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應用改善式啟發解與基因演算法求解 
晶圓針測排程問題之最大完成時間最小化 

研究生：蔡育燐                      指導教授：彭文理 博士 
國立交通大學工業工程與管理學系碩士班 

摘要 

晶圓廠針測區排程問題(Wafer Probing Scheduling Problem, WPSP)是平行機

台排程問題的實例應用，另外也可應用在積體電路(IC)製造業以及其他的工業用

途。求解目標式為最小化機台總工作量之晶圓廠針測區排程問題可能會導致平行

機台間負荷的不平衡，而無法被現場監控者所接受。因此，在本篇論文中我們把

目標式改為最小化最大完成時間之晶圓廠針測區排程問題並用一整數規劃問題

來描述之。為了有效解決晶圓針測區排程問題之最大完成時間最小化，我們提出

了結合初估產能負荷及晶圓廠針測區排程問題的演算法來做重複的求解之改善

式啟發解法。此外，我們還提出了不同於以往的混合式基因演算法，其使用之初

始母體為晶圓廠針測區排程問題的演算法所求得的排程解與部分排程保留導向

的基因交配法來對問題作排程的流程。為了有效評估兩演算法在不同問題情境下

的績效，本論文使用了四種影響晶圓廠針測區排程問題之特性來產生產生多組不

同的問題。測試結果發現改善式啟發解在我們所設計的問題下其平行機台排程工

件之最大完工時間比混合式基因演算法來的好。且當混合式基因演算法使用改善

式啟發解之排程解當作初始母體時，其在某些問題情境下還可對改善式啟發解的

排程解做更進一步的改善。 

 
 
 
 
 
 
 
 
 

關鍵詞：晶圓針測，平行機台排程，最小化最大完成時間，改善式啟發解，基因

演算法 
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Improving Heuristics and the Hybrid Genetic Algorithm for minimizing the 
maximum completion time of the Wafer Probing Scheduling Problem (WPSP) 

Student : Yu-Lin Tsai Advisor : Dr. Wen-Lea Pearn 
Department of Industrial Engineering and Management 

National Chiao Tung University 

Abstract 
The wafer probing scheduling problem (WPSP) is a practical version of the 

parallel-machine scheduling problem, which has many real-world applications 

including the integrated circuit (IC) manufacturing industry and other industries.  

WPSP carries the objective to minimize the total machine workload, which might lead 

to unbalanced workloads among the parallel machines and be unaccepted for the shop 

floor supervisors.  Therefore, we consider WPSP with the objective to minimize the 

maximum completion time and formulate the WPSP with minimum makespan as an 

integer-programming problem.  To solve the WPSP with minimum makespan 

effectively, we proposed the improving heuristics, which add the expected machine 

load into savings and insertion algorithms for solving problems repeatedly.  Besides, 

we also provide hybrid GA including initial population by WPSP algorithms and 

sub-schedule preservation crossover to solve the considered problem.  To evaluate 

the performance of the two proposed approaches under various conditions, the 

performance comparison on a set of test problems involving four problem 

characteristics are provided.  The computational result shows that improving 

heuristics are better than hybrid GA in scheduling solutions and velocities of WPSP 

with minimum makespan.  When hybrid GA is using initial population by improving 

heuristics, it can make further improvement for the best solution of improving 

heuristics in some situations.  

 
 
 

Keyword: wafer probing, parallel-machine scheduling, minimum makespan, 

improving heuristics, genetic algorithms 
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Notations 

IP modeling 

jR    : the jth product type of jobs  

jI    : the number of jobs in jth product type of jobs 

km   : the kth machine of identical parallel machines 

ir    : the job of WPSP with minimum makespan 

F    : the total number of product families 

J    : the total number of product types 

fJ    : the total number of product types in product family  f

jR    : the jth subset (product type) of jobs to be processed 

maxC   : the maximum completion time (makespan) 

W    : the predetermined machine capacity expressed in terms of processing 

time units 

iis ′    : the sequentially dependent setup time between any two consecutive jobs 

 and  ir ir ′

ikx    : the variable indicating whether the job  is scheduled on machine  ir km

ip    : the processing time of job  in cluster  (ir jR ji Rr ∈ ) 

ikt    : the starting time of job  to be processed on machine  ir km

ib    : the ready time of job  ir

id    : the due date of job  ir

ie    : the latest starting processing time of job  ir

kiiy ′    : the precedence variable, which should be set to 1 if the two jobs  and 

 are scheduled on machine  and job  precedes job  (not 

necessarily directly), and 0 otherwise 

ir

ir ′ km ir ir ′

kiiz ′    : the direct-precedence variable, which should be set to 1 if the two jobs 

 and  are scheduled on machine  and job  precedes job  

directly, and 0 otherwise. 
ir ir ′ km ir ir ′

Q   : a constant, which is chosen to be sufficiently large enough to make 

constraints of IP model satisfied 

Improving Heuristics 

][ UisMax  : the maximal setup time of machine switching from idle status (denoted 

by the label “U”) to processing status 

][ UisMax  : the maximal setup time of machine switching from processing status to 
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idle status 

][1 iisMax ′  : the maximal setup time of two consecutive jobs processed on machine 

coming from different product type and different product family 

][2 iisMax ′  : the maximal setup time of two consecutive jobs from different product 

type and same product family 

σ    : the parameter which may vary according to the problem data structure 

used in estimation of expected machine load 

ES   : the sum of expected setup time on identical parallel machines 

EL   : the expected machine workload 

kiν   : the selected job has been scheduled on the ν th position of machine  km

iiSA ′    : the saving value for any pairs of jobs  and , and U denotes the idle 

status 
ir ir ′

'ii
MSA    : the modified saving value for any pairs of jobs  and , and U 

denotes the idle status 
ir ir ′

A   : the parameter added into the savings function of modified sequential 

saving (MSA) to present the percentage of postponement restriction 

B   : the parameter added into the savings function of modified sequential 

saving (MSA) to present the percentage of time window restriction 

),,(1 νkuc  : the insertion cost of job  added into the u ν th position on machine  

in sequential insertion (SIA) 
km

),,( *
1 νkuc′  : the best insertion cost of job  added into the th position on 

machine  in sequential insertion (SIA) 

u *ν

km
)(2 uc    : the regret value of job  in sequential insertion (SIA) u
)( *

2 uc′    : the largest regret value among all unscheduled jobs in sequential 

insertion (SIA) 
)( *

1
*,νu,kc ′′  : the best insertion cost of job  added into the th position on 

machine  in parallel insertion (PIA) 

u *ν

*k
m

)(3 uc    : the regret value of job  in parallel insertion (PIA) u
)( *

3 uc′    : the largest regret value of job  among all unscheduled jobs in parallel 

insertion (PIA) 

*u

),,(11 νkuc  : the modified insertion cost of job  added into the u ν th position on 

machine  in parallel insertion with the slackness (PIA II) km

λ    : the parameter which represents the ratio of the insertion values that the 

slackness would have in parallel insertion with the slackness (PIA II) 
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)(4 uc    : the modified regret value of job  in parallel insertion with the variance 

of regret measure (PIA IV) 

u

)( 1cVar ′    : the variance of best insertion cost between all parallel machines in 

parallel insertion with the variance of regret measure (PIA IV) 

)( 1cAvg ′   : the average value of best insertion cost on all identical parallel machines 

in parallel insertion with the variance of regret measure (PIA IV) 

ϕ    : the parameter which determines the schedule ranking of all jobs on all 

identical parallel machines in parallel insertion with the variance of regret 

measure (PIA IV) 

LB   : lower bound of the adjusting procedure 

UB   : upper bound of the adjusting procedure 

kML    : the total machine load on machine  km

δ    : the repeat times of executing WPSP algorithms in improving heuristics 

Hybrid GA 

βα ,maxC  : the makespan of the α th chromosome in the pool when the GA cycle 

proceeds to the β th generation 

K    : the available machine number of identical parallel machines 

),( βαF  : the fitness value of the α th chromosome in the pool when the GA cycle 

proceeds to the β th generation 

kdν    : the due date of job on ν th position of machine  km

nkSSLν    : the sum of slackness values for n consecutive jobs on machine , 

which are located from 
km

ν th to )1( −+ nν th position 

nkSSLν    : the average value of slackness for n jobs started from ν th to 

)1( −+ nν th position on machine  km

n    : the number of job consideration on machine  while estimating the 

slackness of job combinations 
km

kN    : the number of jobs on machine  km

R   : the product family ratio in testing problems 

)(YTI  : the tightness value of jobs before Yth due date point 

)(YP    : the total processing time of jobs of which due dates are given before Yth 

due date point 

)(YCap    : the available capacity of machine before Yth due date point 

)(YNum   : the number of jobs of which due dates are given before Yth due date point 

 ix



1. Introduction 

The wafer probing scheduling problem (WPSP) [1,2] is a practical version of the 

parallel-machine scheduling problem, which has many real-world applications, 

especially in the integrated circuit (IC) manufacturing industry.  There are wafer 

fabrication, wafer sorting, assembly, and final test in the processes of IC product, and 

the first and fourth stages are related processes, where the testers are expensive and 

critical.  Pearn et al. [2] considered the wafer probing scheduling problem (WPSP) 

with the objective of minimizing total workload. They formulated the WPSP as an 

integer programming problem and transformed the WPSP into the vehicle routing 

problem with time window (VRPTW).  They provided three VRPTW algorithms for 

solving the WPSP and their computational results showed that the network 

transformation of identical parallel machine scheduling was efficient and applicable 

under the objective of raising identical parallel machine utilities. A 

minimizing-makespan schedule not only can result in higher efficiency and resource 

utilization but minimize the time, which jobs are operating in the factory.  The 

identical parallel-machine scheduling problem with minimized makespan also 

identifies the bottleneck machine, which needs to be arranged carefully.   

This paper considers the identical parallel-machine scheduling problem with 

minimizing makespan, which has been proved to be a NP problem [3,4].  In view of 

the NP-hard nature of the problem, several polynomial time algorithms have been 

proposed for its solution.  It has been traditional solved by operational methods such 

as integer programming, branch and bound method, dynamic programming, etc.[5-9].  

Min et al. [10] proposed a genetic algorithm, which contains the procedures of coding, 

initializing, reproducing, crossover, and mutation.  It was actually efficient for large 

scale problems.  Besides, Gupta et al. [11] provided a LISTFIT algorithm, or the 

SPT/LPT and MULTIFIT procedure, for solving parallel-machine scheduling 

problems with minimizing makespan.  Some proposed algorithms also have been 

used for solving parallel-machine scheduling with other objectives.  Azizoglu and 

Kirca [12] proposed a branch and bound algorithm combined with lower bounding 
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scheme for the objective of minimizing total tardiness.  Lee and pinedo [13] 

presented a three phases algorithm incorporating the ATCS rule and simulated 

annealing method for minimizing the sum of weighted tardiness and the experimental 

results showed that simulated annealing method had a great improvement of solutions.  

Park, Kim, and Lee [14] addressed an extension of the ATCS (Apparent Tardiness 

Cost with Setups) rule for the objective of minimizing total weighted tardiness.  

Hurkens et al. [15] proposed a 0-1 interchange, which is the procedure of the job 

moving iteratively to the machine with minimal load if its processing time is less than 

the difference between maximum and minimum machine load.  Veen et al. [16] 

formulated an integer programming by dividing jobs into K job-classes and 

considered that the change-over time between two consecutive jobs is dependent on 

the job-class to which the two jobs belonged. 

For the WPSP with the objective of minimizing makespan, we first formulate our 

problem as an integer programming, which includes job due dates, job processing 

times, job sequence-dependent setup time, and machine capacities.  In section 3, we 

propose improving heuristics, which are the network algorithms merging with two 

different adjusting procedures respectively, for making the local optimum closer to 

global one.  In section 4, we address a hybrid genetic algorithm in contrast to the 

two-phase heuristics we developed before.  In the last section, we will describe the 

experimental framework and present the analysis of the results by comparing the 

genetic algorithm with two-phase heuristics. 

2. Problem definition and formulation 

Consider several product types of jobs with ready time and due date to be processed 

on identical parallel machines with capacity constraint. The job processing time 

depends on the product type of the job processed. Setup times for two consecutive 

jobs of different product type are sequence dependent.  The objective is to find a 

schedule for the jobs which minimizes the maximum completion time without 

violating the due date restrictions and the machine capacity constraints.   

We first define  as the { 121 ,,,, += JJ RRRRR K } 1+J  subsets (product types) of 
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jobs to be processed with each subset { }jjjjij IIIIirR +++== −−− 111 ,,2,1| K  

containing  jobs, where =0 and =K.  Thus, job subset jI 0I 1+JI { }
1

,,, 211 IrrrR K=  

contains  jobs, 1I { }
2111

,,, 212 IIII rrrR +++= K contains  jobs, and 2I

{ }KIIIJ JJJ
rrrR ++++ = ,,, 211 K  contains  (K) jobs, where 1+JI IIII J =+++ ...21 .  Let 

F  be the total number of product families and  be the total number of product 

types in product family , where .  Then 
fJ

f ∑
=

=
f

f JJ
1

F

},,,{ 21 kmmmM K=  can be 

defined as the set of machines containing K identical machines.  The job subset 

, which is a pseudo product type including K jobs, is used to indicate the K 

machines are in idle state.  Therefore, there are I+K jobs grouped into  

product types, at where the first 

1+JR

1+J

I  jobs are divided into J product types and the last 

K  jobs are pseudo jobs. Let  be the processing time of job  in cluster  

( ).  Since the job processing time depends on the product type of the job, then 

 should be equal to  given the function  representing the product type 

of job .  Let  be the maximum completion time (makespan) and W  be 

the predetermined machine capacity expressed in terms of processing time units 

respectively.  Let  be the sequentially dependent setup time between any two 

consecutive jobs  and , in which  is equal to .   

ip ir jR

ji Rr ∈

ip )(iJp )(iJ

ir maxC

iis ′

ir ir ′ iis ′ )()( 'iJiJ
s

Further, let  be the variable indicating whether the job  is scheduled on 

machine .  If job  should be processed on machine , set , 

otherwise set 

ikx ir

km ir km 1=ikx

0=ikx .    Let  be the starting time of job  to be processed on 

machine .  Set  as the ready time of job  and  as the due date of job .  

The starting processing time  should not be greater than the latest starting 

processing time , which relates to the due date  and can be computed as 

.  The starting processing time  also should not be less than the 

earliest starting processing time .  If job  is ready to be processed initially, then 

set  to 0.   We note that the processing time and due dates for the job in  

should be set to 0 so that these pseudo jobs can be scheduled as the first jobs on each 

machine, which indicate that each machine is initially in idle state.  Let  be the 

precedence variable, where  should be set to 1 if the two jobs  and  are 

scheduled on machine  and job  precedes job  (not necessarily directly), 

and where  otherwise.  Further, let  be the direct-precedence variable, 

ikt ir

km ib ir id ir

ikt

ie id

iii pde −= ikt

ib ir

ib 1+JR

kiiy ′

kiiy ′ ir ir ′

km ir ir ′

0=′kiiy kiiz ′
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where  should be set to 1 if the two jobs  and  are scheduled on machine 

 and job  precedes job  directly, and where 
kiiz ′ ir ir ′

km ir ir ′ 0=′kiiz  otherwise. 

To find a schedule for these jobs which minimizes makespan without violating the 

machine capacity and due date constraints, we consider the following integer 

programming model: 

Minimize  maxC
subject to  

   allfor    ,1
1

ix
K

k
ik =∑

=
 (1) 

kx
KI

Ii
ik   allfor    ,1

1
∑ =
+

+=
 (2) 

kCszpx
KI

i

KI

i
iikii

KI

i
iik   allfor    max,)(

1 11
≤∑ ∑+∑

+

=

+

=′
′′

+

=
 (3) 

kWszpx
KI

i

KI

i
iikii

KI

i
iik   allfor    ,)(

1 11
≤∑ ∑+∑

+

=

+

=′
′′

+

=
 (4) 

kiytspt kiikiiiiik ,  allfor    ,0)1(Q ≤−+−++ ′′′  (5) 

kizytspt kiikiikiiiiik ,  allfor    ,0)2(Q ≥−++−++ ′′′′  (6) 

kixbt ikiik ,  allfor    ,≥  (7) 

kixet ikiik ,  allfor    ,≤  (8) 

kixxyy kiikikikii ,  allfor    ,1)2(Q)( ≥−+−+ ′′′  (9) 

kixxyy kiikikikii ,  allfor    ,1)2(Q)( ≤−+++ ′′′  (10) 

kixxyy kiikikikii ,  allfor    ,0)(Q)( ≤+−+ ′′′  (11) 

kixxyy ikkiikikii ,  allfor    ,0)1(Q)( ≤+−−+ ′′′  (12) 

kixxyy kiikikikii ,  allfor    ,0)1(Q)( ≤+−−+ ′′′  (13) 

kizy kiikii ,  allfor    ′′ ≥  (14) 

∑ =−∑
′≠

′

+

= ii
kii

KI

i
ik kzx   allfor    ,1

1
 (15) 

kizyzyzy kiikiikiikiikiikii
,  allfor    ,2)1(Q)2(Q **** ≥−−−−+−+ ′′  (16) 

kixik ,  allfor    ,}1,0{∈  (17) 

kiy kii ,  allfor    ,}1,0{∈′  (18) 
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kiz kii ,  allfor    ,}1,0{∈′  (19) 

The constraints in (1) guarantee that job  is processed by one machine exactly 

once.  The constraints in (2) guarantee that only one pseudo job  

is scheduled on a machine.  The constraints in (3) state that each machine workload 

does not exceed the maximum completion time  among all K machines. The 

constraints in (4) state that each machine workload does not exceed the machine 

capacity .  The constraints in (5) and (6) ensure that 

ir

KIiIri +≤≤+1  , ,

maxC

W kiiiiik tspt ′′ =++  if job  

precedes job  directly (  and 
ir

ir ′ 1=′kiiy 1=′kiiz ).  The constraints in (5) ensure the 

satisfaction of the inequality kiiiiik tspt ′′ ≤++  if job  preceding job  

( 1).  The number Q is a constant, which is chosen to be sufficiently large so 

that the constraints in (5) are satisfied for 

ir ir ′

=′kiiy

1or  0=′kiiy .  For example, we can choose 

.  The constraints in (6) ensure the satisfaction of the 

inequality 

∑ += = ′′
I
i iiii sp1 }){max(Q

    ' ≥++
iiiik spt

ki
t '  and the event the jobs  proceeding job  directly 

(  + ). 
ir ir ′

kii
y ' 02' =−

kii
z

The constraints in (7) and (8) state that the starting processing time  for each 

job  scheduled on machine  ( 1
ikt

ir km   =ikx ) should not be less than the earliest 

starting processing time bi and not be greater than the latest starting processing time ei.  

The constraints in (9) and (10) ensure that one job should precede another (  + 

 = 1) if two jobs are scheduled on the same machine (
kii

y '

iki
y ' 

2 -   'kiik xx +  = 0).  The 

number Q is a constant, which is chosen to be sufficiently large so that the constraints 

in (9) and (10) are satisfied for 2 -   'kiik xx +  < 0.  The constraints in (11) ensure that 

the precedence variables  and  should be set to zero ( +  0) if 

any two jobs  and  are not scheduled on the machine  (  = 0).  

The constraints in (12) and (13) ensure that the precedence variables  and  

should be set to zero ( + 

kii
y ' iki

y ' kii
y ' ≤ ' iki

y

ir ir ′ km kiik xx '  +

kii
y ' iki

y ' 

kii
y ' ≤ ' iki

y  0) if any one job  or  is not scheduled on 

the machine .  The constraints in (12) indicates the case that job  is scheduled 

on machine  and the job  is scheduled on another machine (  + 1 = 0) 

and the constraints in (13) indicates the case that job  is scheduled on machine 

 and the job  is scheduled on another machine (  + 1 = 0). 

ir ir ′

km ir

km ir ′ ikki
xx  - '

ir ′

km ir kiik xx '  - 

The constraints in (14) ensure that job  could precede job  directly (  = 1) ir ir ′ kii
z '
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only when  = 1 and job  could not precede job  directly ( = 0) if job  

is scheduled after job  ( = 0).  The constraints in (15) state that there should 

exist I-1 directly precedence variables, which are set to 1 on the schedule with I jobs.  

The constraints in (16) state that when the job  precedes job  but not 

consecutively ( = 1 and  = 0), then there must exist another job  

scheduling after job  directly (

kii
y ' ir ir ′ kii

z ' ir

ir ′ kii
y '

ir ir ′

kii
y ' kii

z ' *i
r

ir 1  * =
kii

y  and 1  * =
kii

z ) and ensuring the satisfaction 

of the inequality . 2     ** ≥+
kiikii

zy

3. The Improving Heuristics 

There are many kinds of network algorithms for WPSP with minimizing total 

machine workload.  VRPTW algorithms are one of them which have been 

successfully applied to solve WPSP with good efficiency.  Because VRPTW 

algorithms are effective for solving WPSP, we adopt these WPSP algorithms to solve 

WPSP with minimum makespan in the following of this paper.  We use these 

algorithms based on expected machine load EL restriction to find feasible solutions of 

WPSP with minimum makespan in phase I of improving heuristics.  Then feasible 

solutions would be improved through the adjusting procedure, phase II of improving 

heuristics.  In this paper we propose two-phase heuristics, improving heuristics, to 

help solving the WPSP with minimum makespan more efficiently.  The main idea is 

that improving heuristics use the adjusting procedure to improve feasible solutions 

solved by WPSP algorithms.  The improving procedure would search the best 

solution through the different machine workload repeatedly.  Phase one of the 

improving heuristic is to apply some efficient WPSP algorithms based on the expected 

machine load EL  restriction for finding feasible solutions of WPSP with minimum 

makespan.  In phase two, we will provide an improving procedure for making the 

local optimum solved by WPSP algorithms climbing to the global one.  The structure 

of the improving heuristic is shown as Fig. 1. 
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The number of required 
machines is less or equal to 

K?

Is δ>δ*

Replace UB with EL Replace LB with EL

Stop

Solve the problem by using the insertion and savings 
algorithms with new capacity  restriction, equal to  

(LB+UB)/2, and  δ=δ+1
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Yes
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Phase II
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Estimate EL, UB, LB, and let 

0=δ

Solve the WPSP with Cmax by using the 
insertion and savings algorithms with 
capacity restriction EL, 1+= δδ

C a l c u l a t e  t h e  m a x 
iteration *δ

 
Figure 1. The structure of the improving heuristic 

To find the minimal  more efficiently, we provide the estimation of the 

expected machine workload 

maxC

EL  corresponding to the parallel machine scheduling 

problem, which will be utilized along with scheduling algorithms.  Before 

calculating EL , we would define the notation ES, which is the total expected setup 

time of all identical parallel machines.  The expected machine workload EL equals to 

the sum of the expected setup time ES and the total job processing time divided by the 

number of available machines K.  Let  be the sequence dependent setup time of 

any two consecutive jobs  and  on the same machine.  Let  be the 

maximal setup time of machine switching from idle status (denoted by the label “U”) 

to processing status,  be the maximal setup time of machine switching from 

iis ′

ir ir ′ ][ UisMax

][ UisMax
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processing status to idle status,  be the maximal setup time of two 

consecutive jobs processed on machine coming from different product type and 

different product family,  be the maximal setup time of two consecutive 

jobs from different product type and same product family.  Therefore, equation (20) 

expresses the computation of . 

][1 iisMax ′
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 (20) 

where the notations “P” and “C” in equation (20) represent the symbol of permutation 

in statistics.  And the coefficient “0” indicates the setup time of two consecutive jobs 

from the same product type and the same product family should be zero.   

Let the parameter σ , which may vary according to the problem data structure, be 

the allowance of uniform capacity decided by the user and be set as the value between 

-0.5 and 0.5.  We consider the expected capacity EL is the allowance multiplied by 

the outcome, which is the sum of total job processing times plus the expected setup 

time ES divided by K machines fairly.  Then we can get the EL  as follows: 

)1(1
1

σ+×⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛∑ +×=

=

I

i
i ESp

K
EL    and 5.05.0 ≤≤− σ  (21) 

3.1 Phase I - Existing network algorithms 

Generally speaking, the WPSP algorithms include insertion and saving algorithms.  

The insertion algorithms generally include two types, the sequential and the parallel.  

The saving based procedures include four types, the sequential, the parallel, the 

generalized, and the matching based.  We first define the order 

 where  and  both represent the machine  is 

in the idle state, and  represents that selected job has been scheduled on the 

)        ( 110 Ukkk)(kk i,...,i,i,...,i,i νν − ki0 Uki km

kiν ν th 

position of machine .  Then we would review savings and insertion algorithms km
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by citing Clark and Wright [17], Golden [18], Pearn et al. [19], Solomon [20], Potvin 

and Rousseau [21], and Yang et al. [22].  These algorithms are including the 

sequential saving algorithm, the modified sequential saving algorithm, the sequential 

insertion algorithm, the parallel insertion algorithm, and modified parallel insertion 

algorithms.  The procedures of these algorithms above are introduced as follows. 

Sequential savings algorithm (SSA) 

First of all, the sequential savings algorithm calculates the savings of all paired-jobs 

and creates a saving list by arranging their saving values in descending order.  Then 

we pick the first pair of jobs from the top of the saving list to start an initial schedule. 
We can confirm whether a selected pair of jobs is feasible by checking the machine 

capacity constraint and the due date restrictions of jobs.  The sequential savings 

algorithm spreads out the schedule by finding the feasible pair of jobs from the top of 

the savings list and adding it to either one endpoint of the schedule.  If the current 

schedule is too tight to add any job in, choose the feasible pair of jobs from the top of 

the saving list as a new schedule.  Repeat this step until all jobs are scheduled.   
The procedure is presented in the following. 

Step 1. (Initialization) Calculate the savings value  defined as the following for 
all pairs of jobs  and , where U denotes the idle status. 

iiSA ′

ir ir ′

iiiiiiiii iii ii sssss s-s ss sSA ' ′′′′′ −+=+++++= UUUUUUUU )( '          (22) 

Step 2. Arrange the savings and create a list of the saving values in a descending 
order. 

Step 3. Choose the first pair of jobs from the saving list as an initial schedule.  Start 
from the top of the savings list, and proceed with the following sub-steps: 
Step 3-1. Select the first pair from the top saving list without violating the 

machine capacity and due date constraints.  Then add it to either 
one end of the current schedule. 

Step 3-2. If the current schedule is too tight to add any job on it, choose the 
best feasible pair on the saving list to start a new schedule. 

Step 4. The chosen jobs then form a feasible machine schedule.  Repeat step 3 until 
all the jobs on the saving list are scheduled. 
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Modified sequential savings algorithm (MSSA) 

The modified sequential savings algorithm adds two terms into the savings 

estimation, the consideration of the postponement and the time window restriction.  

For the postponement, the selecting way would tend to choose the pair of jobs with 

not only higher saving values but longer processing time.  By this way, the jobs with 

longer processing time are forced to be processed earlier than others with shorter one. 

Considering the other term, the job with earlier job latest starting time  would be 

placed before the job with later one  on the savings list.  Two parameters, A and 

B, are added into the savings function to present the percentage of postponement and 

time window restriction, and W is the predetermined capacity.  The new savings 

function is expressed in the following: 

ie

je

10 1,0  ),)1(()1()( UU <<<<
−

−+−+−+=
′

′′ BA
e

B
e
BWpAsssAMSA

ii
iiiiiii'  (23) 

Sequential insertion algorithm (SIA) 

The main part of the sequential insertion is to build one schedule once until all jobs 

are scheduled.  The sequential insertion would find the maximal benefit among the 

schedule places that a selected job can insert into.  When the existing schedule is full 

of jobs, we create another new machine schedule.  The initial rule is to select a job 

with the maximal initial setup time.  After initializing the current schedule, the 

priority of selecting job depends on the regret value  of all unscheduled jobs.  

Find the best insertion place  of all unscheduled jobs and select job  

with the largest regret value  as the first inserted job.   The evaluations of 

insertion cost and regret values are defined as follows. 

)(2 uc

),,( *
1 νkuc′ *u

)( *
2 uc′

kkkk iiuiuikk sssiuickuc
ννννννν

)1()1(
),,(),,( )1(11 −−

−+== −  (24) 

 )]([min)( 11 u,k,νcu,k,νc *

ν
=′  (25) 

)()( 1U2
*

u u,k,νcsuc ′−=  (26) 
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)]([max)( 2
*

2 ucuc
u

=′  (27) 

In equation (24), the jobs  and  are placed individually on the (ki )1( −ν kiν 1−ν )th 

and ν th positions of machine .  And the term  of equation (26) represents 

the initial setup time of the unscheduled job .  For each unscheduled job, we first 

compute its best feasible insertion place  in equation (25), and we can get 

the regret value of  in equation (26).  The job with larger value  should 

have the priority to be scheduled.  Therefore, select the job  with largest value 

 and insert it into the best position of the schedule.  All unscheduled jobs will 

be inserted under the following procedure. 

km usU

ur

)(1
*u,k,νc′

)(2 uc )(2 uc
*u

)( *
2 uc′

Step 1. Initialize the schedule by selecting the job with the maximal initial setup time.   
Step 2. For each unscheduled job, compute the best feasible insertion place , 

which has the smallest insertion value  on machine . 

*ν
)(1

*u,k,νc′ km
Step 3. Select the unscheduled job  with the largest value  and put it into 

the best insertion place of the schedule.  If the existing schedule is too full to 
add any unscheduled job, create a new schedule on another machine. 

*u )( *
2 uc

Step 4. Repeat Step 2 and Step 3 until all jobs are scheduled. 

Parallel insertion algorithm (PIA) 

The parallel insertion algorithm constructs a set of initial schedules on all machines 

in the beginning.  Besides, it also creates a new regret measure, which is the sum of 

absolute differences between the best alternative on one machine and other 

alternatives on other machines.  A large regret measure means that there is a large 

gap between the best insertion place of the unscheduled job on one machine and its 

best insertion place on the other machines.  Hence, unscheduled jobs with larger 

regret values should be inserted into the schedule first, because there are large cost 

differences of the best insertion place and second alternative.  In this algorithm, we 

add two criteria into our selecting rule.  One is the value , which has the 

smallest insertion cost on th position of machine .  The other is the regret 

value  different from  of equation (26).  The insertion functions are as 

follows. 

)( *
1

*,νu,kc ′′
*ν *k

)(3 uc )(2 uc
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* ′=′′  (28) 

)]()([)( *
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*

*

kk
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≠

 (29) 

)]([max)( 3
*

3 ucuc
u

=′  (30) 

Initialization is done by selecting the unscheduled jobs with the first K largest 

initial setup times and putting them into the initial schedule of each machine.  By 

applying this method, we can get the K initial schedules and compute the best 

insertion place in each of the schedules for all unscheduled jobs.  Then we compute 

the regret value  of all unscheduled jobs and find the largest value  of 

job .  Select job  and insert it into the best position  of machine with 

value .  The procedure of PIA is described as below. 

)(3 uc )( *
3 uc′

*u *u *ν *k

)( *
1

*,νu,kc ′′

Step 1. Initialize the schedule on each machine by selecting K jobs with the first K 
largest initial setup times.   

Step 2. For each unscheduled job, find its best feasible insertion place by computing 
. )( *

1
*,νu,kc ′′

Step 3. Calculate the regret value  for each unscheduled job.  Select the job 
 with the largest regret measure  among all unscheduled jobs.  

Insert it into the th position of machine  without violating the machine 
capacity and its due date restrictions.  

)(3 uc
*u )( *

3 uc′
*ν *k

Step 4. Repeat Step 2 and Step 3 until all jobs are scheduled. 

Parallel insertion with new initial criteria (PIA I) 

According to idea of the VRPTW, PIA first selects the farthest node to visit at the 

beginning stage.  However, selecting the job with largest initial setup time, the 

farthest node, may not reduce the total machine workload.  Comparing to PIA, this 

modified one adds new initial criteria in find initial jobs of parallel machines.  

Inserting a job into the existing schedule of the same product family can significantly 

reduce the increased setup time. Because the jobs of the same product type must 

belong to the same family, this procedure chooses the product type including the 

maximal number of jobs and picks the job with the smallest latest starting time  of 

this type to be the initial schedule on each machine.  Once the job  of product 
ie

ir
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type  is selected for a specific machine, other jobs of product type  cannot 

be selected as the initial schedules on other machines.  After initializing K schedules 

of machines, the following steps of PIA I are identical to PIA. 

)(iJ )(iJ

Parallel insertion with the slackness (PIA II) 

In order to express the impact of job due date, this algorithm adopts the modified 

insertion functions ),,(11 νkuc  of equation (31) instead of the value ),,(1 νkuc  of 

PIA.  It adds the latest starting time  of unscheduled job  into consideration 

and that would make the selection rule choose the job with smaller latest starting time 

as the priority possibly.  The modified insertion function is as the following. 

ue u

10  , ))(1()(),,(
)1()1(11 ≤≤−+−+=

−−
λλλν

νννν uiiuiui essskuc
kkkk

 (31) 

According to the insertion function above, we can determine the ratio of the 

insertion values that the slackness would have by revising the value λ .  The 

insertion procedure is the same as PIA. 

Parallel insertion with new initial criteria and slackness (PIA III) 

Because PIA I and PIA II do have the advantage of reducing total machine setup 

time, we generate the new modified parallel insertion algorithm by combining two 

insertion criteria of job selection.  At the beginning of inserting initial jobs, the 

algorithm selects the product type including the maximal number of jobs and chooses 

the job with the smallest value  in this product type as the initial schedule on each 

machine.  Once the job  of product type  is selected for a specific machine, 

other jobs of product type  cannot be put as the initial schedule on other 

machines.  The insertion cost is the same as 

ie

ir )(iJ

)(iJ

),,(11 νkuc  in equation (31) and other 

steps in this modification algorithm are identical to PIA II. 

Parallel insertion with the variance of regret measure (PIA IV) 

The original parallel insertion procedure does not consider the impact of the 
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variance between the best insertion places on all machines.  This modified algorithm 

creates a new regret measure including not only the absolute total differences of the 

best insertion value and other alternatives but also the variance among them.  

Therefore, the selected job would have a significant variance  under large 

regret values.  The modified calculation of the regret value is the following. 

)( 1cVar

10  , )()1(])()([)( 1
*

114
*

≤≤−+′′−∑ ′=
≠

ϕϕϕ cVar,νu,kcu,k,νcuc *
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The notation  in equation (33) is the variance of best insertion cost 

between all parallel machines, and 

)( 1cVar ′

)( 1cAvg ′  is the average value of best insertion 

cost on all parallel machines.  We can determine the schedule ranking of all jobs on 

all parallel machines by adjusting the parameter ϕ . 

3.2 Phase II - Network Adjusting Procedure  

In accordance with WPSP with minimum makespan, we develop an adjusting 

procedure for WPSP algorithms.  The adjusting procedure is proceeding based on the 

concept of lower bound LB and upper bound UB constraints.  The adjusting 

procedure is searching a near-optimal solution under the lower bound and upper 

bound, so the solution time of the adjusting procedure is longer than Phase I.  Here 

are the steps of the adjusting procedure we developed. 

Adjusting Procedure 

The procedure makes the basic solutions solved by phase I closer to the optimum 

based on lower bound and upper bound restriction.  Let  be the total machine 

load on machine , and let 
kML

km δ  be the number of adjusting expected machine load 

EL .  Here comes the detail of the adjusting procedure.  

Step 1.  Let δ  be zero and set the value 0EL  be the same of EL .  Use the WPSP 
algorithm described to generate a basic solution by adding a restriction of 
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capacity 0EL  into it. 
Step 2.  Here we define the initial lower bound and upper bound as follows. 

}{min0
kKk

MLLB
∈

=  (35) 

}{max}max{ 0
iIik

Kk
pMLUB

∈∈
+=  (36) 

According to the property of the solution, we define the maximal number  
of adjusting in two ways. 

*δ

       (1) If the actually required number of machines  is smaller than the 
number of available machines 

k
K , we let , which 

represents the maximal adjusting times we can use in this adjusting 
procedure. 

)(log 00
2

* LBEL −=δ

       (2) If the actually required number of machines k  is larger than the number 
of available machines K , we let  in another way. )(log 00 −2

* ELUB=δ
Step 3.  The step is divided into two different decision rules. 
       (1) If the actually required number of machines  is smaller than the 

number of available machines 
k

K , set the value  to be the same of δUB δEL , 
and update δ  with the increment 1.  The expected machine load is replaced 
with , where 2/)( δδ ′′ +UBLB 1−=′ δδ , that is,  . 2/)( δδδ ′′ += UBLBEL
(2) If the actually required number of machines  is larger than the number 
of available machines 

k
K , set the value δLB  to be the same of δEL , and 

update δ  with the increment 1.  The expected machine load is replaced 
with , where 2/)( δδ ′′ +UBLB 1−=′ δδ .  The adjusting equation is the 
same as the one above.   

Step 4. Restart the network algorithm with the restriction of adjusting value δEL . 
Step 5.  If the value of δ  is larger than  and the *δ δ th scheduling solution is 

feasible, stop the procedure.  Otherwise (δ  is less than  or the *δ δ th 
scheduling solution is infeasible) go to step 3 until all jobs are scheduled. 

4. The Genetic Algorithm for WPSP with min  maxC

A genetic algorithm is a search algorithm based on the mechanism of genetics and 

evolution, which combines the exploitation of past results with the information of new 

areas of the search space.  A genetic algorithm can imitate some innovative talent of 

a human search by using the surviving techniques of fitness function.  The 

mechanism of a genetic algorithm is very simple, involving nothing but copying 

strings and swapping positions among strings.  In every new generation of a genetic 

algorithm, a set of strings are created exploiting information from the previous ones.  

With this collection of artificial strings, a new part of population is tried for good 

measure and the best overall solution would become the candidate solution to the 
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problem.   

4.1 GA for Parallel Machine Problem 

The genetic algorithm takes advantage of historical information effectively to 

proceed with new search points for expected improvement.  Simple operation and 

effective power are two primary attractions of the GA approach.  The effectiveness 

of GA depends on an appropriate mix of exploration and exploitation.  Two genetic 

operators, crossover, and mutation, are designed to approach this goal.  Many 

researchers have considered the parallel-machine scheduling problem by using the 

genetic approach.  Zomaya and Teh [23] employed a GA considering load balancing 

issues suchlike threshold policies, information exchange criteria, and inter-processor 

communication, to solve the dynamic load balancing problem with minimizing the 

maximum completion time.  Cheng et al. [24,27] considered an identical parallel 

machine system with an objective of minimizing the maximal weighted absolute 

lateness and proposed a hybrid algorithm which combined the GA with the due date 

determination.  They proved that mutation should play more critical role than the 

crossover and the hybrid genetic algorithm did outperform the conventional heuristics.  

Min and Cheng [25] provided a genetic algorithm based on the machine code for 

minimizing makespan in identical parallel machine scheduling problem and it was fit 

for larger scale problems with comparison to LPT and SA.  Cochran et al. [26] 

proposed a two-stage multi-population genetic algorithm (MPGA) to solve parallel 

machine with multiple objectives.  Multiple objectives are combined via the 

multiplication of the relative measure of each objective in the first stage, and the 

solutions of the first stage are arranged into sub-population to evolve separately under 

the elitist strategy.  Ulusoy et al. [28] proposed a genetic algorithm with the 

crossover operator MCUOX for solving the parallel-machine scheduling problem 

with minimizing the total weighted earliness and tardiness values.  They showed that 

GA with MCUOX outperformed in larger-sized, more difficult problems.  Herrmann 

[29] provided a two-space genetic algorithm representing solutions and scenarios for 

solving minimizing makespan problems and the experiment showed the two-space 

GA could find robust solutions.  Tamaki et al. [30] dealt with identical parallel 
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machine scheduling problems with the objective of minimizing total flow time and 

earliness/tardiness penalties.  They proposed a genetic algorithm combined with a 

simplex method to generate an effective set of Pareto-optimal schedules.  Vignier et 

al. [31] provided a hybrid method to solve a parallel-machine scheduling problem 

with minimizing the total cost of assignment and setup time and the result showed 

efficient in industrial case.  Lin [32] considered a unrelated parallel machine 

scheduling problem with due date restriction for minimizing makespan, total weighted 

tardiness, and total weighted flow time.  She proposed a genetic algorithm combined 

with prescribed initialization for solving the multi-objective and the result expressed 

that the GA with prescribed initialization could find an optimal solution in small sized 

problems.  Table 1 shows the differences of GA these researchers developed. 
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Table 1. The comparison of GA under various problem characters, crossover, and mutation. 

Author 
 Objective 
function of 

problem 

Due date 
considera

tion 

Setup 
time 

conside
ration

Release 
time 

considera
tion 

Coding method Crossover 
operator Mutation operator Initial population 

generation 
GA 

compared 
with: 

GA results 

Zomaya, 
A.Y. and 
Teh, Y.H. 

Minimize 
makespan and 

processor 
utilization 

No   No Yes

Each element in 
the string has two 
decimal values, 
one to represent 
the task number 
and the other to 

represent the size 
of the task 

The cycle 
crossover 
method 

Swap mutation is 
adopted by 
randomly 

selecting two 
tasks and then 
swapping them 

Use a dynamic 
load-balancing 

algorithm 

GA itself for 
different 
window 

size, 
population 
size, and 

generation 
size 

GA performs 
better under 

window size=20, 
generation 

number=20, and 
population 

size=30 

Cheng, R., 
Gen, M., 

and Tozawa, 
T. 

Minmax the 
weighted 
absolute 
lateness 

A 
common 
due date 

No  No

 
Use a list of job 

symbol and 
partitioning 

symbol as the 
coding scheme 

 

The 
sub-schedule 
preservation 

crossover 

Use random 
exchange by 
selecting two 

random genes and 
then exchanging 
their positions 

Random generate
Existing 
heuristic 

procedure

GA has a better 
result with 
considering 

mutation 

Min, L. and 
Cheng, W. 

Minimize 
makespan No   No No

The gene code is 

, where 
],1[ m

nj kkkk ,,,,, 21 KK

k j ∈ .  It’s 
the number of the 
machine on which 

each job is 
processed 

The 
two-point 
crossover 

A digit is selected 
according to 
pre-defined 

mutation 
probability and 
replaced with a 

different number

Random generate LPT and SA
GA is more 

efficient and fit 
for larger scale 

problem 

Cochran, 
J.K., Horng, 

S.M., and 
Fowler, J.W. 

Minimize 
makespan, 
total weighted 
tardiness, and 
total weighted 
completion 
time 

Yes (each 
job has 
its own 

due date) 
No 

Yes (each 
job has 
its own 
release 
time) 

The number in 
position one of 
the chromosome 
represents the 
machine that will 
process job one 

The one-point 
crossover 

A digit is selected 
according to 
pre-defined 

mutation 
probability and 
replaced with a 

different number

Random generate
Multi-object
ive genetic 
algorithm 
(MOGA) 

Multi-population 
genetic algorithm 
(MPGA) shows 

better results over 
a wide range of 

problems 
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Table 1. Continued 

Author 
 Objective 
function of 

problem 

Due date 
considera

tion 

Setup 
time 

conside
ration

Release 
time 

considera
tion 

Coding method Crossover 
operator Mutation operator Initial population 

generation 
GA 

compared 
with: 

GA results 

Cheng, R. 
and Gen, M. 

Minimize the 
maximum 
weighted 
absolute 
lateness 

A 
common 
due date 

No  No

Use a list of job 
symbol and 
partitioning 

symbol as the 
coding scheme 

The 
sub-schedule 
preservation 

crossover 

Use random 
exchange by 
selecting two 

random genes and 
then exchanging 
their positions 

Random generate

The 
published 

GA and the 
heuristic, 
V-shape 
policy 

The memetic 
algorithm 

outperforms both 
GA and the 

heuristic 

Serifoglu, 
F.S. and 

Ulusoy, G. 

Minimize total 
weighted 

earliness and 
tardiness 

Yes (each 
job has 
its own 

due date) 

Yes 
(sequen

ce 
depend

ent) 

Yes (each 
job has 
its own 
release 
time) 

The chromosome 
representation 

incorporates both 
the sequencing 

and the machine 
selection 

The 
multi-compon
ent uniform 
order-based 
crossover 

Swap mutation 
randomly chooses 
two positions on 
the chromosome 
and swap the 
contents.  Bit 
mutation is 
applied to each 
gene in the 
population with a 
very low 
probability 

Three scheduling 
rules (forward-pass, 
backward-forward-

pass, and 3-D 
scheduling rules)

Four 
different 

scheduling 
rules and 

two distinct 
crossovers

GA with 
GA-NCUOX 

performs well in 
larger-sized 
problems 

Herrmann, 
J.W. 

Minimize 
makespan No   No No

The GA uses 
27-bit strings and 
each individual in 
the population has 

nine genes, one 
for each job 

－ － Use two-space GA 
to generate 

Worst case 
optimization

Two-space GA is 
able to find robust 

solutions 

Tamaki, H., 
Nishino, E., 
and Abe, S. 

Minimize total 
flow time, total 

weighted 
earliness and 

tardiness 

Yes (each 
job has 
its own 

due date) 
No 

Yes (each 
job has 
its own 
release 
time) 

An individual is 
represented as a 
combination of 
two sub-string 

with the length of 
the number of 

jobs 

The one-point 
crossover 

One locus is 
selected 

randomly, and 
then the gene is 

changed to 
another gene with 

a prescribed 
probability 

Random generate
Different 
setting of 
the weight 
parameters

The effectiveness 
for generating a 

variety of 
Pareto-optimal 

schedules is 
investigated 

 



 20

Table 1. Continued 

Author 
 Objective 
function of 

problem 

Due date 
considera

tion 

Setup 
time 

conside
ration

Release 
time 

considera
tion 

Coding method Crossover 
operator Mutation operator Initial population 

generation 
GA 

compared 
with: 

GA results 

Vignier, A., 
Sonntag, B., 

and 
Portmann, 

M-C. 

Minimize the 
total costs of 

assignment and 
setup time 

Yes (each 
job has 
its own 

due date) 

Yes 
(sequen

ce 
depend

ent) 

Yes (each 
job has 
its own 
release 
time) 

 
The genome is 

composed of two 
chromosome, one 
for the assignment 
and the other for 

the sequence 

The one-point 
crossover and 

the edge 
recombinatio

n operator 

Swap two 
consecutive jobs 

or change the 
assignment of a 

job in an 
individual 

Use two presented 
heuristics 

Two 
presented 
Heuristics

The results of GA 
are better than 
those they have 
obtained before 

Lin, C.C. 

Minimize 
makespan, 

total weighted 
flow time, and 
total weighted 

tardiness 

Yes (each 
job has 
its own 

due date) 
No  No

Use a list of job 
symbol and 
partitioning 

symbol as the 
coding scheme 

The 
sub-schedule 
preservation 

crossover 

Use random 
exchange by 
selecting two 

random genes and 
then exchanging 
their positions 

Use 
EDD/WSPT(mean)

, 
WSPT(mean)/EDD
, SPT(mean)/EDD, 
LPT(mean)/EDD, 

MDD, 
SPT(min)/EDD, 
LPT(max)/EDD, 

and some heuristics 
to generate 

Branch & 
bound and 
traditional 

GA 

The modified GA 
can find the 

optimal solution 
in small-sized 
problems, and 
have a better 

solution speed 
than branch & 

bound 

 
 



4.2 The Hybrid Genetic Algorithm 

GA is an artificial adaptive system for simulating natural evolution.  Because of 

their effectiveness and efficiency in searching complex spaces, they are increasingly 

used to attack NP-hard problems.  The core of GA is its crossover operator that 

progressively constructs near optimal solutions from good feasible solutions.  In this 

paper, we propose a new crossover that protects better schedules of machines from 

elimination.  First of all, we would give some definition of terms including 

, , max_gene, off_size, and .  Let notations 

 and  be the number of parents and extended population 

individually, off_size be the number of offspring, and max_gene be the maximum 

number of generated generation.  Besides, let  be the prescribed probability of 

mutation.  The flowchart of the execution for hybrid genetic algorithm is given in 

Fig. 2. 

sizePop _ sizePopEx __ mp

sizePop _ sizePopEx __

mp
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Problem Encoding
(Ex: 3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8 )

Initialize n solutions 
( constructed by insertion and 

savings algorithms)

Current population
(Parents), 
Pop_size

Selection
(Roulette wheel method)

Extended population
(offspring)

off_size=off_size+1

New generation
(New population)

Sub-schedule Preservation Crossover  

Stop

Elitist strategy(Choose the better N strings 
from enlarged population)

Stopping criteria
(The number of 

generated generation 
>=max_gene?)

Yes

No

Enlarged population
(sum of Pop_size and Ex_Pop_size) 

Ex_Pop_size=2*Pop_size

Swapping Mutation 
under the scenario U[0,1]<=pm

(operate with a prescribed probability pm) 

off_size=Pop_size?
No

Yes

Ex_Pop_size>=N?

Yes

No Pop_size=
Ex_Pop_size

 
Figure 2. The flowchart of the execution for hybrid genetic algorithm. 

4.2.1 Problem encoding 

Normal binary encoding does not work very well for the parallel-machine 

scheduling problem because the encoding strings may become too redundant to 

incorporate all needed messages.  Therefore, we code the strings by using the 

representation of decimal numbers.  We use a set of integers and stars ＊ 

representing the job identity and the partition of jobs to machines for parallel-machine 

scheduling problem.  The integers and stars on the string represent all possible 

sequences of jobs on parallel machines.  For a problem of n jobs and m parallel 

machines, a correct chromosome must consist of n job symbols and m-1 partitioning 

symbols ＊, which mean there should be n+m-1 genes in a chromosome.  We can 
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give a simple example of 9 jobs and 4 parallel machines shown below.  The string 

can be represented as follows: 

[ 3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8 ] 

4.2.2 Initialization 

In each generation the GA manipulates a set of operators in the population.  The 

construction of the initial population is important since the operators of GA would 

preserve some part of better chromosomes generation to generation.  The initial 

population influences not only the convergence of the GA but the qualities of 

chromosomes generated.  The initial chromosomes are constructed with network 

algorithms we described in this identical parallel-machine scheduling problem.  We 

are looking for the better near optimal solution produced by the initial population 

based on network algorithms than a randomly generated population.  We also predict 

the quick convergence of the GA with the constructed initial population. 

4.2.3 Selection 

During each generation, we can use some measure of functions to evaluate the 

values of chromosomes.  Fitness is estimated based on the objective function in most 

cases of optimization problems.  As the objective of our problem is WPSP with 

minimizing makespan, we can use the reciprocal of the objective function as the 

fitness value.  So a fitter chromosome has a larger fitness value.  The fitness value 

of each chromosome is defined as following: 

⎥
⎥

⎤
⎢
⎢

⎡
×
+−

×= −

Q
1)(),( 1

, K
kKCmaxF βαβα  (37) 

where the term  expresses the makespan of the βα ,maxC α th chromosome in the 

pool when the GA cycle proceeds to the β th generation.  The term K  represents 
the available machine number and  represents the actual required machine number.  
Besides, the term Q is a constant described in section 2 for keeping the calculation 

moving around 0 and 1.  So the function 

k

Q/)1( KkK −−  ⎡ ⎤QK/kK −  can make 
e calculated by equation (37) is avasure that the fitness valu ilable to be used. 
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The selection technique in this paper is based on the roulette wheel method.  In 

th

Two genetic operators, crossover and mutation, are usually used in the genetic 

al

the WPSP with minimum makespan has the job due date problem, the 

ch

partitioning structure and better sub-schedules into offspring from one parent and then 

is case, the probabilities of the individual chromosomes surviving to the next 

generation determine the slots of the roulette wheel.  These probabilities of these 

slots on the roulette wheel are estimated by dividing the fitness value of each 

chromosome by the sum of the fitness values of all chromosomes in the current 

population.  Cumulating the probabilities of each chromosome creates the individual 

slots.  Here comes an example, which calculates the individual slots on the roulette 

wheel.  There are three chromosomes in the population, of which the probabilities of 

chromosomes are 0.2, 0.3, and 0.5 individually.  Then the slots of chromosome 1, 

chromosome 2 and chromosome 3 will range from 0-0.2, 0.2-0.5, and 0.5-1 

respectively.  Each slot size of chromosome will be proportional to its fitness value. 

4.2.4 Genetic operators 

gorithm.  Crossover generates offspring by combining two chromosomes’ features.  

Mutation operates one chromosome by randomly selecting two genes and swapping 

them.  Generally specking, the crossover operator plays an important role for the 

performance in the GA cycle.  The performance of crossover in each operator does 

affect the performance of GA.  So we adopt the different rules for designing 

crossover and mutation.  Both crossover and mutation can handle the job 

permutation and setup time on the identical parallel machines, so the methods of 

crossover and mutation should be suitable for use. 

Crossover 

Because 

romosome may have a bad fitness value, an infeasible solution, through the 

traditional crossover operator.  We provide a new crossover considering the time 

postponement concept to figure out the problem with due date restriction.  The time 

postponement is the value that the non-expected event can delay for at most.   The 

crossover operates two parents and creates a single offspring.  It breeds the primary 
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fills the offspring with remaining genes derived from the other parent.  The selection 

of sub-schedule is considering the job slackness, the time postponement, on each 

identical parallel machine.  The crossover copies the better sub-schedules on some 

identical parallel machines from one parent to the offspring for preserving the good 

permutation of jobs.  The other empty positions of the offspring can be filled with 

one way, which is a left-to-right scan from the other parent.  We let kCν  be the 

completion time of job, kdν  be the due date of job on ν th position of machine km , 

n be the number of job consideration on machine km , and kN  be the num  of jobs 

on machine km .  Equa  (38) indicates the slackness of job on 

ber

tion ν th position f 

machine km .  nkSSLν  of equation (39) means the sum of slackness values for n 

consecutive jobs on machine km , which are located from 

 o

ν th to )1( −+ nν th 

position. fter calculating the value nkSSLν , we can estimate the average value of 

slackness 

 A

nkSSLν  for n jobs started from ν th to )1( −+ nν th position o e 

km .  The estimations of slackness values are defined as following: 

kkk dSL = kN,,2,1 K=

n machin

C ν ; k ,,2,1 K Kννν − , =  (38) 
−+ 1nν

∑= knk SLSSL
ν

νν , kN,,2,1 K=ν ; 11 +−≤≤ νkNn ; Kk ,,2,1 K=  (39) 

1−×= nSSLSSL nknk νν  (40) 

In the beginning of crossover, GA would choose one parent with better fitness value 

and breed the partitio

3.   

ning structure of the parent into the offspring as shown in Figure 

3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8P1

8 1 5 ＊ 2 ＊ 3 7 ＊ 4 9 6

＊ ＊ ＊

P2

offspring

 

Figure 3. Copy the partitioning structure to offspring 

Then for all jobs on each machine, GA calculates of all combinations of 

jobs in sequences and d
nkSSLν  

nkSSLν  from each nkSSLν .  Choose the smallest erives each 

nkSSLν  for each machine and put the job comb to the sub-schedules as inations in
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shown in Figure 4. 

3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8

8 1 5 ＊ 2 ＊ 3 7 ＊ 4 9 6

3 ＊ 9 ＊ 4 1 6 ＊ 8

P1

P2

offspring

 

Figure 4. Copy the sub-schedules to offspring  
from the parent with better fitness value. 

Finally, GA would use a left-to-right scan to fill the offspring with remaining genes 

derived from the other parent as shown in Figure 5. 

3 7 ＊ 9 5 ＊ 4 1 6 ＊ 2 8

8 1 5 ＊ 2 ＊ 3 7 ＊ 4 9 6

3 5 ＊ 9 2 ＊ 4 1 6 ＊ 8 2

P1

offspring

P2

Starting point 
on offspring

 
 Figure 5. Fill the empty of the offspring from the other parent. 

After recounting the execution of crossover, here is the procedure of crossover 

divided into three steps. 

Step1. Get the partitioning symbol ＊ from one parent which has better fitness value. 
St

nd 
ep2. Choose the sub-schedules from the parent with better fitness value.  Let 

parameters k  a ν  be one.  The selection of sub-schedules is as 
following: 
Step 2-1. For the ν th position of machine km  on the chromosome, 

calculate the slackness value kSLν  of job ir  on ν th position.   
Step 2-2. Le += 1t νν .   If the value ν  is larger than kN , go to step2-3.  

Otherwise, calculate th of job on the e slackness value kSLν  ν th 
m -1.

Step 2-3.
position of achine km  and go to step2  

 For kN,,2,1 K=ν and 11 +−≤≤ νkn , estimaN te all kinds of 
aaver ness value ge slack nkSSLν .  Select the largest one knSSL ′′ν  

among all nkSSLν  and put the job combination from ν ′ th position 
to 1−′+′ nν th position on machine into the su hedule of 

Step 2-3. ailable
of

b-sc
machin
Let 1+= kk  and check the constraint of the number of av  
machines K.  If k  is larger than the number  available 
ma hen go to step 2-4.  Otherwise, Let index 

e km . 

chines K, t ν  be one 
and go to p2ste -1. 
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Step 2-4. Sele K sub-schedules of all machines and copy the K 
sub-schedules to offspring. 
mpty of the offspring with the unscheduled genes by aking a 
t scan from the o

ct the 

Step 3. Fill the e m
left-to-righ ther parent without violating the job due date 

We u The 

roceeds by randomly choosing two genes on the chromosome and then 

swapping them.  If the schedule shows infeasible after mutation technique, we would 

pr

restriction.  The starting point of the filling can be generated randomly. 

Mutation 

se the swapping technique as the mutation method in this paper.  

mutation p

eserve the original one from due date violence.  There are three possible 

exchanging ways through the swapping mutation: (1) the swapping of two jobs from 

the same identical parallel machine, (2) the swapping of two jobs from different 

identical parallel machines, (3) the swapping of one job and one partitioning symbol.  

Fig. 6(a), 6(b), and 6(c) shown below can express the swapping methods. 

8 5 ＊ 2 3 ＊ 4 1 6 ＊ 7 9Before

8 5 ＊ 3 2 ＊ 4 1 6 ＊ 7 9After  
(a) 

8 5 ＊ 2 3 ＊ 4 1 6 ＊ 7 9Before

2 5 ＊ 8 3 ＊ 4 1 6 ＊ 7 9After  
(b) 

8 5 ＊ 2 3 ＊ 4 1 6 ＊ 7 9Before

8 5 ＊ 2 3 4 ＊ 1 6 ＊ 7 9After  
(c) 

Figure 6. Illustration of swapping technique 

4.2.5 Elitist Strategy 

When the number of of ected level, we will 

mix the offspring with the original parents to get the enlarged population.  Then we 

fspring in the pool is reaching to the exp
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use the roulette wheel as the concept of elitist strategy for choosing the better part of 

the enlarged population.  That means the fitter chromosome is selected first for 

su

osome in 

the population will be re-estimated by using the fitness function.  There are several 

stopped: (1) see if the chromosomes in the 

current population are fitter than the ones in the previous population by calculating the 

to

paring the performance of improving heuristics and the hybrid 

genetic algorithm, we design a set of 16 problems with different circumstances for 

 parallel identical machines and 100 jobs, which 

are divided into 30 product types and should be completed before the given due date.  

Th

 

rviving to the next generation.  In our GA cycle, the elitist way is to preserve the 

better chromosomes in each generation and reduce the errors of stochastic sampling.  

Through the elitist strategy, the number of chromosomes in each generation will be 

equal to the original population we determined in the beginning. 

4.2.6 Stopping Criteria 

After the genetic operators and elitist strategy, the fitness of each chrom

rules to decide if the GA cycle should be 

tal and average fitness values of all chromosomes in every cycle, (2) see if the best 

chromosome in the current GA pool is fitter than the best one in the old GA pool by 

calculating the fitness value of the best chromosome in every cycle, (3) see if the 

number of generation reaches to the level we requested.  We choose the item (3) 

according to the convenience of GA operation.  Therefore, in our experiment, the GA 

operation will be terminated if the number of generation reaches to what we 

prescribed. 

5. Problem Design and Testing 

For the sake of com

testing.  Each problem includes 25

e 100 jobs would be processed on the 25 parallel identical machines and each 

machine capacity is set to be three days, 4320 minutes.  Here “minute” is used as the 

time unit for job processing time, job due dates, setup time, and machine capacity. 

In this paper, we highlight the impact of setup time of consecutive jobs from different 

product families or different operation temperatures.  So the time cost by changing 
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probe card before the machine is ready to process the coming job with different 

product family is set to 80 or 120 minutes (80 or 120 minutes is according to different 

product family).  The required times of adjusting temperature from room to high is 

set to be 60 minutes, from high to room is set to be 80 minutes, and from high to high 

is set to be 140 minutes.  Because the time of adjusting temperature from room to 

room does not need to warm up or cool down the machine, it is set to be 0 minutes. 

The time of loading code before the machine is ready to process the coming job with 

different product type is set to be 5 minutes.  And the initial setup time of machine 

from idle to processing state is set to be 100 minutes.  The setup time of consecutive 

jobs from same product type is set to be 0 minutes under all operation temperatures. 

The problem design is based on the wafer probing shop floor in an IC 

manufacturing factory of the Science-based Industrial Park, Taiwan.  The problem 

 

test is divided into four factors, which contains (1) the product family ratio, including 

tw

milies is related to the setup time of 

ed to evaluate the influence of product families on the 

performance of scheduling solutions via the factor, product family ratio.  If a product 

fa

o grouping levels R2 and R6, (2) the tightness of due dates, including stable and 

increasing states, (3) the consideration of adjusting temperature, including setup time 

with temperature consideration or not, (4) the total processing time, including low and 

high levels. 

Product Family Ratio (R) 

The distribution of jobs to the product fa

consecutive jobs.  We ne

mily has large number of jobs, it may lead to a smaller value of total setup time of 

scheduling solutions.  Oppositely, if a product family has small number of jobs, it 

may result in a larger value of total setup time of machine schedules.  Here we define 

an index, product family ratio, which is the division of the number of job product 

types by the number of job product families.  There are 100 jobs divided into 30 

product types in our test problem.  For example, if the value of product family ratio 

is 2, it means that 30 product types of 100 jobs are distributed into 15 product families 

randomly.  In our design, there are two levels for testing, R2 and R6, which means 
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30 product types of jobs are divided into 15 and 5 product families individually.  The 

evaluation of product family ratio is expressed in equation (41). 

F
J

familiesproductofNumber
typesproductofNumberRRatioFamilyProduct ==

   
   )(    (41) 

Tightness of Due Dates (T_Due) 

Here we use tightness of due dates for evaluating the density of job due dates.  It 

me, the expected setup time, the machine capacity 

before due dates, and the number of jobs with given due dates.  The tightness index 

is 

is including the job processing ti

defined as below: 

321  ))(}()()({))((  1 ,,Y,YCapK
I

YNumESYPYTIindexTightness =××+= −  (42) 

where the number of available machines K  and the expected setup time  are 

expressed in Section 2 and 3.  Due dates of Jobs in the test problem are

three time points, which are 1, 2, and 3 days.   is denoted as the total 

t. 

 If the tightness of due dates is stable, that means there are 

30 jobs assigned for 1440 minutes of due dates, 35 jobs assigned for 2880 minutes of 

du

ES

 divided into 

)(YP

processing time of jobs of which due dates are given before Yth due day poin  We 

define the notation )(YCap  as the available capacity of machine before Yth due day 

point.  And )(YNum  is to express the number of jobs of which due dates are given 

before Yth due day point. 

According to equation (42), we can evaluate three tightness indexes under three 

time points of due dates. 

e dates, and 35 jobs assigned for 4320 minutes of due dates randomly.  And the 

tightness values of due dates would be nearly equal.  If the tightness of due dates is 

increasing, that means there are 5 jobs assigned for 1440 minutes of due dates, 15 jobs 

assigned for 2880 minutes of due dates, and 80 jobs assigned for 4320 minutes of due 

dates randomly.  Besides, the tightness of due date 1440 minutes would be smaller 

than the tightness of due date 2880 minutes, and the tightness of due date 2880 

minutes would be smaller than the tightness of due date 4320 minutes 
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Temperature Consideration (Te) 

Because the setup time of loading temperature is longer than the setup time of 

peripheral hardware, we take the factor, temperature changing, into consideration in 

of setup time is related to the product types, product 

families of two consecutive jobs generally.  If temperature change of machine is 

considered in tes

e of scheduling 

difficulties, so it is an index for evaluating the performance of scheduling heuristics.  

cessing time, high and low, to represent the size of 

total machine workload.  High and low levels of total processing time are set to be 

54126 m

our problem design.  The value 

ting situation, it should be added in setup time.  Our problem is 

designed to consider setup time with temperature changing or not.   

Total Processing Time (Total_PT) 

The value of total processing time would influence the degre

We generate two levels of total pro

inutes and 66379 minutes, which have 1.5 and 1.85 days of machine 

utilization individually.  Table 2 below shows the summary of 16 testing problems, 

and other related information suchlike product types, product families, tightness of 

due dates, and setup time of two consecutive jobs, is shown in the appendix. 

Table 2. Summary of 16 problem design 
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6. Computational Results 

Because our objective is minimum makespan, total setup time and the distribution 

of jobs to parallel machines both are related to the qualities of testing solutions.  In 

order to find the setting parameters of improving heuristics for reducing total setup 

time, we put these WPSP algorithms into a lot of pre-tests.  The following settings of 

WPSP algorithms are efficient in solving identical parallel-machine scheduling 

problems.  The parameters A and B of modified sequential savings algorithm (MSSA) 

are set to be 0.975 and 0.55.  The parameter λ  of parallel insertion with the 

slackness (PIA II) is set to be 0.7.  And the param ter e ϕ  of parallel insertion with 

e (PIA IV) is set to be 0.8.  The improving heuristics 

are encoded in Visual Basic 6.0, which are implemented in the compiled form on a PC 

with 

And the average of testing solutions 

solved by PIA III in 16 problems is the smallest, which means PIA III is most efficient 

 with minimum makespan.  By 

considering one experimental factor once, the computational results of 16 problems 

can be tran

all kinds of situations, PIA III having 8 and 7 smallest ones individually also shows 

 

the variance of regret measur

AMD 1150 MHz CPU and 512 MB RAM. 

6.1 ANOVA Analysis of Improving Heuristics 

The CPU times cost by saving algorithms is 1137.396 seconds in average, and the 

CPU time cost by insertion algorithms is 73.629 seconds in average.  The 

computational results of WPSP algorithms in 16 problems are expressed in Table 3.  

The testing results show that SSA and SIA are not robust in our testing problems 

because SSA and SIA would generate unfeasible solutions in some cases.  Therefore, 

we look for best solutions exclusive of SSA and SIA and find that PIA III has the 

largest number of best solutions via Table 3.  

in solving the 16 testing problems of WPSP

sformed into the performance comparison of all situations as shown in 

Table 4.  From the opinion of comparing mean and standard deviation of solutions in 

that it outperforms other WPSP algorithms except for the situation, where total 

processing time is low. 
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Table 3. Computational results of WPSP algorithms in 16 test problems. 

SSA MSSA SIA PIA PIA I PIA II PIA III PIA IV

1 2730 2965 2724 2837 2660 2599* 2600 2639 2653
2 3297 3709 3240 3194 3218 3157* 3291
3 2730 2661 2611* 2611 2703 2616 2632 2611* 2669
4 3297 3186 3083* 3116 3197 3115 3158 3105 3140
5 3196 3152 2795 2837 2879 2728* 2757 2730 2778
6 3763 4308 3461 3265 3357 3248* 3955
7 3196 2682 2739 2611 2805 2683 2758 2659* 2770
8 3763 3253 3223 3116 3376 3201 3223 3194* 3242
9 2687 2692 2697 2664 2635 2566* 2569 2594 2644

10 3253 3648 3476 3193 3140 3111* 3125 3225
11 2687 2548 2597 2604 2627 2577 2624 2565* 2624
12 3253 3113 3127 3063 3094 3081 3066* 3083 3116
13 3153 3600 2766 2977 2782 2732 2714* 2731 2930
14 3719 3596 3447 3284 3274* 3274* 3675
15 3153 2721
16 3719 3201

Problem
No.

Cmax Cmax Cmax Cmax Cmax Cmax Cmax Cmax

2713 2696 2728 2662 2669 2654* 2729
3235 3245 3295 3223* 3228 3223* 3269

Mean 3087.438 3007.625 2916.625 2934.875 2912 3044.375
No. of * 2 4 4 9

Result with grey bcakground indicates a unfeasible solution in scenaLabel * means the best of all exclusive of SSA and SIA. 

Expected
Capacity

 

Table ions.  4. Computational results of improving heuristics under all kinds of situat

n Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Total 16 3087.44 485.11 3007.63 309.04
R=2 8 3149.00 589.21 3040.13 314.85
R=6 8 3025.88 385.29 2975.13 321.12

Te=Yes 8 3171.88 558.31 3096.63 325.18
Te=No 8 3003.00 419.85 2918.63 284.27

T_Due=Stable 8 3258.88 600.47 3037.13 339.57
T_Due=Increase 8 2920.63 292.66 2916.00 276.65 2882.75* 275.89 2978.13 295.58
Total_PT=Low 8 2877.63 350.02 2705.25 69.66 2729.63 138.16 2727.38 89.24
Total_PT=High 8 3469.63 406.89 3287.88 131.07

Number of * 1

n Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Total 16 2916.63 287.85 2934.88 289.49 2912.00* 279.90 3044.38 392.77
R=2 8 2925.13 292.62 2962.88 305.12 2917.87* 280.73 3062.25 443.37
R=6 8 2908.13 302.93 2906.88 291.02 2906.13* 298.32 3026.50 365.06

Te=Yes 8 2972.25 291.64 2997.50 295.96 2964.13* 291.52 3168.50 455.44
Te=No 8 2861.00 292.28 2872.25 288.14 2859.88* 276.92 2920.25 296.54

T_Due=Stable 8 2938.50 310.03 2950.00 322.71 2937.25* 289.28 3143.88 483.84
T_Due=Increase 8 2894.75 283.45 2919.75 273.71 2886.75 287.65 2944.88 271.75
Total_PT=Low 8 2645.37* 65.48 2665.38 71.45 2647.88 59.79 2724.63 101.39
Total_PT=High 8 3187.88 71.37 3204.38 92.00 3176.13* 69.67 3364.13 294.29

Number of * 1 7
Result with grey bcakground means there are unfeasible
solutions in scenario

Label * indicates the best among algorithms in situations
considering single factor and whole conditions.

PIA III PIAIVPIAI PIAII

SSA MSSA SIA PIA

 

In order to find the effects of improving heuristics and experimental factors on the 

problem design, we use statistical analysis by applying statistical software, SAS.  

First of all, we check the satisfaction of normality assumption for 96 data of Table 3 

except for SSA and SIA.  The check of normality assumption is expressed in Table 5 

and the solutions are normally distributed.  Then use ANOVA to check for the 

significances of all experimental factors and interactions.  The summary of ANOVA 

table shown in Table 6 shows that five single factors, product family ratio, 

temperature changing consideration, tightness of due date, total processing time level, 
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and algorithms, would significantly affect the solutions of WPSP with minimum 

makespan under 99% confidential intervals.  Besides, p values of interactions less 

than 0.01 also have significant effect on the performance of testing problems.  

Through Duncan’s multiple comparison as shown in Table 7, the statistical results 

show that the multiple comparisons divide WPSP algorithms into two groups, A and B.  

The same letter of Duncan’s groups indicates that there is no significant difference 

between WPSP algorithms.  So the first group is MSSA, PIA IV, and PIA, of which 

the performance of solutions is inferior to the second group of PIA II, PIA I, and PIA 

III. 

Table 5. Check of normality assumption for 96 solutions in 16 test problems. 

Statistic p ValueTest

Shapiro-Wilk W 0.886611 Pr < W <0.0001

Kolmogorov-Smirnov D 0.17839 Pr > D <0.0100

Cramer-von Mises W-Sq 0.58319 Pr > W-Sq <0.0050

Anderson-Darling A-Sq 3.464467 Pr > A-Sq <0.0050  

Table 6. The summary of ANOVA table under 99% confidential intervals. 
Factor SS d.f. MS F value p-value

R 63500 1 63500 10.548 <0.01

Te 583908 1 583908 96.991 <0.01

Total_PT 8516246 1 8516246 1414.611 <0.01

Algorithm 432625 5 86525 14.372 <0.01

R*Te 184 1 184 0.031

R*T_Due 11726 1 11726 1.948

Te*T_Due 47126 1 47126 7.828 <0.01

R*Total_PT 13325 1 13325 2.213

Te*Total_PT 32893 1 32893 5.464

T_Due*Total_PT 170775 1 170775 28.367 <0.01

R*Algorithm 33404 5 6681 1.110

Te*Algorithm 59144 5 11829 1.965

T_Due*Algorithm 313319 5 62664 10.409 <0.01

Total_PT*Algorithm 168813 5 33763 5.608 <0.01

Error 156525.3 26 6020

T_Due 350779 1 350779 58.267 <0.01

72.726,1,01.0 =F 82.326,5,01.0 =F  

Table 7. Duncan’s multiple comparisons for the performance of WPSP algorithms. 

Duncan

Grouping
Mean

No. of

problems
Algorithm

A 3087.44 16 MSSA

A 3044.38 16 PIA IV

A 3007.63 16 PIA

B 2934.88 16 PIA II

B 2916.63 16 PIA I

B 2912 16 PIA III  
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6.2 Computational Results of GA with Initial Population from WPSP algorithms 

We use WPSP algorithms except for SSA and SIA for generating initial population 

of GA these 

initial solutions to enlarge our population size for larger species of chromosomes.  In 

our problem design, we set the population size to be 30.  Other genetic factors, 

mutation rate and generation size, are considered in testing problems because they 

would affect genetic combinations of chromosomes.  We select problems No.7 and 

No. 8 of Table 2 for testing the performance and solution time of GA.  One is the 

situation that product family ratio is 2, temperature changing is considered, total 

processing time level is low, and tightness of due dates is increasing.  The other 

selected is the situation that product family ratio is 2, temperature changing is 

considered, total processing time level is high, and tightness of due dates is increasing.  

The mutation rate (denoted as pm) is divided into five levels, 0, 0.25, 0.5, 0.75, and 1.  

A s 

equal to 1500.  Each problem is solved by hybrid GA with different mutation rates 

and repeated four times for checking if the mutation rate is significantly effective. 

The statistical results of hybrid GA in problem No. 7 and No. 8 are shown in Table 

8.  It shows that hybrid GA would improve the initial solutions while the mutation 

rate is larger than 0.  And we know that the generation number is proportional to the 

running times of GA in 250, 500, and 750 generations are about 191 seconds, 401 

se

.  Because the initial solutions are not sufficient enough, we make use of 

nd the hybrid GA is proceeding until the number of generation (denoted as gen) i

performance of scheduling solutions of WPSP with minimum makespan.  The 

conds, and 563 seconds individually.  They are apparently larger than the running 

time of improving heuristics.  Because the roulette wheel method is selecting 

chromosomes based on fitness values randomly, there is not a definite mutation rate 

used for finding the best solution of hybrid GA.  So we consider all kinds of 

mutation rates in generations and plot the flowcharts of solutions solved by hybrid GA 

as shown in Figure 7 to Figure 10 in the appendix.  They show the trend of mean 

performance solved by hybrid GA in problem No. 7 and No. 8.  Observing the 

tendency of solutions solved in Figure 7 and Figure 9, it reveals that the value of 
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average performance via hybrid GA would drop very fast before initial generations 

(about 100 generations).  Based on statistical data of hybrid GA repeated four times 

in 1500 generations, we find that the best solution of hybrid GA is tending to be 

improved after later generations (about 40 generations) when the total processing time 

level is low.  In contrast with the situation while the total processing time level is 

high, we can see that the improving time point of hybrid GA in problem No. 7 is 

significantly later.  So hybrid GA may have a faster speed of feedback for improving 

the best solution unde

8 1 250 3675 0.25 200.91

m No.

2659* 75.64*

r tough situations. 

Table 8. The comparison of hybrid GA with WPSP algorithms and improving 
heuristics in testing problems. 

The best sol. by
Improving Heuristics

Cmax pm Cmax
7 1 250 3046 0.5 191.35

500 3000 0.5 401.82
750 2977 0.5 563.71
1500 2977 0.5 1186.13

7 2 250 3052 0.75 188.11
500 3030 0.75 413.98
750 2985 0.75 530.26
1500 2966 0.75 1199.86

7 3 250 3116 1 200.91
500 3024 1 411.12
750 3010 1 580.32

7 4 250 3073 0.5 194.46
500 2999 0.75 409.61
750 2999 0.75 549.53
1500 2927 0.5 1203.72

500 3659 0.25 399.57
750 3650 0.75 581.27
1500 3608 0.75 1175.23

8 2 250 3635 1 192.82
500 3629 1 391.13
750 3608 0.75 577.21
1500 3608 0.75 1189.11

8 3 250 3667 0.75 196.41
500 3650 0.75 388.45
750 3650 0.75 562.13
1500 3635 0.25 1179.92

8 4 250 3675 1 213.61
500 3659 0.75 400.01
750 3637 1 580.66
1500 3579 1 1180.36

Hybrid GA CPU Time
(sec) in
average

CPU Time
(sec) of the

best sol.

2659* 75.64*

Label * means the better between hybrid GA and improving heuristics.

Proble Iteration Gen

73.21*

73.21*

73.21*

3194*

3194*

3194*

3194* 73.21*

2659*

2659*

75.64*

75.64*

1500 2911 0.75 1210.79

 

6.3 Further Improvement of Hybrid GA with Initial Population from Improving 

Heuristics 

We apply scheduling so s in initial population of 

hybrid GA for further improvement in 16 testing problems.  We run 1500 

generations of hybrid GA with 0.5, 0.75, and 1 of mutation rate for confirming 

lutions of improving heuristic
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whether the scheduling solutions of improving heuristics can be improved or not.  

The computational results are shown in Table 9 and expresses that we may not use 

hybrid GA for improving solutions of improving heuristics in the situation where the 

tightness of due date is stable.  And hybrid GA can improve solutions generated by 

improving heuristics in problem No. 8 and No. 16, where the temperature change 

consideration is yes, tightness of due date is increasing, and total processing time level 

is high.  The trends of solutions generated by hybrid GA in problem No. 8 and No. 

16 are shown in Figure 11 and Figure 12 individually.  The evidential results show 

that hybrid GA can improve in earlier generations in problem No. 8 (R=2, Te=yes, 

T_Due=increase, and Total_PT=high) than hybrid GA in problem No. 16 (R=6, 

Te=yes, T_Due=increase, and Total_PT=high).  Through solutions of hybrid GA 

with initial population generated by WPSP algorithms and improving heuristics, we 

find that the performance of hybrid GA would stop improving after latter periods of 

generations (about 1500 generations). 

Table 9. Computation results of GA with initialization of improving heuristics. 
Improving Hybrid GA Improving Hybrid GAProblem

No.
ProblemHeuristics Heuristics

Cmax Cmax Cmax Cmax
1 2599 2599 9 2566 2566
2 3157 10 3111

No.

3 2611 2611 11 2565 2565
4 3083 3083 12 3066 3066
5 2728 2728 13 2714
6 3248 14 3274
7 2659 2659 15 2654 2654
8 3194 3160* 16 3223 3183*

No. of * 1 No. of * 1
Result with grey bcakground indicates GA can't generate enough feasible strings as population.
Label * indicates hybrid GA can find better solutions compared with improving heuristics.   

7. Conclusion 

The wafer probing scheduling problem (WPSP) is a practical version of the 

parallel-machine scheduling problem, which has many real-world applications 

including the integrated circuit (IC) manufacturing industry and other industries 

containing the manufacturing process with parallel machines.  In this paper, we 

consider WPSP with the objective to minimize the maximum completion time and 
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formulate the WPSP with minimum makespan as an integer-programming problem.  

To solve the WPSP with minimum makespan effectively, we proposed improving 

heuristics and the hybrid GA for our cases.  The computational results show that 

improving heuristics and hybrid GA are efficient tools for solving our testing 

problem by 

improving heuristics can make scheduling solutions outperform scheduling ones of 

improving heuristics.  From now on, the collection of initial population satisfying the 

WPSP with minimum makespan is our studying point because it not only expands the 

variety of genetic composition but affects the average and best solutions of GA.   

 

 

 

 

s of WPSP with minimum makespan.  And GA with initial population 
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Appendix 

able A1. Processing times of jobs with product types and product families under low 
total processing time level. 

T

Product
Type

Processing
Time

Product
Family(R6)

Product
Family(R2)

Testing
Temperature

Product
Type

Processing
Time

Product
Family(R6)

Product
Family(R2)

Testing
Temperature

1 404 3 7 High 16 429 5 4 High

2 593 1 10 Room 17 623 1 2 High

3 411 2 2 High 18 417 4 12 High

4 420 5 11 High 19 440 4 12 High

5 681 4 9 High 20 434 4 14 High

6 606 3 1 Room 21 680 4 7 Room

7 585 3 1 High 22 430 1 3 High

8 403 1 6 Room 23 694 2 13 Room

9 495 2 2 Room 24 455 5 1 Room

10 677 5 10 High 25 451 1 3 Room

11 517 4 3 Room 26 538 4 2 High

12 519 3 1 High 27 663 4 5 High

13 662 4 6 Room 28 570 3 10 High

14 499 2 14 High 29 618 3 7 Room

15 660 3 6 Room 30 441 2 10 Room  

Table A2. Processing times of jobs with product types and product families under high 
total processing time level. 

Product
Type

Processing
Time

Product
Family(R6)

Product
Family(R2)

Testing
Temperature

Product
Type

Processing
Time

Product
Family(R6)

Product
Family(R2)

Testing
Temperature

1 780 4 5 High 16 522 5 10 Room

2 752 4 14 Room 17 760 1 8 Room

3 723 4 4 Room 18 712 3 5 High

4 681 3 4 Room 19 588 3 2 High

5 686 2 1 Room 20 751 1 8 Room

6 670 1 12 Room 21 740 2 15 Room

7 582 2 13 High 22 629 5 3 Room

8 686 1 14 Room 23 747 1 11 Room

9 742 5 6 High 24 756 4 4 Room

10 68

11

2 3 3 Room 25 717 3 2 Room

536 5 14 Room 26 642 2 9 High

12 707 2 1 High 27 621 2 10 High

15 505 2 5 8 High

13 594 4 4 High 28 777 5 5 Room

14 790 1 3 Room 29 569 2 1 High

7 Room 30 750  

Table A3. Tightness of due dates in 16 testing problems. 

14 320 372 372 0 108000 54.10% 59.41% 61.81%

15 49 148 791 16066 34459 54126 36000 72000 108000 8.23% 15.45% 50.85%

16 53 160 851 3416 13404 66379 36000 72000 108000 9.64% 18.84% 62.25%

Problem No.

Expected Setup Time Total Processing Time Available Capacity Tightness of Due Dates

Due dates of jobs Due dates of jobs Due dates of jobs Due dates of jobs

1440 2880 4320 1440 2880 4320 1440 2880 4320 1440 2880 4320

1 169 198 198 16066 34459 54126 36000 72000 108000 45.10% 48.13% 50.30%

2 192 225 225 19157 42402 66379 36000 72000 108000 53.75% 59.20% 61.67%

3 28 85 452 2913 10973 54126 36000 72000 108000 8.17% 15.36% 50.54%

4 32 96 514 3416 13404 66379 36000 72000 108000 9.58% 18.75% 61.94%

5 309 361 361 16066 34459 54126 36000 72000 108000 45.49% 48.36% 50.45%

6 332 388 388 19157 42402 66379 36000 72000 108000 54.14% 59.43% 61.82%

7 51 155 825 2913 10973 54126 36000 72000 108000 8.23% 15.46% 50.88%

8 55 166 887 3416 13404 66379 36000 72000 108000 9.64% 18.85% 62.28%

9 156 183 183 16066 34459 54126 36000 72000 108000 45.06% 48.11% 50.29%

10 180 209 209 19157 42402 66379 36000 72000 108000 53.71% 59.18% 61.66%

11 26 78 418 2913 10973 54126 36000 72000 108000 8.16% 15.35% 50.50%

12 30 89 479 3416 13404 66379 36000 72000 108000 9.57% 18.74% 61.91%

13 296 346 346 16066 34459 54126 36000 72000 108000 45.45% 48.34% 50.44%

19157 42402 66379 36000 7200
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Table A4. All jobs with product types and due dates while tightness of due dates is 
stable and total processing time level is low. 

Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date

1 1 4320 21 21 4320 41 4 4320 61 27 1440 81 14 1440

2 2 2880 22 22 4320 42 5 2880 62 14 1440 82 15 4320

3 3 4320 23 23 1440 43 20 2880 63 15 2880 83 10 4320

4 4 2880 24 24 2880 44 5 4320 64 3 4320 84 25 1440

5 5 4320 25 25 2880 45 11 2880 65 15 1440 85 4 4320

6 6 1440 26 26 4320 46 8 2880 66 18 2880 86 29 4320

7 7 4320 27 27 4320 47 18 2880 67 21 4320 87 20 4320

8 8 2880 28 28 2880 48 17 4320 68 15 2880 88 10 1440

9 9 2880 29 29 4320 49 30 1440 69 3 4320 89 11 1440

10 10 2880 30 30 1440 50 12 4320 70 8 2880 90 23 1440

11 11 4320 31 1 1440 51 27 4320 71 9 2880 91 9 1440

12 12 2880 32 14 1440 52 22 2880 72 8 2880 92 10 1440

13 13 4320 33 7 4320 53 20 1440 73 11 1440 93 18 1440

14 14 2880 34 29 2880 54 17 2880 74 24 1440 94 16 1440

15 15 4320 35 15 2880 55 27 2880 75 28 4320 95 6 1440

16 16 4320 36 27 2880 56 5 1440 76 2 4320 96 14 1440

17 17 4320 37 27 2880 57 18 2880 77 20 4320 97

1440 38 13 2880 58 10 4320 78 27 4320 98

2880 39 2 2880 59 16 2880 79 2 4320 99

29 1440

18 18 29 1440

19 19 14 1440

20 20 4320 40 12 2880 60 30 2880 80 12 1440 100 19 1440  

Table A5. All jobs with product types and due dates while tightness of due dates is 
increasing and total processing time level is low. 

Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date

1 1 4320 21 21 4320 41 4 4320 61 27 2880 81 14 4320

2 2 4320 22 22 4320 42 5 4320 62 14 2880 82 15 2880

3 3 4320 23 23 4320 43 20 4320 63 15 4320 83 10 4320

4 4 4320 24 24 2880 44 5 4320 64 3 4320 84 25 2880

5 5 4320 25 25 4320 45 11 4320 65 15 4320 85 4 4320

6 6 1440 26 26 4320 46 8 4320 66 18 4320 86 29 4320

7 7 2880 27 27 1440 47 18 2880 67 21 4320 87 20 4320

8 8 4320 28 28 4320 48 17 4320 68 15 4320 88 10 4320

9 9 4320 29 29 4320 49 30 4320 69 3 2880 89 11 4320

10 10 4320 30 30 2880 50 12 4320 70 8 4320 90 23 4320

11 11 4320 31 1 4320 51 27 2880 71 9 4320 91 9 4320

12 12 4320 32 14 4320 52 22 4320 72 8 4320 92 10 4320

13 13 4320 33 7 1440 53 20 4320 73 11 4320 93 18 4320

14 14 4320 34 29 1440 54 17 4320 74 24 4320 94 16 4320

15 15 4320 35 15 4320 55 27 2880 75 28 4320 95 6 4320

16 16 4320 36 27 4320 56 5 4320 76 2 2880 96 14 4320

17 17 2880 37 27 4320 57 18 2880 77 20 4320 97 29 4320

18 18 4320 38 13 4320 58 10 4320 78 27 4320 98 29 4320

39 2 4320 59 16 4320 79 2 432019 19 4320 99 14 4320

20 20 4320 40 12 2880 60 30 1440 80 12 4320 100 19 4320  

Table A6. All jobs with product types and due dates while tightness of due dates is 
stable and total processing time level is high. 

Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date

1 1 2880 21 21 4320 41 8 4320 61 8 1440 81 24 1440

2 2 4320 22 22 2880 42 10 4320 62 6 2880 82 18 1440

3 3 4320 23 23 4320 43 18 4320 63 19 1440 83 6 2880

4 4 4320 24 24 2880 44 24 1440 64 2 2880 84 11 2880

5 5 4320 25 25 2880 45 22 4320 65 16 1440 85 12 2880

6 6 2880 26 26 4320 46 30 2880 66 12 1440 86 27 1440

7 7 4320 27 27 1440 47 23 1440 67 9 4320 87 29 2880

8 8 4320 28 28 2880 48 15 1440 68 16 2880 88 13 4320

9 9 1440 29 29 4320 49 30 4320 69 12 2880 89 17 1440

10 10 4320 30 30 4320 50 13 2880 70 20 1440 90 21 2880

11 11 1440 31 26 4320 51 13 2880 71 3 2880 91 8 2880

12 12 1440 32 27 4320 52 29 1440 72 26 2880 92 16 1440

13 13 1440 33 23 4320 53 4 2880 73 1 4320 93 16 2880

14 14 2880 34 7 4320 54 14 4320 74 15 2880 94 11 1440

15 15 1440 35 16 2880 55 6 2880 75 12 4320 95 13 1440

16 16 1440 36 28 4320 56 8 2880 76 29 1440 96 14 2880

37 18 1440 57 23 1440 77 16 1440 9717 17 4320 10 2880

18 18 4320 38 8 4320 58 8 4320 78 5 2880 98 24 1440

19 19 4320 39 9 2880 59 15 2880 79 16 2880 99 3 1440

20 20 2880 40 21 4320 60 11 4320 80 19 4320 100 29 1440  
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Table A7. All jobs with product types and due dates while tightness of due dates is 
increasing and total processing time level is high. 

20

16 16 2880 36 28 4320 56 8 1440 76 29 4320 96 14 20

17 17 2880 37 18 2880 57 23 2880 77 16 4320 97 10 1440

Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date Job ID Product

Type Due Date Job ID Product
Type Due Date

1 1 4320 21 21 4320 41 8 4320 61 8 4320 81 24 4320

2 2 4320 22 22 4320 42 10 4320 62 6 4320 82 18 4320

3 3 2880 23 23 4320 43 18 2880 63 19 4320 83 6 4320

4 4 4320 24 24 4320 44 24 4320 64 2 4320 84 11 4320

5 5 4320 25 25 4320 45 22 4320 65 16 4320 85 12 4320

6 6 4320 26 26 4320 46 30 4320 66 12 4320 86 27 4320

7 7 4320 27 27 4320 47 23 2880 67 9 2880 87 29 4320

8 8 4320 28 28 4320 48 15 4320 68 16 4320 88 13 4320

9 9 4320 29 29 4320 49 30 4320 69 12 4320 89 17 4320

10 10 4320 30 30 4320 50 13 4320 70 20 4320 90 21 4320

11 11 4320 31 26 4320 51 13 2880 71 3 4320 91 8 4320

12 12 4320 32 27 4320 52 29 4320 72 26 4320 92 16 4320

13 13 4320 33 23 2880 53 4 2880 73 1 4320 93 16 2880

14 14 4320 34 7 4320 54 14 4320 74 15 2880 94 11 4320

15 15 4320 35 16 4320 55 6 4320 75 12 4320 95 13 43

43

18 18 4320 38 8 4320 58 8 2880 78 5 4320 98 24 1440

19 19 2880 39 9 4320 59 15 4320 79 16 4320 99 3 1440

20 20 4320 40 21 4320 60 11 4320 80 19 4320 100 29 1440  

Table A8. Setup time with product types while product family ratio is 2 and 
temperature changing is not considered. 

5

16 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 0 125 85 125 125 85 85 85 125 85 85 85 125 85 85

17

1

19

20 0 125 85 85 85 1 5 85 85 85 125 85 85

21 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 0 85 85 125 85 85 85 125 5 85

22 0 125 5 5 85 125 85 125 85 125 5 125 85 85 125 85 125 125 85 125 125 85 0 85 125 85 85 85 125 85 85

23 0 125 85 85 85 125 85 125 85 125 85 125 5 85 125 85 125 125 85 125 125 85 85 0 125 85 85 85 125 85 85

24 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 0 85 85 85 125 85 85

25 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 125 0 85 85 125 85 85

26 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 5 125 125 85 125 125 85 85 85 125 85 0 85 125 85 5

27 0 125 85 85 5 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 0 125 85 85

28 0 125 85 85 85 125 85 125 85 5 85 125 85 85 125 85 125 125 85 5 125 85 85 85 125 85 85 85 0 85 85

29 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 5 85 85 125 85 85 85 125 0 85

30 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 5 125 125 85 125 125 85 85 85 125 85 5 85 125 85 0

Type U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

U 0 225 185 185 185 225 185 225 185 225 185 225 185 185 225 185 225 225 185 225 225 185 185 185 225 185 185 185 225 185 185

1 0 0 85 85 85 125 85 125 85 125 85 5 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

2 0 125 0 5 85 125 85 125 85 125 5 125 85 85 125 85 125 125 85 125 125 85 5 85 125 85 85 85 125 85 85

3 0 125 5 0 85 125 85 125 85 125 5 125 85 85 125 85 125 125 85 125 125 85 5 85 125 85 85 85 125 85 85

4 0 125 85 85 0 125 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 5 125 85 85

5 0 125 85 85 85 0 85 125 85 125 85 125 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

6 0 125 85 85 85 125 0 125 85 125 85 125 85 85 125 85 125 125 5 125 125 85 85 85 125 85 85 85 125 85 85

7 0 125 85 85 85 125 85 0 85 125 85 125 85 85 5 85 125 5 85 125 125 85 85 85 125 85 85 85 125 85 85

8 0 125 85 85 85 125 85 125 0 125 85 125 85 5 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

9 0 125 85 85 85 125 85 125 85 0 85 125 85 85 125 85 125 125 85 5 125 85 85 85 125 85 85 85 5 85 85

10 0 125 5 5 85 125 85 125 85 125 0 125 85 85 125 85 125 125 85 125 125 85 5 85 125 85 85 85 125 85 85

11 0 5 85 85 85 125 85 125 85 125 85 0 85 85 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

12 0 125 85 85 85 125 85 125 85 125 85 125 0 85 125 85 125 125 85 125 125 85 85 5 125 85 85 85 125 85 85

13 0 125 85 85 85 125 85 125 5 125 85 125 85 0 125 85 125 125 85 125 125 85 85 85 125 85 85 85 125 85 85

14 0 125 85 85 85 125 85 5 85 125 85 125 85 85 0 85 125 5 85 125 125 85 85 85 125 85 85 85 125 85 85

15 0 125 85 85 85 125 85 125 85 125 85 125 85 85 125 0 125 125 85 125 125 85 85 85 125 85 5 85 125 85

0 125 85 85 85 125 85 5 85 125 85 125 85 85 5 85 125 0 85 125 125 85 85 85 125 85 85 85 125 85 85

8 0 125 85 85 85 125 5 125 85 125 85 125 85 85 125 85 125 125 0 125 125 85 85 85 125 85 85 85 125 85 85

0 125 85 85 85 125 85 125 85 5 85 125 85 85 125 85 125 125 85 0 125 85 85 85 125 85 85 85 5 85 85

25 85 125 85 125 85 125 85 85 125 85 125 125 85 125 0 85 85 85 12
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Table A9. Setup time with product types while product family ratio is 2 and 
temperature changing is considered. 

Type U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
U 0 285 245 245 185 225 245 225 245 285 245 225 185 245 285 185 285 285 185 285 225 245 245 185 285 185 185 245 285 185 185
1 0 0 225 225 165 205 225 205 225 265 225 85 165 225 265 165 265 265 165 265 205 225 225 165 265 165 165 225 265 165 165
2 0 265 0 145 165 205 225 205 225 265 145 205 165 225 265 165 265 265 165 265 205 225 145 165 265 165 165 225 265 165 165
3 0 265 145 0 165 205 225 205 225 265 145 205 165 225 265 165 265 265 165 265 205 225 145 165 265 165 165 225 265 165 165
4 0 185 145 145 0 125 145 125 145 185 145 125 85 145 185 85 185 185 85 185 125 145 145 85 185 85 85 65 185 85 85
5 0 185 145 145 85 0 145 125 145 185 145 125 85 145 185 85 185 185 85 185 125 145 145 85 185 85 85 145 185 85 85
6 0 265 225 225 165 205 0 205 225 265 225 205 165 225 265 165 265 265 85 265 205 225 225 165 265 165 165 225 265 165 165
7 0 185 145 145 85 125 145 0 145 185 145 125 85 145 65 85 185 65 85 185 125 145 145 85 185 85 85 145 185 85 85
8 0 265 225 225 165 205 225 205 0 265 225 205 165 145 265 165 265 265 165 265 205 225 225 165 265 165 165 225 265 165 165
9 0 265 225 225 165 205 225 205 225 0 225 205 165 225 265 165 265 265 165 145 205 225 225 165 265 165 165 225 145 165 165
10 0 265 145 145 165 205 225 205 225 265 0 205 165 225 265 165 265 265 165 265 205 225 145 165 265 165 165 225 265 165 165
11 0 65 145 145 85 125 145 125 145 185 145 0 85 145 185 85 185 185 85 185 125 145 145 85 185 85 85 145 185 85 85
12 0 185 145 145 85 125 145 125 145 185 145 125 0 145 185 85 185 185 85 185 125 145 145 5 185 85 85 145 185 85 85
13 0 265 225 225 165 205 225 205 145 265 225 205 165 0 265 165 265 265 165 265 205 225 225 165 265 165 165 225 265 165 165
14 0 265 225 225 165 205 225 85 225 265 225 205 165 225 0 165 265 145 165 265 205 225 225 165 265 165 165 225 265 165 165
15 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 0 185 185 85 185 125 145 145 85 185 85 5 145 185 85 5
16 0 265 225 225 165 205 225 205 225 265 225 205 165 225 265 165 0 265 165 265 205 225 225 165 265 165 165 225 265 165 165
17 0 265 225 225 165 205 225 85 225 265 225 205 165 225 145 165 265 0 165 265 205 225 225 165 265 165 165 225 265 165 165
18 0 185 145 145 85 125 65 125 145 185 145 125 85 145 185 85 185 185 0 185 125 145 145 85 185 85 85 145 185 85 85
19 0 265 225 225 165 205 225 205 225 145 225 205 165 225 265 165 265 265 165 0 205 225 225 165 265 165 165 225 145 165 165
20 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 85 185 185 85 185 0 145 145 85 185 85 85 145 185 85 85
21 0 265 225 225 165 205 225 205 225 265 225 205 165 225 265 165 265 265 165 265 205 0 225 165 265 165 165 225 265 85 165
22 0 265 145 145 165 205 225 205 225 265 145 205 165 225 265 165 265 265 165 265 205 225 0 165 265 165 165 225 265 165 165
23 0 185 145 145 85 125 145 125 145 185 145 125 5 145 185 85 185 185 85 185 125 145 145 0 185 85 85 145 185 85 85
24 0 265 225 225 165 205 225 205 225 265 225 205 165 225 265 165 265 265 165 265 205 225 225 165 0 165 165 225 265 165 165
25 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 85 185 185 85 185 125 145 145 85 185 0 85 145 185 85 85
26 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 5 185 185 85 185 125 145 145 85 185 85 0 145 185 85 5
27 0 265 225 225 85 205 225 205 225 265 225 205 165 225 265 165 265 265 165 265 205 225 225 165 265 165 165 0 265 165 165
28 0 265 225 225 165 205 225 205 225 145 225 205 165 225 265 165 265 265 165 145 205 225 225 165 265 165 165 225 0 165 165
29 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 85 185 185 85 185 125 65 145 85 185 85 85 145 185 0 85
30 0 185 145 145 85 125 145 125 145 185 145 125 85 145 185 5 185 185 85 185 125 145 145 85 185 85 5 145 185 85 0  

Table A10. Setup time with product types while product family ratio is 6 and 
temperature changing is not considered. 

225 225 185 225 225 185 225 225 225 185 225 225 225 185 225 185

1 0 0 125 85 85 125 125 85 5 125 5 125 125 125 5 125 125 5 125 125 85 125 125 125 85 125 125 125 5 125 85

2 0 85 0 85 85 5 5 85 85 5 85 125 125 5 8 5 5 85 5 125 85 5 5 5 85 5 5 125 85 5 85

3 0 85 125 0 85 125 125 5 85 125 85 125 125 125 85 125 125 85 125 125 5 125 125 125 85 125 125 125 85 125 85

4 0 85 125 85 0 125 125 85 85 125 85 125 125 125 85 125 125 85 125 125 85 125 125 125 5 125 125 125 85 125 5

5 0 85 5 85 85 0 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 5 5 125 85 5 85

6 0 5 85

7 85

8 0 125 85

9 0 85 5 85 85 5 5 85 5 5 85 5 5 125 85 5 85

10 0 5 125 85 85 125 125 85 5 125 0 125 125 125 5 125 125 5 125 125 85 125 125 125 85 125 125 125 5 125 85

11 0 85 125 85 85 125 125 85 85 125 85 0 5 125 85 125 125 85 125 5 85 125 125 125 85 125 125 5 85 125 85

12 0 85 125 85 85 125 125 85 85 125 85 5 0 125 85 125 125 85 125 5 85 125 125 125 85 125 125 5 85 125 85

13 0 85 5 85 85 5 5 85 85 5 85 125 125 0 85 5 5 85 5 125 85 5 5 5 85 5 5 125 85 5 85

14 0 5 125 85 85 125 125 85 5 125 5 125 125 125 0 125 125 5 125 125 85 125 125 125 85 125 125 125 5 125 85

15 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 0 5 85 5 125 85 5 5 5 85 5 5 125 85 5 85

16 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 0 85 5 125 85 5 5 5 85 5 5 125 85 5 85

17 0 5 125 85 85 125 125 85 5 125 5 125 125 125 5 125 125 0 125 125 85 125 125 125 85 125 125 125 5 125 85

18 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 0 125 85 5 5 5 85 5 5 125 85 5 85

19 0 85 125 85 85 125 125 85 85 125 85 5 5 125 85 125 125 85 125 0 85 125 125 125 85 125 125 5 85 125 85

20 0 85 125 5 85 125 125 5 85 125 85 125 125 125 85 125 125 85 125 125 0 125 125 125 85 125 125 125 85 125 85

21 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 0 5 5 85 5 5 125 85 5 85

22 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 0 5 85 5 5 125 85 5 85

23 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 0 85 5 5 125 85 5 85

24 0 85 125 85 5 125 125 85 85 125 85 125 125 125 85 125 125 85 125 125 85 125 125 125 0 125 125 125 85 125 5

25 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 0 5 125 85 5 85

26 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 5 0 125 85 5 85

27 0 85 125 85 85 125 125 85 85 125 85 5 5 125 85 125 125 85 125 5 85 125 125 125 85 125 125 0 85 125 85

28 0 5 125 85 85 125 125 85 5 125 5 125 125 125 5 125 125 5 125 125 85 125 125 125 85 125 125 125 0 125 85

29 0 85 5 85 85 5 5 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 5 5 125 85 0 85

30 0 85 125 85 5 125 125 85 85 125 85 125 125 125 85 125 125 85 125 125 85 125 125 125 5 125 125 125 85 125 0

Type U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

U 0 185 225 185 185 225 225 185 185 225 185 225 225 225 185

5

85 5 85 85 5 0 85 85 5 85 125 125 5 85 5 5 85 5 125 85 5 5 5 85 5 5 125 85

0 85 125 5 85 125 125 0 85 125 85 125 125 125 85 125 125 85 125 125 5 125 125 125 85 125 125 125 85 125

5 125 85 85 125 125 85 0 125 5 125 125 125 5 125 125 5 125 125 85 125 125 125 85 125 125 125 5

85 0 85 125 125 5 85 5 5 85 5 125 85 5
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Table A11. Setup time with product types while product family ratio is 6 and 
temperature changing is considered. 

165

29 5

30 0 145 185 145 5 125 185 5 125 65 125 125 185 145 125 0

Type U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

U 0 245 285 245 185 225 285 185 245 285 245 225 225 285 245 225 285 245 225 285 185 285 285 225 245 225 225 285 245 225 185

1 0 0 265 225 165 205 265 165 145 265 145 205 205 265 145 205 265 145 205 265 165 265 265 205 225 205 205 265 145 205 165

2 0 225 0 225 165 85 145 165 225 145 225 205 205 145 225 85 145 225 85 265 165 145 145 85 225 85 85 265 225 85 165

3 0 225 265 0 165 205 265 85 225 265 225 205 205 265 225 205 265 225 205 265 85 265 265 205 225 205 205 265 225 205 165

4 0 145 185 145 0 125 185 85 145 185 145 125 125 185 145 125 185 145 125 185 85 185 185 125 65 125 125 185 145 125 5

5 0 145 65 145 85 0 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 5 145 5 5 185 145 5 85

6 0 225 145 225 165 85 0 165 225 145 225 205 205 145 225 85 145 225 85 265 165 145 145 85 225 85 85 265 225 85 165

7 0 145 185 65 85 125 185 0 145 185 145 125 125 185 145 125 185 145 125 185 5 185 185 125 145 125 125 185 145 125 85

8 0 145 265 225 165 205 265 165 0 265 145 205 205 265 145 205 265 145 205 265 165 265 265 205 225 205 205 265 145 205 165

9 0 225 145 225 165 85 145 165 225 0 225 205 205 145 225 85 145 225 85 265 165 145 145 85 225 85 85 265 225 85 165

10 0 145 265 225 165 205 265 165 145 265 0 205 205 265 145 205 265 145 205 265 165 265 265 205 225 205 205 265 145 205 165

11 0 145 185 145 85 125 185 85 145 185 145 0 5 185 145 125 185 145 125 65 85 185 185 125 145 125 125 65 145 125 85

12 0 145 185 145 85 125 185 85 145 185 145 5 0 185 145 125 185 145 125 65 85 185 185 125 145 125 125 65 145 125 85

13 0 225 145 225 165 85 145 165 225 145 225 205 205 0 225 85 145 225 85 265 165 145 145 85 225 85 85 265 225 85 165

14 0 145 265 225 165 205 265 165 145 265 145 205 205 265 0 205 265 145 205 265 165 265 265 205 225 205 205 265 145 205 165

15 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 0 65 145 5 185 85 65 65 5 145 5 5 185 145 5 85

16 0 225 145 225 165 85 145 165 225 145 225 205 205 145 225 85 0 225 85 265 165 145 145 85 225 85 85 265 225 85 165

17 0 145 265 225 165 205 265 165 145 265 145 205 205 265 145 205 265 0 205 265 165 265 265 205 225 205 205 265 145 205 165

18 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 0 185 85 65 65 5 145 5 5 185 145 5 85

19 0 225 265 225 165 205 265 165 225 265 225 85 85 265 225 205 265 225 205 0 165 265 265 205 225 205 205 145 225 205 165

20 0 145 185 65 85 125 185 5 145 185 145 125 125 185 145 125 185 145 125 185 0 185 185 125 145 125 125 185 145 125 85

21 0 225 145 225 165 85 145 165 225 145 225 205 205 145 225 85 145 225 85 265 165 0 145 85 225 85 85 265 225 85 165

22 0 225 145 225 165 85 145 165 225 145 225 205 205 145 225 85 145 225 85 265 165 145 0 85 225 85 85 265 225 85 165

23 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 0 145 5 5 185 145 5 85

24 0 225 265 225 85 205 265 165 225 265 225 205 205 265 225 205 265 225 205 265 165 265 265 205 0 205 205 265 225 205 85

25 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 5 145 0 5 185 145 5 85

26 0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 5 145 5 0 185 145 5 85

27 0 225 265 225 165 205 265 165 225 265 225 85 85 265 225 205 265 225 205 145 165 265 265 205 225 205 205 0 225 205 165

28 0 145 265 225 165 205 265 165 145 265 145 205 205 265 145 205 265 145 205 265 165 265 265 205 225 205 205 265 0 205

0 145 65 145 85 5 65 85 145 65 145 125 125 65 145 5 65 145 5 185 85 65 65 5 145 5 5 185 145 0 8

85 145 185 145 125 125 185 145 125 185 145 125 185 85 185 18  
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Figure 7. The trend of average solutions  population of hybrid GA repeated four 

times in problem No. 7. 
in

 47



2970

3020

3070

3120

3170

3220

0 200 400 600 800 1000 1200 1400 1600

generation

m
ak

es
pa

n

pm0gen1500scan30

pm0.25gen1500scan30

pm0.5gen1500scan30

pm0.75gen1500scan30

pm1gen1500scan30

 
Figure 8. The trend of best solution in population of hybrid GA repeated four times in 

problem No. 7. 
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Figure 9. The trend of average solutions in population of hybrid GA repeated four 
times in problem No. 8. 
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Figure 10. The trend of average so ation of hybrid GA repeated four 
times in problem No. 8. 
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Figure 11. The further improvement of hybrid GA with initialization by improving 

uristics in problem No. 8

 49



3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

0 200 400 600 800 1000 1200 1400 1600

generation

m
ak

es
pa

n

pm0.5gen1500scan30

pm0.75gen1500scan30

pm1gen1500scan30

 
Figure 12. The further improvement of hybrid GA with initialization by improving 

 
 

heuristics in problem No. 16. 
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