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Abstract
The wafer probing scheduling problem (WPSP) is a practical version of the

parallel-machine scheduling problem, which has many real-world applications
including the integrated circuit (IC) manufacturing industry and other industries.
WPSP carries the objective to minimize the total machine workload, which might lead
to unbalanced workloads among the parallel machines and be unaccepted for the shop
floor supervisors. Therefore, we consider WPSP with the objective to minimize the
maximum completion time and formulate the WWPSP with minimum makespan as an
integer-programming problem. = To solve the WPSP with minimum makespan
effectively, we proposed the impraving heuristics, which add the expected machine
load into savings and insertion algorithmsfor;selving problems repeatedly. Besides,
we also provide hybrid GA including initial-population by WPSP algorithms and
sub-schedule preservation crossover to solve the considered problem. To evaluate
the performance of the two proposed approaches under various conditions, the
performance comparison on a set of test problems involving four problem
characteristics are provided. The computational result shows that improving
heuristics are better than hybrid GA in scheduling solutions and velocities of WPSP
with minimum makespan. When hybrid GA is using initial population by improving
heuristics, it can make further improvement for the best solution of improving

heuristics in some situations.

Keyword: wafer probing, parallel-machine scheduling, minimum makespan,

improving heuristics, genetic algorithms
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Notations

IP modeling

R, : the jth product type of jobs

I, : the number of jobs in jth product type of jobs

m, : the kth machine of identical parallel machines

r, : the job of WPSP with minimum makespan

F : the total number of product families

J : the total number of product types

J, : the total number of product types in product family 1

R, : the jth subset (product type) of jobs to be processed

Cmax : the maximum completion time (makespan)

w : the predetermined machine capacity expressed in terms of processing
time units

S, : the sequentially dependent setup.time between any two consecutive jobs
r, and 7,

X, : the variable indicating whether the job ' » is scheduled on machine m,

D, : the processing time-of job 7 incluster \R, (1, e R;)

ty : the starting time of job. # to be-processed on machine m,

b, : the ready time of job 7

. : the due date of job r,

e, : the latest starting processing time of job r,

Vin : the precedence variable, which should be set to 1 if the two jobs 7 and
r, are scheduled on machine m, and job r precedesjob 7 (not
necessarily directly), and 0 otherwise

Zin : the direct-precedence variable, which should be set to 1 if the two jobs
r. and r, are scheduled on machine m, andjob r precedesjob r
directly, and 0 otherwise.

Q . a constant, which is chosen to be sufficiently large enough to make

constraints of IP model satisfied

Improving Heuristics

Max[s;] :the maximal setup time of machine switching from idle status (denoted

by the label “U”) to processing status

Max[s,,] :the maximal setup time of machine switching from processing status to
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Max?2[s, ]
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C4(u)

ci(u)
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idle status

: the maximal setup time of two consecutive jobs processed on machine

coming from different product type and different product family

: the maximal setup time of two consecutive jobs from different product

type and same product family

: the parameter which may vary according to the problem data structure

used in estimation of expected machine load

: the sum of expected setup time on identical parallel machines
: the expected machine workload
: the selected job has been scheduled on the v th position of machine m,

: the saving value for any pairs of jobs » and r,, and U denotes the idle

status

: the modified saving value for any pairs of jobs » and 7, and U

denotes the idle status

: the parameter added into the savings function of modified sequential

saving (MSA) to present the percentage of postponement restriction

: the parameter added into-the savings-function of modified sequential

saving (MSA) to present the percentage of time window restriction

the insertion cost ofjob - added-into'the v th position on machine m,
in sequential insertion (SIA)

the best insertion cost of job « added into the v th position on
machine m, in sequential insertion (SIA)

: the regret value of job « in sequential insertion (SIA)

: the largest regret value among all unscheduled jobs in sequential

insertion (SIA)
the best insertion cost of job » added into the v th position on

machine m,. in parallel insertion (PIA)

: the regret value of job « in parallel insertion (PIA)

: the largest regret value of job " among all unscheduled jobs in parallel

insertion (PIA)
the modified insertion cost of job » added into the v th position on
machine m, in parallel insertion with the slackness (PIA I1)

: the parameter which represents the ratio of the insertion values that the

slackness would have in parallel insertion with the slackness (PI1A 11)

viii



¢, (u) : the modified regret value of job « in parallel insertion with the variance
of regret measure (PIA 1V)

Var(c;)  :the variance of best insertion cost between all parallel machines in
parallel insertion with the variance of regret measure (PIA 1V)

Avg(c;) :the average value of best insertion cost on all identical parallel machines
in parallel insertion with the variance of regret measure (P1A V)

@ : the parameter which determines the schedule ranking of all jobs on all
identical parallel machines in parallel insertion with the variance of regret
measure (PIA V)

LB : lower bound of the adjusting procedure

UB - upper bound of the adjusting procedure

ML, : the total machine load on machine m,

0 : the repeat times of executing WPSP algorithms in improving heuristics

Hybrid GA

Cmax, , :the makespan of the « th chromosome in the pool when the GA cycle
proceeds to the / th generation

K : the available machine number of identical parallel machines

F(a,p) :the fitness value ofithe "o th chromosome in the pool when the GA cycle
proceeds to the S th generation

d, : the due date of job on “v.th position of machine m,

SSL,, : the sum of slackness values for n consecutive jobs on machine m,,
which are located from vthto (v+#r-1)th position

SSL : the average value of slackness for n jobs started from v th to
(v+n—1)th position on machine m,

n : the number of job consideration on machine m, while estimating the
slackness of job combinations

N, : the number of jobs on machine m,

R : the product family ratio in testing problems

TI(Y) : the tightness value of jobs before Yth due date point

P(Y) : the total processing time of jobs of which due dates are given before Yth
due date point

Cap(Y) :the available capacity of machine before Yth due date point

Num(Y) :the number of jobs of which due dates are given before Yth due date point



1. Introduction

The wafer probing scheduling problem (WPSP) [1,2] is a practical version of the
parallel-machine scheduling problem, which has many real-world applications,
especially in the integrated circuit (IC) manufacturing industry. There are wafer
fabrication, wafer sorting, assembly, and final test in the processes of IC product, and
the first and fourth stages are related processes, where the testers are expensive and
critical. Pearn et al. [2] considered the wafer probing scheduling problem (WPSP)
with the objective of minimizing total workload. They formulated the WPSP as an
integer programming problem and transformed the WPSP into the vehicle routing
problem with time window (VRPTW). They provided three VRPTW algorithms for
solving the WPSP and their computational results showed that the network
transformation of identical parallel machine scheduling was efficient and applicable
under the objective of raising identical. parallel machine utilities. A
minimizing-makespan schedule‘not only can ‘result in higher efficiency and resource
utilization but minimize the time, which" jobs are-operating in the factory. The
identical parallel-machine scheduling problem ‘with minimized makespan also

identifies the bottleneck machine, which needs to be arranged carefully.

This paper considers the identical parallel-machine scheduling problem with
minimizing makespan, which has been proved to be a NP problem [3,4]. In view of
the NP-hard nature of the problem, several polynomial time algorithms have been
proposed for its solution. It has been traditional solved by operational methods such
as integer programming, branch and bound method, dynamic programming, etc.[5-9].
Min et al. [10] proposed a genetic algorithm, which contains the procedures of coding,
initializing, reproducing, crossover, and mutation. It was actually efficient for large
scale problems. Besides, Gupta et al. [11] provided a LISTFIT algorithm, or the
SPT/LPT and MULTIFIT procedure, for solving parallel-machine scheduling
problems with minimizing makespan. Some proposed algorithms also have been
used for solving parallel-machine scheduling with other objectives. Azizoglu and

Kirca [12] proposed a branch and bound algorithm combined with lower bounding



scheme for the objective of minimizing total tardiness. Lee and pinedo [13]
presented a three phases algorithm incorporating the ATCS rule and simulated
annealing method for minimizing the sum of weighted tardiness and the experimental
results showed that simulated annealing method had a great improvement of solutions.
Park, Kim, and Lee [14] addressed an extension of the ATCS (Apparent Tardiness
Cost with Setups) rule for the objective of minimizing total weighted tardiness.
Hurkens et al. [15] proposed a 0-1 interchange, which is the procedure of the job
moving iteratively to the machine with minimal load if its processing time is less than
the difference between maximum and minimum machine load. Veen et al. [16]
formulated an integer programming by dividing jobs into K job-classes and
considered that the change-over time between two consecutive jobs is dependent on

the job-class to which the two jobs belonged.

For the WPSP with the objective of minimizing makespan, we first formulate our
problem as an integer programming, which includes job due dates, job processing
times, job sequence-dependent setup time, and machine capacities. In section 3, we
propose improving heuristics, Wwhich jare“the network algorithms merging with two
different adjusting procedures respectively, for making the local optimum closer to
global one. In section 4, we address a hybrid genetic algorithm in contrast to the
two-phase heuristics we developed before. In the last section, we will describe the
experimental framework and present the analysis of the results by comparing the

genetic algorithm with two-phase heuristics.

2. Problem definition and formulation

Consider several product types of jobs with ready time and due date to be processed
on identical parallel machines with capacity constraint. The job processing time
depends on the product type of the job processed. Setup times for two consecutive
jobs of different product type are sequence dependent. The objective is to find a
schedule for the jobs which minimizes the maximum completion time without

violating the due date restrictions and the machine capacity constraints.

We first define R={R,,R,,....R,,R,,} as the J+1 subsets (product types) of

LA ]
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jobs to be processed with each subset R, :{r,. |i:Ij_l+1,Ij_1+2,...,1j_l+lj}
containing 7, jobs, where 7,=0and 7, ,=K. Thus, job subset R, :{rl,rz,...,r,l}
contains 7,  jobs, R, :{r,1+1,r,1+2,...,r,1+,2} contains 7, jobs, and
RM:{r,ﬁl,r,ﬁz,...,r,J+K} contains 7,,, (K) jobs, where [, +1,+..+1,=1. Let
F be the total number of product families and J, be the total number of product
types in product family £, where iJf =J. Then M ={m,,m,,...,m,} can be
defined as the set of machines con{e;ilning K identical machines. The job subset
R,.,, which is a pseudo product type including K jobs, is used to indicate the K
machines are in idle state. Therefore, there are /+K jobs grouped into J+1
product types, at where the first 7 jobs are divided into J product types and the last
K jobs are pseudo jobs. Let p, be the processing time of job r in cluster R,
(r, €R;). Since the job processing time depends on the product type of the job, then
p; should be equal to p,,, given the function J(i) representing the product type
of job . Let Cmax be the maximum completion time (makespan) and W be
the predetermined machine capacity expressed in: terms of processing time units

respectively. Let s,

1

be the sequentially dependent setup time between any two

consecutive jobs ~ and r,, inwhich “sz-is.equalto s, ..

Further, let x, be the variable indicating whether the job r is scheduled on
machine m, . If job r should be processed on machine m, , set x, =1,
otherwise set x, =0. Let 7, be the starting time of job r, to be processed on
machine m,. Set b, asthe ready time of job » and d, as the due date of job 7.
The starting processing time ¢, should not be greater than the latest starting
processing time e,, which relates to the due date &, and can be computed as
e, =d, — p,. The starting processing time ¢, also should not be less than the
earliest starting processing time b,. If job r is ready to be processed initially, then
set b to 0. We note that the processing time and due dates for the job in R, ,
should be set to 0 so that these pseudo jobs can be scheduled as the first jobs on each
machine, which indicate that each machine is initially in idle state. Let y, Dbe the
precedence variable, where y_, should be set to 1 if the two jobs r, and r, are
scheduled on machine m, and job r precedes job 7, (not necessarily directly),

and where y,, =0 otherwise. Further, let z,, be the direct-precedence variable,

3



where z,, should be set to 1 if the two jobs 7, and 7, are scheduled on machine

m, and job r, precedesjob r, directly, and where z,, =0 otherwise.

To find a schedule for these jobs which minimizes makespan without violating the
machine capacity and due date constraints, we consider the following integer

programming model:

Minimize Cmax

subject to

fxik =1, for all i (1)
k=1

I+K

> x, =1 for all £ (2)
i=I+1

1+K I+K I+K

Yxu i+ 2 (Xzysy) < Cmax, for all k 3)
i=1 =1 =l

I1+K I+K 1+K

Yx,p+ 2 (Xzys,)<W, for all k 4)
i=1 =1 i'=l

Ly + D+ =ty + Qv —1) <0, forall 7k (5)
ty + D+ Sy =ty + Qi + 2 — 2)20; forall 7,k (6)
t, >b,x,, for all ik (7)
t, <ex,, forall i,k (8)
(Vir + Viw) — Qlxy +x, —2) 21, for all i,k (9)
(Vine + Vi) +Qxy + x, —2) <1, for all i,k (10)
(Vi + Vi) — Qlxy +x,) <0, for all i,k (11)
(Vi + Vi) — Qlxyy —x, +1) <0, for all i,k (12)
(Vi + Vi) = Qlxy —xy +1) <0, for all i & (13)
Vin 2z, forall ik (14)
Ny -3z =1 for all k (15)
i=1 i#i'

Voo TZ200 —Qe, 2.0, —2) = Qs — 2 —1) 22, for all i,k (16)
x, €{01}, for all i,k (17)
Vi €{0,33, for all i,k (18)



z. €01}, for all i,k (19)

The constraints in (1) guarantee that jobr, is processed by one machine exactly
once. The constraints in (2) guarantee that only one pseudo job r, /+1<i<I+K,
is scheduled on a machine. The constraints in (3) state that each machine workload
does not exceed the maximum completion time Cmax among all K machines. The
constraints in (4) state that each machine workload does not exceed the machine
capacity W . The constraints in (5) and (6) ensure that ¢, + p, +s,, =t¢, ifjob 7,
precedes job 7, directly (y,, =1 and z,, =1). The constraints in (5) ensure the
satisfaction of the inequality ¢, + p, +s, <t, if job r preceding job r,
(v, =1). The number Q is a constant, which is chosen to be sufficiently large so
that the constraints in (5) are satisfied for y,, =0orl. For example, we can choose
Q=Y (p, +max.{s,,}). The constraints in (6) ensure the satisfaction of the
inequality ¢, + p, +s. > ¢, and the event the jobs r, proceeding job 7 directly

(v, * z, —2=0).

u

The constraints in (7) and (8) state that the starting processing time ¢, for each
job 7 scheduled on machinetm, “(gz=%)-should not be less than the earliest
starting processing time bi and not be greater than the latest starting processing time ei.
The constraints in (9) and (10) ensure that one job should precede another (y. +
y,, =1)if two jobs are scheduled on the same machine (x, +x., -2 =0). The
number Q is a constant, which is chosen to be sufficiently large so that the constraints
in (9) and (10) are satisfied for x, +x. -2 <0. The constraints in (11) ensure that
the precedence variables y.. and y. should be set to zero (y. . + y. < 0) if
any two jobs r, and r, are not scheduled on the machine m, (x, +x, = 0).
The constraints in (12) and (13) ensure that the precedence variables y.. and y.
should be set to zero (y., + y . < 0)ifanyonejob r or 7, is notscheduled on
the machine m,. The constraints in (12) indicates the case that job 7, is scheduled
on machine m, and the job r, is scheduled on another machine (x, -x, +1=0)
and the constraints in (13) indicates the case that job r, is scheduled on machine

m, and the job r, is scheduled on another machine (x; - x, +1=0).

The constraints in (14) ensure that job 7, could precede job 7, directly (z., =1)

5



only when y. =1andjob r couldnotprecede job 7, directly (z. =0)ifjob r
is scheduled after job 7, (y.=0). The constraints in (15) state that there should
exist 1-1 directly precedence variables, which are set to 1 on the schedule with | jobs.
The constraints in (16) state that when the job r precedes job r, but not
consecutively (y. = 1 and z_. = 0), then there must exist another job r.
scheduling after job 7, directly (. =1 and z_. =1) and ensuring the satisfaction

of the inequality y. +z. 22.

3. The Improving Heuristics

There are many kinds of network algorithms for WPSP with minimizing total
machine workload. VRPTW algorithms are one of them which have been
successfully applied to solve WPSP with good efficiency. Because VRPTW
algorithms are effective for solving WPSP, we adopt these WPSP algorithms to solve
WPSP with minimum makespan+in the following of this paper. We use these
algorithms based on expected machine-load-EZL restriction to find feasible solutions of
WPSP with minimum makespan in phase“l of improving heuristics. Then feasible
solutions would be improved through the-adjusting-procedure, phase Il of improving
heuristics. In this paper we propose twe=phase heuristics, improving heuristics, to
help solving the WPSP with minimum makespan more efficiently. The main idea is
that improving heuristics use the adjusting procedure to improve feasible solutions
solved by WPSP algorithms. The improving procedure would search the best
solution through the different machine workload repeatedly. Phase one of the
improving heuristic is to apply some efficient WPSP algorithms based on the expected
machine load EL restriction for finding feasible solutions of WPSP with minimum
makespan. In phase two, we will provide an improving procedure for making the
local optimum solved by WPSP algorithms climbing to the global one. The structure

of the improving heuristic is shown as Fig. 1.



Phase I

Estimate £, UB, LB, and let

6=0
Solve the WPSP with C by using the

insertion and savings algorithms with

capacity restriction £L, 5 =5 +1

\
Phase 11 v

Calculate the max
iteration §”

J

he number of required

Yes A No
machines 1s less or equal to i
K?
Y
~. N

Is 656 >
l ,

Yes Replace UB with EL Replace LB with £L

Solve the problem by using the insertion and savings
algorithms with new capacity restriction, equal to
(LB+UB)/2,and 6=0+1

Stop ‘

Figure 1. The structure of the improving heuristic

To find the minimal Cmax more efficiently, we provide the estimation of the
expected machine workload EL corresponding to the parallel machine scheduling
problem, which will be utilized along with scheduling algorithms.  Before
calculating EL, we would define the notation ES, which is the total expected setup
time of all identical parallel machines. The expected machine workload EL equals to
the sum of the expected setup time ES and the total job processing time divided by the
number of available machines K. Let s, be the sequence dependent setup time of
any two consecutive jobs » and r, on the same machine. Let Max[s ] be the
maximal setup time of machine switching from idle status (denoted by the label “U”)

to processing status, Max[s,,] be the maximal setup time of machine switching from



processing status to idle status, Max1[s,] be the maximal setup time of two
consecutive jobs processed on machine coming from different product type and
different product family, Max2[s,] be the maximal setup time of two consecutive
jobs from different product type and same product family. Therefore, equation (20)

expresses the computation of ES .

, § i)
ES = K x (Max[s ]+ Max[s,, ]+ (E —1) x (Max1[s, ]x =

P/ +C/
. . 2o (20)
> Py yCy
+ Max2[s, ] x =L2 x L

B e R g

)

where the notations “P” and “C” in equation (20) represent the symbol of permutation
in statistics. And the coefficient “0” indicates the setup time of two consecutive jobs

from the same product type and the same product family should be zero.

Let the parameter o, which-may vary-according-to the problem data structure, be
the allowance of uniform capacity decided by the user and be set as the value between
-0.5 and 0.5. We consider the expected capacity EL is the allowance multiplied by
the outcome, which is the sum of total job processing times plus the expected setup

time ES divided by K machines fairly. Then we can getthe EL as follows:

EL:[%X(ﬁp,- +ESH><(1+0) and —05<05<05 (21)
i=1

3.1 Phase | - Existing network algorithms

Generally speaking, the WPSP algorithms include insertion and saving algorithms.
The insertion algorithms generally include two types, the sequential and the parallel.
The saving based procedures include four types, the sequential, the parallel, the
generalized, and the matching based. We first define the order
(ok» fygr s Bpya o Lo o By ) Where i, and i, both represent the machine m, is
in the idle state, and i, represents that selected job has been scheduled on the vth

position of machine m,. Then we would review savings and insertion algorithms



by citing Clark and Wright [17], Golden [18], Pearn et al. [19], Solomon [20], Potvin
and Rousseau [21], and Yang et al. [22]. These algorithms are including the
sequential saving algorithm, the modified sequential saving algorithm, the sequential
insertion algorithm, the parallel insertion algorithm, and modified parallel insertion

algorithms.  The procedures of these algorithms above are introduced as follows.

Sequential savings algorithm (SSA)

First of all, the sequential savings algorithm calculates the savings of all paired-jobs
and creates a saving list by arranging their saving values in descending order. Then
we pick the first pair of jobs from the top of the saving list to start an initial schedule.
We can confirm whether a selected pair of jobs is feasible by checking the machine
capacity constraint and the due date restrictions of jobs. The sequential savings
algorithm spreads out the schedule by finding the feasible pair of jobs from the top of
the savings list and adding it to either one endpoint of the schedule. If the current
schedule is too tight to add any job in,-choose the feasible pair of jobs from the top of
the saving list as a new schedule. Repeat this step until all jobs are scheduled.

The procedure is presented in the-following:

Step 1. (Initialization) Calculate the savings'value SA4, defined as the following for
all pairs of jobs » and r,, where U denotes the idle status.

SA; =5y +syt+ s, T+ Su-(sy + s+ Siu) =8,y Sy —S (22)

Step 2. Arrange the savings and create a list of the saving values in a descending
order.
Step 3. Choose the first pair of jobs from the saving list as an initial schedule. Start
from the top of the savings list, and proceed with the following sub-steps:
Step 3-1. Select the first pair from the top saving list without violating the
machine capacity and due date constraints. Then add it to either
one end of the current schedule.
Step 3-2. If the current schedule is too tight to add any job on it, choose the
best feasible pair on the saving list to start a new schedule.
Step 4. The chosen jobs then form a feasible machine schedule. Repeat step 3 until
all the jobs on the saving list are scheduled.



Modified sequential savings algorithm (MSSA)

The modified sequential savings algorithm adds two terms into the savings
estimation, the consideration of the postponement and the time window restriction.
For the postponement, the selecting way would tend to choose the pair of jobs with
not only higher saving values but longer processing time. By this way, the jobs with
longer processing time are forced to be processed earlier than others with shorter one.
Considering the other term, the job with earlier job latest starting time e, would be
placed before the job with later one e, on the savings list. ~ Two parameters, 4 and
B, are added into the savings function to present the percentage of postponement and
time window restriction, and W is the predetermined capacity. = The new savings

function is expressed in the following:

MSA4, = Alsyy +5yr =83) + (L= A) p; + w28y o uc10<8<1 (23)
e €.

i i

Sequential insertion algorithm (SIA)

The main part of the sequential insertion-is‘to build one schedule once until all jobs
are scheduled. The sequential insertion-would find the maximal benefit among the
schedule places that a selected job can insert into. When the existing schedule is full
of jobs, we create another new machine schedule. The initial rule is to select a job
with the maximal initial setup time. After initializing the current schedule, the
priority of selecting job depends on the regret value c,(u) of all unscheduled jobs.
Find the best insertion place c|(u,k,v") of all unscheduled jobs and select job "
with the largest regret value c(u") as the first inserted job.  The evaluations of

insertion cost and regret values are defined as follows.

o(uk,v)=c¢ (i(v—l)k Uiy )= Sioayer TSuie T Si i (24)
e (ukv") = min[c, (u,kv)] (25)
¢, (u)=sy, —cj(Wky") (26)
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¢y (u”) = maxfc, (u)] (27)

In equation (24), the jobs i, and i, are placed individually on the (v -1)th
and v th positions of machine m,. And the term s, of equation (26) represents
the initial setup time of the unscheduled job »,. For each unscheduled job, we first
compute its best feasible insertion place c](u,kv") in equation (25), and we can get
the regret value of ¢, (x) inequation (26). The job with larger value ¢, (x) should
have the priority to be scheduled. Therefore, select the job «~ with largest value
c,(u”) and insert it into the best position of the schedule.  All unscheduled jobs will

be inserted under the following procedure.

Step 1. Initialize the schedule by selecting the job with the maximal initial setup time.

Step 2. For each unscheduled job, compute the best feasible insertion place v,
which has the smallest insertion value c](u,kv") on machine m,.

Step 3. Select the unscheduled job «~ with the largest value c¢,(z”) and put it into
the best insertion place of the schedule.’ *.If the existing schedule is too full to
add any unscheduled job; create.a new schedule on another machine.

Step 4. Repeat Step 2 and Step-3 until all johs are scheduled.

Parallel insertion algorithm (PIA)

The parallel insertion algorithm constructs a set of initial schedules on all machines
in the beginning. Besides, it also creates a new regret measure, which is the sum of
absolute differences between the best alternative on one machine and other
alternatives on other machines. A large regret measure means that there is a large
gap between the best insertion place of the unscheduled job on one machine and its
best insertion place on the other machines. Hence, unscheduled jobs with larger
regret values should be inserted into the schedule first, because there are large cost
differences of the best insertion place and second alternative. In this algorithm, we
add two criteria into our selecting rule. One is the value ¢/(u,k ,v"), which has the
smallest insertion cost on v”th position of machine &~. The other is the regret
value c,(u) different from c¢,(u) of equation (26). The insertion functions are as

follows.
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ek v') = mkin[cl' (u,kv7)] (28)

¢y (u) = 3 [ef(whv) —c(wk"v')] (29)
c3(u”) = maxe; (u)] (30)

Initialization is done by selecting the unscheduled jobs with the first K largest
initial setup times and putting them into the initial schedule of each machine. By
applying this method, we can get the K initial schedules and compute the best
insertion place in each of the schedules for all unscheduled jobs. Then we compute
the regret value c,(u) of all unscheduled jobs and find the largest value cj(u”) of
job u”". Select job »" and insert it into the best position v of machine & with

value c/(u,k",v"). The procedure of PIA is described as below.

Step 1. Initialize the schedule on each machine by selecting K jobs with the first K
largest initial setup times.

Step 2. For each unscheduled jab, find;its best:feasible insertion place by computing
cluk V).

Step 3. Calculate the regret value c,(x)"for each unscheduled job. Select the job
u~ with the largest regret.measure ¢, (#-) among all unscheduled jobs.
Insert it into the v th position of machine 4~ without violating the machine
capacity and its due date restrictions.

Step 4. Repeat Step 2 and Step 3 until all jobs are scheduled.

Parallel insertion with new initial criteria (PIA 1)

According to idea of the VRPTW, PIA first selects the farthest node to visit at the
beginning stage. However, selecting the job with largest initial setup time, the
farthest node, may not reduce the total machine workload. Comparing to PIA, this
modified one adds new initial criteria in find initial jobs of parallel machines.
Inserting a job into the existing schedule of the same product family can significantly
reduce the increased setup time. Because the jobs of the same product type must
belong to the same family, this procedure chooses the product type including the
maximal number of jobs and picks the job with the smallest latest starting time e, of

this type to be the initial schedule on each machine. Once the job 7 of product
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type J(i) is selected for a specific machine, other jobs of product type J(i) cannot
be selected as the initial schedules on other machines. After initializing K schedules

of machines, the following steps of PIA | are identical to PIA.

Parallel insertion with the slackness (P1A 11)

In order to express the impact of job due date, this algorithm adopts the modified
insertion functions c¢,,(u,k,v) of equation (31) instead of the value c, (u,k,v) of
PIA. It adds the latest starting time e, of unscheduled job u into consideration
and that would make the selection rule choose the job with smaller latest starting time
as the priority possibly. The modified insertion function is as the following.

¢y, (u,k,v)=A(s, +5

i1yt Uiy

-8

o) FA=A)(e,), 0<A<1 (31)
According to the insertion function’.above, we can determine the ratio of the
insertion values that the slackness would have by revising the value 4. The

insertion procedure is the same as PIA.

Parallel insertion with new initial.criteria and slackness (PIA I11)

Because PIA | and PIA 1l do have the advantage of reducing total machine setup
time, we generate the new modified parallel insertion algorithm by combining two
insertion criteria of job selection. At the beginning of inserting initial jobs, the
algorithm selects the product type including the maximal number of jobs and chooses
the job with the smallest value e, in this product type as the initial schedule on each
machine. Once the job r of product type J(i) is selected for a specific machine,
other jobs of product type J(i) cannot be put as the initial schedule on other
machines. The insertion cost is the same as ¢, (u,k,v) in equation (31) and other

steps in this modification algorithm are identical to PI1AI1.

Parallel insertion with the variance of regret measure (PIA 1V)

The original parallel insertion procedure does not consider the impact of the
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variance between the best insertion places on all machines. This modified algorithm
creates a new regret measure including not only the absolute total differences of the
best insertion value and other alternatives but also the variance among them.
Therefore, the selected job would have a significant variance Var(c,) under large

regret values. The modified calculation of the regret value is the following.

i) = 3 [ (uky) ~elk v )]+ (- p)ar(@), 02 p=1 @)
Var(c}) = [ wky’) - Ave(e)) K -1 (39
Avg(e]) =[X e (kv K (34)

The notation Var(c;) in equation (33) is the variance of best insertion cost
between all parallel machines, and Avg(c;) is the average value of best insertion
cost on all parallel machines. We can determine the schedule ranking of all jobs on

all parallel machines by adjusting‘the parameter. ¢:

3.2 Phase Il - Network Adjusting Procedure

In accordance with WPSP with ‘minimum_makespan, we develop an adjusting
procedure for WPSP algorithms.  The adjusting procedure is proceeding based on the
concept of lower bound LB and upper bound UB constraints. The adjusting
procedure is searching a near-optimal solution under the lower bound and upper
bound, so the solution time of the adjusting procedure is longer than Phase I. Here

are the steps of the adjusting procedure we developed.

Adjusting Procedure

The procedure makes the basic solutions solved by phase | closer to the optimum
based on lower bound and upper bound restriction. Let ML, be the total machine
load on machine m,, and let & be the number of adjusting expected machine load
EL. Here comes the detail of the adjusting procedure.

Step 1. Let & be zero and set the value EL° be the same of EL. Use the WPSP
algorithm described to generate a basic solution by adding a restriction of
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capacity EL® into it.
Step 2. Here we define the initial lower bound and upper bound as follows.

LB® = min{ML, } (35)
UB® = max{ ML, }+ max{p;} (36)

keK
According to the property of the solution, we define the maximal number &~

of adjusting in two ways.
(1) If the actually required number of machines & is smaller than the
number of available machines K, we let & =log,(EL’ — LB®), which
represents the maximal adjusting times we can use in this adjusting
procedure.
(2) If the actually required number of machines % is larger than the number
of available machines K, we let & =log,(UB° — EL’) in another way.
Step 3. The step is divided into two different decision rules.
(1) If the actually required number of machines & is smaller than the
number of available machines X, set the value UB’ to be the same of EL’,
and update ¢ with the increment 1. The expected machine load is replaced
with (LB® +UB®)/2,where ¢’ =6 —1,thatis, EL’ =(LB° +UB’)/2.
(2) If the actually required;number of'machines % is larger than the number
of available machines K, set-the value LB° to be the same of EL’, and
update o with the increment 1. The expected machine load is replaced
with (LB® +UB®)/2 - where &6"=6—1. ~The adjusting equation is the
same as the one above.
Step 4. Restart the network algorithm with the restriction of adjusting value EL°.
Step 5. If the value of & is larger than's" and the oth scheduling solution is
feasible, stop the procedure. Otherwise (& is less than & or the Sth
scheduling solution is infeasible) go to step 3 until all jobs are scheduled.

4. The Genetic Algorithm for WPSP with min C max

A genetic algorithm is a search algorithm based on the mechanism of genetics and
evolution, which combines the exploitation of past results with the information of new
areas of the search space. A genetic algorithm can imitate some innovative talent of
a human search by using the surviving techniques of fitness function. The
mechanism of a genetic algorithm is very simple, involving nothing but copying
strings and swapping positions among strings. In every new generation of a genetic
algorithm, a set of strings are created exploiting information from the previous ones.
With this collection of artificial strings, a new part of population is tried for good

measure and the best overall solution would become the candidate solution to the

15



problem.

4.1 GA for Parallel Machine Problem

The genetic algorithm takes advantage of historical information effectively to
proceed with new search points for expected improvement. Simple operation and
effective power are two primary attractions of the GA approach. The effectiveness
of GA depends on an appropriate mix of exploration and exploitation. Two genetic
operators, crossover, and mutation, are designed to approach this goal. Many
researchers have considered the parallel-machine scheduling problem by using the
genetic approach. Zomaya and Teh [23] employed a GA considering load balancing
issues suchlike threshold policies, information exchange criteria, and inter-processor
communication, to solve the dynamic load balancing problem with minimizing the
maximum completion time. Cheng et al. [24,27] considered an identical parallel
machine system with an objective®of minimizing the maximal weighted absolute
lateness and proposed a hybrid algorithar which.combined the GA with the due date
determination. They proved that mutation should play more critical role than the
crossover and the hybrid genetic-algorithm-did-outperform the conventional heuristics.
Min and Cheng [25] provided a geneticralgorithm based on the machine code for
minimizing makespan in identical parallel machine scheduling problem and it was fit
for larger scale problems with comparison to LPT and SA. Cochran et al. [26]
proposed a two-stage multi-population genetic algorithm (MPGA) to solve parallel
machine with multiple objectives.  Multiple objectives are combined via the
multiplication of the relative measure of each objective in the first stage, and the
solutions of the first stage are arranged into sub-population to evolve separately under
the elitist strategy. Ulusoy et al. [28] proposed a genetic algorithm with the
crossover operator MCUOX for solving the parallel-machine scheduling problem
with minimizing the total weighted earliness and tardiness values. They showed that
GA with MCUOX outperformed in larger-sized, more difficult problems. Herrmann
[29] provided a two-space genetic algorithm representing solutions and scenarios for
solving minimizing makespan problems and the experiment showed the two-space

GA could find robust solutions. Tamaki et al. [30] dealt with identical parallel
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machine scheduling problems with the objective of minimizing total flow time and
earliness/tardiness penalties. They proposed a genetic algorithm combined with a
simplex method to generate an effective set of Pareto-optimal schedules. Vignier et
al. [31] provided a hybrid method to solve a parallel-machine scheduling problem
with minimizing the total cost of assignment and setup time and the result showed
efficient in industrial case. Lin [32] considered a unrelated parallel machine
scheduling problem with due date restriction for minimizing makespan, total weighted
tardiness, and total weighted flow time. She proposed a genetic algorithm combined
with prescribed initialization for solving the multi-objective and the result expressed
that the GA with prescribed initialization could find an optimal solution in small sized

problems. Table 1 shows the differences of GA these researchers developed.
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Table 1. The comparison of GA under various problem characters, crossover, and mutation.

Setup

Release

Objective |Due date| : : . . GA
: . time time . Crossover - Initial population
Author function of |considera conside |considera Coding method operator Mutation operator generation compared GA results
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J.K., Horng, tardinessg and job has No {ts own the chromosome |The one-point pmutation Random generate ive genetic | (MPGA) shows
S.M., and total weidhted its own release |EPresents the crossover robability and g algorithm | better results over
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completion time) rocess iob one replaced with a roblems
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Table 1. Continued
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Table 1. Continued
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4.2 The Hybrid Genetic Algorithm

GA is an artificial adaptive system for simulating natural evolution. Because of
their effectiveness and efficiency in searching complex spaces, they are increasingly
used to attack NP-hard problems. The core of GA is its crossover operator that
progressively constructs near optimal solutions from good feasible solutions. In this
paper, we propose a new crossover that protects better schedules of machines from
elimination.  First of all, we would give some definition of terms including
Pop _size , Ex_Pop_size , max_gene, off size, and p, .  Let notations
Pop _size and Ex_Pop _size be the number of parents and extended population
individually, off size be the number of offspring, and max_gene be the maximum
number of generated generation. Besides, let p, be the prescribed probability of
mutation. The flowchart of the execution for hybrid genetic algorithm is given in

Fig. 2.

21



Problem Encoding
(Ex:37%95%416%28)

Initialize z solutions
( constructed by insertion and
savings algorithms)

Current population

(Parents), <

Pop size
A

R Selection A
(Roulette wheel method) -
Enlarged population
i —(sum of Pop_size and Ex_Pop_size)
Ex_Pop _size=2*Pop_size
Sub-schedule Preservation Crossover

l

. Pop_size=
Swapping Mutation Ex_Pop_size>=N? Ex_ggp_sjze
under the scenario U[0,1]<=pm
(operate with a prescribed probability pm)
A
Extended population Elitist strategy(Choose the better N strings

(offspring) from enlarged population)

off size=olf size+1

New generation
(New population)

off size=Pop_size?

Yesl

topping criteria
(The number of
generated generation
=max_gene?)

Figure 2. The flowchart of the execution for hybrid genetic algorithm.

4.2.1 Problem encoding

Normal binary encoding does not work very well for the parallel-machine
scheduling problem because the encoding strings may become too redundant to
incorporate all needed messages. Therefore, we code the strings by using the
representation of decimal numbers. We use a set of integers and stars
representing the job identity and the partition of jobs to machines for parallel-machine
scheduling problem. The integers and stars on the string represent all possible
sequences of jobs on parallel machines. For a problem of n jobs and m parallel
machines, a correct chromosome must consist of n job symbols and m-1 partitioning

symbols s, which mean there should be n+m-1 genes in a chromosome. We can
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give a simple example of 9 jobs and 4 parallel machines shown below. The string

can be represented as follows:

[37 % 95 % 416 % 28]

4.2.2 Initialization

In each generation the GA manipulates a set of operators in the population. The
construction of the initial population is important since the operators of GA would
preserve some part of better chromosomes generation to generation. The initial
population influences not only the convergence of the GA but the qualities of
chromosomes generated. The initial chromosomes are constructed with network
algorithms we described in this identical parallel-machine scheduling problem. We
are looking for the better near optimal solution produced by the initial population
based on network algorithms than a randemly.generated population. We also predict

the quick convergence of the GA with the.constructed initial population.

4.2.3 Selection

During each generation, we can use some-measure of functions to evaluate the
values of chromosomes. Fitness is estimated based on the objective function in most
cases of optimization problems. As the objective of our problem is WPSP with
minimizing makespan, we can use the reciprocal of the objective function as the
fitness value. So a fitter chromosome has a larger fitness value. The fitness value

of each chromosome is defined as following:

(37)

F(a,p)= (Cmaxa’ﬁ)‘l ><|7K_k+1—|

KxQ

where the term  Cmax, , expresses the makespan of the « th chromosome in the

pool when the GA cycle proceeds to the Sth generation. The term K represents
the available machine number and % represents the actual required machine number.

Besides, the term Q is a constant described in section 2 for keeping the calculation
(K —k—-1)/KQ moving around 0 and 1.  So the function [K —k/KQ] can make

sure that the fitness value calculated by equation (37) is available to be used.
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The selection technique in this paper is based on the roulette wheel method. In
this case, the probabilities of the individual chromosomes surviving to the next
generation determine the slots of the roulette wheel. These probabilities of these
slots on the roulette wheel are estimated by dividing the fitness value of each
chromosome by the sum of the fitness values of all chromosomes in the current
population. Cumulating the probabilities of each chromosome creates the individual
slots. Here comes an example, which calculates the individual slots on the roulette
wheel. There are three chromosomes in the population, of which the probabilities of
chromosomes are 0.2, 0.3, and 0.5 individually. Then the slots of chromosome 1,
chromosome 2 and chromosome 3 will range from 0-0.2, 0.2-0.5, and 0.5-1

respectively. Each slot size of chromosome will be proportional to its fitness value.

4.2.4 Genetic operators

Two genetic operators, crossover and mutation, are usually used in the genetic
algorithm.  Crossover generate$ offspring by combining two chromosomes’ features.
Mutation operates one chromosome by randomly selecting two genes and swapping
them. Generally specking, the-crossover-operator plays an important role for the
performance in the GA cycle. The perfermance of crossover in each operator does
affect the performance of GA. So we adopt the different rules for designing
crossover and mutation. Both crossover and mutation can handle the job
permutation and setup time on the identical parallel machines, so the methods of

crossover and mutation should be suitable for use.
Crossover

Because the WPSP with minimum makespan has the job due date problem, the
chromosome may have a bad fitness value, an infeasible solution, through the
traditional crossover operator. We provide a new crossover considering the time
postponement concept to figure out the problem with due date restriction. The time
postponement is the value that the non-expected event can delay for at most.  The
crossover operates two parents and creates a single offspring. It breeds the primary

partitioning structure and better sub-schedules into offspring from one parent and then
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fills the offspring with remaining genes derived from the other parent. The selection
of sub-schedule is considering the job slackness, the time postponement, on each
identical parallel machine. The crossover copies the better sub-schedules on some
identical parallel machines from one parent to the offspring for preserving the good
permutation of jobs. The other empty positions of the offspring can be filled with
one way, which is a left-to-right scan from the other parent. We let C, be the
completion time of job, d, be the due date of job on v th position of machine m,,
n be the number of job consideration on machine m,, and N, be the number of jobs
on machine m,. Equation (38) indicates the slackness of job on v th position of
machine m,. SSL,, of equation (39) means the sum of slackness values for n
consecutive jobs on machine m,, which are located from vth to (v+nr-1)th
position. After calculating the value SSL,,, we can estimate the average value of
slackness SSL.x for n jobs started from vth to (v+n—1)th position on machine

m, . The estimations of slackness valuésaredefined as following:

SL,=d,-C,, v=12,...,N,=k=12,..,K (38)
v+n-1

SSL,,= >XSL,, v=12,...,Ng 1<ns<N,-v+1;k=12,...K (39)

SSLyx =SSL, . xn™ (40)

In the beginning of crossover, GA would choose one parent with better fitness value
and breed the partitioning structure of the parent into the offspring as shown in Figure
3.

P1 37
offspring

P2 8 1 5% 2% 3 7%496

Figure 3. Copy the partitioning structure to offspring

Then for all jobs on each machine, GA calculates SSL,, of all combinations of
jobs in sequences and derives each SSL,.. fromeach SSL ,. Choose the smallest

SSL..« for each machine and put the job combinations into the sub-schedules as
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shown in Figure 4.
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Figure 4. Copy the sub-schedules to offspring
from the parent with better fitness value.

Finally, GA would use a left-to-right scan to fill the offspring with remaining genes

derived from the other parent as shown in Figure 5.

Starting point Pl 37 % 9 5 % 41 6 % 2 8
on offspring

offspring 3 5 % 9 2 % 4 1 6 *x § 2

dawe,!

P2 8 1 5% 2 %3 73% 496

Figure 5. Fill the empty of the offspring from the other parent.

After recounting the execution of crossover, here is the procedure of crossover

divided into three steps.

Stepl. Get the partitioning symbol * from one parent which has better fitness value.

Step2. Choose the sub-schedules from the parent with better fitness value. Let
parameters £ and v be one. The selection of sub-schedules is as
following:

Step 2-1. For the v th position of machine m, on the chromosome,
calculate the slackness value SL, of job », on v th position.

Step 2-2. Let v=v+1. If the value v is larger than N,, go to step2-3.
Otherwise, calculate the slackness value SL, of job on the vth
position of machine m, and go to step2-1.

Step 2-3. For v=12,...,N,and 1<n< N, -v+1, estimate all kinds of
average slackness value SSL... Select the largest one SSL.w«
among all SSL.. and put the job combination from ' th position
to v'+n'—1th position on machine into the sub-schedule of
machine m, .

Step 2-3. Let k=k+1 and check the constraint of the number of available
machines K. If & is larger than the number of available
machines K, then go to step 2-4. Otherwise, Let index v be one
and go to step2-1.
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Step 2-4. Select the K sub-schedules of all machines and copy the K
sub-schedules to offspring.
Step 3. Fill the empty of the offspring with the unscheduled genes by making a
left-to-right scan from the other parent without violating the job due date
restriction. The starting point of the filling can be generated randomly.

Mutation

We use the swapping technique as the mutation method in this paper. The
mutation proceeds by randomly choosing two genes on the chromosome and then
swapping them. If the schedule shows infeasible after mutation technique, we would
preserve the original one from due date violence. There are three possible
exchanging ways through the swapping mutation: (1) the swapping of two jobs from
the same identical parallel machine, (2) the swapping of two jobs from different
identical parallel machines, (3) the swapping of one job and one partitioning symbol.

Fig. 6(a), 6(b), and 6(c) shown below can _express the swapping methods.
Before 8 5 % 2 3 % 4 1 6 % 7 9

After 8 5 % 3 2 % 4 1 6 %x 7 9

(@
Before 8 5 % 2 3 % 4 1 6 % 7 9

After 2 5 % 8 3 % 4 1 6% 79
(b)

Before & 5 % 2 3 %k 4 1 6 % 7 9

X

After 8 5 % 2 3 4 % 1 6 % 79
(©)

Figure 6. Illustration of swapping technique

4.2.5 Elitist Strategy

When the number of offspring in the pool is reaching to the expected level, we will

mix the offspring with the original parents to get the enlarged population. Then we
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use the roulette wheel as the concept of elitist strategy for choosing the better part of
the enlarged population. That means the fitter chromosome is selected first for
surviving to the next generation. In our GA cycle, the elitist way is to preserve the
better chromosomes in each generation and reduce the errors of stochastic sampling.
Through the elitist strategy, the number of chromosomes in each generation will be

equal to the original population we determined in the beginning.

4.2.6 Stopping Criteria

After the genetic operators and elitist strategy, the fitness of each chromosome in
the population will be re-estimated by using the fitness function. There are several
rules to decide if the GA cycle should be stopped: (1) see if the chromosomes in the
current population are fitter than the ones in the previous population by calculating the
total and average fitness values of all chromosomes in every cycle, (2) see if the best
chromosome in the current GA poal is fitter than-the best one in the old GA pool by
calculating the fitness value of’the best:chromesome in every cycle, (3) see if the
number of generation reaches to the level we requested. We choose the item (3)
according to the convenience of ‘GA operation:~ Therefore, in our experiment, the GA
operation will be terminated if the number“of generation reaches to what we

prescribed.

5. Problem Design and Testing

For the sake of comparing the performance of improving heuristics and the hybrid
genetic algorithm, we design a set of 16 problems with different circumstances for
testing. Each problem includes 25 parallel identical machines and 100 jobs, which
are divided into 30 product types and should be completed before the given due date.
The 100 jobs would be processed on the 25 parallel identical machines and each
machine capacity is set to be three days, 4320 minutes. Here “minute” is used as the
time unit for job processing time, job due dates, setup time, and machine capacity.
In this paper, we highlight the impact of setup time of consecutive jobs from different

product families or different operation temperatures. So the time cost by changing
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probe card before the machine is ready to process the coming job with different
product family is set to 80 or 120 minutes (80 or 120 minutes is according to different
product family). The required times of adjusting temperature from room to high is
set to be 60 minutes, from high to room is set to be 80 minutes, and from high to high
Is set to be 140 minutes. Because the time of adjusting temperature from room to
room does not need to warm up or cool down the machine, it is set to be 0 minutes.
The time of loading code before the machine is ready to process the coming job with
different product type is set to be 5 minutes. And the initial setup time of machine
from idle to processing state is set to be 100 minutes. The setup time of consecutive

jobs from same product type is set to be 0 minutes under all operation temperatures.

The problem design is based on the wafer probing shop floor in an IC
manufacturing factory of the Science-based Industrial Park, Taiwan. The problem
test is divided into four factors, which contains (1) the product family ratio, including
two grouping levels R2 and R6, (2) the tightness-of due dates, including stable and
increasing states, (3) the consideration of adjusting temperature, including setup time
with temperature considerationor not, (4)the total processing time, including low and

high levels.

Product Family Ratio (R)

The distribution of jobs to the product families is related to the setup time of
consecutive jobs. We need to evaluate the influence of product families on the
performance of scheduling solutions via the factor, product family ratio. If a product
family has large number of jobs, it may lead to a smaller value of total setup time of
scheduling solutions. Oppositely, if a product family has small number of jobs, it
may result in a larger value of total setup time of machine schedules. Here we define
an index, product family ratio, which is the division of the number of job product
types by the number of job product families. There are 100 jobs divided into 30
product types in our test problem. For example, if the value of product family ratio
is 2, it means that 30 product types of 100 jobs are distributed into 15 product families

randomly. In our design, there are two levels for testing, R2 and R6, which means
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30 product types of jobs are divided into 15 and 5 product families individually. The

evaluation of product family ratio is expressed in equation (41).

Number of product types _ J

Product Family Ratio (R) = — =
Number of product families F

(41)

Tightness of Due Dates (T_Due)

Here we use tightness of due dates for evaluating the density of job due dates. It
is including the job processing time, the expected setup time, the machine capacity
before due dates, and the number of jobs with given due dates. The tightness index

is defined as below:
. . Num(Y) 4
Tightness index (TI(Y)) ={P(Y) + ES x f}(l( xCap(Y))™,Y=123 (42)

where the number of available machines K and the expected setup time ES are
expressed in Section 2 and 3. Due [dates of Jobs in-the test problem are divided into
three time points, which are-1,"2, and 3 days. - P(Y) is denoted as the total
processing time of jobs of which due dates are given before Yth due day point. We
define the notation Cap(Y) as the-available eapacity of machine before Yth due day
point. And Num(Y) is to express the number of jobs of which due dates are given

before Yth due day point.

According to equation (42), we can evaluate three tightness indexes under three
time points of due dates. If the tightness of due dates is stable, that means there are
30 jobs assigned for 1440 minutes of due dates, 35 jobs assigned for 2880 minutes of
due dates, and 35 jobs assigned for 4320 minutes of due dates randomly. And the
tightness values of due dates would be nearly equal. If the tightness of due dates is
increasing, that means there are 5 jobs assigned for 1440 minutes of due dates, 15 jobs
assigned for 2880 minutes of due dates, and 80 jobs assigned for 4320 minutes of due
dates randomly. Besides, the tightness of due date 1440 minutes would be smaller
than the tightness of due date 2880 minutes, and the tightness of due date 2880

minutes would be smaller than the tightness of due date 4320 minutes
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Temperature Consideration (7¢)

Because the setup time of loading temperature is longer than the setup time of
peripheral hardware, we take the factor, temperature changing, into consideration in
our problem design. The value of setup time is related to the product types, product
families of two consecutive jobs generally. If temperature change of machine is
considered in testing situation, it should be added in setup time. Our problem is

designed to consider setup time with temperature changing or not.

Total Processing Time (Total PT)

The value of total processing time would influence the degree of scheduling
difficulties, so it is an index for evaluating the performance of scheduling heuristics.
We generate two levels of total processing time, high and low, to represent the size of
total machine workload. High andlow levels:of total processing time are set to be
54126 minutes and 66379 minutes, which have 1.5 and 1.85 days of machine
utilization individually. Table-2 below shows the summary of 16 testing problems,
and other related information suchlike product types, product families, tightness of

due dates, and setup time of two consecutive jobs; is shown in the appendix.

Table 2. Summary of 16 problem design

Product Family Rabio Lo i) Tighimess of due dates Total processing time level
Problem No. Change
R=2 R=6 Yes No Increase Stable Low | High [total workload
1 L L] L) & 54126
2 L) L] L L 66379
3 L) L] L] L 54126
4 L) L] L] L 66379
5 L L L) L 54126
b L L L L] 66379
7 L L L] L 54126
8 L L L] L] 66379
0 L) L] L L 54136
10 ® L L L 66370
11 L) L] L] L 54126
12 L) L] L] L 66379
13 L L L) L 54126
14 L L L L] 66379
15 L L L] L 54126
16 L ] L ] L ] L 66370
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6. Computational Results

Because our objective is minimum makespan, total setup time and the distribution
of jobs to parallel machines both are related to the qualities of testing solutions. In
order to find the setting parameters of improving heuristics for reducing total setup
time, we put these WPSP algorithms into a lot of pre-tests. The following settings of
WPSP algorithms are efficient in solving identical parallel-machine scheduling
problems. The parameters 4 and B of modified sequential savings algorithm (MSSA)
are set to be 0.975 and 0.55. The parameter A of parallel insertion with the
slackness (PIA 1) is set to be 0.7. And the parameter ¢ of parallel insertion with
the variance of regret measure (PIA 1V) is set to be 0.8. The improving heuristics
are encoded in Visual Basic 6.0, which are implemented in the compiled form on a PC
with AMD 1150 MHz CPU and 512 MB RAM.

6.1 ANOVA Analysis of Improving Heuristics

The CPU times cost by saving algorithms is 1137.396 seconds in average, and the
CPU time cost by insertion ~algarithms —is73.629 seconds in average. The
computational results of WPSP algarithms.in-16 problems are expressed in Table 3.
The testing results show that SSA and SIA are not robust in our testing problems
because SSA and SIA would generate unfeasible solutions in some cases. Therefore,
we look for best solutions exclusive of SSA and SIA and find that PIA 11l has the
largest number of best solutions via Table 3. And the average of testing solutions
solved by PIA 111 in 16 problems is the smallest, which means P1A 111 is most efficient
in solving the 16 testing problems of WPSP with minimum makespan. By
considering one experimental factor once, the computational results of 16 problems
can be transformed into the performance comparison of all situations as shown in
Table 4. From the opinion of comparing mean and standard deviation of solutions in
all kinds of situations, PIA 11l having 8 and 7 smallest ones individually also shows
that it outperforms other WPSP algorithms except for the situation, where total

processing time is low.
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Table 3. Computational results of WPSP algorithms in 16 test problems.

Problem| Expected| SSA | MSSA SIA PIA PIAI PIATI PIA 111 PIA IV
No. | Capacity == T Cmax | Cmax | Cmax | Cmax | Cmax | Cmax | Cmax
1 2730 2965 2724 2837 2660 2599* 2600 2639 2653
2 3297 3709 3240 3194 3218 3157* 3291
3 2730 2661 | 2611* 2611 2703 2616 2632 2611* 2669
4 3297 3186 | 3083* 3116 3197 3115 3158 3105 3140
5 3196 3152 2795 2837 2879 2728* 2757 2730 2778
6 3763 4308 3461 3265 3357 3248* 3955
7 3196 2682 2739 2611 2805 2683 2758 2659* 2770
8 3763 3253 3223 3116 3376 3201 3223 3194* 3242
9 2687 2692 2697 2664 2635 2566* 2569 2594 2644
10 3253 3648 3476 3193 3140 3111* 3125 3225
11 2687 2548 2597 2604 2627 2577 2624 2565* 2624
12 3253 3113 3127 3063 3094 3081 3066* 3083 3116
13 3153 3600 2766 2977 2782 2732 2714* 2731 2930
14 3719 3596 3447 3284 3274* 3274* 3675
15 3153 2721 2713 2696 2728 2662 2669 2654* 2729
16 3719 3201 3235 3245 3295 3223* 3228 3223* 3269
Mean 3087.438 3007.625[ 2916.625 | 2934.875 2912 3044.375
No. of * 2 4 4 9
Result with grey bcakground indicates a unfeasible solution in scengLabel * means the best of all exclusive of SSA and SIA

Table 4. Computational results of improving heuristics under all kinds of situations.

SSA MSSA SIA PIA
n Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Total 16 3087.44 | 485.11 3007.63 | 309.04
R=2 8 3149.00 ‘| '589.21 3040.13 | 314.85
R=6 8 3025.88 | 385.29 2975.13 | 321.12
Te=Yes 8 3171.88,.)..558.31 3096.63 | 325.18
Te=No 8 3003.00 | 419.85 2918.63 | 284.27
T Due=Stable | 8 3258.88 | 600:47 3037.13 | 339.57
T Due=Increase | 8 | 2920.63 | 292.66 | 2916.00 | .276.65 |2882.75*| 275.89 | 2978.13 [ 295.58
Total PT=Low | 8 | 2877.63 ].350.02" | 2705.25" | 69.66 | 2729.63 | 138.16 | 2727.38 | 89.24
Total_PT=High | 8 3469.63 | 406.89 3287.88 | 131.07
Number of * 1
PIAI PTATI PIA 1 PIAIV
n Mean Stdev Mean Stdev Mean Stdev Mean Stdev
Total 16 | 2916.63 | 287.85:2934.88-| 289.49 |2912.00*| 279.90 | 3044.38 | 392.77
R=2 8 | 2925.13 | 292.62 | 2962.88 | 305.12 |2917.87*| 280.73 | 3062.25 | 443.37
R=6 8 ]2908.13 | 302.93 |2906.88 | 291.02 |2906.13*| 298.32 | 3026.50 [ 365.06
Te=Yes 8 | 2972.25 | 291.64 | 2997.50 | 295.96 |2964.13*| 291.52 | 3168.50 | 455.44
Te=No 8 | 2861.00 | 292.28 | 2872.25 | 288.14 |2859.88*| 276.92 | 2920.25 | 296.54
T_Due=Stable | 8 | 2938.50 | 310.03 | 2950.00 | 322.71 |2937.25*| 289.28 | 3143.88 | 483.84
T _Due=Increase | 8 |2894.75 | 283.45 | 2919.75 | 273.71 | 2886.75 [ 287.65 | 2944.88 | 271.75
Total PT=Low | 8 |2645.37*| 6548 |2665.38 [ 71.45 | 2647.88 | 59.79 |2724.63 [ 101.39
Total PT=High | 8 | 3187.88 | 71.37 |3204.38 | 92.00 |3176.13*| 69.67 | 3364.13 [ 294.29
Number of * 1 7

Result with grey bcakground means there are unfeasible Label * indicates the best among algorithms in situations

solutions in scenario considering single factor and whole conditions.

In order to find the effects of improving heuristics and experimental factors on the
problem design, we use statistical analysis by applying statistical software, SAS.
First of all, we check the satisfaction of normality assumption for 96 data of Table 3
except for SSAand SIA. The check of normality assumption is expressed in Table 5
and the solutions are normally distributed. Then use ANOVA to check for the
significances of all experimental factors and interactions. The summary of ANOVA
table shown in Table 6 shows that five single factors, product family ratio,

temperature changing consideration, tightness of due date, total processing time level,
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and algorithms, would significantly affect the solutions of WPSP with minimum
makespan under 99% confidential intervals. Besides, p values of interactions less
than 0.01 also have significant effect on the performance of testing problems.
Through Duncan’s multiple comparison as shown in Table 7, the statistical results
show that the multiple comparisons divide WPSP algorithms into two groups, A and B.
The same letter of Duncan’s groups indicates that there is no significant difference
between WPSP algorithms.  So the first group is MSSA, PIA 1V, and PIA, of which
the performance of solutions is inferior to the second group of PIA I, PIA 1, and PIA
.

Table 5. Check of normality assumption for 96 solutions in 16 test problems.

Test Statistic p Value
Shapiro-Wilk W 0.886611  Pr<W <0.0001
Kolmogorov-Smirnov D 0.17839 Pr>D <0.0100

Cramer-von Mises W-Sq 0.58319 Pr>W-Sq <0.0050
Anderson-Darling A-Sq 3,464467 Pr>A-Sg  <0.0050

Table 6. The summary of ANQVA table under-99% confidential intervals.

Factor SS d.f. MS Fvalue p-value
R 63500 1 63500 10.548 <0.01
Te 583908 1 583908  96.991 <0.01
T Due 350779 1 350779  58.267 <0.01
Total_PT 8516246 1 8516246 1414.611  <0.01
Algorithm 432625 . 86525 14.372 <0.01
R*Te 184 1 184 0.031
R*T_Due 11726 1 11726 1.948
Te*T_Due 47126 1 47126 7.828 <0.01
R*Total_PT 13325 1 13325 2.213
Te*Total_PT 32893 1 32893 5.464
T_Due*Total_PT 170775 1 170775  28.367 <0.01
R*Algorithm 33404 5 6681 1.110
Te*Algorithm 59144 5 11829 1.965
T_Due*Algorithm 313319 5 62664 10.409 <0.01
Total_PT*Algorithm 168813 5 33763 5.608 <0.01
Error 156525.3 26 6020
Fo.ou,ze =172 Fo.oxs,zs =3.82

Table 7. Duncan’s multiple comparisons for the performance of WPSP algorithms.

Duncan No. of .
Grouping can problems Algorithm
A 3087.44 16 MSSA
A 3044.38 16 PIA IV
A 3007.63 16 PIA
B 2934.88 16 PIA 1T
B 2916.63 16 PIAT
B 2912 16 PIA 11T
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6.2 Computational Results of GA with Initial Population from WPSP algorithms

We use WPSP algorithms except for SSA and SIA for generating initial population
of GA. Because the initial solutions are not sufficient enough, we make use of these
initial solutions to enlarge our population size for larger species of chromosomes. In
our problem design, we set the population size to be 30. Other genetic factors,
mutation rate and generation size, are considered in testing problems because they
would affect genetic combinations of chromosomes. We select problems No.7 and
No. 8 of Table 2 for testing the performance and solution time of GA. One is the
situation that product family ratio is 2, temperature changing is considered, total
processing time level is low, and tightness of due dates is increasing. The other
selected is the situation that product family ratio is 2, temperature changing is
considered, total processing time level is high, and tightness of due dates is increasing.
The mutation rate (denoted as pm).is divided inta five levels, 0, 0.25, 0.5, 0.75, and 1.
And the hybrid GA is proceeding until the number of generation (denoted as gen) is
equal to 1500. Each problemzis solved by hybrid GA with different mutation rates

and repeated four times for checking it .the mutation rate is significantly effective.

The statistical results of hybrid GA in problem No. 7 and No. 8 are shown in Table
8. It shows that hybrid GA would improve the initial solutions while the mutation
rate is larger than 0. And we know that the generation number is proportional to the
performance of scheduling solutions of WPSP with minimum makespan. The
running times of GA in 250, 500, and 750 generations are about 191 seconds, 401
seconds, and 563 seconds individually. They are apparently larger than the running
time of improving heuristics. Because the roulette wheel method is selecting
chromosomes based on fitness values randomly, there is not a definite mutation rate
used for finding the best solution of hybrid GA. So we consider all kinds of
mutation rates in generations and plot the flowcharts of solutions solved by hybrid GA
as shown in Figure 7 to Figure 10 in the appendix. They show the trend of mean
performance solved by hybrid GA in problem No. 7 and No. 8. Observing the

tendency of solutions solved in Figure 7 and Figure 9, it reveals that the value of
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average performance via hybrid GA would drop very fast before initial generations
(about 100 generations). Based on statistical data of hybrid GA repeated four times
in 1500 generations, we find that the best solution of hybrid GA is tending to be
improved after later generations (about 40 generations) when the total processing time
level is low. In contrast with the situation while the total processing time level is
high, we can see that the improving time point of hybrid GA in problem No. 7 is
significantly later. So hybrid GA may have a faster speed of feedback for improving

the best solution under tough situations.

Table 8. The comparison of hybrid GA with WPSP algorithms and improving
heuristics in testing problems.

Proble ) Hybrid GA CPU T!me The pest sol. l:_)y_ CPU Time
m No Iteration| Gen (sec) in | Improving Heuristics| (sec) of the
' Cmax | pm average Cmax best sol.
7 1 250 3046 0.5 191.35
500 3000 0.5 401.82 " *
750 2977 0.5 563.71 2659 75.64
1500 | 2977 0.5 1186.13
7 2 250 3052..1.0.75 188.11
500 3030: | 0.75 413.98 « *
750 2985 |10.75 530.26 2659 75.64
1500 2966 075 1199.86
7 3 250 3116 1 200.91
500 3024 1 411.12
750 | 3010 | 1 | 58052 2659* 7564
1500 | 2911 [70:75 1210:79
7 4 250 3073 0.5 194.46
500 2999 ].0.75 409.61 " *
750 2999 .0.75 549:53 2659 75.64
1500 | 2927 05 1203.72
8 1 250 3675 | 0.25 200.91
500 3659 | 0.25 399.57 - *
750 3650 | 0.75 581.27 3194 3.2t
1500 | 3608 [ 0.75 1175.23
8 2 250 3635 1 192.82
500 3629 1 391.13 « -
750 | 3608 | 0.75 | _577.21 3194 .21
1500 | 3608 | 0.75 1189.11
8 3 250 3667 0.75 196.41
500 3650 0.75 388.45 * -
750 3650 0.75 562.13 3194 7321
1500 3635 0.25 1179.92
8 4 250 3675 1 213.61
500 3659 | 0.75 400.01 - *
750 3637 1 580.66 3194 3.2l
1500 | 3579 1 1180.36
Label * means the better between hybrid GA and improving heuristics.

6.3 Further Improvement of Hybrid GA with Initial Population from Improving

Heuristics

We apply scheduling solutions of improving heuristics in initial population of
hybrid GA for further improvement in 16 testing problems. We run 1500

generations of hybrid GA with 0.5, 0.75, and 1 of mutation rate for confirming
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whether the scheduling solutions of improving heuristics can be improved or not.
The computational results are shown in Table 9 and expresses that we may not use
hybrid GA for improving solutions of improving heuristics in the situation where the
tightness of due date is stable. And hybrid GA can improve solutions generated by
improving heuristics in problem No. 8 and No. 16, where the temperature change
consideration is yes, tightness of due date is increasing, and total processing time level
is high. The trends of solutions generated by hybrid GA in problem No. 8 and No.
16 are shown in Figure 11 and Figure 12 individually. The evidential results show
that hybrid GA can improve in earlier generations in problem No. 8 (R=2, Te=yes,
T_Due=increase, and Total PT=high) than hybrid GA in problem No. 16 (R=6,
Te=yes, T_Due=increase, and Total PT=high). Through solutions of hybrid GA
with initial population generated by WPSP algorithms and improving heuristics, we
find that the performance of hybrid GA would stop improving after latter periods of

generations (about 1500 generations).

Table 9. Computation results of GA withiinitialization of improving heuristics.

Problem| MPTOVING | Sy rid GAC | Problem | ='MPYOVING | ki GA
No. Heuristics No. Heuristics
Cmax Cmax Cmax Cmax

1 2599 2599 9 2566 2566

2 3157 10 3111

3 2611 2611 11 2565 2565

4 3083 3083 12 3066 3066

5 2728 2728 13 2714

6 3248 14 3274

7 2659 2659 15 2654 2654

8 3194 3160* 16 3223 3183*
No. of * 1 No. of * 1
Result with grey bcakground indicates GA can't generate enough feasible strings as population.
Label * indicates hybrid GA can find better solutions compared with improving heuristics.

7. Conclusion

The wafer probing scheduling problem (WPSP) is a practical version of the
parallel-machine scheduling problem, which has many real-world applications
including the integrated circuit (IC) manufacturing industry and other industries
containing the manufacturing process with parallel machines. In this paper, we

consider WPSP with the objective to minimize the maximum completion time and
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formulate the WPSP with minimum makespan as an integer-programming problem.
To solve the WPSP with minimum makespan effectively, we proposed improving
heuristics and the hybrid GA for our cases. The computational results show that
improving heuristics and hybrid GA are efficient tools for solving our testing
problems of WPSP with minimum makespan. And GA with initial population by
improving heuristics can make scheduling solutions outperform scheduling ones of
improving heuristics. From now on, the collection of initial population satisfying the
WPSP with minimum makespan is our studying point because it not only expands the

variety of genetic composition but affects the average and best solutions of GA.
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Appendix

Table Al. Processing times of jobs with product types and product families under low
total processing time level.

Product [Processing| Product Product Testing Product| Processing | Product Product Testing

Type Time | Family(R6) | Family(R2) | Temperature| Type Time Family(R6) | Family(R2) [ Temperature
1 404 3 7 High 16 429 5 4 High
2 593 1 10 Room 17 623 1 2 High
3 411 2 2 High 18 417 4 12 High
4 420 S 11 High 19 440 4 12 High
5 681 4 9 High 20 434 4 14 High
6 606 3 1 Room 21 680 4 7 Room
7 585 3 1 High 22 430 1 3 High
8 403 1 6 Room 23 694 2 13 Room
9 495 2 2 Room 24 455 5 1 Room
10 671 S 10 High 25 451 1 3 Room
1 517 4 3 Room 26 538 4 2 High
12 519 3 1 High 21 663 4 S High
13 662 4 6 Room 28 570 3 10 High
14 499 2 14 High 29 618 3 7 Room
15 660 3 6 Room 30 441 2 10 Room

Table A2. Processing times of jobs with product types and product families under high
total processing time level.

Product| Processing | Product Product Testing | Product | Processing | Product Product Testing

Type Time Family(R6) | Family(R2) | Temperature| Type Time Family(R6) | Family(R2) | Temperature
1 730 4 S High 16 522 5 10 Room
2 752 4 14 Room 17 760 1 8 Room
3 723 4 4 Room 18 712 3 S High
4 681 3 4 Room 19 588 3 2 High
5 686 2 1 Room 20 751 1 8 Room
6 670 1 12 Room 21 740 2 15 Room
7 582 2 13 High 22 629 5 3 Room
8 686 1 14 Room 23 AT 1 11 Room
9 742 S 6 High 24 756 4 4 Room
10 682 3 3 Room 25 717 3 2 Room
11 536 S 14 Room 26 642 2 9 High
12 707 2 1 High 27 621 2 10 High
13 594 4 4 High 28 777 5 5 Room
14 790 1 3 Room 29 569 2 1 High
15 505 2 7 Room 30 750 5 8 High

Table A3. Tightness of due dates in 16 testing problems.

Expected Setup Time Total Processing Time Available Capacity Tightness of Due Dates
Problem No. Due dates of jobs Due dates of jobs Due dates of jobs Due dates of jobs

1440 | 2880 | 4320 | 1440 | 2880 | 4320 | 1440 | 2880 | 4320 | 1440 | 2880 | 4320
1 169 198 198 16066 | 34459 | 54126 [ 36000 | 72000 | 108000 | 45.10% | 48.13% | 50.30%
2 192 225 225 19157 | 42402 | 66379 | 36000 | 72000 | 108000 | 53.75% | 59.20% | 61.67%
3 28 85 452 2913 10973 | 54126 | 36000 [ 72000 | 108000 [ 8.17% | 15.36% | 50.54%
4 32 96 514 3416 13404 [ 66379 | 36000 | 72000 | 108000 | 9.58% | 18.75% | 61.94%
5 309 361 361 16066 | 34459 | 54126 | 36000 | 72000 | 108000 | 45.49% | 48.36% | 50.45%
6 332 388 388 19157 | 42402 | 66379 | 36000 | 72000 | 108000 | 54.14% | 59.43% | 61.82%
7 51 155 825 2913 | 10973 | 54126 | 36000 | 72000 | 108000 | 8.23% | 15.46% | 50.88%
8 55 166 887 3416 13404 [ 66379 | 36000 | 72000 | 108000 | 9.64% | 18.85% | 62.28%
9 156 183 183 16066 | 34459 | 54126 | 36000 | 72000 | 108000 | 45.06% | 48.11% | 50.29%
10 180 209 209 19157 | 42402 | 66379 | 36000 | 72000 | 108000 | 53.71% | 59.18% | 61.66%
11 26 78 418 2913 | 10973 | 54126 | 36000 | 72000 | 108000 | 8.16% | 15.35% | 50.50%
12 30 89 479 3416 13404 [ 66379 | 36000 | 72000 | 108000 | 9.57% | 18.74% | 61.91%
13 296 346 346 16066 | 34459 | 54126 | 36000 | 72000 | 108000 | 45.45% | 48.34% | 50.44%
14 320 372 372 19157 | 42402 | 66379 | 36000 | 72000 | 108000 | 54.10% | 59.41% | 61.81%
15 49 148 791 16066 | 34459 | 54126 [ 36000 | 72000 [ 108000 | 8.23% [ 15.45% | 50.85%
16 53 160 851 3416 13404 | 66379 | 36000 | 72000 [ 108000 | 9.64% | 18.84% | 62.25%
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Table A4. All jobs with product types and due dates while tightness of due dates is
stable and total processing time level is low.

Job ID Product Due Date| Job ID Product Due Date| Job ID Product Due Date| Job ID Product Due Date | Job ID Product Due Date
Type Type Type Type Type
1 1 4320 21 21 4320 41 4 4320 61 21 1440 81 14 1440
2 2 2880 22 22 4320 42 S 2880 62 14 1440 82 15 4320
3 3 4320 23 23 1440 43 20 2880 63 15 2880 83 10 4320
4 4 2880 24 24 2880 44 S 4320 64 3 4320 84 25 1440
5 5 4320 25 25 2880 45 11 2880 65 15 1440 85 4 4320
6 6 1440 26 26 4320 46 8 2880 66 18 2880 86 29 4320
7 7 4320 27 27 4320 47 18 2880 67 21 4320 87 20 4320
8 8 2880 28 28 2880 48 17 4320 68 15 2880 88 10 1440
9 9 2880 29 29 4320 49 30 1440 69 3 4320 89 11 1440
10 10 2880 30 30 1440 50 12 4320 70 8 2880 90 23 1440
11 11 4320 31 1 1440 51 27 4320 71 9 2880 91 9 1440
12 12 2880 32 14 1440 52 22 2880 72 8 2880 92 10 1440
13 13 4320 33 7 4320 53 20 1440 73 11 1440 93 18 1440
14 14 2880 34 29 2880 54 17 2880 74 24 1440 94 16 1440
15 15 4320 35 15 2880 55 21 2880 5 28 4320 95 6 1440
16 16 4320 36 27 2880 56 S 1440 76 2 4320 96 14 1440
17 17 4320 37 27 2880 51 18 2880 v 20 4320 97 29 1440
18 18 1440 38 13 2880 58 10 4320 78 27 4320 98 29 1440
19 19 2880 39 2 2880 59 16 2880 9 2 4320 9 14 1440
20 20 4320 40 12 2880 60 30 2880 80 12 1440 100 19 1440

Table A5. All jobs with product types and due dates while tightness of due dates is
increasing and total processing time level is low.

Job ID Product Due Date| Job ID Product Due Date| Job ID Product Due Date| Job 1D Product Due Date|Job ID Product Due Date
Type Type Type Type Type
1 1 4320 21 21 4320 41 4 4320 61 27 2880 81 14 4320
2 2 4320 22 22 4320 42 S 4320 62 14 2880 82 15 2880
3 3 4320 23 23 4320 43 20 4320 63 15 4320 83 10 4320
4 4 4320 24 24 2880 44 S 4320 64 3 4320 84 25 2880
5 S 4320 25 25 4320, 45 1] 4320 65 15 4320 85 4 4320
6 6 1440 26 26 4320 46 8 4320 66 18 4320 86 29 4320
1 7 2880 27 27 1440 47 18 2880 67 21 4320 87 20 4320
8 8 4320 28 28 4320 48 17 4320 68 15 4320 88 10 4320
9 9 4320 29 29 4320 49 30 4320 69 3 2880 89 11 4320

10 10 4320 30 30 2880 50, 12 4320 70 8 4320 90 23 4320
11 11 4320 31 1 4320 51 21 2880 71 9 4320 91 9 4320
12 12 4320 32 14 4320 52 22 4320 72 8 4320 92 10 4320
13 13 4320 33 7 1440 53 20 4320 73 11 4320 93 18 4320
14 14 4320 34 29 1440 54 17 4320 74 24 4320 94 16 4320
15 15 4320 35 15 4320 55 27 2880 75 28 4320 95 6 4320
16 16 4320 36 27 4320 56 S 4320 76 2 2880 96 14 4320
17 17 2880 37 27 4320 57 18 2880 11 20 4320 97 29 4320
18 18 4320 38 13 4320 58 10 4320 78 27 4320 98 29 4320
19 19 4320 39 2 4320 59 16 4320 79 2 4320 9 14 4320
20 20 4320 40 12 2880 60 30 1440 80 12 4320 100 19 4320

Table A6. All jobs with product types and due dates while tightness of due dates is
stable and total processing time level is high.

Job ID Product Due Date[Job ID Product Due Date|Job ID Product Due Date|Job ID Product Due Date|Job ID Product Due Date
Type Type Type Type Type
1 1 2880 21 21 4320 41 8 4320 61 8 1440 81 24 1440

2 2 4320 22 22 2880 42 10 4320 62 6 2880 82 18 1440
3 3 4320 23 23 4320 43 18 4320 63 19 1440 83 6 2880
4 4 4320 24 24 2880 4 24 1440 64 2 2880 84 11 2880
S 5 4320 25 25 2880 45 22 4320 65 16 1440 85 12 2880
6 6
7 7
8 8

2880 26 26 4320 46 30 2880 66 12 1440 86 27 1440
4320 21 27 1440 41 23 1440 67 9 4320 87 29 2880
4320 28 28 2880 48 15 1440 68 16 2880 88 13 4320
9 9 1440 29 29 4320 49 30 4320 69 12 2880 89 17 1440
10 10 4320 30 30 4320 50 13 2880 70 20 1440 90 21 2880
11 11 1440 31 26 4320 51 13 2880 71 3 2880 91 8 2880
12 12 1440 32 27 4320 52 29 1440 72 26 2880 92 16 1440
13 13 1440 33 23 4320 53 4 2880 3 1 4320 93 16 2880

14 14 2880 34 7 4320 54 14 4320 74 15 2880 94 11 1440
15 15 1440 35 16 2880 55 6 2880 75 12 4320 95 13 1440
16 16 1440 36 28 4320 56 8 2880 6 29 1440 96 14 2880
17 17 4320 37 18 1440 57 23 1440 71 16 1440 91 10 2880
18 18 4320 38 8 4320 58 8 4320 8 5 2880 9% 24 1440
19 19 4320 39 9 2880 59 15 2880 9 16 2880 9 3 1440
20 20 2880 40 21 4320 60 11 4320 80 19 4320 100 29 1440




Table A7. All jobs with product types and due dates while tightness of due dates is

increasing and total processing time level is high.

Job ID Product Due Date| Job ID Product Due Date| Job ID Product Due Date| Job ID Product Due Date| Job ID Product Due Date
Type Type Type Type Type
1 1 4320 21 21 4320 41 8 4320 61 8 4320 81 24 4320
2 2 4320 22 22 4320 42 10 4320 62 6 4320 82 18 4320
3 3 2830 23 23 4320 43 18 2880 63 19 4320 83 6 4320
4 4 4320 24 24 4320 44 24 4320 64 2 4320 84 11 4320
5 5 4320 25 25 4320 45 22 4320 65 16 4320 85 12 4320
6 6 4320 26 26 4320 46 30 4320 66 12 4320 86 27 4320
7 7 4320 27 27 4320 47 23 2880 67 9 2880 87 29 4320
8 8 4320 28 28 4320 48 15 4320 68 16 4320 88 13 4320
9 9 4320 29 29 4320 49 30 4320 69 12 4320 89 17 4320
10 10 4320 30 30 4320 50 13 4320 70 20 4320 90 21 4320
11 11 4320 31 26 4320 51 13 2880 71 3 4320 91 8 4320
12 12 4320 32 27 4320 52 29 4320 72 26 4320 92 16 4320
13 13 4320 33 23 2830 53 4 2880 73 1 4320 93 16 2830
14 14 4320 34 7 4320 54 14 4320 74 15 2880 94 11 4320
15 15 4320 35 16 4320 55 6 4320 75 12 4320 95 13 4320
16 16 2880 36 28 4320 56 8 1440 76 29 4320 96 14 4320
17 17 2880 37 18 2830 57 23 2880 71 16 4320 97 10 1440
18 18 4320 38 8 4320 58 8 2880 78 5 4320 98 24 1440
19 19 2830 39 9 4320 59 15 4320 79 16 4320 99 3 1440
20 20 4320 40 21 4320 60 11 4320 80 19 4320 100 29 1440
Table A8. Setup time with product types while product family ratio is 2 and
temperature changing is not considered.

Type| U1 [2]3]14[5[6|71819/[10[11]12]43:({14}15416]17[18[19]20]21({22[23]|24]125[26(27]128]29]30
U 0 1225]185[185]185/225[185]225/185{225]185(225}185]1851225[1852254225[185]225|225[185]185]185]225]185]|185[185]225]185[185
1 0 [ 0 ]85]85]85([125[85]125]85[125[ 85 .51 85|85 [125] 85 |125}125f 85 | 1251125 85 | 85 85 |125] 85 [ 85 | 85 1125] 85 [ &5
2 0 11251 0 | 5] 85|125[85]125] 85 [125] 5 4125( 85185125} 85 | 125]125[:85 [125]125[ 85| 5 | 85 ]125] 85| 85 [ 85 [125] 85 [ 85
3 0 [125] 51 0 [85[125[85]125] 85 [125] 5«|125] 85-{-85-] #25]=85 |125}:1251 85 |125]125{ 85| 5 | 85]125{85[85|85]125[85( &5
4 0 [125] 851 85] 0 [125[85]125] 85 [125| 85 |125]:85 | 85 [125]85°]425[125[ 85,]125]125{ 85| 85]85]125{85[85| 5 |125[ 8585
5 0 [125] 85 85[85[ 0 [ 85]125] 85 [125[ 85 |125]85 | 85 [125] 85 |125[125[ 8571251125 85 | 85| 85 |125] 85 [ 85 | 85 ]125] 85 [ &5
6 0 1125) 85| 851 85 |125[ 0 [125] 85 [125] 85 |125[ 85 | 854 125| 85 |125]125{ 54 ]125]125[ 85185 ] 85 [125] 85| 85 [ 85 [125] 85 [ 85
7 0 [125] 851 85]85[125[85] 0 | 85[125] 851125] 85| 8595 1"8591125] 54 85 |1251125{ 85| 85 85112585 [ 85| 85112585 &5
8 0 1125] 85| 85] 85 [125[ 85 1125| 0 [125] 854125) 85 1.5 11251"85 [125]125{.85 [125]125[ 85| 85 ] 85 |125] 85| 85 [ 85 [125] 85 [ 85
9 0 1125] 85| 85] 85 |125[ 85 1125] 85| O | 85 |125[85-] 85 |125[ 85 [1254125{ 85| 5 1125/ 858585 [125[ 858585 5 |85 85
10 | 0 J125] 5| 51 85]125]85[125[85]125] 0 [125["85 | "85 412585 125{125] 85 [125[125/85] 5 | 85[125/85] 85|85 [125]/85] 85
11 0] 5]85)85]85|125[85]125/85[125] 85 O [ 85|85 12585 [125]125[ 85 125]125[85]85] 85125 85] 85|85 [125] 85| &5
12 | O |125[ 85| 85] 85 1125] 85 [125[ 85 |125] 85 [125] O | 85 |125[ 85 [125]125] 85 [125[125[ 851 85| 5 [125] 8585 |85 [125] 85| 85
13 | 0 |125[85] 85] 85 [125] 85| 125[ 5 [125] 85 [125] 85 O [125] 85 1125]125] 85 |125[125] 85 ] 85| 85 [125] 85 [ 85 | 85]125] 85| 85
14 | 0 ]125[85[85]85]125185[ 5 [85]125]85[125[85]|85] 0 [85]125] 5 |85]125[125/85)85]85[125/85]85]85([125]85]385
15 | 0 [125] 85] 85 85]125]) 85 [125] 85 125[ 85125 85| 85 ]125] O |125{125] 85 [125[125] 85| 85 85]125/85| 5 | 85]125{85] 5
16 | O |125[ 85| 85| 85 ]125] 85 [125[ 85 |125] 85 [125[ 85| 85 |125[ 85| O |125] 85 [125[125[ 85| 85| 85 [125| 8585 | 85 [125] 85| 85
17 1 0 |125[85]85] 85[125]85] 5 [85]125] 85 [125[ 85 85| 5 [85]125] 0 |85 ]125[125{85] 85| 85[125] 85 [85|85]125]85] 85
18 | 0 |125[85[85] 85]125] 5 [125[85]125] 85 [125[ 85| 8512585 [125]125] 0 [125[125/85]85]85[125]85]85]85([125]85]85
19 | 0 [125]85] 85| 85(125] 85 (125185 5 [ 85]125] 85 [ 851125 85 |125{125] 85 [ 0 [125] 85| 85[85]125[85|85]85| 5 [85]85
20 [ 0 J125] 85| 85| 85| 125[ 85 [125] 85 [125] 85 |125[ 85| 85 |125] 85 [125]125[ 85 [125] O [ 85]85] 85125 85| 85 [ 85 [125] 85 [ 85
21 0 1125] 85| 851 85 | 125[ 85 [125] 85 [125] 85 |125[ 85 | 85 |125[ 85 [125]125{ 85 [125]125[ 0 | 85 ] 85 125 85| 85 [ 85 [125] 5 [ 85
22 | 011251 5| 5 [85]125[85]125| 85[125] 5 |125{ 85|85 |125| 85 [125]125{ 85 [125]125[85] 0 | 85125{85] 85 | 85 [125] 85 | &5
23 | 0 [125[85] 85] 85 [125[ 85 |125] 85 [125[ 85 [125] 5 | 85 [125] 85 1125]125] 85 [125]125] 85 [ 85| O |125] 85 | 85 [ 85 125] 85| 85
24 | 0 ]125] 85| 85| 85| 125[ 85 [125] 85 [125] 85 |125[ 85| 85 |125] 85 [125]125[ 85 [125]125[ 8585185 0 |85 ]85 [ 85[125] 85 [ 85
25 1 0 [125[85]85]85[125[85125] 85]125[ 85 [125] 85|85 [125] 851125]125] 85 [125]125]85[85|85]125] 0 |85 [85]125]85] 85
26 | 0 ]125] 85| 85| 85]125[ 85 (125 85 |125] 85 |125[ 85| 85 |125] 5 [125]125) 85 [125]125[ 85|85 ]85 125[&5] O [85[125] 85| 5
27 [ 0 11251 85| 85] 5 |125[ 85 (125] 85 [125] 85 |125[ 85| 85 |125] 85 [125]125[ 85 [125]125[ 8585185 |125{ 85 ]85 | 0 [125] 85 [ 85
28 [ 0 125 85| 85 ] 85 )125[ 85 [125] 85| 5 |85 |125[ 85 ]85 |125[ 85 [125]125[ 85 5 |125[85[85]85]125[85]85[85] 0 | 8585
29 | 0 [125[85]85] 85 [125[85125] 85]125[ 85 [125] 85|85 [125] 85]125]125] 85 [125]125] 5 [85[85]125]85(85[85]125] 0 |85
30 | 0 [125]85] 85 85(125]) 85 [125] 85 ]125[ 85 ]125] 85| 85 [125] 5 |125[125] 85 [125[125] 85| 85 85]125| 85| 5 |85]125[85] 0
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Table A9. Setup time with product types while product family ratio is 2 and
temperature changing is considered.

Type| U[1]12]1314]5[6[1718]19(10[{11]12]113]14[15]16]17|18[19(20]21)22|23[24(25]26]|27]|28[29]30
U [ 0 1285|245[245]185]225]245]225)245]285[245]|225]185[245|285]185]285[285]185]285[225]245]245[185]285]185[185]245]285[185[185
1 [ 0] 0 ]225|225]165[205]225]205]|225[265[225] 85 |165|225[265{165]|265]|265|165[265]205]|225|225[165[265]165]|165|225|265[165]|165
2 | 0265 0 [145]165|205[225[205]225]265|145[205{165]225]|265]165[265]265]165|265[205]225]145]165|265[165[165]225|265|165[165
3 | 0 ]265[145] 0 ]165|205[225[205]225]265|145[205{165]225|265]165[265]265]165|265[205[225]145]165|265[165[165]225|265]165[165
4 | 0 [185]145]145] 0 [125]145]125]145[185[145[125] 85 |145[185] 85 [185]185] 85 [185]125]145|145] 85 [185] 85] 85| 65 |185[ 85 85
5 0 |185[145]145] 85| 0 [145]125[145[185]145]125[ 85 | 145]185[ 85 [185]|185] 85 [185]125]145[145] 85 |185[ 85 | 85 |145[185] 85| 85
6 | 0 ]265|225[225]165]205] 0 ]205]225]1265[225]205]165[225]265]165]265[265] 85 [265[205]|225]225[165|265]165[165]225]265[165[165
7 1 0 [185]145]145[ 8511251145 0 [145]185][145[125] 85 |145[ 65| 85 |185] 65 [ 85 |185]125[145]145] 85 [185] 85] 85 [145]185] 85 | 85
8 | 0 ]265[225[225]165|205[225[205| 0 |265|225[205[{165]145]|265]165[265]265]165|265[205(225]225]|165|265[165[165]225|265|165[165
9 | 0 ]265[225[225]165|205[225[205]225] 0 |225[205{165]225]|265]165[265]265]|165]|145[205]225]225|165|265[165[165]225]145]165[165
10 | 0 ]265]145]145[165[205]|225|205[225[265]| 0 |205|165[225[265]165|265[265]165]265]|205|225[145]165]|265]165]165[225[265]165|165
11 | 0 ] 65]145]145[ 85 [125]145]125[145[185]145] O | 85 [145[185] 85 |185[185] 85 |185]125|145[145] 85 |185] 85 | 85 [145[185] 85 | 85
12 [ 0 |185]145[145] 85 1125[145]125]145]185[145]125] 0 [145]185] 85 [185[185] 85 [185[125]|145]145] 5 |185] 85 | 85 |145]185] 85 [ 85
13 | 0 1265|225]225[165[205|225)205[145]265]225|205]165] 0 [265]165|265[265[165]265]205|225[225]165]|265]165]165[225[265] 165|165
14 | 0 ]265|225|225[165[205]|225] 85 [225]265]225|205]165[225] 0 ]165|265[145]165]265]|205|225[225]165]|265]165]165[225[265]165|165
15 | 0 |185[145[145] 85 |125[145[125[145]185]145[125| 85 | 145]185[ 0 [185]185] 85 |185[125|145]|145| 85 [185]85] 5 [145[185)85] S
16 | 0 1265[225[225]165|205]225[205[225|265|225]205[165|225|265[165] 0 |265]|165]265]205[225|225]165]265[165]165]225[265[165[165
17 | 0 ]265|225|225[165[205]|225] 85 [225]265]225|205|165[225[145]165|265] 0 [165]265]|205|225[225]165]|265]165]165[225[265]165|165
18 | 0 |185]145]145[ 85 [125] 65 |125[145[185]145]125] 85 [145[185] 85 |185[185] 0 |185]125|145[145] 85 |185] 85 | 85 [145[185] 85 | 85
19 [ 0 ]265]|225[225]165]205]225]205]225]145[225]205]165[225]265]165]265[265]165] 0 [205]225]225[165|265]165[165]225]145[165[165
20 | 0 [185]145]145] 85 |125[145]125]145[185[145[125] 85 |145]185[ 85 [185]|185] 85 [185] 0 |145]145] 85 [185] 85] 85145]185[ 85 85
21 | 0 [265]225]225]165[205]225]205]225|265[225]205]165|225|265[165]265|265|165[265]205] 0 |225[165[265]165]165|225|265] 85 | 165
22 | 0 [265]145]145]165[205]225]205]|225|265[145]205]165]|225|265{165]265]|265|165[265]205]|225] 0 [165[265]165]165|225|265[165]|165
23 | 0 [185]145]145] 85 |125[145]125]145[185[145[125] 5 |145]185[ 85 [185]185] 85 [185]125]145]|145| O [185] 85] 85 |145]185[ 85| 85
24 | 0 [265]225]225]165[205]225]205]225|265[225]205]165|225|265{165]265]|265|165[265]205]225|225[165] 0 |165]165]225]265[165]|165
25 | 0 [185]145]145[ 85 |125]145[125[145]185]145[125] 85 |145[185] 85 | 185[185[ 85 | 185]125[145]|145] 85 [185] 0 | 85 [145]185] 85 | 85
26 | 0 [185]145]145[ 85 |125]145[125[145]|185[145[125] 85 |145[185] 5 |185[185[ 85 |185]125[145]|145]| 85 [185] 85] O [145]185]85] 5
27 | 0 [265]225]225] 85 [205]225]205]225|265[225]205]165|225|265[165]265]265|165[265]205]225|225[165[265]165]165] 0 |265[165]165
28 | 0 [265]225]225]165[205]225]205]225]145[225]205]165]225]265{165]265]265|165[145]205]225|225[165[265]165]165]225] 0 [165]165
29 | 0 [185]145]145] 85 |125]145]125]145[185[145[125] 854 145[185) 85+ 185]|185] 85 [185[125] 65 |145| 85 [185] 85| 85 |145]185[ 0 | 85
30 | 0 [185]145]145] 85 |125[145[125]145|185[145[1251785:)145] 185[ 5 |185J185] 85 [185[125]145]145| 85 [185[ 85] 5 1145]185[85] O

Table A10. Setup time with-product types while product family ratio is 6 and
temperature changing is not considered.

Type| U | 112(3]4|5|6[7([8]9|10411[12f13[14F15116|17[18]19]120]21[22(23|24]125]26[27[28]|29]|30
U | 0 |185[225[185]185|225[225]185]185|225[185(225|225]|225[185{225]|225}185(225{225]185|225[225[225]185|225[225]225]185|225[185
1 [0 01251 85]85([125[125) 85| 5 [125] 5 |125}125}425] 5 |125(425[*5 [125]125] 85 [125]125]125] 85 [125]125]125| 5 [125] 85
2 1 0|8 ([0([85]85|5([5[85]85] 5 [8[125]125]=5 (85| S 15 |8 [ 5 f125]85) 5[5 |58 |55 [125]85] 5 [8
3 [ 0]85)125] 0 [85]125]125[ 5 [ 85]125] 85 [125{125]125] 85 |125[125] 85 |125]125] 5 |125]125[125{ 85 |125]|125[125] 85 |125] 85
4 |10 |85[125[85] 0 [125[125] 85|85 |125[ 85 [125]125]125] 85 [125]125] 85 [125]125] 85 [125[125]125] 5 [125]125]125]| 85 [125] S
5 [ 0([8]5]85[8[0[5|8 855 [8[125]125] 5 |85 5|5 |85] 5 f125[85|5 5|5 (f8([5]|5]125[8(5[85
6 [0([8]5]85[8[S5[0|8]85f5[8[125]125] 5 |85 5|5 |85]5(f125[85 |55 |5 (f8([5]|5]125[8(f5 85
7 10 |85([125[ 5 | 85125125 0 | 85|125[ 85 [125]125|125] 85 [125]125] 85 [125{125] 5 |125[125]125] 85 |125[125[125| 85 | 125] 85
8 | 0] 51125/85[85]125]125[85{ 0 |125] 5 [125[{125]125] 5 |125[125] 5 |125]125[ 85 |125]|125[125{ 85 |125|125[125] 5 |125] 85
9 108 ([5[8]8|5[5[8]8]0([8[125]125] 5 [85f 5| 5|8 [ 5(f125/85) 5[5 |58 |5]5[125/85] 58
10 | 0] 51125/ 85[85]125|125[85f 5 |125] O [125[125]125] 5 |125[125] 5 |125]125[ 85 |125]125[125{ 85 |125]|125[125] 5 |125] 85
11 | 0 | 85]125] 85[ 85 (125|125 85| 85]125] 85| O [ 5 |125] 85 |125[125] 85 |125] 5 [ 85 ]125]125[125f 85 |125]125] 5 | 85]125] 85
12 | 0 | 85]125] 85[85]125|125[ 85| 85]125| 85| 5 [ 0 |125] 85 |125[125] 85 |125] 5 [ 85 ]125|125[125f 85 |125]125] 5 | 85]125] 85
13 10 ]85] 5|85([8] 5] 5[8([8] 5|8 [125[125] 0 |8 | 5[5 |8 5125[8 55|58 ]5]5/125[85] 585
14 | 0] 5125/ 85[85]125|125[ 85 ) 5 [125] 5 [125[125]125] O |125[125] 5 |125]125[ 85 |125]125[125f 85 |125]|125[125[ 5 |125] 85
15 [ 0]85] 5 |85([85] 5|5 [8([8] 5|8 [125[125] 5 |8 | 0[5 |8 5125[8 5|5 |58 ]5]5/125[85] 585
16 [ 0185] 5 |85[85] 5|58 ([8] 5|8 [125[125] 5 18| 5[0 |8 5]125[8 5|5 |58 ]5]51125[85] 5185
17 1 0] 51125/ 85[85]125|125[85] 5 |125] 5 [125[125]125] 5 |125[125] 0 |125]125[ 85 |125]125[125{ 85 |125]|125[125] 5 |125] 85
18 1 0 185] 5185[85] 5] 58 ([8] 5185 [125[125] 5185|5518 0125[8]5]5|5([8]5]51125[8]5 ]85
19 1 0 185]125]85[85]125|125[85[85]125| 85| 5 [ 5 |125]85125[125]85]125] 0 [85]125]125[125{ 85 |125]125] 5 | 85]125] 85
20 | 0 [85]125] 5 | 85[125[125] 5 | 85[125] 85 125]125[125| 85 |125[125[ 85 [125]125] O [125]125]125] 85 [125]125]125] 85 [125] 85
21 |0 [85] 518518 [5[518 185 [85]125]125[ 5 |85] 5585112518 [0 |5 ]5]8[5]5]125/8[5 ]85
22 | 0 [85] 518518 [5][518 185 [85]125]125[ 5 [85] 5585112518510 15|85 ]5]125/8[5 ]85
23 | 085 5858 [ 5|58 |85 [85]125]125[ 5 |85] 5|5 [85[5]125]85[5 [ 5]0 ]85 |5]125/8[5 |85
24 | 0 [85]125]85] 5 [125]125] 85| 85 [125] 85 |125]125[125| 85 |125]125[ 85 [125]125] 85 [125]125]125] O [125]125]125] 85 [125] 5
25 1 0[85[ 5|88 5[5 (8|85 [8[125[125] 5 |85 S5 [5[8 )5 |125[8[5[5|5]8]0(5(125/85]5 |85
26 | 0855|8855 (8|85 |8 [125[125] 5 |85 S5 [5[8]5|125[{8[5[5|5]8]5[0(125/85]5 |85
27 | 0 [85]125]85]85[125]125| 85|85 [125[85] 5 | 5 [125]85]125[125[ 85 |125] 5 | 85 [125]125]125] 85 [125]125] O | 85 [125] 85
28 | 0[5 [125]85]85]125[125[85| 5 |125] 5 [125[125]125] 5 [125[125] 5 |125]125] 85 [125[125]125] 85 [125{125[125| O |125| 85
29 |08 588|558 |85 [8[125[125] 5 |85 S5 [5[8 )5 |125[8[5[5]|5]8]5([51(125/85]01(85
30 [ 018511251850 5 [125]125) 85| 85 [125[ 85 |125]125]125] 85 |125|125) 85 [125{125] 85 |125]125[125{ 5 [125]125]125] 85 [125] O
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Table Al11. Setup time with product types while product family ratio is 6 and

temperature changing is considered.

Type|U|[1[2[3[4[5[6[7]|8]|9]10|11]12]13]|14]15]16[17[18[19[20[21[22[23|24|25]26]27]28]29]30
U | 0 [245]285]245]185[225|285]185[245]285]245[225[225]|285]245[225|285]245[225]285]185[285[285|225]245[225|225]|285[245]225]185
1 0] 0 [265[225]165]205[265]165]145{265]145]205]{205[265]145]205[265|145]205{265]165]265]265[205]225]205[205|265]145[{205]165
2 0 1225 0 [225]165] 85 [145]165]225{145]225]205]205[145]225] 85 [145|225] 85 [265]165]145]145[ 85 |225] 85 [ 85 |265]225] 85 |165
3 0 1225[265] 0 1165]205[265] 85 [225]265]225[205[205]265]225]205{265[225]205]265] 85 [265[265]205]225]205[205{265]225]205]165
4 | 0 [145]185]145] 0 [125]185] 85 [145]185]145[125[125]|185]145[125]185]145{125]185] 85 [185[185]125] 65 [125]125]185[{145]125] 5
5 0 145 65[1451 85] 0 [ 65| 85]145[ 65 |145]125[125[ 65 |145] 5 [ 65 [145] 5 [185] 85|65 [65[ 5 |145] 5 [ 5 [185]145] 5 | 85
6 0 ]225[145]2251165] 85 0 [165]225]145]225[205[205]145]225] 85 [145[225] 85 |265]165[145[145] 851225| 85 [ 85 [265]225] 85 | 165
7 1.0 [145]185] 651 85 [125]185] O [145]185]145[125[125]185]145[125]185]145[125]185] 5 [185[185]125]145[125]125]185[145]125] 85
8 | 0 ]145]265]1225[165]205]265[165] 0 1265[145[205]205]265[145]205]265[145]205]265[165[265]265]205[225]205]205[265]145]205{165
9 0 1225[145[225]165] 85 [145]165]225 0 ]225]205{205[145]225] 85 [145]225] 85 [265]165]145[145[ 85 |225] 85 [ 85 |265]225[ 85 |165
10 | 0 [145]265|225][165[205|265]165{145]265] 0 [205[205)265]145[205|265]145{205]265]165]265[265]205]225[205]205]|265{145]205]165
11 | 0 |145[185[145]) 85 |125[185] 85 |145[185]145] 0 | 5 [185]145]125[185]145]125[ 65 | 85 |185[185[125]145]125[125] 65 |145[125] 85
12 | 0 |145[185[145) 85 |125[185] 85 |145[185]145] 5 | O [185]145]125[185[145]125[ 65 | 85 |185[185[125]145]125[125] 65 |145[125] 85
13 | 0 [225]145]225]165] 85 |145]165{225]145]225[205[{205] 0 [225[ 85 |145]225[ 85 |265]165[145[145] 85 |225[ 85 | 85 |265[225] 85 | 165
14 | 0 [145]265|225][165[205|265]|165{145]265]145[205[205]265] 0 [205]265]145{205]265]165]265[265]205]225[205]205]|265{145]205]165
15 | 0 |145] 65[145[85] 5 | 65| 85[145] 65]145[125[125]651145] 0 [ 65 [145] 5 |185]85[65]65] 5 |145] 5 [ 5 [185]145] 5385
16 | 0 1225[145[225]165] 85 [145]165]225[145]225]205]205[145]225] 85 [ 0 [225] 85 [265]165]145]145[ 85 |225] 85 [ 85 |265]225[ 85 165
17 | 0 [145]265|225]165[205|265]165{145]265]145[205[205]265]145[205|265] 0 [205]265]165]265[265|205]225[205]205]|265{145]205]165
18 | O [145] 65]145[ 85| 5 | 65|85 [145] 65 |145[125[125] 65 [145[ 5 | 65145 0 |185]85[65[65] 5 [145[ 5 | 5 |185{145] 5 ]85
19 | 0 ]225[265[225]165]205[265]165]225[265]225] 85 | 85 [265]225]205[265[2251205] 0 |165]265]265[205]225]205[205|145]225[205]165
20 | 0 |145[185[ 65| 85 |125[185] 5 |145[185]145]125[125[185|145]125[185[145]125[{185] 0 |185[185[125]145]125[125/185]145[125] 85
21 | 0 |225[145[225]165] 85 [145]165]225[145]225]205]205[145|225] 85 [145|225] 85 [265]165] O [145] 85 |225] 85 [ 85 |265]225] 85 165
22 | 0 |225[145[225]165] 85 [145]165]225[145]225]205]205[145|225] 85 [145|225] 85 [265]165]145] 0 [ 85]225] 85 [ 85 |265]225] 85 |165
23 | 0 |145[65[145]185] 5 [ 65 85]145[ 65 |145]125[125[ 65 |145] 5 [65[145] 5 [185] 8516565 [ 0 |145] 5 [ 5 |185]145[ 5 ] 85
24 | 0 ]225[265[225] 85 |205[265]165]225[265]225]205]205[265|225]205[265|225]205{265]165]265[265[205] 0 |205[205/265]225[205] 85
25 | 0 |145[ 65 (145 85] 5 [ 65| 85]145[ 65 |145]125[125[ 65 |145] 5 [ 65 [145] 5 [185[85]65[65[ 5 |145] 0 [ 5 |185]145[ 5 | 85
26 | 0 |145[65[145185] 5 [ 65 85]145] 65 |145]125[125[ 65 |145] 5 [65[145] 5 [185]85]65[65[ 5 |145] 5 [ 0 |185]145 5 | 85
27 | 0 ]225[265[225]165]205[265]165]225[265]225] 85 | 854265|2251205{265|225]205[145]165]265]265[205]225]205[205] 0 ]225[205]165
28 | 0 |145[265[225]165]205[265]165]145[265]145]205{205{265]145]205{265}145]205[265]165]265]265[205]225]205[205/265] 0 [205]165
29 | 0 |145[ 65 (145 85] 5 [ 65| 85 ]145[ 65 [1451425[125[ 65 (l45ed {165 {145) 5 [185] 85165 65| 5 |145] 5 [ 5 |185]145[ 0 | 85
30 | O [145]185]145] 5 [125]185] 85 [145]185]145{125[125|185]145[125]185]145{125]185] 85 [185[185]125] 65 [125]125]185{145]125] O
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Figure 7. The trend of average solutions in population of hybrid GA repeated four

times in problem No. 7.
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Figure 8. The trend of best solution in,pepulation of hybrid GA repeated four times in
problem.No. 7.
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Figure 9. The trend of average solutions in population of hybrid GA repeated four

times in problem No. 8.
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Figure 10. The trend of average.solutions,in population of hybrid GA repeated four
times. in problem No. 8.
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Figure 11. The further improvement of hybrid GA with initialization by improving
heuristics in problem No. 8.
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Figure 12. The further improvement,ef hybrid GA with initialization by improving

heuristics in problem No. 16.
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