

國 立 交 通 大 學
工業工程與管理學系碩士班

碩士論文

應用改善式啟發解與基因演算法求解
晶圓針測排程問題之最大完成時間最小化

Improving Heuristics and Genetic Algorithms for
Minimizing the Maximum Completion Time for the

Wafer Probing Scheduling Problem (WPSP)

研 究 生 ：蔡 育 燐

指 導 教 授：彭 文 理 博士

 楊 明 賢 博士

中 華 民 國 九十三 年 六 月

 i

應用改善式啟發解與基因演算法求解
晶圓針測排程問題之最大完成時間最小化

研究生：蔡育燐 指導教授：彭文理 博士
國立交通大學工業工程與管理學系碩士班

摘要

晶圓廠針測區排程問題(Wafer Probing Scheduling Problem, WPSP)是平行機

台排程問題的實例應用，另外也可應用在積體電路(IC)製造業以及其他的工業用

途。求解目標式為最小化機台總工作量之晶圓廠針測區排程問題可能會導致平行

機台間負荷的不平衡，而無法被現場監控者所接受。因此，在本篇論文中我們把

目標式改為最小化最大完成時間之晶圓廠針測區排程問題並用一整數規劃問題

來描述之。為了有效解決晶圓針測區排程問題之最大完成時間最小化，我們提出

了結合初估產能負荷及晶圓廠針測區排程問題的演算法來做重複的求解之改善

式啟發解法。此外，我們還提出了不同於以往的混合式基因演算法，其使用之初

始母體為晶圓廠針測區排程問題的演算法所求得的排程解與部分排程保留導向

的基因交配法來對問題作排程的流程。為了有效評估兩演算法在不同問題情境下

的績效，本論文使用了四種影響晶圓廠針測區排程問題之特性來產生產生多組不

同的問題。測試結果發現改善式啟發解在我們所設計的問題下其平行機台排程工

件之最大完工時間比混合式基因演算法來的好。且當混合式基因演算法使用改善

式啟發解之排程解當作初始母體時，其在某些問題情境下還可對改善式啟發解的

排程解做更進一步的改善。

關鍵詞：晶圓針測，平行機台排程，最小化最大完成時間，改善式啟發解，基因

演算法

 ii

Improving Heuristics and the Hybrid Genetic Algorithm for minimizing the
maximum completion time of the Wafer Probing Scheduling Problem (WPSP)

Student : Yu-Lin Tsai Advisor : Dr. Wen-Lea Pearn
Department of Industrial Engineering and Management

National Chiao Tung University

Abstract
The wafer probing scheduling problem (WPSP) is a practical version of the

parallel-machine scheduling problem, which has many real-world applications

including the integrated circuit (IC) manufacturing industry and other industries.

WPSP carries the objective to minimize the total machine workload, which might lead

to unbalanced workloads among the parallel machines and be unaccepted for the shop

floor supervisors. Therefore, we consider WPSP with the objective to minimize the

maximum completion time and formulate the WPSP with minimum makespan as an

integer-programming problem. To solve the WPSP with minimum makespan

effectively, we proposed the improving heuristics, which add the expected machine

load into savings and insertion algorithms for solving problems repeatedly. Besides,

we also provide hybrid GA including initial population by WPSP algorithms and

sub-schedule preservation crossover to solve the considered problem. To evaluate

the performance of the two proposed approaches under various conditions, the

performance comparison on a set of test problems involving four problem

characteristics are provided. The computational result shows that improving

heuristics are better than hybrid GA in scheduling solutions and velocities of WPSP

with minimum makespan. When hybrid GA is using initial population by improving

heuristics, it can make further improvement for the best solution of improving

heuristics in some situations.

Keyword: wafer probing, parallel-machine scheduling, minimum makespan,

improving heuristics, genetic algorithms

 iii

Contents

Abstract .. iii
Contents ..iv
List of Tables..v
List of Figures ...vi
Notations ..vii
1. Introduction..1
2. Problem definition and formulation...2
3. The Improving Heuristics ..6

3.1 Phase I - Existing network algorithms ...8
3.2 Phase II - Network Adjusting Procedure ...14

4. The Genetic Algorithm For WPSP with min maxC ...15
4.1 GA for Parallel Machine Problem..16
4.2 The Hybrid Genetic Algorithm ..21

4.2.1 Problem encoding ...22
4.2.2 Initialization ..23
4.2.3 Selection..23
4.2.4 Genetic operators ..24
4.2.5 Elitist Strategy...27
4.2.6 Stopping Criteria ...28

5. Problem Design and Testing ..28
6. Computational Results ...32

6.1 ANOVA Analysis of Improving Heuristics..32
6.2 Computational Results of GA with Initial Population from WPSP algorithms

..35
6.3 Further Improvement of Hybrid GA with Initial Population from Improving

Heuristics ...36
7. Conclusion ...37
Reference ...39
Appendix..43

 iv

List of Tables

Table 1. The comparison of GA under various problem characters, crossover, and
mutation. ..18

Table 2. Summary of 16 problem design ...31
Table 3. Computational results of WPSP algorithms in 16 test problems.33
Table 4. Computational results of improving heuristics under all kinds of situations.33
Table 5. Check of normality assumption for 96 solutions in 16 test problems............34
Table 6. The summary of ANOVA table under 99% confidential intervals.................34
Table 7. Duncan’s multiple comparisons for the performance of WPSP algorithms...34
Table 8. The comparison of hybrid GA with WPSP algorithms and improving

heuristics in testing problems...36
Table 9. Computation results of GA with initialization of improving heuristics.........37
Table A1. Processing times of jobs with product types and product families under low

total processing time level...43
Table A2. Processing times of jobs with product types and product families under high

total processing time level...43
Table A3. Tightness of due dates in 16 testing problems...43
Table A4. All jobs with product types and due dates while tightness of due dates is

stable and total processing time level is low..44
Table A5. All jobs with product types and due dates while tightness of due dates is

increasing and total processing time level is low.44
Table A6. All jobs with product types and due dates while tightness of due dates is

stable and total processing time level is high. ...44
Table A7. All jobs with product types and due dates while tightness of due dates is

increasing and total processing time level is high.45
Table A8. Setup time with product types while product family ratio is 2 and

temperature changing is not considered. ...45
Table A9. Setup time with product types while product family ratio is 2 and

temperature changing is considered. ...46
Table A10. Setup time with product types while product family ratio is 6 and

temperature changing is not considered. ...46
Table A11. Setup time with product types while product family ratio is 6 and

temperature changing is considered...47

 v

List of Figures

Figure 1. The structure of the improving heuristic ..7
Figure 2. The flowchart of the execution for hybrid genetic algorithm.......................22
Figure 3. Copy the partitioning structure to offspring ...25
Figure 4. Copy the sub-schedules to offspring ..26
Figure 5. Fill the empty of the offspring from the other parent.26
Figure 6. Illustration of swapping technique ...27
Figure 7. The trend of average solutions in population of hybrid GA repeated four

times in problem No. 7..47
Figure 8. The trend of best solution in population of hybrid GA repeated four times in

problem No. 7. ..48
Figure 9. The trend of average solutions in population of hybrid GA repeated four

times in problem No. 8..48
Figure 10. The trend of average solutions in population of hybrid GA repeated four

times in problem No. 8..49
Figure 11. The further improvement of hybrid GA with initialization by improving

heuristics in problem No. 8...49
Figure 12. The further improvement of hybrid GA with initialization by improving

heuristics in problem No. 16...50

 vi

Notations

IP modeling

jR : the jth product type of jobs

jI : the number of jobs in jth product type of jobs

km : the kth machine of identical parallel machines

ir : the job of WPSP with minimum makespan

F : the total number of product families

J : the total number of product types

fJ : the total number of product types in product family f

jR : the jth subset (product type) of jobs to be processed

maxC : the maximum completion time (makespan)

W : the predetermined machine capacity expressed in terms of processing

time units

iis ′ : the sequentially dependent setup time between any two consecutive jobs

 and ir ir ′

ikx : the variable indicating whether the job is scheduled on machine ir km

ip : the processing time of job in cluster (ir jR ji Rr ∈)

ikt : the starting time of job to be processed on machine ir km

ib : the ready time of job ir

id : the due date of job ir

ie : the latest starting processing time of job ir

kiiy ′ : the precedence variable, which should be set to 1 if the two jobs and

 are scheduled on machine and job precedes job (not

necessarily directly), and 0 otherwise

ir

ir ′ km ir ir ′

kiiz ′ : the direct-precedence variable, which should be set to 1 if the two jobs

 and are scheduled on machine and job precedes job

directly, and 0 otherwise.
ir ir ′ km ir ir ′

Q : a constant, which is chosen to be sufficiently large enough to make

constraints of IP model satisfied

Improving Heuristics

][UisMax : the maximal setup time of machine switching from idle status (denoted

by the label “U”) to processing status

][UisMax : the maximal setup time of machine switching from processing status to

 vii

idle status

][1 iisMax ′ : the maximal setup time of two consecutive jobs processed on machine

coming from different product type and different product family

][2 iisMax ′ : the maximal setup time of two consecutive jobs from different product

type and same product family

σ : the parameter which may vary according to the problem data structure

used in estimation of expected machine load

ES : the sum of expected setup time on identical parallel machines

EL : the expected machine workload

kiν : the selected job has been scheduled on the ν th position of machine km

iiSA ′ : the saving value for any pairs of jobs and , and U denotes the idle

status
ir ir ′

'ii
MSA : the modified saving value for any pairs of jobs and , and U

denotes the idle status
ir ir ′

A : the parameter added into the savings function of modified sequential

saving (MSA) to present the percentage of postponement restriction

B : the parameter added into the savings function of modified sequential

saving (MSA) to present the percentage of time window restriction

),,(1 νkuc : the insertion cost of job added into the u ν th position on machine

in sequential insertion (SIA)
km

),,(*
1 νkuc′ : the best insertion cost of job added into the th position on

machine in sequential insertion (SIA)

u *ν

km
)(2 uc : the regret value of job in sequential insertion (SIA) u
)(*

2 uc′ : the largest regret value among all unscheduled jobs in sequential

insertion (SIA)
)(*

1
*,νu,kc ′′ : the best insertion cost of job added into the th position on

machine in parallel insertion (PIA)

u *ν

*k
m

)(3 uc : the regret value of job in parallel insertion (PIA) u
)(*

3 uc′ : the largest regret value of job among all unscheduled jobs in parallel

insertion (PIA)

*u

),,(11 νkuc : the modified insertion cost of job added into the u ν th position on

machine in parallel insertion with the slackness (PIA II) km

λ : the parameter which represents the ratio of the insertion values that the

slackness would have in parallel insertion with the slackness (PIA II)

 viii

)(4 uc : the modified regret value of job in parallel insertion with the variance

of regret measure (PIA IV)

u

)(1cVar ′ : the variance of best insertion cost between all parallel machines in

parallel insertion with the variance of regret measure (PIA IV)

)(1cAvg ′ : the average value of best insertion cost on all identical parallel machines

in parallel insertion with the variance of regret measure (PIA IV)

ϕ : the parameter which determines the schedule ranking of all jobs on all

identical parallel machines in parallel insertion with the variance of regret

measure (PIA IV)

LB : lower bound of the adjusting procedure

UB : upper bound of the adjusting procedure

kML : the total machine load on machine km

δ : the repeat times of executing WPSP algorithms in improving heuristics

Hybrid GA

βα ,maxC : the makespan of the α th chromosome in the pool when the GA cycle

proceeds to the β th generation

K : the available machine number of identical parallel machines

),(βαF : the fitness value of the α th chromosome in the pool when the GA cycle

proceeds to the β th generation

kdν : the due date of job on ν th position of machine km

nkSSLν : the sum of slackness values for n consecutive jobs on machine ,

which are located from
km

ν th to)1(−+ nν th position

nkSSLν : the average value of slackness for n jobs started from ν th to

)1(−+ nν th position on machine km

n : the number of job consideration on machine while estimating the

slackness of job combinations
km

kN : the number of jobs on machine km

R : the product family ratio in testing problems

)(YTI : the tightness value of jobs before Yth due date point

)(YP : the total processing time of jobs of which due dates are given before Yth

due date point

)(YCap : the available capacity of machine before Yth due date point

)(YNum : the number of jobs of which due dates are given before Yth due date point

 ix

1. Introduction

The wafer probing scheduling problem (WPSP) [1,2] is a practical version of the

parallel-machine scheduling problem, which has many real-world applications,

especially in the integrated circuit (IC) manufacturing industry. There are wafer

fabrication, wafer sorting, assembly, and final test in the processes of IC product, and

the first and fourth stages are related processes, where the testers are expensive and

critical. Pearn et al. [2] considered the wafer probing scheduling problem (WPSP)

with the objective of minimizing total workload. They formulated the WPSP as an

integer programming problem and transformed the WPSP into the vehicle routing

problem with time window (VRPTW). They provided three VRPTW algorithms for

solving the WPSP and their computational results showed that the network

transformation of identical parallel machine scheduling was efficient and applicable

under the objective of raising identical parallel machine utilities. A

minimizing-makespan schedule not only can result in higher efficiency and resource

utilization but minimize the time, which jobs are operating in the factory. The

identical parallel-machine scheduling problem with minimized makespan also

identifies the bottleneck machine, which needs to be arranged carefully.

This paper considers the identical parallel-machine scheduling problem with

minimizing makespan, which has been proved to be a NP problem [3,4]. In view of

the NP-hard nature of the problem, several polynomial time algorithms have been

proposed for its solution. It has been traditional solved by operational methods such

as integer programming, branch and bound method, dynamic programming, etc.[5-9].

Min et al. [10] proposed a genetic algorithm, which contains the procedures of coding,

initializing, reproducing, crossover, and mutation. It was actually efficient for large

scale problems. Besides, Gupta et al. [11] provided a LISTFIT algorithm, or the

SPT/LPT and MULTIFIT procedure, for solving parallel-machine scheduling

problems with minimizing makespan. Some proposed algorithms also have been

used for solving parallel-machine scheduling with other objectives. Azizoglu and

Kirca [12] proposed a branch and bound algorithm combined with lower bounding

 1

scheme for the objective of minimizing total tardiness. Lee and pinedo [13]

presented a three phases algorithm incorporating the ATCS rule and simulated

annealing method for minimizing the sum of weighted tardiness and the experimental

results showed that simulated annealing method had a great improvement of solutions.

Park, Kim, and Lee [14] addressed an extension of the ATCS (Apparent Tardiness

Cost with Setups) rule for the objective of minimizing total weighted tardiness.

Hurkens et al. [15] proposed a 0-1 interchange, which is the procedure of the job

moving iteratively to the machine with minimal load if its processing time is less than

the difference between maximum and minimum machine load. Veen et al. [16]

formulated an integer programming by dividing jobs into K job-classes and

considered that the change-over time between two consecutive jobs is dependent on

the job-class to which the two jobs belonged.

For the WPSP with the objective of minimizing makespan, we first formulate our

problem as an integer programming, which includes job due dates, job processing

times, job sequence-dependent setup time, and machine capacities. In section 3, we

propose improving heuristics, which are the network algorithms merging with two

different adjusting procedures respectively, for making the local optimum closer to

global one. In section 4, we address a hybrid genetic algorithm in contrast to the

two-phase heuristics we developed before. In the last section, we will describe the

experimental framework and present the analysis of the results by comparing the

genetic algorithm with two-phase heuristics.

2. Problem definition and formulation

Consider several product types of jobs with ready time and due date to be processed

on identical parallel machines with capacity constraint. The job processing time

depends on the product type of the job processed. Setup times for two consecutive

jobs of different product type are sequence dependent. The objective is to find a

schedule for the jobs which minimizes the maximum completion time without

violating the due date restrictions and the machine capacity constraints.

We first define as the { 121 ,,,, += JJ RRRRR K } 1+J subsets (product types) of

 2

jobs to be processed with each subset { }jjjjij IIIIirR +++== −−− 111 ,,2,1| K

containing jobs, where =0 and =K. Thus, job subset jI 0I 1+JI { }
1

,,, 211 IrrrR K=

contains jobs, 1I { }
2111

,,, 212 IIII rrrR +++= K contains jobs, and 2I

{ }KIIIJ JJJ
rrrR ++++ = ,,, 211 K contains (K) jobs, where 1+JI IIII J =+++ ...21 . Let

F be the total number of product families and be the total number of product

types in product family , where . Then
fJ

f ∑
=

=
f

f JJ
1

F

},,,{ 21 kmmmM K= can be

defined as the set of machines containing K identical machines. The job subset

, which is a pseudo product type including K jobs, is used to indicate the K

machines are in idle state. Therefore, there are I+K jobs grouped into

product types, at where the first

1+JR

1+J

I jobs are divided into J product types and the last

K jobs are pseudo jobs. Let be the processing time of job in cluster

(). Since the job processing time depends on the product type of the job, then

 should be equal to given the function representing the product type

of job . Let be the maximum completion time (makespan) and W be

the predetermined machine capacity expressed in terms of processing time units

respectively. Let be the sequentially dependent setup time between any two

consecutive jobs and , in which is equal to .

ip ir jR

ji Rr ∈

ip)(iJp)(iJ

ir maxC

iis ′

ir ir ′ iis ′)()('iJiJ
s

Further, let be the variable indicating whether the job is scheduled on

machine . If job should be processed on machine , set ,

otherwise set

ikx ir

km ir km 1=ikx

0=ikx . Let be the starting time of job to be processed on

machine . Set as the ready time of job and as the due date of job .

The starting processing time should not be greater than the latest starting

processing time , which relates to the due date and can be computed as

. The starting processing time also should not be less than the

earliest starting processing time . If job is ready to be processed initially, then

set to 0. We note that the processing time and due dates for the job in

should be set to 0 so that these pseudo jobs can be scheduled as the first jobs on each

machine, which indicate that each machine is initially in idle state. Let be the

precedence variable, where should be set to 1 if the two jobs and are

scheduled on machine and job precedes job (not necessarily directly),

and where otherwise. Further, let be the direct-precedence variable,

ikt ir

km ib ir id ir

ikt

ie id

iii pde −= ikt

ib ir

ib 1+JR

kiiy ′

kiiy ′ ir ir ′

km ir ir ′

0=′kiiy kiiz ′

 3

where should be set to 1 if the two jobs and are scheduled on machine

 and job precedes job directly, and where
kiiz ′ ir ir ′

km ir ir ′ 0=′kiiz otherwise.

To find a schedule for these jobs which minimizes makespan without violating the

machine capacity and due date constraints, we consider the following integer

programming model:

Minimize maxC
subject to

 allfor ,1
1

ix
K

k
ik =∑

=
 (1)

kx
KI

Ii
ik allfor ,1

1
∑ =
+

+=
 (2)

kCszpx
KI

i

KI

i
iikii

KI

i
iik allfor max,)(

1 11
≤∑ ∑+∑

+

=

+

=′
′′

+

=
 (3)

kWszpx
KI

i

KI

i
iikii

KI

i
iik allfor ,)(

1 11
≤∑ ∑+∑

+

=

+

=′
′′

+

=
 (4)

kiytspt kiikiiiiik , allfor ,0)1(Q ≤−+−++ ′′′ (5)

kizytspt kiikiikiiiiik , allfor ,0)2(Q ≥−++−++ ′′′′ (6)

kixbt ikiik , allfor ,≥ (7)

kixet ikiik , allfor ,≤ (8)

kixxyy kiikikikii , allfor ,1)2(Q)(≥−+−+ ′′′ (9)

kixxyy kiikikikii , allfor ,1)2(Q)(≤−+++ ′′′ (10)

kixxyy kiikikikii , allfor ,0)(Q)(≤+−+ ′′′ (11)

kixxyy ikkiikikii , allfor ,0)1(Q)(≤+−−+ ′′′ (12)

kixxyy kiikikikii , allfor ,0)1(Q)(≤+−−+ ′′′ (13)

kizy kiikii , allfor ′′ ≥ (14)

∑ =−∑
′≠

′

+

= ii
kii

KI

i
ik kzx allfor ,1

1
 (15)

kizyzyzy kiikiikiikiikiikii
, allfor ,2)1(Q)2(Q **** ≥−−−−+−+ ′′ (16)

kixik , allfor ,}1,0{∈ (17)

kiy kii , allfor ,}1,0{∈′ (18)

 4

kiz kii , allfor ,}1,0{∈′ (19)

The constraints in (1) guarantee that job is processed by one machine exactly

once. The constraints in (2) guarantee that only one pseudo job

is scheduled on a machine. The constraints in (3) state that each machine workload

does not exceed the maximum completion time among all K machines. The

constraints in (4) state that each machine workload does not exceed the machine

capacity . The constraints in (5) and (6) ensure that

ir

KIiIri +≤≤+1 , ,

maxC

W kiiiiik tspt ′′ =++ if job

precedes job directly (and
ir

ir ′ 1=′kiiy 1=′kiiz). The constraints in (5) ensure the

satisfaction of the inequality kiiiiik tspt ′′ ≤++ if job preceding job

(1). The number Q is a constant, which is chosen to be sufficiently large so

that the constraints in (5) are satisfied for

ir ir ′

=′kiiy

1or 0=′kiiy . For example, we can choose

. The constraints in (6) ensure the satisfaction of the

inequality

∑ += = ′′
I
i iiii sp1 }){max(Q

 ' ≥++
iiiik spt

ki
t ' and the event the jobs proceeding job directly

(+).
ir ir ′

kii
y ' 02' =−

kii
z

The constraints in (7) and (8) state that the starting processing time for each

job scheduled on machine (1
ikt

ir km =ikx) should not be less than the earliest

starting processing time bi and not be greater than the latest starting processing time ei.

The constraints in (9) and (10) ensure that one job should precede another (+

 = 1) if two jobs are scheduled on the same machine (
kii

y '

iki
y '

2 - 'kiik xx + = 0). The

number Q is a constant, which is chosen to be sufficiently large so that the constraints

in (9) and (10) are satisfied for 2 - 'kiik xx + < 0. The constraints in (11) ensure that

the precedence variables and should be set to zero (+ 0) if

any two jobs and are not scheduled on the machine (= 0).

The constraints in (12) and (13) ensure that the precedence variables and

should be set to zero (+

kii
y ' iki

y ' kii
y ' ≤ ' iki

y

ir ir ′ km kiik xx ' +

kii
y ' iki

y '

kii
y ' ≤ ' iki

y 0) if any one job or is not scheduled on

the machine . The constraints in (12) indicates the case that job is scheduled

on machine and the job is scheduled on another machine (+ 1 = 0)

and the constraints in (13) indicates the case that job is scheduled on machine

 and the job is scheduled on another machine (+ 1 = 0).

ir ir ′

km ir

km ir ′ ikki
xx - '

ir ′

km ir kiik xx ' -

The constraints in (14) ensure that job could precede job directly (= 1) ir ir ′ kii
z '

 5

only when = 1 and job could not precede job directly (= 0) if job

is scheduled after job (= 0). The constraints in (15) state that there should

exist I-1 directly precedence variables, which are set to 1 on the schedule with I jobs.

The constraints in (16) state that when the job precedes job but not

consecutively (= 1 and = 0), then there must exist another job

scheduling after job directly (

kii
y ' ir ir ′ kii

z ' ir

ir ′ kii
y '

ir ir ′

kii
y ' kii

z ' *i
r

ir 1 * =
kii

y and 1 * =
kii

z) and ensuring the satisfaction

of the inequality . 2 ** ≥+
kiikii

zy

3. The Improving Heuristics

There are many kinds of network algorithms for WPSP with minimizing total

machine workload. VRPTW algorithms are one of them which have been

successfully applied to solve WPSP with good efficiency. Because VRPTW

algorithms are effective for solving WPSP, we adopt these WPSP algorithms to solve

WPSP with minimum makespan in the following of this paper. We use these

algorithms based on expected machine load EL restriction to find feasible solutions of

WPSP with minimum makespan in phase I of improving heuristics. Then feasible

solutions would be improved through the adjusting procedure, phase II of improving

heuristics. In this paper we propose two-phase heuristics, improving heuristics, to

help solving the WPSP with minimum makespan more efficiently. The main idea is

that improving heuristics use the adjusting procedure to improve feasible solutions

solved by WPSP algorithms. The improving procedure would search the best

solution through the different machine workload repeatedly. Phase one of the

improving heuristic is to apply some efficient WPSP algorithms based on the expected

machine load EL restriction for finding feasible solutions of WPSP with minimum

makespan. In phase two, we will provide an improving procedure for making the

local optimum solved by WPSP algorithms climbing to the global one. The structure

of the improving heuristic is shown as Fig. 1.

 6

The number of required
machines is less or equal to

K?

Is δ>δ*

Replace UB with EL Replace LB with EL

Stop

Solve the problem by using the insertion and savings
algorithms with new capacity restriction, equal to

(LB+UB)/2, and δ=δ+1

Yes No

Yes

No

Phase II

Phase I

Estimate EL, UB, LB, and let

0=δ

Solve the WPSP with Cmax by using the
insertion and savings algorithms with
capacity restriction EL, 1+= δδ

C a l c u l a t e t h e m a x
iteration *δ

Figure 1. The structure of the improving heuristic

To find the minimal more efficiently, we provide the estimation of the

expected machine workload

maxC

EL corresponding to the parallel machine scheduling

problem, which will be utilized along with scheduling algorithms. Before

calculating EL , we would define the notation ES, which is the total expected setup

time of all identical parallel machines. The expected machine workload EL equals to

the sum of the expected setup time ES and the total job processing time divided by the

number of available machines K. Let be the sequence dependent setup time of

any two consecutive jobs and on the same machine. Let be the

maximal setup time of machine switching from idle status (denoted by the label “U”)

to processing status, be the maximal setup time of machine switching from

iis ′

ir ir ′][UisMax

][UisMax

 7

processing status to idle status, be the maximal setup time of two

consecutive jobs processed on machine coming from different product type and

different product family, be the maximal setup time of two consecutive

jobs from different product type and same product family. Therefore, equation (20)

expresses the computation of .

][1 iisMax ′

][2 iisMax ′

ES

))
CP

C
0

CP

P
][2

CP

)C(C
][1()1(][][(

12

1
1

12

1
2

12

1
11

UU

JJ

F

f

J

JJ

F

f

J

ii

JJ

F

f

JJ

iiii

ff

ff

sMax

J
sMax

K
IsMaxsMaxKES

+

∑
×+

+

∑
×+

+

∑ −×
××−++×=

==
′

=
′

 (20)

where the notations “P” and “C” in equation (20) represent the symbol of permutation

in statistics. And the coefficient “0” indicates the setup time of two consecutive jobs

from the same product type and the same product family should be zero.

Let the parameter σ , which may vary according to the problem data structure, be

the allowance of uniform capacity decided by the user and be set as the value between

-0.5 and 0.5. We consider the expected capacity EL is the allowance multiplied by

the outcome, which is the sum of total job processing times plus the expected setup

time ES divided by K machines fairly. Then we can get the EL as follows:

)1(1
1

σ+×⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛∑ +×=

=

I

i
i ESp

K
EL and 5.05.0 ≤≤− σ (21)

3.1 Phase I - Existing network algorithms

Generally speaking, the WPSP algorithms include insertion and saving algorithms.

The insertion algorithms generally include two types, the sequential and the parallel.

The saving based procedures include four types, the sequential, the parallel, the

generalized, and the matching based. We first define the order

 where and both represent the machine is

in the idle state, and represents that selected job has been scheduled on the

) (110 Ukkk)(kk i,...,i,i,...,i,i νν − ki0 Uki km

kiν ν th

position of machine . Then we would review savings and insertion algorithms km

 8

by citing Clark and Wright [17], Golden [18], Pearn et al. [19], Solomon [20], Potvin

and Rousseau [21], and Yang et al. [22]. These algorithms are including the

sequential saving algorithm, the modified sequential saving algorithm, the sequential

insertion algorithm, the parallel insertion algorithm, and modified parallel insertion

algorithms. The procedures of these algorithms above are introduced as follows.

Sequential savings algorithm (SSA)

First of all, the sequential savings algorithm calculates the savings of all paired-jobs

and creates a saving list by arranging their saving values in descending order. Then

we pick the first pair of jobs from the top of the saving list to start an initial schedule.
We can confirm whether a selected pair of jobs is feasible by checking the machine

capacity constraint and the due date restrictions of jobs. The sequential savings

algorithm spreads out the schedule by finding the feasible pair of jobs from the top of

the savings list and adding it to either one endpoint of the schedule. If the current

schedule is too tight to add any job in, choose the feasible pair of jobs from the top of

the saving list as a new schedule. Repeat this step until all jobs are scheduled.
The procedure is presented in the following.

Step 1. (Initialization) Calculate the savings value defined as the following for
all pairs of jobs and , where U denotes the idle status.

iiSA ′

ir ir ′

iiiiiiiii iii ii sssss s-s ss sSA ' ′′′′′ −+=+++++= UUUUUUUU)(' (22)

Step 2. Arrange the savings and create a list of the saving values in a descending
order.

Step 3. Choose the first pair of jobs from the saving list as an initial schedule. Start
from the top of the savings list, and proceed with the following sub-steps:
Step 3-1. Select the first pair from the top saving list without violating the

machine capacity and due date constraints. Then add it to either
one end of the current schedule.

Step 3-2. If the current schedule is too tight to add any job on it, choose the
best feasible pair on the saving list to start a new schedule.

Step 4. The chosen jobs then form a feasible machine schedule. Repeat step 3 until
all the jobs on the saving list are scheduled.

 9

Modified sequential savings algorithm (MSSA)

The modified sequential savings algorithm adds two terms into the savings

estimation, the consideration of the postponement and the time window restriction.

For the postponement, the selecting way would tend to choose the pair of jobs with

not only higher saving values but longer processing time. By this way, the jobs with

longer processing time are forced to be processed earlier than others with shorter one.

Considering the other term, the job with earlier job latest starting time would be

placed before the job with later one on the savings list. Two parameters, A and

B, are added into the savings function to present the percentage of postponement and

time window restriction, and W is the predetermined capacity. The new savings

function is expressed in the following:

ie

je

10 1,0),)1(()1()(UU <<<<
−

−+−+−+=
′

′′ BA
e

B
e
BWpAsssAMSA

ii
iiiiiii' (23)

Sequential insertion algorithm (SIA)

The main part of the sequential insertion is to build one schedule once until all jobs

are scheduled. The sequential insertion would find the maximal benefit among the

schedule places that a selected job can insert into. When the existing schedule is full

of jobs, we create another new machine schedule. The initial rule is to select a job

with the maximal initial setup time. After initializing the current schedule, the

priority of selecting job depends on the regret value of all unscheduled jobs.

Find the best insertion place of all unscheduled jobs and select job

with the largest regret value as the first inserted job. The evaluations of

insertion cost and regret values are defined as follows.

)(2 uc

),,(*
1 νkuc′ *u

)(*
2 uc′

kkkk iiuiuikk sssiuickuc
ννννννν

)1()1(
),,(),,()1(11 −−

−+== − (24)

)]([min)(11 u,k,νcu,k,νc *

ν
=′ (25)

)()(1U2
*

u u,k,νcsuc ′−= (26)

 10

)]([max)(2
*

2 ucuc
u

=′ (27)

In equation (24), the jobs and are placed individually on the (ki)1(−ν kiν 1−ν)th

and ν th positions of machine . And the term of equation (26) represents

the initial setup time of the unscheduled job . For each unscheduled job, we first

compute its best feasible insertion place in equation (25), and we can get

the regret value of in equation (26). The job with larger value should

have the priority to be scheduled. Therefore, select the job with largest value

 and insert it into the best position of the schedule. All unscheduled jobs will

be inserted under the following procedure.

km usU

ur

)(1
*u,k,νc′

)(2 uc)(2 uc
*u

)(*
2 uc′

Step 1. Initialize the schedule by selecting the job with the maximal initial setup time.
Step 2. For each unscheduled job, compute the best feasible insertion place ,

which has the smallest insertion value on machine .

*ν
)(1

*u,k,νc′ km
Step 3. Select the unscheduled job with the largest value and put it into

the best insertion place of the schedule. If the existing schedule is too full to
add any unscheduled job, create a new schedule on another machine.

*u)(*
2 uc

Step 4. Repeat Step 2 and Step 3 until all jobs are scheduled.

Parallel insertion algorithm (PIA)

The parallel insertion algorithm constructs a set of initial schedules on all machines

in the beginning. Besides, it also creates a new regret measure, which is the sum of

absolute differences between the best alternative on one machine and other

alternatives on other machines. A large regret measure means that there is a large

gap between the best insertion place of the unscheduled job on one machine and its

best insertion place on the other machines. Hence, unscheduled jobs with larger

regret values should be inserted into the schedule first, because there are large cost

differences of the best insertion place and second alternative. In this algorithm, we

add two criteria into our selecting rule. One is the value , which has the

smallest insertion cost on th position of machine . The other is the regret

value different from of equation (26). The insertion functions are as

follows.

)(*
1

*,νu,kc ′′
*ν *k

)(3 uc)(2 uc

 11

)]([min)(*
1

*
1 u,k,νc,νu,kc

k

* ′=′′ (28)

)]()([)(*
113

*

*

kk

* ,νu,kcu,k,νcuc ′′−∑ ′=
≠

 (29)

)]([max)(3
*

3 ucuc
u

=′ (30)

Initialization is done by selecting the unscheduled jobs with the first K largest

initial setup times and putting them into the initial schedule of each machine. By

applying this method, we can get the K initial schedules and compute the best

insertion place in each of the schedules for all unscheduled jobs. Then we compute

the regret value of all unscheduled jobs and find the largest value of

job . Select job and insert it into the best position of machine with

value . The procedure of PIA is described as below.

)(3 uc)(*
3 uc′

*u *u *ν *k

)(*
1

*,νu,kc ′′

Step 1. Initialize the schedule on each machine by selecting K jobs with the first K
largest initial setup times.

Step 2. For each unscheduled job, find its best feasible insertion place by computing
.)(*

1
*,νu,kc ′′

Step 3. Calculate the regret value for each unscheduled job. Select the job
 with the largest regret measure among all unscheduled jobs.

Insert it into the th position of machine without violating the machine
capacity and its due date restrictions.

)(3 uc
*u)(*

3 uc′
*ν *k

Step 4. Repeat Step 2 and Step 3 until all jobs are scheduled.

Parallel insertion with new initial criteria (PIA I)

According to idea of the VRPTW, PIA first selects the farthest node to visit at the

beginning stage. However, selecting the job with largest initial setup time, the

farthest node, may not reduce the total machine workload. Comparing to PIA, this

modified one adds new initial criteria in find initial jobs of parallel machines.

Inserting a job into the existing schedule of the same product family can significantly

reduce the increased setup time. Because the jobs of the same product type must

belong to the same family, this procedure chooses the product type including the

maximal number of jobs and picks the job with the smallest latest starting time of

this type to be the initial schedule on each machine. Once the job of product
ie

ir

 12

type is selected for a specific machine, other jobs of product type cannot

be selected as the initial schedules on other machines. After initializing K schedules

of machines, the following steps of PIA I are identical to PIA.

)(iJ)(iJ

Parallel insertion with the slackness (PIA II)

In order to express the impact of job due date, this algorithm adopts the modified

insertion functions),,(11 νkuc of equation (31) instead of the value),,(1 νkuc of

PIA. It adds the latest starting time of unscheduled job into consideration

and that would make the selection rule choose the job with smaller latest starting time

as the priority possibly. The modified insertion function is as the following.

ue u

10 ,))(1()(),,(
)1()1(11 ≤≤−+−+=

−−
λλλν

νννν uiiuiui essskuc
kkkk

 (31)

According to the insertion function above, we can determine the ratio of the

insertion values that the slackness would have by revising the value λ . The

insertion procedure is the same as PIA.

Parallel insertion with new initial criteria and slackness (PIA III)

Because PIA I and PIA II do have the advantage of reducing total machine setup

time, we generate the new modified parallel insertion algorithm by combining two

insertion criteria of job selection. At the beginning of inserting initial jobs, the

algorithm selects the product type including the maximal number of jobs and chooses

the job with the smallest value in this product type as the initial schedule on each

machine. Once the job of product type is selected for a specific machine,

other jobs of product type cannot be put as the initial schedule on other

machines. The insertion cost is the same as

ie

ir)(iJ

)(iJ

),,(11 νkuc in equation (31) and other

steps in this modification algorithm are identical to PIA II.

Parallel insertion with the variance of regret measure (PIA IV)

The original parallel insertion procedure does not consider the impact of the

 13

variance between the best insertion places on all machines. This modified algorithm

creates a new regret measure including not only the absolute total differences of the

best insertion value and other alternatives but also the variance among them.

Therefore, the selected job would have a significant variance under large

regret values. The modified calculation of the regret value is the following.

)(1cVar

10 ,)()1(])()([)(1
*

114
*

≤≤−+′′−∑ ′=
≠

ϕϕϕ cVar,νu,kcu,k,νcuc *

kk

* (32)

1

1

2
111)1]())()(([)(−

=
−∑ −′=′ KcAvgu,k,νccVar

K

k

* (33)

1

1
11])([)(−

=
∑ ′=′ Ku,k,νccAvg
K

k

* (34)

The notation in equation (33) is the variance of best insertion cost

between all parallel machines, and

)(1cVar ′

)(1cAvg ′ is the average value of best insertion

cost on all parallel machines. We can determine the schedule ranking of all jobs on

all parallel machines by adjusting the parameter ϕ .

3.2 Phase II - Network Adjusting Procedure

In accordance with WPSP with minimum makespan, we develop an adjusting

procedure for WPSP algorithms. The adjusting procedure is proceeding based on the

concept of lower bound LB and upper bound UB constraints. The adjusting

procedure is searching a near-optimal solution under the lower bound and upper

bound, so the solution time of the adjusting procedure is longer than Phase I. Here

are the steps of the adjusting procedure we developed.

Adjusting Procedure

The procedure makes the basic solutions solved by phase I closer to the optimum

based on lower bound and upper bound restriction. Let be the total machine

load on machine , and let
kML

km δ be the number of adjusting expected machine load

EL . Here comes the detail of the adjusting procedure.

Step 1. Let δ be zero and set the value 0EL be the same of EL . Use the WPSP
algorithm described to generate a basic solution by adding a restriction of

 14

capacity 0EL into it.
Step 2. Here we define the initial lower bound and upper bound as follows.

}{min0
kKk

MLLB
∈

= (35)

}{max}max{ 0
iIik

Kk
pMLUB

∈∈
+= (36)

According to the property of the solution, we define the maximal number
of adjusting in two ways.

*δ

 (1) If the actually required number of machines is smaller than the
number of available machines

k
K , we let , which

represents the maximal adjusting times we can use in this adjusting
procedure.

)(log 00
2

* LBEL −=δ

 (2) If the actually required number of machines k is larger than the number
of available machines K , we let in another way.)(log 00 −2

* ELUB=δ
Step 3. The step is divided into two different decision rules.
 (1) If the actually required number of machines is smaller than the

number of available machines
k

K , set the value to be the same of δUB δEL ,
and update δ with the increment 1. The expected machine load is replaced
with , where 2/)(δδ ′′ +UBLB 1−=′ δδ , that is, . 2/)(δδδ ′′ += UBLBEL
(2) If the actually required number of machines is larger than the number
of available machines

k
K , set the value δLB to be the same of δEL , and

update δ with the increment 1. The expected machine load is replaced
with , where 2/)(δδ ′′ +UBLB 1−=′ δδ . The adjusting equation is the
same as the one above.

Step 4. Restart the network algorithm with the restriction of adjusting value δEL .
Step 5. If the value of δ is larger than and the *δ δ th scheduling solution is

feasible, stop the procedure. Otherwise (δ is less than or the *δ δ th
scheduling solution is infeasible) go to step 3 until all jobs are scheduled.

4. The Genetic Algorithm for WPSP with min maxC

A genetic algorithm is a search algorithm based on the mechanism of genetics and

evolution, which combines the exploitation of past results with the information of new

areas of the search space. A genetic algorithm can imitate some innovative talent of

a human search by using the surviving techniques of fitness function. The

mechanism of a genetic algorithm is very simple, involving nothing but copying

strings and swapping positions among strings. In every new generation of a genetic

algorithm, a set of strings are created exploiting information from the previous ones.

With this collection of artificial strings, a new part of population is tried for good

measure and the best overall solution would become the candidate solution to the

 15

problem.

4.1 GA for Parallel Machine Problem

The genetic algorithm takes advantage of historical information effectively to

proceed with new search points for expected improvement. Simple operation and

effective power are two primary attractions of the GA approach. The effectiveness

of GA depends on an appropriate mix of exploration and exploitation. Two genetic

operators, crossover, and mutation, are designed to approach this goal. Many

researchers have considered the parallel-machine scheduling problem by using the

genetic approach. Zomaya and Teh [23] employed a GA considering load balancing

issues suchlike threshold policies, information exchange criteria, and inter-processor

communication, to solve the dynamic load balancing problem with minimizing the

maximum completion time. Cheng et al. [24,27] considered an identical parallel

machine system with an objective of minimizing the maximal weighted absolute

lateness and proposed a hybrid algorithm which combined the GA with the due date

determination. They proved that mutation should play more critical role than the

crossover and the hybrid genetic algorithm did outperform the conventional heuristics.

Min and Cheng [25] provided a genetic algorithm based on the machine code for

minimizing makespan in identical parallel machine scheduling problem and it was fit

for larger scale problems with comparison to LPT and SA. Cochran et al. [26]

proposed a two-stage multi-population genetic algorithm (MPGA) to solve parallel

machine with multiple objectives. Multiple objectives are combined via the

multiplication of the relative measure of each objective in the first stage, and the

solutions of the first stage are arranged into sub-population to evolve separately under

the elitist strategy. Ulusoy et al. [28] proposed a genetic algorithm with the

crossover operator MCUOX for solving the parallel-machine scheduling problem

with minimizing the total weighted earliness and tardiness values. They showed that

GA with MCUOX outperformed in larger-sized, more difficult problems. Herrmann

[29] provided a two-space genetic algorithm representing solutions and scenarios for

solving minimizing makespan problems and the experiment showed the two-space

GA could find robust solutions. Tamaki et al. [30] dealt with identical parallel

 16

machine scheduling problems with the objective of minimizing total flow time and

earliness/tardiness penalties. They proposed a genetic algorithm combined with a

simplex method to generate an effective set of Pareto-optimal schedules. Vignier et

al. [31] provided a hybrid method to solve a parallel-machine scheduling problem

with minimizing the total cost of assignment and setup time and the result showed

efficient in industrial case. Lin [32] considered a unrelated parallel machine

scheduling problem with due date restriction for minimizing makespan, total weighted

tardiness, and total weighted flow time. She proposed a genetic algorithm combined

with prescribed initialization for solving the multi-objective and the result expressed

that the GA with prescribed initialization could find an optimal solution in small sized

problems. Table 1 shows the differences of GA these researchers developed.

 17

Table 1. The comparison of GA under various problem characters, crossover, and mutation.

Author
 Objective
function of

problem

Due date
considera

tion

Setup
time

conside
ration

Release
time

considera
tion

Coding method Crossover
operator Mutation operator Initial population

generation
GA

compared
with:

GA results

Zomaya,
A.Y. and
Teh, Y.H.

Minimize
makespan and

processor
utilization

No No Yes

Each element in
the string has two
decimal values,
one to represent
the task number
and the other to

represent the size
of the task

The cycle
crossover
method

Swap mutation is
adopted by
randomly

selecting two
tasks and then
swapping them

Use a dynamic
load-balancing

algorithm

GA itself for
different
window

size,
population
size, and

generation
size

GA performs
better under

window size=20,
generation

number=20, and
population

size=30

Cheng, R.,
Gen, M.,

and Tozawa,
T.

Minmax the
weighted
absolute
lateness

A
common
due date

No No

Use a list of job

symbol and
partitioning

symbol as the
coding scheme

The
sub-schedule
preservation

crossover

Use random
exchange by
selecting two

random genes and
then exchanging
their positions

Random generate
Existing
heuristic

procedure

GA has a better
result with
considering

mutation

Min, L. and
Cheng, W.

Minimize
makespan No No No

The gene code is

, where
],1[m

nj kkkk ,,,,, 21 KK

k j ∈ . It’s
the number of the
machine on which

each job is
processed

The
two-point
crossover

A digit is selected
according to
pre-defined

mutation
probability and
replaced with a

different number

Random generate LPT and SA
GA is more

efficient and fit
for larger scale

problem

Cochran,
J.K., Horng,

S.M., and
Fowler, J.W.

Minimize
makespan,
total weighted
tardiness, and
total weighted
completion
time

Yes (each
job has
its own

due date)
No

Yes (each
job has
its own
release
time)

The number in
position one of
the chromosome
represents the
machine that will
process job one

The one-point
crossover

A digit is selected
according to
pre-defined

mutation
probability and
replaced with a

different number

Random generate
Multi-object
ive genetic
algorithm
(MOGA)

Multi-population
genetic algorithm
(MPGA) shows

better results over
a wide range of

problems

 18

 19

Table 1. Continued

Author
 Objective
function of

problem

Due date
considera

tion

Setup
time

conside
ration

Release
time

considera
tion

Coding method Crossover
operator Mutation operator Initial population

generation
GA

compared
with:

GA results

Cheng, R.
and Gen, M.

Minimize the
maximum
weighted
absolute
lateness

A
common
due date

No No

Use a list of job
symbol and
partitioning

symbol as the
coding scheme

The
sub-schedule
preservation

crossover

Use random
exchange by
selecting two

random genes and
then exchanging
their positions

Random generate

The
published

GA and the
heuristic,
V-shape
policy

The memetic
algorithm

outperforms both
GA and the

heuristic

Serifoglu,
F.S. and

Ulusoy, G.

Minimize total
weighted

earliness and
tardiness

Yes (each
job has
its own

due date)

Yes
(sequen

ce
depend

ent)

Yes (each
job has
its own
release
time)

The chromosome
representation

incorporates both
the sequencing

and the machine
selection

The
multi-compon
ent uniform
order-based
crossover

Swap mutation
randomly chooses
two positions on
the chromosome
and swap the
contents. Bit
mutation is
applied to each
gene in the
population with a
very low
probability

Three scheduling
rules (forward-pass,
backward-forward-

pass, and 3-D
scheduling rules)

Four
different

scheduling
rules and

two distinct
crossovers

GA with
GA-NCUOX

performs well in
larger-sized
problems

Herrmann,
J.W.

Minimize
makespan No No No

The GA uses
27-bit strings and
each individual in
the population has

nine genes, one
for each job

－ － Use two-space GA
to generate

Worst case
optimization

Two-space GA is
able to find robust

solutions

Tamaki, H.,
Nishino, E.,
and Abe, S.

Minimize total
flow time, total

weighted
earliness and

tardiness

Yes (each
job has
its own

due date)
No

Yes (each
job has
its own
release
time)

An individual is
represented as a
combination of
two sub-string

with the length of
the number of

jobs

The one-point
crossover

One locus is
selected

randomly, and
then the gene is

changed to
another gene with

a prescribed
probability

Random generate
Different
setting of
the weight
parameters

The effectiveness
for generating a

variety of
Pareto-optimal

schedules is
investigated

 20

Table 1. Continued

Author
 Objective
function of

problem

Due date
considera

tion

Setup
time

conside
ration

Release
time

considera
tion

Coding method Crossover
operator Mutation operator Initial population

generation
GA

compared
with:

GA results

Vignier, A.,
Sonntag, B.,

and
Portmann,

M-C.

Minimize the
total costs of

assignment and
setup time

Yes (each
job has
its own

due date)

Yes
(sequen

ce
depend

ent)

Yes (each
job has
its own
release
time)

The genome is

composed of two
chromosome, one
for the assignment
and the other for

the sequence

The one-point
crossover and

the edge
recombinatio

n operator

Swap two
consecutive jobs

or change the
assignment of a

job in an
individual

Use two presented
heuristics

Two
presented
Heuristics

The results of GA
are better than
those they have
obtained before

Lin, C.C.

Minimize
makespan,

total weighted
flow time, and
total weighted

tardiness

Yes (each
job has
its own

due date)
No No

Use a list of job
symbol and
partitioning

symbol as the
coding scheme

The
sub-schedule
preservation

crossover

Use random
exchange by
selecting two

random genes and
then exchanging
their positions

Use
EDD/WSPT(mean)

,
WSPT(mean)/EDD
, SPT(mean)/EDD,
LPT(mean)/EDD,

MDD,
SPT(min)/EDD,
LPT(max)/EDD,

and some heuristics
to generate

Branch &
bound and
traditional

GA

The modified GA
can find the

optimal solution
in small-sized
problems, and
have a better

solution speed
than branch &

bound

4.2 The Hybrid Genetic Algorithm

GA is an artificial adaptive system for simulating natural evolution. Because of

their effectiveness and efficiency in searching complex spaces, they are increasingly

used to attack NP-hard problems. The core of GA is its crossover operator that

progressively constructs near optimal solutions from good feasible solutions. In this

paper, we propose a new crossover that protects better schedules of machines from

elimination. First of all, we would give some definition of terms including

, , max_gene, off_size, and . Let notations

 and be the number of parents and extended population

individually, off_size be the number of offspring, and max_gene be the maximum

number of generated generation. Besides, let be the prescribed probability of

mutation. The flowchart of the execution for hybrid genetic algorithm is given in

Fig. 2.

sizePop _ sizePopEx __ mp

sizePop _ sizePopEx __

mp

 21

Problem Encoding
(Ex: 3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8)

Initialize n solutions
(constructed by insertion and

savings algorithms)

Current population
(Parents),
Pop_size

Selection
(Roulette wheel method)

Extended population
(offspring)

off_size=off_size+1

New generation
(New population)

Sub-schedule Preservation Crossover

Stop

Elitist strategy(Choose the better N strings
from enlarged population)

Stopping criteria
(The number of

generated generation
>=max_gene?)

Yes

No

Enlarged population
(sum of Pop_size and Ex_Pop_size)

Ex_Pop_size=2*Pop_size

Swapping Mutation
under the scenario U[0,1]<=pm

(operate with a prescribed probability pm)

off_size=Pop_size?
No

Yes

Ex_Pop_size>=N?

Yes

No Pop_size=
Ex_Pop_size

Figure 2. The flowchart of the execution for hybrid genetic algorithm.

4.2.1 Problem encoding

Normal binary encoding does not work very well for the parallel-machine

scheduling problem because the encoding strings may become too redundant to

incorporate all needed messages. Therefore, we code the strings by using the

representation of decimal numbers. We use a set of integers and stars ＊

representing the job identity and the partition of jobs to machines for parallel-machine

scheduling problem. The integers and stars on the string represent all possible

sequences of jobs on parallel machines. For a problem of n jobs and m parallel

machines, a correct chromosome must consist of n job symbols and m-1 partitioning

symbols ＊, which mean there should be n+m-1 genes in a chromosome. We can

 22

give a simple example of 9 jobs and 4 parallel machines shown below. The string

can be represented as follows:

[3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8]

4.2.2 Initialization

In each generation the GA manipulates a set of operators in the population. The

construction of the initial population is important since the operators of GA would

preserve some part of better chromosomes generation to generation. The initial

population influences not only the convergence of the GA but the qualities of

chromosomes generated. The initial chromosomes are constructed with network

algorithms we described in this identical parallel-machine scheduling problem. We

are looking for the better near optimal solution produced by the initial population

based on network algorithms than a randomly generated population. We also predict

the quick convergence of the GA with the constructed initial population.

4.2.3 Selection

During each generation, we can use some measure of functions to evaluate the

values of chromosomes. Fitness is estimated based on the objective function in most

cases of optimization problems. As the objective of our problem is WPSP with

minimizing makespan, we can use the reciprocal of the objective function as the

fitness value. So a fitter chromosome has a larger fitness value. The fitness value

of each chromosome is defined as following:

⎥
⎥

⎤
⎢
⎢

⎡
×
+−

×= −

Q
1)(),(1

, K
kKCmaxF βαβα (37)

where the term expresses the makespan of the βα ,maxC α th chromosome in the

pool when the GA cycle proceeds to the β th generation. The term K represents
the available machine number and represents the actual required machine number.
Besides, the term Q is a constant described in section 2 for keeping the calculation

moving around 0 and 1. So the function

k

Q/)1(KkK −− ⎡ ⎤QK/kK − can make
e calculated by equation (37) is avasure that the fitness valu ilable to be used.

 23

The selection technique in this paper is based on the roulette wheel method. In

th

Two genetic operators, crossover and mutation, are usually used in the genetic

al

the WPSP with minimum makespan has the job due date problem, the

ch

partitioning structure and better sub-schedules into offspring from one parent and then

is case, the probabilities of the individual chromosomes surviving to the next

generation determine the slots of the roulette wheel. These probabilities of these

slots on the roulette wheel are estimated by dividing the fitness value of each

chromosome by the sum of the fitness values of all chromosomes in the current

population. Cumulating the probabilities of each chromosome creates the individual

slots. Here comes an example, which calculates the individual slots on the roulette

wheel. There are three chromosomes in the population, of which the probabilities of

chromosomes are 0.2, 0.3, and 0.5 individually. Then the slots of chromosome 1,

chromosome 2 and chromosome 3 will range from 0-0.2, 0.2-0.5, and 0.5-1

respectively. Each slot size of chromosome will be proportional to its fitness value.

4.2.4 Genetic operators

gorithm. Crossover generates offspring by combining two chromosomes’ features.

Mutation operates one chromosome by randomly selecting two genes and swapping

them. Generally specking, the crossover operator plays an important role for the

performance in the GA cycle. The performance of crossover in each operator does

affect the performance of GA. So we adopt the different rules for designing

crossover and mutation. Both crossover and mutation can handle the job

permutation and setup time on the identical parallel machines, so the methods of

crossover and mutation should be suitable for use.

Crossover

Because

romosome may have a bad fitness value, an infeasible solution, through the

traditional crossover operator. We provide a new crossover considering the time

postponement concept to figure out the problem with due date restriction. The time

postponement is the value that the non-expected event can delay for at most. The

crossover operates two parents and creates a single offspring. It breeds the primary

 24

fills the offspring with remaining genes derived from the other parent. The selection

of sub-schedule is considering the job slackness, the time postponement, on each

identical parallel machine. The crossover copies the better sub-schedules on some

identical parallel machines from one parent to the offspring for preserving the good

permutation of jobs. The other empty positions of the offspring can be filled with

one way, which is a left-to-right scan from the other parent. We let kCν be the

completion time of job, kdν be the due date of job on ν th position of machine km ,

n be the number of job consideration on machine km , and kN be the num of jobs

on machine km . Equa (38) indicates the slackness of job on

ber

tion ν th position f

machine km . nkSSLν of equation (39) means the sum of slackness values for n

consecutive jobs on machine km , which are located from

 o

ν th to)1(−+ nν th

position. fter calculating the value nkSSLν , we can estimate the average value of

slackness

 A

nkSSLν for n jobs started from ν th to)1(−+ nν th position o e

km . The estimations of slackness values are defined as following:

kkk dSL = kN,,2,1 K=

n machin

C ν ; k ,,2,1 K Kννν − , = (38)
−+ 1nν

∑= knk SLSSL
ν

νν , kN,,2,1 K=ν ; 11 +−≤≤ νkNn ; Kk ,,2,1 K= (39)

1−×= nSSLSSL nknk νν (40)

In the beginning of crossover, GA would choose one parent with better fitness value

and breed the partitio

3.

ning structure of the parent into the offspring as shown in Figure

3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8P1

8 1 5 ＊ 2 ＊ 3 7 ＊ 4 9 6

＊ ＊ ＊

P2

offspring

Figure 3. Copy the partitioning structure to offspring

Then for all jobs on each machine, GA calculates of all combinations of

jobs in sequences and d
nkSSLν

nkSSLν from each nkSSLν . Choose the smallest erives each

nkSSLν for each machine and put the job comb to the sub-schedules as inations in

 25

shown in Figure 4.

3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8

8 1 5 ＊ 2 ＊ 3 7 ＊ 4 9 6

3 ＊ 9 ＊ 4 1 6 ＊ 8

P1

P2

offspring

Figure 4. Copy the sub-schedules to offspring
from the parent with better fitness value.

Finally, GA would use a left-to-right scan to fill the offspring with remaining genes

derived from the other parent as shown in Figure 5.

3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8

8 1 5 ＊ 2 ＊ 3 7 ＊ 4 9 6

3 5 ＊ 9 2 ＊ 4 1 6 ＊ 8 2

P1

offspring

P2

Starting point
on offspring

 Figure 5. Fill the empty of the offspring from the other parent.

After recounting the execution of crossover, here is the procedure of crossover

divided into three steps.

Step1. Get the partitioning symbol ＊ from one parent which has better fitness value.
St

nd
ep2. Choose the sub-schedules from the parent with better fitness value. Let

parameters k a ν be one. The selection of sub-schedules is as
following:
Step 2-1. For the ν th position of machine km on the chromosome,

calculate the slackness value kSLν of job ir on ν th position.
Step 2-2. Le += 1t νν . If the value ν is larger than kN , go to step2-3.

Otherwise, calculate th of job on the e slackness value kSLν ν th
m -1.

Step 2-3.
position of achine km and go to step2

 For kN,,2,1 K=ν and 11 +−≤≤ νkn , estimaN te all kinds of
aaver ness value ge slack nkSSLν . Select the largest one knSSL ′′ν

among all nkSSLν and put the job combination from ν ′ th position
to 1−′+′ nν th position on machine into the su hedule of

Step 2-3. ailable
of

b-sc
machin
Let 1+= kk and check the constraint of the number of av
machines K. If k is larger than the number available
ma hen go to step 2-4. Otherwise, Let index

e km .

chines K, t ν be one
and go to p2ste -1.

 26

Step 2-4. Sele K sub-schedules of all machines and copy the K
sub-schedules to offspring.
mpty of the offspring with the unscheduled genes by aking a
t scan from the o

ct the

Step 3. Fill the e m
left-to-righ ther parent without violating the job due date

We u The

roceeds by randomly choosing two genes on the chromosome and then

swapping them. If the schedule shows infeasible after mutation technique, we would

pr

restriction. The starting point of the filling can be generated randomly.

Mutation

se the swapping technique as the mutation method in this paper.

mutation p

eserve the original one from due date violence. There are three possible

exchanging ways through the swapping mutation: (1) the swapping of two jobs from

the same identical parallel machine, (2) the swapping of two jobs from different

identical parallel machines, (3) the swapping of one job and one partitioning symbol.

Fig. 6(a), 6(b), and 6(c) shown below can express the swapping methods.

8 5 ＊ 2 3 ＊ 4 1 6 ＊ 7 9Before

8 5 ＊ 3 2 ＊ 4 1 6 ＊ 7 9After
(a)

8 5 ＊ 2 3 ＊ 4 1 6 ＊ 7 9Before

2 5 ＊ 8 3 ＊ 4 1 6 ＊ 7 9After
(b)

8 5 ＊ 2 3 ＊ 4 1 6 ＊ 7 9Before

8 5 ＊ 2 3 4 ＊ 1 6 ＊ 7 9After
(c)

Figure 6. Illustration of swapping technique

4.2.5 Elitist Strategy

When the number of of ected level, we will

mix the offspring with the original parents to get the enlarged population. Then we

fspring in the pool is reaching to the exp

 27

use the roulette wheel as the concept of elitist strategy for choosing the better part of

the enlarged population. That means the fitter chromosome is selected first for

su

osome in

the population will be re-estimated by using the fitness function. There are several

stopped: (1) see if the chromosomes in the

current population are fitter than the ones in the previous population by calculating the

to

paring the performance of improving heuristics and the hybrid

genetic algorithm, we design a set of 16 problems with different circumstances for

 parallel identical machines and 100 jobs, which

are divided into 30 product types and should be completed before the given due date.

Th

rviving to the next generation. In our GA cycle, the elitist way is to preserve the

better chromosomes in each generation and reduce the errors of stochastic sampling.

Through the elitist strategy, the number of chromosomes in each generation will be

equal to the original population we determined in the beginning.

4.2.6 Stopping Criteria

After the genetic operators and elitist strategy, the fitness of each chrom

rules to decide if the GA cycle should be

tal and average fitness values of all chromosomes in every cycle, (2) see if the best

chromosome in the current GA pool is fitter than the best one in the old GA pool by

calculating the fitness value of the best chromosome in every cycle, (3) see if the

number of generation reaches to the level we requested. We choose the item (3)

according to the convenience of GA operation. Therefore, in our experiment, the GA

operation will be terminated if the number of generation reaches to what we

prescribed.

5. Problem Design and Testing

For the sake of com

testing. Each problem includes 25

e 100 jobs would be processed on the 25 parallel identical machines and each

machine capacity is set to be three days, 4320 minutes. Here “minute” is used as the

time unit for job processing time, job due dates, setup time, and machine capacity.

In this paper, we highlight the impact of setup time of consecutive jobs from different

product families or different operation temperatures. So the time cost by changing

 28

probe card before the machine is ready to process the coming job with different

product family is set to 80 or 120 minutes (80 or 120 minutes is according to different

product family). The required times of adjusting temperature from room to high is

set to be 60 minutes, from high to room is set to be 80 minutes, and from high to high

is set to be 140 minutes. Because the time of adjusting temperature from room to

room does not need to warm up or cool down the machine, it is set to be 0 minutes.

The time of loading code before the machine is ready to process the coming job with

different product type is set to be 5 minutes. And the initial setup time of machine

from idle to processing state is set to be 100 minutes. The setup time of consecutive

jobs from same product type is set to be 0 minutes under all operation temperatures.

The problem design is based on the wafer probing shop floor in an IC

manufacturing factory of the Science-based Industrial Park, Taiwan. The problem

test is divided into four factors, which contains (1) the product family ratio, including

tw

milies is related to the setup time of

ed to evaluate the influence of product families on the

performance of scheduling solutions via the factor, product family ratio. If a product

fa

o grouping levels R2 and R6, (2) the tightness of due dates, including stable and

increasing states, (3) the consideration of adjusting temperature, including setup time

with temperature consideration or not, (4) the total processing time, including low and

high levels.

Product Family Ratio (R)

The distribution of jobs to the product fa

consecutive jobs. We ne

mily has large number of jobs, it may lead to a smaller value of total setup time of

scheduling solutions. Oppositely, if a product family has small number of jobs, it

may result in a larger value of total setup time of machine schedules. Here we define

an index, product family ratio, which is the division of the number of job product

types by the number of job product families. There are 100 jobs divided into 30

product types in our test problem. For example, if the value of product family ratio

is 2, it means that 30 product types of 100 jobs are distributed into 15 product families

randomly. In our design, there are two levels for testing, R2 and R6, which means

 29

30 product types of jobs are divided into 15 and 5 product families individually. The

evaluation of product family ratio is expressed in equation (41).

F
J

familiesproductofNumber
typesproductofNumberRRatioFamilyProduct ==

)((41)

Tightness of Due Dates (T_Due)

Here we use tightness of due dates for evaluating the density of job due dates. It

me, the expected setup time, the machine capacity

before due dates, and the number of jobs with given due dates. The tightness index

is

is including the job processing ti

defined as below:

321))(}()()({))((1 ,,Y,YCapK
I

YNumESYPYTIindexTightness =××+= − (42)

where the number of available machines K and the expected setup time are

expressed in Section 2 and 3. Due dates of Jobs in the test problem are

three time points, which are 1, 2, and 3 days. is denoted as the total

t.

 If the tightness of due dates is stable, that means there are

30 jobs assigned for 1440 minutes of due dates, 35 jobs assigned for 2880 minutes of

du

ES

 divided into

)(YP

processing time of jobs of which due dates are given before Yth due day poin We

define the notation)(YCap as the available capacity of machine before Yth due day

point. And)(YNum is to express the number of jobs of which due dates are given

before Yth due day point.

According to equation (42), we can evaluate three tightness indexes under three

time points of due dates.

e dates, and 35 jobs assigned for 4320 minutes of due dates randomly. And the

tightness values of due dates would be nearly equal. If the tightness of due dates is

increasing, that means there are 5 jobs assigned for 1440 minutes of due dates, 15 jobs

assigned for 2880 minutes of due dates, and 80 jobs assigned for 4320 minutes of due

dates randomly. Besides, the tightness of due date 1440 minutes would be smaller

than the tightness of due date 2880 minutes, and the tightness of due date 2880

minutes would be smaller than the tightness of due date 4320 minutes

 30

Temperature Consideration (Te)

Because the setup time of loading temperature is longer than the setup time of

peripheral hardware, we take the factor, temperature changing, into consideration in

of setup time is related to the product types, product

families of two consecutive jobs generally. If temperature change of machine is

considered in tes

e of scheduling

difficulties, so it is an index for evaluating the performance of scheduling heuristics.

cessing time, high and low, to represent the size of

total machine workload. High and low levels of total processing time are set to be

54126 m

our problem design. The value

ting situation, it should be added in setup time. Our problem is

designed to consider setup time with temperature changing or not.

Total Processing Time (Total_PT)

The value of total processing time would influence the degre

We generate two levels of total pro

inutes and 66379 minutes, which have 1.5 and 1.85 days of machine

utilization individually. Table 2 below shows the summary of 16 testing problems,

and other related information suchlike product types, product families, tightness of

due dates, and setup time of two consecutive jobs, is shown in the appendix.

Table 2. Summary of 16 problem design

 31

6. Computational Results

Because our objective is minimum makespan, total setup time and the distribution

of jobs to parallel machines both are related to the qualities of testing solutions. In

order to find the setting parameters of improving heuristics for reducing total setup

time, we put these WPSP algorithms into a lot of pre-tests. The following settings of

WPSP algorithms are efficient in solving identical parallel-machine scheduling

problems. The parameters A and B of modified sequential savings algorithm (MSSA)

are set to be 0.975 and 0.55. The parameter λ of parallel insertion with the

slackness (PIA II) is set to be 0.7. And the param ter e ϕ of parallel insertion with

e (PIA IV) is set to be 0.8. The improving heuristics

are encoded in Visual Basic 6.0, which are implemented in the compiled form on a PC

with

And the average of testing solutions

solved by PIA III in 16 problems is the smallest, which means PIA III is most efficient

 with minimum makespan. By

considering one experimental factor once, the computational results of 16 problems

can be tran

all kinds of situations, PIA III having 8 and 7 smallest ones individually also shows

the variance of regret measur

AMD 1150 MHz CPU and 512 MB RAM.

6.1 ANOVA Analysis of Improving Heuristics

The CPU times cost by saving algorithms is 1137.396 seconds in average, and the

CPU time cost by insertion algorithms is 73.629 seconds in average. The

computational results of WPSP algorithms in 16 problems are expressed in Table 3.

The testing results show that SSA and SIA are not robust in our testing problems

because SSA and SIA would generate unfeasible solutions in some cases. Therefore,

we look for best solutions exclusive of SSA and SIA and find that PIA III has the

largest number of best solutions via Table 3.

in solving the 16 testing problems of WPSP

sformed into the performance comparison of all situations as shown in

Table 4. From the opinion of comparing mean and standard deviation of solutions in

that it outperforms other WPSP algorithms except for the situation, where total

processing time is low.

 32

Table 3. Computational results of WPSP algorithms in 16 test problems.

SSA MSSA SIA PIA PIA I PIA II PIA III PIA IV

1 2730 2965 2724 2837 2660 2599* 2600 2639 2653
2 3297 3709 3240 3194 3218 3157* 3291
3 2730 2661 2611* 2611 2703 2616 2632 2611* 2669
4 3297 3186 3083* 3116 3197 3115 3158 3105 3140
5 3196 3152 2795 2837 2879 2728* 2757 2730 2778
6 3763 4308 3461 3265 3357 3248* 3955
7 3196 2682 2739 2611 2805 2683 2758 2659* 2770
8 3763 3253 3223 3116 3376 3201 3223 3194* 3242
9 2687 2692 2697 2664 2635 2566* 2569 2594 2644

10 3253 3648 3476 3193 3140 3111* 3125 3225
11 2687 2548 2597 2604 2627 2577 2624 2565* 2624
12 3253 3113 3127 3063 3094 3081 3066* 3083 3116
13 3153 3600 2766 2977 2782 2732 2714* 2731 2930
14 3719 3596 3447 3284 3274* 3274* 3675
15 3153 2721
16 3719 3201

Problem
No.

Cmax Cmax Cmax Cmax Cmax Cmax Cmax Cmax

2713 2696 2728 2662 2669 2654* 2729
3235 3245 3295 3223* 3228 3223* 3269

Mean 3087.438 3007.625 2916.625 2934.875 2912 3044.375
No. of * 2 4 4 9

Result with grey bcakground indicates a unfeasible solution in scenaLabel * means the best of all exclusive of SSA and SIA.

Expected
Capacity

Table ions. 4. Computational results of improving heuristics under all kinds of situat

n Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Total 16 3087.44 485.11 3007.63 309.04
R=2 8 3149.00 589.21 3040.13 314.85
R=6 8 3025.88 385.29 2975.13 321.12

Te=Yes 8 3171.88 558.31 3096.63 325.18
Te=No 8 3003.00 419.85 2918.63 284.27

T_Due=Stable 8 3258.88 600.47 3037.13 339.57
T_Due=Increase 8 2920.63 292.66 2916.00 276.65 2882.75* 275.89 2978.13 295.58
Total_PT=Low 8 2877.63 350.02 2705.25 69.66 2729.63 138.16 2727.38 89.24
Total_PT=High 8 3469.63 406.89 3287.88 131.07

Number of * 1

n Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Total 16 2916.63 287.85 2934.88 289.49 2912.00* 279.90 3044.38 392.77
R=2 8 2925.13 292.62 2962.88 305.12 2917.87* 280.73 3062.25 443.37
R=6 8 2908.13 302.93 2906.88 291.02 2906.13* 298.32 3026.50 365.06

Te=Yes 8 2972.25 291.64 2997.50 295.96 2964.13* 291.52 3168.50 455.44
Te=No 8 2861.00 292.28 2872.25 288.14 2859.88* 276.92 2920.25 296.54

T_Due=Stable 8 2938.50 310.03 2950.00 322.71 2937.25* 289.28 3143.88 483.84
T_Due=Increase 8 2894.75 283.45 2919.75 273.71 2886.75 287.65 2944.88 271.75
Total_PT=Low 8 2645.37* 65.48 2665.38 71.45 2647.88 59.79 2724.63 101.39
Total_PT=High 8 3187.88 71.37 3204.38 92.00 3176.13* 69.67 3364.13 294.29

Number of * 1 7
Result with grey bcakground means there are unfeasible
solutions in scenario

Label * indicates the best among algorithms in situations
considering single factor and whole conditions.

PIA III PIAIVPIAI PIAII

SSA MSSA SIA PIA

In order to find the effects of improving heuristics and experimental factors on the

problem design, we use statistical analysis by applying statistical software, SAS.

First of all, we check the satisfaction of normality assumption for 96 data of Table 3

except for SSA and SIA. The check of normality assumption is expressed in Table 5

and the solutions are normally distributed. Then use ANOVA to check for the

significances of all experimental factors and interactions. The summary of ANOVA

table shown in Table 6 shows that five single factors, product family ratio,

temperature changing consideration, tightness of due date, total processing time level,

 33

and algorithms, would significantly affect the solutions of WPSP with minimum

makespan under 99% confidential intervals. Besides, p values of interactions less

than 0.01 also have significant effect on the performance of testing problems.

Through Duncan’s multiple comparison as shown in Table 7, the statistical results

show that the multiple comparisons divide WPSP algorithms into two groups, A and B.

The same letter of Duncan’s groups indicates that there is no significant difference

between WPSP algorithms. So the first group is MSSA, PIA IV, and PIA, of which

the performance of solutions is inferior to the second group of PIA II, PIA I, and PIA

III.

Table 5. Check of normality assumption for 96 solutions in 16 test problems.

Statistic p ValueTest

Shapiro-Wilk W 0.886611 Pr < W <0.0001

Kolmogorov-Smirnov D 0.17839 Pr > D <0.0100

Cramer-von Mises W-Sq 0.58319 Pr > W-Sq <0.0050

Anderson-Darling A-Sq 3.464467 Pr > A-Sq <0.0050

Table 6. The summary of ANOVA table under 99% confidential intervals.
Factor SS d.f. MS F value p-value

R 63500 1 63500 10.548 <0.01

Te 583908 1 583908 96.991 <0.01

Total_PT 8516246 1 8516246 1414.611 <0.01

Algorithm 432625 5 86525 14.372 <0.01

R*Te 184 1 184 0.031

R*T_Due 11726 1 11726 1.948

Te*T_Due 47126 1 47126 7.828 <0.01

R*Total_PT 13325 1 13325 2.213

Te*Total_PT 32893 1 32893 5.464

T_Due*Total_PT 170775 1 170775 28.367 <0.01

R*Algorithm 33404 5 6681 1.110

Te*Algorithm 59144 5 11829 1.965

T_Due*Algorithm 313319 5 62664 10.409 <0.01

Total_PT*Algorithm 168813 5 33763 5.608 <0.01

Error 156525.3 26 6020

T_Due 350779 1 350779 58.267 <0.01

72.726,1,01.0 =F 82.326,5,01.0 =F

Table 7. Duncan’s multiple comparisons for the performance of WPSP algorithms.

Duncan

Grouping
Mean

No. of

problems
Algorithm

A 3087.44 16 MSSA

A 3044.38 16 PIA IV

A 3007.63 16 PIA

B 2934.88 16 PIA II

B 2916.63 16 PIA I

B 2912 16 PIA III

 34

6.2 Computational Results of GA with Initial Population from WPSP algorithms

We use WPSP algorithms except for SSA and SIA for generating initial population

of GA these

initial solutions to enlarge our population size for larger species of chromosomes. In

our problem design, we set the population size to be 30. Other genetic factors,

mutation rate and generation size, are considered in testing problems because they

would affect genetic combinations of chromosomes. We select problems No.7 and

No. 8 of Table 2 for testing the performance and solution time of GA. One is the

situation that product family ratio is 2, temperature changing is considered, total

processing time level is low, and tightness of due dates is increasing. The other

selected is the situation that product family ratio is 2, temperature changing is

considered, total processing time level is high, and tightness of due dates is increasing.

The mutation rate (denoted as pm) is divided into five levels, 0, 0.25, 0.5, 0.75, and 1.

A s

equal to 1500. Each problem is solved by hybrid GA with different mutation rates

and repeated four times for checking if the mutation rate is significantly effective.

The statistical results of hybrid GA in problem No. 7 and No. 8 are shown in Table

8. It shows that hybrid GA would improve the initial solutions while the mutation

rate is larger than 0. And we know that the generation number is proportional to the

running times of GA in 250, 500, and 750 generations are about 191 seconds, 401

se

. Because the initial solutions are not sufficient enough, we make use of

nd the hybrid GA is proceeding until the number of generation (denoted as gen) i

performance of scheduling solutions of WPSP with minimum makespan. The

conds, and 563 seconds individually. They are apparently larger than the running

time of improving heuristics. Because the roulette wheel method is selecting

chromosomes based on fitness values randomly, there is not a definite mutation rate

used for finding the best solution of hybrid GA. So we consider all kinds of

mutation rates in generations and plot the flowcharts of solutions solved by hybrid GA

as shown in Figure 7 to Figure 10 in the appendix. They show the trend of mean

performance solved by hybrid GA in problem No. 7 and No. 8. Observing the

tendency of solutions solved in Figure 7 and Figure 9, it reveals that the value of

 35

average performance via hybrid GA would drop very fast before initial generations

(about 100 generations). Based on statistical data of hybrid GA repeated four times

in 1500 generations, we find that the best solution of hybrid GA is tending to be

improved after later generations (about 40 generations) when the total processing time

level is low. In contrast with the situation while the total processing time level is

high, we can see that the improving time point of hybrid GA in problem No. 7 is

significantly later. So hybrid GA may have a faster speed of feedback for improving

the best solution unde

8 1 250 3675 0.25 200.91

m No.

2659* 75.64*

r tough situations.

Table 8. The comparison of hybrid GA with WPSP algorithms and improving
heuristics in testing problems.

The best sol. by
Improving Heuristics

Cmax pm Cmax
7 1 250 3046 0.5 191.35

500 3000 0.5 401.82
750 2977 0.5 563.71
1500 2977 0.5 1186.13

7 2 250 3052 0.75 188.11
500 3030 0.75 413.98
750 2985 0.75 530.26
1500 2966 0.75 1199.86

7 3 250 3116 1 200.91
500 3024 1 411.12
750 3010 1 580.32

7 4 250 3073 0.5 194.46
500 2999 0.75 409.61
750 2999 0.75 549.53
1500 2927 0.5 1203.72

500 3659 0.25 399.57
750 3650 0.75 581.27
1500 3608 0.75 1175.23

8 2 250 3635 1 192.82
500 3629 1 391.13
750 3608 0.75 577.21
1500 3608 0.75 1189.11

8 3 250 3667 0.75 196.41
500 3650 0.75 388.45
750 3650 0.75 562.13
1500 3635 0.25 1179.92

8 4 250 3675 1 213.61
500 3659 0.75 400.01
750 3637 1 580.66
1500 3579 1 1180.36

Hybrid GA CPU Time
(sec) in
average

CPU Time
(sec) of the

best sol.

2659* 75.64*

Label * means the better between hybrid GA and improving heuristics.

Proble Iteration Gen

73.21*

73.21*

73.21*

3194*

3194*

3194*

3194* 73.21*

2659*

2659*

75.64*

75.64*

1500 2911 0.75 1210.79

6.3 Further Improvement of Hybrid GA with Initial Population from Improving

Heuristics

We apply scheduling so s in initial population of

hybrid GA for further improvement in 16 testing problems. We run 1500

generations of hybrid GA with 0.5, 0.75, and 1 of mutation rate for confirming

lutions of improving heuristic

 36

whether the scheduling solutions of improving heuristics can be improved or not.

The computational results are shown in Table 9 and expresses that we may not use

hybrid GA for improving solutions of improving heuristics in the situation where the

tightness of due date is stable. And hybrid GA can improve solutions generated by

improving heuristics in problem No. 8 and No. 16, where the temperature change

consideration is yes, tightness of due date is increasing, and total processing time level

is high. The trends of solutions generated by hybrid GA in problem No. 8 and No.

16 are shown in Figure 11 and Figure 12 individually. The evidential results show

that hybrid GA can improve in earlier generations in problem No. 8 (R=2, Te=yes,

T_Due=increase, and Total_PT=high) than hybrid GA in problem No. 16 (R=6,

Te=yes, T_Due=increase, and Total_PT=high). Through solutions of hybrid GA

with initial population generated by WPSP algorithms and improving heuristics, we

find that the performance of hybrid GA would stop improving after latter periods of

generations (about 1500 generations).

Table 9. Computation results of GA with initialization of improving heuristics.
Improving Hybrid GA Improving Hybrid GAProblem

No.
ProblemHeuristics Heuristics

Cmax Cmax Cmax Cmax
1 2599 2599 9 2566 2566
2 3157 10 3111

No.

3 2611 2611 11 2565 2565
4 3083 3083 12 3066 3066
5 2728 2728 13 2714
6 3248 14 3274
7 2659 2659 15 2654 2654
8 3194 3160* 16 3223 3183*

No. of * 1 No. of * 1
Result with grey bcakground indicates GA can't generate enough feasible strings as population.
Label * indicates hybrid GA can find better solutions compared with improving heuristics.

7. Conclusion

The wafer probing scheduling problem (WPSP) is a practical version of the

parallel-machine scheduling problem, which has many real-world applications

including the integrated circuit (IC) manufacturing industry and other industries

containing the manufacturing process with parallel machines. In this paper, we

consider WPSP with the objective to minimize the maximum completion time and

 37

formulate the WPSP with minimum makespan as an integer-programming problem.

To solve the WPSP with minimum makespan effectively, we proposed improving

heuristics and the hybrid GA for our cases. The computational results show that

improving heuristics and hybrid GA are efficient tools for solving our testing

problem by

improving heuristics can make scheduling solutions outperform scheduling ones of

improving heuristics. From now on, the collection of initial population satisfying the

WPSP with minimum makespan is our studying point because it not only expands the

variety of genetic composition but affects the average and best solutions of GA.

s of WPSP with minimum makespan. And GA with initial population

 38

Reference

[1] Pearn, W.L., Chung, S.H., and Yang, M.H., “Minimizing The Total Machine

Work Lord For The Wafer Probing Scheduling Problem (WPSP),” IIE

transactions, 34, 211-220 (2002).

[2] Pearn, W.L., Chung, S.H., and Yang, M.H., “The Wafer Probing Scheduling

Problem (WPSP),” Journal of the Operational Research Society, 53, 864-874

(2002).

[3] Sethi, R., “On The Complexity Of Mean Flow Time Scheduling,” Mathematics

Of Operations Research, 2(4), 320-330 (1977).

[4] Garey, M.R. and Johnson, D.S., “Computer And Intractability: A Guide To The

Theory Of NP-Completeness,” San Francisco: W H Freeman. (1979).

[5] Potts C.N., “Analysis Of A Linear Programming Heuristic For Scheduling

Unrelated Parallel Machines,” Discrete Applied Mathematics, 10(2), 155-164

(1983).

[6] Bernstein, D., Pinter, R.Y., and Rodeh, M., ”Optimal Scheduling Of Arithmetic

Operations In Parallel With Memory,” The Annual ACM Symposium On

les Of Programming Languages, New York (1985).

271-292 (1990).

[10] Min, L. and Cheng W., “A Genetic Algorithm For Minimizing Makespan In The

Princip

[7] Luh, P.B., Hoitomt, D.J., and Max, E., “Parallel Machine Scheduling Using

Lagrangian Relaxation,” IEEE International Conference On computer Integrated

Manufacturing, New York, 244-248 (1988).

[8] Narahari, Y. and Srigopal, R., ”Real-world Extension To Scheduling Algorithms

Based On Lagrangian Relaxation,” Proceedings In Engineering Sciences 21st,

415-433 (1996).

[9] Cheng, T.C.E. and Sin, C.C.S., “State-of-the –art Review Of Parallel –machine

Scheduling Research,” European Journal Of Operational Research, 47(3),

 39

Case Of Scheduling Identical Parallel Machines,” Artificial Intelligence

[11]

n On Identical Parallel Machines,” Production Planning & Control,

[12]

8 (1998).

89-202 (2000).

 31, 137-141 (2003).

[18] Sequential Vehicle Routing Algorithm,” AIIE Trans, 9,

[19] s for the

Engineering, 13, 399-403 (1999).

 Gupta, J.N.D. and Ruiz-Torres, J., “A Listfit Heuristic For Minimizing

Makespa

12(1), 28-36 (2001).

 Azizoglu, M. and Kirca, O., “Tradiness Minimization On Parallel Machines,”

International Journal Of Production Economics, 55, 163-16

[13] Lee, Y.H. and Pinedo M., “Scheduling Jobs On Parallel Machines With

Sequence-Dependent Setup Times,” European Journal Of Operational Research,

100, 464-474 (1997).

[14] Park, Y.G., Kim, S.Y., and Lee, Y.H., “Scheduling Jobs On Parallel Machines

Applying Neural Network And Heuristic Rules,” Computers & Industrial

Engineering, 38, 1

[15] Hurkens, C.A.J. and Vredeveld, T., “Local Search For Multiprocessor

Scheduling: How Many Moves Does It Take To a Local Optimum,” Operations

Research Letters,

[16] Veen, J.A.A.V.D and Zhang, S.H., “Low-Complexity Algorithm For Sequencing

Jobs With A Fixed Number Of Job-Classes,” Computers & Operations Research,

23(11), 1059-1067 (1996).

[17] Clark, G. and Wright, J., “Scheduling Vehicles from A Central Depot To A

Number Of Delivery Points,” Operation Research, 12, 568 (1964).

Golden, B., “Evaluate A

204-208 (1977).

Pearn, W.L., Chung, S.H., Yang, M.H., and Chen Y.H., “Algorithm

Wafer Probing Scheduling Problem with Sequence Dependent Setup Time and

Due Date Restriction,” submitted to Journal of the Operational Research,

(2003).

 40

[20] Solomon, M.M., “Algorithms For The Vehicle Routing And Scheduling

Problem With Time Window Constraints,” Operation Research, 35(2), 254-265

(1987).

[21] Potvin, Y. and Rousseau, J.M., “A Parallel Route Building Algorithm For The

Vehicle Routing And Scheduling Problem With Time Windows,” European

Journal Of Operation Research, 66, 331-340, (1993).

arch, (2003).

lel Machine System Using Genetic Algorithms,” Compuers ind.

[25]

ing, 13, 399-403, (1999).

rs & Operations Research, 30, 1087-1102, (2003).

[28] with earliness and

[29]

099-1103, (1999).

[22] Pearn, W.L., Chung, S.H., Yang, M.H., and Shiao K.P., “Parallel Insertion

Algorithms for the Wafer Probing Scheduling Problem,” submitted to European

Journal of Operational Rese

[23] Zomaya, A.Y. and The, Y.H., “Observation on Using Genetic Algorithms for

Dynamic Load-Balancing,” IEEE, 12(9), 899-911, (2001).

[24] Cheng, R., Gen, M., and Tosawa, T., “Minmax Earliness/Tardiness Scheduling

In Identical Paral

Engng, 29(1-4), 513-517 (1995).

 Min, L. and Cheng, W., “A genetic algorithm for minimizing the makespan in

the case of scheduling identical parallel machines,” Artificial Intelligence in

Engineer

[26] Cochran, J.K., Horng, S.M., and Fowler, J.W., “A multi-population genetic

algorithm to solve multi-objective scheduling problems for parallel machines,”

Compute

[27] Cheng, R. and Gen, M., “Parallel Machine Scheduling Problems Using Memetic

Algorithms,” Computers ind. Engng, 33(3-4), 761-764, (1997).

Serifoglu, F.S. and Ulusoy, G.., “Parallel machine scheduling

tardiness penalties,” Computers & Operations Research, 26, 773-787, (1999).

Herrmann, J.W., “A Genetic Algorithm for Minimax Optimization Problems,”

Proceedings of the Congress of Evolutionary Computation, 1

[30] Tamaki, H., Nishino, E., and Abe, S., “A Genetic Algorithm Approach to

 41

Multi-Objective Scheduling Problems with Earliness and Tardiness Penalties,”

Proceedings of the Congress of Evolutionary Computation, 46-52, (1999).

Viginer, A., Sonntag, B., and Portm[31] ann, M-C., “A hybrid method for a

[32] for Unrelated Parallel-Machine Scheduling

parallel-machine scheduling problem,” International Conference on Emerging

Technologies and Factory Automation, 671-678, (1999).

Lin, C.C., “A Genetic Algorithm

Problems,” Master. Thesis, Chaoyang University of Technology, Taichung,

(2001).

 42

Appendix

able A1. Processing times of jobs with product types and product families under low
total processing time level.

T

Product
Type

Processing
Time

Product
Family(R6)

Product
Family(R2)

Testing
Temperature

Product
Type

Processing
Time

Product
Family(R6)

Product
Family(R2)

Testing
Temperature

1 404 3 7 High 16 429 5 4 High

2 593 1 10 Room 17 623 1 2 High

3 411 2 2 High 18 417 4 12 High

4 420 5 11 High 19 440 4 12 High

5 681 4 9 High 20 434 4 14 High

6 606 3 1 Room 21 680 4 7 Room

7 585 3 1 High 22 430 1 3 High

8 403 1 6 Room 23 694 2 13 Room

9 495 2 2 Room 24 455 5 1 Room

10 677 5 10 High 25 451 1 3 Room

11 517 4 3 Room 26 538 4 2 High

12 519 3 1 High 27 663 4 5 High

13 662 4 6 Room 28 570 3 10 High

14 499 2 14 High 29 618 3 7 Room

15 660 3 6 Room 30 441 2 10 Room

Table A2. Processing times of jobs with product types and product families under high
total processing time level.

Product
Type

Processing
Time

Product
Family(R6)

Product
Family(R2)

Testing
Temperature

Product
Type

Processing
Time

Product
Family(R6)

Product
Family(R2)

Testing
Temperature

1 780 4 5 High 16 522 5 10 Room

2 752 4 14 Room 17 760 1 8 Room

3 723 4 4 Room 18 712 3 5 High

4 681 3 4 Room 19 588 3 2 High

5 686 2 1 Room 20 751 1 8 Room

6 670 1 12 Room 21 740 2 15 Room

7 582 2 13 High 22 629 5 3 Room

8 686 1 14 Room 23 747 1 11 Room

9 742 5 6 High 24 756 4 4 Room

10 68

11

2 3 3 Room 25 717 3 2 Room

536 5 14 Room 26 642 2 9 High

12 707 2 1 High 27 621 2 10 High

15 505 2 5 8 High

13 594 4 4 High 28 777 5 5 Room

14 790 1 3 Room 29 569 2 1 High

7 Room 30 750

Table A3. Tightness of due dates in 16 testing problems.

14 320 372 372 0 108000 54.10% 59.41% 61.81%

15 49 148 791 16066 34459 54126 36000 72000 108000 8.23% 15.45% 50.85%

16 53 160 851 3416 13404 66379 36000 72000 108000 9.64% 18.84% 62.25%

Problem No.

Expected Setup Time Total Processing Time Available Capacity Tightness of Due Dates

Due dates of jobs Due dates of jobs Due dates of jobs Due dates of jobs

1440 2880 4320 1440 2880 4320 1440 2880 4320 1440 2880 4320

1 169 198 198 16066 34459 54126 36000 72000 108000 45.10% 48.13% 50.30%

2 192 225 225 19157 42402 66379 36000 72000 108000 53.75% 59.20% 61.67%

3 28 85 452 2913 10973 54126 36000 72000 108000 8.17% 15.36% 50.54%

4 32 96 514 3416 13404 66379 36000 72000 108000 9.58% 18.75% 61.94%

5 309 361 361 16066 34459 54126 36000 72000 108000 45.49% 48.36% 50.45%

6 332 388 388 19157 42402 66379 36000 72000 108000 54.14% 59.43% 61.82%

7 51 155 825 2913 10973 54126 36000 72000 108000 8.23% 15.46% 50.88%

8 55 166 887 3416 13404 66379 36000 72000 108000 9.64% 18.85% 62.28%

9 156 183 183 16066 34459 54126 36000 72000 108000 45.06% 48.11% 50.29%

10 180 209 209 19157 42402 66379 36000 72000 108000 53.71% 59.18% 61.66%

11 26 78 418 2913 10973 54126 36000 72000 108000 8.16% 15.35% 50.50%

12 30 89 479 3416 13404 66379 36000 72000 108000 9.57% 18.74% 61.91%

13 296 346 346 16066 34459 54126 36000 72000 108000 45.45% 48.34% 50.44%

19157 42402 66379 36000 7200

 43

Table A4. All jobs with product types and due dates while tightness of due dates is
stable and total processing time level is low.

Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date

1 1 4320 21 21 4320 41 4 4320 61 27 1440 81 14 1440

2 2 2880 22 22 4320 42 5 2880 62 14 1440 82 15 4320

3 3 4320 23 23 1440 43 20 2880 63 15 2880 83 10 4320

4 4 2880 24 24 2880 44 5 4320 64 3 4320 84 25 1440

5 5 4320 25 25 2880 45 11 2880 65 15 1440 85 4 4320

6 6 1440 26 26 4320 46 8 2880 66 18 2880 86 29 4320

7 7 4320 27 27 4320 47 18 2880 67 21 4320 87 20 4320

8 8 2880 28 28 2880 48 17 4320 68 15 2880 88 10 1440

9 9 2880 29 29 4320 49 30 1440 69 3 4320 89 11 1440

10 10 2880 30 30 1440 50 12 4320 70 8 2880 90 23 1440

11 11 4320 31 1 1440 51 27 4320 71 9 2880 91 9 1440

12 12 2880 32 14 1440 52 22 2880 72 8 2880 92 10 1440

13 13 4320 33 7 4320 53 20 1440 73 11 1440 93 18 1440

14 14 2880 34 29 2880 54 17 2880 74 24 1440 94 16 1440

15 15 4320 35 15 2880 55 27 2880 75 28 4320 95 6 1440

16 16 4320 36 27 2880 56 5 1440 76 2 4320 96 14 1440

17 17 4320 37 27 2880 57 18 2880 77 20 4320 97

1440 38 13 2880 58 10 4320 78 27 4320 98

2880 39 2 2880 59 16 2880 79 2 4320 99

29 1440

18 18 29 1440

19 19 14 1440

20 20 4320 40 12 2880 60 30 2880 80 12 1440 100 19 1440

Table A5. All jobs with product types and due dates while tightness of due dates is
increasing and total processing time level is low.

Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date

1 1 4320 21 21 4320 41 4 4320 61 27 2880 81 14 4320

2 2 4320 22 22 4320 42 5 4320 62 14 2880 82 15 2880

3 3 4320 23 23 4320 43 20 4320 63 15 4320 83 10 4320

4 4 4320 24 24 2880 44 5 4320 64 3 4320 84 25 2880

5 5 4320 25 25 4320 45 11 4320 65 15 4320 85 4 4320

6 6 1440 26 26 4320 46 8 4320 66 18 4320 86 29 4320

7 7 2880 27 27 1440 47 18 2880 67 21 4320 87 20 4320

8 8 4320 28 28 4320 48 17 4320 68 15 4320 88 10 4320

9 9 4320 29 29 4320 49 30 4320 69 3 2880 89 11 4320

10 10 4320 30 30 2880 50 12 4320 70 8 4320 90 23 4320

11 11 4320 31 1 4320 51 27 2880 71 9 4320 91 9 4320

12 12 4320 32 14 4320 52 22 4320 72 8 4320 92 10 4320

13 13 4320 33 7 1440 53 20 4320 73 11 4320 93 18 4320

14 14 4320 34 29 1440 54 17 4320 74 24 4320 94 16 4320

15 15 4320 35 15 4320 55 27 2880 75 28 4320 95 6 4320

16 16 4320 36 27 4320 56 5 4320 76 2 2880 96 14 4320

17 17 2880 37 27 4320 57 18 2880 77 20 4320 97 29 4320

18 18 4320 38 13 4320 58 10 4320 78 27 4320 98 29 4320

39 2 4320 59 16 4320 79 2 432019 19 4320 99 14 4320

20 20 4320 40 12 2880 60 30 1440 80 12 4320 100 19 4320

Table A6. All jobs with product types and due dates while tightness of due dates is
stable and total processing time level is high.

Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date

1 1 2880 21 21 4320 41 8 4320 61 8 1440 81 24 1440

2 2 4320 22 22 2880 42 10 4320 62 6 2880 82 18 1440

3 3 4320 23 23 4320 43 18 4320 63 19 1440 83 6 2880

4 4 4320 24 24 2880 44 24 1440 64 2 2880 84 11 2880

5 5 4320 25 25 2880 45 22 4320 65 16 1440 85 12 2880

6 6 2880 26 26 4320 46 30 2880 66 12 1440 86 27 1440

7 7 4320 27 27 1440 47 23 1440 67 9 4320 87 29 2880

8 8 4320 28 28 2880 48 15 1440 68 16 2880 88 13 4320

9 9 1440 29 29 4320 49 30 4320 69 12 2880 89 17 1440

10 10 4320 30 30 4320 50 13 2880 70 20 1440 90 21 2880

11 11 1440 31 26 4320 51 13 2880 71 3 2880 91 8 2880

12 12 1440 32 27 4320 52 29 1440 72 26 2880 92 16 1440

13 13 1440 33 23 4320 53 4 2880 73 1 4320 93 16 2880

14 14 2880 34 7 4320 54 14 4320 74 15 2880 94 11 1440

15 15 1440 35 16 2880 55 6 2880 75 12 4320 95 13 1440

16 16 1440 36 28 4320 56 8 2880 76 29 1440 96 14 2880

37 18 1440 57 23 1440 77 16 1440 9717 17 4320 10 2880

18 18 4320 38 8 4320 58 8 4320 78 5 2880 98 24 1440

19 19 4320 39 9 2880 59 15 2880 79 16 2880 99 3 1440

20 20 2880 40 21 4320 60 11 4320 80 19 4320 100 29 1440

 44

Table A7. All jobs with product types and due dates while tightness of due dates is
increasing and total processing time level is high.

20

16 16 2880 36 28 4320 56 8 1440 76 29 4320 96 14 20

17 17 2880 37 18 2880 57 23 2880 77 16 4320 97 10 1440

Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date

1 1 4320 21 21 4320 41 8 4320 61 8 4320 81 24 4320

2 2 4320 22 22 4320 42 10 4320 62 6 4320 82 18 4320

3 3 2880 23 23 4320 43 18 2880 63 19 4320 83 6 4320

4 4 4320 24 24 4320 44 24 4320 64 2 4320 84 11 4320

5 5 4320 25 25 4320 45 22 4320 65 16 4320 85 12 4320

6 6 4320 26 26 4320 46 30 4320 66 12 4320 86 27 4320

7 7 4320 27 27 4320 47 23 2880 67 9 2880 87 29 4320

8 8 4320 28 28 4320 48 15 4320 68 16 4320 88 13 4320

9 9 4320 29 29 4320 49 30 4320 69 12 4320 89 17 4320

10 10 4320 30 30 4320 50 13 4320 70 20 4320 90 21 4320

11 11 4320 31 26 4320 51 13 2880 71 3 4320 91 8 4320

12 12 4320 32 27 4320 52 29 4320 72 26 4320 92 16 4320

13 13 4320 33 23 2880 53 4 2880 73 1 4320 93 16 2880

14 14 4320 34 7 4320 54 14 4320 74 15 2880 94 11 4320

15 15 4320 35 16 4320 55 6 4320 75 12 4320 95 13 43

43

18 18 4320 38 8 4320 58 8 2880 78 5 4320 98 24 1440

19 19 2880 39 9 4320 59 15 4320 79 16 4320 99 3 1440

20 20 4320 40 21 4320 60 11 4320 80 19 4320 100 29 1440

Table A8. Setup time with product types while product family ratio is 2 and
temperature changing is not considered.

5

16 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 0 125 85 125 125 85 85 85 125 85 85 85 125 85 85

17

1

19

20 0 125 85 85 85 1 5 85 85 85 125 85 85

21 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 0 85 85 125 85 85 85 125 5 85

22 0 125 5 5 85 125 85 125 85 125 5 125 85 85 125 85 125 125 85 125 125 85 0 85 125 85 85 85 125 85 85

23 0 125 85 85 85 125 85 125 85 125 85 125 5 85 125 85 125 125 85 125 125 85 85 0 125 85 85 85 125 85 85

24 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 0 85 85 85 125 85 85

25 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 125 0 85 85 125 85 85

26 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 5 125 125 85 125 125 85 85 85 125 85 0 85 125 85 5

27 0 125 85 85 5 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 0 125 85 85

28 0 125 85 85 85 125 85 125 85 5 85 125 85 85 125 85 125 125 85 5 125 85 85 85 125 85 85 85 0 85 85

29 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 5 85 85 125 85 85 85 125 0 85

30 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 5 125 125 85 125 125 85 85 85 125 85 5 85 125 85 0

Type U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

U 0 225 185 185 185 225 185 225 185 225 185 225 185 185 225 185 225 225 185 225 225 185 185 185 225 185 185 185 225 185 185

1 0 0 85 85 85 125 85 125 85 125 85 5 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

2 0 125 0 5 85 125 85 125 85 125 5 125 85 85 125 85 125 125 85 125 125 85 5 85 125 85 85 85 125 85 85

3 0 125 5 0 85 125 85 125 85 125 5 125 85 85 125 85 125 125 85 125 125 85 5 85 125 85 85 85 125 85 85

4 0 125 85 85 0 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 5 125 85 85

5 0 125 85 85 85 0 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

6 0 125 85 85 85 125 0 125 85 125 85 125 85 85 125 85 125 125 5 125 125 85 85 85 125 85 85 85 125 85 85

7 0 125 85 85 85 125 85 0 85 125 85 125 85 85 5 85 125 5 85 125 125 85 85 85 125 85 85 85 125 85 85

8 0 125 85 85 85 125 85 125 0 125 85 125 85 5 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

9 0 125 85 85 85 125 85 125 85 0 85 125 85 85 125 85 125 125 85 5 125 85 85 85 125 85 85 85 5 85 85

10 0 125 5 5 85 125 85 125 85 125 0 125 85 85 125 85 125 125 85 125 125 85 5 85 125 85 85 85 125 85 85

11 0 5 85 85 85 125 85 125 85 125 85 0 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

12 0 125 85 85 85 125 85 125 85 125 85 125 0 85 125 85 125 125 85 125 125 85 85 5 125 85 85 85 125 85 85

13 0 125 85 85 85 125 85 125 5 125 85 125 85 0 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

14 0 125 85 85 85 125 85 5 85 125 85 125 85 85 0 85 125 5 85 125 125 85 85 85 125 85 85 85 125 85 85

15 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 0 125 125 85 125 125 85 85 85 125 85 5 85 125 85

0 125 85 85 85 125 85 5 85 125 85 125 85 85 5 85 125 0 85 125 125 85 85 85 125 85 85 85 125 85 85

8 0 125 85 85 85 125 5 125 85 125 85 125 85 85 125 85 125 125 0 125 125 85 85 85 125 85 85 85 125 85 85

0 125 85 85 85 125 85 125 85 5 85 125 85 85 125 85 125 125 85 0 125 85 85 85 125 85 85 85 5 85 85

25 85 125 85 125 85 125 85 85 125 85 125 125 85 125 0 85 85 85 12

 45

Table A9. Setup time with product types while product family ratio is 2 and
temperature changing is considered.

Type U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
U 0 285 245 245 185 225 245 225 245 285 245 225 185 245 285 185 285 285 185 285 225 245 245 185 285 185 185 245 285 185 185
1 0 0 225 225 165 205 225 205 225 265 225 85 165 225 265 165 265 265 165 265 205 225 225 165 265 165 165 225 265 165 165
2 0 265 0 145 165 205 225 205 225 265 145 205 165 225 265 165 265 265 165 265 205 225 145 165 265 165 165 225 265 165 165
3 0 265 145 0 165 205 225 205 225 265 145 205 165 225 265 165 265 265 165 265 205 225 145 165 265 165 165 225 265 165 165
4 0 185 145 145 0 125 145 125 145 185 145 125 85 145 185 85 185 185 85 185 125 145 145 85 185 85 85 65 185 85 85
5 0 185 145 145 85 0 145 125 145 185 145 125 85 145 185 85 185 185 85 185 125 145 145 85 185 85 85 145 185 85 85
6 0 265 225 225 165 205 0 205 225 265 225 205 165 225 265 165 265 265 85 265 205 225 225 165 265 165 165 225 265 165 165
7 0 185 145 145 85 125 145 0 145 185 145 125 85 145 65 85 185 65 85 185 125 145 145 85 185 85 85 145 185 85 85
8 0 265 225 225 165 205 225 205 0 265 225 205 165 145 265 165 265 265 165 265 205 225 225 165 265 165 165 225 265 165 165
9 0 265 225 225 165 205 225 205 225 0 225 205 165 225 265 165 265 265 165 145 205 225 225 165 265 165 165 225 145 165 165
10 0 265 145 145 165 205 225 205 225 265 0 205 165 225 265 165 265 265 165 265 205 225 145 165 265 165 165 225 265 165 165
11 0 65 145 145 85 125 145 125 145 185 145 0 85 145 185 85 185 185 85 185 125 145 145 85 185 85 85 145 185 85 85
12 0 185 145 145 85 125 145 125 145 185 145 125 0 145 185 85 185 185 85 185 125 145 145 5 185 85 85 145 185 85 85
13 0 265 225 225 165 205 225 205 145 265 225 205 165 0 265 165 265 265 165 265 205 225 225 165 265 165 165 225 265 165 165
14 0 265 225 225 165 205 225 85 225 265 225 205 165 225 0 165 265 145 165 265 205 225 225 165 265 165 165 225 265 165 165
15 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 0 185 185 85 185 125 145 145 85 185 85 5 145 185 85 5
16 0 265 225 225 165 205 225 205 225 265 225 205 165 225 265 165 0 265 165 265 205 225 225 165 265 165 165 225 265 165 165
17 0 265 225 225 165 205 225 85 225 265 225 205 165 225 145 165 265 0 165 265 205 225 225 165 265 165 165 225 265 165 165
18 0 185 145 145 85 125 65 125 145 185 145 125 85 145 185 85 185 185 0 185 125 145 145 85 185 85 85 145 185 85 85
19 0 265 225 225 165 205 225 205 225 145 225 205 165 225 265 165 265 265 165 0 205 225 225 165 265 165 165 225 145 165 165
20 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 85 185 185 85 185 0 145 145 85 185 85 85 145 185 85 85
21 0 265 225 225 165 205 225 205 225 265 225 205 165 225 265 165 265 265 165 265 205 0 225 165 265 165 165 225 265 85 165
22 0 265 145 145 165 205 225 205 225 265 145 205 165 225 265 165 265 265 165 265 205 225 0 165 265 165 165 225 265 165 165
23 0 185 145 145 85 125 145 125 145 185 145 125 5 145 185 85 185 185 85 185 125 145 145 0 185 85 85 145 185 85 85
24 0 265 225 225 165 205 225 205 225 265 225 205 165 225 265 165 265 265 165 265 205 225 225 165 0 165 165 225 265 165 165
25 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 85 185 185 85 185 125 145 145 85 185 0 85 145 185 85 85
26 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 5 185 185 85 185 125 145 145 85 185 85 0 145 185 85 5
27 0 265 225 225 85 205 225 205 225 265 225 205 165 225 265 165 265 265 165 265 205 225 225 165 265 165 165 0 265 165 165
28 0 265 225 225 165 205 225 205 225 145 225 205 165 225 265 165 265 265 165 145 205 225 225 165 265 165 165 225 0 165 165
29 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 85 185 185 85 185 125 65 145 85 185 85 85 145 185 0 85
30 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 5 185 185 85 185 125 145 145 85 185 85 5 145 185 85 0

Table A10. Setup time with product types while product family ratio is 6 and
temperature changing is not considered.

225 225 185 225 225 185 225 225 225 185 225 225 225 185 225 185

1 0 0 125 85 85 125 125 85 5 125 5 125 125 125 5 125 125 5 125 125 85 125 125 125 85 125 125 125 5 125 85

2 0 85 0 85 85 5 5 85 85 5 85 125 125 5 8 5 5 85 5 125 85 5 5 5 85 5 5 125 85 5 85

3 0 85 125 0 85 125 125 5 85 125 85 125 125 125 85 125 125 85 125 125 5 125 125 125 85 125 125 125 85 125 85

4 0 85 125 85 0 125 125 85 85 125 85 125 125 125 85 125 125 85 125 125 85 125 125 125 5 125 125 125 85 125 5

5 0 85 5 85 85 0 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 5 5 125 85 5 85

6 0 5 85

7 85

8 0 125 85

9 0 85 5 85 85 5 5 85 5 5 85 5 5 125 85 5 85

10 0 5 125 85 85 125 125 85 5 125 0 125 125 125 5 125 125 5 125 125 85 125 125 125 85 125 125 125 5 125 85

11 0 85 125 85 85 125 125 85 85 125 85 0 5 125 85 125 125 85 125 5 85 125 125 125 85 125 125 5 85 125 85

12 0 85 125 85 85 125 125 85 85 125 85 5 0 125 85 125 125 85 125 5 85 125 125 125 85 125 125 5 85 125 85

13 0 85 5 85 85 5 5 85 85 5 85 125 125 0 85 5 5 85 5 125 85 5 5 5 85 5 5 125 85 5 85

14 0 5 125 85 85 125 125 85 5 125 5 125 125 125 0 125 125 5 125 125 85 125 125 125 85 125 125 125 5 125 85

15 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 0 5 85 5 125 85 5 5 5 85 5 5 125 85 5 85

16 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 0 85 5 125 85 5 5 5 85 5 5 125 85 5 85

17 0 5 125 85 85 125 125 85 5 125 5 125 125 125 5 125 125 0 125 125 85 125 125 125 85 125 125 125 5 125 85

18 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 0 125 85 5 5 5 85 5 5 125 85 5 85

19 0 85 125 85 85 125 125 85 85 125 85 5 5 125 85 125 125 85 125 0 85 125 125 125 85 125 125 5 85 125 85

20 0 85 125 5 85 125 125 5 85 125 85 125 125 125 85 125 125 85 125 125 0 125 125 125 85 125 125 125 85 125 85

21 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 0 5 5 85 5 5 125 85 5 85

22 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 0 5 85 5 5 125 85 5 85

23 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 0 85 5 5 125 85 5 85

24 0 85 125 85 5 125 125 85 85 125 85 125 125 125 85 125 125 85 125 125 85 125 125 125 0 125 125 125 85 125 5

25 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 0 5 125 85 5 85

26 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 5 0 125 85 5 85

27 0 85 125 85 85 125 125 85 85 125 85 5 5 125 85 125 125 85 125 5 85 125 125 125 85 125 125 0 85 125 85

28 0 5 125 85 85 125 125 85 5 125 5 125 125 125 5 125 125 5 125 125 85 125 125 125 85 125 125 125 0 125 85

29 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 5 5 125 85 0 85

30 0 85 125 85 5 125 125 85 85 125 85 125 125 125 85 125 125 85 125 125 85 125 125 125 5 125 125 125 85 125 0

Type U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

U 0 185 225 185 185 225 225 185 185 225 185 225 225 225 185

5

85 5 85 85 5 0 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 5 5 125 85

0 85 125 5 85 125 125 0 85 125 85 125 125 125 85 125 125 85 125 125 5 125 125 125 85 125 125 125 85 125

5 125 85 85 125 125 85 0 125 5 125 125 125 5 125 125 5 125 125 85 125 125 125 85 125 125 125 5

85 0 85 125 125 5 85 5 5 85 5 125 85 5

 46

Table A11. Setup time with product types while product family ratio is 6 and
temperature changing is considered.

165

29 5

30 0 145 185 145 5 125 185 5 125 65 125 125 185 145 125 0

Type U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

U 0 245 285 245 185 225 285 185 245 285 245 225 225 285 245 225 285 245 225 285 185 285 285 225 245 225 225 285 245 225 185

1 0 0 265 225 165 205 265 165 145 265 145 205 205 265 145 205 265 145 205 265 165 265 265 205 225 205 205 265 145 205 165

2 0 225 0 225 165 85 145 165 225 145 225 205 205 145 225 85 145 225 85 265 165 145 145 85 225 85 85 265 225 85 165

3 0 225 265 0 165 205 265 85 225 265 225 205 205 265 225 205 265 225 205 265 85 265 265 205 225 205 205 265 225 205 165

4 0 145 185 145 0 125 185 85 145 185 145 125 125 185 145 125 185 145 125 185 85 185 185 125 65 125 125 185 145 125 5

5 0 145 65 145 85 0 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 5 145 5 5 185 145 5 85

6 0 225 145 225 165 85 0 165 225 145 225 205 205 145 225 85 145 225 85 265 165 145 145 85 225 85 85 265 225 85 165

7 0 145 185 65 85 125 185 0 145 185 145 125 125 185 145 125 185 145 125 185 5 185 185 125 145 125 125 185 145 125 85

8 0 145 265 225 165 205 265 165 0 265 145 205 205 265 145 205 265 145 205 265 165 265 265 205 225 205 205 265 145 205 165

9 0 225 145 225 165 85 145 165 225 0 225 205 205 145 225 85 145 225 85 265 165 145 145 85 225 85 85 265 225 85 165

10 0 145 265 225 165 205 265 165 145 265 0 205 205 265 145 205 265 145 205 265 165 265 265 205 225 205 205 265 145 205 165

11 0 145 185 145 85 125 185 85 145 185 145 0 5 185 145 125 185 145 125 65 85 185 185 125 145 125 125 65 145 125 85

12 0 145 185 145 85 125 185 85 145 185 145 5 0 185 145 125 185 145 125 65 85 185 185 125 145 125 125 65 145 125 85

13 0 225 145 225 165 85 145 165 225 145 225 205 205 0 225 85 145 225 85 265 165 145 145 85 225 85 85 265 225 85 165

14 0 145 265 225 165 205 265 165 145 265 145 205 205 265 0 205 265 145 205 265 165 265 265 205 225 205 205 265 145 205 165

15 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 0 65 145 5 185 85 65 65 5 145 5 5 185 145 5 85

16 0 225 145 225 165 85 145 165 225 145 225 205 205 145 225 85 0 225 85 265 165 145 145 85 225 85 85 265 225 85 165

17 0 145 265 225 165 205 265 165 145 265 145 205 205 265 145 205 265 0 205 265 165 265 265 205 225 205 205 265 145 205 165

18 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 0 185 85 65 65 5 145 5 5 185 145 5 85

19 0 225 265 225 165 205 265 165 225 265 225 85 85 265 225 205 265 225 205 0 165 265 265 205 225 205 205 145 225 205 165

20 0 145 185 65 85 125 185 5 145 185 145 125 125 185 145 125 185 145 125 185 0 185 185 125 145 125 125 185 145 125 85

21 0 225 145 225 165 85 145 165 225 145 225 205 205 145 225 85 145 225 85 265 165 0 145 85 225 85 85 265 225 85 165

22 0 225 145 225 165 85 145 165 225 145 225 205 205 145 225 85 145 225 85 265 165 145 0 85 225 85 85 265 225 85 165

23 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 0 145 5 5 185 145 5 85

24 0 225 265 225 85 205 265 165 225 265 225 205 205 265 225 205 265 225 205 265 165 265 265 205 0 205 205 265 225 205 85

25 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 5 145 0 5 185 145 5 85

26 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 5 145 5 0 185 145 5 85

27 0 225 265 225 165 205 265 165 225 265 225 85 85 265 225 205 265 225 205 145 165 265 265 205 225 205 205 0 225 205 165

28 0 145 265 225 165 205 265 165 145 265 145 205 205 265 145 205 265 145 205 265 165 265 265 205 225 205 205 265 0 205

0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 5 145 5 5 185 145 0 8

85 145 185 145 125 125 185 145 125 185 145 125 185 85 185 18

2950

3000

3050

3100

3150

3200

3250

3300

3350

3400

3450

0 200 400 600 800 1000 1200 1400 1600

generation

m
ak

es
pa

n

pm0gen1500scan30

pm0.25gen1500scan30

pm0.5gen1500scan30

pm0.75gen1500scan30

pm1gen1500scan30

Figure 7. The trend of average solutions population of hybrid GA repeated four

times in problem No. 7.
in

 47

2970

3020

3070

3120

3170

3220

0 200 400 600 800 1000 1200 1400 1600

generation

m
ak

es
pa

n

pm0gen1500scan30

pm0.25gen1500scan30

pm0.5gen1500scan30

pm0.75gen1500scan30

pm1gen1500scan30

Figure 8. The trend of best solution in population of hybrid GA repeated four times in

problem No. 7.

3600

3650

3700

3750

3800

3850

3900

3950

4000

0 200 400 600 800 1000 1200 1400 1600

m
ak

es
pa

n

generation

pm0gen1500scan30

pm0.25gen1500scan30

pm0.5gen1500scan30

pm0.75gen1500scan30

pm1gen1500scan30

Figure 9. The trend of average solutions in population of hybrid GA repeated four
times in problem No. 8.

 48

3620

3640

3660

3680

3700

3720

3740

3760

0 200 400 600 800 1000 1200 1400 1600

generation

m
ak

es
pa

n
pm0gen1500scan30

pm0.25gen1500scan30

pm0.5gen1500scan30

pm0.75gen1500scan30

pm1gen1500scan30

Figure 10. The trend of average so ation of hybrid GA repeated four
times in problem No. 8.

lutions in popul

3155

3160

3165

3170

3175

3180

3185

3190

3195

3200

0 200 400 600 800 1000 1200 1400 1600

m
ak

es
pa

n

pm0.5gen1500scan30

pm0.75gen1500scan30

pm1gen1500scan30

generation

he .
Figure 11. The further improvement of hybrid GA with initialization by improving

uristics in problem No. 8

 49

3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

0 200 400 600 800 1000 1200 1400 1600

generation

m
ak

es
pa

n

pm0.5gen1500scan30

pm0.75gen1500scan30

pm1gen1500scan30

Figure 12. The further improvement of hybrid GA with initialization by improving

heuristics in problem No. 16.

 50

