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MaximumAverage-Power (MAP) Tests

LIN-AN CHEN, HUI-NIEN HUNG,
AND CHIH-RUNG CHEN

Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan

The objective of this article is to propose and study frequentist tests that have
maximum average power, averaging with respect to some specified weight function.
First, some relationships between these tests, called maximum average-power (MAP)
tests, and most powerful or uniformly most powerful tests are presented. Second,
the existence of a maximum average-power test for any hypothesis testing problem
is shown. Third, an MAP test for any hypothesis testing problem with a simple
null hypothesis is constructed, including some interesting classical examples. Fourth,
an MAP test for a hypothesis testing problem with a composite null hypothesis is
discussed. From any one-parameter exponential family, a commonly used UMPU
test is shown to be also an MAP test with respect to a rich class of weight functions.
Finally, some remarks are given to conclude the article.

Keywords Maximum average-power test; Most Powerful test; Uniformly most
powerful test; Uniformly most powerful unbiased test.

Mathematics Subject Classification Primary 62F03; Secondary 62F04.

1. Introduction

In statistical problems, there exist many different level � tests, i.e., tests whose
Type I errors are bounded by �. For any hypothesis testing problem with a simple
alternative hypothesis, a level � most powerful (MP) test is recommended since
by definition it maximizes the power among all the level � tests. Similarly, for
any hypothesis testing problem with a composite alternative hypothesis, a level �
uniformly most powerful (UMP) test is also recommended when it exists. However,
there often does not exist any level � UMP test except in some very special cases.
See, e.g., Lehmann (1986, Ch. 3). For such a situation, one searches for most
powerful test among a more restricted class such as unbiased tests. Even with
the unbiasedness restriction, there often does not exist any level � uniformly most
powerful unbiased (UMPU) test. See, e.g., Neyman and Pearson (1936, 1938) and
Lehmann (1986, Ch. 4).
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2238 Chen et al.

For a more detailed description, we classify the hypothesis testing problems
whose level � MP, UMP, or UMPU tests are proposed in the literature into the
following four categories:

A� �A1� H0 � � ≤ �0 vs. H1 � � > �0 and �A2� H0 � � ≥ �0 vs. H1 � � < �0, where �0
is a known real-valued constant;

B� H0 � � ≤ �1 or � ≥ �2 vs. H1 � �1 < � < �2, where both �1 and �2 are known
real-valued constants with �1 < �2;

C� H0 � �1 ≤ � ≤ �2 vs. H1 � � < �1 or � > �2, where both �1 and �2 are known
real-valued constants with �1 ≤ �2;

D� H0 � � ∈ �0 vs. H1 � � ∈ ��1	, where both �0 and ��1	 are known disjoint sets with
�0 �= ∅.
For any hypothesis testing problem, any level � MP or UMP test is also a level

� UMPU test, but a level � UMPU test is not necessarily a level � MP or UMP
test. Some well-known results of level � MP, UMP, or UMPU tests proposed in the
literature are listed as follows:

(i) From any family of distributions with the monotone likelihood ratio property,
there exists a level � UMP test for any hypothesis testing problem belonging to
Category A. See, e.g., Lehmann (1986, Theorem 2, Ch. 3).

(ii) From any one-parameter exponential family, there exists a level � UMP test for
any hypothesis testing problem belonging to Category B. See, e.g., Lehmann
(1986, Theorem 6, Ch. 3).

(iii) From any one-parameter exponential family, there exists a level � UMPU test
for any hypothesis testing problem belonging to Category C. See, e.g., Lehmann
(1986, Sec. 4.2).

(iv) From any multiparameter exponential family, there exists a level � UMPU
test for any hypothesis testing problem belonging to any of Categories A, B,
or C, where � is the one-dimensional parameter of interest. See, e.g., Lehmann
(1986, Theorem 3, Ch. 4).

(v) There exists a level � MP test for any hypothesis testing problem belonging to
Category D. See, e.g., Lehmann (1986, Theorem 3, Appendix).

However, all the hypothesis testing problems belonging to Categories A, B, C,
or D are still limited for statistical applications. Some relevant remarks are given in
the following.

1. From one-parameter exponential families, Categories A, B, and C only
cover hypothesis testing problems with an interval rather than non-interval null
parameter space. For example, the hypothesis testing problem with the null
hypothesis H0 � � ∈ 
�1� �2� ∪ 
�3� �4� vs. the alternative H1 � � ∈ �−�� �1� ∪ ��2� �3� ∪
��4��� does not fall into any of Categories A, B, or C, where all �1� �2� �3, and �4
are known real-valued constants with �1 ≤ �2 < �3 ≤ �4.

2. From any multiparameter exponential family, there is no level � UMPU
test proposed in the literature for any hypothesis testing problem not belonging to
any of Categories A, B, or C. For example, the hypothesis testing problem with null
hypothesis H0 � ��1� �2�

T ∈ 
�11� �12�× 
�21� �22� vs. the alternative H1 � ��1� �2�
T �∈


�11� �12�× 
�21� �22� does not belong to any of Categories A, B, or C, where
��1� �2�

T is the two-dimensional parameter of interest and all �11� �12� �21, and �22 are
known real-valued constants with �11 ≤ �12 and �21 ≤ �22.
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Maximum Average-Power (MAP) Tests 2239

3. Although there exists a level � MP test for any hypothesis testing problem
belonging to Category D, there often does not exist any UMP or UMPU test for a
hypothesis testing problem with a composite alternative hypothesis.

In this article, we would like to answer the following question: Is it possible
to define a “best” level � test among all level � tests such that it always exists
and has higher powers for parameters in the alternative parameter space in some
appropriate sense? In fact, we would like to maximize the average of powers for all
parameters in the alternative parameter space with respect to (w.r.t.) a prespecified
weight function. We motivate the idea by the following example.

Consider the situation where we would like to rank all the students in a class.
In practice, the most commonly used method of ranking all the students in a class is
as follows: First calculate the weighted average of scores of taken courses for each
student in the class and then rank all the students by their weighted averages, where
the weights are usually proportional to the credits of taken courses. At the moment,
a student in the class is called best if he or she has the highest weighted average of
scores of taken courses in the class. Following the spirit of the UMP criterion, a
student in the class is called uniformly best if he or she has the highest score for each
course offered in the class. A best rather than uniformly best student in the class is
usually ranked the first for at least two important reasons. The first one is that when
there exists a uniformly best student in the class, he or she is also a best student in
the class. The second one is that there always exists at least one best student in the
class, but there does not necessarily exist any uniformly best student in the class.
These motivate us to see if there always exists a “best” level � test among all level �
tests for any hypothesis testing problem in some appropriate sense. In this article,
for any hypothesis testing problem with a composite alternative hypothesis, instead
of finding a level � UMP or UMPU test, we would like to find a level � maximum
average-power (MAP) test which maximizes the average of powers among all level �
tests w.r.t. some weight function.

There are a few frequentist approach research articles which consider the idea
of maximizing the average power. Martin and Silva (1994) and Martin et al. (1998)
investigate the criterion for 2× 2 contingency tables and use it to choose the best
among several non-randomized tests. Moreover, Martin and Tapia (1999) solved
the same problem under a multinomial model. These tests may be best among the
tests they studied. However, they are not level � MAP when compared with all
the level � tests including randomized tests (or only compared with all the level �
non randomized tests). They focus on non randomized tests which are scientifically
reasonable, but it creates a tremendously analytical difficulty for the reason stated
below. Since the Type I error is not necessarily the prespecified nominal level �,
it can only be numerically determined whether one can add more points to the
rejection region (and make the test more powerful) without causing its maximum
Type I error larger than the nominal level.

Another related article, Brown et al. (1995), which will be commented in the
conclusion, focuses on confidence interval and confidence set construction. None of
these articles provide the fundamental existence result of any level � MAP test for
a continuous or discrete case (when compared with all the level � tests including
randomized tests), which is the aim of the article.

The study of average power (and hence MAP) would become important
in many modern statistical applications, such as those related to microarray
experiments and Genomics, in which the number of unknown parameters is huge
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2240 Chen et al.

and could be 10,000 or more. To compare the power function of tests (possibly in
multiple testing framework) which depends on huge number of parameters, the only
practical way is to compare the average power. See, for example, Cui et al. (2005).

Now we discuss some advantages of the approach of searching for a level �
MAP test.

(i) There exists a level � MAP test w.r.t. any weight function for any hypothesis
testing problem. See Theorem 3.1. However, there often does not exist any
level � UMP or UMPU test for a hypothesis testing problem. See, e.g.,
Lehmann (1986, Chs. 3, 4).

(ii) When there exists a level � MP or UMP test for some hypothesis testing
problem, it is also a level � MAP test w.r.t. any weight function for the same
hypothesis testing problem. See Theorem 2.2.

(iii) A level � MAP test w.r.t. any weight function for any hypothesis testing
problem with a simple null hypothesis could be easily obtained by utilizing the
Neyman–Pearson fundamental lemma. See Neyman and Pearson (1933) and
Theorem 4.1.

(iv) Sometimes, a level � MAP test w.r.t. a weight function for a hypothesis testing
problem with a finite number of elements in the null parameter space could
be obtained by utilizing a generalization of the Neyman–Pearson fundamental
lemma. See Lehmann (1986, Ch. 3) and Theorem 5.1.

(v) From any one-parameter exponential family, a commonly used level � UMPU
test for any hypothesis testing problem belonging to Category C is also a level �
MAP test w.r.t. a rich class of weight functions for the same hypothesis testing
problem. See Example 5.2.

The article is organized as follows. In Sec. 2, MAP tests are proposed for testing
general statistical hypotheses. Some relationships between MAP tests and MP or
UMP tests are presented. In Sec. 3, the existence of an MAP test for any hypothesis
testing problem is shown. In Sec. 4, an MAP test for any hypothesis testing
problem with a simple null hypothesis is constructed, including some interesting
classical examples. In Sec. 5, a MAP test for a hypothesis testing problem with a
composite null hypothesis is discussed. From any one-parameter exponential family,
a commonly used UMPU test is shown to be also an MAP test with respect to a
rich class of weight functions. Finally, some concluding remarks are given in Sec. 6.

2. Maximum Average-Power Tests

In this article, let X be the observation which is distributed according to a
probability density function (pdf) f�·
 �� w.r.t. some �-finite measure � defined
on ���� � for � ∈ �, where � is the sample space, � is a �-field on � , � is the
unknown parameter, and � is the parameter space. Suppose that we are interested in
testing the null hypothesis H0 � � ∈ �0 vs. the alternative H1 � � ∈ �1, where ��0� �1	

is a non trivial partition of �, i.e., �0 and �1 are disjoint non empty sets with �0 ∪
�1 = �. � is called a test if � is a measurable function w.r.t. � and 0 ≤ ��x� ≤ 1
for x ∈ � . For a test �, �� is called the power function of � if

����� =
∫
�
��x�f�x
 ����dx�
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Maximum Average-Power (MAP) Tests 2241

for � ∈ �. Let � be a known constant with 0 < � < 1, e.g., 0�05, and let �� denote
the class of all level � tests.

Throughout this article, we assume that Condition 2.1 is met.

Condition 2.1. Assume that f�x
 ��, �x� �� ∈ � ×�1, is measurable w.r.t. � × � and
that � is a probability measure defined on ��1���, where � ×�1 denotes the
product space of � and �1, � a �-field on �1, and � × � the product �-field of �
and �.

We make the following definitions.

Definition 2.1. Any probability measure � satisfying Condition 2.1 is called a
weight function on �1.

Definition 2.2. For a test �,
∫
�1

�������d�� �≡ �̄���� is called the average power
of � w.r.t. the weight function �.

Definition 2.3. A test �∗
� is called a level � MAP test w.r.t. the weight function � if

�∗
� ∈ �� and �̄��� ≤ �̄�∗

���
for all � ∈ ��.

For the simple alternative hypothesis �1 = ��1	, the only probability measure
defined on �1 is the trivial one with ����1	� = 1. In such a situation, a level � MAP
test w.r.t. the unique weight function � is equivalent to a level � MP test for the
same hypothesis testing problem. As a result, our interest is mainly focused on any
hypothesis testing problem with a composite alternative hypothesis.

A relationship between MAP tests and MP or UMP tests for any hypothesis
testing problem is given in the following theorem.

Theorem 2.2. Consider any hypothesis testing problem with the null hypothesis H0 �
� ∈ �0 vs. the alternative H1 � � ∈ �1. The following are equivalent:

(i) �∗
� is a level � MP or UMP test;

(ii) �∗
� is a level � MAP test w.r.t. any weight function � on �1.

Proof. It is obvious that (i) implies (ii). Now, suppose that (ii) is true but that
(i) fails. Then there exist a level � test � and a parameter �1 in the alternative
parameter space such that ����1� > ��∗

�
��1�. Let � and � satisfy Condition 2.1 such

that ����1	� = 1, e.g., � is the finest �-field on the alternative parameter space. Since

�̄��� = ����1� > ��∗
�
��1� = �̄�∗

���
�

�∗
� is not a level � MAP test w.r.t. �, contradicting (ii) and completing the proof.

�

From Theorem 2.2, any level � UMP test proposed in the literature for any
hypothesis testing problem is also a level � MAP test w.r.t. any weight function for
the same hypothesis testing problem. For example, from any family of distributions
with the monotone likelihood ratio property, there exists a level � UMP test for any
hypothesis testing problem belonging to Category A, which implies that it is also a
level � MAP test w.r.t. any weight function for the same hypothesis testing problem.
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2242 Chen et al.

A relationship between MAP tests and MP tests for any hypothesis testing
problem is given in the following theorem.

Theorem 2.3. Consider any hypothesis testing problem with the null hypothesis H0 �

� ∈ �0 vs. the alternative H1 � � ∈ �1. For any weight function � on �1, the following
are equivalent:

(i) �∗
� is a level � MAP test w.r.t. �;

(ii) �∗
� is a level � MP test for the hypothesis testing problem with the same null

hypothesis H0 � � ∈ �0 vs. the different simple alternative H ′
1 � X has pdf

f��x� =
∫
�1

f�x
 ����d�� (1)

w.r.t. �.

Proof. The theorem can be proved easily by recognizing that the average power
�̄��� of a test � is the power w.r.t. f��x�, i.e.,

�̄��� =
∫
�1

[ ∫
�
��x�f�x
 ����dx�

]
��d��

=
∫
�
� ��x�

[ ∫
�1

f�x
 ����d��

]
��dx��

=
∫
�
��x�f��x�dx� (2)

by Fubini’s theorem. �

From Theorem 2.3, any hypothesis testing problem with a composite alternative
hypothesis could change to the hypothesis testing problem with the same null
hypothesis vs. a different simple alternative hypothesis. Thus, the method proposed
in the literature in particular Neyman–Pearson fundamental lemma to obtain a
level � MP test might be utilized to obtain a level � MAP test.

3. Existence of MAP Tests

In this section, a main result of the article concerning the existence of a level � MAP
test w.r.t. any weight function for any hypothesis testing problem is given as follows.

Theorem 3.1. Consider any hypothesis testing problem with the null hypothesis
H0 � �∈�0 vs. the alternative H1 � � ∈ �1. There exists a level � MAP test w.r.t. any
weight function � on �1.

Proof. From Theorem 2.3, a level � MAP test w.r.t. � is equivalent to a level �
MP test for a different hypothesis testing problem with the same null hypothesis
H0 � � ∈ �0 vs. another simple alternative H ′

1 � X has pdf f��x� defined in (1), x ∈ � ,
w.r.t. �.
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Maximum Average-Power (MAP) Tests 2243

Let ��n	
�
n=1 be a sequence of level � tests such that limn→� �̄�n��

= sup�∈��
�̄���.

Then, by Eq. (2),

lim
n→�

∫
�
�n�x�f��x���dx� = sup

�∈��

∫
�
��x�f��x���dx��

By the weak compactness theorem, e.g., see Lehmann (1986, Theorem 3, Appendix),
there exist a subsequence �ni	

�
i=1 of �1� 2� 3� � � � 	 and a test �∗

� such that �ni
converges

weakly to �∗
� as i → �. Since �ni

converges weakly to �∗
� as i → � and f��x�, x∈� ,

is an integrable function w.r.t. �, it follows that

lim
i→�

∫
�
�ni

�x�f��x���dx� =
∫
�
�∗

��x�f��x���dx��

which implies that limi→� �̄�ni
�� = �̄�∗

���
by Eq. (2). Since the level � test �ni

converges weakly to �∗
� as i → � and f�·
 �� is an integrable function w.r.t. � for

� ∈ �0,

��∗
�
��� =

∫
�
�∗

��x�f�x
 ����dx� = lim
i→�

∫
�
�ni

�x�f�x
 ����dx� = lim
i→�

��ni
��� ≤ �

for � ∈ �0, which implies that �∗
� is also a level � test. As

�̄�∗
���

= lim
i→�

�̄�ni
�� = sup

�∈��

�̄����

�∗
� is a level � MAP test w.r.t. �, completing the proof. �

In this article, we assume that � is a probability. When � is an infinite measure,
then typically the average power is infinite, since even the smallest power function
is bounded below by a positive number such as �. Hence, any test is MAP and it is
pointless to study such a criterion.

4. MAP Tests for a Simple Null Hypothesis

In this section, consider any hypothesis testing problem with a simple null
hypothesis. The Neyman–Pearson fundamental lemma (Neyman and Pearson, 1933)
provides a level � MP test for any hypothesis testing problem with a simple null
hypothesis vs. a simple alternative hypothesis. See, e.g., Lehmann (1986, Theorem 1,
Ch. 3). Utilizing the Neyman–Pearson fundamental lemma, a level � MAP test w.r.t.
a weight function for any hypothesis testing problem with a simple null hypothesis
is constructed as follows.

Theorem 4.1. Consider any hypothesis testing problem with the simple null hypothesis
H0 � � = �0 vs. the alternative H1 � � ∈ �1. For any weight function � on �1, there exists
a level � MAP test �∗

� w.r.t. � such that ��∗
�
��0� = � and

�∗
��x� =

{
1 for f��x� > C�f�x
 �0��

0 for f��x� < C�f�x
 �0��

where C� is a non negative constant and f��x� is as defined in (1).
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2244 Chen et al.

Theorem 4.1 can be applied to that a simple null hypothesis based on
observations distributed according to a one-parameter exponential family. We
provide three examples of two-sided tests. The first is to test the normal mean, the
second the normal variance, and the last the binomial probability. In all three cases,
by Theorem 4.1, the rejection region of a MAP can be written as

RT ≡ f��x�/f�x� �0� > C��

Hence below the effort is devoted to the calculation of the ratio RT .

Example 4.1 (Testing the Normal Mean). Let X ≡ �X1� � � � � Xn�
T , where Xi’s are

the independent observations having N��� �2
0� distribution with �0 is known.

Suppose that our interest is to test H0 � � = �0 vs. H1 � � �= �0. Then there does not
exist any level � UMP test, but there does exist a level � UMPU test. See, e.g.,
Lehmann (1986, p. 136).

Consider the a N�m� v2� weight function �. Let T ≡ √
n�X − �0�/�0 and let

fT �·
 �� denote the pdf of T . Under H0, T has the standard normal distribution. The
function f��t� ≡

∫
fT �t
 ����d��, equals the pdf of N�

√
n�m− �0�/�0� 1+ nv2/�2

0�.
Here we use the simple fact that if X given � has the N��� �2

0/n� distribution
and � has the N�m� v2� distribution, then X has the unconditional N�m� v2 + �2

0/n�
distribution. Consequently, it is easy to see that the ratio RT ≡ f��t�/fT �t
 �0� is
a strictly increasing function of 
t − �0��0 −m�/�

√
nv2�
. Let �∗

� be the test which
rejects H0 if and only if

√
n
X − �0 − �2

0��0 −m�/�nv2�
/�0 ≥ C�, where

�

(
�0��0 −m�√

nv2
+ C�

)
−�

(
�0��0 −m�√

nv2
− C�

)
= 1− ��

Consequently, it follows from Theorem 4.1 that �∗
� is a level � MAP test w.r.t. �.

Example 4.2 (Testing the Binomial Probability). Let X be the observation having
the binomial �n
 �� distribution. Suppose that our interest is to test H0 � � = �0 vs.
H1 � � �= �0. Then there does not exist any level � UMP test, but there does exist a
level � UMPU test. See, e.g., Lehmann (1986, p. 138).

Consider the beta�a� b� weight function � with pdf

���� ∝ �a−1�1− ��b−1�

Then, for x ∈ �0� 1� � � � � n	,

f��t� ≡
∫ 1

0
f�x
 ����d�� ∝ ��a+ x���b + n− x�

x!�n− x�! �

Thus, RT ≡ f��t�/f�x
 �0� is a strictly increasing function of ��a+ x���b + n−
x��1− �0�

x/�x0 which is defined as g�x�. Let k ≡ −a+ �a+ b + n− 1��0. Note that,
for x < n, g�x + 1�/g�x� is greater than one if and only if x > k. Let �∗

� be a size �
test such that

�∗
��x� =

{
1 for g�x� > g�C���

0 for g�x� < g�C���
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The numbers C� and �∗
��x� when g�x� = g�C�� are chosen so that �∗

��x� has Type
I error �. Consequently, it follows from Theorem 4.1 that �∗

� is a level � MAP test
w.r.t. �.

Theorem 4.1 can be applied to multiparameter cases as well. Here we focus
on the simple null hypotheses. From the location-scale family of univariate normal
distributions, a level � MAP test w.r.t. any normal-inverse-gamma weight function
for any hypothesis testing problem with a simple null hypothesis is given as follows.

Example 4.3 (Testing the Normal Mean and Variance). Let X ≡ �X1� � � � � Xn�
T ,

where X’s are the independent observations having N��� �2� distribution. Suppose
that our interest is to test H0 � � = �0 vs. H1 � � �= �0, where �0 (≡ ��0� �

2
0�

T ). Then
there does not exist any level � UMP test and there is no level � UMPU test
proposed in the literature.

Consider the normal-inverse-gamma �a� d�m� v2� weight function �, with pdf

���� ∝ 1
�d+3

exp
[
− �� −m�2 + av2

2v2�2

]
�

Let T ≡ �X�
∑n

i=1�Xi − X�2�T (≡ �T1� T2�
T ) and let fT �·
 �� denote the pdf of T .

Then, for t = �t1� t2�
T ,

fT �t
 �� ∝ exp
[
−n�t1 − ��2

2�2

]
t
�n−3�/2
2 exp

(
− t2
2�2

)

and

f��t� ≡
∫

fT �t
 ����d�� ∝ t
�n−3�/2
2


h�t���d+n�/2
�

where h�t� ≡ a+ n�t1 −m�2/�1+ nv2�+ t2. Thus, RT ≡ f��t�/fT �t
 �0� is a strictly
increasing function of g�t1� t2� ≡ exp�
n�t1 − �0�

2 + t2�/�2�
2
0�	/
h�t��

�n+d�/2 which is
defined as g�t�. Let �∗

� be the size � test which rejects H0 if and only if g�t1� t2� ≥ C�,
where C� is chosen so that the test have Type I error �. Consequently, it follows
from Theorem 4.1 that �∗

� is a level � MAP test w.r.t. �.

5. MAP Tests for a Composite Null Hypothesis

In this section, we focus on constructing the MAP test for a composite null
hypothesis, which is a more difficult problem. However, in some situations, testing
the composite null hypothesis can be reduced to a null hypothesis with finitely
many points, called the finite null hypothesis in this article. We can then apply
the generalized Neyman–Pearson fundamental Lemma. See, for example, Lehmann
(1986, Theorem 5, Ch. 3).

For the finite null hypothesis, we have the following theorem.

Theorem 5.1. Consider a hypothesis testing problem with the finite-element composite
null hypothesis H0 � � ∈ ��01� �02� � � � � �0k	 vs. the alternative H1 � � ∈ �1. For a weight
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function � on �1, if there exist non negative constants C��1� C��2� � � � � C��k and a test �∗
�

such that ��∗
�
��i� = � for i = 1� 2� � � � � k with

�∗
��x� =



1 for

∫
�1

f�x
 ����d�� >
k∑

i=1

C��if�x
 �i��

0 for
∫
�1

f�x
 ����d�� <
k∑

i=1

C��if�x
 �i��

then �∗
� is a level � MAP test w.r.t. �.

Utilizing Lehmann (1986, Theorem 7, Ch. 3), we have the following theorem.

Theorem 5.2. Consider a hypothesis testing problem with the composite null hypothesis
H0 � � ∈ �0 vs. the alternative H1 � � ∈ �1. For weight functions �0 on �0 and �1 on
�1, if there exists a level � test �∗

� such that it is also a level � MAP test w.r.t. � for
testing the simple null hypothesis H ′

0 � X has pdf
∫
�0

f�x
 ���0�d��, x ∈ � , w.r.t. � vs.
the alternative H1 � � ∈ �1, then �∗

� is a level � MAP test w.r.t. �.

There is a simple application of Theorem 5.2 to test the normal mean.
A commonly used level � UMPU test for a hypothesis testing problem with an
interval composite null hypothesis versus a two-sided alternative hypothesis is
shown to be also a level � MAP test w.r.t. a rich class of weight functions as follows.

Example 5.1 (Testing the Normal Mean in a Composite Null Hypothesis). Let X ≡
�X1� � � � � Xn�

T , where Xi’s are the independent observations having an N��� �2
0�

distribution with �0 is known. Suppose that our interest is to test H0 � �1 ≤ � ≤ �2
vs. H1 � � < �1 or � > �2. Then there does not exist any level � UMP test, but there
does exist a level � UMPU test. See, e.g., Lehmann (1986, p. 135).

Consider a weight function � on �−�� �1� ∪ ��2��� (≡ �1) with ���−�� a�� =
��
�1 + �2 − a���� for all a ∈ �−�� �1�, i.e., symmetric w.r.t. ��1 + �2�/2 (≡�0).
Moreover, consider another weight function �0 on 
�1� �2� (≡�0) with �0���1	� =
�0���2	� = 1/2. Let T ≡ √

n�X − �0�/�0 and let fT �·
 �� denote the pdf of T .
Let ���� ≡ √

n��− �0�/�0. Then,

fT �t
 �� ∝ exp
{
− 
t − �����2

2

}
�

Consequently,

∫
�1

fT �t
 ����d��

=
∫
�−���1�


fT �t
 ��+ fT �t
 2�0 − �����d��

∝ exp
(
− t2

2

) ∫
�−���1�

�exp
t�����+ exp
−t�����	 exp
{
− 
�����2

2

}
��d���
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Thus, for −� < t < �,∫
�1

fT �t
 ����d��∫
�0

fT �t
 ���0�d��
∝

∫
�−���1�

exp
t�����+ exp
−t�����

exp
t���1��+ exp
−t���1��
exp

{
− 
�����2

2

}
��d���

It is easy to show that �exp
t�����+ exp
−t�����	/�exp
t���1��+ exp
−t���1��	 is
a strictly increasing function of 
t
 for � < �1, which implies that

∫
�1

fT �t
 ����d��/∫
�0

fT �t
 ���0�d�� is also a strictly increasing function of 
t
. Since ��∗
�
��1� =

��∗
�
��2� = �, �∗

� is a level � MAP test w.r.t. � for testing the simple null
hypothesis H ′

0 � T has pdf
∫
�0

fT �t
 ���0�d�� w.r.t. � vs. the alternative H1 � � ∈ �1.
Consequently, it follows from Theorem 5.2 that �∗

� is a level � MAP test w.r.t. any
prior � which is symmetric w.r.t. the mid point of �1 and �2. Note that this MAP
result does not restrict to the unbiased tests. Hence this is a new result beyond
UMPU tests.

A more interesting question is to see if, from any one-parameter exponential
family, a commonly used level � UMPU test for a hypothesis testing problem with
an interval null hypothesis vs. a two-sided alternative hypothesis is also a level �
MAP test w.r.t. a rich class of weight functions, which is to be presented in the next
example.

Example 5.2 (The One-Parameter Exponential Family). Let X be the observation
with pdf

f�x
 �� = h�x� exp
� T�x�− c�����

Suppose that our interest is to test H0 � �1 ≤ � ≤ �2 vs. H1 � � < �1 or � > �2. Then
there does not exist any level � UMP test, but there does exist a level � UMPU
test �∗

� such that ��∗
�
��1� = ��∗

�
��2� = � with

�∗
��x� =



1 for T�x� < C��1 or T�x� > C��2�

���i for T�x� = C��i� i = 1� 2�

0 for C��1 < T�x� < C��2�

See, e.g., Lehmann (1986, p. 135).
For simplicity of notation, set C� ≡ �C��1 + C��2�/2, �0 ≡ ��1 + �2�/2, T��x� ≡

T�x�− C�, h1�x� ≡ h�x� exp
�0T�x��, ���� ≡ �− �0, and c���� ≡ c���− C�����.
Then

f�x
 �� = h1�x� exp
����T��x�− c������

Consider a weight function � on �−�� �1� ∪ ��2��� (≡�1) with

��d�2�0 − ���

��d��
= exp
c��2�0 − ��− c������

Moreover, consider another weight function �0 on 
�1� �2� (≡�0) with �0���1	�=p�

and �0���2	� = 1− p�, where p� ≡ exp
c���1�− c��2�0 − �1��/�1+ exp
c���1�−
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c��2�0 − �1��	. Then,∫
�1

f�x
 ����d��

=
∫
�−���1�

[
f�x
 ��+ f�x
 2�0 − ��

��d�2�0 − ���

��d��

]
��d��

= h1�x�
∫
�−���1�

�exp
T��x������+ exp
−T��x������	 exp
−c�������d���

Thus,∫
�1

f�x
 ����d��∫
�0

f�x
 ���0�d��
∝

∫
�−���1�

exp
T��x������+ exp
−T��x������

exp
T��x����1��+ exp
−T��x����1��
exp
−c�������d���

It is easy to show that �exp
t�����+ exp
−t�����	/�exp
t���1��+ exp
−t���1��	
is a strictly increasing function of 
t
 for � < �1, which implies that∫
�1

f�x
 ����d��/
∫
�0

f�x
 ���0�d��, is also a strictly increasing function of 
T��x�
.
Since �∗

� is a UMPU test, we have that ��∗
�
��1� = ��∗

�
��2� = � and ��∗

�
��� ≤ � for

�1 < � < �2. Also, �∗
� is a strictly increasing function of 
T��x�
, we have that

�∗
� is a level � MAP test w.r.t. � for testing the simple null hypothesis H ′

0 � X has
pdf

∫
�0

f�x
 ���0�d��, x ∈ � , w.r.t. � vs. the alternative H1 � � ∈ �1. Consequently,
it follows from Theorem 5.2 that �∗

� is a level � MAP test w.r.t. �.

6. Remarks

In this article, we establish some fundamental results concerning the existence of
an MAP test, the test that achieves the maximum average power. This optimal test
always exists, and in this regard the corresponding criterion is more useful than
other criteria such as those leading to UMP or UMPU tests.

For a simple null hypothesis, it is easy to construct an MAP test; however, for
a composite null hypothesis, special care needs to be taken in order to construct
an MAP test. Although we have some results for such cases in this article, further
investigation is needed for other situations.

In some discrete cases, we constructed randomized tests which are MAP. From
the scientific point of view, it will be important to construct non randomized tests
that have good average power such as those in Martin and Silva (1994), Martin
et al. (1998), and Martin and Tapia (1999). Due to the discrete nature, the analytical
problem is very difficult. However, further investigation in the direction may be
fruitful, especially if developed with the help of high-power computing. Perhaps one
may start out with the randomized MAP test and try to construct a non-randomized
test to approximate it in some sense.

On the other hand, there is an interesting theory in Brown et al. (1995), which
is related to our MAP approach. They focus on confidence interval and confidence
set construction however. To simplify the discussion below, we write about the
confidence interval construction although similar comments apply to the confidence
set construction. By using the idea of finding an MAP test outlined in this article,
they constructed a confidence interval that minimizes the average length among all
the confidence intervals with coverage probability no less than a certain nominal
level such as 0�95. The identity (Ghosh–Pratt identity) that relates the MAP test
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to the result of Brown et al. (1995) is the fact that maximizing the average power
w.r.t. a weight function leads to minimizing the average length w.r.t. the same
weight function. Further investigation in the confidence interval and confidence set
construction approach for more complicated multiple parameter cases than those in
Brown et al. (1995) may be interesting.

Drawing from the above discussion, the use of MAP approach in statistical
inferences is a topic which has received only cursory attention. Further research and
attention in application are required.
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