [1_ n,t J n,t2 < O
Vn,d Vn,d
Eq. (5.6) indicates that drivers with higher individual maximum speed have lower
)

(5.6)

The following vehicle decides to -accelerate at the next time step under

nt*

H,.>®,,, and decides to decelerate under H, <® .. Thus, drivers with higher

nt
individual maximum speed may decide to accelerate and drivers with lower individual
maximum speed may decide to decelerate’ under identical traffic condition. This
conforms to the model assumption (1) that aggressive drivers keep higher velocity
under identical traffic condition.

Two illustrative examples of closing-in and shying-away are presented. It
assumes the lead vehicle keeps its speed at 5 km/hr, the individual maxim speed of the
following vehicle is 90 km/hr, and the initial spacing is 50 meters. Fig. 5-1 shows the

simulation result from the 5th to the 13th time steps (Relative Speed =V, , -V, ). At

T=2.5, the following vehicle speed is 15 km/hr, and it is faster than its lead vehicle.
The right-hand side of Eq. (5.3) is 19.34 meters, it implies that the vehicle keeps its
speed as 15km/hr at T=3 if the spacing is 19.34 meters at T=2.5. But the spacing is
25.35 meters at T=2.5, it is longer than 19.34 meters. Thus, the following vehicle
accelerates at T=3 although it is faster than its leader. The similar situations occur at

T=3.5, T=4.5, and T=5.5, and the phenomenon is closing-in.
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Fig. 5-2 shows an example of shying-away. The individual maximum speed of
the lead and following vehicles are 50 km/hr and 70 km/hr, respectively, and the
initial spacing is 20 meters. At T=1, the following vehicle speed is 42 km/hr, and it is
slower than its lead vehicle. The right-hand side of Eq. (5.3) is 27.37 meters, it
implies that the vehicle keeps its speed as 42 km/hr at T=2 if the spacing is 27.37
meters at T=1. But the spacing is 19.02 meters at T=1, it is shorter than 27.37 meters.
Thus, the following vehicle decelerates at T=3 although it is slower than its leader. At

T=2, T=3, and T=4 the similar situations occur. This is the so-called shying-away

phenomenon.
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Figure 5-1 Acceleration and relative velocity (closing-in phenomenon)
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Figure 5-2 Acceleration and relative velocity (shying-away phenomenon)

69



5.2 Traffic Hysteresis

This section discusses traffic hysteresis pattern based on field data first. Then,
the properties of the proposed model and general models are discussed. Microscopic

and macroscopic traffic hysteresis examples are provided finally.

5.2.1 Empirical Data of Traffic Hysteresis

Fig. 5-3 is the empirical speed-occupancy data. The data were obtained from
detectors using a 5 minute sampling time interval and aggregated across lanes. The
solid and dashed lines are guidance lines illustrating the acceleration and deceleration

trends. Fig 5-3 illustrates certain traffic characteristics, as follows:
1. The acceleration curve differs from the deceleration curve.

2. Regardless of whether traffic is heavy or light, the acceleration curve may lie

above the deceleration curve, and may also lie below deceleration curve.

When the observational object is:a’road section, a state (k,v) (where k denotes

density, and v denotes speed) may accelerate or. decelerate at the next time step. The
velocity of a road section increases or decreases depends not only on the state of that
section, but also on upstream and‘downstream- traffic conditions. When the

observation object is a vehicle, a vehicle with any state (Hn,t7vn,t) may accelerate or

decelerate at the next time step. It’s because V, is influenced by the lead vehicle.

n,t+1
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Figure 5-3 Empirical speed-occupancy relationship (1)
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Fig. 5-3 indicates that other traffic hysteresis patterns exist aside from the two
pattern types obtained by Treiterer and Maes. Kerner [2006] pointed out that traffic
flow has three phases (i.e., free flow, synchronized flow, and traffic jam [1997, 1998]),
and different phase transitions result in a variety of hysteresis phenomena. This study
obtained two hysteresis pattern types differing from Figs. 2-3 and 2-4. Fig. 5-4(a) is
contrary to Fig. 2-3, and Fig. 5-4(b) is contrary to Fig. 2-4.

(@) o Deceleration
88 ! + Acceleration

Speed(km/hr)
(o]
N

Occupancy(%)

(b) O Deceleration
76 ¢ Acceleration

Speed (km/hr)

9 11 13 15 17 19 21
Occupancy (%)

Figure 5-4 Empirical speed-occupancy relationships (2)

5.2.2 Traffic Hysteresis Discussion
In this section, analytical properties of traffic hysteresis are discussed. Firstly, the
proposed model is discussed. Secondly, a general model that guarantees the existence

of traffic hysteresis is discussed.
(1)The proposed model

Traffic hysteresis implies that the speed-spacing relationships of acceleration and
deceleration traffic are not identical. This section discusses the relationships between

V.1 and H, ., under acceleration and deceleration traffic. Since it is focus on
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acceleration and deceleration traffic, stop conditions are not concerned. Hence, the
speed and spacing are shown as Eqs (5.7) and (5.8).

Vn,t+1 = E(H n,t ’Vn,t ’Vn—l,t): Vn,d [1 - exp[_ A (\(@_l't)za ( i n,tL_ Sn }y J] (57)

Hn,t+1 = ‘] (H V Vn,t+1'Vn—1,t’Vn—1,t+1)

nt! “n,t?

(5.8)
= Hn,t +0.5T (Vn—l,t +Vn—1,t+l _Vn,t _Vn,t+l)
H,.. isfunctionof V, ., ,and Eg. (5.8) can be represented as
Hn,t+l =W (Zn,t+l1vn,t+l): Zn,t+l - O'STVn,t+l1 (59)

Where Z = Hn,t + O'5T (\/n—l,t +Vn—1,t+1 _Vn,t)'

n,t+1
Before reaching the equilibrium state, a disequilibrium state M,w Hnm) may occur

at acceleration or deceleration traffic, i.e. acceleration and deceleration traffic may

have identical V identical H and identical Z If the speed-spacing

nt+1 n,t+1 ! nt+l *

relationships of acceleration and deceleration traffic are identical, the first derivative

of W function at the point (Zn,t+l’vn,t+1) are identical. The first partial derivative of

W function at the point (Zn,t+1lvn,t+1) with-respectto V, . is
oW oV
—A\Z ...V = —0.5T — 0.5 =kt 5.10
8Vnyt( n,t+1 n,t+1) a b ( )

The first partial derivative of W function at the point (Zn,t+l’vn,t+1) with respect to

H,, is
oW oV
—ANZ, .V =1-0.5T —tL, 5.11
aHn't( n,t+1 n,t+l) 8 o ( )

If the speed-spacing relationships of acceleration and deceleration traffic are identical,

. . . . . W
acceleration and deceleration traffic should have identical ST(ZnM,VnM), and

n,t

. . W . . .
identical aH—(Zn,Hl,VnM), and thus acceleration and deceleration traffic have

n,t

n+1,t n+1,t

identical , and identical

n,t n,t
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Let
E(Hn,t,a’vn,t,a’vn—l,t,a):Vn,t+l = E(Hn,t,d VatdrVaoit ) (5.12)
where H, . . denotes H, . value for acceleration traffic, H ., denotes H .
value for deceleration traffic , V, , denotes V, , value for acceleration traffic,
V,.q denotes V, . value for deceleration traffic, V,_ ., denotes V, ,  value for
acceleration traffic, V,_, , denotes V _,, value for deceleration traffic. If the
speed-spacing relationships of acceleration and deceleration traffic are identical,

oE

v, .. OE
avn‘t (H n,t,ayvn,t,ayvnfl,t,a): a\/:‘tl — aVn‘t (Hn,t,d ’Vn,t,d ’Vn—l,t,d ), (5.13)
and
oE v, ., oE
ar,, Pors o Voea) = = oo Vo) (514)

Eq. (5.12) implies that

(s - Sy

The first partial derivative of . E..‘function at the acceleration traffic state
(Hn,t,a’Vn,t,a’Vn—l,t,a) iS

(5.15)

V... OE
Wn - oV (antva’vn,t,aavn—l,t,a)

n,t n,t

_ (Vn—l,t,a)a Hn,t,a_sn ’ (Vn—l,t,a)a Hn,t,a_sn ’ -1
"[* () ey e )

=Qv.

n,t,a

4 7
where O = _Vn,d exp(_ y) (Vn—l,t,a)a (Hn,t,a - Snj }(ﬂ,ﬂ (Vn—l,t,a)a (Hn,t,a - Snj } CAs

Eq. (5.12),
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e (s e (|

o A (o o )

The first partial derivative of E function at the deceleration traffic state
(Hn,t,d ’Vn,t,d ’Vn—l,t,d ) iS

Q=-V 4 exp{—
.(5.17)

%: = a‘f/'it (Hoo VsV sia)

:_vndexp[—zw”1*t'd)a(H"v"d_S”H[/1ﬁ Vs (H”*vd_snjyvmd‘l} (5.18)
| Vo) UL Voo 1L '

=QV,
V,ia and V.., denote V, for the acceleration and deceleration traffic

respectively, and they accelerate or decelerate to the same velocity (i.e. Eq. (5.12)).

Hence,
Qvn,t,a_l * Qvn,t,d_l , (5.19)

and Eg. (5.13) cannot hold.= Consequently;- the = speed-spacing relationships of
acceleration and deceleration traffic are different,-and traffic hysteresis occurs. Thus,
the proposed model always can represent traffic hysteresis under any arbitrary

parameters values and any disequilibrium traffic conditions.

(2) General models discussion

This section discusses the speed-spacing relationship of a general model.

Assumptions of the general model are listed below.

1. The speed of a following vehicle V, is influenced by the lead vehicle

n,t+1

speed V,_,, the follower speed V, , and the spacing H,,

nt?

2. If there are no changes in V,_,, and V, , the vehicle speed V, ., increases
with spacing H,_ ;.

3.V, and V, influence V, Under different total effects of V,_,, and

nt+1 "

identical spacing still result in different V while H  >S§, .

nt’ nit+l
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4.1f H =S, the vehicle will decide to stop under any arbitrary V,_,, and

\Y

nt*

5. Let V, isafunctionof H ., V, , V,_,, thatis

nt+1 nt? nt?

Vn,t+1 =Y (Hn,t ’Vn,t ’Vn—l,t) (5.20)
where H  >S , V, 20,V _,, 2>0. Y(ant,vnyt,vn_lvt) is differentiable on

its entire domain.

6. Vehicles have no acceleration limit.

Thus, the general traffic flow model is represented as following.

1.

(Mo Vp Vo )20, VH,, 25, 5:21)
n,t

2.Let V, ., V,., denoteany arbitrary value of V, ., V, ., V, ., represent
any arbitrary value of Va5, H,_ ., denotes any arbitrary value of H .

bUt Hn,t,l > Sn ' and Y (Hn,t,l'vn,t,l'vn—l,t,l);tY (Hn,t,l’Vn,t,Z’Vn—l,t,Z)' Then’

Y(H, VoV 1) =Y (Hy Vi 5Vesis) ifandonly if H, =S, .

ntr ntly nt?

Let H, ., denotesany arbitraryvalueof H .,and H ., =H . ,.If
Y (H n,t,l’Vn,t,l’Vn—l,t,l) =Y (H nt,2 ’Vn,t,2 ’Vn—l,t,Z)’ (5.22)

it implies Eq. (5.12) hold. If Eq. (5.14) holds, that is

oY
oH

n,t

oY
coH

n,t

(Hn,t,l’vn,t,l’vn—l,t,l): (Hn,t,Z’Vn,t,Z’Vn—l,t,Z)' (523)

If Eq. (5.23) cannot always hold, traffic hysteresis occurs under some conditions.

Next, this research proves that Eq. (5.23) cannot always hold. Suppose
||mY (‘9 +S5, ’Vn,t,l’vn—l,t,l): Ile (5 +S, + 5’Vn,t,2’vn—l,t,2) (5.24)

e—0" £—>0"

where 6 >0. If Eq. (5.23) always holds, that implies

I i mY ((C,‘ + Sn ’Vn,t,l’vn—l,t,l)_Y (Sn ’Vn,t,l’Vn—l,t,l)
e , (5.25)
= I ImY (8 +0+ Sn ’Vn,t,Z 1Vn—1,t,2 )_Y (8 + Sn +0— g’vn,t,z ’Vn—l,t,Z)

£—>0"

and the following equation holds
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Y (Sn 'Vn,t,l’vn—l,t,l) = Y (Sn + 5’Vn,t,2 'Vn—l,t,2 ) (526)

As Y(S,V, 1V 1i1)=Y(S,V, 5V, 1.,) and Eq. (5.26) holds, the following
equation holds

Y (Sn ’Vn,t,2 ’Vn—l,t,Z ) =Y (Sn + 5’Vn,t,2 ’Vn—l,t,z)' (5.27)

Since ¢ >0and Eq. (5.21), Eq. (5.27) cannot hold. Thus, Eq.(5.26) cannot hold, and

then Eq. (5.25) cannot hold. It implies Eqg. (5.23) cannot always hold, and thus traffic
hysteresis exists.
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5.2.3 Microscopic Traffic Hysteresis Example

An example of movement process of two vehicles is illustrated below. The
individual maximum speeds of these vehicles are 60km/hr. The initial speeds of these
vehicles are their individual maximum speeds, and the initial spacing is 150m. Fig.
5-5 is the speed-spacing trajectory, the solid and dashed lines represent acceleration
and deceleration traffic, respectively. Fig. 5-5 indicates that acceleration and
deceleration curves forms two loop. The acceleration curve lies above the deceleration

curve at long spacing, and it lies below deceleration curve at short spacing.
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Figure 5-5 Speed-spacing trajectory

5.2.4 Macroscopic Traffic Hysteresis Examples

This section presents microscopic traffic flow simulation examples and
aggregates individual data to reproduce traffic hysteresis. Leutzbach [1988] developed
a generalized method to measure macroscopic traffic flow data from microscopic

traffic flow data. The flow is measured as
ZXA
== 5.28
a r-X ( )

where 7 denotes the time length of observation, X represents road length of

observation, and x, is the travel distance of vehicle i . The density is measured as

s

, 5.29
7-X ( )
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where t. denotes the travel time of vehicle i. Since q=k-u, the space-mean

speed is

Lo (5.30)

All simulation examples describe traffic flow on a single lane with length of
2000 meters. All drivers have identical driving behavior (i.e., identical individual
maximum speed). The initial conditions are an equilibrium state, and the density is
identical to the boundary condition at the start of the simulation. Road section traffic
flow is influenced by upstream and downstream traffic, and thus the boundary
conditions include both upstream and downstream boundary conditions. When the

upstream boundary condition is k  veh/km, a new vehicle arrives with a spacing
1000/k,, meters between it and the lasted vehicle. Meanwhile, when the downstream

boundary condition is k veh/knm; the lead-vehicle of the simulation road keeps its

down

speed as the equilibrium speed: of density, k Furthermore, if the downstream

o W
boundary condition is 0 veh/km, the lead vehicle runs at its individual maximum
speed. The relationship between-equilibrium:-speed and equilibrium spacing is shown
as Eq. (4.4).

The boundary condition of example A is illustrated as Fig. 5-6(a). The
downstream boundary is vehicle free. The road density changes with changes in the
upstream boundary condition. Hence, road sections cannot keep their states as
equilibrium states, and instead decelerate followed by accelerating. The trajectory for
the speed-density of the section between 500m and 1500m (the position of upstream
boundary is Om, and that of downstream boundary is 2000m) is as shown in
Fig.5-6(b). The solid and dashed lines of Fig. 5-6(b) are guidance lines illustrating the
acceleration and deceleration trends. The solid and dashed lines form a hysteresis loop,
and the deceleration line lies above acceleration line. It is similar to the observation
result obtained by Maes (as shown in Fig. 2-3).
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Figure 5-6 Boundary condition and Speed-density relationship of example A: (a)
Boundary condition (b) Speed-density relationship (t=0~3600sec)

Fig. 5-7 illustrates the boundary condition and speed-density trajectory of
example B. The hysteresis pattern resembles the observation results obtained by
Treiterer and Meyers (as shown in Fig. 2-4).

As aforementioned, there are at leas two types of hysteresis patterns differing
from Treiterer and Maes’ observations. The proposed car-following model can also
represent the two hysteresis pattern types illustrated in Fig. 5-4. In example C, there is
no vehicle at the downstream boundary, and the upstream boundary has very low
density, with vehicles entering the system at a speed approaching their maximum. An
incident occurs at 1250m between 1000 and 2500 seconds which prevents vehicles
passing. The trajectory for the speed-density of the section between 750m and 1250m
is as shown in Fig. 5-8, and the hysteresis pattern is similar to Fig. 5-4(a) while
differing from Fig. 2-3

79



| mmomommomem oo (a) === Upstream
- - Downstream

N
o

Density (veh/km)
w
o

= N
o o
I T T

o

0 500 1000 1500 2000 2500 3000 3500

Time (sec)

70

(b) o Deceleration
+ Acceleration

65

60

55 |

Speed (km/hr)

50

45

40

35

20 25 30 35 40 45 50 55
Density (veh/km)

Figure 5-7 Boundary condition and Speed-density relationship of example B: (a)
Boundary condition (b) Speed-density relationship (t=0~3600sec)

Fig. 5-9 shows example D, which has a hysteresis pattern similar to Fig. 5-4(b)
and contrary to Fig. 2-4.

Zhang and Kim [2005] developed a car-following model which employed
different rules for acceleration and deceleration traffic, and thus his car-following
model can represent traffic hysteresis. The proposed model employ only one behavior
rule for both acceleration and deceleration traffic when the lead and following
vehicles are moving. Although all vehicles of Example A, B, D are moving vehicles
which employ Eq. (5.1) regardless acceleration and deceleration, the proposed model

still represent various traffic hysteresis pattern types.
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Chapter 6
Conclusions and Perspectives

This chapter includes the conclusions of this dissertation and discusses some

future research topics.

6.1 Conclusions

This dissertation develops a simple car-following model. Sensitivity analysis,
stability analysis, equilibrium state, disequilibrium state, and relaxation time are

discussed. Results of this research are summarized as follows.

(1) Car-following model

The proposed model considers that a driver has different behaviors under
different external environments, and different drivers have different behaviors. The
individual maximum speed which is an exogenous variable is employed to

describe different drivers and different external environment.

(2) Sensitivity analysis

Vehicle speed V varies ‘with the-spacing H_ . , the lead vehicle speed

n,t+1

V,.1;,» and the following vehicle,speed._V, .. The sensitivity to each variable is

discussed. Sensitivity analysis‘ results indicate that sensitivity varies with all

variables, and different parameter values represents different driver behaviors.

(3) Stability analysis

When the individual maximum speed of the following vehicle is close to the
equilibrium speed of its lead vehicle, traffic will lead to equilibrium state.
Otherwise, when the difference between the individual maximum speed of the
following vehicle and the equilibrium speed of its lead vehicle is great, traffic may
be unstable. Unstable heavy traffic may be due to the large difference between the

driver’s individual maximum speed and the equilibrium speed.

The stability is also dependent on driver’s reaction time. When the driver’s
reaction time is less, traffic will be stable. Otherwise, when the driver’s reaction
time is high, unstable traffic is likely to occur. When the individual maximum
speed of the following vehicle is not close to the equilibrium speed, drivers should
react more frequently. Otherwise, traffic may be unstable.

(4) Equilibrium state
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Equilibrium spacing is dependent on the equilibrium speed and the individual
maximum speed of the following vehicle. Thus, different drivers have different
equilibrium spacing under identical equilibrium speed, and aggressive drivers have

shorter equilibrium spacing.

Fundamental diagram based on the microscopic equilibrium state is also
discussed. The numerical examples indicate that different parameter values result
in different fundamental diagram patterns, and the capacity increases with
free-flow speed.

(5) Disequilibrium state

Some traffic phenomena of disequilibrium state are discussed, such as
closing-in, shying-away, stop-and-go, and traffic hysteresis. This dissertation
identified at least two types of hysteresis patterns differing from Treiterer and
Maes’ observations based on filed data. Simulation results demonstrate that the

proposed model can describe the four hysteresis pattern types.

The mathematical analysis-of closing-in,-shying-away, and traffic hysteresis
are provided, and they guarantee that the ‘disequilibrium phenomena still hold
under any parameter values. A general traffic flow model that guarantees the
existence of traffic hysteresisis also provided.

(6) Relaxation time

When a perturbation occurs at an equilibrium system, the system will depart
from equilibrium state. This study discusses how much time the system needs to
return to the equilibrium state. No matter the perturbation is acceleration or
deceleration, the velocity profiles after perturbations indicate that the relaxation

n,e

Vn,d

time increases with reducing D, =

6.2 Perspectives

This research develops a simple car-following model. The original research
motivation is to develop a microscopic traffic flow model that can extend to
macroscopic traffic flow model and can be a tool to analyze traffic properties. Thus, it
can provide real time information for ATIS, and provide better traffic control
strategies for ATMS. This dissertation is a fundamental research for a long-term

research. The long-term research objectives include:
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(1) Traffic information prediction: The long-term objective is to develop a simulator
that can provide real time prediction of large-scale traffic network, and the
simulator is based on a proposed traffic flow model. In order to achieve the
objective, the research procedure is: (a) to develop a microscopic traffic flow
model, (b) to develop a mesoscopic traffic flow model, (c) to develop a
macroscopic traffic flow model, (d) to develop a simulator. To take advantages of
microscopic and macroscopic traffic flow models, the simulator can be based on a

combined model.

(2) Traffic control strategies: As the proposed model provide some traffic flow

analysis, new concepts could be introduced to design traffic control strategies.

The long-term research objectives and future studying topics are shown in Fig.

6-1. Next, each studying topic is discussed.

Traffic Control Strategies Traffic Information
(based on traffic flow analysis) i “(based on traffic flow model)

Microscopic traffic
Variable speed limit flow model
(presented in Fig. 6-2)

Adaptive signal Mesoscopic traffic
control flow model

4

Macroscopic traffic
flow model

Simulator based on
combined model

Figure 6-1 Long-term research objectives and future studying topics
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(1) Traffic flow model extension

In order to develop a simulator that can provide real time information of

large-scale traffic network, traffic flow model should be extended.
(a) Lane-changing model
Microscopic traffic flow includes car-following and lane-changing. This

dissertation only develops a simple car-following model, and thus

lane-changing model should be developed.
(b)Longitudinal movement model for nonmotorized vehicle

In Taiwan, the traffic flow in most urban streets is mixed traffic flow.
Mixed traffic flow contains standard vehicle types such as passenger cars,
buses, and trucks, as well as nonstandard vehicles such as motorcycles and
bicycles. The behaviors of standard vehicle type and nonstandard vehicle type
are different. In the motorcycle lane, the way motorcycles move is not the
same as cars, which follow one after another. Thus, longitudinal movement of

nonmotorized vehicles differs from car-follewing of motorized vehicles.
(c)Lateral movement model for nonmotorized vehicle
Nonmotorized vehicles can-overtake on the same lane. Therefore, lateral
movement of nonmotorized vehicles differs-from lane-changing of motorized
vehicles.
(d) Mixed traffic flow model
Microscopic traffic flow models for motorized vehicles and nonmotorized
vehicles could be integrated as a microscopic mixed traffic flow model.
(e) Calibration and validation
All the aforementioned models should be calibrated and validated. Then, a
microscopic traffic flow simulator can be developed. Studying topics of

microscopic traffic simulator is shown in Fig. 6-2.
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Mixed traffic flow model

Motorized Vehicle

Car-following model
(presented in this
dissertation)

Lane-changing model

Calibration and .| Microscopic traffic

Validation flow simulator

Nonmotorized Vehicle

Longitudinal
movement model

Lateral movement
model

Figure 6-2 Studying topics of microscopic traffic simulator

() Mesoscopic traffic flow model

This dissertation discusses the microscopic equilibrium state, and the
macroscopic equilibrium state based on the microscopic equilibrium state for
homogeneous drivers. In fact, there are various drivers on the road, and thus
equilibrium and disequilibrium states for heterogeneous drivers could be a

research topic.

As aforementioned, different drivers have different equilibrium spacing
under identical equilibrium speed. Thus, the equilibrium spacing for

heterogeneous drivers under some specific equilibrium speed is a distribution.
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The speed of the lead vehicle of a platoon is the equilibrium speed of the
platoon under uninterrupted traffic. If there are many vehicles on a road, they
will form several platoons. Thus, different individual maximum speed
distributions result in different lead vehicle speed distributions, and then result
in different equilibrium speed distributions for uninterrupted traffic. Hence, the
equilibrium state for heterogeneous drivers is not a specific value, it is a

distribution.

Furthermore, before reaching equilibrium state, Boltzmann transport

equation could be developed to describe disequilibrium traffic.
(9) Macroscopic traffic flow model

A dynamic macroscopic traffic flow model can be developed based on the
aforementioned mesoscopic traffic flow model. Density, flow, and speed can
be derived from the vehicle speed distribution function of Boltzmann transport

equation.
(h) Traffic flow simulator based:on combined models

As microscopic and macroscaopic traffic flow models have their own
strengths, traffic flow simulator could be developed based on combined models.
For example, microscopic traffic flow-model can describe vehicle interaction
in detail, and macroscopic ‘traffic- flow model has less execution time.
Microscopic traffic flow model could be employed to simulate urban
intersections, freeway weaving sections, and ramp junctions. Macroscopic

traffic flow model could be employed to simulate basic freeway sections.

(2) Traffic control strategy

(a) Variable speed limit

As mentioned in stability analysis, the difference between individual
maximum speed and equilibrium speed influence traffic stability. If the difference
is large, unstable traffic is likely to occur.

Different equilibrium density results in different equilibrium speed, and then
results in different difference between individual maximum speed and equilibrium
speed. Speed limit may affect individual maximum speed. Thus, if the speed limit

can vary with traffic condition, traffic may be stable under high density.

(b) Adaptive signal control
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As mentioned in Chapter 5, the speed-density relationships for acceleration
and deceleration traffic are different. Thus, the flow-density relationship of
acceleration traffic differs from the one of deceleration traffic. As shockwave
speed is dependent on the flow-density relationship and some adaptive signal
control strategies consider shockwave speed, traffic hysteresis concept could be
introduced to design adaptive signal control strategies.

88



References

Alligood, K. T., Sauer, T. D., Yorke, J. A., 1997. Chaos An Introduction to
Dynamical Systems. Springer-Verlag New York.

Aycin, M.F., Benekohal, R.E., 1999. Comparison of car-following models for
simulation. Transportation Research Record 1678: 116-127.

Bando, H., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y., 1995. Dynamic
model of traffic congestion and numerical simulation. Physical Review E 51:
1035-1042.

Benekohal, R.F., Treiterrer, J., 1988. CARSIM: car-following model for simulation of

traffic in normal and stop-and-go conditions. Transportation Research Record
1194: 99-111.

Chakroborty, P., Kikuchi, S., 1999. Evaluation of the General Motors based
car-following models and a proposed fuzzy inference model. Transportation
Research Part C 7: 209-235.

Chandler, R.E., Herman , R., Montroll, Ex\W2,:2958:, Traffic dynamics: studies in car
following. Operations Research-6: 165-184.

Daganzo, C. F., 1994. The cell transmission model: a:dynamic representation of
highway traffic consistent with.the hydrodynamic theory. Transportation Research
Part B 28: 269-287.

Danganzo, C.F., 2002. A behavioral theory of multi-lane traffic flow. Part I: Long
homogeneous freeway sections. Transportation Research Part B 36: 131-158.

Drew, D. 1968. Traffic Flow Theory and Control, McGraw-Hill.
Edie, L.C., 1961. Car-following and steady-state theory for noncongested traffic.

Operations Research 9: 66-76.

Fellendorf, M., 1997. Parametrization of microscopic Traffic Flow Models through
Image Processing. 8th IFAC Symposium on Transport,Chania, Crete, Greece, June
1997.

Gazis, D. C., Herman, R., Potts, R. B., 1959. Car-following theory of steady-state
traffic flow. Operations Research 7: 499-505.

Gazis, D. C., R. Herman, and R. W. Rothery, “Nonlinear Follow-the-Leader Models
of Traffic Flow,” Operations Research, Vol. 9, pp.545-567, 1961.
Greenberg, H., 1959. An Analysis of Traffic Flow. Operations Research 7: 79-85.

89



Greenshield, B. D., 1934. A Study of Traffic Capacity. Highway Research Board
Proceedings 14: 468-477.

Heidemann, D., 2001. A queueing theory model of nonstationary traffic flow,
Transportation Science 35: 405-412.

Herman, R., E., Montroll, W., Potts, R. B., Rothery, R. W., 1959. Traffic dynamics:

analysis of stability in car following. Operations Research 7: 86-106.

Holland, E.N., 1998. A generalised stability criterion for motoryway traffic.
Transportation Research Part B 32: 141-154.

Hoogendoorn, S.P., Bovey, P.H.L., 2001. State-of-the-art of vehicular traffic flow
modelling.
http://www.trail.tudelft.nl/T&E/papers_course_IV_9/state-of-the-art.PDF.

Igarashi, Y., Itoh, K., Nakanishi, K., Ogura, K., Yokokawa, K., 2001. Bifurcation
phenomena in the optimal velocity model for traffic flow. Physical Review E 64:
047102.

Jiang, R., Wu, Q. S., 2003. Study on propagation speed of small disturbance from a
car-following approach. Transportation Research Part B 37: 85-99.

Kerner, B.S., Rehborn, H., 1997. Experimental properties of phase transitions in
traffic flow. Physical Review: Letters 79: 4030-4033.

Kerner, B.S., Rehborn, H., 1998. Experimental-features of self-organization in traffic
flow. Physical Review Letters 81::3797-3800:

Kerner, B.S., Klenov, S.L., Hiller, A., Rehborn, H., 2006. Microscopic features of
moving traffic jams. Physical Review E 73: 046107.

Kikuchi, S., Chakroborty, P., 1992. Car-following model based on fuzzy inference
system. Transportation Research Record 1365: 82-91.

Leutzbach, W., Rainer, W., 1986. Development and applications of traffic simulation
models at the karlsruhe institut fuer verkehrswesen. Traffic Engineering & Control
27: 270-278.

Leutzbach, W., 1988. Introduction to the Theory of Traffic Flow. Spring-Verlag,
Berlin Heidelberg.

Li, W., Szidarovszky, F., 1999. An elementary result in the stability theory of
time-invariant nonlinear discrete dynamical systems. Applied Mathematics and
Computation 102: 35-49.

May, A.D., 1990. Traffic Flow Fundamentals. Prentice Hall, Englewood Cliffs, New

Jersey.

90



May, R. M., 1974. Stability and complexity in model ecosystems. Princeton University
Press, Princeton, NJ.

McDonald, M., Wu, J., Brackstone, M., 1997. Development of a fuzzy logic based
microscopic motorway simulation model. Proceedings of IEEE Conference on
Intelligent Transportation Systems, ITSC 97, Boston, MA, 82-87.

Mcshane, W. R., Roess, R. P., 1990. Traffic Engineering. Prentice Hall, Englewood
Cliffs, New Jersey.

Munjal, P. K., Pipes, L. A., 1971. Propagation of On-Ramp Density Waves on
Nonuniform Unidirectional Two-Lane Freeways. Transportation Research 5:.
241-255.

Nagatani, T., 2000. Traffic behavior in a mixture of different vehicles. Physica A 284:

405-420

Newell, G. F., 1961. Nonlinear Effects in the Dynamics of Car Following. Operations
Research 9: 209-229.
Newell, G.F., 2002. A simplified car-following theory: a lower order model.

Transportation Research Part B 36:1195-205.

Pipes, L.A., 1953. An operational analysis of traffic.dynamics. Journal of Applied
Physics 24: 274-287.

Pipes, L.A., 1967. Car following models and he fundamental diagram of road traffic.
Transportation Research 1: 21-29.

Reuschel, A., 1950. Vehicles Moves in'a Platoon. Oesterreichisches Ingenieur-
Archir 4:193-215.

Transportation Research Board, 2000. Highway Capacity Manual 2000, National
Research Councial, Washington, D. C.

Treiber, M., Hennecke, A., Helbing, D., 2000. Congested traffic states in empirical
observations and microscopic simulations. Physical Review E 62: 1805-1824.

Underwood, R. T., 1961. Speed, Volume, and Density Relationships, Quality and
Theory of Traffic Flow. Yale Bureau of Highway Traffic, New Haven, Conn:
141-188.

Wicks, D.A., Andrews, B.J., 1980. Development and Testing of INTRAS, a

Microscopic Freeway Simulation Model, Vol. 1: Program Design, Parameter
Calibration and Freeway Dynamics Component Development. Report
FHWA-RD-80-106. FHWA, U.S. Department of Transportation.

Widemann, R., 1974. Simulation des Verkehrsflusses. University of Karlsruhe,

Karlsruhe.

91



Wiggins, S., 1990. Introduction to Applied Nonlinear Dynamical Systems and Chaos.
Springer-Verlag, New York.

Wong, G.C.K., Wong, S.C., 2002. A multi-class traffic flow model — an extension of
LWR model with heterogeneous drivers. Transportation Research Part A 36:
827-841.

Yi, J., Lin, H., Alvarez, L., Horowitz, R., 2003. Stability of macroscopic traffic flow
modeling through wavefront expansion. Transportation Research Part B 37:
661-679.

Zhang, H.M., 1999a. A mathematical theory of traffic hysteresis. Transportation
Research Part B 33: 1-23.

Zhang, H.M., 1999b. Analyses of the stability and wave properties of a new
continuum traffic theory. Transp. Res. Pt. B-Methodol. 33: 399-415

Zhang, H.M., 2001. A note on highway capacity. Transportation Research Part B 35:
929-937.

Zhang, H.M., Kim, T., 2005. A car-following theory for multiphase vehicular traffic
flow. Transportation Research.Part B-39:385-399.

Zhang, Y., Owen, L. E., 1998. An Advanced Fraffic Simulation Approach for
Modelling ITS Application. 1998 IEEE International Conference on Systems, Man,
and Cybernetics 4: 3228-3233:

Zhang, X., Jarrett, D.F., 1997. Stability‘analysis of the classical car-following model.
Transportation Research Part B 31: 441-462.

Zhao, X., Gao, Z., 2005. A new car-following model: full velocity and acceleration
difference model. The European Physical Journal B 47: 145-150.

92



