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We show that the Rashba spin-orbit interaction contributes to edge spin accumulation Sz in a diffusive
regime when the driving field is nonuniform. Specifically, we solve the case of nonuniform driving field in the
vicinity of a circular void locating in a two-dimensional electron system and we identify the key physical
process leading to the edge spin accumulation. The void has radius R0 in the range of spin-relaxation length lso

and is far from both source and drain electrodes. The key physical process we find is originated from the
nonuniform in-plane spin polarizations. Their subsequent diffusive contribution to spin current provides the
impetus for the edge spin accumulation Sz at the void boundary. The edge spin accumulation is proportional to
the Rashba coupling constant � and is in a spin-dipole form oriented transversely to the driving field. We
expect similar spin accumulation to occur if the void is at the sample edge.
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I. INTRODUCTION

A major goal for the semiconductor spintronics is to gen-
erate and to manipulate spin polarization by mere electrical
means. Spin-orbit interaction �SOI� provides the key lever-
age and spin-Hall effect �SHE� �Refs. 1–15� provides the key
paradigm, where it is possible for a uniform driving electric
field to induce bulk spin polarization and spin current and, in
turn, out-of-plane spin accumulations Sz at lateral edges. The
Rashba SOI �RSOI� �Ref. 16� is of particular interest because
of its gate-tuning capability. However, background scatterers
lead to a complete quenching of the RSOI’s contribution to
the edge spin accumulation Sz, a direct consequence of its
linear dependence on the electron momentum k.17,18 It is le-
gitimate then to find ways to restore the RSOI’s contribution
to the edge spin accumulation. Our interest here is in the
diffusive regime, when the spin-relaxation length lso� le, the
mean-free path. Even though the spin accumulation is finite
in the mesoscopic ballistic regime �lso� le, and L� l��,19–21

with L the sample size and l� the phase coherent length, it is
still important to see whether the RSOI alone can contribute
to SHE in the impurity-dominate regime.

Indeed, RSOI was found by Mishchenko et al.18 to give
rise to edge spin accumulation Sz near electrodes even
though its contribution to bulk spin current vanishes. The
edge spin accumulation is concentrated at the two ends of an
electrode-sample interface, covering a region of size lso. This
finding was identified to arise from a nonzero spin current Iy

z

flowing along the sample-electrode interface, in direction ŷ.18

This nonzero spin current was understood from the way the
spin current vanishes in the bulk, when an exact cancellation
occurs between two terms, one related to the spin polariza-
tion and the other related to the driving field.18 This exact
cancellation no longer holds at the sample-electrode inter-
face, when the driving field has reached its bulk value but the
spin polarization has not. Similar result was also obtained by

Raimondi et al.,22 where spin-density spatial profiles at the
sample corners were obtained. Yet, it would be more desir-
able that we can find schemes and identify physical pro-
cesses for the restoring of the RSOI-induced edge spin accu-
mulation at locations other than the sample-electrode
interfaces and according to our specification.

In this work, we turn to nonuniform driving field for the
restoration of the RSOI-induced spin accumulation. The ef-
fect of nonuniform driving field on spin accumulation is also
interesting in its own right. Earlier study considered nonuni-
form driving field in systems in the presence of “extrinsic”
SOI, that is, SOI due to SOI impurities.23 Here, instead, we
consider nonuniform driving field in the vicinity of a circular
void located in a diffusive RSOI-type two-dimensional elec-
tron gas �2DEG�. We obtain spin accumulation in the vicinity
of the void. This problem allows us to identify the key physi-
cal process for the spin accumulation and also sheds light on
the case if the void were to form at a lateral edge. The radius
R0 of the void is of the order of lso.

Most important is our finding that the main physical pro-
cess is in marked contrast to the conventional one. While the
conventional one is associated with the nonvanishing of the
out-of-plane spin current In

z ,18 the key process we find is
associated with the in-plane spin currents, In

x or In
y, and with

the way they vanishes at the void boundary. Here, n̂ denotes
the flow direction normal to the void boundary. The in-plane
spin currents consist of two terms, a diffusive term and a
term related to the spin accumulation Sz, which are given by

I�
i = − 2D

�

��
Si − RiziSz�̂ · î , �1�

where � is the position vector measured from the center of
the void, i� �x ,y�, and D is the diffusion constant.24 Rijk

denotes the precession of Sj into Si when it flows along k̂.

The factor �̂ · î denotes the projection of the flow. The RSOI
governs the symmetry of Rijk such that Rizj =0 for i� j.
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Our scheme of Sz generation is made possible by Eq. �1�,
the boundary condition I�

i =0, at �=R0, and the presence of a
radially nonuniform in-plane spin polarization Si. The spin
polarization S� =S�

Ed+�S� we obtain in this work has

S�
Ed = − N0��e/�ẑ 	 E��� , �2�

which radial dependence is acquired from the driving field E.
Outside the void, E���=E0x̂−E0�R0 /��2�cos 2�x̂+sin 2�ŷ�
where E0x̂ is the uniform field far away from the void and
� · x̂=cos �. The driving electric field E=−�
���=�0j has to
satisfy the steady state condition � · j=0 and the boundary
condition j�=0. Here �0 is the electric conductivity, j is the
electric current density, N0 is the energy density per spin, �
is the RSOI coupling constant, e�0, and � is the mean-free
time. The term S�

Ed is an Edelstein-like spin polarization3

which we have obtained for the case of nonuniform driving
fields. That this term of S� alone fails to satisfy the boundary
condition Eq. �1�, because of its radial dependence, has
prompted the generation of �S� and Sz.

The aforementioned key physical process associated with
the spin current is meant to establish a boundary condition
for the spin-diffusion equation. We have used the conven-
tional form of the spin current operator Jl

i= �1 /4��Vl�i
+�iVl�, where spin unit of � is implied, and the kinetic ve-
locity operator Vl= �1 / i���x̂l ,H�. This is appropriate for hard
wall boundary.24–26 As the boundary condition is applied to a
region much shorter in distance than lso from the boundary,
the effect of spin torque27,28 here should be of secondary
importance. In Sec. II we present the spin-diffusion equation
for nonuniform driving fields, and the analytical solutions for
spin densities around a circular void. In Sec. III we present
our numerical results and discussion. Finally, in Sec. IV, we
will present our conclusion.

II. THEORY

The derivation of the spin-diffusion equation �SDE� by
the Keldysh nonequilibrium Green’s function method13,24 is
extended to the case when the driving field is nonuniform.
With the RSOI Hamiltonian Hso=hk ·� and hk=−�ẑ	k,
where �, and hk are, respectively, the Pauli’s matrix vector
and the SOI-effective magnetic field, the SDE is given by

D�2Sx −
xx

�2 Sx +
Rxzx

�

�

�x
Sz −

Mx0 · �

2�3 D0
0 = 0,

D�2Sy −
yy

�2 Sy +
Ryzy

�

�

�y
Sz −

My0 · �

2�3 D0
0 = 0,

D�2Sz −
zz

�2 Sz +
Rzxx

�

�

�x
Sx +

Rzyy

�

�

�y
Sy = 0, �3�

where the spin density Si is in units of �, and D=vF
2� /2.

Even though the form of the SDE in Eq. �3� is essentially
the same as that for the uniform driving field,24 the spin-
charge coupling term, through �D0

0, becomes position de-
pendent. To get at this Eq. �3�, we have performed a system-
atic scrutiny on possible additional terms in it that are up to
appropriate orders, as will be detailed in the following. The
spin-charge coupling terms, given by −Mi0 ·�D0

0, have Mi0

=4�2hk
3 �nk

i

�k =−2�2hF
2��î	 ẑ� where D0

0=2N0e
��� is the effec-
tive local equilibrium density. The overline denotes angular
average over the Fermi surface, 
���=−E0��+R0

2 /��cos �
for ��R0 and nk=hk /hk. The Edelstein-like spin polariza-
tion S�

Ed �Eq. �2�� is solved directly from Eq. �3�.
The D’yakonov-Perel’ �DP� spin-relaxation rates, given

by il=4�hk
2��il−nk

i nk
l �,30 have xx=yy =zz /2=2hF

2� for
RSOI. Spin precession arising from diffusive flow is charac-
terized by Rilm=4��n�ilnhk

nvk
m, where �iln is the Levi-Civita

symbol, and we have Rzii=−Rizi=−2hFvF� for RSOI and for
i= �x ,y�.24 Since kFle�1, with le the mean-free path, the
charge neutrality is maintained by the condition of zero
charge density throughout due to screening effect. Within the
linear response to the driving electric field, the effect of the
screening potential on the spin accumulation can be ne-
glected.

A brief note on the systematic scrutiny of the possible
additional terms in Eq. �3� is in order here. The spin-charge
coupling term in Eq. �3� is resulted from �i0D0

0,29 which
lowest order in RSOI and first order in spatial gradient is
given by the expansion of �i0 to the order hF

3q. This is ap-
propriate for uniform driving field because �
 would be-
come position independent. We take caution here, for the
case of nonuniform driving fields, to check for additional
terms of higher order in q that could have arisen from �i0D0

0.
Here,29

�il =


2�N0
�
p�

Tr��iGr�0��p�,� + ����lGa�0��p� − q,���� ,

�4�

where =1 /2�, Gr/a�0� are retarded �advanced� Green’s func-
tions averaged over impurity configuration, �i=0=1, and
�i=x,y,z=�x,y,z. To identify additional expansion terms in �i0

for nonuniform driving fields, we note first of all that S�
Ed is

of order hFq
. If S�
Ed is to satisfy the SDE, all the terms in

Eq. �3� involving Si will have to be replaced by Si−S�,i
Ed. This

implies, according to Eq. �3�, that terms of order hFq3
 and
hF

2q2
 will be needed, and thus we should look for terms of
the same order in the expansion of the spin-charge coupling
�i0D0

0. The above two orders can also be identified based on
symmetry argument, that the combined power in hF and q
must be even and that they are the lowest RSOI contributions
to the respective q orders. Starting from
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�i0�� = 0,��,q� =


2�N0
�

p
Tr	�i


�� − �p − q ·
��p

�p
+ i� + 
hp

i + q ·
�hp

i

�p
��i


�� − �p − q ·
��p

�p
+ i�2 
 1

�� − �p − i
+

hp
i �i

��� − �p − i�2�� , �5�

we expand it, for instance, up to the order hFq3, and obtain

�i0�hFq3� = 2N0 d�

		 �q · vp�3hp
i

��� − � + i�4��� − � + i�2

+

3�q · vp�2q ·
�hp

i

�p

��� − � + i�4��� − � − i�
� , �6�

where vp=p /m�. The angular averages in Eq. �6� over the
Fermi surface give rise to q dependences of the form q2qj=x,y,
which will not contribute to Eq. �3� because �2
=0. Follow-
ing similar procedure, �i0�hF

2q2� is found to be identically
zero. Thus Eq. �3� is the SDE for the case of nonuniform
driving field.

As has been explained in the previous section, S�
Ed alone

cannot satisfy the boundary condition I�
i=x,y =0. Thus in the

end we expect to have an additional �S so that S=S�
Ed+�S.

On the other hand, the contribution from S�
Ed to I�

z is found to
vanish already. The generation of �Sz thus does not fall into
the conventional scheme that spin accumulation Sz is caused
by In

z near the sample boundary. Our major task in the fol-
lowing is to calculate �S.

Putting the coordinates in units of lso=�D�so, with �so
=2�2 / �hF

2��, the SDE for �S is given by

�2�Sx − 4�Sx + 4
�

�x
�Sz = 0,

�2�Sy − 4�Sy + 4
�

�y
�Sz = 0,

�2�Sz − 8�Sz − 4
�

�x
�Sx − 4

�

�y
�Sy = 0. �7�

Modes of solution of Eq. �7� have the form �Sj
�q�

=�maj
�q�eim��+��Hm

�1���q��, where Hm
�1��z� is the Hankel func-

tion of the first kind and the index q denotes the q-th mode.
Substituting into Eq. �7� we obtain

	 �− �2 − 4� 0 4i� sin �

0 �− �2 − 4� 4i� cos �

− 4i� sin � − 4i� cos � �− �2 − 8�
�	ax

�q�

ay
�q�

az
�q� � = 0. �8�

The asymptotic behavior required of �Sj
�q� leads to

Im ��0. Thus �1=2i, �2=�2+2i�7, and �3=−�2
�. We

also have �ax
�1� ,ay

�1� ,az
�1��=ax

�1��1,−tan � ,0�, �ax
�2� ,ay

�2� ,az
�2��

=az
�2��2ig2 sin � ,2ig2 cos � ,1�, and �ax

�3� ,ay
�3� ,az

�3��
=az

�3��2ig2 sin � ,2ig2 cos � ,1��, for q=1, 2, and 3, respec-
tively. Here g2=�2 / ��2

2+4�. As � takes on continuous values,
there are effective infinite solutions per q-mode. In terms of
these modes �Sj is expanded in the form

�Sj = 
0

2�

d��
q=1

3

�
m

aj
�q����Hm

�1���q��eim��+��. �9�

The condition that �S is real requires ax
�1� to be pure imagi-

nary and az
�2�=−az

�3��.
The boundary condition for the nonuniform driving field

is established by applying to the spin current expression
similar procedure that we have applied to Eq. �3�. The spin-
current expression is found to resemble the uniform driving
field case,24 albeit now that �
 becomes position dependent.
We have

Ij
i = − 2D� jSi − RixjSx − RiyjSy − RizjSz

+ �
l=x,y

4�2�xyivF
j 
hp 	

�hp

�kl
�

z

eN0�l
�r� , �10�

where the last term is the explicit contribution from the driv-
ing field and is nonzero for Ij

z only. The boundary condition
I�

i ��=�0�=0 becomes

− ���Sx − 2 cos ��Sz − 2�Ẽ/� sin 2���=�0
= 0,

− ���Sy − 2 sin ��Sz + 2�Ẽ/� cos 2���=�0
= 0,

− ���Sz + 2 cos ��Sx + 2 sin ��Sy��=�0
= 0, �11�

where ���� /��, �0=R0 / lso, and Ẽ=eE0N0� /�. We note that

the Ẽ terms in Eq. �11� originate from the spin current due to
S�

Ed, which are the driving terms here. We solve Eqs. �9� and
�11� for aj

q��� by a direct numerical approach and by an
analytical approach. Excellent matching is obtained between
the two approaches. The analytical approach is facilitated by
the assumed forms ax

�1�= itx sin 2� and az
�2�= tz cos �, where tx

is real and tz is complex. The former is guided by the obser-
vation, from Eq. �11�, that �Sx depends on � as sin 2�.
Substituting these forms into Eqs. �9� and �11�, and after
some algebra, gives
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− �1H2
�1���z1�tx + i Im�tzX� = i�Ẽ/���0� ,

− i�1H1
�1��z1�tx + 2 Im�tzY� = 0,

4

z1
H1

�1��z1�tx + i Im�tzZ� = 0, �12�

where z1=�1�0, f��z��df /dz, X=2H1
�1��z1�−2g2�2H2

�1���z2�, Y = �g2�2−1�H1
�1��z2�, Z=2��2−4g2�H1

�1���z2�, and z2=�2�0. Equa-

tion �12� allows us to solve for tx and tz analytically, which are proportional to �Ẽ. Explicit expressions of tx and tz are

tx = −
4�Ẽ

�

Im�YZ��

8H1
�1��z1�Im�XY�� + �1z1H1

�1��z1�Im�ZX�� + 2�1z1H2
�1���z1�Im�ZY��

, �13�

and

tz =
�Ẽ

��0

H1
�1��z1�Im�8Y� − �1z1Z��

8H1
�1��z1�Im�XY�� + �1z1H1

�1��z1�Im�ZX�� + 2�1z1H2
�1���z1�Im�ZY��

.

The spin densities �Si are then obtained to give

�Sx = 2��− itxH2
�1���1�� + 2 Im�tzg2H2

�1���2����sin 2� ,

�Sy = 2��− itxH0
�1���1�� − 2 Im�tzg2H0

�1���2���� − �Sx cot 2� ,

�Sz = − 4� Im�tzH1
�1���2���sin � . �14�

This and Eq. �2� together are our main results. In particular,
�Sz�0 confirms that RSOI’s contribution to spin accumula-
tion can be restored in a nonuniform driving field. The parity
in � of �Si is consistent with that implied in Eq. �11�, which

is determined by the Ẽ terms. The spin accumulation, given
in its entirety by �Sz, is in a dipole distribution which orients
transversely to the driving field E0x̂. Furthermore, Eq. �14�
shows that �1 and �2 contribute to, respectively, decaying
and oscillatory behavior in �Si.

III. NUMERICAL RESULTS

Figure 1 presents the spin accumulation Sz in the vicinity
of the circular void. We use for our numerical results mate-
rial parameters that are consistent with GaAs: effective mass
m�=0.067m0 with m0 the free-electron mass; electron density
ne=1	1012 cm−2; electron mean free path le=0.43 �m; ra-
dius of the circular hole R0=0.5lso; and Rashba coupling
constant �=0.3	10−12 eV m.31,32 The spin-relaxation
length is lso=3.76 �m and the driving field is E0
=40 mV /�m. As shown in Fig. 1, the core of the spin ac-
cumulation consists of two spin pockets of opposite spin and
of largest spin density magnitude at �= �� /2. The spin
pockets have radial thickness of about 0.3lso�1.1 �m. In
the outer region, spin densities of opposite signs and of
smaller magnitudes are dispersed to a wider spatial extent, in
the form of two curved spin clouds. The spin cloud center is
located about one lso from the void boundary at �= �� /2.

Both the spin pocket thickness and the spin cloud distance
from the void boundary are not sensitive to the void radius
R0.

This spin accumulation can be probed optically by Kerr
rotation. To simulate the case of an optical probe scanning
along the �=� /2 direction, we calculate the net number of
out-of-plane electron spin within the probe area which center
is located at a distance d from the void center. For simplicity,
we take the probe area to be the same as that of the void. The
result is presented in Fig. 2, where we have included several
R0 cases, from R0=0.5lso up to R0=1.2lso. Distinct contribu-
tions from the spin pocket and the spin cloud can be identi-
fied. The former are negative minima around d�0.5lso and

FIG. 1. �Color online� Spin accumulation Sz in the vicinity of a
circular void �white circle�. Sz is in unit of 1 /�m2, void radius R0

=0.5lso, and lso=3.76 �m. Dark arrow indicates the driving field
direction.
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the latter are positive peaks around d�R0+ lso. That the
negative minima are essentially unshifted reflects the insen-
sitivity of the core radial thickness to the void radius R0.
Additional peak for the R0=1.2lso curve at d�2R0 corre-
sponds to the situation when the probe area moves out of the
spin pocket.

The spin accumulation in a spin-dipole form oriented
transversely to the driving field is a generic feature signify-
ing the redistribution of spin rather than the net transport of
spin. It has been found in the vicinity of a non-SOI elastic
scatterer in a RSOI 2DEG,33,34 and in the vicinity of a me-
soscopic cylindrical barrier in a 2DEG with the barrier pro-
file providing the SOI.35 Both objects are of sizes much less
than le. Of course, the physical mechanisms leading to all the
above spin-dipole forms are entirely different. Furthermore,
here we demonstrate that such spin-dipole feature can exist
in the neighborhood of a much larger object R0� lso, is ro-
bust against background scatterers and is within reach of
present measurement technology.

Finally, we note that the spin accumulation features we
obtain above are relevant to the case when the circular void

is located at a sample edge: an edge-semicircular void �ESV�
as shown in Fig. 3. The nonuniform driving field E��� for the
circular void satisfies also the additional boundary condition
jy =0 imposed by the ESV case at the sample edge, �
= �0,��. Thus the same E��� holds in the two cases. How-
ever, to satisfy the additional boundary condition for spin
current at the sample edge, a further additional spin accumu-
lation �SESV is needed, leading to the total spin accumula-
tion S=S�

Ed+�S+SESV. The imposing of the spin current
boundary condition in this case is much more complicated,
particularly for the spin accumulation near the two corners of
the ESV structure, but we find that the spin pocket and the
spin cloud features in Fig. 1 remains essentially intact except
for near corner regions of the ESV structure.36

IV. CONCLUSIONS

In conclusions, we have demonstrated that nonuniform
driving field can give rise to spin accumulation in a diffusive
Rashba-type 2DEG. The nonuniform driving field can be re-
alized by patterning the sample such as with a circular void
in the sample or with a semicircular void at the sample edge.
The physical process is identified to be associated with spin
current for the in-plane spin at the boundary. Our proposed
scheme of restoring the RSOI contribution to gate-tunable
spin accumulation is relatively simple, and we hope that this
will draw experimental effort in the near future.
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