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The Tennessee Eastman (TE) process, created by Eastman Chemical Company, is a complex nonlinear process.
Many previous studies focus on the detectability of monitoring a multivariate process by using TE process
as an example. Principal component analysis (PCA) is a widely used dimension-reduction tool for monitoring
multivariate linear process. Recently, the kernel principal component analysis (KPCA) has emerged as an
effective method to tackling the problem of nonlinear data. Nevertheless, the conventional KPCA used the
sum of squares of latest observations as the monitoring statistics and hence failed to detect small disturbance
of the process. To enhance the detectability of the KPCA-based monitoring method, an adaptive KPCA-
based monitoring statistic is proposed in this paper. The basic idea of the proposed method is first adopting
the multivariate exponentially moving average to predict the process mean shifts and then combining the
estimated mean shifts with the extracted components by KPCA to construct the adaptive monitoring statistic.
The efficiency of the proposed monitoring scheme is implemented in a simulated nonlinear system and in the
TE process. The experimental results indicate that the proposed method outperforms the traditional PCA and
KPCA monitoring schemes.

1. Introduction

Quality is an important issue for modern competitive indus-
tries. The statistical process control (SPC) indicates a set of
well-recognized techniques for univariate process monitoring,
which include Shewhart charts, exponentially weighted moving
average (EWMA) and Cumulative Sum (CUSUM) charts.
However, hundreds or thousands of variables can be online
recorded per day due to the rapid advancement of information
technology. Therefore, developing multivariate statistical process
monitoring (MSPM) schemes for detecting faults of multivariate
processes becomes critical.

The principal component analysis (PCA) can project high
dimensional data onto a lower dimensional space that contains
the most variance of original data, and hence it has become a
popular preprocessing tool for MSPM. Jackson1 initially
developed a T2control chart for the PCA-based monitoring
method. Further, Jackson and Mudholkar2 introduced a residual
analysis for PCA-based MSPM. After the initial wok of PCA-
based MSPM, Ku et al.3 developed a dynamic PCA (called
DPCA) by adding time-lagged variables into the data matrix in
order to capture the process dynamic characteristics. After that,
Tsung4 used DPCA for monitoring and diagnosis of the
automatic controlled processes. Since PCA is sensitive to
outliers, Hubert et al.5,6 proposed the adjusted outlyingness
measurement for filtering outliers before performing the PCA
algorithm and named this algorithm as robust PCA (ROBPCA).

Several related works of PCA-based MSPM can refer to
Nomikos and MacGregor,7,8 Bakshi,9 Li et al.,10 Shi and
Tsung,11 and Cho et al.12

As mentioned above, the PCA has been successfully
applied for monitoring a multivariate process. However, PCA
can only deal with the linear system. To handle the problem
of nonlinear process data, several nonlinear PCA approaches
have been developed. Kramer13 presented a nonlinear PCA
method based on the autoassociative neural networks.
However, the proposed network is difficult and time-
consuming in sample data training because the network
consists of five layers which are the input, mapping,
bottleneck, demapping, and output layers. Dong and McA-
voy14 further combined a principal curve and a neural network
to formulate a nonlinear version of PCA. In their work, the
associated scores and the corrected data points for training
samples are obtained by the principal curve method (Hastie
and Stuetzle15). The neural network is then used to map the
original data into the corresponding scores and to map these
scores into the underlying variables. Alternative works in
this area are summarized as follows. Tan and Mavrovouni-
otis16 suggested a nonlinear PCA method based on input-
training neural network; Jia et al.17 further combined linear
PCA and input-training neural network to separately deal with
linear and nonlinear data correlations.

According to the above literatures, most nonlinear PCA
methods are based on neural networks. It means that the
resulting network training includes the solving of a hard
nonlinear optimization problem which has the possibility of
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getting trapped in local minima (Schölkopf et al.18). Another
drawback of the neural-network-based nonlinear PCA is that
the number of components must be specified in advance
before training the neural networks.

The kernel principal component analysis (KPCA), first
presented by Schölkopf et al.,18 is used to overcome the
limitations of the neural-network-based nonlinear PCA ap-
proaches. Basically, KPCA first projects the input space onto
a feature space via a nonlinear mapping, and then eigen-
decomposes the kernel matrix in order to obtain the principal
components from the feature space. Lee et al.19 first
developed KPCA-based monitoring schemes by using T2 and
squared prediction error (SPE) charts for monitoring the
nonlinear processes. After this work, Choi et al.20 further
presented a KPCA-based fault identification method in order
to diagnose the process faults. Yoo and Lee21 integrated
KPCA and EWMA methods in order to monitor the biological
treatment process. More recently, Zhang et al.22 integrated
KPCA and kernel independent component analysis (KICA)
for, respectively, monitoring the Gaussian part and non-
Gaussian part of a process. Further, support vector machine
(SVM) is used to classify the fault types.

Although KPCA has been shown to be an efficient
technique for monitoring nonlinear processes, the main
drawback of KPCA is that it utilizes the sum of squares of
the latest observations as the monitoring statistics, hence
KPCA cannot perform well for detecting small shifts in
process. Therefore, in order to enhance the detectability of
the monitoring schemes for nonlinear systems, an adaptive
monitoring statistic based on KPCA is developed in this
paper. The basic idea of the proposed method is first adopting
the multivariate exponentially moving average (MEWMA)
to estimate the process mean shifts and then combining the
predicted mean shift with the extracted components by KPCA
to develop the adaptive monitoring statistic. In addition, a
monitoring scheme based on the adaptive KPCA is also
proposed in this study. On the whole, the monitoring scheme
contains three main steps: (1) augmenting the obtained data
matrix to capture the process dynamics; (2) whitening the
KPCA extracted components; (3) using the proposed adaptive
monitoring statistic to monitor the nonlinear processes. Two
examples are provided to show the efficiency of the proposed
method. In the first example, a simulated nonlinear system
is implemented for investigating the detectability. In the
second example, the Tennessee Eastman (TE) process is
applied for further examining the efficiency of the proposed
method. The conventional PCA and KPCA monitoring
schemes are also implemented in these two examples in order
to verify the superiority of the proposed method. Results
clearly indicate that the proposed method outperforms the
PCA- and KPCA-based methods, especially for detecting
small shifts in nonlinear processes.

The remainder of this article is as follows. In the next
section, the KPCA-based monitoring method is presented.
The adaptive KPCA monitoring statistic and scheme are
developed in section 3. Section 4 implements the proposed
method and illustrates the comparisons with other alterna-
tives. Finally, conclusions are drawn in section 5.

2. KPCA-Based Monitoring Scheme

PCA is a widely utilized dimension reduction technique
performed by linearly transforming a high dimensional input
space onto a lower dimensional one where the components
are uncorrelated. However, PCA will not perform well when

the process exhibits nonlinearity. Hence, KPCA was devel-
oped to overcome the limitations of PCA in dealing with
the nonlinear system (Yoo and Lee21). In this section, KPCA
is briefly presented as follows.

In the KPCA method, the m dimensional observed data matrix
(X ∈ Rm, input space) is projected onto a high dimensional
feature space (F), which can be expressed as

Φ:Rm f F (1)

Like PCA, KPCA aims to project a feature space onto a lower
space, in which the principal components are linear combina-
tions of the feature space, and they are uncorrelated. The
covariance matrix in the feature space can be formulated as

SF ) 1
N ∑

k)1

N

Φ(xk) Φ(xk)
T (2)

where Φ(xk) is the kth sample in the feature space with zero-
mean and unit-variance, N denotes the sample size, and T is
the transpose operation. Let θ ) [Φ(x1), · · · , Φ(xN)] be the data
matrix in the feature space. Hence, SF can be expressed as
SF ) θθT/N. In fact, Φ is usually hard to obtain. To avoid eigen-
decompositing SF directly, a Gram kernel matrix K is determined
as follows:

Kij ) 〈Φ(xi), Φ(xj)〉 ) K(xi, xj) (3)

It turns out that K ) θTθ. Because of this important character-
istic, the inner product in the feature space (see eq 2) can be
obtained by introducing a kernel function to the input space.
The widely used kernel functions include polynomial, sigmoid,
and radial basis kernels that satisfy Mercer’s theorem. The radial
basis kernel will be implemented in the present work, that is

K(x, y) ) exp(- |x - y|2

σ ) (4)

with σ ) rm, where r is a constant to be selected and m is the
dimension of the input space (Mika et al.23).

The mean centered kernel matrix can be calculated from

K̃ ) K - 1NK - K1N + 1NK1N (5)

where

1N ) 1
N[1 · · · 1

l · · · l
1 · · · 1 ] ∈ RN×N

By applying eigenvalue decomposition to K̃, as shown,

λr ) K̃r (6)

we can obtain the orthonormal eigenvectors R1, R2, · · · , RN

and the associated corresponding eigenvalues λ1g λ2

g · · · g λN. The dimension reduction can be achieved by
retaining the first d eigenvectors. The score vector of the kth
observation in the training data set can be obtained by
projecting Φ(x) onto the eigenvectors vk in F, where k )
1, ..., d, such that

tk ) 〈vk, Φ(x)〉 ) ∑
i)1

N

Ri
k〈Φ(xi), Φ(x)〉 (7)

For process monitoring purpose, Hotelling’s T2 is usually used
to monitor the systematic part of data set (Yoo and Lee21), that
is

T2 ) [t1, · · · td]Λ
-1[t1, · · · td]

T (8)
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where Λ ) diag(λ1, · · · , λd). The 100(1 - R)% confidence limit
for T2 can be determined by F-distribution:

Tlim
2 ) d(N - 1)

N - d
Fd,N-d,R (9)

The squared prediction error (SPE), also known as the Q-
statistic, is the measure of the goodness of fit of a built model.
The SPE in the feature space can be calculated by

SPE ) |Φ(x) - Φ̂d(x)|2 (10)

where Φ̂d(x) ) ∑k)1
d tkvk denotes the reconstructed feature vector

with d principal components in the feature space. The 100(1 -
R)% confidence limit for SPE can be determined using �2-
distribution:

SPElim ) g�h,R
2

g ) ν
2m

, h ) 2m2

ν
(11)

where m and V are the estimated mean and variance of SPE,
respectively (Nomikos and MacGregor8).

Although KPCA was shown to be efficient for monitoring
the nonlinear multivariate processes, it is ill-suited to detecting
small process shifts. Hence, an adaptive KPCA monitoring
statistic is developed in order to enhance the monitoring ability
of KPCA.

3. The Adaptive KPCA Process Monitoring Method

From eq 8, it is clear that the traditional KPCA monitoring
statistic considers only the magnitudes of the latest samples (i.e.,
sum of squared scores) but ignores the direction of mean shifts.
This drawback makes KPCA only useful in detecting the large
process shifts. To overcome the limitation of the conventional
KPCA monitoring statistic, we develop an adaptive KPCA
monitoring statistic for the nonlinear multivariate process.

The proposed adaptive KPCA monitoring scheme is
sketched in Figure 1. Generally, the proposed method
involves three main steps: (1) augmenting the obtained data
matrix in order to capture the process dynamic characteristic;
(2) whitening the KPCA components to let the covariance
matrix to be an identity matrix; (3) Applying MEWMA to
capture the time-varying process shifts and then incorporating
with KPCA components to develop an adaptive monitoring
statistic.

Consider a normalized data matrix (from normal operating
condition), the first step is to augment the normalized data matrix
with time lag l in order to take into consideration dynamic
characteristics, such that

Xl ) [X(k) X(k - 1) · · · X(k - l)]

) [xk
T

xk+1
T

l
xk+N-1

T

xk-1
T

xk
T

l
xk+N-2

T

· · ·
· · ·
l
· · ·

xk-l
T

xk+1-l
T

l
xk+N-1-l

T ] (12)

where xk is the normalized observation vector at sample k (k )
1, ..., N). Performing eigenvalue decomposition to the radial
basis kernel transformed matrix of Xl, and the centered kernel
matrix (K̃) can be further calculated from eq 5. The dimension
reduction can be achieved by retaining the largest d eigenvalues
(Λ ) diag(λ1, · · · , λd)), associated with eigenvectors (H )
[R1, · · · , Rd]) by using the empirical criterion (Zhang and Qin;24

Zhang25):

λi

sum(λi)
> 0.001 (13)

where λi is the ith eigenvalue of K̃ (i ) 1, ..., d). The whitened
KPCA score vector can be obtained by

z ) √NΛ-1HT[k̃(x1, x), · · · , k̃(xN, x)]T (14)

Next, the MEWMA is used to predict the time-varying mean
shifts:

mk ) ωzk + (1 - ω)mk-1 (15)

where ω is the MEWMA smoothing parameter which satisfies
0 e ω e 1.

To take both the changing magnitude and the direction of
time-varying mean shifts into consideration, an adaptive moni-
toring statistic is proposed to monitor the nonlinear multivariate
process, that is

AT2 ) |mk
Tzk| (16)

From eqs 14 and 15, it is clear that when ω ) 1 then mk ) zk,
and AT2 will be simplified to the traditional KPCA monitoring
scheme (see eq 8). For ω ) 0, mk ) mk-1 ) · · · ) m0 and AT2

will be simplified to a directionally variant T2 chart designed
for m0 (Wang and Tsung26).

Unlike T2, the confidence limit can be determined from
F-distribution. It means that AT2 does not follow a specific
distribution, and hence a nonparametric technique, kernel
density estimation (KDE) is adopted to determine the
confidence limit from the normal operating data. Details of
the KDE algorithm can be found in Lee et al.27,28 In this

Figure 1. Adaptive KPCA based monitoring scheme.
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section, we describe the main procedure of the proposed
method. The further details of calculation procedures are

described in Appendix A. The procedures are divided into
two phases: off-line training and online process monitoring.

Figure 2. Monitoring results by simulated process. (a) PCA method, (b) KPCA method, (c) adaptive KPCA method with ω ) 0.2, (d) adaptive KPCA
method with ω ) 0.05.
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The objective of off-line phase is to build models under
normal operating condition, whereas the online phase utilizes
the built model to real-time monitor the processes.

4. Implementation

In this section, the proposed method is first implemented in
a simulated five-variable nonlinear system. Next, a case study
of Tennessee Eastman process is conducted to verify the
efficiency of the proposed method. The superiority of the
proposed adaptive KPCA method is then demonstrated by
comparing with the traditional PCA and KPCA monitoring
schemes.

4.1. A Simulated Nonlinear System. In this section, a five-
variable nonlinear system provided by Yoo and Lee21 is
implemented to investigate the efficiency of the proposed
method. The state space representation of the nonlinear system
can be expressed as

g(k) ) [0.118 -0.191 0.287

0.847 0.264 0.943

-0.333 0.514 -0.217
]g(k - 1) +

[1 2

3 -4

-2 1
]u2(k - 1)

y(k) ) g(k) + v(k)
(17)

where y is the output and g is the state. The v is assumed to be
normally distributed with zero mean and variance of 0.1. The
input u can be expressed as

u(k) ) [0.811 -0.226
0.477 0.415 ]u(k - 1) +

[0.193 0.689
-0.320 -0.749 ]h(k - 1) (18)

where h is a random noise with zero mean and variance of 1.0.
All the five variables are involved in the monitoring, including
three outputs and two inputs (y1,y2,y3,u1,u2).

Under a normal operating condition, 400 simulated samples
are used to compare the efficiency of the PCA, KPCA, and
adaptive KPCA models. Four components of PCA are selected
to explain 80% of the variance. By applying eq 12 to 400 normal
operating samples, the components selected for KPCA and
adaptive KPCA are 7 and 16, respectively. Same as the work
of Yoo and Lee,21 the radial basis kernel with parameter σ )
5m is used for implementing KPCA and adaptive KPCA
algorithms. Lee et al.28 reported that applying a time-lag value
of l ) 1 or 2 to augment the data matrix is usually appropriate
to describe the dynamic characteristic of process. Thus, l ) 2
is adopted in the proposed adaptive KPCA method. Besides,
Montgomery29 found that the value of ω (i.e., MEWMA
smoothing parameter) in the interval 0.05 e ω e 0.25 work
well in experience. A good rule of thumb is to use smaller values
of ω to detect smaller shifts. Accordingly, ω ) 0.05 and ω )
0.2 is used in this study.

To compare the detectability of process disturbance of various
monitoring methods, a test data set of 400 samples is generated.
In which, a step change of h1 (the first element of h) with
magnitude of 1.5 is induced in samples 100 to the end
(100-400). Figure 2 shows the monitoring results for PCA,
KPCA, adaptive KPCA with ω ) 0.2 and adaptive KPCA with
ω ) 0.05. For a fair comparison, the 99% control limits are
used for each method and are sketched with dotted lines. Figure

2 exhibits that KPCA method (detection rate after sample 100
is 41.53%) performs better than PCA (detection rate after sample
100 is 19.27%). However, it is evident that both PCA and KPCA
can only fragmentarily detect the step disturbance that occurred
after sample 100. Besides, the false alarm rates for PCA and
KPCA seem to be high before sample 100, which may be
misleading to engineers judging the process status.

Figure 2 panels c and d show that the adaptive KPCA
monitoring method can efficiently enhance the ability of the
traditional KPCA method for detecting small process disturbance
because the proposed AT2 utilizes MEWMA to predict the
process mean shifts. Moreover, it shows that AT2 with a smaller
value of MEWMA parameter can conduct a better result than
that with a larger value. The detection rates for AT2 with ω )
0.2 and ω ) 0.05 are 51.16% and 91.02%, respectively.
Furthermore, the AT2 with ω ) 0.05 (Figure 2c) can successfully
distinguish the fault pattern after sample 108 (i.e., a detection
delay of 8 samples) and this information helps engineers perform
a rectifying action in order to bring the process into a stable
situation.

4.2. Tennessee Eastman Process. The Tennessee Eastman
process, created by Eastman Chemical Company, is a complex
nonlinear process (Zhang22). Many previous studies imple-
mented the TE process for multivariate process monitoring, such
as Chen and Liao,30 Lee et al.,28,31,32 Ge and Song,33 Hsu et
al.,34 and Zhang.22 In this section, the efficiency of the proposed
method is also verified via monitoring the TE process. Figure
3 sketches the TE process layout. The system contains five major
units: a reactor, a condenser, a recycle compressor, a separator,
and a stripper. Details can be found in the book of Chiang et
al.35 The same data set that was generated by Chiang et al.35

will be adopted for analysis. The data set can be downloaded
from http://brahms.scs.uiuc.edu.

Table 1 lists all the 33 variables which are used for TE process
monitoring. A set of programmed faults (Faults 1-21) are listed
in Table 2. The normal operating data set (Fault 0) contains
500 samples and is used to build the off-line models. In the
test data set, all of the fault types (Fault 1-21) are introduced
at sample 160 over 960 observations. The first step for
implementing PCA, KPCA, and adaptive KPCA monitoring
methods is normalizing the obtained data matrix by the estimated
mean and standard deviation from the off-line training phase
in Appendix A. The detection rate is used as an index of
comparison which measures the percentage of samples outside
the 99% control limits after the fault occurrence. For PCA, 16
principal components are selected to explain 80% of the
variance. The radial basis kernel is used in the KPCA and
adaptive KPCA methods. For adaptive KPCA, l ) 2 is adopted
for augmenting the data matrix. By using the criterion of λi/
sum(λi) > 0.001, 25, and 63 principal components are selected
for implementing KPCA and adaptive KPCA methods.

Table 3 shows the comparison results of PCA, KPCA,
adaptive KPCA with ω ) 0.05 and adaptive KPCA with ω )
0.2, in terms of detection rates. All methods cannot detect faults
3, 9, 15, and 16 due to the fault magnitude is too small and had
almost no effect on the overall process. On the other hand, all
methods perform well in detecting faults 1, 2, 6, 7, 8, 12, 13
and 14; the detection rates achieve near 100% performance.
Generally, the KPCA (i.e., nonlinear) method performs better
than PCA (i.e., linear) method, especially for fault 4, where the
reactor cooling water inlet temperature is changed step by step.
It is obvious that the adaptive KPCA achieves the best
performance for most faults, especially for faults 5, 10, 11, 19,
and 20. Further, the adaptive KPCA with smaller MEWMA
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parameter (say ω ) 0.05) performs better than that with a larger
value (say ω ) 0.2).

Figure 4 shows the monitoring results for faults 5, 10, 11,
19, and 20 by using PCA, KPCA, and adaptive KPCA with ω
) 0.05. It is clear that the proposed adaptive KPCA can
efficiently detect the fault types after sample 160. Taking the

Figure 3. Layout of TE process (Downs and Vogel36).

Table 1. Monitored Variables for TE Process

no. process measurements no. process measurements no. manipulated variables

1 A feed (stream 1) 12 product sep level 23 D feed flow (stream 2)
2 D feed (stream 2) 13 prod sep pressure 24 E feed flow (stream 3)
3 E feed (stream 3) 14 prod sep underflow (stream 10) 25 A feed flow (stream 1)
4 A and C feed (stream 4) 15 stripper level 26 total feed flow valve (stream 4)
5 recycle flow (stream 8) 16 stripper pressure 27 compressor recycle valve
6 reactor feed rate (stream 6) 17 stripper underflow (stream 11) 28 purge valve (stream 9)
7 reactor pressure 18 stripper temperature 29 separator pot liquid flow (stream 10)
8 reactor level 19 stripper steam flow 30 stripper liquid product flow (stream 11)
9 reactor temperature 20 compressor work 31 stripper steam valve
10 purge rate (stream 9) 21 reactor cooling water outlet temp 32 reactor cooling water valve
11 product sep temp 22 separator cooling water outlet temp 33 condenser cooling water flow

Table 2. Process Faults for TE Process

fault no. state disturbance

0 no fault no
1 A/C feed ratio, B composition

constant (stream 4)
step

2 B composition, A/C ratio constant
(stream 4)

step

3 D feed temperature (stream 2) step
4 reactor cooling water inlet temperature step
5 condenser cooling water inlet

temperature
step

6 A feed loss (stream 1) step
7 C header pressure loss - reduced

availability (stream 4)
step

8 A, B, C feed composition (stream 4) random variation
9 D feed temperature (stream 2) random variation
10 C feed temperature (stream 4) random variation
11 reactor cooling water inlet temperature random variation
12 condenser cooling water inlet

temperature
random variation

13 reaction kinetics slow drift
14 reactor cooling water valve sticking
15 condenser cooling water valve sticking
16 unknown unknown
17 unknown unknown
18 unknown unknown
19 unknown unknown
20 unknown unknown
21 valve position constant (stream 4) constant position

Table 3. Detection Rates for PCA, KPCA, and Adaptive KPCA

adaptive KPCA

faults PCA KPCA ω ) 0.05 ω ) 0.2

1 99.25 100 100 100
2 98.25 99.13 99.38 99.25
3 2.12 6.51 6.80 6.42
4 36.88 100 100 100
5 27.63 28.38 90.13 69.00
6 99.50 99.63 99.63 99.63
7 100 100 100 100
8 97.38 98.63 100 99.13
9 2.35 5.75 6.75 5.85
10 44.75 54.63 89.13 85.13
11 50.13 83.13 99.25 98.13
12 98.63 99.00 100 100
13 94.25 95.50 96.38 96.38
14 99.63 100 100 100
15 7.05 10.53 16.63 10.63
16 13.56 17.32 37.00 30.3
17 80.13 96.88 99.75 98.63
18 89.63 90.50 94.88 93.50
19 14.50 66.13 87.38 84.38
20 42.38 72.25 92.63 91.63
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fault 5 as an example, although PCA and KPCA can im-
mediately detect fault 5 at sample 160, the process being back
inside the control limit after sample 350 will mislead engineers
in judging the process status, whereas the adaptive KPCA
method can successfully detect fault 5 after sample 160.
Generally speaking, the adaptive KPCA can enhance the
detectability of TE process monitoring because the proposed
adaptive KPCA method properly takes into consideration of
process dynamics and the nonlinear relationship, and it uses
MEWMA to predict the process mean shifts.

5. Conclusion

This research developed an adaptive monitoring statistic (AT2)
for KPCA to enhance the detectability of small disturbance for

monitoring nonlinear multivariate process. The developed AT2

utilizes MEWMA to estimate the process mean shifts, and then
the predicted shift is integrated with the extracted KPCA
components. Besides, the AT2 based monitoring scheme is also
proposed in this study. The proposed scheme takes the process
dynamic and nonlinear relationship into consideration. Through
implementing two examples, results exhibit that AT2 with smaller
value of MEWMA parameter can perform better than a larger
value. Further, results demonstrate that the proposed monitoring
scheme possesses a superior performance when it is compared
to the traditional PCA and KPCA methods.

This study shows the superiority of the adaptive KPCA
method; however, there are some issues that need to be further
addressed. The effectiveness of the proposed method was

Figure 4. (a) Monitoring results of TE process for fault 5, (b) monitoring results of TE process for fault 10, (c) monitoring results of TE process for fault
11, (d) Monitoring results of TE process for fault 19, (e) monitoring results of TE process for fault 20.
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demonstrated by using the simulated process data. Future work
can implement the proposed method with the real-world
industrial data, which can additionally include process identi-
fication and parameter estimation. For KPCA, the input space
is mapped to the feature space and the kernel matrix will become
larger when the sample size is increased. Therefore, the
development of a preprocessing step in the KPCA method for
reducing the computation time is another issue in the future
works. Finally, how to select the appropriate kernel function is
also an important issue in developing KPCA.
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Appendix

Off-Line Training. The objective of off-line training is to
build a normal operating condition (NOC) model which is
developed as follows:

(1) Obtain an NOC data set with m variables and N samples
(X ∈ RN×m). Normalize the data matrix by the estimated mean
and standard deviation for each variable.

(2) Augment the normalized data matrix by using eq 12,
denoted as Xl.

(3) Compute the kernel matrix (K ∈ RN×N) to Xl via the radial
basis kernel function.

(4) Center the kernel matrix (K̃) by using eq 5. After that,
perform eigenvalue decomposition to K̃ and select the largest
d eigenvalues from eq 12. Thus, the eigenvectors R1, · · · , Rd

and the associated eigenvalues λ1 g · · · g λd can be obtained.
(5) Whiten the extracted KPCA score vector (z) from eq 13,

such that z satisfies E{zzT} ) I.
(6) Given a smoothing parameter ω, apply the MEWMA

model to z from eq 14.
(7) Calculate the proposed adaptive monitoring statistic from

eq 15.
(8) Determine the KDE based control limit of AT2.
Online Monitoring. (1) Obtain a test (or new) data set Xnew

∈ Rm. Normalize Xnew with the same estimated mean and
standard deviation from NOC modeling step.

(2) Augment the normalized test data set with time lag l.
(3) Consider a normalized and augmented test data vector

xt, the kernel vector kt ∈ R1×N at sample t can be calculated by
[kt]j ) [kt(xt,xj)], where xj denotes the jth normal operating data
vector (j ) 1, · · · , N).

(4) Center the kernel vector kt by

k̃t ) kt - 1tK - k1N + 1tK1N (A.1)

where K is obtained from step 3 of off-line training procedure
and 1t ) (1/N)[1, ..., 1] ∈ R1×N.

(5) Calculate the whitened components of test data set by

znew ) √NΛ-1HT[k̃t(x1, xt), · · · , k̃t(xN, xt)]
T (A.2)

(6) Apply the MEWMA to znew, such that

mnew,t ) ωznew,t + (1 - ω)mnew,t-1 (A.3)

where ω is the smoothing parameter given from off-line training
procedure.

(7) Calculate the adaptive monitoring statistic, that is

ATnew
2 ) |mnew,t

T znew| (A.4)

(8) Decide whether the ATnew
2 exceeds the KDE control limit

in the off-line training procedure.
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