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Abstract

The Bayesian equalizer, with or without decision feedback, is known to be optimal for
the symbol-by-symbol type of equalizer. However, the computational complexity for the
Bayesian equalizer is usually very high. Recently, the signal space partitioning technique
has been proposed to solve the problem. It was shown that the decision boundary for the
Bayesian equalizer consists of a set of hyperplanes and a systematic state-search process
was proposed to find these planes. The main problem of the existing approach is that
the number of hyperplanes cannot be controlled. Also, the state-search process is not
always efficient. In this dissertation, we propose two new algorithms to remedy these
problems and explore their potential applications. For the first algorithm, we propose an
approximate Bayesian criterion that allows the number of hyperplanes to be arbitrarily
set. As a consequence, a tradeoff can be made between performance and computational
complexity. In many cases, the resulting performance loss is small while the computational
complexity reduction can be large. An adaptive method using stochastic gradient descent
is also developed to identify the functions. The adaptive method is robust and has very

low computational complexity.
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For the second algorithm, we treat equalization as a classical pattern classification
problem. This type of equalization approach has been proposed recently also. Existing
algorithms employed nonlinear discriminant functions in the classifier. Due to nonlinear
characteristics of the discriminant functions, it is found that the classifier is difficult to save
significant computations and at the same time achieve satisfactory results. We propose a
new discriminant function approach to overcome this problem. Our idea is to employ a
large set of linear discriminant functions instead of a small set of nonlinear functions. By
this manner, parameter identification becomes much easier and the computational com-
plexity becomes lower. Similar to the first approach, the number of discriminant functions
can be arbitrarily set and an easy trade-off between performance and computational com-
plexity can be made. An adaptive method is developed such that the proposed algorithm
is applicable in time-varying environments. Simulations show that our approaches can
efficiently approximate the Bayesian equalizer. Also, the low complexity property makes
the proposed equalizers suitablesfor real=weorld iinplementation.

We also apply the proposed-algerithms torantenna array communication systems. This
results in new nonlinear spatip-tempotral equalizeré. While these algorithms efficiently
approximate the spatio-temporalBayesian equalizers, they inherent other good properties
of the temporal counterparts. Finally, we consider the maximum likelihood sequence
estimation (MLSE) equalizer for nonlinear channels. It is known that the channel response
is required in the MLSE equalizer. However, there does not exist a general model for
nonlinear channels. We propose a new MLSE equalizer that does not require any channel
modeling and the computational complexity can be much lower than the MLSE equalizer

with channel modeling.
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Chapter 1

Introduction

1.1 Problem of Equalization

Many digital communication channels suffer from intersymbol interference (ISI) due to
their band-limited channel characteristics. Commonly used channels are often considered
as linear. However, there exist some applications where the channels are nonlinear. Digital
satellite and magnetic recording channelsiare two'examples. In satellite communications,
the satellite tansponder and earth station amplifier usually operate near the saturation
region [1], [2] and that cause the nenlinear effects: For magnetic recording devices, the
problem arises during the writing.process. This‘is because transitions written previously
often cause the next transition to shift in position, and adjacent transitions also partially
erase with each other. This results in an nonlinear amplitude distortion when the signal
is read back [3]-[5]. Equalizers are the commonly used devices to compensate for these
channel effects. Conventionally, equalizers are divided into two categories; one is the
sequence estimation equalizer, and the other is the symbol-by-symbol equalizer.

The sequence estimation type of equalizers, as it named, estimates the whole sequence
of the transmit symbols. During past years, several structures have been proposed. Chang
and Hancock [6] proposed a structure whose computational complexity grows linearly
with the sequence length and it may provide an optimum performance under a specific
condition. Abend and Fritchman [7] proposed a recursive structure whose computational
complexity does not grow with the received signal sequence. Finally, the well known max-
imum likelihood sequence estimation (MLSE), implemented by the Viterbi algorithm, was

proposed by Forney [8]. Owing to its efficiency, this Viterbi-based MLSE becomes the



most popular algorithm for the sequence estimation equalizer. Although the MLSE is
known to provide nearly optimal equalization performance, there are some concerns in
real-world applications. The MLSE equalizer is computationally expensive and requires
a sufficiently long decision delay. Also, the MLSE equalizer provides the optimal per-
formance only in stationary channels. In nonstationary channels, the channel estimation
errors may accumulate and this may seriously affect its performance. Also, application of
MLSE equalizer in nonlinear channels may be troublesome. This is due to the lack of a
unique nonlinear channel model.

The symbol-by-symbol type of equalizers estimate a single transmit symbol instead of
the whole sequence. The main difference between the symbol-by-symbol equalizer from
the sequence estimation equalizer is that the output of the symbol-by-symbol decision
only depends on the a finite set of observations (finite memory); while the output of
the MLSE equalizer depends on all past observations (infinite memory). To improve the
performance, decisions can be feedbackyin the symbol-by-symbol equalizer. This type
of equalizer can be linear or nenlinear. In.general; nonlinear equalizers perform better,
but their computational complexities are higher. One exception is the decision feedback
equalizer (DFE) [9]. Being a nonlinear equalizer, The DFE enjoys low computational
complexity and good performance. In many scenarios (nonlinear channels for example),
however, the linear equalizer or the DFE cannot give satisfactory results and a more
sophisticated nonlinear symbol-by-symbol equalizer is required. It has been shown that
the optimum symbol-by-symbol equalizer is the Bayesian equalizer [10], and the optimum
symbol-by-symbol DFE is the Bayesian DFE [11]. The computational complexity of these
two optimal equalizers is considerably more than the linear equalizer and DFE, even more
than the MLSE equalizer. Thus, many nonlinear equalizers with lower computational

complexity have been proposed to approximate Bayesian equalizer or Bayesian DFE.

1.2 The Symbol-by-Symbol Equalizer

Nonlinear algorithms approximating the Bayesian equalizer generally have structures al-
lowing a tradeoff between performance and computational complexity. These algorithms

include the polynomial based nonlinear equalizer and the artificial neural network. The



polynomial based nonlinear equalizer have been reported in [1], [2], [12]-[18]. This ap-
proach uses the Voterra series to expand the input-output relationship of the Bayesian
equalizer. It turns out that the output signal is a polynomial function of the input signal.
To well approximate the Bayesian equalizer, the polynomial equalizer generally requires
a large amount of parameters. In [19], [20], [21], a bilinear recursive polynomial equalizer
was proposed to alleviate the problem. It was shown that this type of polynomial equal-
izer can be much more efficient. The neural network is known to be powerful in modeling
nonlinear systems. In [22]-[27], multilayer-layer perceptrons (MLP) were proposed to
serve as nonlinear equalizers. Another type of neural network applying to equalization
is the radial basis function (RBF) network [28]-[32]. It has been shown that the RBF
network is better than the MLP in the equalization problem because the structure of the
RBF network has a closer relationship to the Bayesian equalizer. Disadvantages of these
approaches are long training time and dack, of methodologies for architecture selection.
Also, their computational complexities may: still Be t0o high for many applications. Thus,
other methods with reduce complexity wereproposed [33]-[36].

Efficient algorithms for solving the Bayesian equalization problem were developed re-
cently. The support vector machine (SVM) approach [37]-[38], a nonlinear modeling tool,
was recently applied to nonlinear equalization. It was shown that the computational
complexity of the SVM can be much lower than polynomial and neural network based
equalizers. However, the learning algorithm in the SVM needs to solve a quadratic pro-
gramming problem. The optimization method is somewhat computationally intensive.
Another approach to the Bayesian equalizer uses the signal state partitioning technique.
By treating the equalization problem as the classification problem, it has been shown that
the Bayesian decision boundary consists of a set of hyperplanes when the signal to noise
ratio (SNR) is infinite [33]. Y. Kim, Moon and S. Chen [39]-[42] employs the signal space
partitioning technique to approach the Bayesian equalizer by a set of hyperplanes. The
works in [40] and [41] used a combinatorial search and optimization process to find these
planes. Despite its high computational complexity, this method does not guarantee to
obtain the asymptotic Bayesian solution. It has been shown [39] that the hyperplanes can

be formed by so called dominant signal state pairs. A simpler method was proposed in



[42] to search for these dominant pairs. This design guarantees to achieve the Bayesian
solution asymptotically. The signal space partitioning techniques mentioned above all
require channel information for signal state calculation. The number of hyperplanes and
dominant states depends on channel characteristics. If the channel response changes, the
hyperplanes must be re-calculated. Thus, these approaches are inefficient for time-varying
channels. Another problem is that when decisions are included, the original signal space
must be translated into a new space. If the channel is nonlinear, this is not an easy work.

Yet, there is another approach that treats equalization as a classical pattern classi-
fication problem [43], [44]. The equalizer was considered as a classifier with predefined
discriminant functions. In [43], [44], neural networks were used as the discriminant func-
tions and a discrimiative learning algorithm [45] yielding the minimum classification rate
was employed to train the discriminant functions. In the classical classification approach,
the number of discriminant functions issset: equal to the number of object classes. Thus,
[43], [44] define N discriminant<finctions-wheré: N is the size of the symbol alphabet.
The performance of this approachscan approach that of the optimal Bayesian equalizer.
However, since the optimal degision bound‘ary is often highly nonlinear, the number of

network layers required is large. If:suffers the similar problems as those in the [33]-[36].

1.3 New Approach

From the above discussion, we know that the computational complexity is the central
issue in the Bayesian equalization. Many studies have been devoted to the compromise
the performance with complexity. As we can see, most of them are either computational
not efficient or not applicable in time-varying channels. In this dissertation, we will con-
sider the equalization problem from two perspectives and propose simple and effective
algorithms to solve the problem. We consider the problem from the the signal space par-
titioning and from discriminant function point of views. Although these two approaches
yield the similar results, their implications are different.

We first propose an adaptive asymptotic Bayesian equalizer using a signal space parti-
tioning technique. In conventional signal space partitioning technique, the received signal

space is seen as the union of two subsets when the transmitted signal is binary. Each sub-
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set, corresponds to the transmitted signal +1 or —1. Hyperplanes are then searched and
used to partition the received signal space. In our approach, we first divide the received
signal signal space into M subsets, M > 2, and then merge them into two subsets. Based
on this idea, we propose a new method that can provide an efficient approximation to
the Bayesian equalizer. The resulting equalizer was similar to the equalizer in [39]-[42]
which is consist of a set of hyperplanes; however, the implication of these planes and the
method for finding them are quite different. In existing methods, the number of hyper-
planes is determined by channel responses. In our approach, the number of hyperplanes
can be arbitrarily set. The hyperplanes found by the proposed algorithm are generally
different from those found by the method in [39]-[42]. Our method allows an easy tradeoff
between complexity and performance. In many cases, we can make the performance loss
small while the computational complexity reduction is large. Another feature is that the
parameters of these hyperplanes can_bejadaptively identified using a stochastic gradient
descent (SGD) method. As a result, the proposéd‘ equalizer can be effectively applied to
time-varying channels. Signal detection is performed using a set of parallel linear discrim-
inant functions followed by a maximum operation. The computational complexity of the
proposed equalizer is low and suitable for real<world implementation. Using the similar
idea, we also extend our approach to approximate the Bayesian DFE.

We then propose adaptive asymptotic Bayesian equalizers using the discriminant func-
tion approach. Due to nonlinear characteristics of discriminant functions, the classifiers
in [43], [44] are difficult to save significant computations and at the same time achieve
satisfactory results. In [43], [44], observations for a possible transmit symbol are mapped
to a class and a nonlinear discriminant function (neural network) function is developed
for the class. In the proposed method, we let observations for a possible transmit symbol
be mapped to multiple classes and multiple linear discriminant functions are derived for
the class. In other words, we employ a large set of linear discriminant functions instead of
a small set of nonlinear functions in the equalizer. We develop a mapping method that is
independent of channel responses and can arbitrarily set the number of discriminant func-
tions. This allows a easy trade-off between performance and computational complexity.

We also develop an adaptive method that can identify the linear discriminant functions



and make the proposed algorithm applicable in time-varying environments. Except for
the feedforward equalization algorithm, we have also consider efficient and fast convergent
decision feedback algorithms. The strategy to use the decision feedback signal is differ-
ent from that in [39] and [41]. The choice of discriminant functions does not depend on
channel responses and the equalizer design is the same for linear and nonlinear channels.

All the equalizer we have discussed are all in the temporal domain. Introducing an-
tenna arrays in communication systems, we can extend equalization into spatial domain
and this can dramatically increase system performance. Spatio-temporal equalization
algorithms have been reported in literature [46]-[50]. However, they are confined in sim-
ple structures and the performance is not always satisfactory. Applying the proposed
equalization idea in spatio-temporal systems is straightforward; however, the performance
enhancement is significant. Finally, we discuss the MLSE equalization in nonlinear sys-
tems. As we known, the MLSE equalizersrequires the channel response and this is simple
for linear channels. However, itsmay besproblematic for nonlinear channels. This is be-
cause there does not exist a general model for nonlinear channels. Even we can have a
model, determination of the number of parameters becomes a next problem. We propose
a method that completely remove these problems. This method does not require any
channel modeling and the computational complexity can be lower compared to the the

one with channel modeling.

1.4 Organization of the Dissertation

This dissertation contains seven chapters in addition to this introductory chapter. In
Chapter 2, we formulate the equalization problem and review the MLSE and Bayesian
equalizers. We also briefly discuss the classical pattern recognition problem and the SGD
training algorithm in adaptive signal processing.

In Chapter 3, we discuss existing approaches in symbol-by-symbol equalizers. First,
we describe the conventional linear equalizer and the DFE and show that the MMSE
criterion is not adequate for coefficient identification. We then illustrate how the the cost
function can be modified to achieve the minimum bit error rate (MBER). After that,

we describe the Volterra equalizer, the neural network equalizer, and the signal space



partitioning technique, and the discriminant function approach.

In Chapter 4, we develop the adaptive asymptotic Bayesian equalization using a signal
space partitioning technique in detail. We will show how the Bayesian equalization can
be approximated and how the computations can be saved. A new cost function is also
proposed such that the proposed equalizer can be adequately identified. The identification
is implemented using an adaptive manner. The computational complexity of the proposed
adaptive algorithm is also evaluated.

In Chapter 5, we develop the adaptive asymptotic Bayesian equalizer using the dis-
criminant function approach. As mentioned, we attack the equalization problem from the
classical pattern recognition point of view. We use the cost function in [45] to identify
the parameters of the discriminant functions and propose efficient learning algorithms for
reducing the computational complexity and storage.

In Chapter 6, we extend the algorithm developed in Chapter 5 to antenna array
communication systems and this' resultsgin spafio—temporal nonlinear equalizers. Two
structure are considered; one hasgsbetter performance but the computational complexity
is higher, and the other has opposite characteristicé. We show that our spatio-temporal
equalizers can significantly outperform the conventional ones.

In Chapter 7, we proposed an efficient MLSE equalizer for nonlinear channels. As
described, the main advantage of this equalizer is that it does not require any channel
modeling. This is particular useful when the nonlinear characteristics of the channel is
not well known. We also show that not only the performance can be improved, but also
the computational complexity can be reduced.

In Chapter 7.3, we draw some concluding remarks and suggest the potential research

topics for further research.



Chapter 2

Optimal Equalizers

2.1 Problem Formulation

A typical digital communications system.is shown in Fig. 2.1, where z(n) denotes the

) §(r) o 110} y() i(n-D)
———» Channel M Equalizer —» j: o

Figure 2.1: A typical digital communication system.

transmitted symbol, s(n) the channel output, v(n) the channel noise, r(n) the received
signal, y(n) the equalizer output. Let L. be the memory length of the channel, x'(n) =
[z(n),z(n — 1),...,z(n — L. + 1)]7 be the channel input vector, and the channel input
and output be characterized by a mapping function ¢ (-). We then have the following

relationship:

r(n) = s(n)+ov(n)

— (' (n) + v(n). (2.1)

To simplify the problem, we assume that z(n) is a binary phase shift keying (BPSK)
signal, i.e., {z(n) = £1}, and v(n) is an additive white Gaussian noise (AWGN) with
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variance o.. The mapping function ¢(-) can be linear or nonlinear. If the channel is

linear, 1)(x'(n)) can be expressed as

P(x'(n)) = cer(n — k), (2.2)

where {c;} is the channel impulse response. The mission of the equalizer is to estimate
the transmitted signal z(n). As mentioned in Chapter 1, the equalizer could be divided
into two types; one is the sequence estimation type and the other is the symbol-by-symbol
type. In this chapter, we discuss the optimal sequence estimation and symbol-by-symbol

equalizers, namely, the MLSE and the Bayesian equalizer.

2.2 Maximum Likelihood Sequence Estimation

Let r, be a received signal sequence corresponding to a transmitted signal sequence x,,
where v, = [r(0),7(1), - ,7(L, =D, x, ={2(0),2(1), - ,2(L, — 1)]T and L, is the
number of the transmitted signal symbols: Note here that we let the length of r, and x,
be equal for notational simplicity. Thisimplicit assumes that the first L. — 1 element of
X, have zero values. Let X be & set of all possible combination of x'(n) and © be a set
of all possible combinations of x,. Tn'absence of noise, 1)(x'(n)) has only finite possible
values 10;, 0 < i < 2% — 1. Each ; corresponds to an element in X. Let ® denote the
set containing all possible v;’s. The MLSE equalizer estimates the transmitted signal
sequence X, by maximizing the probability P(r,|x), x € ©. Fig. 2.2 depicts the block
diagram of the MLSE eqaulizer. Thus, the decision rule for the MLSE equalizer can be

r, X,
— % » MLSE + ~ »

Figure 2.2: A block diagram of MSLE.



express as

X, = argr)rcleagP(ra|X) (2.3)

— argmag UO \/%UU exp (_(T(n) - w(x'(m))?) (2.4)

202
= argmin » (r(n) = ¢(x'(n)))* (2.5)
= arggleig; Z_; (r(n) — v)*. (2.6)

The above decision rule can be efficiently implemented by the Viterbi algorithm. The
Viterbi algorithm utilizes a trellis diagram to compute the path metrics. Each path metric
corresponds to a distance value (for a ¢;) in (2.6). A possible pattern of x'(n) is called a
state. Each state in the trellis diagram is assigned a value, called the partial path metric.
The partial path metric is determinéd from a beginning state at time n = 0 to a particular
ending state at time n = k. At each ending state, the “best” partial path metric is chosen
from the paths terminated at that state. The selected metric represents the survivor path
and the remaining metrics represent. the nonsurvior paths. The survivor paths are stored
while the nonsurvior paths are discarded.in'the trellis diagram. The Viterbi algorithm
selects the signal survivor path left at n = L, — 1. The path is the ML path. Trace-back

of the ML path on the trellis diagram would then provides the ML estimated sequence.

2.3 Optimum Symbol-by-Symbol Equalizer

We first discuss the optimum symbol-by-symbol equalizer without decision feedback. Fig.
2.3 shows the block diagram of the symbol-by-symbol equalizer (without decision feed-
back). The optimum symbol-by-symbol equalizer is known as the Bayesian equalizer.
The symbol-by-symbol equalizer processes a block of received signals r(n) = [r(n),r(n —
1),...,7(n — L, + 1)]", where L, is the memory size of the equalizer, and produce an

estimate of #(n — D) (D is the desired output delay). From (2.1), we have

r(n) =s(n) +v(n), (2.7)

10



Equalizer s >

Figure 2.3: A block diagram of the symbol-by-symbol equalizer (without decision feed-
back).

where v(n) = [v(n),v(n—1),--- ,v(n— L.+ 1)]" is a noise vector, and s(n) = [s(n), s(n —
1),-++,s(n — L, + 1)]T is the received signal vector. If noise is absent, we can have the

received signal as

s(n) = h(x(n)), (2.8)

x(n) = [z(n),z(n—1), -+, x(n=D+Daln—~D);o(n—D—1), -+ ,x(n— L.— L. +2)]",
(2.9)

is a data vector and h(-) denotes.a vector-mapping function.
We can then see that there are’ Ngyawhich is 2L tLe~1 possible combinations of s(n).
We call s(n) the signal vector and its possible values signal states, which are denoted as
s;, 1 <i < N,. Let R" be the L, dimension Euclidean space. The set of all possible

signal vectors is defined by
SE{s; e R¥,1<i<N,}. (2.10)
We call § the signal state set. Two subsets of S are defined by
st £ {s; € S :z(n— D)= =£1},
S = Stus. (2.11)
The equalizer, which can be seen as a classifier, is then used to classify the received signal
space (in R") into two regions and assign each region a decision value. Under the AWGN

scenario, it is shown in [31] that the optimum Bayesian equalizer is

. | +1, fp(r(n)) >0
“"‘D)—{ L fa(r(m) <0

11

(2.12)



where
f8(r(n)) = X (x(n)) = x(x(n)), (2.13)

and
A Om) = 3 exp (-W) (2.14)

Next, we take the decision feedback signal into consideration. The block diagram of

the symbol-by-symbol equalizer with decision feedback is shown in Fig. 2.4. As shown

-1 -1

z

z

r(n) lf(nl) o r(n—L,+1)
A A

Equalizer X(n—D)
with

Feedback

A
oo . X(n—S$-1) X(n—S)
z7* izt z*t

Figure 2.4: A block diagram of the symbol-by-symbol equalizer with decision feedback
signals.

yn)

in the figure, the inputs of the equalizer.are®(n) and the decision feedback vector x,(n),
where %,(n) = [&(n — S),2(n — S —1),-++ ,2(n — L, — L, + 2)]*. The instant n — S
denotes the starting time instant of the feedback signal. Thus, S < D+ 1. Let the length
of the decision feedback vector X,(n) be Ly. Then, we have N, = 2% possible feedback
signal patterns. We call each pattern as a decision feedback state. Let X; be one possible
decision feedback state, 1 < ¢ < N,. Also, we collect all possible decision feedback vectors
into the set

BE (%, eR™ 1<j< N}, (2.15)

and call B the decision feedback state set. Given a decision feedback state, we can then

divide the set S into N, subsets

S; 2 {si; € 8,1 <i < Ny:%(n) = %51, (2.16)
s- Us. (2.17)
1<G<Ny,

12



where s;; denote one possible signal vector when x,(n) = %x;. In each §;, there are
Ny = N,/N, states. Each S; can further be divided into two subsets according to the

value of z(n — D)

SF 2 {si;€8;:a(n—D)==+1}, (2.18)

S = SuUS;. (2.19)

If all decisions are correct and noise is Gaussian, it was shown that [11] the optimum

Bayesian DFE is

R —|—1, fB(r(n),fcb(n) = }AC]) >0

R SR o i e S (220)
where

Fa(r(n), %,(n) = %) = {7 (x(n)) — X7 (x(n)), (2.21)
and

SRS =) (2.22)

si jEST 205
Here, we use two simple examplés to-iHustrate tfle nonlinear behavior of the Bayesian
equalizer.
Example 1:

Consider a linear channel with memory size L. = 2. Let the channel responses be ¢y = 1
and ¢; = 0.5. Also, let the noise variance o2 be 0.05 and the memory size of the equalizer
be L, = 2 and D = 0. Thus, x(n) = [z(n),z(n — 1),z(n — 2)]” and eight signal states
result. The signal state set can then be divided into two subsets according to x(n) = 1

and z(n) = —1.

ST = {s; =[1.5,1.5]",8, =[1.5,0.5]", 83 = [0.5, —0.5]", s4 = [0.5, —1.5]"},

S = {s5=[-05,15]" 8¢ = [-0.5,0.5]",8; = [-1.5,-0.5]", 85 = [-1.5, —=1.5]"}.

The decision boundary of the Bayesian equalizer (2.12) is shown in Fig. 2.5. In the figure,
the symbol ‘0’ denotes the signal state corresponding to z(n) = +1 and ‘x’ denotes the sig-

nal state corresponding to x(n) = —1. R} and R are the decision regions corresponding
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to x(n) = 1 and z(n) = —1, respectively. They can be expressed

R; = {r(n) € R : fp(r(n)) > 0}, (2.23)
R, = {r(n) € R : fp(r(n)) <0}. (2.24)
15 X O B
05F X O .

r(n-1)

0.5 X ‘ O .
1F 4
-1.5F X - O .
2 1 1 1 1 1 1
2 -15 -1 05 0 0.5 1 15 2
r(n)

Figure 2.5: Decision boundary of the Bayesian equalizer.

Example 2:

Consider a linear channel with memory length L. = 2 and let the channel responses be
¢o = 0.5 and ¢; = 1. Also, let the memory size of the equalizer be L, = 2 and D = 0.
In this scenario, the received signal space R¢ is not linearly separable. The decision
boundary of the Bayesian equalizer (2.12) is shown in Fig. 2.6.

From both figures, we can clearly see that the equalization problem indeed can be
considered as a classification problem (i.e., to classify the received signal space into two
regions). The other thing we can observe is that the decision boundary of the Bayesian
equalizer can be highly nonlinear. It can be easily verified that if the equalizer is linear,

the decision boundary is linear too. Thus, in the scenario considered in Example 2, a
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Figure 2.6: Decision boundary of the Bayesian equalizer.

linear equalizer will result in poor results. However:the Bayesian equalizer is not affected

at all.

2.4 Comparison of the'MLSE and Bayesian Equaliz-
ers

The performance of the Bayesian equalizer can asymptotically converge to the MLSE as
L, is increased. However, the computational complexity of the Bayesian equalizer will
grow higher than the MLSE equalizer. So, what is the advantage of the Bayesian equal-
izer? In [51], the authors have discussed this problem in detail. There are at least two
advantages of the Bayesian equalizer. The first one is that there are many suboptimal
algorithms that can well approximate the Bayesian equalizer. It is not necessary to use
the Bayesian equalizer with its original form. These suboptimal approaches are able to
trade performance for computational complexity. It is often possible that a suboptimal
algorithm can significantly reduce the computational complexity and still maintain good

performance. In the following chapters, we will review some existing approximations and
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develop new approaches. The tracking capability to nonstationary channels is another
advantage of the Bayesian equalizer. S. Chen et al. [11] have conducted computer simu-
lations to compare the performance of an radial basis DFE (which is an approximation to
the Bayesian DFE) and an MLSE equalizer. The nonstationary channel considered was
a mobile radio channel. The results showed that the radial basis DFE outperforms the
MLSE equalizer. The degradation of the MLSE equalizer is due to the accumulation of

channel tracking errors.
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Chapter 3

Suboptimal Symbol-by-Symbol
Equalizers

In this chapter, we briefly describe some existing methods that approximate the

Bayesian equalizer.

3.1 Linear Equalizer and DFE
3.1.1 Linear Equalizer

Using the structure in Fig. 2.3,“we can expressed the output of a linear equalizer as
y(n) = fr(n), (3.1)

where f = [fo, fi,- -+, fr.—1]7 is the equalizer coefficient vector. As we can see, the output
of the linear equalizer is a linear combination of the received signal r(n). To determine f,
a minimum mean-square error (MMSE) criterion is usually used. The cost function can

then expressed as

J(n) = Ele*(n)] = E[(x(n — D) — y(n))’], (3:2)

where E[-] denotes the statistical expectation. With this cost function, it is apparent that
the equalizer tries to estimate the desired signal x(n — D).

It is well-known [17] that the optimal f minimizing J(n) is the Wiener solution given
by

fmmse = R;(;)r(n)p:v(n—D)r(n)a (33)
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where

Ry = Elr(n)r’(n)], (3.4)

px(n—D)r(n) = E[x(n—D)r(n)], (35)

are the correlation matrix of the received vector r(n) and the cross-correlation vector of
the desired response signal z(n — D) and received vector r(n), respectively. Substituting

(3.3) into (3.2), we can then obtain the MMSE value as

gmmse = E[(l’(n - D) - frjr;mser(n))Q]
= E[mQ(n - D)] - 2f77n1msepx(nfD)r(n) + fyjr;mseRr(n)r(n)fmmse

= E[z*(n— D)] — £ sePa(n-Dyr(n)- (3.6)

As we can see, the Wiener solution involves matrix inverse and multiplication opera-
tions which are computational extensive. Alsoj.the channel may be time-varying. Thus,
adaptive equalizer are more ugeful in real-world applications. Fig. 3.1 shows a typical

adaptive equalizer architecturé. An adaptive filter; uses the steepest-decsent method to

4 ‘ X(n—D)

() pgapive | YO % &(n)
ptive
Equalizer

Figure 3.1: A typical adaptive equalizer.

adjust its tap weights iteratively. Let the cost function to minimize be

J(n) = E[B(f(n))], (3.7)

where (3(-) is a function of f(n).

In the steepest descent method, the coefficients are updated using the following strat-
egy:
E£(n +1) = £(n) — u Vs E[A(E(n))], (3.5)
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where V¢ is the gradient vector with respect to f, and p is a step size that controls the
convergence, tracking, and stead-state properties of the filter. In reality, however, exact
measurement of the gradient vector is not possible. The gradient vector must be estimated
from the available data. The simplest estimate is the stochastic gradient in which the

expectation operations in (3.8) is ignored. Then, we have
E(n + 1) = £(n) — pVeB(EM)). (3.9)

Even though this gradient estimate is rather simple, the adaptive algorithm works rea-
sonably well. The resultant algorithm is referred to as least mean square (LMS) adaptive

algorithm. Back to the equalization problem, the cost function is defined as
J(n) = E[p(f(n))] = E[e*(n)]. (3.10)

Substituting (3.10) in (3.8) and performingssome algebra simplification, we then obtain

the LMS adaptive algorithm as

o) = 2= D) =" (n)r(n), (3.11)

f(n+1). = f(n)+ ue(n)r(n). (3.12)
3.1.2 Decision Feedback Equalizer

As shown in Fig. 2.4, the DFE output (with S = D — 1) is a linear combination of the

received signals and feedback decisions.
y(n) = ffr(n) + b %y (n), (3.13)

where b = [bg, by, -+ ,br,—1]" and x,(n) = [#(n—D—1),2(n—D-2),--- ,&(n—D—Ly)]".
Similar to the linear equalizer, the DFE coefficients can be identified by minimizing

the MSE.
J(n) = El(z(n — D) — y(n))’]. (3.14)

The Wiener solution for the DFE is then

-1
fmmse - Rf-(n)f-(n)pm(nfD)f'(n); (315)
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where

Rii) = E[E(n)t (n)], (3.16)
Pa(n—D)i(n) = E[z(n — D)¥"(n)], (3.17)
f = [f7, b7, (3.18)

t(n) = [r(n),x,(n)] (3.19)

And, the LMS adaptive algorithm is given by

e(n) = z(n—D)—y(n), (3.20)
f(n+1) = f£(n)+ pe(n)r(n), (3.21)
b(n+1) = b(n)+ pe(n)xy(n). (3.22)

3.2 Minimum Bit-Error Rate Linear Equalizer

In this section, we consider a lihear equalizer that.minimizes the bit-error rate criterion.
The MBER equalizer first appeared in [52]. This work showed that the continuous-time
linear equalizer that minimizes: BER! ¢anbé Tepresented as a matched filter followed by
a tapped-delay line filter. The first-adaptive*algorithm for the MBER equalizer was
proposed in [53]. Here, we mainly discuss the adaptive MBER, equalizer proposed in [54]
for its simplicity.

Consider the linear channel with coefficients ¢; for 0 <7 < L. — 1. The received signal

can be expressed as
Le—1

r(n) = Z cer(n —k) +v(n). (3.23)

k=0

where v(n) is an AWGN with zero mean and variance 2. Thus, the received signal vector
s(n) in (2.7) becomes

s(n) = Cx(n), (3.24)

where C is a Toeplitz convolution matrix containing the channel coefficients ¢;’s.

Co c1 e Cr.—1 0 e 0
0 C C ) C o 0 )

c=|. . (3.25)
0 e 0 Co 1 e Cr,—1



The Wiener solution for the linear equalizer f is
fmmse = (CCT + 0'1211)71CD+1a (326)

where cpy is the (D+1)th column of C and I'is an L, x L, identity matrix. As mentioned,

the LMS adaptive algorithm is
e(n) = x(n— D)—f"(n)r(n), (3.27)
f(n+1) = f(n)+ pe(n)r(n). (3.28)

The decision is then &(n — D) = sign(y(n)), where

. 1, if x>0
sign(z) = { 1z (3.29)

Now, we use the MBER criterion to determine f. The BER for a detected symbol can be
found as
P(i(n— D) # x(n— D)) = Plx(n— D)yln) <0)
= Plaz(n— D" (n)Cx(n) + x(n — D)f'v(n) < 0)

= E[P(z{n— D)f"'€x(n) + z(n — D)f"v(n) < 0|x(n))]

gl

N,
1 - fTSi
-y <||f||av>’ (3.50)

where the expectations are over the N, equally likely x(n) binary vectors, ||f||> = f7f, Q()

is the Gaussian error function, s; is the signal state, and v(n) = [v(n),v(n—1),--- ,v(n—

L. + 1)]7. Thus, the cost function for the MBER criterion can be written as

o= o ()] 531

The solution for the optimal MBER, equalizer is given by

fTCX(|Tf?|T0(:L - D))] _ (3.32)

As shown in [54], the adaptive algorithm for the MBER equalizer is

fber = arg IIlfiH E |:Q (

e(n) = x(n—D)—f"(n)r(n),
f(n+1) = f(n)+ ul(n)sign(e(n))r(n), (3.33)
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where 1(n) is an error indicator function that is zero or one, depending on whether a

decision error occurs at time n or not, i.e.,

[0, if sign(f'r(n)) ==z(n— D)
1(n) = { 1, if sign(f’r(n)) #x(n— D) ° (3.34)

Next, we consider an architecture shown in Fig. 3.2. In this architecture, the linear
equalizer is followed by a hyperbolic tangent function. In the function, ¢ is the parameter

controlling the degree of nonlinearity. We call this structure as a linear perceptron equal-

A {n-D)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.2: A typical linear.equalizer with “tanh” function.

izer (LPE). We still use the MMSEycriterion to ideﬁtify the equalizer. The cost function

is then
J(n) = iE[eQ(n)], (3.35)
where
e(n) = =(n — D) — y(n), (3.36)
and
y(n) = tanh(efr(n)). (3.37)

Note 1/4 is just a scalar for cost function normalization. It is straightforward to derive

the LMS-type of adaptive algorithm as
f(n+1) =f(n) + u(l — y*(n))e(n)r(n). (3.38)

It is interesting to examine the cost with larger . If the decision is correct, i.e., z(n—D) =

L and fr(n) > 0, or z(n— D) = —1 and f'r(n) < 0, the cost function J(n) will approach
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to zero. On the other hand, if the decision is wrong, i.e. x(n— D) =1 and fTr(n) <0, or
z(n — D) = —1 and f"r(n) > 0, the cost J(n) approaches to one. We can then say that
J(n) is a “zero-one” like cost function. This cost function has a significant implication as
shown below.

Now, we summarize three algorithms as follows:

frmse(n+1) = fomse(n) + pe(n)r(n), (3.39)
fover(n+1) = fpe(n) + pl(n)sign(e(n))r(n), (3.40)
fionn(n+1) = fun(n) + p(1 — y*(n))e(n)r(n).. (3.41)

Comparing (3.40) with (3.41), we can find that (1—y?(n))e(n) will approach to 1(n)sign(e(n))
as € — 0o. We can then conclude that the cost function with zero-one characteristic will
give the MBER solution. We will have more discussion regarding this subject in the later
chapters.

We use an example to compare ithese three algorithms. We consider a linear channel

shown below: ‘

r(n) = 1:2z(n) £ 11@(m —1) — 0.2z(n — 2). (3.42)
We define SNR as the ratio of o2 and gZywhere o2 is the variance of s(n) and o2 is that
of v(n). We set SNR = 27dB, L, = 3, and D = 2. The step size p in (3.39) was set
as 0.01, in (3.40) was set 0.2, and in (3.41) was set 0.1 (with £ = 10). All these three
equalizers were initialized with zero values. We show the learning curves (with the BER)
in Fig. 3.3. The dashed-lines correspond to the BER bounds for the MBER and the
MMSE equalizers. We can see that the MBER and LP equalizers perform similarly; both
outperform the conventional MMSE equalizer. Also note that the adaptive MBER and

LP equalizers converges slower.

3.3 Volterra Equalizers

3.3.1 Volterra Series

It has been shown that a nonlinear system can be modeled with the Voterra series [55].

Let z(n) and y(n) be the input and the output of a system, respectively. Using the
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Figure 3.3: Learning curves (BER) for .the MMSE, MBER, and LP equalizers.

Volterra series, we can have the following relationship:
yn) =ty + 3 _bylz(n)], (3.43)
i F
where

hyz(n)] = Z e Z hy(my,...,mp)z(n —my)---x(n —my), (3.44)

mi=—00 mp=—00
The function hy,(my, ..., my,) in (3.44) is called the pth-order Volterra kernel of the system.
In most cases, the nonlinearity of a system has finite dimension and the memory is also

finite. We can truncate the Volterra series expansion to a Pth order with the memory

size L. Then, (3.43) can be rewritten as

where
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From (3.45), we can see that hy characterize an constant offset, hy(my) the linear response,
and h,(my,...,m,) the p-th order nonlinear behavior of the system. We also assume that

hy(my,...,my,) =0 for allm; <0and 1 <i<p.

3.3.2 Volterra Equalizer

In [1], [2], [12]-{15], Volterra equalizers were proposed to equalize the satellite signal.

The structure of the Volterra equalizer is shown in Fig. 3.4. The output of the Volterra

r(n) r(n-1) r(n-L,+1)

S
y(n)

Volterra Equalizer —»—— —»

Figure 3.4: Structure of'a Volterra equalizer.

equalizer, used to approximate-a desired signal x(n-— D), can be written as

y()=hot). hylr(n)], (3.47)
where - .
hplr(n)] = 3 o > hy(my, . omy)r(n = my) -7 (n — my). (3.48)

As previously defined, L, is the length of received signal. For convenience, we use a vector
representation for Volterra kernels (with finite support). Define the vector ¥ (n) and hy
as

£i(n) = [r(n),r(n—1),--- ,r(n— L, + 1)]", (3.49)

and

El = [hl(o)a h1(1)7 e ahl (Le - 1)]T7 (350)

respectively. Then, the output of the first kernel is given by

hi[r(n)] = hTF (n). (3.51)

25



We further define a recursive representation for the input vector r,(n) of the pth order
kernel as

rp(n) =ri(n) @, 1(n), (3.52)
where the symbol ® indicates the Kronecker product operation. The Kronecker product

of an Ly x M, matrix A with an L, x M, matrix B results in an L;L, x M;M, matrix

A ® B expressed as

ao,0B ap,B -+ apa, 1B
A 2 B— al,.gB al,.lB e al,M%—lB , (353)
GL171,0B GL171,1B Tt aLlfl,lelB

where a; ; is the the ij-th entry of A. The Kronecker product operation gives a well-defined
ordering of the elements in r,(n). The coefficients of the kernel hy,(my, ma,---,m,)’s are
arranged into a vector ﬁp along with the elements of ¥,(n) such that they can match the
received signal product r(n — my)e{h' = ms)is: r(n —m,) in £,(n). Then output of the
pth kernel is given by

Bl (3} 2 B ). (3.54)
where h,[r(n)] is the coefficientvector for-the p-th order kernel. Thus, the (3.47) can be

rewritten as

y(n) = h'E(n), (3.55)

where
f(n) = [1,£] (n),F5 (n), - ,Fp(n)]", (3.56)

and
h = [hy, b7, 0Y, ... nh)". (3.57)

3.3.3 MMSE Coefficient Identification

The next step is to estimate the coefficients in h As previous scenarios, we use the MMSE
criterion given by

E[e*(n)] = E[(z(n — D) — h"E(n))?. (3.58)
The Wiener solution can be obtained as previously [17].

hmmse = Rf?(,ll)ﬁ(n)p:v(n—d)ﬁ(n)a (359)
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where

Return) = EF0)E (n)], (3.60)

is the correlation matrix of the received signal vector r(n) and
Pa(n-n)i(n) = Elz(n — D)T(n)], (3.61)

is the cross-correlation vector of the desired signal z(n— D) and the received signal vector
r(n). Here, we implicitly assumes that the correlation matrix is invertible and z(n — D)
and r(n) are jointly stationary.

Substituting (3.59) into (3.58), we can obtain the MMSE value as

gmmse = E[(IL’(TL - D) - Eﬁmsef)(n))Z]

= E[{L‘Q(n - D)] - 2H£msep$(n—D)f‘(n) + EzmseRF(n)F(n)ﬁmmse

= E[»TZ(” — D) = Ez;;msepm(nfD)F(n)- (3.62)

The Wiener solution in (3.59) 4s very similar to those in linear scenarios. However, the
Volterra equalizer requires a large number of coefﬁciehts. Consequently, the computational
complexity for the Wiener solution can be huge. Another difficulty is that the correlation
matrix contains higher-order statistics of the received signals. It is well known that higher-
order statistics are noise sensitive. We then need a large amount of data to obtain reliable

estimates.

3.3.4 Adaptive Volterra Equalizer

The computational complexity problem of the Wiener solution can be overcome by using
adaptive processing. This approach is also similar to that in linear equalizers. Fig. 3.5
depicts the structure of the adaptive Volterra equalizer.

Extending the LMS adaptive algorithm in linear equalizers, we can easily obtain the
adaptive algorithm for the Volterra equalizer. The adaptive algorithm is summarized as

follows:

e(n) = z(n— D) —h"(n)E(n), (3.63)

—

h(n+1) = h(n)+ pe(n)¥(n), (3.64)
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Figure 3.5: The adaptive Vloterra equalizer.

where p is the step size and E(n) is the coefficients vector at time n. Although the adaptive
algorithm for the Volterra equalizer is similar to that for the linear equalizer, its behavior
is different. It has been shown that [9] the convergence rate of the LMS algorithm is
inversely proportional to the eigenvalue spread of the input correlation matrix. It was
found that the eigenvalue spread in the Volterra equalizer is larger than that in linear
equalizers. Even when the input signal is white, the nonlinear entries in the input vector
causes the eigenvalue spread in the Volterra equalizer to be more than one. This implies
that the convergence rate for the Volterra:equalizer will be slower.

Two works related the Volterra equalizers worth! mentioning [16], [18]. In these works,
a Voterra-perceptron structure, 'shown in Fig. 3:6; was proposed. The difference between
the Volterra and Volterra-perceptron‘equalizers (VPE) is the presence of the hyperbolic

tangent function £(+). From Fig. 3.6, the VPE can be expressed as

r(n) r(n-1 r(n-L.+)

7 7t

Ly | -0
Volterra Equalizer > é‘/() —»% LJ

Figure 3.6: The structure of VPE.

y(n) = (" (n)F(n)), (3.65)

where

&(z) = tanh(ex/2), > 0. (3.66)
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The adaptive algorithm can be derived by the SGD shown below

—

y(n) = &' (n)f(n)), (3.67)
e(n) = xz(n—D)—y(n), (3.68)
h(n+1) = h(n)+ pe(n)(1 —y*(n))En). (3.69)

As discussion in the previous section, if a cost function has the “zero-one” character-
istics, the equalizer obtained by minimizing the function will achieve the MBER perfor-
mance. It is apparent that the tanh(-) function can change the MSE cost function to have
this property. We then conclude that the adaptive VPE, which can achieve the MBER,

will outperform the original Volterra equalizer(with MMSE criterion).

3.3.5 Recursive and Decision Feedback Volterra Equalizers

An inherent problem associated with the Volterra equalizer is that the number of coeffi-
cients required is usually large. Insthis section, we.discuss the recursive Voterra equalizers.
Using this structure, the number of equalizer coefficients can be significantly reduced. A

general recursive Volterra equalizer is shown in Fig..3.7, The output of the Volterra equal-

r(n 2

(n) Volterra y(n) X(n—D)

—» . > >
Equalizer

[
|

Figure 3.7: The structure of the recursive Volterra equalizer.

izer can be expressed as

P

y(n) = wily(n—1),y(n=2), ,y(n—M),r(n),r(n—1), - ,r(n—L.+1)). (3.70)

i=0

where k;(y(n—1),y(n—2),--- ,y(n—M),r(n),r(n—1),--- ,r(n—L.+1)) is an ith-order

polynomial with variables inside the parentheses. As it known, the linear IIR filter can

model linear systems more efficiently than the linear FIR filter. Similarly, the recursive

Volterra filter can model nonlinear systems more efficiently than the FIR Volterra filter.
If decisions are correct, it will be better to use decisions as feedback since they do not

have noise. Here, we discuss a special type of decision feedback Volterra equalizer called
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the bilinear DFE [19], [20], [56]. The bilinear DFE has a low computational complexity

and good performance. Its input-output relationship is given by

Le—1 Ly—1 Le—1Ly—1
y(n) = Z fir(n—1i) + Z bjz(n—D —j)+ Z Z cijr(n—1i)z(n—D —j). (3.71)
i=0 j=1 i=0 j=1

where L, denotes the number of feedback decisions, and z the feedback signal. Although
the bilinear model is relatively simple, it posses some universal modeling properties [57].
It has been shown that under fairly mild conditions that a bilinear system with finite
number of coefficients can be used to approximate any Volterra system with arbitrary
precision.

Using the SGD method, we can obtain the adaptive algorithm for the bilinear DFE.

f(n+1) = £(n)+ pe(n)r(n), (3.72)

b(n+1) = b(m4pe(n)x(n — D — 1), (3.73)

C(n+1) = CH)¥ue(n)e(n)x’(n—- D —1). (3.74)

where

eln) = r(n="D) = y(n), (3.75)

f(n) = [fo(n), fi(n), -, froa(m)]", (3.76)

b(n) = [bi(n),ba(n), -+ by, (n)]", (3.77)

cmy = | 0 Tt (3.78)

Similar to the VPE, we can put a nonlinear function &(-) at the equalizer output. We call
this a bilinear-perceptron decision feedback equalizer (BPDFE) [18], [21]. The structure
of a BPDFE is shown in Fig. 3.8.

3.3.6 Simulations

In this subsection, we use a simulation example to compare the performance of nonlinear

equalizers discussed in this section. We consider a nonlinear channel which is a linear
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Figure 3.8: The structure of a BPDFE.

channel followed by a memoryless nonlinear.function. The input-output relationship of

the linear channel is given by
q(n) = —0.227x(n) +0.460x(n—=1) F$0:848z (7w — 2)+ 0.460x(n—3) — 0.227x(n—4). (3.79)
The output of the memoryless nonlinearity'is given by
r(n) = q(n) + 0.156¢%(n) — 0.031¢*(n) + v(n). (3.80)

The BER performance comparison for the linear, Volterra, Bayesian, and MLSE equal-
izers is shown in Fig. 3.9. For this set of simulations, we do not use decision feedback. For
the MLSE and Bayesian equalizers, we assume that the channel information is known.
Also, the decision delay for the MLSE equalizer was set as D = 19. For all symbol-by-
symbol equalizers, we let L, = 5 and D = 5. Thus, the number of signal state for the
Bayesian equalizer is N, = 512. The step size for the adaptive linear equalizer was set
0.005 and the training data size was 10°. The simulation condition for the LPE was the
same as that for the linear equalizer (¢ = 10). The order of the Volterra equalizer was
set to 3. The total number of parameters in the Volterra equalizer was then 55. We used

4 x 10° number of training data for the adaptive Volterra equalizer. Three step sizes,
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Figure 3.9: BER comparison for thejlinear, Volterra, Bayesian and MLSE equalizers.

namely, ;1 = 0.005, uo = 0.003-and 5 =0.001, were used for Hl, Hg and Hg, respectively.
The simulation conditions for the VVPE.was-the same as that for the Volterra equalizer.

As shown in Fig. 3.9, we can find that the MLSE equalizer has the best performance.
This is not surprising since it uses the whole observation sequence to perform equalization.
The Bayesian equalizer, as expected, is optimal among symbol-by-symbol equalizers. The
performance of the linear equalizer was very poor. This is because the signal state was not
linearly separable in this nonlinear channel. Note that the VPE has better performance
than the Volterra equalzer. This simulation result verified the argument made previously.
The MMSE criterion cannot not lead to the MBER performance.

Properly exploitation of the decision feedback signal may offer a better performance.
In the following simulations, we demonstrate the performance comparison for various
DFEs. Fig. 3.10 shows the results. In all the symbol-by-symbol equalizers, the length of
the decision feedback Ly = 3, and x; = [Z(n —6),Z(n —7),#(n— 8)]7. In the DFE, we set
the step size as 0.00005 and the number of training data is 10°. In the bilinear DFE, we
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Figure 3.10: BER comparison for the;DFE, bilinear DFE, BPDFE, Bayesian DFE and
Viterbi equalizers.

set different step sizes for different type of coefficients, 1 = 0.00005 for the forward part
f(n), p = 0.00003 for the feedback part b(n), and p = 0.00003 for the bilinear part C(n)
in (3.72)—(3.74). The total number of parameters in bilinear DFE is 23 and the number
of training data is 5 x 10°. For the BPDFE, we let ¢ = 10 and other simulation setup is
the same as that for the bilinear DFE.

From the simulation results, we can readily see the advantage of decision feedback.
The gap between the Bayesian DFE and MLSE equalizes is smaller than the gap between
the feedforward Bayesian equalizer and the MLSE equalizer. The commonly used DFE
did not perform well in this nonlinear channel. The performance of the bilinear DFE
was better than the Volterra equalizer even though the number of cofficients is smaller.
Comparing the bilinear DFE with BPDFE, we can verify again that the zero-one like cost

function is better than MMSE cost function.
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3.4 Neural Equalizers

The neural network is also a powerful mathematical tool modeling nonlinear systems.
Many researchers have applied neural networks to the equalization problem [22]-[27].
There are many structures in neural networks. Here, we describe two structures that

have been applied in equalization. They are MLP and RBF networks.

3.4.1 Multi-Layer Perceptron Equalizer

The MLP network organizes simple identical processing elements into layers and the
input-output relationship of a processing element is governed by a nonlinear function.
Each input of the processing element is a linear combination of the outputs from the
previous layer. The MLP network has the following good properties: massive parallelism,
high computation rates, great capability for nonlinear problems, continuous adaptation,
inherent fault tolerance, and easesfor VLSI implementation. Taking these advantages,
some have applied the MLP in-the equialization problem [22]-[25].
An example of the three layer MLP (2;3,3,2) is shown in Fig. 3.11.

Figure 3.11: A three layers MLP (2,3,3,2).

The following notations are used in Fig. 3.11 :

N; +1 : the number of inputs at each layer, 1 < ¢ < N + 1, where N denotes the
number of the MLP layer.

z/(n) : the output vector of the (j —1)-th layer before the activation function, z’(n) =

[44(n), 53(n), -, 24, ()], 2 <GS N+ L
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y?(n) : the output vector of the (j — 1)-th layer after activation function at jth layer,

where y7(n) = [y(n), (), -~ vk ()"

x¥(n) : the input vector of the k-th layer, x'(n) = [z1(n), z3(n), - - - , 2}, (n), 1], for

b =1 and xt(n) = [gf(n), gh(n), -+ . (), 1, for 1 <k < V.
#(-) : the activation function at jth layer.

@(z(n)) : the activation functions at jth layer, where ¢(z7(n)) = [¢((n)), (2 (n)), - - -
(2, ()"

Using the notations above, we have following relationships.

zt(n) = Wit'x'(n), (3.81)
y*Tn) = oz (n), (3.82)
where W't is the weight matrix:sbetween sth-and (i + 1)th layer and 1 <4 < N.

Fig. 3.12 depicts the architeecture of an-MLP. equalizer. To estimate the parameters of

MIZP Equalizer

r(n)

—1

r(n-12)

X(n—D)
Y [

‘r(n—-L,+1)
e e

Figure 3.12: The architecture of an MLP equalizer.

an MLP equalizer, an MMSE cost function is usually used.
Ele*(n)] = E[(z(n — D) — y(n))?]. (3.83)

Since the MLP is a highly nonlinear system, a closed-form solution minimizing (3.83) is
difficult to attain. An iterative method, which is similar to the SGD, was developed to
solve the problem [58]. This is referred to as the back propagation (BP) algorithm. The-

oretically, the MLP network can approximate the Bayesian function in (2.21). However,
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it is not an easy work in practice. This is because it lacks of a systematic approach for
the architecture selection. One other thing is that the MMSE criterion cannot give the
MBER performance.

We now report some simulation results to evaluate the performance of the MLP equal-
izer. We consider a nonlinear channel, a cascade of a linear channel and a memoryless

nonlinear function [28]. The input-output relationship of the linear channel is given by
q(n) = 0.3482x(n) + 0.8407x(n — 1) + 0.3484x(n — 2). (3.84)
The memoryless nonlinearity is given by
r(n) = q(n) +0.2¢*(n) — 0.1¢*(n) + v(n). (3.85)

For this case, L. = 3. We set L, = 4 and D = 1 for the equalizers compared. Fig. 3.13

B — Bayesian Equalizer
10 & —%— Linear Equalizer E

A MLP (4,9,4,1)

10 ‘ ‘
5 10 15 20

SNR

Figure 3.13: BER comparison for the linear equalizer, the MLP equalizer (4,9,4,1), and the
Bayesian equalizer.

shows the performance comparison for the MLP (4,9,4,1), the linear, and the Bayesian

equalizers. From this figure, we can see that the MLP equalizer is better than the linear
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equalizer. This is because that the optimum solution is nonlinear function in the received

signal. Also note that the MLP equalizers perform similarly to the Bayesian equalizer.

3.4.2 Radial Basis Function Equalizers

The RBF network is known to have several advantages over the MLP network; this
includes its easy trainability and simpler structure. To serve as an equalizer, the RBF is
known to be superior to the MLP network. The reason lies in that the structure of the
RBF network is close to that of the Bayesian equalizer. Many works have been reported
regarding the RBF equalizer [28]-[32], [33]-[36]. The structure of the RBF equalizer is
depicted in Fig. 3.14. As the figure shows, the output of the RBF network is

y(n) = Zwiw(r(n), Ci)s (3.86)
where w(x, ¢;) is a Gaussian kernel defined as

w(x,¢;) = exp (-M) . (3.87)

Oy

It is apparent that c; plays the role of the i-th kernel, 62/2 is its variance, and N, is
the number of Gaussian kernels. From (3.86), we can see that the RBF network is very
similar to the nonlinear function employed in the Bayesian equalizer. The SGD [30] and
clustering methods [28], [29] were proposed to identify the parameters ¢; and o,. Other

methods reducing the number of Gaussian kernels N, were also studied in [33]-[36]
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3.5 Signal Space Partitioning Technique

In this section, we discuss the signal space partitioning technique proposed by Chen et
al. [39]. This method can asymptotically approximate the Bayesian equalizer. Using the
approach, the decision boundary can be defined by a set of hyperplanes and the received
signal space can then be partitioned accordingly. If the SNR is infinite, the decision
boundary will be exactly the same as that of the Bayesian equalizer.

Recall the decision rule for the Bayesian equalizer.

. 1, fg(r(n 0
#(n— D) = { j_LL fBErEngg z - (3.88)

where
fa(r(n)) = X (x(n)) — x'7(x(n)), (3.89)

and

X(i)(r(n)) & Z exp (_M) (3.90)

s;€SHE 20°
The decision boundary for the Bayesian equalizer,-Dy = {r : fz(r) = 0}, is generally a
hypersurface. However, if the SNR, isinfiniite, the boundary Dp is known to be piecewisely
linear, and made up of a set of hyperplanes. Each of these hyperplane can be defined
by a pair of dominant states. It can be shown that the hyperplane is orthogonal to the
straight line connecting the dominant states, and also passes through the midpoint of the

line. A pair of dominant states (sl(+), s(f)) is defined as

ifVs, €8,s; # sl(+), S; # sg_)

Isi —su]2 > sy — .2, (3.91)
where " o
_|_ —

S| = % (3.92)

The key issue in this approach is how to find all the pairs of dominant states. We

summarize the method in [39] S as follows:
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Initially set [ =0
For Vs{™ € 8
For Vs{) e S0

) ()
s, =225 =|s{ —sy

For V s\ € S®, m #i
For V s € SO n#j
1f (Isi) — s > >n And [|s ) —s, | >7)

[=1+1,
i, 7 = f
Shot s =5
End
End
End
End
End

where Séjn)l and Sé;n)l denote the sets of each dominant pair elements (sgﬂ, sgf)). We de-

note the number of pairs as Nyyy,.

Once the dominant states are found, decisions can be made based on these states. Each

pair (sl(ﬂ,s(*)) € Siom, where Sgsm = Sé:% US&;W)I, determines a hyperplane. Applying

the theory of support vector miachines,-Chen et al. [37]-[38], [59]-][60] determined the

(-+) (—))

hyperplane H; associate with (s;"’,'s as

Hi(x(n)) = wir(n) + b (3.93)

This hyperplane is one part of the asymptotic Bayesian decision boundary. The parame-

ters w; and b; can be computed as

25 — 5 )
[ — +) _ Sl(_)||27 (394)

and
G i HCNET. ) (3.95)
Isi™ —s{7)12

The hyperplane defined by (3.94) and (3.95) is a canonical hyperplane [59] having
the property Hl(sl(+)) =1 and Hl(s(_)) = —1. Based on these hyperplanes, they then
used a Boolean logic function to make decisions. The resultant detector is shown in Fig.
3.15. This technique can also be applied to the equalizer with decision feedback. Due to
the feedback signal, the number of signal state will be reduced. For each given feedback

signal vector pattern, we have different signal states. Thus, the dominant states could be

39



= Hy(r(n) —»
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Figure 3.15: Asymptotic Bayesian equalizer using a set of hyperplanes.

searched in the new signal space §; using the same algorithm. The same decision rule
can also applied accordingly.

We report some simulation results for Chen’s method. We consider a nonlinear channel
which is a linear channel followed by amemoryless nonlinear function (the same as the

previous section). The input-output relationship of the linear channel is given by
q(n) = —0.227x(n) 4+ 0.460z (17— 1)+ 0.848z(n—2) 4 0.460x(n—3) —0.227xz(n—4), (3.96)
and the output of the memoryless nonlinear function is given by
r(n) = q(n) + 0.156¢*(n) — 0.031¢*(n) + v(n). (3.97)

We also set L. = 5 and D = 5. The total number of signal states in Bayesian equalizer was
found to be N, = 512. The performance comparison for the linear, asymptotic Bayesian,
and Bayesian equalizers is shown in Fig. 3.16. From this figure, we can see that Chen’s
equalizer approximate the Bayesian equalizer quite well. However, we have to test 602
dominant pairs using Chen’s algorithm [39]. The computational complexity is even higher
than the Bayesian equalizer.

We then include the decision feedback signals into the equalizers. For this set of
simulations, we set L, =5, P =2, D =5, Q =0, and S = 0. The feedback decisions
are X4(n) = [2(n —6),2(n —7),2(n — 8)]". The performance comparison is shown in Fig.
3.17. In this scenario, Chen’s algorithm has to save 592 hyperplanes. As we mentioned,
the number of dominant states tested by Chen’s algorithm depends on channel. We can

then conclude that this method is not efficient in non-separable channels.
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Figure 3.16: BER comparison for the linear, asymptotic Bayesian, and Bayesian equaliz-
ers.

3.6 The Discriminant Function Approach

We first briefly describe the classical pattern-recognition approach. Let {C,,} denote a set
of M-class objects and {r,} a set of observations. Assume that r; = ®(0;) where O; is
an object in C), and ®(-) is a vector mapping function. The goal of pattern classification
is to derive a classifier that can automatically assign each r; to a object class. It has
been shown that the optimal classifier chooses the class that maximizes the a posterior:

probability function P(Cj|r,), i.e.,
r; € Cp if m=argmaxP(Cilr;), 1<i<M. (3.98)

However, the a posteriori probability functions may have complex forms and it may be
difficult to derive and identify the functions. An alternative approach is to use a set of

pre-defined functions, fi(r;, A;), 1 <i < M and apply the following decision rule
r; € Cp if m=argmax f;(r;,A;), 1<i<M. (3.99)
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Figure 3.17: BER comparison for therconventional, asymptotic Bayesian, and Bayesian
DFEs.

The function f;(r;, A;) is called “a discriminant function where A; is a vector composing
of its parameters. Note that f;(r;,A;) 1s not required to approximate the a posteriori
probability function directly. The main concern is whether the decision rule in (3.99) can
yield the similar decision result as that in (3.98). An well-known discriminant function is

the linear discriminant function defined as

fiej, Ag) = wltj+ by, (3.100)

where AT = [wT

. b;]. Since we do not have to know the a posteriori probability function,

a classifier with discriminant functions is considered as a nonparametric classifier. It can
be easily shown that if the a posteriori probability function is Gaussian, the decision rule
of (3.99) with the linear discriminant function (3.100) can be made exactly the same as
that of (3.98). We can apply other nonlinear discriminant functions with the expense of
higher computational complexity.

The central problem in pattern-recognition is how to identify A;. In general, this can
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be achieved by minimizing a well-defined cost function. Katagiri [43], [45] has proposed
a three-step procedure to derive the cost function. The advantage of this cost function
is that it can yield the minimum classification rate. Since we will use this method in
the later chapter, we describe the procedure in detail here. The first step is to select the
discriminant function f;(r;, A;), which can be linear or nonlinear. The second step is then
to define a misclassification measure. Katagiri suggested a measure described below [45].
If r; belongs to ith class, the misclassification measure is

1/n

di(x) = — firj, A — D Sl A , (3.101)

k#i

where 7 is a positive number. The final step is to define the cost function. Katagiri also

provided a cost function for this step.
J = E[L(d;(r;))], (3.102)

where
1

7 ot ot (3.103)

L(r;) =
e >0, and a > 0. Clearly, if r;belongs tosth class and the decision is correct, fi(rj, A;)
will be larger than fi(r;, A;), k # o Then; d;(r;) < 0, a small cost is incurred in (3.102).
On the other hand, if the decision is not correct, d;(r;) > 0 and the cost function (3.102)

13

will approach one. It is this “zero-one” characteristics that makes the classifier have the

minimum classification rate. This can be proved as follows:
J = E[L(d(rj))] (3.104)

= ZP (€3 [ Pl0ICu) L x)i (3.105)

Q

ZP ) / (5,]C1)1(e; € CoL(k # argmin P(Clx))dr,  (3.106)

= ZP (Ch) / (r;]Cr)1(r; € Cy)dr;, (3.107)
where R is the entire observation space of r;, 1(x) is the indicator function

1, if z is true
1(z) = { 0, otherwise ’ (3.108)
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and R, € R is an observation space where the mis-classification takes place. The approx-

imation in (3.106) can be made arbitrarily close by varying the values of £ and . Note

that (3.107) indicate the MAP rule. Thus, we can conclude that a cost function with the

zero-one characteristic can result in the minimum classification error.

If we treat the equalization problem as a classical classification problem, we can then

have two discriminant functions (for BPSK signal) as shown in Fig. 3.18. We can make

the decision as

LI (MA)

r(n) o) X(n-D)
x() —

fo(r(n),A,)

Figure 3.18: Discriminant functions for equalization.

i = argmax fi(r(n), Ay),

) I if =1
n =G = {—1 if =2

(3.109)

(3.110)

In [43], the MLP network was chosen as the discriminant functions. Unfortunately, the

MLP is highly nonlinear. It is difficult to save computations and at the same time achieve

good performance.
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Chapter 4

Adaptive Asymptotic Bayesian
Equalization Using a Signal Space
Partitioning Technique

From previous discussion, we know that the Bayesian equalizer is optimal for symbol-
by-symbol equalizers; however, its.¢omputational complexity is usually very high. The
signal space partitioning technigue was proposed to reduce the computational complexity
[39]-[41]. It was shown that the decision boundary of the equalizer consists of a set
of hyperplanes. Although the.resultantrequalizer has low complexity, the process for
searching proper hyperplanes require many-efforts. Also, the number of hyperplanes
consisting of the decision boundary is not known in advance and cannot be controlled
either. As we showed, the number of hyperplanes required for testing may be even more
than the signal states in the Bayesian equalizer. If the channel is time-varying, the problem
becomes particularly troublesome. Whenever the channel response is changed, we have
to re-search these hyperplanes .

In this chapter, we propose an efficient algorithm to remedy the problems mentioned.
As the signal space partitioning method [39]-[41], we use a set of hyperplanes to form the
decision boundary; however, the implication of these planes and the method for finding
them are quite different. In the original signal space partitioning method, the number
of hyperplanes is determined by the channel response. In our approach, the number of
hyperplanes can be arbitrarily set. The hyperplanes found by the proposed algorithm
are generally different from those found by the method in [39]-[41]. Our method allows

an easy tradeoff between complexity and performance. In many cases, we can make the
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performance loss small while the computational complexity reduction is large. Another
feature of our approach is that the parameters of these hyperplanes can be adaptively
identified using a SGD method. As a result, the proposed equalizer can be effectively
applied to time-varying channels. In addition to the feedforward equalization algorithm,
we have also consider efficient and fast convergent decision feedback algorithms. The
computational complexity of the proposed equalizer is low and suitable for real-world

implementation.

4.1 An approximate Bayesian Criterion

Although the Bayesian solution is optimal (in the MBER sense), the computational com-
plexity is usually very high because in (2.12-2.14) there are N, exponential terms to be
evaluated and N, grows exponentially with L. + L.. In this section, we propose a new
method for solving this problem. Our idea igto reduce the number of terms involved in

(2.14). First, we approximate (2.12)—(2.14) using the following decision rule:

R Y s, € ST
z(ns= D) = { N E cs (4.1)
max spESTUS— 20?2
= arg max (s r(n)— s . (4.2)
spESTUS— 2

Because the exponential operation is a monotonic function, the second equality in (4.2)
holds. Due to the rapid-decay property of the Gaussian function, the decision using (4.1)—
(4.2) usually provides a good approximation to that using (2.12)—(2.14). It is straight-
forward to see that the smaller the noise level, the smaller the approximation error. The
decision using (4.1)—(4.2) is asymptotically identical to that using (2.12)—(2.14). It is sim-
ple to show that the decision boundary of (2.12) always consists of hyperplanes regardless
of noise variance. The advantage of using (4.1)—(4.2) is that we do not have to evaluate
exponential functions. However, we still have N, inner product terms to evaluate. To
reduce computation, we divide St (as well as S7) into some subsets and merge states in
each subset into a new state. If we let the number of all subsets be IV,,, we then have NV,

new states.
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How to determine these N, new states optimally becomes the key problem. As we
show below, the optimal new states are usually not in the S signal space. For this reason,
we call them pseudo states. Denote the set consisting of the pseudo states as Spi. We can
then further approximate (4.2) as

T 5|

Smax = arg skerfslz?fs; (sk r(n) — T) : (4.3)
We now have NN, inner product terms to evaluate instead of N,. If N, is significantly
smaller than N, and equalizer performance is not affected, then the goal of complexity
reduction has been achieved. As [39] showed, the Bayesian decision boundary consists
of a set of hyperplanes if noise is absent. Each hyperplane is determined by a dominant
state pair (a state in ST and another state in S7). Only those terms associated with
the dominant states need be evaluated. The number of dominant pairs, however, is
determined by the channel response.yAlthough our approach also leads to a decision
boundary consisting of hyperplanes; thereare'some fundamental differences to the method
in [39]. First, the number of pseudo states-€an beset arbitrarily in our approach and is
not dependent on channels. Wé&can then easily trade performance for complexity. Second,
the pseudo states are found through minimization of some criterion, not searching in &
space. Thus, the stochastic gradient method can be applied and this results in an adaptive
equalization algorithm. Note that hyperplanes found by the method in (4.3) are generally
not identical to those by the method in [39]. The key problem is, as mentioned above,

how to find those pseudo states. As we will show, our method is simple and effective.

4.2 Equalization Using a Single Hyperplane

We start with a simple case in which the number of pseudo states is two (i.e., one for
STt and the other for S~ ). From (4.3), we can see that the decision boundary is just a
hyperplane. We propose using the following MMSE criterion and nonlinear function to
estimate the pseudo states:

min  J(n) = E{[z(n - D) - y(m)’}, (4.4)

mji,Ims
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where , ,
exp (_Hr(n;;gnlu ) _exp (_\Ir(n)2c—r§rlz\| )

exp (—%) + exp <__||“(n)2;§nzll2)

where m; and m, denote the pseudo states. The signal y(n) in (4.5) corresponds to the

y(n) = (4.5)

MMSE estimate of x(n — D) when the number of signal states are two and their values
are known. Derivation of the nonlinear function in (4.5) is shown in the followings.
Consider an equalizer whose output is determined using the MMSE criterion described

below.

min J(n) = E{(z(n — D) —y(n))*}. (4.6)

The optimal solution for this cost function is known to be the conditional mean [70],
which is

() = Er(n — D)e(m)}. (4.7
For the equalization problem mentioned abové; we have

E{x(n — D)|r(n)} = +1- P(z(n— D) = lz(n)) £ (-1) - P(x(n — D) = —1|r(n)). (4.8)
Let the number of elements in S be one. Using the Bayes rule and the fact that P(x(n—

D) =+1) = P(x(n — D) = —1) ="1/2ywe have

P(x(n — D) = £1)p(r(n)|z(n — D) = £1)
p(r(n)) ’

where p(r(n)|z(n — D) = £1) is the a priori probability density function (PDF) condi-

P(z(n— D) =+1|r(n)) =

(4.9)

tioned on xz(n — D) = +1, and p(r(n)) is the PDF of r(n). They are given as follows:

1 x(n) — s
_ 4.10
27ragexp ( 202 ’ ( )

pr(n)|z(n — D) = 1) = —exp <—M> (4.11)

2
207

p(r(n)|z(n = D) = +1) =

where s; is the only state in ST and s, is the only state in S~. Note that

p(x(n) = P(a(n—D) = +1)p(x(n)|a(n—D) = +1)+P(a(n-D) = ~1)p(r(n)]a(n—D) = ~1).
(4.12)
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Substituting (4.9)—(4.12), into (4.7) and (4.8) and simplifying the result, we obtain

exp (_Hr(ngg—%sluQ) _exp (_Hl‘(ngg—;zHQ)

exp (_ ||l'(n2);351||2) + exp (_ ||r(n2)[;gs2||2)

Back to the development of the proposed equalizer. Equation (4.5) corresponds to the

y(n) = (4.13)

MMSE estimate of x(n — D) when the number of signal states are two and their values
are known. Thus, we can say that if the number of signal states is actually two, the
solution of (4.4) will give the true signal states. In general cases, the number of states in
S* is greater than two. How do we interpret the equalization results using the pseudo
state found in (4.4)-(4.5) and the decision rule in (4.3)? To answer this question, we first
rewrite (4.4) as follows. If z(n — D) is +1, the resultant signal state is in ST and the
corresponding pseudo state is m;. On the contrary, if z(n— D) is —1, the resultant signal

state is in S~ and the corresponding pseudo state is my. Then, (4.4) can be rewritten as

minsd [ (n)=amd{ [l v x(n)]2}, (4.14)

mi,ms 4

where I | )
oD (_%) . (_nr(n)Z;%nkn )

exp (_%) +exp (_Hr(nggnm)

i=1,k=2when x(n — D) is +1, and i = 2, k = 1 when x(n — D) is —1. Note that

Yik(n) = (4.15)

Y12(n) is the same as y(n) in (4.5). We introduce this notation for later development
convenience. From (4.14)—(4.15), we can observe that the form of the cost function is
similar for both transmitted symbols. Only the output definition is different. If the signal
state for a transmitted symbol is in ST and the received signal r(n) is closer to m; than
ms,, using the decision rule (4.3), we find that the decision is +1 and it is correct. However,
if r(n) is closer to my than m;, the decision is —1 and it is wrong. Note that if o2 is
small, the nonlinear function in (4.15) approaches a step function. When the decision
is correct, the cost function J(n) tends to be 0. When the decision is wrong, the cost
function J(n) tends to be a constant 1. The result is similar for the case in which the
transmitted symbol signal state is in S~. This property has a significant implication as
we described before. As [45] reveals, a classifier using a discriminant function will yield a

minimum classification error probability if the parameters of the function is obtained by
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minimizing a cost function which gives 0 value when the decision is right and a constant
when the decision is wrong. Two functions in (4.3) may be seen as two discriminant
functions. Thus, we conclude that equalization results using the decision rule in (4.3) and
the associated pseudo state estimates found in (4.14)—(4.15) will achieve a minimum error
probability.

Since (4.4) is highly nonlinear, it is difficult to obtain the solution directly. Here, we
employ the adaptive method to solve the problem. There are at least two advantages to
this approach. First, the optimal solution can be found using a process called training
and the computational complexity of the training algorithm is usually very low. Second,
the equalizer can be continuously trained using former decisions such that it can operate
in a time-varying environment. The specific method we use is called the steepest descent
method [61]. Let i,k € {1,2} and ¢ # k. For equations shown below, if the signal state
for a training symbol is in S, then i = d:-Otherwise, i = 2. Using the chain rule, we can

have the gradient vectors from (4:14). Then, the update equations are given as

mi(n+1) = m{m) + L =gix(n) (L - v, () (x(n) — my(n)), (4.16)
my(n+1) = my(n) ==y -y (n) (x(n) —my(n),  (4.17)

where p is the step size. As we can see, the computational complexity requirement for

the adaptive algorithm is quite low. Once the pseudo states are obtained, we can have

Smax aS
12
Smax — al'g zg}%};} (miTI‘(n) — @) . (4:]_8)
The decision is then
A _ +17 Smax — My
z(n— D) = { 1 s = m, (4.19)

From the stand point of classification, (4.18)—(4.19) divides received signal space R into
two regions R}, R, and assigns a decision value to each region. We call ’Rfj the decision

region for z(n — D) = +1. From (4.18), we can have the decision region as
A
Rj = {r(n) € R¥ : fi(r(n)) > fo(r(n))}, (4.20)

Ry 2 {x(n) € R¥ : fi(x(n)) < fo(r(n))} . (4.21)
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where

filr(n)) = my"r(n) - ”m;” : (4.22)
flem) = maTen) — 122 (4.29

We now use an example to describe the algorithm proposed above. As the same Example

1. in 2.3, the result was shown in Fig. 4.1. The received signal space is a plane and

2

15

05

r(n-1)

-051

151

0
r(n)

Figure 4.1: Decision boundaries for the proposed (dashed line) and the Bayesian (solid
line) equalizer with two subsets.

the decision boundary is a one-dimensional curve. As we can see from the figure, the
decision boundary of the proposed algorithm is linear, which was expected. It is also
interesting to note that the determined pseudo state in ST (or ™) is quite close to one
of the states in St (or §7). From the figure, it is apparent that there is much room for
performance enhancement. If we can break the decision boundary into smaller pieces and
approximate each piece using a linear boundary, we can better approximate the optimal
decision boundary. To implement this idea, we must then subdivide S* (or §7) into

smaller subsets. This is elaborated in the next subsection.
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4.3 Equalization Using Multiple Hyperplanes

In the previous subsection, we developed an equalization algorithm using a single hy-
perplane. The signal state set S was divided into two subsets S* corresponding to
xz(n — D) = £1 and two pseudo states were used. In this subsection, we extend this
method to accommodate the general equalization problem. The idea is to subdivide each
signal state set S* into more subsets. Each subset is represented by a pseudo state. A
hyperplane decision boundary is then determined using a pair of pseudo states. Our sub-
dividing approach is simple and straightforward. For example, the signal state set S can
be divided into four subsets corresponding to z(n — D) = £+1 and z(n — D — 1) = %1,
or one corresponding to z(n — D 4+ 1) = +1 and z(n — D) = £1. To have a general

formulation, we first rewrite the input vector x.(n) as a combination of three vectors.

x(n) = [xgim)x; (n), x5 (n)]", (4.24)
where
xi(n) = [2(n),%8ln + )y rtin =P + 1)),
xo(n) = ol — PYb— Pl 20— Q+ DI,
x3(n) = [z(n—Q),z(n —Q —1), -+ ,x(n — L, — L, + 2)]", (4.25)

where @ > D > P >0and L.+ L. —2 > @ > 1. Note that xs(n) includes z(n — D) and
its length is Q — P. Depending on the value of D, x;(n) or x3(n) may or may not exist.
For example, if D = 0, we do not have x;(n). Let M = 29=F. We then have M possible
vector values for x,(n). Denote these vectors as x;, i = 1,2,---, M. Now, we can divide

the signal state set according to the value of x5(n):
S'={s;€S:x()=x}, 1<i<M (4.26)

and

s=J s (4.27)
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For example, if we let D =0, P =0, and @ = 2, then x9(n) = [z(n),z(n — 1)]7 and the

corresponding subsets are

St = {s; € S:xy(n) = [+1,+1]"}, (4.28)
S§? 2 {s;€8:x(n) = [+1, -1}, (4.29)
S 2 {s;€8:x(n) =[-1,+1]"}, (4.30)
S' 2 {s;€8:x(n)=[-1,-1"). (4.31)

If P =@ =0, we then have two signal subsets and this degenerates to the case discussed
above. We then define M pseudo states, m;, my, - -+, m,, to represent the corresponding
M subsets. Thus, we have M decision regions associated with these subsets. For the
time being, we assume that these pseudo states are known. The decision rule using (4.3)
suggests that we can assign a received signal vector r(n) to Subset i if the distance to m;
is minimal. Once the signal subset has'been’determined, the x(n— D) value corresponding

to the subset gives the decisions Define/Z® as.a set with indexes such that
T 2 eN : Tox,= +1), (4.32)

where Jp is a (@ — P) x 1 vector and

Jp=[0 --- 01 0 --- 0]
P [_,_/ ] (4.33)
D—P+1
Also, define
T [ |
fi(r(n)) =m; r(n) — Yy (4.34)
Thus, the output decision can be obtained as
i = argmax fi(r(n)), (4.35)
!
" _ +1, €It
&(n—D) = { 1 ier (4.36)

The overall structure of the proposed nonlinear equalizer is shown in Fig. 4.2. The re-

2

7 |mill
(A

72]T

sponse of each linear discriminant function in Fig. 4.2 corresponds to f; = [m ,
and the input of each function is t(n) = [r(n)”,1]". If r(n) is in the decision region of
Subset 7, then

fie(n)) > fi(e(n)), j=1,2,--- M and i#j. (4.37)
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Figure 4.2: The structure of the proposed nonlinear equalizer.

Note that each inequality in (4.37) forms a hyperplane between Subset i and j. If we
pretend that only these two subsets exist, this gives a decision region for Subset 7. For
the same Subset i, there are M — 1 such regions (j = 1,2,--- , M, j # i) and the true
decision region for Subset 7 is the interseetion of these regions. Let Rijj be the decision
region formed by Subset i and js(with respeet t0*Subset i) and R}, is the decision region

for Subset i. Then,

R 2 [eln) € REEET (2n)) > f(r(n)} (4.38)
and
Ry = Ry (4.39)
J#i

Then the final decision region R corresponding to z(n — D) = +1 is
R: = | Ri (4.40)
i€TE
To have a better understanding of this idea, we give an example here.
Consider the same scenario given in Example 1 in 2.3. We divide signal state set &
into four subsets (M = 4) using the method described in (4.28)—(4.31). This means that

x(n) = [xI(n),xI(n)]T, where xo(n) = [z(n), z(n —1)]F and x3(n) = x(n —2). Note that
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x1(n) is absent in this case. We then have the corresponding subsets

St = {s; =[1.5,1.5)", 8, = [1.5,0.5]" : x(n) = [+1,+1]7}, (4.41)
S* £ {s;=105,-05,8, =105 —15T : x, = [+1,—1]"}, (4.42)
S 2 fs5=[-05,15"T,85=[-05 057 : xo =[-1,+1]"}, (4.43)
S' 2 {s;=1[-15-05"8s = [-1.5,—1.5]" : xo=[-1,-1]T}.  (4.44)

The proposed algorithm is then applied to perform equalization. Fig. 4.3 shows how a

decision region is formed in detail. Here, we use R} for detailed description. Since M = 4,

2 T

15

0.5

r(n-1)

3

-0.5

-1.5

2 15 1 -0.5 0 05 1 15 2
r(n)

Figure 4.3: The decision region of Subset 1, R}.

the region is formed by three dashed lines [, l;3, l14, where [;; is the decision boundary
between R} and RY. Tt is obtained by solving f,(r(n)) = f;(r(n)), j = 2,3,4. Symbol
* in the figure represents pseudo states. The three shadow regions on the right side of
l;; show the region of fi(r(n)) > f;j(r(n)). We can see that shadow region R} is the
intersection of all regions for fi(r(n)) > f;(r(n)), j = 2,3,4. Fig. 4.4 shows all of the
decision regions R}, j = 1,2,3,4. By definition in (4.32), Z+ = {1,2}, and Z~ = {3,4}.
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Figure 4.4: Decision regions for all subsetss Ry, i =1,2,3,4, and decision boundaries of
the proposed (dashed line) and the Bayesian {selid line) equalizer.

The decision R corresponding to z(n)= %1 are then

Re = RalJRi (4.45)
Ry = RilJRi (4.46)

The final decision boundary can also be seen in Fig. 4.4. It shows that the decision bound-
ary of the proposed equalizer is very close to that of the Bayesian equalizer. However, as
we show below, the computational complexity of the proposed algorithm is significantly
lower.

We next describe how to find the pseudo states m; m, --- mj;;. We extend the
method in (4.14). If the signal state for a transmitted symbol is in &', then the cost
function to be minimized is defined as

min J( ) ZE{ yzk )] }7 (4'47)

k;ﬁz

exp (_HI'(TL;;;MHQ) — exp (_||r(n)2;%11k||2)

n) = )
exp <_7”"(";Uml” ) + exp ( IEy (n)2;§nk|\2>

where

(4.48)



Note that J(n) tends to be 0 if the decision is right and a value less than 1 if the decision
is wrong. Thus, as mentioned above, the decision rule associated with the estimates in
(4.48) will yield a minimum error probability among all detectors using the same number
of hyperplanes. To find the pseudo states, we still apply the adaptive method. For each
received signal vector r(n), we can obtain its corresponding signal state x.(n). According
to x3(n), we know to which subset the signal state belongs (in training mode). The
stochastic gradient descent method can still be used here. We then perform pseudo state
adaptation similar to (4.16)—(4.17). If a received signal vector belongs to Subset i, we

then have the following adaptive algorithm (i # k).

mi(n+1) = my(n) +p Y (1= yix(n)(L = yix(n))(x(n) —m(n)),  (4.49)

ki
m(n+1) = myg(n) — p(l = yix(n)(1 =y, (n)(r(n) — my(n)), (4.50)
exp (_Hr(n);n;i(n)H?) — exp (_Ilr(n)—Qn}zk(n)Hz)

Yik(n) (4.51)

exp (_M) Fexp (_Hr(m—ﬁ(n)n?)

Note that the physical interpretation of the value T in (4.49) and (4.50) is different from
that in (4.16)—(4.17). In (4.16)=(4.17); the-value of 1 corresponds to the desired signal,
which is z(n — D), while in (4.49) and (4:50) it is just a desired constant for a right
decision.

If SNR is high (¢? small), we can simplify the adaptation in (4.49). We can only

update the pseudo state k (k # i) that is closest to r(n). Thus, the adaptive algorithm
(4.49)—(4.51) becomes

ko= argmin|jr(n) - my(n)]|” (4.52)
m;(n+1) = m;i(n) + p(l — i) (1 = y7x(n)) (x(n) — my(n)), (4.53)
m(n+1) = mg(n) —u(l = yir(n)(1 = yi(n)(x(n) —m(n)),  (4.54)

where 7; = {1,2,--- ;i — 1, +1,--- | M}.
Since the cost function is a nonlinear function, the adaptive algorithm may converge to
a local minimum. Thus, proper choice of initial value is important. We suggest using the

clustering method [28] to obtain a reliable initial value. The computational complexity
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requirement for this algorithm is very low. The clustering method is given as:

if x3(n) ==x;
m;(n + 1) = counter; X m;(n) + r(n);
counter; = counter; + 1;
m;(n + 1) = m;(n + 1) /counter;;

end (4.55)

We have thus assumed that the noise variance is known a priori. As a matter of fact,
this assumption is not required. The smaller the noise variance, the more closely the
function in (4.51) approaches a step function and the closer the equalizer is to achieving
the optimal performance (minimum classification rate). However, the adaptive algorithm

also converges more slowly which affects the final pseudo states positions. Thus, we can

2

~ as a design parameter. As welshoW in the next section, the equalization results

treat o
are not sensitive to the choice of this parameter. Denote the parameter as o. According

to the adaptive algorithm given above, we may summarize the overall adaptive algorithm

to adjust m; msy --- my; asfollows:
1. Initially set m; mg ::-my by the clustering method
2. For each instant of time,n=1,2,...,
if xy(n) ==x;
for [=1: M
G(n) = |lr(n) — my(n)|]®
end
k= i
arg min G(n)
. _ exp(—Gi(n)/2a)—exp(—(k(n)/2a)
Yir(1) = GG ) ey Texp( Gy (m)/20)
m;(n + 1) = my(n) + (1l — yix(n) (1 — y7,(n))(r(n) — m;(n));
my(n + 1) = my(n) — p(1 — yik(n))(1 — y7x(n))(x(n) — my(n));
end

end

The proposed method described above partitions the signal space into 2! subsets, where
I is an integer. It is straightforward to see that if we proper combine the decision regions,
we can have arbitrary number of discriminant functions. In Example 1, we can only con-

sider three x3(n) patterns, i.e., xo(n) = [+1, X], x2(n) = [-1, +1], and x2(n) = [-1, +1]
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where X denotes don’t-care. Then, we can have three discriminant functions.

With a minor modification, the clustering algorithm described above can find the
mean of each cluster as well as the variance. Assuming that each cluster has a Gaussian
distribution and treating its mean as a state, we can then apply the Bayesian decision
rule. We call this a reduced-state (RS) Bayesian equalizer. Depending on the number of
clusters, the computational complexity of the RS Bayesian equalizer can be much lower
than that of the original Bayesian equalizer. However, as we show in the next section,
the performance of the RS Bayesian equalizer is poor unless the number of the clusters is

large.

4.4 Decision Feedback Equalization

The Bayesian DFE is known to be the optimal symbol-by-symbol DFE. Similar to the
Bayesian feedforward equalizer, its.edmputational complexity is high. We can extend the
algorithm proposed above to reduce the computational complexity of the Bayesian DFE.

Define the input data vector x(n) be a combination of four vectors
x(n) =fx; (n), x; ()i (n), x5 (n)]" (4.56)

where

x1(n) = [z(n),z(n—1), -+, z(n—P+1)]" (4.57)
x3(n) = [z(n—P),z(n—P—1),---,2(n—Q+1)]" (4.58)
xs(n) = [2(n—Q),2(n—Q—1), -+, z(n—S+ 1T (4.59)
x4(n) = [z(n—S),2(n—-S—1),---,x(n—L,— L, +2)]" (4.60)

(4.61)

where S > Q@ >D>P>0and L. +L,—Q —2>S5 > > 1. The fourth component
will be obtained from decision feedback. Let X;(n) be the feedback vector and decisions
be correct. Then, x4(n) = %X,(n). Since the length of X,(n) is L, = L.+ L. — S — 1, there
are N, = 2™ possible decision pattern. As defined, we call each pattern a decision state

and its possible value is x;, 1 < j < N;,. We then define the input data vector given the
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decision state j as

x;(n) = [x1;(n),%5,;(n), x3;(n), %, (n) = %; " (4.62)

Note that X, ;(n) includes z(n — D) and its length is () — P. Similar to the feedforward
equalization scenario, x; ;(n) and x,j(n) may or may not exist. We then have M =
2@+ possible vector values for x, ;(n). Denote these vector as x;;, 1 < i < M. Thus,
we can divide the received signal space into M classes according to x2 j(n) = x;; (for the
jth decision feedback state). Thus, we can divide received signal space into M classes
according to x9(n) = x;;. Then we use M pseudo states {m;;, my;, ---,my;} to
represent these classes.

Define If as a set with indexes such that
TF={ieN: Jhx,; = +1}. (4.63)

where Jp is (Q — P) x 1 vector and
Jo=[0 -0 .1 0 --- 0]
P [_,_, | ] (4.64)
D—P+1

Thus, Zf is the index set corresponding-to-the subset in Sf. Also, define

2
mi7'
fosfe i mtjetn) — il (465)
Then, the final decision can be obtained as
i = arg rnlin fi.i(r(n)), (4.66)
1, i€Z;
z(n—D) = { 1, el (4.67)

The overall structure of the proposed equalizer shown in Fig. 4.5. Note that, if we do not
use the feedback signal, the selection part can be ignored.
We need also to decide the unknown parameters m,; ;’s. Using the cost function in

(4.47), we have
min J]( — 1 ZE{ —Yi k,] )] }7 (468)

k;ﬁz
where

exp (_ur<n>2—g?i,ju2> ~exp (_||r<n>2—;§k,ju2>

exp (_nr(n)% e ) +exp< Hr(")%r;lkﬂl?)
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Figure 4.5: The structure of the proposed nonlinear DFE.

Using the same technique described in the previous section, we can obtain the corre-
sponding adaptive algorithm. We summarize the overall adaptive algorithm for m, ;
identification in Table 4.1.

Since there are IV, feedback states.-we then.wilkhave N, sets of discriminant functions.
Thus, we have to store all these functions and the"memory size may be large. Here, we
propose a method to alleviate this problem=As mentioned above, s; ; denotes one possible
signal state given X,(n) = %,;. More accurately; s; ; in (2.17) is a mapping of the sth input
vector [x] (n), x5 (n), x5 (n)]* given X,(n) = %x;. Consider the linear channel scenario, i.e.,

L.—1

Y(z(n),---,z(n—L.+1)) = Z cix(n — 1) (4.70)
i=0
where ¢;’s are the channel input responses. The signal vector s(n) can be written as
s(n) = Cx(n) (4.71)

where C is a Toeplitz matrix with the channel responses ¢;’s and

Co cy e CLc—l 0 [P 0
0 C C .. e C _ 0 .. e

c=|. - . (4.72)
O ... O CO Cl ... Cchl

Decompose x(n) as x(n) = [x}(n), %} (n)]" where x;(n) = [x{(n),x3(n),x3(n)]". The

matrix C can then be decomposed accordingly, i.e., C = [C, C;]. Thus, (4.71) can be
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Table 4.1: The adaptive algorithm of proposed DFE

1. Initialize variables: n =0,
m;;(0)=0fori=1,...,Mandj=1,...,N,
2. Clustering method (find the initial value),n=1,2,...
if X.2(n) = x; and X,(n) = X;
m; ;(n + 1) = counter; ; x m; ;(n) + r(n),
counter; ; = counter; ; + 1,
m; ; (’I’L + ].) = mm-(n + ].)/COllIlteI"iJ.
end
3. Adaptive algorithm
if Xy;(n) = x;; and X,(n) = X;

forl=1: M
Cri(n) = [lr(n) —my;(n)]?,
end

k = arg m;n Gi(n)

 exp(=Gij(n)/20)—exp( =Gy (n)/2a)
Yikig = exp( 3 (m)/20)+exp(—Cr s (n)/20)
m; j(n + 1) = m j(n) =i, (0) (1 = y7y (n) (x(n) —m;;(n)),
my, ;(n 4+ 1) = my, j(n) — p(l—yixg(n) (1 — y7 ;(n)(r(n) — my ;(n)),
end

rewritten as
S(TL) = Cfo(TL) + becb(n) (473)

From (4.73), we can see that s;; —s;x = Cy(X; — X), j # k, for 1 < i < N,. This is to
say that signal states for two feedback states has a common difference vector. Thus, we

can describe all signal states (for different given feedback states) as
Sij =Sintd; ;1< <N, (4.74)

where d; is a difference vector and d; = 0.
According to the symmetric property, each pair pseudo states m; ; and m;; can also
have the same difference. The storage of pseudo states can be reduced by this approach.

We can express these pseudo states by the following vectors
m;; =m;; +d;, 1<i<M, 1<j<N, (4.75)

By this approach, all the parameters needed to identify are m;; and d;, 1 < ¢ < M,

1 < j < N, where d; = 0. The number of vectors required is reduced from M x N,
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vectors to M + N, — 1 (m;; for 1 <i < M and d; for 2 < i < N,). Using the same cost
function (4.68), we can derive the corresponding adaptive algorithm summarized in Table

4.2.

Table 4.2: The adaptive algorithm for the proposed reduced storage DFE

1. Initialize variables: n =0,
m;;(0)=0andd;=0fori=1,...,Mand j=1,...,N,
2. Clustering method (find the initial value),n=1,2,...
if X.2(n) = x; and X,(n) = X;
if j=1
m;(n + 1) = counter; ; X m;(n) +r(n),
counter; ; = counter; ; + 1,
m;;(n+ 1) =m;;(n+ 1)/counter; ,,
else
tmp = counter; ;(n) x (m;(n) +d;(n)) +r(n),
counter; ; = counter; ; + 1,
d;(n + 1) = tmp/counter;; — m; ; (n).
end
end
3. Adaptive algorithm
if X2,j (n) = Xi,j and fcb(n) = }A(j

for{i=1: M
Gg(n) = [lr(n) —(my;(n) + d; ()],
end

k= argmin Gi(n)
exp(—Ci,j(n)/2a)—exp(—Cx ;(n) /2a)

Yk = exp(—Ci,j(n)/2a)+exp(—Cx j(n)/2a)
if j=1
m;;(n+ 1) =mi;(n) + p(1 = yika(n)) (1 - yzkl( )(r(n) — mjy;(n)),
my, (0 + 1) = my(n) + (1 = yir1(n))(1 = g7y, (n)(x(n) — my,(n)),
else

d;j(n+1) = d;(n) + (1 = yik; () (L — ¥4 ;(n) (Mg (n) — My, (1))
end

Although the algorithm can reduce the storage, the performance may be affected in
nonlinear channels. Since in nonlinear channels, each pair signal state s; ; and s; ; do not

have the same difference. We will show later that the performance loss is small.

63



4.5 Computational Complexity

There are two phases in the operation of the proposed algorithm, the training and decision
phases. For simplicity, we treat the computational requirement for division the same as
that for multiplication. We summarize the overall computational requirement without
decision feedback in Table 4.3 and 4.4. Roughly speaking, in the decision phase, the
complexity of the proposed equalizer is M times higher than the linear equalizer. The
actual choice of M is dependent on the desired performance. In our design, the decision
region for each subset is automatically and adaptively formed, and these decision regions
approximate Bayesian regions. In principle, if the Bayesian decision boundary has a
complex shape, we need more subsets. In many cases, however, only a small number
of subsets is sufficient. The computational complexity of the proposed equalizer can be
much lower than that of the Bayesian equalizer because M can be much smaller than
N, without significantly sacrificing performanée. Note that if a time-varying channel is
considered, decisions can be used to train.the proposed equalizer continuously such that
channel variations can be properly tracked. In this case, the computational complexity
for the proposed equalizer is thé.summation-of that listed in Table 4.3 (the adaptive part)
and that in Table 4.4. Since the value of 4 used is usually small, the overall complexity

will not be increased significantly.

Table 4.3: Computational complexity comparison for the linear and proposed equalizers
in the training phase

Proposed Linear
Initial | Adaptive
Multiplications L, M+2L.+5 2L, +1
Additions L. (M+4)L, + 4 2L,
Others 2% exp(-)

We also summarize the computational complexity for the proposed DFE algorithms in
Table 4.5 and 4.6, respectively. Similarly, the computational complexity of the proposed
equalizer can be much lower than that of the Bayesian DFE because M can be much

smaller than N, without significantly sacrificing performance.
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Table 4.4: Computational complexity comparison for the linear, proposed, and Bayesian
equalizers in the decision phase

Bayesian | Proposed Linear
Multiplications | Ny (L. +1) | ML, L.
Additions 2L.N,—1 | ML, L,—1
Others N, x exp(-) | Compare log-
ics

Table 4.5: Computational complexity comparison for the conventional and proposed DFEs
in the training phase

Proposed DFE
Initial | Adaptive
Multiplications | L, M+2L,+5 2(Le + Ly)
Additions L. (M+4)L, + 4 2(Le + Ly + 1)
Others 2x exp(+)

4.6 Simulation Results

In this section, we report some simulation résults demonstrating the effectiveness of the
proposed equalizers. Two linéar. chaunels=and two nonlinear channels were used. We
compared the proposed equalizer with an optimum Bayesian equalizer, a conventional
MMSE linear equalizer, and a MBER linear equalizer [52]. The bit error rate (BER) was

used as the performance measure. We first considered a linear channel [28]. The channel

is described using a difference equation as:

r(n) = 0.3482x(n) + 0.8764x(n — 1) + 0.3482z(n — 2) + v(n). (4.76)

Table 4.6: Computational complexity comparison for the conventional, proposed, and
Bayesian DFEs in the decision phase

Bayesian DFE | Proposed DFE
DFE
Multiplications | Ny x (L. +1) | ML, L,
Additions 2L.Nyg— 1 ML, Le—1+ L,
Others Ny x exp(-) | Compare log-
ics

65




As we can see, the channel length is 3 (L. = 3). For all equalizers compared, we let L, = 4
and D = 1. Thus, N, = 2l<tLe=! — 64, For the proposed equalizer, we let M = 4 and
M =8, for which x3(n) = [z(n—1),z(n—2)]" and x5(n) = [z(n—1),2(n—2),z(n—3)|",
respectively. The simulation results for various SNR conditions are shown in Fig. 4.6.

10° ¢ ; : >

Linear MMSE
Linear MBER
Proposed (M=4)
Proposed (M=8)
Proposed (M=16)
Bayesian

1 | | 1 1 1 [

8 10 12 14 16 18 20 22
SNR

ARSI EES

Figure 4.6: BER comparison for the MMSE linear, MBER linear, proposed, and Bayesian
equalizers.

In the figure we see that the performance of the MMSE linear equalizer was the
worst and the Bayesian one was the best. There is a performance gap in between. The
performance of the linear MBER equalizer [53], [54] was only slightly better than that
of the linear MMSE equalizer. The performance of the proposed equalizer was close to
that of the Bayesian equalizer when M = 8 . However, the computational complexity
was significantly lower. While the performance of the proposed equalizer when M = 4
was worse than when M = 8, it was much better than that of the MBER linear equalizer.
We observed the learning curve for the proposed equalizer (M = 4 and SNR=15dB) and
found that the adaptive algorithm converges around 5000 iterations. Fig. 4.7 gives a

performance comparison for the proposed and the RS Bayesian equalizers.
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Figure 4.7: BER comparison for the proposed and RS Bayesian equalizers.

The RS Baysian equalizer performéd poorly when M = 4 and M = 8. Although the
performance of the RS Bayesian equalier. was good when M = 16, it was worse than that of
the proposed equalizer when M = 8. We have also tried various « values for the proposed
algorithm (M = 4). We varied o from 0.05 to 0.8 and found that the performance was
almost unaffected. The proposed algorithm performance is not sensitive to the choice of
a.

The second channel we considered was also a linear channel [31]:
r(n) = 0.5z(n) + z(n — 1) + v(n). (4.77)

We let L, = 2 and D = 0 for all equalizers. Note that for this scenario, the signal state
spaces ST and S8~ were not linearly separable. Since L. = 2, N, = 8. We also used
M = 4 and M = 8 for the proposed equalizer. The simulation results are shown in Fig.
4.8. In the figure, we can see that the performance of the linear equalizers was very poor.
This is not surprising since the signal space was not linearly separable. Even for high

SNRs, the linear equalizers could not give satisfactory results. Nonlinear equalizers are
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Figure 4.8: BER comparison for:the MMSE linear; MBER linear, proposed and Bayesian
equalizers.

not affected by this problem: the higher the SNR, the lower the BER. The performance
of the proposed equalizer was very close to that of the Bayesian equalizer. When M = 8§,
there was almost no difference. To explain the reason, we show decision boundaries for the
Bayesian equalizer and the proposed equalizer when M = 4 in Fig. 4.9. In the figure, we
can clearly see that the decision boundary of the proposed equalizer closely approximated
that of the Bayesian equalizer. Only in the central region in Fig. 4.9, is there some
discrepancy. However, this does not contribute significant bit errors.

The decision boundary for the proposed equalizer when M = 8 is further shown in Fig.
4.10. Note that the decision boundary of the proposed equalizer almost exactly matched
that of the Bayesian equalizer. Note also that the pseudo states identified were very close
to the true signal states. This was expected since there was only one state in each subset.
It is important to realize that even in this case, the computational complexity of the
proposed algorithm was still lower than that of the Bayesian equalizer.

We next considered a nonlinear channel, a linear channel followed by a memoryless
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Figure 4.9: Decision regions for all subsets;,R’,i = 1,2,3,4, and decision boundaries of
the proposed equalizer when M =4 (dashed line) and the Bayesian (solid line) equalizer.

nonlinearity. The input-output-relationship of the linear channel is given by
q(n) = 0.08z(n)+0.42z(n—1)+2(n=2)4+038z(n—3)—0.1x(n—4)+0.09x(n—>5). (4.78)
The output of the memoryless nonlinearity is given by
r(n) = q(n) + 0.036¢*(n) — 0.01¢*(n) 4 v(n). (4.79)

For this case, L, = 6 and set L, = 4 and D = 2 for the equalizers. It turned out that
N, = 512. The number of states was then large and the computational complexity of
the Bayesian equalizer became huge. Fig. 4.11 shows the performance for these equaliz-
ers. Each BER result was obtained using 10® runs. As the figure shows, the nonlinear
equalizers significantly outperform the linear ones. The proposed equalizer efficiently ap-
proximated the optimal Bayesian equalizer. While the performance loss was moderate,
the computational complexity reduction was significant. Table 4.7 shows a computational
complexity comparison for all equalizers (in the decision phase).

Next, we consider another nonlinear channel which has been considered in the previous
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Figure 4.10: Decision regions for all subsets; R%,7 = 1,2,---,8, and the decision bound-
aries of the proposed equalizer when M = 8 (dashed line) and the Bayesian (solid line)
equalizer. :

chapter. The input-output relationship of the lineaf channel is given by
q(n) = —0.227x(n)+0.460x(n—1) +0.8482(n—2) +0.460x(n—3) — 0.227x(n—4). (4.80)
The output of the memoryless nonlinearity is given by
r(n) = q(n) + 0.156¢*(n) — 0.031¢*(n) + v(n). (4.81)

First, we do not include the decision feedback signals and set L. = 5, D = 5. The total
number of signal states in Bayesian equalizer is N, = 512. For the proposed equalizer,
we let M =4 M =8, M =16 and M = 32, for which x5(n) = [z(n — 4),z(n — 5)]" and
xo(n) = [z(n — 3),z(n —4),z(n —5)]", x2(n) = [z(n — 2),z(n — 3),z(n — 4),z(n — 5)|7,
xo(n) = [z(n—2),2(n—3),x(n—4),z(n—5),2(n—6)]7, respectively. The result is shown
in Fig. 4.12. As the figure shows, the nonlinear equalizers significantly outperform the
linear ones. The performance was very close to the Bayesian equalizer when M = 32.
However, the Bayesian equalizer needs 512 signal states and the method proposed by Chen

[39] needs 301 hyperplanes. Our approach is much more efficient than existing methods.

70



10_1§ E
& -2
B10°F 1
—%— Linear MMSE
=1 —O~ Linear MBER |
10 -G~ Proposed (M=4) ]
-~ Proposed (M=8)
-~ Proposed (M=16)
— Bayesian
10_4 I I [ I I I I

|
4 6 8 10 12 14 16 18 20 22
SNR

Figure 4.11: BER comparison for the MMSE linear; MBER linear, proposed, and Bayesian
equalizers.

We then compare the performance of all equalizers with decision feedback. For this
case, we set L, =5, P =2, D =5, =0 and S = 0. The decision feedback term are
X4(n) = [#(n —6),2(n—T7),2(n — 8)]T. For the proposed equalizer, we let M =4, M = 8
and M = 16, for which x,(n) = [z(n—4),2(n—>5)]", x5(n) = [x(n—3),z(n—4),z(n—5)]"
and x3(n) = [z(n — 2),z(n — 3),2(n — 4),z(n — 5)]", respectively. The performance
comparison is shown in Fig. 4.13. This figure shows that, once again, the performance
of the conventional DFE is the worst and the Bayesian one is the best. Note that the
performance gap between them is bigger due to higher nonlinearity of the channel. While
the proposed equalizer when M = 4 was worse than when M = 8 and M = 16, it was
much better than that of conventional DFE. The performance of the proposed DFE with
M =16 is very close to that of the Bayesian DFE. Also note that the performance of the

reduced storage method degrade slightly.
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Table 4.7: Computational complexity comparison for the linear, proposed (M = 8), and
Bayesian equalizers (for the nonlinear channel in simulations)

Bayesian Proposed Linear
Multiplications 2560 32 4
Additions 4095 32 3
Others 512 x exp(-) | Compare
logics
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Figure 4.12: BER comparison for the MMSE linear, proposed, and Bayesian equalizers.
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Figure 4.13: BER comparison for the Conventional DFE, proposed DFE, and Bayesian
DFE.
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Chapter 5

Adaptive Asymptotic Bayesian
Equalization Using a set of
Discriminant Functions

In this chapter, we consider equalization as a classical pattern recognition problem and
propose nonlinear equalizers usingsthe disériminant function approach. The classifier
proposed in [43], [44] belongs to the same type. In [43], [44], observations for a possible
transmit symbol are mapped o ‘a class and a noilinear discriminant (neural network)
is developed for the class. In‘the preposed-method, we let observations for a possible
transmit symbol be mapped to multiple classes and multiple linear discriminant functions
are derived for the class. In other words, we employ a large set of linear discriminant
functions instead of a small set of nonlinear functions in the equalizer. We develop a
mapping method that is independent of the channel response and can arbitrarily set
the number of discriminant functions. This allows a easy trade-off between performance
and computational complexity. We also develop an adaptive method that can identify the
linear discriminant functions and make the proposed algorithm applicable in time-varying
environments. Except for the feedforward equalization algorithm, we have also consider
efficient and fast convergent decision feedback algorithms. The strategy to use the decision
feedback signal is different from that in [39] and [41]. The choice of discriminant functions
does not depend on channel responses and the equalizer design is the same for linear and
nonlinear channels.

Note here that the results derived in this chapter is very similar to those in the previous

chapter. However, there implications are different. The method in the previous chapter
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starts from the signal state point of view while the method here from the discriminant
function point of view. The number of parameters required to identify is also different. It
turns out that the linear discriminant function used here has one more parameter. This
will not affect equalization in general scenario. However, for efficient and fast implemen-
tations, there will be a difference. The method developed in this chapter will perform

better.

5.1 Bayesian Equalization Using the Linear Discrim-
inant Function Approach

Although the feedforward and decision feedback Bayesian equalizers are optimal, their
computational complexities are usually very high. This is because we have to evaluate
N, exponential terms in (2.14) and Ny terms in (2.22), and N, and N, are increased
exponentially with the channel length.

From (2.12)—(2.14), (3.99) and the Bayes’ tule;*we can see that the Bayesian equalizer
is actually an optimal classifier. However: its a posteriori probability function is rather
complex. Thus, we can approximate itrwithrar classifier with two discriminant functions.

We can have the decision rule shown=below.

i = arg max filr(n),Ay), 1=1,2 (5.1)
A 1, if i=1
z(n—D) = { 1o (5.2)

To have the same performance as the Bayesian equalizer, the discriminant functions must
be able to form the same decision boundary as that by the likelihood functions x{*)(r(n))
and x(7)(r(n)) in (2.13). Since these functions are highly nonlinear, the discriminant
functions that can give the similar performance have to be the nonlinear also. In [43] and
[44], a family of MLP networks was proposed as the discriminant functions. However,
since the number of required parameters is large, its computational complexity is high.
As we shown, the linear discriminant function has low computational complexity and
easy to apply. However, its performance is usually not satisfactory in the application

here. This is because the a posteriori probability is non-Gaussian; it is a mixture of many
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Gaussian components. It is possible to re-formulate the Bayesian equalization problem
such that linear discriminant functions can be applied.

Recall the Bayesian equalizer

+1, fp(r(n)) >0

in-p)={ T} P Zo :3)

where
r(n) —sif? Ir(n) — sif?
paten) = 3 exp (I ZSEY 5 e (D)
s;EST s;ES™
If o is small (high SNR), the summation operation can be approximated by a maximum

operation.

r(n) —s;||? r(n) — s;||?
5 o (DS (=)

g, max (s;fpr(n)— ”55'”2). (5.5)

SZ'ESi

Using (5.5), we can re-formulage the decision rule in (5.3) and (5.4) as

. +1, spe ST
x(n—D):{_l S’Zes_ , (5.6)

where

k= arg max s/ r(n) — 1 <I<N,. (5.7)

We now can define a set of linear discriminant functions as

_ s

filr(n), \y) = sl'r(n) 5 1<I<N,, (5.8)

where A; = [s], |[s]|?/2]". From (5.7), we can re-write the decision rule as

N . +1, s; € St
Z(n— D) = { 1 seS (5.9)
where
k= arg max file(n),Ay) for 1 <I<N,. (5.10)

The equalizer in (5.9) can asymptotically (o — 0) approximate the Bayesian equalizer.

With this approximation, we now have a different view for the equalizer problem. The
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main difference is that the equalization problem is no longer considered as a two-class
classification problem (for BPSK signal). It is a N,-class classification problem. Or,
we may say that we still have a two-class classification problem. But now, each class
has N, /2 subclasses and classification is performed at the subclass level. With this new
perspective, we can have a completely new equalization concept. However, since N, is
usually large, the computational complexity is still high. In what follows, we will propose

a new approach to solve this problem.

5.2 Proposed Equalizer

The main idea of our approach is to treat equalization as a multiple-class instead of a
two-class classification problem. By doing so, we can use a set of linear discriminant
functions instead of two highly nonlinear discriminant functions. As we have seen, the
number of the linear discriminant filnetion ¢an be large. We now propose a method to
solve the problem. We first congider the scenario svithout decision feedback. Rewrite the

data vector x(n) as a combination three vectors.

x(mh= [T (), x50, <5 (n)]”, (5.11)
where
xi(n) = [z(n),z(n—1),--- ,z(n - P+ 1),
x3(n) = [z(n—P),z(n—P—1),---,2(n—Q +1)]7,
x3(n) = [z(n—Q),r(n—Q —1),- -, 2(n — L. — L. + 2)]", (5.12)

where Q@ > D > P >0and L.+ L. —2 > @ > 1. Note that x5(n) includes z(n — D) and
its length is Q — P. Depending on the value of D, x;(n) or x3(n) may or may not exist.
For example, if D = 0, we do not have x;(n). Let M = 29=F. We then have M possible
vector values for x(n). Denote these vectors as x;, 1 < i < M. Now, we can divide the

signal state set according to the value of x3(n):

S 2{s; €8 %M =x}, 1<i<M (5.13)
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and

s=J s (5.14)
1<i<M

Since we have M signal subsets, we can then partition the received signal space into M

classes using M discriminant functions denoted by
fi(r(n), Ay) = wix(n) + by, (5.15)

where A; = [w!,b;]". How to identify the unknown parameters will be discussed in
the next section. For the time being, we simply assume that the parameters in these

discriminant functions are known. Define Z* as a set with indexes such that
TE2 (ie N Jhx; = £1). (5.16)

where Jp is (Q — P) x 1 vector and

Jp=10 .w:s0,1 0 --- 0]
P [_,_,‘ ] (5.17)
D—P+1 |
Thus, Z% is the index set corresponding to the subsets of S*. Then, the final decision

can be obtained as

i.= arg max filr(n), Ay), (5.18)
. +1, ieZl"
t(n—D) = { 1 et (5.19)

We now discuss what the decision region the proposed method can form and how it
can approximate the Bayesian decision boundary. If r(n) is in the decision region of Class
t, then

file(n), As) > fu(r(n),Ax), 1<k <M and i#k. (5.20)

Note that each inequality in (5.20) forms a hyperplane between Class i and k. If we
pretend that only these two classes exist, this gives a decision region for Class 7. For
the same Class i, there are M — 1 such regions (k = 1,2,--- M, k # i) and the true
decision region for Class ¢ is the intersection of these regions. Let ’Rfi’k be the decision
region formed by Class 7 and k (with respect to Class i) and R, is the decision region for

Class i. Then,

RiF 2 {r(n) € R™ : fi(e(n),Ay) > fu(r(n), A}, (5.21)
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and

R = (R (5.22)
ki
Then the final decision region R corresponding to z(n — D) = +1 is

Ry = |J R (5.23)
ieT*
The proposed method shown above partition the signal space into 2/ where I is an integer.

And, we apply 2! discriminant functions in the equalizer.

5.3 Discriminative Learning Algorithm

We have transformed the equalization problem into a multiple-class classification problem
and proposed to use a linear discriminant function approach. The remaining work is how
to obtain the parameters in the discriminant functions, i.e., w; and b; in f;(r(n), A;) for
1 <i < M. As described in Chapter 3,,[45} proposed a discriminative learning process
to solve the problem. The advantage of this method is that it can yield the minimum
classification error rate. In thisppaper)wethen.use this method to identify our discriminant
functions. The cost function in {45] can be developed in three steps. The first step is to
select discriminant functions f;(r(n), A;) ‘and transform them into positive functions. Let
the transform function be ¢(-) and the transformed discriminant function be g;(r(n), A;).
Then, g;(r(n),A;) = ¢(fi(r(n),A;)). The second step is to define a mis-classification

measure. Let r(n) belong to ith class. Then, the mis-classification measure is defined as

1/
di(r(n)) = —gi(r(n), A;) + Ml_ 1 ng(r(n)a/\k)n na (5.24)
k#i
where 7 is a positive number. Finally, define the cost function as
J(n) = E[L(di(r(n)))], (5.25)
where
L{di(x(n))) = Ty (5.26)

where E[-] denotes the statistical expectation, ¢ > 0, and « > 0. By the virtue of the

discriminant function, if an observation belongs to the class i, g;(r(n), A;) will be large,
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and g;(r(n),A;), j # i, will be small. Thus, L(d;(r(n))) will approach zero. On the
contrary, if the observation does not belong to the class i, g;(r(n), A;) will be small, and
gj(r(n),N;), j # i, will be large. And, L(d,;(r(n))) will approach one. It was proved in
[45] that if a cost function has this “zero-one” characteristics, a classifier trained using
the cost function will achieved a minimum classification error rate.

For the proposed method, we choose linear discriminant functions and a transformation

function given by
1

= 5.27

o) = ——— (527)
Also, the class is defined according to the xo(n) pattern. In other words,

I'(TL) € Ci, if Xg(n) = X, 1 S 1 S M, (528)

where C; denotes the ith class. Parameters to be determined are ¢, o, and 1. Among
them, 7 is the most critical one. Wé now state how to choose that. As shown in (2.7),
the observation is Gaussian distributed-in the sighal space. The density function decay
fast deviating from signal states.” For a given set-of discriminant function parameters,
the classifier will make an corpect fecisionifan’ observation belongs to the class 7 and
gi(*) > gi(-), k # i. Thus, in a’high. SNR-environment, only the largest discriminant
function in gx(-)’'s, k # i may affect the decision. Thus, we propose to let = oo. In this
case, the second term at right hand side of (5.24) becomes

1/n

Ml_ - kzﬂgk(r(n), A)T| = max gu(x(n), Ay). (5.29)
Thus, (5.24) can be re-written as
di(r(n)) = —gi(r(n), i) + gr(r(n), Ag), (5.30)
where
k = arg rrllgxgl(r(n), A)). (5.31)

We found that this choice not only yields satisfactory results, but also reduces the com-

putational complexity for parameter adaptation.
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Since (5.25) is a nonlinear cost function, it is difficult to obtain the optimal solution
directly. Here, we employ the adaptive method to solve the problem. The commonly used

method is the steepest descent method. The adaptive algorithm is given by

wi(n+1) = w;(n) — uVy,J(n), (5.32)

bi(n+1) = bi(n) — puVy J(n). (5.33)

where V., J(n) denotes the gradient vector of J(n) with respect to w;. In reality, however,
exact measurement of the gradient vector is not possible. The gradient vector must
be estimated from the available data. The simplest estimate is the stochastic gradient
in which the expectation operations in (5.32)-(5.33) are ignored. After some algebra
calculation, we obtain the following adaptive algorithm.

For notation simplicity, we use g;(n) and L;(n) to denote ¢;(r(n), A;) and L(d;(r(n))),
respectively. In the training mode, if xo(n) of x(n) is x; (the corresponding received signal

vector is r(n)), we than have thefollowing.adaptive algorithm (k = arg max ai(n)):

wi(n+1) = wiln)+plilm) (1= Li(n))g:(n)(1 — gi(n))r(n), (5.34)
bi(n+1) = bi(m)+ pLi(n)= Li(ﬁ))gz-(n)(l —gi(n)) - 1, (5.35)
wi(n+1) = wi(n) =pBi@)(F = Li(n))ge(n)(1 — gi(n))r(n), (5.36)
br(n +1) = bi(n) — pLi(n)(1 = Li(n))gr(n) (1 — gr(n)) - 1. (5.37)

Since the cost function is a nonlinear function, the adaptive algorithm may converge
to a local minimum. Thus, a proper choice of initial value is important. Based on
the the relationship of signal state and the linear discriminant function shown in (5.5),
(5.8), we suggest using the clustering method [28] to obtain a reliable initial value. The
computational complexity requirement for the method is low. The clustering method is

given as follows. If a received signal vector r(n) with xs(n) = x;, then

w;(n+1) = counter; X w;(n) + r(n), (5.38)
counter; = counter; + 1, (5.39)
w;(n+1) = w;(n+ 1)/counter;, (5.40)
bin+1) = _w (5.41)
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5.4 Decision Feedback Equalization

The procedure developing decision feedback equalization is similar to that in 4.4. For
completeness, we re-describe the procedure. Define the input data vector x(n) be a

combination four vectors
x(n) = [x] (n),x3 (n),x3 (n), x5 (n)]", (5.42)

where

where S > Q >D >P>0and L.+ L, —€ —2 >S5 > () > 1. The fourth component
will be obtained from decision‘feedback.”Let %, (1) be the feedback vector and decisions
be correct. Then, x4(n) = x,(n)"Since the length of x,(n) is Ly = L.+ L. — S — 1, there
are N, = 2% possible decision pattern. "As defined, we call each pattern a decision state
and its possible value is %;, 1 < j < N;. We then define the input data vector given the

decision state j as

x;j(n) = [x1;(n), xz,;(n), x3;(n), X (n) = %;1". (5.47)

Note that x5 ;(n) includes z(n — D) and its length is ) — P. Similar to the feedforward
equalization scenario, x; ;(n) and x,j(n) may or may not exist. We then have M =
2@+ possible vector values for x, ;(n). Denote these vector as x;;, 1 < i < M. Thus,
we can divide the received signal space into M classes according to xs j(n) = x;; (for the
jth decision feedback state). Assume thta the decision feedback is correct then we can
divide received signal space into M classes according to x»;(n) = x; ;. Then we use M

linear discriminant functions to discriminate these classes

fi,j(r(n),Am) = WZ]I'(TL) + bi,j7 1 S 1 S M, 1 S] S N(, (548)



where A;; = [w], b;;]" and N, = 2"+, Define If as a set with indexes such that

TF={ie N: Jhxy; = £1}, (5.49)

where Jp is (Q — P) x 1 vector and
Jp=[0 - 01 0 --- 0]
P [_,_/ ] (5.50)
D—P+1

Thus, Iji is the index set corresponding to the subset in Sji. Then, the final decision can

be obtained as

i = arg max fij(r(n), A ), (5.51)
. 1, i€’
&(n—D) = { 1 e I]-_ (5.52)
Y 7

The overall structure of the proposed nonlinear equalizer shown in Fig. 4.5. Note that,
if we do not use the feedback signal, the selection part can be ignored.
We need also to decide the unknewn parameters w; ; and b; ;. Using the similar cost

function, we can identify the parametersiiThus, we have

min Jj(n)zE[L(di,j‘(r(n)))], (5.53)
where
Lildise() = {o (5.54)
dij(r(n)) = —gi;(x(n), Aij) + grj(r(n), Ax;), (5.55)
k = argnllgxgl’j(r(n),/\l,j), (5.56)

and g; ;(r(n),A;;) = ¢(fij(r(n)),A;;). The adaptive algorithm, summarized in Table
5.1, can then be derived accordingly. For simplicity, we use g; ;(n) and L, j(n) to denote
gij(r(n), A;;) and L;(d; ;(r(n))), respectively. Also, we set o = 0.

Since there are N, feedback states, we then will have IV, sets of discriminant functions.
Thus, we have to store all these functions and the memory size may be large. Here, we
propose a method to alleviate this problem. As mentioned above, s; ; denotes one possible

signal state given X,(n) = %,;. More accurately, s; ; in (2.17) is a mapping of the ith input

vector [x] (n),x3 (n), x5 (n)]" given %,(n) = %x;. Consider the linear channel scenario, i.e.,
Lo—1

g(xz(n), - ,x(n — L.+ 1)) = Z cix(n — 1), (5.57)
i=0

83



Table 5.1: The adaptive algorithm of proposed equalizer with decision feedback.

1. Initialize variables: n=0,
Wi,j(O) =0 and b%](O) =0 fori= ]_,...,M andj: ]_,...,N(,
2. Clustering method (find the initial value), n =1,2,...
if x.2(n) = x; and X,(n) = X;
w; j(n + 1) = counter; ; X w; j(n) +r(n),
counter; ; = counter; ; + 1,
w; ;j(n+1) = w; j(n + 1)/counter, j,
bij(n+1)= —w
end
3. Adaptive algorithm
if x.2(n) = x; and x,(n) = x;
fork=1:M
(1) = ST (m)x(n) + by (),
end
k = arg max g;,;(n)
[#i

Lij(n) = lre =C 9, ]1(n>+gkj(n))

Wi (n+1) = wi; () pLi; (R}~ Lij(n))gi;(n) (1 = i n)) (n),
b+ 1) = by () s g, s (1)) (m) (1 — g1 (m)) 1,
Wi (n +1) = wyy(n) = uLu(ni( zy(n))gm(ni( e ))(r() n),

C?i?k,j(n+1)—bkg( n) = pLi( ) Lij(n))gix(n) —gzkim)

where ¢;’s are the channel input responses. The signal state s(n) can be written as
s(n) = Cx(n), (5.58)

where C is a Toeplitz matrix with the channel responses ¢;’s and

Co c1 e Cchl O e 0
0 C C ) C o 0 )

c=|. . (5.59)
0 e 0 Co 1 e CLC—I

Decompose x(n) as x(n) = [x}(n), % (n)]" where x;(n) = [x{(n),x](n),x3 (n)]". The
matrix C can then be decomposed accordingly, i.e., C = [Cy, Cy]. Thus, (5.58) can be

rewritten as
S(n) = Cfo(n) + becb(n) (560)
From (5.60), we can see that s;; —s;x = Cy(X; — X), j # k, for 1 <4 < N, This is to

say that signal states for two feedback states has a common difference vector. Thus, we
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can describe all signal states (for different given feedback states) as
sij =8ip+d; ,2<7< N, (5.61)

where d; is a difference vector and d; = 0. Using the relationship of the signal state and
the discriminant function in (5.7), we can find that each pair parameters w;; and w;

have the same relationship as that in (5.61). Thus,
wij =wii+d;, 1<i<M, 2<j <N, (5.62)

and d; = 0. Using this approach, all the parameters needed to identify are w;,, b; ; and
d;, 1 <i< M, 2 <j <N, Thus, the number of vectors to be identified is reduced
from M N, vectors to M + N, — 1. Using the same cost function in (5.53), we derive the
corresponding weight update equations shown in Table 5.2. For nonlinear channels, (5.61)
is not valid in general.

Since in the nonlinear channel,, eachlipair signal state s; ; and s;; do not have the
same difference. It will be shown later that the performance loss is small by using the
reducing method in nonlinear channel.—The-two al‘;gorithms shown in Table 5.1 and 5.2
update parameters every N, iterations and the:convergence may not fast enough. We
then propose another algorithm to solve the problem. The idea is to let the difference
vectors d;’s be non-adaptive. In this case, we can update w; ; every iteration and this can
effectively accelerate the convergence rate. Note that the difference vectors are estimated
(without extra cost) in the initialization stage using the clustering method. We summarize
the adaptive algorithm for this approach in Table 5.3.

The computational complexity for the propose algorithms in this chapter is summa-
rized in Table 5.4 and 5.5, respectively. Roughly speaking, the complexity of the proposed
equalizers is M times higher than the conventional DFE. The actual choice of M is de-
pendent on the desired performance. In our design, the decision region for each subset is
automatically and adaptively formed, and these decision regions approximate the Bayesian
decision regions. In principle, if the Bayesian decision boundary has a complex shape, we
need more subsets. In many cases, however, only a small number of subsets is sufficient.

The computational complexity of the proposed equalizer can be much lower than that of
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the Bayesian equalizers. Note that if a time-varying channel is considered, decisions can
be used to train the proposed equalizer continuously such that channel variations can be

properly tracked.

5.5 A New cost function

In the previous section, we have used the cost function in [45] to train discriminant func-
tions. Note that noise is Gaussian. Its distribution is an exponential function. However,
the mis-classification measure, gx(-)’s, k # i, is a polynomial function. As a result, the
cost in (5.24) may not be able to reflect the Gaussian characteristics. Thus, we let n — oo
in the previous section. Using the clustering algorithm, we can obtain proper initial val-
ues such that the adaptive algorithm (5.34)—(5.37) can converge to the global minimum.
However, there are some circumstances, the clustering cannot be applied (for the appli-
cations in the next chapter for examiple). In_these scenarios, the adaptive algorithms
may converge to local minimums. In this section; we propose a new cost function that
can alleviate this problem. From ‘extensive simulations, we found that this cost function
can always let the adaptive algorithm-eonverge to the global minimum without specific
initials.

Stimulating by the method in the previous chapter, we first define a cost for each pair
g:(+) and gx(+), k # i and then combine these costs to form a overall cost function. Let

n=11n (5.24), and write (5.24) in an alternative form as

1
di(r(n)) = 2= > [=ai(r(n), M) + ge(r(n), Aw)]. (5.63)
ki
Each term in the bracket of (5.63) can define its individual cost as

1
Lt exp(—e(=gi(x(n), Ay) + gi(r(n), A))”
Examining (5.64), we can find that if g;(r(n),A;) > gx(r(n), Ax) and € is large then the

Jik(n) (5.64)

cost will approach to zero. On the contrary, if g;(r(n),A;) < gr(r(n), Ax) the cost will
approach to one. Note that € corresponds to the noise level. Finally, we combine these

costs to form the overall cost as below. If xo(n) = x; then

Ml_ 1 Y Elix(n)], (5.65)
ki

J(n) =
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where
1

T 1t exp(—e(—gi(r(n), Ay) + gi(r(n), Ay))’

Examining (5.65) again, we find that if the received signal r(n) belongs to ith class and

Jz,k(n)

(5.66)

gi(r(n), A;) > gr(r(n), Ag), 1 <k < M, k # i, the decision is correct and the cost function
is small. On the contrary, if the received signal r(n) belongs to ith class, but any one
gr(r(n), Ag) is large than g;(r(n), A;), the decision will be not correct and the cost function
will approach one. Thus, this cost function approach to a smoothed zeros-one function.
The shape of the function is controlled by the parameter e. The cost function in (5.65)
reflects the Gaussian characteristics better than that in (5.24).

The adaptive algorithm for (5.65) is given as follows. If a received signal vector r(n)

with x5(n) = x; we than have the following adaptive algorithm (i # k)

wi(n+1) = wi(n) + ) Jir(n)(1 = Jip(n))gi(x(n) (1 = gi(x(n)))r(n), (5.67)

ki

biln+1) = bi(n) +pY_ Jis@)e Tig(n))g:(x(n)) (1 — gi(x(n))) -1, (5.68)
ki

wi(n+1) = wi(n) =pip(m) =Tk (n))gr(r(n)) (1 — ge(x(n)))r(n),  (5.69)

be(n+1) = bi(n) — fly (M) (1=Tik(1))ge (r(n)) (1 — gr(r(n))) - 1. (5.70)

If we let ¢ — oo, the adaptive algorithm will become identical to that in the previous
section. As mentioned, the adaptive algorithm (5.67)—(5.70) can converge to the global
minimum even without proper initials. One disadvantage using this cost function is that
the computational complexity for its adaptive algorithm is higher. With proper initials,

both cost functions give the same performance.

5.6 Simulation Results

we consider a nonlinear channel which a linear channel followed by a memoryless nonlinear

function. The input-output relationship of the linear channel is given by
q(n) = 0.1z(n) 4+ 0.4084x(n — 1) + 0.8164x(n — 2) + 0.4084x(n — 3) + 0.1z(n —4). (5.71)
The output of the memoryless nonlinear function is given by
r(n) = q(n) + 0.2¢*(n) + 0.1¢*(n) + v(n). (5.72)
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For this scenario, we compare the conventional, the Bayesian, and the proposed DFEs.
From the equations shown above, we can see that L, = 5. We set L, = 6, P = 2,
D =6,Q =0and S = 0. The decision feedback vector is then x4(n) = [£(n — 7),&(n —
8),2(n — 9)]F. For the proposed equalizer, we let M = 4, M = 8 and M = 16, in
which x3(n) = [z(n — 6),z(n — 5)]", x2(n) = [z(n — 6),z(n — 5),z(n — 4)]" and x3(n) =

[z(n — 6),z(n — 5),x(n — 4),x(n — 3)]7, respectively. The results are shown in Fig. 5.1

and Fig. 5.2.
10° ¢ : : ;
10_1? ?
10 E 3
o e
mlO * 3
_4'
10 ¢ =¥ Bayesian DFE E
—— Conventional DFE
I -G~ Proposed DFE Table 5.1 (M=4)
10k -~ Proposed DFE Table 5.2 (M=4) |
f —#— Proposed DFE Table 5.1 (M=8) ]
[ —~ Proposed DFE Table 5.2 (M=8)
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Figure 5.1: BER comparison for the conventional, proposed (Table 5.1 and Table 5.2),
and Bayesain DFEs.

Both figures show that all equalizers performed similarly as that in the linear channels.
From Fig. 5.1, we can see that the reduced storage method in Table 5.2 gives almost
the same performance as the method in Table 5.1. As mentioned, the reduced storage
method will have performance loss in nonlinear channels. The result here show that
the performance loss is almost negligible. Also, from Fig. 5.2, we found that the fast
convergent, algorithm in Table 5.3 performs somewhat worse than that in Table 5.1. This

is because the difference vectors estimated using the clustering method is not accurate
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Figure 5.2: BER comparison for the conventional, proposed (Table 5.1 and Table 5.3),
and Bayesain DFEs.

enough. This problem can be alléviated by increasing the training period for the clustering
algorithm. The learning curves for the algorithms in Table 5.1, 5.2 and 5.3 are depicted
in Fig. 5.3 (This set of simulations was run at SNR= 16dB and M = 8).

It is clear that the fast convergent algorithm in Table 5.3 does have the fastest con-
vergence rate. Also note that the convergence of the reduced storage algorithm in Table
5.2 is slower than that of the algorithm in Table 5.1. This is the price to pay for storage
reduction. Finally, we show the computational complexity and storage comparison for all
equalizers in Table 5.6 for M = 8. From these tables and Fig. 5.1, Fig. 5.2, it is apparent
that while the performance of the proposed DFEs (Table 5.2 and 5.3) are comparable to
that of the Bayesian DFE, the computational complexity and the storage requirement for
the proposed DFEs algorithm is significantly lower.

We then consider the nonlinear channel used previously. The input-output relationship

of the linear channel was given by
q(n) = —0.227x(n) +0.460x(n—1) 4+ 0.848x(n—2) 4+ 0.4602(n—3) — 0.227x(n—4). (5.73)
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Figure 5.3: Learning curves for‘the proposed :DFEEs in Table 5.1, 5.2 and 5.3 (SNR= 16
dB, M = 8).

The output of the memoryless nonlinear function was given by
r(n) = q(n) + 0.156¢*(n) — 0.031¢*(n) + v(n). (5.74)

From the equations shown above, we can see that L, = 5. We set L, = 6, P = 2,
D =6,Q =0 and S = 0. The decision feedback vector is then x4(n) = [Z(n — 7),Z(n —
8),2(n — 9)]7. For the proposed equalizer, we let M = 4, M = 8 and M = 16, in
which x3(n) = [z(n — 6),z(n — 5)]", x2(n) = [z(n — 6),z(n — 5),z(n — 4)]" and x3(n) =
[z(n — 6),z(n —5),z(n — 4), z(n — 3)]7, respectively.

The BER performance results are shown in 5.4 and 5.5. We can see that the perfor-

mance degradation for the algorithms in Table 5.2 and 5.3 becomes slightly larger.

90



10 £ E
© s
lildlo * AT
—*— Conventional DFE N \‘
1074k -G~ Proposed DFE Table 5.1 (M=4) |
i | A~ Proposed DFE Table 5.2 (M=4) S
I | & Proposed DFE Table 5.1 (M=8) W
I | —+— Proposed DFE Table 5.2 (M=8) 1
107°} .| =7 Proposed DFE Table 5.1 (M=16) 1
t'| =< Proposed DFE Table 5.2 (M=16) ]
I | — Bayesian DFE X7
10_6 L I 1 1 I L I I
4 6 8 10 12 14 16 18 20 22

SNR

Figure 5.4: BER comparison for the proposed DFEs in Table 5.1 and 5.2 (SNR= 16 dB,
M =238).
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Table 5.2: The adaptive algorithm for the proposed reduced storage DFE.

1. Initialize variables: n=0,
Wi,l(O) :0, bZ’](O) =0 and dj =0fori= 1,...,M andjzl,...,Nb
2. Clustering method (find the initial value), n = 1,2, ...
if x.2(n) = x; and x,(n) = x;
ifj=1
w;1(n + 1) = counter;; X w;1(n) +r(n),
counter; ; = counter; ; + 1,
w;1(n+ 1) = w;1(n + 1)/counter; j,
bia(n + 1) = — LsaCesnl
else
tmp = counter; ;(n) x (w;(n) +d;(n)) + r(n),
counter; ; = counter; .41,
d;(n + 1) = tmp/counter; j==w,; (7).
end
end
3. Adaptive algorithm
if x.2(n) = x; and X,(n)= x;
fork=1:M
Grs(n) = G((wea(n) + A AR(n) + by (),
end
k = argmax g ;(n)
[#i

— 1
Li:j(n) T e (095, (M) Hgg i (n)
ifj=1

Wi (n+1) = Wi (n) + Ly (n)(1 = Lin(n))gia (n)(1 = gia(n )) (n),
bia(n+1) = bix(n) + pLia(n)(1 = Lix(n))gin(n)(1 = gia(n)) - 1,

) —_
Wi (2 + 1) = Wi (n) = pLin () (1 = Liy(n)) g, (n)(1 = gra(n )) (n),
b (n+ 1) = byt (n) — i (n) (1= Lot (n)) gt (m) (1 = g (m) - 1,

else
d;(n+1) =d;(n) + pLi;(n)(1 — Li;(n))(gi;(n)(1 — gi,j(n)) — gr;(n) (1 — gk,j(n)))r(n)
bij(n+1) = b;;(n) + pLi;j(n)(1 = Li;(n)gi;(n)(1 — gi;(n)) - 1,
bij(n+1) = byj(n) — pLij(n)(1 — Lij;(n))gr,;(n)(1 — gr,;(n)) - 1,

end
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Table 5.3: The adaptive algorithm for the proposed fast convergent DFE.

1. Initialize variables: n=0,
Wi71(0) :0, b%](O) =0 and dJ(O) =0 for i = ]_,...,M andj = ]_,...,Nb
2. Clustering method (find the initial value), n = 1,2, ...
if X.2(n) = x; and x,(n) = x;
ifj =1
w; 1(n + 1) = counter; ; x w;1(n) +r(n),
counter; ; = counter;; + 1,
w;1(n+1) =w;(n+ 1)/counter; ;,
bm(n + ].) = —w,
else
tmp = counter; ; X (w;1(n) +d;(n)) +r(n),
counter; ; = counter; ; + 1,
d;(n+ 1) = tmp/counter; ; — w; 1(n).
end
end
3. Adaptive algorithm
if X.2(n) = x; and X,(n) = X;
fork=1: M
() = (it @) )T+ by (),
end
k = arg max g; ;(1)
[E2)

Lij(n) = !

wij(n+1) =w;;(n )+uLw( )(1 L“( ))9i.i

bij(n+1) = bi;(n) + pLi;(n)(1 — Ly ))gu(

wij(n+1) =wy;(n) — pLi;(n)(1 = Li;(n) r

;k](n+1)_bm( n) = uLij(n)(1 — Li(n ))gk,y(n)( = gri(n)) - 1,
end

Table 5.4: Computational complexity comparison for the DFE and proposed equalizers
with decision feedback signal in the training phase.

Proposed DFE
Initial | Adaptive
Multiplications | L, M X (Le+1)+2L.+10 2 X (Le + Ly)
Additions L. MX(Le+1)+2L,+8 | 2 X (Lo + Ly + 1)
Others M +1 x exp(+)
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Table 5.5: Computational complexity comparison for the linear, proposed, and Bayesian
DFE in the decision phase.

Bayesian DFE | Proposed DFE
DFE
Multiplications | Ny x (L. +1) | ML, L,
Additions 2L.N; — 1 ML, L.—1+ L,
Others Ny x exp(-) | Compare log-
ics

Table 5.6: Storage comparison for the linear, proposed, and Bayesian DFEs (M=S8).
Bayesian DFE | Proposed DFE | Proposed DFE (reduced) | DFE

No. coefficients 6144 448 154 9
100 3 T T T T T T T T
107
107} 3
% 3 QA
m 10 & | “ 3
5 RO\ ]
|| =& Conventional DFE \é 1
10 £::'| <= Proposed DFE Table 5.1 (M=4) ;
I | A~ Proposed DFE Table 5.3 (M=4) 7 RN
I - Proposed DFE Table 5.1 (M=8) ]
105L .| —+ Proposed DFE Table 5.3 (M=8) | ]
-/~ Proposed DFE Table 5.1 (M=16) ]
; —— Proposed DFE Table 5.3 (M=16) :
» — Bayesian DFE N
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4 6 8 10 12 14 16 18 20 22
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Figure 5.5: BER comparison for the proposed DFEs in Table 5.1 and 5.3 (SNR= 16 dB,
M =38).
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Chapter 6

Adaptive Nonlinear Spatial and
Temporal Equalization

In this chapter, we consider antenna array communication system. Specially, we consider
the single-input-multiple-output (SIMO) systems. This kind of system has a transit an-
tenna in the transmitter side, and an antenna array in the receiver side. Thus, we can
perform spatial and temporal eqialization.in. thé.receiver [46]-[50]. The main advantage
of additional spatial processing is.its capability. tor reject interference from other trans-
mitted antennas. For this application;“three kinds of equalization algorithms have been
developed. The first one is the MLSE equalizer [62]-[63]. Similar to its temporal counter
part, this type of equalizer has the best performance and requires the highest computa-
tional complexity. The second one is the broad-band beamformer [64]. In this method,
each antenna is followed by a temporal filter. In other words, if we have U array ele-
ments, there are U temporal filters. Adaptive algorithms such as the LMS, the recursive
least square (RLS) and the constant modulus algorithm (CMA) [65] have been proposed
to derive the filter weights. The last type of equalizers is the cascade of a narrow-band
beamformer and a temporal filter [48]. For this type of equalization, spatial and temporal
processing are perform separately.

We mainly focus on the second and third type of the spatial-temporal equalizers.
Existing algorithms [48], [64] use the MMSE criterion to identify equalizer coefficients.
From the discussion in previous chapters, we know that the coefficients computed using
the MMSE criterion does not achieve the MBER performance. In this chapter, we treat

the equalization problem as a classification problem and apply the Bayesian equalizer
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to obtain optimal results. As mentioned, the Bayesian equalizer requires high compu-
tational complexity. Thus, many nonlinear equalization algorithms were developed to
approximate the Bayesian equalizer (as described in Chapter 3). For reasons discussed
previously, these algorithms are either computationally not efficient or not suitable for
time-varying environments. The proposed algorithms described in Chapter 4 and 5 can
be easily extended to SIMO systems. In this chapter, we detail the extension and show

the performance enhancement of this approach.

6.1 Spatial and Temporal Channel Model

A discrete-time SIMO multipath channel was shown in Fig. 6.1. The number of antennas

g, (M — L5 +D

>, (N) : r,(n)

Gk 0%k (M)
X, (N) r, (N)
V G 1%k (nfl) V

(S PRTIEE (n— Ly +1

Figure 6.1: Discrete-time spatial and temporal channel model.

at the transmit and receive sides are denoted as K and U, respectively. Note here that
each user only uses one transmit antenna. In other words, there are K users transmit
signals simultaneously. For the desired user, there are K — 1 interferences. Let the
transmitted signal at kth transmitted antenna and the received signal at uth received
antenna be denoted as xx(n) and r,(n), respectively. Without loss of generality, we deem
the signal from the first antenna is the desired signal and signals from other antenna are

considered as interferences. Also, we assume that the channel between xy(n) and r,(n)
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is a multi-path channel. Our spatial and temporal channel model is shown in Fig. 6.1.
Let ¢k, be the phase difference between the received signals at adjacent antenna elements

(for the [-th channel path of the k-th user). Then,

27mssin O

3 , (6.1)

Pk, =

where ), s, and 0, are the wave-length of the transmitted signal z4(n), the distance
between adjacent antenna elements, and the direction-of-arrival (DoA) of the received
signal r,(n), respectively. Also, let h,,; be the [-path response for the k-th user at the
u-th received antenna be

P s = gk’lei(ufl)@k,zj (6.2)

where g;; denotes the complex path gain in Fig. 6.1. We can then denote the multi-path

channel for the k-th user observed by the u-th received antenna as

hu,k = [hu,k,Oa hu,k,la i ) hu,k,Lifl]Ta (63)

where L denotes the number of channel paths for the kth user signal. Let

hu = [hg,lv h£,27 N hzj;,K]Tv (64)
xp(n) = [vp(n), zx(n — 1), -+, zp(n — L + 1)), (6.5)

and
x'(n) = [x7 (n), %5 (n), -+, xp ()] (6.6)

We can then represent the signal received in the k-th antenna as
ru(n) = hZx'(n) + v,(n), (6.7)

where v, (n) is an AWGN with zero mean and variance o2.

6.2 Adaptive Nonlinear Spatial-Temporal Equaliza-
tion for Structure I

As mentioned, we consider two types of spatial-temporal equalization algorithm. We

name the broad-band beamformer as Structure I, which is shown in Fig. 6.2, [49]-[50].
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Figure 6.2: Structure I spatial-temporal equalizer.

%(n-D)

As shown in the figure, zq(n — D)s the desired signal and a linear equalizer (with length

L¢) follows each antenna element. Thus; we have U- equalizers in total. For simplicity, we

consider the BPSK transmit signal and the real channel. Thus, we can re-write h, ;; as

P ea = grg cos((w'— 1))
Let the weight and the input vectors of the u-th equalizer be
fu = [fu,la fu,?a e 7fu,LEu—1]T7

and

ry(n) = [ru(n),ru(n — 1), -+ ,ru(n — LS + 1))

Also, collect all the weight and input vectors into matrices
f= [flvazTa"' 7f5]Ta

and
r(n) = [r{ (n), 13 (n),- -, x5 (n)]".

We can then have the output of the spatio-temporal equalizer as

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)



Conventional approaches [49]-[50] use the linear structure and the MMSE criterion
to perform equalization. To reduce computational complexity, the adaptive algorithms
such as the LMS, the recursive least squares (RLS), and the constant modulus algorithm
(CMA) [65] have been proposed to use in this application. In many scenarios, the per-
formance of the linear spatial-temporal equalizer is not satisfactory. Nonlinear equalizers
are then required.

The received signal matrix r(n) defined in (6.12) is what we observe and we will use it
to estimate x;(n — D). Let s(n) be the received signal matrix r(n) when noise is absent.
Let

xp(n) = [wp(n), zx(n —1),...,56(n — L — Ly, + 2)]7, (6.14)

where L,, = max{L§, L§,---, L}, and
x(n) = [%1(n), Xz(n), ..., %x(n)]", (6.15)
From (6.3)-(6.7), we know that s(n) can be obtained by a mapping from x(n), i.e.,
s(n) = h(x(n)), (6.16)

where h(-) is a matrix mapping function.

Since the number of elements in'x(n).is-given by

K

Lo=)Y (Li+Ln—1), (6.17)
k=1

the possible vector values for s(n) is N, = 2. We call those values signal states and

denote them as s;, 1 < i < N,. We set L, be the total dimension of the received signal.

Then,
U
L=) L (6.18)
u=1
Similar the approach in Chapter 4, we collect all the possible signal states in the signal

state set:

SZ{s; e R, 1<i<N,). (6.19)

Within the set, we can define two subsets as

S* {s;i € S:z1(n— D) =41},
S = Stus. (6.20)
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To facilitate description, we use a simple example to depict the signal states.
Example :

Consider the scenario such that K =2, U =2, D =0, L,y =2, Leo =2, L.y =1,

Leo=1,[g10,911] = [1,0.5], [92,0, g2,1] = [0.3, 1] and 27ws/A = 1. Thus, the received signal
r(n) can be expressed as

[ ri(n) } _ [ g1,0co0s(0 - s%n(&l,o)) g1.1 cos(0 - s?n(&l,l)) } [ z1(n) }
ro(n) gipcos(l - s1n§91,0)) g1, cos(lL - sm@l,l)) z1(n —1)
1 Feeiiteniog Rttt o | St RS B 1
z1(n)
=m0 L |
xo(n — 1)

where

H = 9170 COS(O . sin(@l,o)) 91,1 COS(O _ sin(0171)) gg’o COS(O . Sin(gg’o)) 9271 COS(O . sin(92,1))
9170 COS(]_ . sin(@l,o)) 91,1 COS(]_ 0 sin(@lyl)) 92’0 COS(]_ . Sin(gg’o)) 9271 COS(]_ . sin(92,1))

(6.22)

In this example, the vector mapping funection h(-) €orresponds to a linear transformation

which can be represented by a'matrix H. From-(6.21), we can know that the number

of signal states are N, = 16. We set' DoA’s as 0, = 0, 6, = 7/2, 039 = 7/2, and

0 1
r,m

Figure 6.3: The signal states (610 =0, 011 = 7/2, 6ho = 7/2, and 6, = 7/2).

6,1 = /2, and show the signal states in the Fig. 6.3. The symbol ‘0’ denotes the signal
state corresponding to z;(n) = +1, and ‘x’ denotes the signal state corresponding to

z1(n) = —1. As shown in Fig. 6.3, a straight line in the ry(n)-r2(n) plane can successfully
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separate the signal states in ST and S~. This is because all the interference have the
same DoA and the DoA is sufficiently different from that of the desired user. Thus,
the spatial equalizer can form a null at that interferencing DoA. We now show another
example where the DoA of the desired user is the same as that of interferencing users.
Let [g10,911] = [1,0.4], [9200,921] = [-0.5,1.2], 619 = 0, 6,1 = 7/2, B9 = 7/10 and

21 = m/4. The result is shown in Fig. 6.4. From the figure, it is clear that the signal

Figure 6.4: The signal states (f15= 0,01, =7/2, 020 = 7/10 and 65, = 7/4).

states now are not linearly separable. The conventional linear equalizer will perform
poorly in this scenario. If we process the received data ri(n) and r5(n) by some nonlinear
way, it is possible to separate the signal states in ST and S~.

We then extend the methods in Chapter 5 to obtain an adaptive asymptotic spatial-

temporal Bayesian equalizer. We divide the X;(n) be a combination of three vectors

1(n) = (%, (). %y (n), 51, ()], (6.23)
where
X10(n) = [z1(n),z1(n—1), - ,21(n — P+ D7,
x14(n) = [xr1(n—P),xy(n—P—1),--- ,2:(n—Q + ]
Xiy(n) = [#1(n—Q), a1 (n—Q —1),-- ,m(n— L — Lp +2)]",  (6.24)

where () > D > P >0 and L{ + L,, —2 > ) > 1. Note that x; 3(n) includes z,(n — D)
and its length is @ — P. Let M = 29, We then have M possible vector values for
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x1,5(n). Denote these vectors as x;, i = 1,2,---, M. Now, we can divide the signal state

set according to the value of x; g(n):
S E{sieS %isn)=x}, 1<i<M, (6.25)

and

s=Js. (6.26)

Employing the method in Chapter 5, we can use M linear discriminant functions to
perform equalization. The detailed derivation is the same as the previous chapters and
is omitted here. Note that the cost function (for parameter adaptation) used here is the
one developed in Section 5.5. This is because the state does not consists of the desired
signal only. The clustering method is less valid here. The proposed equalizer can also
be extended to include decision information. Recall the method describe previously and

divide x;(n) as a combination foursvectors

%1(n) =[aln) Xy g(n)x7, (n), %7, ()], (6.27)

where

Xia(n) = [wi(n),z1(n =15 o (n — P+ 1)),

%1 5(n) = [m(n—P),xi(n—P—1),- ,21(n—Q+1)]", (6.28)

%i,(n) = [mn—Q),xin—Q—1),-- ;1 (n— S +1)|", (6.29)

%1,(n) = [vi(n—98),z:(n—S—1), -+, z1(n — L — Ly, +2)]", (6.30)
(6.31)

where S>Q>D>P>0and L.+ L, —Q —2>S > > 1. As previsouly, the fourth
component is obtained from feedback decisions. Let %%(n) be the feedback vector and
decisions be correct. Then, X; ,(n) = x%(n). Since the size of x%(n) is L} = L{+L,,,—S—1,
there will be N? = oLy possible decision patterns. As defined, we call each pattern a
decision state and its possible value is fc’{,j, 1< < N{’. We then define x;(n) given the

decision state j as

_ _ _ _ ~ BT
X1,;(n) = [x{a,j(n),X{B,j(n),xiv,j(n),xrﬂg(n) =X _]T. (6.32)



Note that X{ 5 ;(n) includes z;(n — D) and its length is Q@ — P. The remaining work for
the equalizer design is identical to that in 5.4 and is omitted too.

We next report some simulation results to demonstrate the advantage of the proposed
spatio-temporal equalizer. We consider the following scenario: K =2, U =3, D =1,
LS =3, L5=3,L =4, L§ =4, [g10,91.1, 91.2) = [0.3482,0.8764, 0.3482], [g2.0, 92.1, §2.2] =
[0.8,—0.2,0.1], 2rs/A = 1. The DoAs for channel multipaths are 6, o = 7/8, 6, = 7/3,
010 = /5, b20 = /4, 621 = 7/1.1, and b5 = 27/3. Let o2 be the total transmitted

signal power. Then,
K
=3 (633
k=1

where o7, denotes the signal power for the kth transmitted user signal. We define the
SNR as the ratio of 02, and Uo;. We compare the performance of the conventional linear
MMSE equalizer in Fig. 6.2 and the proposed Structure I equalizer. For the proposed
equalizer, we consider three cases ¢orresponding.to M =4, M = 8, and M = 16. In these
cases, X1 5(n) = [z1(n — 1), 21 (0 — DT =i 00, ={z1(n — 1), 21(n — 2), z1(n — 3)]7, and
xi15(n) =[r1(n—1),z1(n—2) 2 (n=3)%i(n — 4)]7?, respectively. The simulation results
for various SNR values is shown inFig."6:5+ Under the simulation scenario, the signal
state set S is not linearly separable. Thus;y the performance of the linear MMSE spatial-
temporal equalizer performed poorly. Even the SNR approaches to infinity, the BER does
not approach to zero. The proposed spatial-temporal equalizer performed much better.
The proposed equalizers with M = 8 and M = 16 have almost the same performance.
The difference between M = 8 and M = 4 is small. This may due to the fact that the
signal state set does not only consist of those of the desired transmitted signals. Thus,
a larger M does not guarantee better performance. The performance strongly depends
on the structure of all signal states. From Fig. 6.5, we can see that for the proposed
equalizer, M = 4 is sufficient.

In Fig. 6.6, we show the result for various antenna number. From the figure, it
is apparent that the larger the antenna number, the better the performance (for both
equalizer). When the antenna number equals to 5, the signal state set S become linearly

separable. However, the performance of the linear equalizer is only close to that of the
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Figure 6.5: BER comparison for the linear MMSE and the proposed Structure I spatial-
temporal equalizers.

proposed equalizer with 3 antenna (M = 8).

We also compare the conventional DFE and the proposed DFE. We use Z;(n — 2)
and &, (n — 3) as the feedback decisions for the conventional DFE, and use #;(n — 3) and
Z1(n — 4) as feedback decisions for the proposed DFE. We let M = 4 so that x; 3(n) =
[z1(n — 1), z1(n — 2)]7. The simulation results are shown in Fig. 6.7. As we can see, the

results are similar to those in the previous set of simulations.

6.3 Adaptive Nonlinear Spatial-Temporal Equaliza-
tion for Structure II

Next, we discuss another spatial-temporal equalization structure shown in Fig. 6.8 [48]. In
this structure, the spatial-temporal equalizer is a cascade of a narrow-band beamformer

and a temporal equalizer. We refer this structure as Structure II.
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Figure 6.6: BER comparison for the MMSE linear and the proposed Structure I spatio-
temporal equalizers (U=3, 4 and 5)-

Let the weight vector of the beamformer be

17, (6.34)

W = [wlawZa"' , Wy

and its input vector be
r(n) = [ri(n), r2(n),- -, ro(n)]". (6.35)

Also let the weight vector of the temporal equalizer be

f = [fo,fl,"',fLe—l]T- (636)

where L. is the length of the temporal equalizer. We then have the beamformer output

as

y(n) = w'x(n), (6.37)
and the temporal equalizer output as
o(n) =f"y(n), (6.38)
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Figure 6.7: BER comparison for the linear MMSE and the proposed Structure I spatio-
temporal DFE (U=3, 4 and 5)s

where

y(n) = [yn),y(n—1), -, y(n— L +1)]". (6.39)

We can re-write the output o(n) in a compact matrix form as

o(n) = £t (n), (6.40)

where
f = wof (6.41)
t(n) = ["(n),x"(n—1), - tT(n—L°+ 1), (6.42)

where the symbol ® indicates the Kronecker product operation.
It is straightforward to see that the spatio-temporal equalizer in Fig. 6.8 has lower
computational complexity than that in Fig. 6.2. However, there is a price to pay for the

simplicity. From (6.40), we can see that the final output is a nonlinear function of the
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Figure 6.8: Structure II spatial-temporal equalizer.

beamformer and the equalizer weights. The MMSE cost function may exist local minima
and this will adversely affect weight identification. In [48], a method was proposed to
avoid the local minimum problem. Here, we do not specifically concern the local minimum
problem since the method in [48] can always be employed whenever necessary. We then

propose to replace the temporal equalizerin'Fig. 6.8 using methods developed in Chapter

d.
Let s(n) denote y(n) when:noise is absent, and
x(n) = [X[(n), %3 () - xg (n)]" (6.43)
where
xp(n) = [xp(n),xx(n — 1), ,xp(n — LE — L+ 2))7. (6.44)

From Fig. 6.8, we know that s(n) is a mapping from x(n), i.e.,
s(n) = h(x(n), w), (6.45)

where h(-, w) is a vector mapping function. We use w here to indicate that the mapping

function depends on w. Since the length of x(n) is

K
Lo=) (Li+L° - 1), (6.46)
k=1

the possible values for s(n) is N, = 2", Denote these values as s;, 1 < i < N, and call

them signal states. Using the notations in Chapter 4, we denote the signal state set as

SE{s; e R, 1<i<N,). (6.47)
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Within the set, we can define two subsets as

St £ [s;e8:m(n—D)==+1},

S = Stus. (6.48)

One thing we have to notice is that the signal states are not longer time-invariant (even
the channel response is time-invariant). All the signal states will be changed whenever w
is changed.

We set the x;(n) be a combination of three vectors

x1(n) = [x14(n), %1 5(n), x{, (n)]", (6.49)
where
Xia(n) = [21(n),21(n = 1), 21(n — P+1)]",
x15(n) = [o1(n — Plade(n — P=l), -+ oa(n — Q + 1],
X14(n) = [r1(n —Q), zr{n=0Q —1), : ;21 (n — LS — Ly, +2)]7, (6.50)

where Q > D > P > 0 and L{"+# Ly'=2> 0> 1. Note that x1,4(n) includes x;(n — D)
and its length is @ — P. Let M= 29-P  We.then have M possible vector values for
x1,5(n). Denote these vectors as x;, i = 1,2,---, M. Now, we can divide the signal state

set according to the value of x; g(n):
S 2{s; €S :xi5n)=x}, 1<i<M, (6.51)

and

s=J s (6.52)

1<i<M

We can further partition the space of y(n) into M classes and use M linear discriminant
functions f;(y(n),A;), i =1,---, M to perform equalization. The discriminant function

fi(y(n), A;) can be expressed as
fily(n), Ai) = 'y (n) + bi, (6.53)

and A; = [w,f;,b;]. Note that, the parameters we have to identify are w, f;, and b;. We

use the cost develop in Section 5.5 to identify discriminant functions. The advantage of
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the cost function is that the adaptive algorithm yielded does not require specific initials.

Define the cost function as

T(n) = E[L(di(y ()], (6:54)
where
Ly () = T (6:55)
and
hly(n) = 575 3 oy, 4) + gu(y(0), A (6.56)
where 7
Gi(¥(n), A) = D fily (), A)) (6:57)

Use the same technique in Chapter 5, we can obtain the following adaptive algorithm

(i # k)

fz(n + 1) = f( ) + “L Zgz 1 - gz )Y(n)a (658)
i#£k

bi(n+1) = bi(n)+uLin ) > gin)(1 = gi(n)) - 1, (6.59)
i£k

fi(n+1) = f(n) =Ly (T=Li(n) gk (n) (1 = ge(n))y(n), (6.60)

br(n+1) = bp(n) — pLi(n)(1'= Li(n))gr(n)(1 — gi(n)) - 1, (6.61)

w(n+1) = w(n)+ pL;i(n)(1— Li(n))
> (ge(m)(1 = gi(n)R(n)fi(n) = gi(n)(1 — gi(n))R(n)fi(n)), (6.62)

ki
where

R(n) = [r(n),r(n—1),--- ,r(n — L° 4+ 1)]. (6.63)

We can extend this approach to equalization with decision feedback. Recall the method

in Chapter 5 and define X;(n) be a combination four vectors

x1(n) = [%] 4(n), %] 5(n), X1, (n), X[, ()], (6.64)
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where

Xia(n) = [vi(n),z1(n—1),--- x1(n— P+ 1)),

%15n) = [zi(n—P)zi(ln—P—1), - ,21(n—Q+1)]", 6.65

%1,n) = [t11(n—Q),ri(n—Q—1),-- ,x1(n—S+1)]", 6.66
(n) (

D
D

(6.65)
(6.66)
= [m(n—29),11(n—8—1),-- ,x1(n — L¢ — L, + 2)]", (6.67)
(6.68)

6.68

where S>Q>D>P>0and L.+L,—Q —2>5 > > 1. The fourth component
is obtained from feedback decisions. Let x4(n) be the feedback vector and decisions be
correct. Then, X ,(n) = fcl; (n). Since the length of x%(n) is L = L§ + L,, — S — 1, there
are N? = oLy possible decision patterns. As defined, we call each pattern a decision state
and denote its possible value as fc’{’j, 1 < j < NP. We then define x;(n) given the decision

state 5 as

_ _ _ p, ! _ T
X1,;(n) = [x{a’j(n),x{ﬁ,j(n),xlT’%‘j(n),xlT,g(n) = Xl’j]T. (6.69)

Note that X7 4 ;(n) includes z1{n = D) and its length is Q — P. The remaining works for
the equalizer design is identicalto thatin-Section 54 We then omit the details here.

We finally use some simulation results.to compare the proposed equalizer with that
in Fig. 6.8. The simulation scenario is the same as that in the previous section. The
result is shown in Fig. 6.9. In this set of simulations, the initial values were set to be w =
[1,0,---,0]7 and zeros for others. From the figure, we can see that the proposed equalizer
outperforms the equalizer in Fig. 6.8. We can easily find that while the computational
complexity of the Structure II is lower, its performance is poorer than than in Structure
I. Fig. 6.10 shows the performance comparison for these two structures (3 antennas).
We also show the performance for Structure II DFEs in Fig. 6.11. We also show the
performance for Structure II DFEs in Fig. 6.11. It is clear that the proposed DFE is
better than the conventional DFE.

The computational complexity for the conventional and proposed spatio-temporal
equalizers are summarized in Table 6.1. Comparing the equalizer with Structure I and
Structure II, we can easily find that the complexity of Structure II is approximately U

times less than the complexity of Structure I. However, the performance of the Structure
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Figure 6.9: BER comparison for‘theflinear MMSE (in Fig. 6.8) and the proposed Structure
II spatio-temporal equalizers.

[ is better than the Structure II as shown in Fig.6.10. Also, Structure II may suffer from
the local minimum problem. The computational complexity for the proposed equalizers

is roughly M times than the conventional linear ones.

Table 6.1: Computational complexity comparison for the linear and the proposed spatio-
temporal equalizers

Structure I | Proposed for | Structure II | Proposed for
Structure I Structure II
Multiplications | Y0 L& | MYV | L¢ U+ L |U+ ML
Additions SULe—1 | MY Le | U+Le—-2 |[U+MLE—1
Others Compare log- Compare log-
ics ics

111




10_1 E 3
107°F
10_3 £ 3
o E
Ll [
@
10 ¢
10—5; -©- Structure |, MMSE |
5 ©- Structure Il, MMSE
[ -8~ Structure |, Proposed M=4
6| 0~ Structure Il, Proposed M=4
10 "+ | < structure I, Proposed M=8 3
i X Structure Il, Proposed M=8
10_7 I I I I I I I I
4 6 8 10 12 14 16 18 20 22
SNR

Figure 6.10: BER comparison for the linear MMSE and the proposed spatio-temporal
equalizers with Structure I and II (3 antennas).
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Chapter 7

Maximum Likelihood Sequence
Estimation for Nonlinear Channels

The MLSE equalizer is known to be the optimal sequence estimation equalizer. The
computationally efficient Viterbi algorithm is commonly used to implement the MLSE
equalizer. One requirement in the Viterbi algorithm is that the channel response has to
be known. For linear systems, there is ayunigue representation for the channel response,
i.e., the impulse response. However;, for nonlinear systems, there is no such representation.
An nonlinear channel response‘cannot be'exactly modeled in general; only approximation
is possible. Many nonlinear functions can be employed to approximate the nonlinear
channel response. In [66], [67], the Volterra series were used to model nonlinear channel
responses. However, the Volterra series general requires many coefficients and this results
in complex channel model. And, the computational complexity in the Viterbi algorithm
is then higher. Also, when the nonlinear characteristics of the channel is not well known,
determination of the expansion order becomes different. In this chapter, we proposed
an efficient method to solve this problem. Using this method, no channel modeling is
required and the computational complexity can be lower than the approaches in [66], [67].

Also, the nonlinear effect can be exactly taken into account, not approximated.

7.1 Branch Metric Calculation

In Section 2.2, the decision rule for the MLSE can be express as

Lp—12Lc—1

X, = argmin > Z (r(n) — ;)2 (7.1)
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As mentioned, the Viterbi algorithm is used to implemented the MLSE equalizer (7.1).
In (7.1), the term (r(n) — v;)? is called the branch metric, and 32! _ (r(n) — ¢;)? is called
the path metric up to time [. In the Viterbi algorithm, ¢/; has to be estimated.

To determine ;, we need to know the input-output mapping function of the channel.
Once the function is identified, 1;’s can be estimated from the mapping from X to W. If
the channel is linear, we usually have the channel model as

Le—1

P(n) =Y hix(n —i). (7.2)
i=0
The coefficients h;’s can be identified through the MMSE minimization.
J = min B((r(n) — #(n))’], (7.3)

where h = [hg, hy,--+ ,hy,_1]. The minimization can be achieved either by solving the
Wiener equations or using an adaptive algorithm.
If the channel is nonlinear, .there is no unique.representation for its response. Here,

we discuss the channel modeliiig using the Volterra series expansion. From Chapter 3.3,

we have
#(ny=h"x(n), (7.4)
where
X(n) = [L,X] (n),%; (n), -, Xp(n)]", (7.5)
and h contains the kernel coefficients hy(my,ma, -+ ,m,), 1 < p < P. The coefficient
vector is given by
h = [ho, b7, hY, .- hE)". (7.6)

Note that the above notations are defined in Section 3.3. Similar to the linear scenario, we
can obtain the Volterra coefficients by solving the corresponding Wiener equations or using
an adaptive algorithm. The later approach is preferred in general since its computational

complexity is lower.
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7.2 Branch Metric Calculation Using Signal State
Mapping

Determination of the Volterra series order is not a simple task. If the order is not high
enough, we will have large modeling error. On the other hand, if the order is high, we will
suffer from the high computational complexity. Here, we proposed a method to find all ¢
without any channel modeling. Our idea is based on the signal state mapping. Consider
an equalizer with memory size one. It is simple to see that the signal state defined in
Chapter 2 is exactly the same as the state in the Viterbi algorithm. Fach ; corresponds
to a signal state in the receiver signal space. In other words, we only have to find these
signal states in order to calculate branch metrics. In other words, we find out the mapping
from X to ¥ directly and skip any channel modeling. Examining the received signal r(n),

we have

rio) = vixn) +u(n), (7.7)

where x'(n) = [z(n), z(n — 1), = Ja(n — L+ 1)]. From (7.7), we can see that each signal

state spreads to a cluster due te noise: et X; denote an element in X'. We can have

ri = E[p(x;) +v(n)] = ¢(x;) = i, (7.8)

where 7; is the mean of r(n) when x'(n) = x;. In other words, r; is the signal state and is
Y; too. From (7.8), we see that the signal state can be found using the clustering method
shown below:

If a received signal r(n) corresponds to the training data x'(n) = x;

Ui(n+1) = counter; x ¥;(n) + r(n), (7.9)
counter; = counter; + 1, (7.10)
Pi(n+1) = t(n+ 1)/counter;, (7.11)

The advantage of this algorithm is apparent. It directly finds out the mapping from
X to ¥ and does not require any channel modeling. Also, the estimation algorithm is
very simple. If the channel is time-varying, we can introduce a forgetting factor to limit

the memory size of the clustering method.
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In this paragraph, we discuss the computational complexity of the Viterbi algorithm
with Volterra modeling and the proposed method. Since the track back operations are
the same for both algorithms, we only focus on the branch matrix calculation ;.

For the Volterra model, the computational complexity in branch metric calculation
depends on the number of the kernel coefficients h,(my, mq,---,m,), 1 < p < P. Based
on the symmetry property of the kernel, the number of independent coefficients in the
pth-order kernel, N,, is the number of distinct ways in which L, can add up to p. Thus,

N, is given by

N, = ( ke +If_ ! ) (7.12)

Then, the coefficient number for the Volterra model with order P in (7.5) is given by

Ly=> N, (7.13)

where Ny = 1. For simplicity, we use the LMS algorithm to perform channel identification.

The update equations are given by

(i) ) R, (7.14)
e(n)p=_r(n)—r(n), (7.15)
h(n+1) = h(n)+ pe(n)Z(n). (7.16)

The proposed algorithm only require the clustering method. Assuming that the channel

is time-varying. We then modify the clustering method in (7.9)—(7.11) as

biln+1) = (1 = wei(n) + p(r(n) — ¢i(n)). (7.17)

where p acts as a forgetting factor. Since the input signal is assumed to be BPSK, the
computational requirement for the multiplication in (7.14) and (7.16) is not considered.
The overall required computational complexity and storage requirement for both algo-
rithms are summarized in Table 7.1.

From the table, we can find that the storage size for the proposed is not always less
than the Volterra model. It depends on the channel length and the transmitted alphabet

size. If the channel length is not particularly long, the proposed method may have less
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Table 7.1: Computational complexity and storage comparison for the Volterra model and
the proposed method

Volterra State
mapping
Multiplications 1 1
Additions 2Le(Ly — 1)+ Ly +1 2
Storage Ly, ke

storage size. The main advantage of the proposed method is that it does not have to on-
line compute all the required 1;’s and the computational complexity can be significantly

reduced. This can be seen from Table 7.1.

7.3 Simulation Results

We use some simulation results to demonstrate the effectiveness of the proposed algorithm.
Specifically, we consider a communication system with a high power amplifier. In this
scenario, the channel is nonlinear, The input-output relationship of the nonlinear channel
is given by

r(n) = Alq(n))+ v(n), (7.18)

where
q(n) = —0.227x(n) +0.460z(n—1) 4+ 0.848z(n—2) +0.460x(n—3) —0.227x(n—4), (7.19)

and
T

Alr) = ——
(r) 1+ 8,12’
where A(r) characterizes the AM/AM conversion of the high power amplifier, we set

(g = 1.9638 and 3, = 0.9945 [68].

(7.20)

We compare the performance of the MLSE equalizer with a linear and a nonlinear
channel model. For the linear model, we use 5 coefficients. The received signal can be

expressed as:
4

Pin(n) =Y fix(n — i), (7.21)

1=0

These 5 coefficients were trained by the conventional LMS algorithm with p = 0.001.
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For the nonlinear model, we use the Volterra series up to 3 order. The total number
of coefficients is 55. The received signal can be expressed as:

4 4 4 4 4 4

Foor(n) = Z hix(n—i)—FZ Z hi,jx(n—i)x(n—j)—FZ Z Z hi jrr(n—i)z(n—j)z(n—Fk).

i=0 i=0 j=i i=0 j=i k=j

(7.22)

We also train these 55 coefficients by the LMS algorithm with p; = 0.001, py = 0.0005,
and pz = 0.0001 for three types of coefficients in (7.22), respectively.

For the proposed method, we have 32 cluster means to estimate. Define the estimation

error as

e(n) = = > (¥ —1(n))*. (7.23)

We applied the clustering method shown in (7.9) and (7.11). Fig. 7.1 shows the learn
curving of these three methods.

10°

e’(n)

10 — Proposed method
- — Linear model
- - Volterra series
10_5 L L L L
0 2000 4000 6000 8000 10000

n

Figure 7.1: Learning curves for the linear model, the Volterra model, and the cluster
means.

From the figure, we can know that the convergence for the clustering means is much
faster that for Voterra coefficients. Also, the linear model is not adequate; the corre-
sponding estimation error is large. The BER performance for these methods is shown in

Fig. 7.2. The number of data used for simulations was 10°. After training, we can apply
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the Viterbi algorithm to perform equalization. Using decisions, we can continuously train

the coefficients.
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Figure 7.2: BER comparison for the Viterbi equalizer with the linear channel model, with
the Volterra channel model, with“the perfect channel model, and with the cluster means.

The performance for the Viterbi algorithm with the linear channel model is very poor.
That is not surprising since the channel is nonlinear. The performance for the Viterbi
with the Volterra channel model is close to the that with the cluster means and that
with the perfect channel model. This indicates that the Volterra can model the nonlinear
channel very well. We will show the complexity comparison later to show the advantage
of the proposed algorithm.

We consider another nonlinear channel as follows.
Alr) =7+ 1.2r* — 0.357° — 0.6r". (7.24)

Note that the nonlinearity is higher in this scenario. Also, there is a fourth order term
which cannot be modeled by the Voterra model in (7.22). The equalization results are

shown in Fig. 7.3 and Fig. 7.4.
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Figure 7.3: Learning curves for the linear channel model, the Volterra channel model, and
the cluster means.

Finally, we show the computational'complexity and storage comparison for the Viterbi
equalizer with the Volterra channel model and-the cluster means in Table 7.2. For the
table, it is apparent that the computational requirement is much lower in the proposed

approach.

Table 7.2: Computational complexity and storage comparison for the Volterra model and
signal state mapping method

Volterra | State
mapping
Multiplications 1 1
Additions 1784 2
Storage 55 32
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Figure 7.4: BER comparison of the Viterbi equalizer with the linear channel model, with

the Volterra channel model, with the perfect channel model, ands with the clustering
means.
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Chapter 8

Conclusion

We have treated the equalization problem as a pattern classification problem. The
optimal equalizer is known to be the Bayesian equalizer. However, since its computa-
tional complexity is usually very high, real-world applications are difficult. We have
proposed new adaptive nonlinear algorithms to overcome this problem. Conventionally,
observations for a possible transmit symbol aré:mapped to a class. The main novelty in
this dissertation is that we let observations for a‘possible transmit symbol are mapped
to multiple classes. We develop efficient nonlinear; equalizers which are independent of
channel responses and allows an easy:trade-off between performance and computational
complexity. We investigate the problem from two different perspectives and found that
the results are similar. The proposed equalizer consists of a set of parallel linear dis-
criminant functions followed by a maximum function. The number of functions can be
arbitrarily chosen and the corresponding coefficients can be adaptively trained. We also
extend the proposed equalizer to the antenna array communication systems and this
results in new nonlinear spatio-temporal equalizers. We demonstrated that while the pro-
posed equalizers can closely approximate the performance of optimal Bayesian equalizers,
their computational complexity is significantly lower. Due to its adaptive nature, the
proposed equalizer are applicable to time-varying channels. The adaptive algorithm is
implemented with the SGD which is simple and robust and this will be a great advantage
for real-world applications. Finally, we have proposed an efficient MLSE equalizer which
does not require any channel modeling. This is particularly useful for nonlinear channels.

The idea of subset partition can be further extended. For example, if we want to
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have eight subsets, we may choose z(n — D) and any two other elements from x.(n).
Using these three elements, we can partition the signal space into eight subsets. This is
different from the partitioning method described in this paper where all three elements of
Xc2(n) must be consecutive. The specific elements to choose may depend on the channel
mapping function. An intuitive thought is to choose the ones contributing most energy
in the received signal vector. To do that, we may need a channel identification filter.
This extended method may make the signal subsets more linearly separable and facilitate
decision making.

One common disadvantage of the proposed equalizers is that their convergence is
usually slow. This is because we have used the MBER criterion for coefficient adaptation.
This cost function has a property that when the decision is right, the cost function is
close to zero. As a result, when the equalizer is close to its optimum, its adaptation
become slow due to the low BER. Hows:te,accelerate the convergence deserves further
investigation.

Application of the proposed equalizers is‘notsjust confined in the communication sys-
tems considered here. Any commupication system“ that require equalization can be the
candidate. For example, we may consider the multiple-input-multiple output (MIMO)
communication systems. The MIMO system can have a high data transmission rate;
however, its receiver is considerably more complex. In this type of systems, a block DFE
is usually applied to perform iterative symbol detection. We can then use the proposed
equalization algorithms to replace the block DFE. This application can serve a good topic

for further research.
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