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MIMO Channel Estimation in
Correlated Fading Environments

Yen-Chih Chen and Yu T. Su, Senior Member, IEEE

Abstract—This paper presents two analytic correlated
multiple-input multiple-output (MIMO) block fading channel
models and their time-variant extensions that encompass the
popular Kronecker model and the more general Weichselberger
model as special cases. Both static and time-variant models offer
compact representations of spatial- and/or time-correlated chan-
nels. When the transmit antenna array is such that the associated
MIMO channel has a small angle spread (AS), which occurs quite
often in a cellular downlink, our models admit reduced-rank
channel representations. They also provide compact channel state
information (CSI) descriptions which are needed in feedback
systems and in many post channel estimation applications. The
latter has the important implication of reduced feedback channel
bandwidth requirement and lower post-processing complexity.

Based on one of the proposed channel models we present novel
iterative algorithms for estimating static and time-variant MIMO
channels. The proposed models make it natural to decompose
each iteration of our algorithms into two successive stages that
are responsible for estimating the correlation coefficients and the
signal direction, respectively. Using popular industry-approved
standard channel models, we verify through simulations that our
algorithms yield good MSE performance which, in many practi-
cal cases, is better than that achievable by a conventional least-
square estimator. The mean-squared error (MSE) performance
of our estimators are analyzed and the resulting predictions are
consistent with those estimated by simulations.

Index Terms—Channel estimation, space-time signal process-
ing, spatial correlation.

I. INTRODUCTION

INCREASING demand for higher wireless system capacity
has catalyzed several ground-breaking transmission tech-

niques, among which is the multiple-input/multiple-output
(MIMO) technology that has attracted the great part of recent
attention. It has been shown that in comparison with con-
ventional single antenna systems, significant capacity gains
are achievable when multi-element antennas (MEA) are used
at both the transmit and receive sides [1]. Spatial multiplex-
ing techniques, for example, the BLAST (Bell-labs Layered
Space-Time) system, were developed to attain very high
spectral efficiencies in rich scattering environments.
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Ideal rich-scattering environments decorrelate channels be-
tween different pairs of transmit and receive antennas so that
maximum number of orthogonal subchannels is available. In
practice, however, spatial correlations do exist and should be
considered when designing a MIMO receiver for evaluating
the corresponding system performance [2]. Spatial correlation
depends on physical parameters such as antenna spacing,
antenna arrangement, and scatters’ distributions. Antenna cor-
relations reduce the number of equivalent orthogonal subchan-
nels, decrease spectral efficiency, making it more difficult to
detect the transmitted data [1].

Among the many analytic models for spatial-correlated
MIMO channels that have been proposed, the Kronecker
model [2] is perhaps the most popular one. It assumes sep-
arable statistics at transmitter and receiver so that the spatial
correlation matrix of the vectorized channel matrix is given
by the Kronecker product of those of the transmit and receive
antenna arrays. The separable assumption of the Kronecker
model, however, has been shown to be inappropriate by some
recent experiments; see [3] and the references therein. Hence
it has been modified and generalized by Sayeed [4] and, more
recently, by Weichselberger et al. [3] who considered joint
correlation of both link ends.

The analytic models are often used to evaluate the system
capacity/performance [5],[6], to design beamformer [7] or
training (pilot) sequences [8], [9] and for link level simulations
[10]-[12]. These models decompose the channel matrix into
terms that respectively characterize various components of the
spatial structure thus contains many more parameters than
those used in the original channel matrix. As a coherent
MIMO receiver requires an accurate channel estimate to per-
form critical operations and provide satisfactory performance,
these models are not suitable for channel estimation applica-
tion and subsequent post-channel-estimation signal processing.

We propose two general analytic correlated MIMO block
fading models and their time-variant extensions that encom-
pass the above-mentioned models as special cases. One of
our models results in separable descriptions of channel cor-
relations and mean angle of departure (AoD). Spatial and
time covariance (or correlation) functions are described by
predetermined nonparametric regressions. Unlike the other
analytic correlated MIMO models, the proposed models do
not incur additional parameters. On the contrary, when the
angle spread (AS) of the antenna array is relatively small,
they admit reduced-rank representations and compact channel
state information (CSI) representation which have significant
implications on complexity and bandwidth reduction in many
post-channel estimation operations such as data detection and
feedback beamforming.
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Various pilot-assisted MIMO channel estimators have been
proposed [8]-[14]. Unfortunately, few estimators are specif-
ically designed for correlated MIMO channels and those
few exploited only channel’s time and frequency correlation
characteristics by approximating the time- and/or frequency-
domain responses by an analytic model [13], [14]. Because of
the special structures of the proposed models, conventional
MIMO channel estimation approaches are not applicable.
We present novel pilot-assisted channel estimation schemes
based on one of the proposed new general MIMO channel
representations which does not require information of second-
order channel statistics. This representation enables us to
develop efficient algorithms to identify the realistic channel
responses. Although a model-based scheme inevitably induces
a modelling error [13]-[16], as will be shown in Section VI,
our algorithms are capable of describing realistic correlated
MIMO channels with negligible modelling errors.

After a brief review of the typical space-time antenna setup
and a general received MIMO signal model, we derive two
new models for spatial-correlated block-faded narrowband
MIMO channels and their relations with some established
analytic models in Section II. We then propose single-block
based iterative least squares (LS) channel estimators in the
following section while the extension that takes the time-
correlation into account is given in Section IV. In Section V,
we analyze the mean squared error (MSE) of the proposed
channel estimation algorithms. Numerical examples using in-
dustrial standard approved channel models are given in Section
VI to validate the proposed channel models and to demonstrate
the effectiveness of our algorithms. Concluding remarks are
given in the last section.

II. MODELLING OF SPATIAL-CORRELATED MIMO
CHANNELS

A. System Setup

Consider a cellular MIMO system in which the base
station (BS) and a mobile station (MS) are equipped with
linear arrays of 𝑀 and 𝑁 antennas, respectively. Indepen-
dent data streams x(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑀 (𝑡)]

𝑇

are transmitted from the BS at time 𝑡, where 𝑥𝑚(𝑡) de-
notes the source signal of the 𝑚th transmit antenna and
the superscript 𝑇 denotes vector (matrix) transposition. At
the MS, the received baseband signals are given by y(𝑡) =
[𝑦1(𝑡), 𝑦2(𝑡), 𝑦3(𝑡), ⋅ ⋅ ⋅ , 𝑦𝑁(𝑡)]𝑇 , where 𝑦𝑛(𝑡) is the signal
received by the 𝑛th receive antenna at time 𝑡. With a sampling
interval of △𝑡 seconds, the corresponding 𝑖th transmit and
receive sample vectors are x𝑖 = x(𝑖△𝑡), and y𝑖 = y(𝑖△𝑡),
respectively.

B. Wireless MIMO Channels

A general MIMO channel between BS and MS antennas is
modelled as

H(𝑡, 𝜏) =

𝐺∑
𝑙=1

H𝑙(𝑡)𝛿(𝜏 − 𝜏𝑙), (1)

where 𝐺 is the maximum number of paths associated with
any sub-channel between a transmit and receive antenna pair,

𝜏𝑙 is the delay of the 𝑙th path, and 𝛿 denotes the Dirac delta
function. The complex channel gain matrix associated with the
𝑙th path is given by H𝑙 = [ℎ𝑙

𝑖𝑗 ], for 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀 ,
where ℎ𝑙

𝑖𝑗 is the complex sub-channel gain between the 𝑗th
transmit and 𝑖th receive antennas. For a narrowband fading
channel, (1) is reduced to a single-tap fading matrix and the
received vector waveform is y(𝑡) = H(𝑡)x(𝑡) + n(𝑡), where
H(𝑡) is an 𝑁 × 𝑀 complex channel matrix and n(𝑡) a zero
mean additive white Gaussian noise (AWGN) vector with
covariance matrix 𝐸{nn𝐻} = 𝑁0I𝑁 . We first consider the
block fading case in which the channel gain matrix remains
unchanged within a block of 𝐵 symbol intervals and eliminate
the time parameter 𝑡 in related expressions. Section IV will
discuss the case which takes the time-correlation among
blocks into consideration.

C. Spatial-correlated block fading channels

Let Φ, ΦT and ΦR be the spatial correlation matrices
of vec(H), vec(⋅) being the stacking operator, the transmit
and receive antennas, respectively. The separable statistics
assumption of the Kronecker model implies Φ = ΦR ⊗ΦT =
Φ

1
2 (Φ

1
2 )𝐻 , where the “square root” matrix Φ

1
2 has a similar

decomposition Φ
1
2 = Φ

1
2

T ⊗Φ
1
2

R and therefore gives

H = Φ
1
2

RH𝑤Φ
1
2 𝑇

T , (2)

where H𝑤 is an 𝑁×𝑀 channel matrix whose entries are i.i.d.
complex zero-mean, unit-variance Gaussian random variables.

Weichselberger et al. [3] considered joint correlation of both
link ends and suggested the following analytic model

H = UR

(
Ω̃⊙H𝑤

)
U𝑇

T, (3)

where UT and UR are the eigenbases of the one-sided corre-
lation matrices at the transmit and receive sites, respectively.
Operator ⊙ denotes the Hadamard product operation [17]. Ω̃ is
the element-wise square root of the coupling matrix in which
each entry specifies the mean amount of energy coupled with
an eigenvector of the transmitter to that of the receiver.

An 𝑁 × 𝑀 matrix H always admit the singular value
decomposition (SVD), H = UΛV𝑇 , where U is an 𝑁 ×𝑁
unitary matrix, V is an 𝑀 × 𝑀 unitary matrix, and the
diagonal matrix Λ is 𝑁×𝑀 with non-negative entries. When
H is random, its SVD component matrices are random and
depend on the sample (matrix) value of H. As U and V can
be transformed into two predefined unitary matrices QR and
QT by UP1 = QR and VP2 = QT, with both transforms
P1 and P2 being unitary, we have

H = QRP
−1
1 Λ(P−1

2 )𝑇Q𝑇
T = QRCQ

𝑇
T (4)

and the only random term on the right hand side is C. For the
Weichselberger model, the predefined matrices are eigenbases
of the one-sided correlation matrices while Sayeed’s virtual
channel representation uses the DFT bases.

Let Φ
1
2

T
𝑑𝑒𝑓
= [𝜙T(𝑖, 𝑗)], where 𝜙T(𝑖, 𝑗) represents the root

spatial correlation between 𝑖th and 𝑗th transmit antennas. As
the 𝑀 column vectors of Φ

1
2
T lie in a 𝐾𝑇 (≤ 𝑀) dimensional

subspace, we have

Φ
1/2
T = QTΛT, (5)
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where QT is an unitary matrix and the coefficient matrix ΛT

can be obtained by the Gram-Schimdt orthonormalization pro-
cedure. The above equation implies 𝜙T(𝑖, 𝑗) =

∑𝐾𝑇

𝑘=1 𝜆
𝑗
𝑘q𝑘(𝑖),

where q𝑘(𝑖) is the 𝑖th element of the 𝑘th basis vector, 𝜆𝑗
𝑘 is

the projection of the 𝑗th column on q𝑘.
Using a similar decomposition for Φ1/2

R leads to Φ1/2 =
(QTΛT)⊗(QRΛR) = (QT ⊗QR) (ΛT ⊗ΛR), where we have
invoked the identity [17],

(A1 ⊗B1)(A2 ⊗B2) ⋅ ⋅ ⋅ (A𝑘 ⊗B𝑘)

= (A1A2 ⋅ ⋅ ⋅A𝑘)⊗ (B1B2 ⋅ ⋅ ⋅B𝑘). (6)

¿From the canonical representation, vec(H) = Φ
1
2 vec(H𝑤),

we obtain

vec(H) = (QT ⊗QR) (ΛT ⊗ΛR) vec(H𝑤)
𝑑𝑒𝑓
= (QT ⊗QR) vec(C). (7)

The identity

vec (ABD) =
(
D𝑇 ⊗A

)
vec (B) (8)

implies vec(H) = vec
(
QRCQ

𝑇
T

)
, and so H = QRCQ

𝑇
T,

which is the same as (4).
We summarize the above derivation on the relation between

the proposed analytic model with the Kronecker, Sayeed, and
Weichselberger models in

Proposition 1: An 𝑁×𝑀 flat-faded MIMO channel matrix
H, can always be expressed as

H = QRCQ
𝑇
T (9)

where C is a complex random coefficient matrix, QR and QT

are predefined unitary matrices. The above model is equivalent
to the Kronecker model if the matrix C satisfies the separable
correlation condition

vec(C) = (ΛT ⊗ΛR) vec(H𝑤) (10)

where ΛT and ΛR are coefficient matrices that depend on the
spatial correlations among the transmit and the receive an-
tenna arrays, respectively. (9) is related to the Weichselberger
model via

UT = QTP
𝐻
T , UR = QRP

𝐻
R (11)

P𝐻
R ΓRPR = 𝐸

{
CC𝐻

}
, P𝐻

T ΓTPT = 𝐸
{
C𝑇C∗} (12)

where PT, PR are unitary matrices and ΓR,ΓT have the same
eigenvalues of the matrices 𝐸

{
HH𝐻

}
and 𝐸

{
H𝑇H∗},

respectively. When the predefined matrices are UR and UT,
C has the special form Ω̃⊙H𝑤. Moreover, (9) is equivalent
to the virtual representation of Sayeed if columns of QR and
QT are DFT basis vectors and entries of C are independent
complex Gaussian random variables.

[10] suggested and [11] verified through field measurements
that the mean direction of arrival (DoA) can be embedded in
the channel model by post-multiplying the channel matrix H
by a diagonal matrix which is a function of the DoA. We can
derive a similar model by invoking the fact that if W is a
diagonal matrix with unit modulus entries and V is unitary
then both VW and W−1V are also unitary, to obtain the
alternative representation (13).

Corollary 1: An equivalent channel matrix for stationary
frequency-flat MIMO channel is given by

H = QRCQ
𝑇

TW (13)

where Q
𝑇

TW = Q𝑇
T and W is a diagonal matrix with unit

modulus entries.
Several remarks and observations on the channel models (9)
and (13) are given below.

R1. The Kronecker model requires that C has the special
structure (10) while the Weichselberger and Sayeed
models demand that the entries of C be independent (but
not identical) Gaussian random variables. In contrast,
the proposed model does not impose any constraint on
the coefficient matrix C and is valid for arbitrary block-
faded H.

R2. For practical correlated MIMO channels, which are of
particular concern to this paper, the entries of H are
not i.i.d. but correlated random variables. Although H
or the corresponding one-sided correlation matrices for a
correlated channel is still likely to be of full rank, it often
has a large eigen-spread and thus admits a reduced-rank
representation by ignoring the weaker eigenmodes. The
rank-reduction is most obvious for typical urban macro-
cellular environments in which an MS is surrounded
by local scatterers, and waveforms impending the re-
ceive antennas are richly scattered, while the BS is not
obstructed by the local scatterers [2][12]. Appendix A
shows that, if the AS Δ is not too large, the diagonal
matrix W

W = diag [𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑀 ] , (14)

has entries of the form 𝑤𝑖 = exp
[
−𝑗2𝜋 (𝑖−1)𝑑

𝜆 sin𝜙
]
,

𝑑 being the inter-element distance, that bear the mean
AoD information. As will become clear later, the sepa-
rability of the channel correlation and angle information
characterizations has some useful implications.

R3. Given predefined bases QR, QT, or QT, the statistical
properties of the corresponding coefficient matrix is
completely determined by those of C. Identification of
the unknown channel H is equivalent to the estimation
of C or the pair (C,W), which usually has a lower
(dominant) rank and thus much smaller number of
entries than those of H for the link environment of
interest. Thus, using model (9) or (13) reduces the
number of parameters to be estimated and enhances the
performance. Moreover, as the bases in both (9) and
(13) are pre-defined, these two models can be easily
extended to time-varying block fading and frequency-
selective fading environments.

R4. There are several classes of basis functions to choose
from. The Taylor and Weierstrass arguments and the
results of [21] suggest the use of polynomial bases. If
we use polynomials of degree 𝑃 as basis functions in
expanding a spatial correlation function of length 𝑃 , the
corresponding basis matrix P𝑃 has entries

[P]𝑖,𝑗 = (𝑖− 1)𝑗−1, 𝑖, 𝑗 = 1, 2, . . . , 𝑃, (15)
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Although the column vectors in (15) form a basis,
they are not orthogonal. Furthermore, these vectors
have different norms, which might result in numerical
instability. By applying the QR decomposition to the
corresponding P𝑃 [22], we obtain an orthonormalized
polynomial basis matrix P𝑜, i.e. P𝑃 = P𝑜R𝑜, where
R𝑜 is the corresponding upper triangular matrix. Since
the columns of P0 are arranged in ascending order of
polynomial degree, (so that its 𝑘th column represents
an eigenmode describing higher correlation than that
described by the 𝑙th column if 𝑙 > 𝑘), we select the
first 𝐾𝑇 ,𝐾𝑅 or 𝐾𝐿 columns to form the basis matrices
Q𝑀,𝐾𝑇 and Q𝑁,𝐾𝑅 of (17) or Q𝐿,𝐾𝐿 of (37).

R5. For a fixed base one needs to determine the modelling
orders, 𝐾𝑇 and 𝐾𝑅. Either the Akaike information
criterion (AIC) or the minimum description length
(MDL) approach can be used to determine the optimal
modelling orders that trade-off the system complexity
and performance [23]. Time domain modelling order
𝐾𝐿 discussed in Section IV can also be similarly de-
termined. Depending on the application scenario, these
order parameter values can be obtained by an one-shot
open loop estimate or should be periodically updated.

R6. R2 and R3 indicate that, for a MIMO system with
a small-to-medium AS, the model (13) is more use-
ful for post-channel-estimation application, hence our
subsequent discourse will focus on this model only.
Numerical results reported in Section VI also confirm
that this representation leads to significant bandwidth
and complexity reduction for systems which have to
feedback information about or process a large MIMO
channel matrix.

R7. Our simulation experiments indicate that, when the AS
△ becomes large, the dominant rank of C increases
accordingly and there is no dominant spatial angle. The
steering matrix W becomes an identity matrix which
gives no AoD information and (13) degenerates to (9).

III. SINGLE-BLOCK BASED CHANNEL ESTIMATION

In this section we consider estimation schemes which are
based on a single block of observation without taking into
account the (time-)correlation among blocks. We propose
two iterative schemes in which an iteration consists of two
phases. The first phase is responsible for the estimation of
the coefficient matrix, C, while the directional matrix, W in
(13), is estimated in the second phase. Both tentative estimates
are updated as one proceeds with each new iteration until the
stopping criterion is met. The two schemes differ in the second
phase only.

Consider the 𝑀 ×𝐵 matrix X = [x1,x2, ⋅ ⋅ ⋅ ,x𝐵] formed
by 𝐵 length-𝑀 input symbol vectors, where 𝐵 ≥ 𝑀 .
Assuming H remains static during a 𝐵-block period, we
express the received sample block, Y = [y1,y2, ⋅ ⋅ ⋅ ,y𝐵] as

Y = HX+N, (16)

where N = [n1,n2, ⋅ ⋅ ⋅ ,n𝐵] is the corresponding noise
matrix whose entries are i.i.d. zero mean complex Gaussian
random variables. In estimating H, X is assumed to be

composed of either the pilot vectors or some decision feedback
results. Substituting two known unitary matrices Q𝑀,𝐾𝑇 and
Q𝑁,𝐾𝑅 with ranks 𝐾𝑇 (≤ 𝑀) and 𝐾𝑅(≤ 𝑁) for Q𝑇 and Q𝑅

in (13), we want to find the optimal solution {W𝑜𝑝𝑡,C𝑜𝑝𝑡}
to the problem

arg min
W,C

∥Y −Q𝑁,𝐾𝑅CQ
𝑇
𝑀,𝐾𝑇

WX∥2 (17)

We express the corresponding optimal (least-squares) channel
estimate in terms of W𝑜𝑝𝑡 and C𝑜𝑝𝑡

H𝑜𝑝𝑡 = Q𝑁,𝐾𝑅C𝑜𝑝𝑡Q
𝑇
𝑀,𝐾𝑇

W𝑜𝑝𝑡 (18)

so that (16) can be rewritten as

Y = H𝑜𝑝𝑡X+ ΔHX+N
𝑑𝑒𝑓
= H𝑜𝑝𝑡X+ Ñ, (19)

where Ñ represents the sum of the modelling error ΔHX due
to the reduced rank representation and the AWGN vector, N.

To derive an iterative algorithm for obtaining the joint
directional and channel solution {W𝑜𝑝𝑡,H𝑜𝑝𝑡}, we first notice
that, at the (𝑖− 1)th iteration,

Y = Ĥ𝑖−1X+ ΔĤ𝑖−1X+ Ñ (20)

where ΔĤ𝑖−1
𝑑𝑒𝑓
= H𝑜𝑝𝑡 − Ĥ𝑖−1 is the residual error at the

end of the (𝑖 − 1)th iteration, and consider the estimation of
the channel (coefficients) and AoD in two separate phases.

A. Phase I - Coefficient Estimation

Assume that the directional matrix in this phase is optimum,
i.e., W = W𝑜𝑝𝑡 . From (16) and (18), we have

vec(Y) =
{(

(W𝑜𝑝𝑡X)𝑇Q𝑀,𝐾𝑇

)⊗Q𝑁,𝐾𝑅

}
vec(C)

+ vec(N). (21)

Substituting the definition Z
𝑑𝑒𝑓
= ((W𝑜𝑝𝑡X)𝑇Q𝑀,𝐾𝑇 ) ⊗

Q𝑁,𝐾𝑅 into (21), we have the LS solution

vec(Ĉ) = (Z𝐻Z)−1Z𝐻vec(Y)
𝑑𝑒𝑓
= 𝐹 (W𝑜𝑝𝑡). (22)

While the optimal directional matrix estimate is not available,
we replace it by the tentative estimation from the previous iter-
ation, Ŵ𝑖−1. vec(Ĉ) is then obtained by computing 𝐹 (Ŵ𝑖−1)
instead, and the corresponding tentative estimate is denoted
by Ĉ𝑖. Initially, we can arbitrarily set Ŵ0 to be an identity
matrix.

B. Phase II - Direction Estimation

Similar to Phase I, we begin with the assumption that
the coefficient matrix in this estimation phase is optimum.
The directional information is to be obtained by estimating a
diagonal matrixW with unit modulus entries; see (14). Setting

G
𝑑𝑒𝑓
= Q𝑁,𝐾𝑅C𝑜𝑝𝑡Q

𝑇
𝑀,𝐾𝑇

(23)

and invoking (18), we have Ĥ𝑖−1 = GŴ𝑖−1. As C𝑜𝑝𝑡 is
unavailable, C𝑜𝑝𝑡 is replaced by the previous estimate Ĉ𝑖−1

in computing G during the 𝑖th iteration. In the following,
we propose two algorithms to estimate the phase of the unit
modulus diagonal entries of W.
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1) Algorithm A - Maximum Matching Output: To estimate
Ŵ𝑖 in diagonal form, we start with the following lemma
whose proof is given in Appendix B.

Lemma 1: For two matrices A and B of size 𝑁 ×𝑀 and
𝑀 ×𝐸 respectively, and an arbitrary vector c of size 𝑀 × 1,
the following identity holds.

vec (A ⋅ diag(c) ⋅B) =
[
(1𝐸 ⊗A)⊙ (B𝑇 ⊗ 1𝑁

)]
c, (24)

where “diag” denotes the diagonal operation used to translate
a vector into a diagonal matrix, with its diagonal terms being
the elements of the original vector.

Combined with matrix G defined in (23), (19) is rewritten
as

Y = GW𝑜𝑝𝑡X+ Ñ. (25)

Let w𝑜𝑝𝑡 be the column vector that consists of the diagonal
elements of W𝑜𝑝𝑡, i.e., w𝑜𝑝𝑡(𝑖) = W𝑜𝑝𝑡(𝑖, 𝑖), for any 1 ≤
𝑖 ≤ 𝑀 . Then, by Lemma 1, we have

vec (Y) =
[
(1𝐵 ⊗G)⊙ (X𝑇 ⊗ 1𝑁

)]
w𝑜𝑝𝑡+vec

(
Ñ
)

(26)

and the LS estimate of w𝑜𝑝𝑡 is given by ŵ𝐿𝑆 = T† ⋅ vec(Y),

where
[
(1𝐵 ⊗G)⊙ (X𝑇 ⊗ 1𝑁

)] 𝑑𝑒𝑓
= T.

In order to extract the steering vector ŵ, we intro-

duce v(𝜃)
𝑑𝑒𝑓
=

[
1, 𝑣(𝜃), . . . , 𝑣𝑀−1(𝜃)

]𝑇
, where 𝑣(𝜃) =

exp
[−𝑗2𝜋 𝑑

𝜆 sin(𝜃)
]
. The AoD information 𝜙 is retrieved by

maximizing the matching output

𝜙 = arg max
−𝜋≤𝜃≤𝜋

Re
{
ℙ (ŵ𝐿𝑆)

𝐻
v(𝜃)

}
, (27)

where ℙ(⋅) is defined by the following phase extraction
operator,

ℙ
(
[𝑎0𝑒

𝑗𝑏0 , 𝑎1𝑒
𝑗𝑏1 , ⋅ ⋅ ⋅ , 𝑎𝐾𝑒𝑗𝑏𝐾 ]

)
𝑑𝑒𝑓
= [1, 𝑒𝑗(𝑏1−𝑏0), ⋅ ⋅ ⋅ , 𝑒𝑗(𝑏𝐾−𝑏0)],

{𝑎𝑖} ∈ ℛ𝐾+1
+ , {𝑏𝑖} ∈ [0, 2𝜋) (28)

Once 𝜙 is available, it is straightforward to obtain Ŵ =
diag(v(𝜙)). Solving (27) over [0, 2𝜋) can be accomplished
by using the conventional line searching algorithm.

Computing ŵ𝐿𝑆 in (27) involves a pseudo-inverse operation
of matrix T, and is thus computational expensive. However,
the matrix inversion is not needed if an orthogonal training
sequence set, which is optimal for LS channel estimator [8],
is used. This can be seen by noting that

T𝐻T = (G𝐻G)⊙ (X∗X𝑇 ), (29)

and the right-hand side of (29) is a diagonal matrix with
nonnegative real elements if X∗X𝑇 = 𝐵I. In this case, we
have

ℙ (ŵ𝐿𝑆) = ℙ
(
T† ⋅ vec(Y)

)
= ℙ

(
T𝐻 ⋅ vec(Y)

)
𝑑𝑒𝑓
= ℙ

( ˜̂w𝐿𝑆

)
, (30)

The AoD information can thus be obtained simply by substi-
tuting ˜̂w𝐿𝑆 , which is obtained without matrix inversion, for
ŵ𝐿𝑆 in (27).

2) Algorithm B - Root Finding Method: An alternative way
to find the optimal phase is to convert (27) into a root finding
problem. Note that the elements of w𝑜𝑝𝑡 are of geometric
progression, i.e., they form a row vector of a Vandermonde
matrix. Hence if we define the correlation polynomial

𝑃 (𝑧)
𝑑𝑒𝑓
= ℙ(ŵ𝐿𝑆)

𝐻z−𝑀, (31)

where z = [1, 𝑧, . . . , 𝑧𝑀−1] and let 𝒵 be the set of its zeros
in the complex plane, then solving (27) is equivalent to

𝑧 = argmin
𝑧∈𝒵

∣(∣𝑧∣ − 1)∣ and 𝜙 = sin−1

(−Arg{𝑧}𝜆
2𝜋𝑑

)
(32)

and the directional matrix is reconstructed by Ŵ = diag(ẑ),
where ẑ = [1, 𝑧, ⋅ ⋅ ⋅ , 𝑧𝑀−1]. Similar to Algorithm A, if
the orthogonal training matrix is used, ˜̂w𝐿𝑆 of (30) can be
substituted for ŵ𝐿𝑆 in (31) to simplify the computation.
While the accuracy of Algorithm A relies on the resolution
the numerical search algorithm used, this algorithm gives the
exact analytic solution once (31) is solved.

C. Convergence and Complexity

Since the object function in (17) is jointly convex with
respect to C and W and the proposed algorithms have the
form of a nonlinear Gauss-Seidel algorithm, the convergences
of our algorithms are guaranteed [24]. All the simulation
examples reported in Section VI converge and achieve the
theoretical performance lower bound derived in Section V.

The computation complexity of the proposed algorithm is
dominated by the LS operations in Phase I and Phase II.
The flop counts of the LS operation in Phase I is O(𝐵𝐾2

𝑇 ),
𝐾𝑇 ≤ 𝑀 while the conventional LS estimator needs O(𝐵𝑀2)
flops [25]. Phase II’s complexity is of the same order as that of
the conventional LS estimator, thanks to the special structure
of T. By using an orthogonal training matrix, the pseudo-
inversion in (22) for Phase I can be simplified to a matrix-
vector product, which needs no matrix inversion operation as
the modelling matrix is unitary and Ŵ has unit modulus terms.
The pseudo-inverse operation of Phase II can also be replaced
by the product of T𝐻 and vec(Y), and the complexity is
reduced as well. Moreover, except for static channels, the
estimates for both W and C need to be updated periodically.
Let each 𝐵−symbol interval be called an estimation interval
(EI). Since the mean AoD usually change much slower than
the channel coefficients (gains) variation, updating frequencies
for W and C can and should be different, i.e., if the two
estimates are updated every 𝑇 𝑐

𝑜 and 𝑇𝑤
𝑜 EIs, respectively, then

𝑇𝑤
𝑜 ≫ 𝑇 𝑐

𝑜 (see Fig. 8 of Section VI). This dual updating
frequency option is unique to our approach and implies that
Phase II may be disabled most of the time while Phase I
needs single iteration per update EI, hence our algorithm
may be computational more efficient than the conventional
LS approach for many non-static channels.

The major advantage of our channel model and estimator
lies not in the computational efficiency of the channel esti-
mator but in the compactness of CSI representation which
is needed in a feedback system and that of post-channel-
estimation operations. As mentioned in R2 and R3, a small
𝐾𝑇 is often sufficient to accurately describe a MIMO channel



CHEN and SU: MIMO CHANNEL ESTIMATION IN CORRELATED FADING ENVIRONMENTS 1113

with high transmit spatial correlation. For any post channel
estimation operation associated with H, e.g., taking pseudo-
inverse or eigen-decomposition of H, the computing load is
reduced as it involves the 𝐾𝑅×𝐾𝑇 coefficient matrix and the
estimated AoD instead of the original 𝑁×𝑀 channel matrix.

IV. CHANNEL ESTIMATION WITH TIME CORRELATION

CONSIDERATION

We now extend our investigation to the case that the time
correlation among blocks has to be taken into account. Like
our spatial modelling approach, we use a set of orthonormal
basis functions to describe a snap shot of a fading channel’s
time domain behavior. We assume an equally spaced pilot-
block arrangement. The issue of the optimal pilot arrangement
that minimizes the MSE or bit error rate (BER) was addressed
in [9] and [26].

Assuming the two leading pilot symbol vectors of two
consecutive pilot blocks are 𝑇 symbol intervals away, we
express the receive signal block at time 𝑛𝑇 as

Y𝑛 = H𝑛X𝑛 +N𝑛 (33)

where Y𝑛 = Y(𝑛𝑇 ) and X𝑛 = X(𝑛𝑇 ) are the 𝑁×𝐵 receive
matrix at time 𝑛𝑇 and the corresponding 𝑀 × 𝐵 transmit
block, respectively. H𝑛 is the 𝑁 × 𝑀 matrix whose (𝑖, 𝑗)th
entry represents the link gain between the 𝑖th transmit and the
𝑗th receive antennas at time 𝑛𝑇 .

We consider the time-variant behavior of a MIMO channel
within a fixed observation window of 𝐿 blocks (EIs). The
received sample blocks from 𝑛𝑇 to (𝑛 + 𝐿 − 1)𝑇 can be
cascaded into the matrix

Y𝑛,𝐿
𝑑𝑒𝑓
= [Y𝑛,Y𝑛+1, . . . ,Y𝑛+𝐿−1] . (34)

Using (8), we obtain

vec(Y𝑛,𝐿) =
(
X𝑇

𝑛,𝐿 ⊗ I𝑁
) ⋅ vec (H𝑛,𝐿) + vec (N𝑛,𝐿) (35)

where vec(H𝑛,𝐿)
𝑑𝑒𝑓
=

[
vec(H𝑛)

𝑇 , . . . vec(H𝑛+𝐿−1)
𝑇
]𝑇

,

vec(N𝑛,𝐿)
𝑑𝑒𝑓
=
[
vec(N𝑛)

𝑇 , . . . vec(N𝑛+𝐿−1)
𝑇
]𝑇

, and

X𝑇
𝑛,𝐿

𝑑𝑒𝑓
=

⎡
⎢⎢⎢⎢⎣

X𝑇
𝑛 0 ⋅ ⋅ ⋅ 0

0 X𝑇
𝑛+1

... 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ X𝑇

𝑛+𝐿−1

⎤
⎥⎥⎥⎥⎦ .

Substituting (9) for each H𝑛 and assuming the eigenbases
QT and QR remain invariant during an estimation period, we
obtain

vec(H𝑛,𝐿) = (I𝐿 ⊗QT ⊗QR)Γ𝑛,𝐿. (36)

Each component of the vector Γ𝑛,𝐿 =[
𝛾𝑇
𝑛 , 𝛾

𝑇
𝑛+1, ⋅ ⋅ ⋅ , 𝛾𝑇

𝑛+𝐿−1

]𝑇
is itself an (𝑁𝑀) × 1 column

vector 𝛾𝑛 =
[
𝛾1𝑛, 𝛾2𝑛, ⋅ ⋅ ⋅ , 𝛾(𝑁𝑀)𝑛

]𝑇
that represents the

complex fading coefficients for all 𝑁𝑀 MIMO subchannels
at time 𝑛𝑇 and, 𝛾𝑝𝑛, 1 ≤ 𝑝 ≤ 𝑁𝑀 , are independent.

The stacked vector, 𝛾(𝑝) =[
𝛾𝑝𝑛, 𝛾𝑝(𝑛+1), ⋅ ⋅ ⋅ , 𝛾𝑝(𝑛+𝐿−1)

]𝑇
, represents a finite-duration

sample of the complex random process associated with the
𝑝th subchannel [11]. Such a process can also be expanded by

a set of smooth functions [14], [15], and thus its estimation
can be obtained by using a method similar to that developed
in the previous section. Hence, we can first apply the
orthogonal transform 𝛾(𝑝) = Q𝐿b𝑝𝑛, where Q𝐿 is an
𝐿 × 𝐿 orthogonal matrix, and b𝑝𝑛 is the transform domain
coefficient vector. Then, the time domain channel correlation
can be approximated by using the reduced basis matrix
Q𝐿,𝐾𝐿

𝛾(𝑝) ≈ Q𝐿,𝐾𝐿c𝑝𝑛, Γ𝑛,𝐿 ≈ (Q𝐿,𝐾𝐿 ⊗ I𝐿𝑀𝑁 ) ccoef, (37)

where 𝐾𝐿 denotes the time domain modelling order, and c𝑝𝑛
is a 𝐾𝐿 × 1 coefficient vector.

By using (13), (36) and the approximation (37), we decou-
ple the signal part of (35) into the product of two modelling
domains - space and time domains

vec(Ȳ𝑛,𝐿) ≈
(
X𝑇

𝑛,𝐿 ⊗ I𝑁
) [
Q𝐿,𝐾𝐿 ⊗ (W𝑇QT)⊗QR

]
ccoef

≈ (X𝑇
𝑛,𝐿 ⊗ I𝑁

) [
Q𝐿,𝐾𝐿 ⊗ (W𝑇QT,𝐾𝑇 )⊗QR,𝐾𝑅

]
c̃coef

𝑑𝑒𝑓
=
(
((W𝐿X𝑛,𝐿)

𝑇 Q̃T,𝐾𝑇 )⊗QR,𝐾𝑅

)
c̃coef (38)

where W𝐿
𝑑𝑒𝑓
= (I𝐿 ⊗W), Q̃T,𝐾𝑇

𝑑𝑒𝑓
= Q𝐿,𝐾𝐿 ⊗QT,𝐾𝑇 and

QT,𝐾𝑇 and QR,𝐾𝑅 are composed of 𝐾𝑇 and 𝐾𝑅 column
vectors of QT and QR, respectively. W is the steering matrix
defined in (14). Since the mean AoD usually varies slowly
with respect to a sub-channel’s coherent time, we assume that
W remains the same during a period of 𝐿 data blocks. Just
as the narrowband case (13), we do not impose the implicit
Kronecker structure and Gaussian assumption on c̃coef.

As (38) can be obtained by replacing X, Y, W, vec(C),
Q𝑀,𝐾𝑇 , and Q𝑁,𝐾𝑅 in (21) by X𝑛,𝐿, Y𝑛,𝐿, W𝐿, c̃coef,
Q̃T,𝐾𝑇 , and QR,𝐾𝑅 , we conclude that both spatial and time
correlations can be described by similar models. Hence, the
two-phase iterative estimation scheme developed in Section III
can be extended to estimate the coefficient vector c̃coef, and the
directional matrix W𝐿 in (38). In the following, we describe
two-phase channel estimation schemes with time correlation
consideration.

A. Phase I - Coefficient Estimation

Following an argument similar to that used in Section III,
we assume that the directional matrix W𝐿 is optimal in the
coefficient estimation phase and define

Z̃
𝑑𝑒𝑓
=
(
(W𝐿,𝑜𝑝𝑡X𝑛,𝐿)

𝑇 Q̃T,𝐾𝑇

)
⊗QR,𝐾𝑅 . (39)

The LS estimate of c̃coef is

ˆ̃ccoef = (Z̃𝐻Z̃)−1Z̃𝐻vec (Y𝑛,𝐿)
𝑑𝑒𝑓
= 𝐹 (W𝐿,𝑜𝑝𝑡), (40)

which is a function of the optimal directional matrix W𝐿,𝑜𝑝𝑡.
At the 𝑖th iteration, since the optimal directional matrix is not
available, the tentative estimation, Ŵ𝐿,𝑖−1, replaces W𝐿,𝑜𝑝𝑡.

B. Phase II - Direction Estimation

Similar to the single-block based case, we propose two
AoD estimation algorithms. Again, we assume the optimal
coefficient vector is available, i.e., c̃coef = c̃coef,𝑜𝑝𝑡, when
estimating the directional information.
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Define a new matrix G̃
𝑑𝑒𝑓
= QR,𝐾𝑅C̃coef,𝑜𝑝𝑡Q̃

𝑇
T,𝐾𝑇

, where

C̃coef,𝑜𝑝𝑡 is a 𝐾𝑅 × 𝐾𝐿𝐾𝑇 matrix derived from c̃coef,𝑜𝑝𝑡 by
C̃coef,𝑜𝑝𝑡(𝑖, 𝑗) = c̃coef,𝑜𝑝𝑡 (𝐾𝑅(𝑗 − 1) + 𝑖), 1 ≤ 𝑖 ≤ 𝐾𝑅, 1 ≤
𝑗 ≤ 𝐾𝐿𝐾𝑇 . We rewrite the received matrix in vector form

vec(Y𝑛,𝐿) = vec
(
G̃W𝐿X𝑛,𝐿

)
+ Ñ𝑛,𝐿

=
(
X𝑇

𝑛,𝐿 ⊗ G̃
)

vec(I𝐿 ⊗W) + Ñ𝑛,𝐿, (41)

where Ñ𝑛,𝐿 represents the sum of the modelling error asso-
ciated with G̃ and the AWGN term N𝑛,𝐿.

1) Algorithm A - Maximum Matching Output: If W is
constrained to be a diagonal matrix, i.e., W = diag(w), then
I𝐿 ⊗W = diag(1𝐿 ⊗w) and therefore

vec(Y𝑛,𝐿) = vec
(
G̃ ⋅ diag(1𝐿 ⊗w) ⋅X𝑛,𝐿

)
+ Ñ𝑛,𝐿. (42)

¿From Lemma 1, we have

vec
(
G̃ ⋅ diag(1𝐿 ⊗w)) ⋅X𝑛,𝐿

)
=
((

1𝐿𝐸 ⊗ G̃
)
⊙ (X𝑇

𝑛,𝐿 ⊗ 1𝑁
))

(1𝐿 ⊗ I𝑀 )w

𝑑𝑒𝑓
= T̃w. (43)

The LS estimate of w𝑜𝑝𝑡, like its counterpart in Algorithm A
of the previous subsection, is given by ŵ𝐿𝑆 = T̃† ⋅vec(Y𝑛,𝐿).
To improve the estimate and reconstruct a steering vec-

tor ŵ, we analogously define a steering vector v(𝜃)
𝑑𝑒𝑓
=[

1, 𝑣(𝜃), ⋅ ⋅ ⋅ , 𝑣𝑀−1(𝜃)
]𝑇

, where 𝑣(𝜃) = exp(−𝑗2𝜋 𝑑
𝜆 sin(𝜃)).

The AoD information 𝜙 can be retrieved by

𝜙 = arg max
−𝜋≤𝜃≤𝜋

Re
{
ℙ(ŵ𝐿𝑆)

𝐻v(𝜃)
}
, (44)

where ℙ denotes the phase extraction operator defined by (28).
Having obtained 𝜙, we then proceed to compute Ŵ𝐿 = I𝐿 ⊗
V(𝜙), where V(𝜙) = diag(v(𝜙)).

The pseudo-inverse operation T̃† is not necessary if the
orthogonal training matrix is used for X𝑛, i.e., X𝑛X

𝐻
𝑛 = 𝐵I

for each 𝑛. We then have

ℙ( T̃† ⋅ vec (Y𝑛,𝐿) ) = ℙ(

𝑑𝑒𝑓
= ˜ŵ𝐿𝑆︷ ︸︸ ︷

T̃𝐻 ⋅ vec (Y𝑛,𝐿) ), (45)

and ŵ𝐿𝑆 is to be replaced by ˜̂w𝐿𝑆 defined in the above
equation.

2) Algorithm B - Root-Finding Method: The root-finding
approach for the block fading case can be used as well. It is
easy to see that (44) is equivalent to searching for the root of
the correlation polynomial 𝑃 (𝑧) which is the closest to the
unit circle, i.e.,

𝑧 = argmin
𝑧

∣∣𝑧∣ − 1∣,

subject to 𝑃 (𝑧)
𝑑𝑒𝑓
= ℙ(ŵ𝐿𝑆)

𝐻z−𝑀 = 0 (46)

and then retrieving the AoD information from 𝑧 =

exp
[
−𝑗2𝜋 𝑑

𝜆 sin(𝜙)
]
. The directional matrix is to be recon-

structed by Ŵ𝐿 = I𝐿⊗ diag(ẑ), where ẑ = [1, 𝑧, . . . , 𝑧𝑀−1].
Similarly, using orthogonal training matrices, we replace ŵ𝐿𝑆

by ˜̂w𝐿𝑆 to avoid pseudo-matrix inversion.

The total complexity per block of the proposed algorithm,
like the single-block based case, is still larger than the conven-
tional LS estimator when the dual updating frequencies option
is not used. However, if the operating scenario allows the
use of the latter option, the complexity can be asymptotically
reduced to 𝐾2

𝑇

𝑀2 of that of the conventional LS method if 𝑇𝑤
𝑜 ≪

𝑇 𝑐
𝑜 . Furthermore, by using an orthogonal training matrix, we

need no matrix inversion in both Phase I and Phase II and
significantly reduce the computing complexity. For slowing
time-variant channels, the required time domain modelling
order, 𝐾𝐿, is small, the number of channel representation
parameters is reduced from 𝐿𝑀𝑁 to 𝐾𝐿𝐾𝑇𝐾𝑅 + 1. Such
a reduction yields compact CSI representation and benefits
many post channel estimation operations involving H, as was
discussed at the end of last section.

V. PERFORMANCE ANALYSIS

In analyzing the MSE performance

𝜖
𝑑𝑒𝑓
= 𝐸

{
∥H− Ĥ∥2𝐹

}
= 𝐸

{
∥vec(H)− vec(Ĥ)∥22

}
. (47)

of the proposed Ĥ, we first make the optimistic assumptions
that the optimal orthogonal training matrix [8] for conventional
LS channel estimator is used and the directional matrix
estimate Ŵ is perfect.
Notations

For notational simplicity and when there is no danger of
ambiguity, H and W in this section denote the channel and
directional matrices of (16)/(17) or (35)/ (38) for single-block
based or time-correlated based estimators, and X𝑝 represents
X in (21) or X𝑛,𝐿 in (38). Furthermore, QT and QR denote
either the modelling bases Q𝑀,𝐾𝑇 and Q𝑁,𝐾𝑅 in (21), or
Q̃T,𝐾𝑇 and QR,𝐾𝑅 in (38).

Then (47) can be expressed as

𝜖(X𝑝;W)=𝐸
{
∥vec(H)− vec(QRĈQ

𝑇
TW)∥22

}
=𝐸

{∥vec(H)−ΨΩ𝑧vec(HX𝑝 +N)∥22
}

(48)

where Ψ
𝑑𝑒𝑓
= (W𝑇QT) ⊗ QR and Ω𝑧

𝑑𝑒𝑓
= (Ẑ𝐻 Ẑ)−1Ẑ𝐻 , Ẑ

being the LS estimate of Z defined in III-A, i.e.,

Ẑ
𝑑𝑒𝑓
= ((WX𝑝)

𝑇QT)⊗QR (49)

As HX𝑝 and N are statistically independent, the MSE can be
separated into two terms which are contributed by modelling
error (reduced-rank basis matrices) and AWGN, respectively.

𝜖(X𝑝;W) = 𝐸
{∥vec(H)−ΨΩ𝑧vec(HX𝑝)∥22

}
+ 𝐸

{∥ΨΩ𝑧vec(N)∥22
}

𝑑𝑒𝑓
= 𝜖ℎ(X𝑝,W) + 𝜖𝑛(X𝑝,W) (50)

By defining the projections PW
𝑑𝑒𝑓
=[

W𝑇QT(Q
𝑇
TW

∗X∗
𝑝X

𝑇
𝑝W

𝑇QT)
−1Q𝑇

TW
∗X∗

𝑝X
𝑇
𝑝

]⊗ QRQ
𝑇
R

and P̃W
𝑑𝑒𝑓
=

[
W𝑇QT(Q

𝑇
TQT)

−1Q𝑇
TW

∗] ⊗ QRQ
𝑇
R . we

rewrite the first term on the RHS of (50) as

𝜖ℎ(X𝑝;W) = 𝐸∥(I−PW) vec(H)∥22
= tr

(
(I− P̃𝐻

W)(I− P̃W)Rℎ

)
=

𝜒∑
𝑘=1

𝜆𝑘∥(I− P̃W)f𝑘∥22 (51)
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where Rℎ = 𝐸
{
vec(H)vec(H)𝐻

}
is the channel correla-

tion matrix and f𝑘 is Rℎ’s eigenvector associated with the
eigenvalue 𝜆𝑘 , 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝜒; 𝜒 being the degree of
freedom of H. For the single-block based case, 𝜒 = 𝑁𝑀
and it is equal to 𝑁𝑀𝐿 when the estimator considers the
time correlation effect. (51) is valid since the orthogonal
training matrix X𝑝 is used. Let 1 < 𝐾 ≤ 𝜒 be the rank
of the dominant signal subspace of the channel covariance
matrix. Then Rℎ =

∑𝜒
𝑘=1 𝜆𝑘f𝑘f

𝐻
𝑘 ≃ ∑𝐾

𝑘=1 𝜆𝑘f𝑘f
𝐻
𝑘 , with

𝜆𝑘 ≪ 1 for 𝐾 < 𝑘 ≤ 𝜒. Since ∥(I − P̃W)f𝑘∥22 ≤ 1,
we have

∑𝜒
𝑘=𝐾+1 𝜆𝑘∥(I − P̃W)f𝑘∥22 ≤ ∑𝐾𝑠

𝑘=𝐾+1 𝜆𝑘 ≪ 1.
Let the compound modelling order 𝐾𝑠 be equal to 𝐾𝑇𝐾𝑅

and 𝐾𝑇𝐾𝑅𝐾𝐿 for the two cases under investigation. If
𝐾𝑠 is chosen to be larger than 𝐾 , the rank of Rℎ, i.e.,
𝐾 < 𝐾𝑠 ≤ 𝜒, and the basis matrices QT and QR span
the dominant signal subspace of Rℎ, then the matrix P̃W

is a projection operator whose range lies mostly in the
space spanned by {f𝑘}, 1 ≤ 𝑘 ≤ 𝐾 and we conclude that

∥(I − P̃W)f𝑘∥22 𝑑𝑒𝑓
= ∣P̃⊥

Wf𝑘∥22 ≪ 1, for 1 ≤ 𝑘 ≤ 𝐾 .
Therefore, the modelling error 𝜖ℎ is negligible in this case. On
the other hand, if the modelling order is not enough to span
the signal subspace, there is under-modelling error contributed
by those non-negligible terms 𝜆𝑘∥(I − P̃W)f𝑘∥22 which will
dominate the mean squared error when the AWGN is small
(high SNR region).

As for the MSE due to thermal noise–the second term on
the RHS of (50), we can show that

𝜖𝑛(X𝑝,W) = 𝐸
{∥ΨP𝑧vec(N)∥22

}
= tr

(
𝑁0

𝐵
P̃W

)
=

𝑁0

𝐵
𝐾𝑠, (52)

where we have invoked the facts that (i) the training signal
X𝑝 and the noise N are independent, (ii) unitary training
matrix is used, and (iii) elements of N is i.i.d. complex white
Gaussian noise with variance 𝜎2

𝑛 = 𝑁0. (52) implies that
thermal noise induced MSE can be reduced by using a small
modelling order. In Section VI (Figs. 3-5), we find that this
noise-reduction effect is significant in low SNR environments
where thermal noise dominates the MSE performance while
the modelling error of (51) dominates in high SNR region.

If Ŵ is not perfect and W = Ŵ + ΔW, then

Ẑ
𝑑𝑒𝑓
= Z+ ΔZ

= ((WX𝑝)
𝑇QT)⊗QR + ((ΔWX𝑝)

𝑇QT)⊗QR. (53)

The coefficient vector estimation vec(Ĉ) can be approximated
up to the first order of ΔZ as [27]

vec(Ĉ) ≃ vec(C)− Z†ΔZvec(C) + Z†vec(N)

+ (Z𝐻Z)−1ΔZ𝐻𝑃⊥
Z vec(N)− Z†ΔZZ†vec(N), (54)

where 𝑃⊥
Z = I−Z(Z𝐻Z)−1Z𝐻 . The above equation indicates

that, besides the terms that have to do with the noise N,
the coefficient vector estimation error is determined by the
projection error ΔZ. Hence, when the projection error ΔW is
small (and thus ΔZ is small), vec(Ĉ) is a good approximation
of vec(C) at high SNR region.

VI. NUMERICAL RESULTS AND DISCUSSION

Simulation results reported here use the reference MIMO
channel model [28], the IEEE 802.11 TGn channel model
[29], and the SCM model [30]. The former two are stochastic
models whose spatial correlation matrices are generated by the
power azimuth spectrum (PAS) at the BS and MS, respectively.
The SCM model generates the channel coefficients according
to a set of selected parameters (e.g., AS, AoD, AoA, etc.).
It is a popular parametric stochastic model whose spatial
cross correlations are functions of the joint distribution of
the AoD at the transmit side and the AoA at the receive
side. We assume that the environment surrounding MS is rich
scattering with negligible spatial correlations. Hence, a full
rank basis matrix is used to characterize the spatial correlation
at the receive side. Other assumptions and conditions used
in our simulation are: (i) the antenna spacings at transmit
and receive arrays are both 0.5𝜆, (ii) an orthogonal training
matrix is used, (iii) 10 iterations are used for all simulations
(although in most cases convergence occurs in less than 3
iterations), and (iv) SNR (𝐸𝑏/𝑁0) is defined as the average
signal to noise power ratio at the input of each receive antenna,
(v) orthonormal polynomial basis matrices are used. Both
algorithms compute Ĥ by substituting the final result of Phase
I–estimated coefficient matrix Ĉ–and that of Phase II–Ŵ–into
(18).

Solid curves in Fig. 1 are the MSE performance of Algo-
rithm B in Section III for an 8×8 MIMO system with Δ = 2∘

and are based on the channel model of [28]. The channel is
a block fading channel with an approximated rank of two.
Since the BS spatial correlations are high, the corresponding
correlation function lies in a low-dimension subspace so that a
small 𝐾𝑇 is sufficient to describe the channel. Dotted curves
in Fig. 1 show the system performance when Δ = 15∘.
It is obvious that as Δ increases, the spatial correlations
among the transmit antennas elements decrease and a higher
modelling order is necessary to describe rapid-changing spatial
waveforms at the transmitter side. However, as can be seen
from Figs. 2-5, an optimal 𝐾𝑇 exists for any given SNR and
Δ; increasing the modelling order does not necessary improves
the channel estimator’s performance. As expected, we find that
modelling errors dominate the MSE performance when SNR is
high. Such a behavior is consistent with what the performance
analysis given in Section V has predicted and is similar to
those observed in other model-based approaches [13]-[16].

The MSE performance of Algorithm B of Section IV for
a time-correlated fading channel [28] are depicted in Fig.
2 and Fig. 3 using an observation window of 12 EIs and
𝑓𝑑𝑇𝑠 = 0.031772 or 0.015886. Similar to the single-blocked
based case (Fig. 1), the processing dimension (𝐾𝑇 ) can be
drastically reduced provided that either the spatial or time
domain correlation is high enough. Performance degradation
occurs when the modelling order is not large enough to
capture the channel characteristics. In Fig. 4, we compare
the theoretical MSE derived in Section V with the simulated
performance and find that the latter is very close to the
theoretical bound which assumes a perfect Ŵ. When used for
estimating other reference channels, the proposed estimators
exhibit similar performance behaviors. Fig. 5 depicts the
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Fig. 1. MSE performance of Algorithm B as a function of SNR with different
modelling orders; solid curves: AS=2∘, dotted curves: AS=15∘.
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Fig. 2. The effect of the modelling order on Algorithm B’s MSE performance
in a channel generated by the model described in [10] with AS=2∘ .

MSE performance in an IEEE 802.11 TGn channel [29] with
𝐿 = 12, Δ = 15∘, and 𝑓𝑑𝑇𝑠 = 0.0022, while Fig. 6 shows the
MSE performance in a 3GPP-SCM channel [30] with 𝐿 = 12,
Δ = 15∘ and 𝑓𝑑𝑇𝑠 = 0.02844. When 𝐾𝑇 is large enough, the
time-domain modelling order needed to characterize a slow
fading channel like the IEEE 802.11 TGn channel is smaller
than that for a fast fading SCM channel. Note that in all cases,
the performance becomes independent of the AS when the full
modelling order is used (i.e., 𝐾𝑇 = 8) and is equivalent to
that of the conventional LS approach.

The remaining numerical results assume that the algorithms
developed in Section III are used and, except for Fig. 8, the
same channel model as that used for Fig. 1. Fig. 7 compares
the MSE performance of Algorithms A and B developed in
Section III when Δ = 15∘. If the maximum matching output
is obtained by selecting the best one from the outputs using
100 candidate phases uniformly distributed within [−𝜋, 𝜋), Al-
gorithm A and Algorithm B give almost identical performance.
However, if only 20 candidate phases are used, Algorithm A
results in a little performance degradation with respect to that
obtained by Algorithm B when SNR is high. Fig. 8 examines
the MSE performance when Ŵ is updated with different EI
lengths for various channel settings. Smaller performance loss
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Fig. 3. The effect of modelling order on Algorithm B’s MSE performance
in a channel generated by the model described in [10] with AS=15∘ and
𝑓𝑑𝑇𝑠=0.031772.

 1e-05

 0.0001

 0.001

 0.01

 0  5  10  15  20  25  30  35  40

N
o
r
m
a
l
i
z
e
d
 
M
e
a
n
 
S
q
u
a
r
e
d
 
E
r
r
o
r

Eb/N0 (dB)

KT=5, KL=4

KT=6, KL=4

KT=7, KL=4

KT=8, KL=4

KT=5, KL=5

KT=6, KL=5

KT=7, KL=5

KT=8, KL=5

KT=5, KL=4 (Theory)

KT=6, KL=4 (Thoery)

KT=7, KL=4 (Thoery)

KT=8, KL=4 (Thoery)

KT=5, KL=5 (Theory)

KT=6, KL=5 (Theory)

KT=7, KL=5 (Theory)

KT=8, KL=5 (Theory)

Fig. 4. Comparison of theoretical and simulated MSE performance of
Algorithm B in a channel generated by the model described in [10]; AS=15∘
and 𝑓𝑑𝑇𝑠=0.031772.

results if the channel is more static or less dynamic (smaller
𝑓𝑑𝑇𝑠). When 𝐾𝑇 ≥ 3 for Channel-1 [28] and 𝐾𝑇 ≥ 2 for
Channel-2 [29], the performance loss is negligible for all the
update frequencies. Recall that more computation saving is
obtained by a larger 𝑇𝑤

𝑜 . It is clear that our reduced-order
modelling approach outperform the conventional LS estimator
for most 𝐸𝑏

𝑁0
when a proper 𝐾𝑇 is used.

To show the advantage of the proposed schemes in post pro-
cessing, we demonstrate here a feedback eigen-beamforming
scheme. This scheme can adapt to the feedback estimated CSI
to optimize the reception performance in a spatial correlated
environment [31]. To use the optimal beamforming scheme
of [31] which minimizes the mean squared error between the
transmit symbol and equalized received sample, we need to
substitute QRĈQ

𝑇
T Ŵ for H in (7), (16) and (22) of [31].

The flops of the eigen-decomposition operation needed by
the beamforming system decrease from O(𝑀3) to O(𝐾3

𝑇 ).
Moreover, the total number of feedback floating-point vari-
ables in our approach is 𝐾2

𝑇 + 𝐾𝑇 + 1 while that of the
conventional CSI is 𝑀2+𝑀 . MSE in Fig. 9 is defined as the
mean power of the error vector between a transmit data vector
and the corresponding received/equalized vector. Simulation
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Fig. 5. The effect of the modelling order on the MSE performance of
Algorithm B in a channel generated by IEEE 802.11 TGn channel model A;
AS=15∘ , and 𝑓𝑑𝑇𝑠 =0.0022.
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Fig. 6. The effect of the modelling order (𝐾𝑇 ) on the MSE performance
of Algorithm B in a 3GPP-SCM channel; AS=15∘ and 𝑓𝑑𝑇𝑠=0.02844.

results shown in Fig. 9 reveal that even for a weakly correlated
environment, i.e. AS=15∘, the performance degradation is
negligible for 𝐾𝑇 ≥ 4 when 𝐸𝑏

𝑁0
≥ 12 dB while there is perfor-

mance improvement over the conventional LS approach when
𝐸𝑏

𝑁0
≤ 12 dB. More performance and complexity-reduction

improvements are achievable for channels with higher spatial
correlation, e.g., when AS=4∘.

VII. CONCLUSION

This paper presents a novel analytic model which spans the
spatial and/or time correlation functions over the dominant
signal subspace and provides additional directional informa-
tion. Iterative algorithms are proposed for estimating spatial-
correlated MIMO channels. These estimators are extended to
time-varying cases in which the time-correlation has to be
taken into account. We simulate the estimators’ performance in
various popular industry-approved and standardized channels
to validate the accuracy of our model and the usefulness of
our channel estimators. Numerical results show that in many
instants the proposed algorithms give superior MSE perfor-
mance. Our estimators offer tradeoffs between performance
and complexity. They are easily extendable for use in wide-
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Fig. 7. MSE performance comparison of Algorithm A and Algorithm B;
AS=15∘ .
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Fig. 8. The effect of the update period on the MSE performance of Algorithm
B. Channel-1 is based on [28] with 𝑓𝑑𝑇𝑠=0.015886 while Channel-2 is based
on [29] with 𝑓𝑑𝑇𝑠 = 0.0022. AS=2∘ , 𝑇 𝑐

𝑜 = 1; both 𝑇 𝑐
𝑜 and 𝑇𝑤

𝑜 are measured
in EIs.

band MIMO systems and are most effective when the chan-
nel’s AS is small, i.e., when the dimension of the dominant
subspace is much smaller than full channel correlation rank.
Not only do they offer fast and accurate estimates, give MSE
performance improvement due to the noise reduction effect
but, more importantly, also provide compact and useful CSI
that lead to significant feedback channel bandwidth reduction
and other potential post processing complexity cutbacks.

APPENDIX A
AOD INFORMATION EXTRACTION

For small Δ, the correlation between two transmit antennas
𝑖, 𝑗 can be approximated by [2]

𝐸
{
ℎ𝑚𝑖ℎ

∗
𝑚𝑗

}
≈ exp

{
−𝑗

2𝜋

𝜆
(𝑖− 𝑗)𝑑 sin 𝜙

}
𝐽0

(
Δ

2𝜋

𝜆
(𝑖 − 𝑗)𝑑 cos𝜙

)
. (A.1)

In addition, correlation between two receive antennas 𝑝, 𝑞
can be approximated by 𝐸

{
ℎ𝑝𝑖ℎ

∗
𝑞𝑖

} ≈ 𝐽0
(
2𝜋
𝜆 (𝑝− 𝑞)𝑑

)
, for

𝑑
𝑅 ≪ 1. By using the W defined in (14), the definition

Δ̃
𝑑𝑒𝑓
= 2𝜋𝑑

𝜆 Δcos𝜙 and (A.1) implies ΦT
𝑑𝑒𝑓
= WΦ̄TW

𝐻 =
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WΦ̄
1
2

T Φ̄
1
2𝐻
T W𝐻 , where Φ̄T =

[{
𝐽0

(
∣𝑖− 𝑗∣Δ̃

)}]
, for 1 ≤

𝑖, 𝑗 ≤ 𝑀 , and thus Φ
1
2

T = WΦ̄
1
2

T . The correlation ma-
trix at the receive site can also be decomposed as ΦR =[{

𝐽0

(
∣𝑖− 𝑗∣𝑑

)}]
, for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 and 𝑑

𝑑𝑒𝑓
= 2𝜋𝑑

𝜆 . The
above two equations immediately lead to (A.2). Hence, (2) is
equivalent to

H = Φ̄
1
2

RH𝑤Φ̄
1
2 𝑇
T W, (A.2)

where Φ̄T and Φ̄R denote the power correlation matrices
at the transmit and the receive sites, respectively. Using
Φ

1/2
T = WΦ̄

1/2
T and following a procedure similar to (9)–

(12), we obtain (13) of the main text. Note that Forenza et al.
[18] have recently showed that, for a clustered MIMO channel
with uniform linear or circular array, the cross-correlation
coefficients also have a regression form similar to (A.1).
Hence if we assume a similar environment, we will obtain
an analytical model of the same form as (13).

In the above single-directional model, the AoD from the
transmitting antennas at the transmitter can be captured by a
mean AoD. In contrast, the principle of maximum entropy [19]
assumes i.i.d. uniformly distributed AoA angles over [0, 2𝜋]
and leaves no mean arriving direction being modelled at the
mobile side. It models the separate power azimuthal spectra
(PAS) of AoA and AoD, with a common direction being
described by the mean AoD at the base station [20].

APPENDIX B
PROOF OF LEMMA 1

According to Lemma 5.1.3 of [17], the 𝑖th en-
try of the vector

[
(1𝐸 ⊗A)⊙ (B𝑇 ⊗ 1𝑁 )

]
c is identi-

cal to the (𝑖, 𝑖)th diagonal entry of the square matrix[
(1𝐸 ⊗A)diag(c)(B⊗ 1𝑇𝑁 )

]
, for 𝑖 = 1, 2, . . . , 𝑁𝐸. Define

Ã = [�̃�𝑚,𝑛]
𝑑𝑒𝑓
= (1𝐸 ⊗A) and B̃ = [�̃�𝑚,𝑛]

𝑑𝑒𝑓
= (B𝑇 ⊗ 1𝑁 ).

Then, for 𝑖 = 𝑁(𝑝 − 1) + 𝑞, 𝑝 ∈ {1, . . . , 𝐸} and 𝑞 ∈

{1, . . . , 𝑁}, we have

[
(1𝐸 ⊗A)diag(c)(B⊗ 1𝑇𝑁 )

]
𝑖,𝑖

=
𝑀∑
𝑗=1

�̃�𝑖,𝑗𝑐𝑗 �̃�𝑖,𝑗

=

𝑀∑
𝑗=1

𝑎𝑞,𝑗𝑐𝑗𝑏𝑗,𝑝 = [vec (A diag(c) B)]𝑖 , (B.1)

where 𝑎𝑞,𝑗 is the (𝑞, 𝑗)th entry of A and 𝑏𝑗,𝑝 is the (𝑗, 𝑝)th
entry of B. [D]𝑖,𝑖 denotes the (𝑖, 𝑖)th entry of the matrix D,
while [e]𝑖 denotes the 𝑖th entry of the vector e. Hence we
conclude that[(

(1𝐸 ⊗A)⊙ (B𝑇 ⊗ 1𝑁 )
)
c
]
𝑖
= [vec (A diag(c) B)]𝑖 ,

∀ 𝑖 = 1, . . . , 𝑁𝐸, (B.2)

which proves Lemma 1.
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