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SUMMARY 
We introduce two sets of fully normalized harmonics for the spectral analysis of 
functions defined on a spherical cap. The harmonics are the products of Fourier 
functions and the fully normalized associated Legendre functions of non-integer degree. 
Using Sturm-Liouville theory for boundary-value problems, we present two convenient 
and stable formulae for computing the zeros of the associated Legendre functions 
that form two sets of orthogonal functions. Formulae for the stable numerical 
evaluation of the fully normalized associated Legendre functions of non-integer degree 
that avoid the gamma function are also derived. The result from the expansions of sea- 
level anomaly from altimetry into Set 2 fully normalized cap harmonics shows fast 
convergence of the series, and the degree variances decay rapidly without aliasing 
effects. The zero-degree coefficients (Set 2) of sea-level anomaly from TOPEX/ 
POSEIDON (T/P) and ERS-1 indicate an El Nifio event during 1993 January-1993 
July, and a La Niiia event during 1993 November-1994 July, although the ERS-1 
result is less obvious. Ocean circulations over the South China Sea and the Kuroshio 
area are clearly identified with the low-degree expansions of sea-surface topography 
(SST) from T/P and ERS-1. A cold-core eddy of 4" in diameter centred at 17.5"N, 
118"E was detected with the expansion of SST from T/P cycle 47, and a property of 
the cap harmonics is used to compute this eddy's kinetic energy. The kinetic energy is 
at a low in winter and high in summer, and its variation seems to be periodic with an 
amplitude of 0.4 m2 s-'. 
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1 INTRODUCTION 

The almost complete treatment of Legendre functions of 
general type by Hobson (1965) includes the topic of associated 
Legendre functions of non-integer degree. However, it was 
Haines (1985a,b) who first made use of these functions in 
approximating the geomagnetic field with the introduction of 
spherical cap harmonics. Other applications of spherical cap 
harmonics are mostly found in geomagnetic literature; for 
example in De Santis (1991) and Haines & Torta (1994). A 
simple approximated alternative based on ordinary spherical 
harmonics properly adjusted to the cap is given by De Santis 
( 1992). In the geodetic literature, applications have been found 
in, for example, Hwang (1991), who clarified the relationship 
between the associated Legendre function and the hyper- 
geometric function, and Li, Chao & Ning (1995), who 
employed spherical cap harmonic expansions for the gravity 
field representation over China. In fact, the associated Legendre 
function used by Haines (1985a) was based on Schmidt 

normalization, and he used certain approximations in the 
normalizing factor which presumably did not affect his results. 
This paper will review the theory of associated Legendre 
function of general type by the eigenfunction-eigenvalue 
approach and introduce two sets of fully normalized spherical 
cap harmonics. The term 'fully' is used by analogy with the 
fully normalized spherical harmonics (Heiskanen & Moritz 
1967), which offer convenient computational formulae and 
have many advantages in interpreting the spectral components 
of a function defined on a cap. Also, new and rigorous formulae 
will be derived, as compared to the formulae used in, for 
example, Haines (1988) and De Santis (1991, 1992). The 
motivation of this study is to find basis functions other than 
ordinary spherical harmonics that can be used to represent 
local sea-level data derived from satellite altimetry. After 
introducing the fully normalized spherical cap harmonics, we 
will use the harmonic expansions to study the oceanographic 
signals obtained with the TOPEX/POSEIDON (T/P) and 
ERS-1 missions. 
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Fully normalized spherical cap harmonics 45 1 

2 THEORY OF FULLY NORMALIZED 
SPHERICAL CAP HARMONICS 

2.1 Associated Legendre functions and hypergeometric 
functions 

It is known (e.g. Hobson 1965; Lebedev 1972; Hwang 1991) 
that Legendre's function can be represented by the hyper- 
geometric function which then can be used to derive a general 
type of Legendre function. The hypergeometric function is 
defined as (Lebedev 1972) 

c 

where (a),,, (b),,, and (c)", are shifted factorials defined as 

(a)o = 1 , (a), = a(a + 1) . . . (a + n - 1) , n = 1,2, . . . (2) 
By a simple change of variable in the differential equation 
associated with the hypergeometric function, we can obtain 
Legendre's differential equation, which leads to the represen- 
tation of Legendre's function in terms of the hypergeometric 
function: 

P t ( t ) = F  -L ,L+  1; 1;- I,,).  ( (3 )  

When L is an integer, by the definition of the shifted factorial 
in (2) we see that a coefficient in the series is zero if k > L. In 
this case, Pt( t )  is a polynomial of degree L'. 

Furthermore, using the definition of the associated Legendre 
function, 

a" 
P,m(t) = (1 - t2)"'21m(P(), (4) 

and the property of the hypergeometric function that 

a ab 
--(a, b; C; Z)  = -F(u + 1, b + 1; c + 1; z ) ,  
az C 

(5) 

the associated Legendre function can be represented in terms 
of the hypergeometric function: 

(-L),(d + 1),( 1 - t2)m'2 (- 1)" PF( t )  = - 
2"m! 

1 T ( d + m + l )  
2"m! T(L - m + 1) 

(1 - t2)"'2 _ _ _  - 

where T(z) is the gamma function defined as 

= e-*tL- '  d t ,  z > O ,  (7)  s: 
which has the property T(z + 1) = zT(z). 

In (6), m must be a non-negative integer because of (4), but 
there is no restriction on C. If L is a non-negative integer, then 
T(C + m + 1) = (C + m)! and T(d - m + 1) = (C - m)!> and, if 
m > 8, then according to (4) PF( t )  = 0. Also, if d 2 m, then 
F(m - 1, m + L + 1; m + 1; [ 1 - t]/2) is a polynomial of degree 
(8 - m). Therefore, formula (6) is also valid for the Legendre 

function of the first kind described in Heiskanen & Moritz 
(1967, p. 22) and holds for the closed interval [- 1,  11. If L is 
non-integer, then P? can be expressed in a hypergeometric 
series with an infinite number of terms: 

1 T ( C + m + l )  co 1- t  
PF( t )  = ~ (1-t2)"" a k ( l )  3 ( 8 )  2"m! T(L - m + 1) k = O  

where the coefficients ak can be found by the recursive formula 

(m - L + k - 1 ) (m + f + k )  
k(m + k )  a, = 1, U k  = 'k-1. (9) 

The series in ( 8 )  converges rapidly iff is near 1, and goes to 
infinity if t = - 1. To evaluate the series in (S ) ,  for given L and 
m we can define a small positive number E ,  depending on the 
desired accuracy, and introduce the truncated series S N  as 

N 1 - t  
s N =  k = O  1 "(i) 
If ISN+ - S N /  5 E ,  then the series is truncated at N 

2.2 The zeros of Py(t)  and dPy(t)/dt as functions of L' 

When constructing orthogonal systems from the associated 
Legendre functions, we need to find the zeros (roots) of PF(t)  
and dPF(t)/dt as functions of L. These zeros correspond to the 
eigenvalues of the solution of the Sturm-Liouville boundary- 
value problem (e.g. Courant & Hilbert 1953; Hwang 1991; De 
Santis & Falcone 1995). First, Legendre's differential equation 
can be expressed in Sturm-Liouville form as 

~ [ ( l - t 2 ) ~ ] + [ L ( L + l ) - - ,  at  1 - t  m2 1 PF(t)=O, (11) 

subject to the boundary condition (BC) at t = to 

dPFk ( to 1 
APFk(to) + B- = 0 ,  k = i ,  j ,  at 

where d(C + 1) is the eigenvalue of PF(t ) ,  and 

dPT(t0) - dPT(t) l  

at at 2 = z 0 '  

In (12), the cases with (1) A # 0, B = 0, (2) A = 0, B # 0 and 
(3) A # 0, B # 0 correspond to Dirichlet, Neumann and mixed 
boundary conditions, respectively. By selecting appropriate A 
and B we say that the BC in Case 3 is 'natural' when the set 
of basis functions associated with this BC are used to represent 
an arbitrary function over to I t I 1. Here we will only pursue 
the BC in cases 1 and 2. By considering PF(to) and Py(to)/dt  
as two functions of C, and then solving separately the equations 
(Hwang 1991; Haines 1985a) 

PF(t0) = 0 ,  (13) 

we obtain two different sets of orthogonal functions (the 
functions are orthogonal only within one set). For this purpose, 
the hypergeometric representation of P?( t) is needed. The 
function dPF( to)/& can be obtained by the recursive formula 
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452 C. Hwang and S.-K. Chen 

(Lebedev 1972, p. 195), or by term-wise differentiation in the 
hypergeometric series of P T ( t )  as in Haines (1988, p. 415). 

When finding the zeros, it is useful to avoid computing the 
gamma functions or the shifted factorials because they can be 
very large and can cause numerical problems. To do this, we 
first remove the common factors involving in and to from (13) 
and (14) because they do not affect the result. Referring to (6), 
the shifted factorials (-d),(d + l), are also removed from (13) 
and (14) because l is non-integer and the zeros cannot be 
obtained by setting the shifted factorials equal to zero. By such 
a manipulation, we obtain simplified equations from (13) and 
(14): 

F(C, m, to) = 0 

dtoF(C, m, to) - (d - m)F(C - 1 ,  m, to)  = 0 ,  

(16) 

(17) 

where 

means of its nodal points'. Thus, by this theorem Pc",+, will 
change its sign once more than PFn over to I t 2 1. Also, it is 
known (Hobson 1965, p. 386) that PT( t )  as a function of t has 
no zero if m 2 f .  Based on these observations, and in order to 
have the same frequency classification as the associated 
Legendre function of integral degree (see Heiskanen & Moritz 
1967, p. 25), for a given m we denote the first zero from the 
solution of (16) or (17) by ern so that the function PT' changes 
its sign (n  - m) times over to 2 t I 1. (It can be shown that the 
first zero d, is greater than or equal to m.) Table 1 lists the 
zeros up to n=rn=8  for O o =  lo" that will be used below. 
Fig. 1 shows the associated Legendre functions of non-integer 
degree for O0 = 10" and m = 0. In computing the zeros, (16) 
and (17) are solved numerically by the IMSL subroutine 
DZEAL, which uses Mueller's method of zero finding. Further 
discussion on the frequency classification of PF(t) can be found 
in, for example, Haines (1988), Hwang (1991) and Li et al. 
(1995). 

is the simplified notation for the hypergeometric function. 
There is no numerical problem in using (16) and (17) for 
finding the zeros. The methods of computing zeros based on 
(16) and (17) are to be compared with those of Haines (1988). 

2.3 The index of zero and frequency classification of 
P? (0 
The eigenfunctions such as PT(t )  derived from a Sturm- 
Liouville problem form a complete set of functions which can 
be used for the spectral decomposition of a function. For a 
given to and m we will obtain an infinite number of zeros by 
solving (16) or (17). each associated with an eigenvalue and 
an eigenfunction. We denote these zeros by f,, n = 1, 2, ... , 
and d,, > L',. The value b, will be called the 'degree at index 
n'. Now, a theorem of Courant & Hilbert (1953, p. 454) states 
that, 'the nth eigenfunction for a Sturm-Liouville problem 
divides the fundamental domain into precisely n parts by 

2.4 Fully normalized associated Legendre functions of 
general type 

For ease of application, it is necessary to obtain the normalized 
associated Legendre functions. Let P z ( f )  and P z ( t )  be two 
functions satisfying (11). For P z ( t )  and P;(t) we multiply one 
function's differential equation by the other function and take 
the difference of the two resulting equations. Integrating the 
final equation over to I t I 1, we obtain 

By treating l j  as a variable approaching Ci and applying 

Table 1. Zeros up to index (n)  and order (m) 8 for Oo = 10" ( to = cos O o ) .  
(a) P7'M = 0 

n h  0 1 2 3 4 5 6 7 8 
0 13.28 
1 31.13 21.46 
2 49.08 39.70 28.95 
3 67.06 57.79 47.74 36.10 
4 85.05 75.84 66.09 55.45 43.04 
5 103.04 93.87 84.28 74.09 62.94 49.84 
6 121.03 111.89 102.41 92.47 81.88 70.25 56.53 
7 139.03 129.91 120.50 110.72 100.46 89.50 77.44 63.15 
8 157.03 147.92 138.56 128.90 118.85 108.28 96.99 84.52 69.70 

n h  0 1 2 3 4 5 6 7 8 
0 0.00 
1 21.46 10.08 
2 39.70 30.06 17.05 
3 57.79 48.42 37.94 23.65 
4 75.84 66.57 56.63 45.46 30.07 
5 93.87 84.67 74.97 64.53 52.74 36.38 
6 111.89 102.72 93.17 83.09 72.20 59.85 42.63 
7 129.91 120.77 111.31 101.44 91.00 79.69 66.83 48.82 
8 147.92 138.80 129.40 119.68 109.51 98.74 87.05 73.71 54.98 
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1 .o 

0.5 

0.0 

-0.5 

-1.0 ' , I I 

1 .oooo 0.9848 0.9886 0.9924 0.9962 
t 

Figure 1. The first five associated Legendre functions of non-integral degree for 0, = 10" and m = 0. The solid curves satisfy P;(to) = 0, and the 
dotted curves satisfy dP,"(t)/dtl,,,u = 0. The numbers next to the curves are the f values. 

L'Hospital's rule, we have 

Set 1: PF(t,) = 0, m given 

- 0, rn given Set 2 __ - 
dPZ(t0) 

at 

To complete (19) and (20)  we shall derive expressions for 

a a 
z ( P T ( t ) )  and z ( d P c " ( t ) / d t ) .  

First, we recall the definition of the $-function: 

ariaz - 1  1 
W) n=, n + l  n + z  ' $(z) = __ - - - - y +  (---I z > o ,  (21)  

where y = 0.5772156 is Euler's constant, and the property 
k - 1  1 

$(z  + 4 = $(z)  + c __ k 2 l  (22)  
n = O  z + n ' 

holds. Also, the derivative of the shifted factorial is easily 

and 

a aPF(t)  (7 

a/ ( t 2  - 11% ( t) = tPl" - Pc"- 1 + et-  (Pc") 

where 

be-  2 e -  z, / - r n + l + n '  

'o=O, A= -(2e + 

1 2 m - 1  

m>O,  (26)  0-0 b m -  

1 k - 1  

k > O .  
(m + / + 1 + n)(m - 19 + n) 7 

(27) 

Using the results in (19) and (20), we define two sets of fully 
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normalized associated Legendre functions of general type: 

Set 1 t' 

H(b, rn, to)  = (l - rn)F(C - 1, rn, to)  - bF(b, rn, t o ) ,  (31) 
J (C ,  rn, t o )  = (C - rn)G(b - 1, rn, to)  - bt,G(b, rn, to) 

Here the normalization is 'Heiskanen and Moritz' 
normalization, which takes into account the area average by 
introducing the factor [2 - 6(rn)]( 1 - to),  and we have used 
the term 'fully' by analogy with fully normalized spherical 
harmonics. Again, the fully normalized associated Legendre 
functions are represented by the hypergeometric functions. 
However, unlike the expression in (6), which requires the 
computation of the sometimes excessively large gamma 
function, the expressions in (31) and (32) do not contain the 
gamma function and are numerically manageable for all (l, rn) 
pairs (the values of F ,  G , H , J  will not create overflow or 
underflow in a computer). In fact, apart from the normalizing 
factors, the Set 1 and Set 2 functions correspond to Haines' 
( 1985a) 'odd' and 'even' functions, respectively. 

2.5 Expansion in series of fully normalized spherical cap 
harmonics 

For an application of the fully normalized associated Legendre 
functions, we consider the series expansion of an arbitrary 
function defined over a cap on the spherical earth, whose 
geometry is shown in Fig. 2. The coordinates of a point on the 
cap are: 0, the angle between the radial axis through the cap 
pole and the radial axis through the point, and 1, the angle 
between the meridian through the north pole and the cap pole 
and the great circle through the cap pole and the point, 
measured on the new 'equator' defined by the cap pole. If the 
function is defined in the geodetic coordinate system, the 
geodetic coordinates must be first transformed to the cap 
coordinates (0, 1). Such a transformation formula can be found 
in, for example, De Santis, Kerridge & Barraclough (1989). 
Furthermore, for spherical cap harmonic analyses of vector 
fields such as deflections of the vertical and the geomagnetic 

Figure2. A cap on the earth (approximated by a sphere). The cap 
size is Qo and ( 0 , l )  are the cap coordinates. 

field, the field components in the geodetic coordinate system 
must be rotated to the components in the cap coordinate 
system (De Santis et al. 1989, p. lo), where one axis is directed 
to the cap pole and the other directed to a direction 90" 
clockwise from the cap pole on a local tangential plane. 

By setting t = cos 8, the fully normalized associated Legendre 
functions form a complete set in the variable 8. Also, the 
classical Fourier functions cos rn1 and sin rn l  form a complete 
set in 1. With these two complete sets in variables t and 1 we 
define the fully normalized spherical cap harmonics over a 
spherical cap: 

(33) 

We shall call the basis functions defined in (33) Set 1 or Set 2 
harmonics, depending on which p7 is used [see (28) and (29)]. 
Similar to the case for fully normalized spherical harmonics 
for the unit sphere (Heiskanen & Moritz 1967), the average 
square of any fully normalized spherical cap harmonic over 
the spherical cap v is unity: 

274 1 - cos 0,) j S , ( m 2 d o  

- - jjg ($7)' do = 1 .  (34) 274 1 - cos 0,) 

The area of the cap is 27-41 -cos O o ) .  These two sets of 
fully normalized spherical cap harmonics differ from those 
introduced by Haines (1985a) by the different normalization 
constant. 

A function defined over a spherical cap can be expanded 
into a series of spherical cap harmonics belonging to Set 1 or 
Set 2, according to the set chosen for the analysis: 

Nmax n 

f (8 ,  A) = C CatnmQ(Q3 I)+ b/,m%n(@, 111, (35) 
n = O  m = O  

where Nrnax is the maximum degree of expansion and the 
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Fully normalized spherical cap harmonics 455 

surface and the marine geoid. Sea-level anomaly (SLA) is the 
difference between the SST defined at given epoch or over a 
short period of time and the mean SST. In this work, the sea- 
level data were derived from TOPEX/POSEIDON (T/P) and 
ERS-1 altimetry. We obtained the 10-day T/P SST from cycle 
2 to 117 from the Center for Space Research (CSR), University 
of Texas, Austin, who have computed the T/P orbits with the 
latest gravity model JGM3 of the Joint Gravity Model series 
(Nerem et ul. 1994). The CSR used the CSR 3.0 tide model 
for the tidal corrections and a hybrid geoid (coefficients of 
JGM3 from degree 2 to 70, and coefficients of OSU91A from 
degree 71 to 360) in the SST derivation. Also, a three-year 
averaged SST is available from CSR for deriving SLA. For 
ERS-1 we used the corrected sea-surface heights (SSH) from 
Le Traon et al. (1995), who have adjusted the ERS-1 orbits to 
make ERS-1's orbital accuracy compatible with T/Ps. Because 
of the use of concurrent orbits in the adjustment, the ERS-1 
35-day repeat SSH cover only cycles 6 to 18. We computed 
the same hybrid geoid as used in the T/P SST on a 30' x 30' 
grid and then interpolated the geoidal heights to the ERS-1 
data points to get ERS-1's SST. 

coefficients can be found from 

Note that this equation is valid for one-set analysis and does 
not apply when both sets are used simultaneously. Iff(@, A) is 
not known everywhere over the spherical cap, the coefficients 
can be found by the least-squares method. The spatial 
resolution corresponding to the expansion in (35) over a cap 
of spherical earth is R@,/Nmax, where R is  the mean earth 
radius (Li et al. 1995). 

Using the frequency classification of Pyn(cos 0) as stated 
before and the fact that the functions cos m11 and sinml 
have 2m zeros over 0 I A < 277, the harmonics defined in (33) 
with degree en for the cases m = 0, n > m, and n = m may be 
termed zonal, tesseral and sectorial spherical cap harmonics, 
respectively, similar to the geometrical representation of 
spherical harmonics on the unit sphere. Furthermore, the 
average power of f ( @ , A )  at index n is 

1 
7; = 

2n( 1 - cos 8,) 

x { z0 (a,n, cos m/Z + btnm sin m12)Pyn(cos @) do r 
" 

= C ( d , m  + b?"rn)> (37) 
Wl=0 

which can also be called the degree variance at index n, similar 
to the degree variance of a spherical harmonic expansion. 7; 

is a measure of energy at index n; see also the discussion by 
Haines (1991). Note that the normalization for the associated 
Legendre functions must be exact in order to obtain 7; 

using (37). 
In this study we propose the use of just one set of cap 

harmonics (Set 1 or Set 2 )  in an expansion, in contrast to the 
approach of Haines (1985a) who used both sets simultaneously. 
The convergent rate of an expansion with two sets may be 
faster than that of an expansion with just one set, because in 
the former case any boundary condition is satisfied. However, 
since the functions in Set 1 are not orthogonal to the functions 
in Set 2, the 'spectral' components from a two-set expansion 
will be mutually dependent (Hwang 1991). Furthermore, ortho- 
gonal functions arising from the eigenvalue-eigenfunction 
problem form a complete set of functions, and the use of a 
complete set of functions will guarantee that the expansion of 
an arbitrary function (not necessarily satisfying any boundary 
conditions) is convergent in the mean (Tolstov 1976). 
Convergence in the mean is less stringent than uniform con- 
vergence (Davis 1975), and it tolerates bad fits between the 
expanded function and the expansion at a finite number of 
points. See also the discussion by Haines (1990) and the 
numerical examples below. 

3 APPLICATIONS TO THE ANALYSIS OF 
SEA-LEVEL DATA FROM 
TOPEXlPOSEIDON A N D  ERS-1 

3.1 The sea-level data 

The basic sea-level data type for our analysis is the sea-surface 
topography (SST), which is the difference between the sea 

3.2 Expansion of sea-level anomaly 

First we shall test various aspects of the performance of Set 1 
and Set 2 harmonics [see (33)]. We expand the SLA from 
cycle 2 of T/P for the western Pacific using Set 1 and 2 
harmonics separately up to Nmux = 6 by the least-squares 
method. The cap pole is at 7 3 ,  160"E, and the cap size is 
0, = 10". Fig. 3 shows the results. From Fig. 3, we see that the 
two expansions look quite similar, but large differences exist 
at the cap boundary. While discontinuity exists at the boundary 
in the expansion using Set 1 harmonics, the expansion using 
Set 2 functions transits smoothly from the interior to the 
border. This is due to the fact that an arbitrary function such 
as SLA will not necessarily satisfy the boundary condition 
Py(  to)  = 0 or dPy( t ) /d t l t= to  = 0, but the value of the function 
can be easily adjusted to satisfy dP,"(t)/dt),=,, = 0, so the latter 
condition results in a smooth transition at the boundary. 

Fig. 4 shows the root-mean-squared (rms) differences 
between the original data and the expansions, which suggests 
that for the same expansion degree the use of Set 2 harmonics 
results in a faster convergence than the use of Set 1 harmonics. 
An advantage of cap harmonic expansion with just one set is 
its ability to spectrally decompose a local signal on the sphere 
without the problems of aliasing and singularity that occur 
in the expansion using global functions such as spherical 
harmonics (Hwang 1993). Fig. 5 shows the degree variances 
of SLA from the two expansions. For both expansions the 
zero degrees contain most of the energy, and the degree 
variance decays rapidly as the index increases. 

The conclusion of this example is that the two expansions 
give almost identical results, but to have a faster convergence 
and to avoid discontinuity at the cap boundary it is advisable 
to use Set 2 harmonics, unless the expanded function satisfies 
Dirichlet's boundary condition. The faster convergence of Set 2 
harmonics agrees with Haines' (1990) result. The simultaneous 
use of Set 1 and Set 2 may provide a better fit of the data at 
the expense of the ability to make a spectral decomposition of 
the signal under study. This can be particularly advantageous 
when the spherical cap harmonic expansion is actually 3-D 
[i.e., there is also a radial term on both sides of (35)] and the 
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Figure 3. Spherical cap harmonic expansions of sea-level anomaly from cycle 2 of T/P up to n = rn = 6 for the western Pacific using Set 1 
harmonics (top) and Set 2 harmonics (bottom). Contour interval is 1 cm 

4 ,  

\ 
- S e t 1  

Set 2 - 

I 
n -  .. 

0 2 4 6 
index (n) 

Figure 4. Root-mean-squared differences between the original sea. 
level anomalies and the spherical cap harmonic expansions up to 
Nnznx = 6 (see Fig. 3). 

__ S e t  1 
Set 2 - 

0 
0 2 4 6 

index (n) 

Figure 5.  Degree variances of sea-level anomaly from the spherical 
cap harmonic expansions up to Nmax = 6 (see Fig. 3). 
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- 

-20 

data are the components of the gradient of a Laplacian 
potential as in geomagnetic field analysis (e.g. Haines 1985a; 
De Santis et al. 1989), since possible boundary misfits, which are 
more significant with one-set analysis because of their unphysical 
boundary conditions, have serious consequences even inside 
the region. Note that the SLA of T/P from CSR have been 
smoothed according to the CSR's data documentations. For 
such SLA we have found that the variation of the cap harmonic 
coefficients from using different Nmax [see (35)] is small. 

I I I l l I l l I I I l  I /  I I I I I I  I 1  11-, 

I I i I I / I I l  I /  

-10 11 4 7 10 '1 4 7 10 11 4 7 I 0  
1993 1994 1995 1996 

3.3 Zero-degree coefficient of sea-level anomaly as a 
Southern Oscillation Index 

The next application is for the study of El Niiio. El Niiio is 
caused in part by a large downwelling Kelvin wave travelling 
eastwards across the equatorial Pacific Ocean (Ape1 1987). 
There are several definitions associated with El Niiio. A recent 
definition is that 'El Niiio is underway when sea level at 
Galapagos is 2 cm above its normal height for six or more 
consecutive months' (Meyers & OBrien 1995). To test the 
ability of T/P and ERS-1 in detecting El Niiio, we computed 
the zero-degree coefficients aLoO of SLA from cycle 2 to 117 of 
T/P and cycle 6 to 18 of ERS-1 using Set 2 harmonics for the 
eastern Pacific. The cap pole is near Galapagos and is at 1 9 ,  
268"E, and the cap size is 10". We also computed atoo of SLA 
for the western Pacific (the same area as shown in Fig. 3). 
From the definition of Set 2 harmonics, we see that the 
geometrical meaning of aLoo is the area-average of the expanded 
function over the spherical cap. Figs 6 and 7 show the values 
afo0 for the western and eastern Pacific from the SLA of T/P 
and ERS-1, respectively. Except for cycles 16, 17 and 20, T/P's 
zero-degree coefficients from cycle 13 to 30 all exceed 2cm. 
The period corresponding to cycle 13 to 30 is between 1993 
January and 1993 July, lasting for 7 months. Thus, according 
to the new definition of El Niiio, T/P's zero-degree coefficients 
have signified the occurrence of El Niiio during the 1993 
January-1993 July period. Indeed, other data have shown that 
El Niiio occurred during that period (Meyers & O'Brien 1995; 
Boulanger & Menkes 1995). ERS- 1's zero-degree coefficients 
from cycle 8 to 14 also show a similar trend in SLA during 
that El Niiio event, but only the coefficients from cycles 11, 12 
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W B E l  PBClfiC 
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4 1  
. . . .  

. . . .  

N -4 
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Figure 7. Time series of zero-degree coefficients ucoo of sea-level 
anomaly from cycle 6 to 18 of ERS-1 for the western and eastern Pacific. 

and 13 (total 3.5 months) exceed 2cm. Furthermore, T/P's 
zero-degree coefficients of SLA for the western Pacific from 
cycle 43 to 68 (1993 November to 1994 July) are all larger 
than 2 cm-this may indicate the occurrence of La Niiia, the 
cold event of El Niiio (Philander 1990). Although the ERS-1 
data record is not long enough to account for the whole La 
Niiia event, ERS-1's zero-degree coefficient for the western 
Pacific also starts to increase from cycle 16 (near cycle 43 of 
T/P in time), implying the initiation of La Niiia. From Fig. 6, 
we see that, during the 1992-1993 El Niiio, the lowest anomaly 
in the western Pacific occurred at cycle 11, while the largest 
anomaly in the eastern Pacific occurred at cycle 25, so the two 
peaks have a time gap of 4-5 months, and this may give a 
hint to the propagating time of the Kelvin wave. In conclusion, 
the zero-degree coefficient can be of use to the study of El 
Niiio. or even can serve as a Southern Oscillation Index. 

3.4 Western boundary currents and basin-scale 
circulations 

The study of the global circulation is one of the main objectives 
of many altimeter missions such as T/P, but in many cases 
one wishes to analyse local circulation systems, which may 
require the use of local basis functions such as the cap 
harmonics. Furthermore, unless a high-resolution and high- 
accuracy geoid model is available, altimeter data can only 
identify low-frequency features of the ocean's circulations 
(Tapley et al. 1994). In the present example, we shall examine 
the performance of the cap harmonic expansions in identifying 
local features that are related to the western boundary currents 
and basin-scale circulations. Fig. 8 shows the expansion of the 
yearly averaged ERS-1 SST over the Kuroshio area up to 
Nmax = 3 using Set 2 harmonics (the reason for using averaged 
SST is due to the large data gaps resulting from bad wet 
tropospheric corrections at this area). The cap pole is at 18"N, 
138"E, and the cap size is 18". With only 16 coefficients the 
expansion clearly identifies the feature associated with the 
Kuroshio Current. To see basin-scale circulations, we expand 
the SST from cycle 47 of T/P over the South China Sea using 
Set 2 harmonics up to Nmax = 6. The result is shown in Fig. 9. 

0 1997 RAS, G f l  129,450-460 

 at N
ational C

hiao T
ung U

niversity L
ibrary on A

pril 28, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


458 C. Hwang and S . - K .  Chen 

40" 

30 ' 

20" 

10" 

0" 

-1 0" 
100" 120" 140" 160" 

40 ' 

30' 

20 

10" 

0" 

-10" 

3.5 The average kinetic energy of an eddy 

In Fig. 9 we have identified a cold-core eddy over the South 
China Sea and now we wish to study its kinetic energy. To 
this end, we shall use a property of eigenfunctions: the eigen- 
value of an eigenfunction is equal to the integrated squared 
gradients of the eigenfunction over the fundamental domain. 
On a sphere of radius R, this property is expressed as (Morse 
& Feshbach 1953; Hwang 1991) 

K = JJo ( V U  * V U )  do, (38) 

where K is the eigenvalue of u, V is the gradient operator 

a a  
(39) 

Figure 8. Spherical cap harmonic expansion of yearly averaged sea- 

area. Contour interval is 5 cm. 

and u must be orthonormalized so that the scalar product of 

of an eddy along the longitudinal and the poleward directions 
are (Ape1 1987) 

surface topography from ERS-I up to Nmax = 3 for the Kuroshio with is unity. Now, the geostrophic components 

The cap pole is at 14"N, 1 15"E, and the cap size is 10". Because 
of the geostrophic balance, the streamlines in Fig. 9 suggest 
that the circulation over the South China Sea is cyclonic, 
which is consistent with the result implied by surface drifters; 
see, for example Soong et al. (1995). Soong et al. (1995) also 
discovered a cold-core eddy in the northern part of the South 
China Sea during the cycle 47 period. This cold-core eddy is 
clearly visible in Fig. 9. These two examples show that the cap 
harmonic expansions can work properly as a filter to extract 
large-scale oceanographic signals in the presence of geoidal 
error. 

{::]=;I 7 a i  1, 
R sin QaA 

where i is the SST, g is the earth's normal gravity, and 
j =  2 0  sin 4 with w being the earth's rotational velocity and 
4 the geodetic latitude. Although the velocity components in 
(40) are expressed in the cap coordinate system, the quantity 
V u  * V u  is invariant under coordinate transformation. Thus, 
assuming that g and f in (40) are constants and an eddy can 
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Figure 9. Spherical cap harmonic expansion of sea-surface topography from cycle 47 of T/P up to Mmax = 6 over the South China Sea. Also 
plotted are the ground tracks of T/P. Contour interval is 5 cm. A cold-core eddy centred at 17.5"N, 118"E and with a radius of 2" is clearly visible. 
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Fully normalized spherical cap harmonics 459 

be represented by a cap harmonic, the averaged kinetic energy 
per unit mass of the eddy is 

where R z 6371 km and cem is the coefficient of the cap 
harmonic. Considering an eddy as a vibrating membrane with 
radial symmetry [see also Crundlingh (1995, Fig. 4) for the 
support of this statement] the zonal cap harmonics (m=0)  
will best approximate its shape if the core of the eddy is 
situated at the cap centre. However, the sense of the rotation 
of an eddy is uniform within the eddy field, so only p&( t )  of 
Set 1 and p21(t) of Set 2 will satisfy this condition because 
their gradients do not change sign over the cap (see Fig. 1). 

As an example, we approximated the SST from cycle 29 to 
65 (a total of one year) of T/P over the cold-core eddy found 
in Fig. 9 by p$(t)  of Set 1. The cap pole is at 17.5"N, 118"E, 
and the cap size is 2". With the coefficients found, we computed 
the kinetic energy using (50). Fig. 10 shows the relative kinetic 
energy of the eddy with respect to the yearly mean kinetic 
energy. Fig. 10 indicates that the cold-core eddy has almost 
the lowest kinetic energy during the cycle 47 period (winter), 
and it has the highest kinetic energy in the summer. The 
variation of the eddy's kinetic energy during that particular 
year seems to be periodic with an amplitude of 0 . 4 m ' ~ - ~ ,  
and this phenomenon should be closely linked to the seasonal 
cycle of ocean dynamics. Note that in this analysis we have 
assumed that the centre and the dimension of the eddy did 
not change during that year, which is quite reasonable as we 
have investigated the eddy geometry from other T/P cycles. 

4 CONCLUSION 

In this paper we introduce two sets of fully normalized 
spherical cap harmonics, which are the equivalents of the fully 
normalized spherical harmonics of Heiskanen & Moritz ( 1967) 
on a spherical cap. We also present formulae for finding the 
zeros without numerical problems, and formulae for computing 
the fully normalized associated Legendre functions of non- 
integer degree without using the gamma function or the shifted 
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Figure 10. Relative average kinetic energy of the cold-core eddy over 
the northern South China Sea (see Fig. 9) from cycle 29 to 65 of T/P. 

factorial. We successfully use the cap harmonic expansions to 
do analyses of sea-level data from T/P and ERS-1 for problems 
ranging from the spectral analysis of SLA to the computation 
of eddy kinetic energy and its evolution. In terms of approxi- 
mating a function on a spherical cap, the use of a cap harmonic 
expansion is very economical and stable, because only relatively 
few terms are needed and there is no aliasing or numerical 
singularity. More applications of cap harmonic expansion, 
such as comparing the SST spectra and the error spectra of a 
geoid model for the determination of SST cut-off frequency 
(Tapley et al. 1994), can be expected. 
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