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1. Introduction 
 

The LCDs market has increased over 20% on average per annum during the past twelve 

years and is expected to grow rapidly. One of the operations of the manufacturing process for 

LCD can be equivalent to making a sandwich. This operation is called post-mapping 

operation. This operation matches one thin-film-transistor (TFT) and one color-filter (CF) 

glass-plate together to form one LCD plate. A given TFT or CF plate could contain different 

numbers of cells (panels) with sizes ranging from small cells used in a camera viewfinder to  

large cells used in a television display. After mapping the TFT and CF, a liquid crystal 

material is injected into the gap between the glass plates to complete the post-mapping 

operation. Detailed discussion could be found in O’Mara (1993) and Blake et al. (1997). 

In TFT LCD manufacturing firms, yield control, of course, plays an important role to 

increase the competitiveness. Reducing the loss from the post-mapping process is one of the 

most critical procedures. The post-mapping process combining one TFT and one CF plate to 

complete a LCD plate is shown in Figure 1. In Figure 1, a good matched LCD cell is produced 

when both TFT and CF cell are good. In other words, if either the cell from the TFT or CF 

plate is bad, so is the matched LCD cell. The status (good or bad) of each cell for a TFT and a 

CF plates is known before the mapping process starts. 

Figure 1 also illustrates the importance of the selection of the yield-matching glass in the 

post-mapping operation. In Figure 1, )( and )( ba  indicate that one TFT glass can result in 

different yield loss by matching different CF glasses. Both the TFT glass and the CF glass 

contain a defective cell. Only one bad panel is produced in )(b , while )(a has two. Therefore, 

if a random mapping approach is used, a great quantity of defective LCD display scrap may 

be produced. Hence, the post-mapping problem is an important determinant for LCD 

manufacturers. 
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Figure 1. The post-mapping process 

 

To improve post-mapping yield, we can improve the TFT and CF plate yield, but it 

requires improvement in the manufacturing processes, technology, tooling, etc. This approach 

may be costly and have technological constraints. Another way to improve the post-mapping 

yield is to use a judicious mapping policy to optimize yield mapping. This approach could be 

very efficient and practicable.  

Our objective is to maximize the number of good LCD panels to improve the 

post-mapping yield with a practicable way. In this study, we tested four different heuristic 

algorithms for the same data of the post-mapping problem. The results of this study may be of 

interest to managers attempting to develop a judicious mapping policy to increase the 

post-mapping yield. 
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where panel = ○ if cell is conforming by inspection 

= × if cell is nonconforming by inspection 
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2. Post-Mapping Problem 

 

Assume that there are N TFT and N CF cassettes in queue. Cassettes are used as a unit 

load and each cassette contains 20 pieces of TFT or CF plates. The queue sequences are the 

result of the manufacturing process. The sorter is a robot used to increase the yield for the 

post-mapping operation. The sorter usually contains several ports to load/unload CF glasses 

from CF cassettes into an empty cassette to match TFT cassettes. For example, three CF 

cassettes and one empty cassette are placed onto a sorter that has four ports, as shown in 

Figure 2. First, 20 CF glasses will be transferred onto the empty cassette for matching the TFT 

cassette and the sorter transfers the remaining 40 CF glasses onto other two CF cassettes. 

Second, the sorter transfers another 20 CF glasses from the rest two CF cassettes onto an 

empty cassette to match another TFT cassette. Finally, the sorter transfers the last 20 CF 

glasses onto an empty cassette to match the third TFT cassette. 
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Figure 2.  Mapping by using sorter (4 ports) 
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The mapping process involves two sequential stages: cassettes matching and plates 

matching. The objective is to match the N TFT to the corresponding N CF cassettes to obtain 

the greatest number of acceptable panels.  

Figure 3 illustrates the first step in the mapping process. In this step, the mapping process 

retrieves n-1 TFT and CF cassettes (suppose the sorter has n ports) as one sample from each 

queue line. Assuming that the ith and jth sample cassettes from the TFT and CF queue lines 

are selected, the ith TFT and jth sample CF cassettes are then matched. This is the 

“cassettes-matching” step. 

 

 

 

 

 

 

 

 

 

 

Figure 4 illustrates the next step that involves matching the plates from the ith sample TFT 

cassette and the jth sample CF cassette to form LCD plates, assuming that sixty plates from 

the TFT and CF lines are numbered 6021 T,,T,T iii K and 6021 C,,C,C jjj K , respectively (that is 

the sample contains 3 cassettes). The plate matching process chooses one TFT plate ( ikT ) and 

one CF plate ( jlC ) to form a matched LCD plate. This step is called “plates-matching”. 

Lastly, ikT and jlC  are mapped to form one LCD plate, as illustrated in Figure 1.. 
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Figure 3. Cassette matching (A sample has 1 cassette) 
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Figure 4. Plates matching (A sample has 3 cassettes) 
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3. Mathematical Model for the Optimal  

Post-Mapping Problem 

 

In the existing literature, the optimal post-mapping problem has seldom received attention. 

In this study, we first formulate the post-mapping yield control problem in a set of linear 

programming (LP) problems so that the optimal solution can be found by solving all these LP 

problems. 

 In this section, LP formulation is provided. LP formulation involves constraints and 

objective function for determining optimal solutions to the problem. The proposed LP 

formulation solves the plates-matching problem, and the result from the LP is used as the input 

to the cassette-matching problem. The notations for the LP formulation are defined as the 

following: 

=N the total number of cassettes in queue.  

=n the cell quantities of plate (substrate).  

=ija the optimal matching yield from the ith sample TFT cassette and the jth sample CF 

cassette. This value is the result from the plates-matching LP solution. 

=ikjlf the matching yield for the kth plate from the ith sample TFT cassette and the lth 

plate from the jth sample CF cassette. We considered a set of zero-one variables for 

TFT ikT  and CF jlC  glasses. Let 1 represent good (0) and 0 represent bad (x). 

1=ikjlx  when the kth plate from the ith sample TFT cassette is matched with the lth plate 

from the jth sample CF cassette. Otherwise, 0=ikjlx .  

1=ijy  when the ith sample TFT cassette is matched with the jth sample CF cassette. 

Otherwise, 0=ijy . 
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=p the number of ports onto a sorter. 

The plates-matching problem can then be formulated as Equations (1) – (4). 

Maximize   
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Equation (1) is the objective function for maximizing the yield when the ith sample TFT 

cassette and the jth sample CF cassette are chosen. Equation (2) assures that each CF plate has 

exactly one matching TFT plate. Equation (3) assures that each TFT plate has exactly one 

matching CF plate. Equation (4) is the {0, 1} constraint for the decision variables. 

The cassette-matching problem can then be formulated as Equations (5) – (8). 
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and      }1,0{∈ijy                                 (8) 

 

Equation (5) is the objective function that maximizes the yield through cassette matching. 

Equation (6) assures that each CF cassette is matched to exactly one TFT cassette. Equation (7) 

assures that each TFT cassette has exactly one matching CF cassette. Equation (8) is the {0, 1} 

constraint for the decision variables.  
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Both formulations have typical assignment problem structure, so we can solve the 

problems efficiently by using Hungarian method. However, when the number of TFT and CF 

cassettes is huge ( 10≥N ), the number of LP problems will become so large that solving all 

the LP problems becomes impracticable. In the next sections, we propose other approaches to 

solve the post-mapping problem. 
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4. Meta-Heuristic Methods 
 

Nowadays, computer scientists use meta-heuristic to solve many NP-Complete problems. 

This future trend has attracted many researchers to propose many meta-heuristic algorithms to 

the computing society, namely: Genetic Algorithm, Simulated Annealing, Tabu Search, Ants 

Colony Optimization and so on. In short we can say, meta-heuristic methods are high level 

concepts for exploring search spaces by using different strategies (Blum & Roli, 2003). 

 In many literatures, most researchers used one or two methods to compare their model 

performance. The potential of applying GA and SA for the post-mapping problem is explored 

in this study. 

 

4.1 Genetic Algorithm 

Genetic Algorithm (GA)(Holland, 1975) is a highly parallel mathematical algorithm that 

transforms a set of objects (population) into a new population by using operations patterned 

according to the Darwinian principle. It is a technique capable of solving difficult 

optimization problems in a complex search space. The basic concept of GA emphasizes that 

populations can survive and breed if they have a better environmental adaptability. The three 

typical steps in executing GA can be summarized as follows: 

(1) Randomly create an initial population of chromosomes. 

(2) Iteratively perform the following substeps on the population of chromosomes until 

the terminated criterion has been satisfied. 

a. Evaluate the fitness of each chromosome in the population. 

b. Apply at least the first two of the following three operations to generate the new 

population. The operations are chosen with the probability based on the fitness of 

each chromosome. 
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i. Copy the existing chromosome to the new population. 

ii. Create two new chromosomes by recombining the chosen chromosomes 

genetically. 

iii. Create a new chromosome from an existing one by mutating genes. 

(3) The best chromosome in any generation is designated as the result of the GA for the 

run. This result may represent a solution to the problem. 

Figure 5 is the flowchart of the steps of genetic algorithm operation. The index i refers to an 

chromosome in the population of size N. In recent years, GA has been applied to various 

industrial engineering problems (Renner & Ekart, 2003; Su & Chiang, 2002). Furthermore, 

many researchers have found that modified or hybrid GAs outperform simple GAs (Gong et 

al.,1997; Chen & Gen, 1997). A detailed discussion of the foundation of GA can be found in 

Holland (1975), and Goldgerg (1989). 

 

4.2 Simulated Annealing 

Simulated Annealing (SA) is another emerging technique used extensively to solve 

complex optimization problems (Khan et al., 1997). It was first introduced in 1983 by 

Kirkpatrick, Gellat and Vecchi. This method has become popular because its general 

applicability and ability to find the solution near optimum. The basic concept of SA is simple: 

create an initial solution, and perturb the initial solution to generate a new solution. Compute 

the change in the objective function value ( E∆ ). If the change results in a better solution, this 

new solution is accepted. If the change results in a worse solution, this new solution is 

accepted with probability ⎟
⎠
⎞

⎜
⎝
⎛ ∆−

=
T

Ep exp , where T is the system “temperature”. The 

successes of simulated annealing have resulted in a surge of interest in the method. Simulated 

Annealing has been applied to diverse areas (Salcedo-Sanz et al.,2004; Su & Fu, 1998). 
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Figure 5. Flowchart of genetic algorithm (Renner & Ekart, 2003) 
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5. Proposed Algorithms for the Post-Mapping Problem 

 

In this section, we first apply the conventional GA and SA to solve the post-mapping 

problem. Then we propose two-phased algorithms (GA-based and SA-based) to compare the 

solution with the conventional GA and SA. 

 

5.1   GA for the post-mapping problem 

A GA to solve the post-mapping problem is proposed in this section. The basic terms for 

the GA are defined as follows: 

1. Chromosomes 

Chromosomes represent every feasible solution. Let’s assume that there are N TFT 

cassettes and CF cassettes in queue and the sorter contains k ports. Both TFT and CF cassettes 

are numbered 0, 1, 2,…, N-1. The length of the chromosome is 2N. The first N genes in the 

chromosome represent the TFT cassettes number and the other N genes represent the CF 

cassettes number. From the beginning, every k-1 gene can be grouped. For example, assume 

we have 10 TFT cassettes and 10 CF cassettes in queue. If the sorter has 4 ports, one of the 

chromosomes is presented as Figure 6. We can see that Group 1, Group 2, Group 3 and Group 

4 in TFT cassettes will be assigned to Group 1, Group 2, Group 3 and Group 4 in CF cassettes 

respectively. In the first three groups, all 60 CF plates can be matched with 60 TFT plates by 

using the sorter. The sum of yield rates from four groups is the total yield rate. 

 

 

 

Figure 6. An example of matching chromosomes 

0 1 2 3 4 5 6 7 8 9 9 8 7 6 5 4 3 2 1 0

Group 1 Group 2 Group 3 Group4 Group 1 Group 2 Group 3 Group4 

TFT CF
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2. Fitness function 

The fitness function for the proposed algorithm is given by ∑∑
= =

=
N

i

N

j
ijij yaZ

1 1

 which is 

defined the same as the equation (5). 

 

3. Crossover operator 

As a crossover operator we use partially matched crossover (PMX) introduced by 

Goldgerg (1989). This method creates two offspring from two parents. The parent 

chromosomes are selected with the probability based on the fitness. The operator chooses two 

crossover points at random, exchanges the elements between the crossover points and fill the 

rest of each chromosome by replacing corresponding elements. 

 

4. Reproduction Operator 

As a reproduction operator we use ranking selection. The chromosomes are sorted 

according to their fitness values and the rank 1 is assigned to the best chromosome, the rank N 

assigned to the worst. For each chromosome, the reproduction operator is performed with 

probability ( ) ∑
=

÷+−=
N

n
n nnNP

1
1 , where n is the position of the chromosome after ranking. 

 

5. Mutation operator 

Mutation operator is used to create the opportunity to prevent the solution from local 

optimal. If the mutation operation is performed, it will generate a chromosome of the same 

length with the order of its elements reversed. 
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5.2  SA for the post-mapping problem 

A SA to solve the post-mapping problem is proposed in this section. The basic terms for 

the SA are defined as follows: 

 

5 Initial solution 

Randomly generate one chromosome in GA as the initial solution. 

 

6 Objective function 

The objective function for conventional SA is given by ∑∑
= =

=
N

i

N

j
ijij yaZ

1 1

 which is 

defined the same as the equation (5). 

 

7 Perturbing function 

Randomly select two elements in the original solution and exchange these two elements. 

 

8 Probability of acceptance 

The probability function of accepting a worse solution is defined as ⎟
⎠
⎞

⎜
⎝
⎛ ∆−

=
T

Ep exp , 

where E∆  is the change in the objective function value and T is the system “temperature”. 

 

9 Temperature function 

If M successful changes or N total changes in the solution have occurred since the last 

change in temperature (T), then set the value of T to Tα , where α  is a constant. 
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5.3  Two-phased algorithms 
 

Unfortunately, when the number of the TFT (or CF) cassettes is large, there will be so 

many feasible solutions that the result found by using conventional GA & SA might not be as 

good as expected. Consider the case in which N=10 and k=4, there will be 47040000 ways of 

combinations (
( )

47040000
!3

24
3

7
3

10
3 =

×× CCC
) and 14500 LP operations! We used the package 

LINGO with equipment AMD 1.6G and 256 DRAM in Windows XP environment to solve the 

LP operations. It will take us about 4 hours to solve just all these LP operations, not to 

mention the immense number of ways of combinations. Figure 7 and Figure 8 illustrate that 

both computational time and ways of combinations will start to rise dramatically when the 

TFT (or CF) cassette quantity exceeds 10. 
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Figure 7. Computational time vs. cassette quantity 
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Figure 8. Ways of combinations vs. cassette quantity 

 

When the number of combinations is huge, there will be too many feasible solutions 

which make it harder for GA and SA to achieve a better yield. For this reason, the initial 

population (or initial solution) should be selected by using proper procedures. We propose 

two-phased algorithms to modify our GA and SA. The procedures to generate initial 

population are provided in phase one. By using phase one, we can create more effective 

chromosomes (initial solution). Next, we use the result of phase one to perform GA and SA in 

phase two. 

 

5.3.1 Two-phased GA-based algorithm 

The basic principles of phase one are divided into a few steps. First, overlook the sorter 

and find the optimal solution to the cassette-matching problem. That is, we want to determine 

which CF cassette should be assigned to each TFT cassette. Next, rearrange the order of the 

CF cassettes according to the optimal solution. The procedures are described in the following: 
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Phase one algorithm 

BEGIN 

DO { 

1. Overlook the sorter, and find the optimal solution. 

2. Rearrange the order of CF cassettes. 

    } 

END 

 

In phase two, the procedures are the same as the conventional GA except the way to 

generate the initial population. All chromosomes are created by the following principle: if 

the ith TFT cassette is assigned to the group k, so is the corresponding CF cassette. In other 

words, the initial population should be created based on the result of phase one. For 

example, assume the order of TFT cassettes is (A, B, C, …., H, I, J) and the order of CF 

cassettes after phase one is (a, b, c, …, h, i, j). In some chromosome, if the elements in group 

1 of TFT cassettes are (B, G, J), the elements in group 1 of CF cassettes will be (b, g, j). The 

detailed procedures are described as such: 

 

Phase two algorithm 

BEGIN 

DO { 

10 Generate the initial population based on phase one. 

11 Compute the fitness for each chromosome. 

12 Use the crossover function and reproduction function to generate the next 

generation. 

13 Compute the mutation probability for each chromosome and determine 

which chromosome should be mutated. 
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    } WHILE (the maximum number of generations is satisfied) 

END 

 

5.3.2 Two-phased SA-based algorithm 

In the two-phased SA-based algorithm, the basic concept is identical with the two-phased 

GA-based algorithm. In phase one, we use the same procedures in two-phased GA to generate 

the initial solution. The detailed procedures are described in the following: 

 

Phase one algorithm 

BEGIN 

DO { 

1. Overlook the sorter, and find the optimal solution. 

2. Rearrange the order of CF cassettes. 

} 

END 

 

Phase two algorithm 

BEGIN 

DO { 

1. Generate the initial solution x based on phase one. 

2. Generate the next solution x*. 

3. Compute f (x) and f (x*) 

         IF (f (x)  < f (x*) ) 

           { Let x=x*} 

         ELSE 

           {Compute the probability to determine whether x should be replaced.} 
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    } WHILE (the maximum number of computations is satisfied) 

END 

 

We expect the performance of two-phased algorithms will be better than the conventional 

ones because two-phased algorithms provide a benchmark to efficiently reduce the number of 

different combinations. In Figure 9, the queue sequences of TFT and CF cassettes are a direct 

result of the manufacturing process. Assume that they will obtain the yield rate, z. The CF 

cassettes rearranged after phase one are shown in Figure 10, and they will obtain the yield rate, 

z*. It is obvious that zz ≥* . 

It is impossible for the chromosomes (or solutions) created based on phase one to 

achieve worse yield rates than z*. That is, in two-phased algorithms, z* is used as the 

benchmark to assure the quality of the chromosomes; the idea of the two-phased algorithms is 

to guarantee the sorter actually helps us increase the post-mapping yield. 
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Figure 9. TFT and CF cassettes ranked by the manufacturing process 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. CF cassettes rearranged after phase one 
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6. Numerical Analysis 
 

The proposed algorithms are coded in MATLAB 6.5 on AMD 1.6G and 512 DRAM 

PC in Windows XP environment. In this case, the total average yield rates for TFT and 

CF plates are 90% and 85% respectively. We used random data to simulate the detective 

cells on each plate, generating 0 to present detective cells and 1 to present good cells. 

The parameters settings of the post-mapping problem are listed in Table 1. The GA and 

SA operation settings are listed in Table 2 and Table 3. 

The numerical results for various ports on the sorter are summarized in Tables 4, 5, 

6, 7, 8, 9 and Figures 11, 12, 13, 14, 15, 16. 

 

Table 1. Parameter settings of the post-mapping problem 

Parameter Value 

Number of cassettes (N) 10, 15, 20 

Number of ports (p) 4, 5 

Number of panels (n) 30, 50, 70,100 

 

 

Table 2. GA operation settings            Table 3. SA operation settings 

Parameter Value

Population size 50 

Number of iteration 20 

Crossover rate 0.8 

Mutation rate 0.1 

 

Parameter Value 

Number of iteration 1000 

Initial temperature 500 

Temperature changing rate (α ) 0.8 
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Table 4. Average mapping yield for N=10 and p=4 

 Random Simple GA Two-Phased GA Simple SA Two-Phased SA
30 76.60% 81.28% 81.40% 81.24% 81.40% 
50 76.56% 80.22% 80.28% 80.21% 80.28% 
70 76.57% 79.53% 79.69% 79.52% 79.69% 
100 76.67% 79.03% 79.11% 79.01% 79.11% 

 
Table 5. Average mapping yield for N=10 and p=5 

 Random Simple GA Two-Phased GA Simple SA Two-Phased SA
30 76.60% 81.62% 81.73% 81.65% 81.73% 
50 76.56% 80.20% 80.47% 80.22% 80.47% 
70 76.57% 79.78% 79.81% 79.77% 79.83% 
100 76.67% 79.21% 79.24% 79.22% 79.24% 

 
Table 6. Average mapping yield for N=15 and p=4 

 Random Simple GA Two-Phased GA Simple SA Two-Phased SA
30 76.41% 81.35% 81.50% 81.32% 81.50% 
50 76.50% 80.20% 80.45% 80.18% 80.40% 
70 76.42% 79.61% 79.73% 79.51% 79.72% 
100 76.48% 79.14% 79.19% 79.13% 79.20% 

 
Table 7. Average mapping yield for N=15 and p=5 

 Random Simple GA Two-Phased GA Simple SA Two-Phased SA
30 76.41% 81.70% 81.77% 81.70% 81.78% 
50 76.50% 80.52% 80.57% 80.51% 80.55% 
70 76.42% 79.80% 79.83% 79.71% 79.82% 
100 76.48% 79.23% 79.31% 79.17% 79.32% 

 
Table 8. Average mapping yield for N=20 and p=4 

 Random Simple GA Two-Phased GA Simple SA Two-Phased SA
30 76.48% 81.35% 81.51% 81.32% 81.52% 
50 76.40% 80.27% 80.48% 80.31% 80.45% 
70 76.57% 79.59% 79.78% 79.62% 79.79% 
100 76.47% 79.05% 79.17% 79.07% 79.18% 
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Table 9. Average mapping yield for N=20 and p=5 
 Random Simple GA Two-Phased GA Simple SA Two-Phased SA

30 76.48% 81.68% 81.80% 81.50% 81.79% 
50 76.40% 80.53% 80.62% 80.53% 80.60% 
70 76.57% 79.84% 79.96% 79.82% 79.96% 
100 76.47% 79.23% 79.31% 79.22% 79.32% 

 

Figure 11. Comparison of the effect with different proposed GA algorithms and numbers of 
ports for various panels with N=10 
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Figure 12. Comparison of the effect with different proposed SA algorithms and numbers of 
ports for various panels with N=10 
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Figure 13. Comparison of the effect with different proposed GA algorithms and numbers 
of ports for various panels with N=15 
 
 
 
 

Figure 14. Comparison of the effect with different proposed SA algorithms and numbers 
of ports for various panels with N=15 
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Figure 15. Comparison of the effect with different proposed GA algorithms and numbers 
of ports for various panels with N=20 
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Figure 16. Comparison of the effect with different proposed SA algorithms and numbers 
of ports for various panels with N=20 
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 The results indicate that the number of ports and cassettes are both significant 

determinants for the post-mapping problem. The average mapping yield’s increase is 

proportional to the increase of the number of ports or cassettes, and it seems that the 

number of ports can affect the improvement in the yield much greater than the number of 

cassettes. For example, in Tables 4 and 6, the average yield of 70 panels with two-phased 

GA increased from 79.69% to 79.73% while the number of cassettes increased from 10 

to 15. However, the average yield increases from 79.69% to 79.81 in Tables 4 and 5 

where only the number of ports changed. Hence, solving the post-mapping problem with 

more ports can achieve a higher yield rate than with more cassettes. 

 Our results seem to provide evidence that two-phased algorithms outperform simple 

ones. In addition, our results also imply that there is no notable difference between the 

results of GA and SA. In this case study, the yearly throughput is 360,000 LCD plates. 

The average cost per LCD plate is about US$876. The profits from different approaches 

are shown in Tables 10, 11, 12 and 13. 

 

Table 10. Profit caused by different proposed GA algorithms (4 ports) 

random mapping simple GA two-phased GA 

 profit 

profit 

increased profit

profit 

increased profit 

profit 

increased 

N=10 241.57 --- 252.34 10.77 252.67 11.10 

N=15 241.10 --- 252.52 11.42 252.97 11.87 

N=20 241.19 --- 252.49 11.30 253.03 11.84 

(in million US dollar) 
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Table 11. Profit caused by different proposed GA algorithms (5 ports) 

random mapping simple GA two-phased GA 

 profit 

profit 

increased profit

profit 

increased profit 

profit 

increased 

N=10 241.57 --- 252.93 11.36 253.27 11.70 

N=15 241.10 --- 253.27 12.17 253.45 12.35 

N=20 241.19 --- 253.30 12.11 253.62 12.43 

(in million US dollar) 

Table 12. Profit caused by different proposed SA algorithms (4 ports) 

random mapping simple SA two-phased SA 

 profit 

profit 

increased profit

profit 

increased profit 

profit 

increased 

N=10 241.57 --- 252.27 10.70 252.67 11.10 

N=15 241.10 --- 252.40 11.30 252.93 11.83 

N=20 241.19 --- 252.54 11.35 253.03 11.84 

(in million US dollar) 

 

Table 13. Profit caused by different proposed SA algorithms (5 ports) 

random mapping simple SA two-phased SA 
 

 profit 

profit 

increased profit

profit 

increased profit 

profit 

increased 

N=10 241.57 --- 252.97 11.40 253.29 11.72 

N=15 241.1 --- 253.15 12.05 253.45 12.35 

N=20 241.19 --- 253.13 11.94 253.60 12.41 

(in million US dollar) 

 

According to the data in Tables 10, 11, 12 and 13, the post-mapping problem apparently 

should be solved with as many ports and cassettes as possible. However, the computation time 

will also increase. The comparison of CPU time with different scenario is shown in Table 14. 
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Table 14. Comparison of CPU time with different number of ports and cassettes 

 

 

 

 

 

*The CPU time for GA and SA are almost the same. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 ports 5 ports equipments 

N=10 About 30 minutes About 45 minutes 

N=15 About 45 minutes About 60 minutes 

N=20 About 60 minutes About 90 minutes 

AMD 1.6 G 
Windows XP 

512MB DRAM 
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7. Conclusions 

 

One of the most important factors in TFT-LCD yield control problem is the 

post-mapping problem. A LCD plate is produced in the post-mapping operation by mapping 

one TFT plate and one CF plate. The objective of this study is to increase the yield in the 

post-mapping operation without changing any existing equipments. Although the 

post-mapping problem can be formulated in a set of typical linear programming problems, it 

is too unrealistic to solve all of them. In this study, we propose simple GA & SA and a 

two-phased GA & SA to solve this complicated problem. In phase one of the two-phased 

algorithms, we first neglected the sorter and find the optimal solution to the post-mapping 

problem. Second, we rearranged the order of CF cassettes. Finally, the initial solutions are 

properly selected and the simple GA & SA are executed in phase two. 

 The results indicate that it is helpful to increase the mapping yield with more cassettes or 

ports. The results also support that two-phased algorithms perform better than the simple ones 

because two-phased algorithms can efficiently reduce the number of combinations. Moreover, 

we also find that there is no significant difference between the results of GA and SA. 

By using the proposed two-phased algorithms, the yield can be increased more than 4% 

in average; the firms can save millions dollars per year. The results of this research might help 

managers to make more judicious mapping policies. 
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