|l nter - Bl"oock Per mutati or
Design for High Through

Inter-Block Permutation Interleaver Design for High
Throughput Turbo Codes

Student: Yan-Xiu Zheng
Advisor: Yu Ted Su

A Dissertation
Submitted to Institute of'‘Communication Engineering
College of Electrical and Computer Engineering
National Chiao Tung University
In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
in
Communication Engineering
Hsinchu, Taiwan

2007 10

Inter-Block Permutation Interleaver Design for High
Throughput Turbo Code

Student: Yan-Xiu Zheng Advisor: Yu T. Su

Institute of Communications Engineering

National Chiao Tung University

Abstract

With all its remarkable performance, the classic turbo code (TC) suffers from pro-
longed latency due to the relatively large iteration number and the lengthy interleaving
delay required to ensure the desirel(.i‘“nerror rate performance. We present a systematic
approach that solves the dilemm‘aibétweréﬂ dec dmg latency and error rate performance.

Our approach takes both algebrai¢ and hardware é}onstraints into account. From the
algebraic point of view, we try .‘t'("; buiiglf"'}é,fg-q_interleévers out of small interleavers. The
structure of classic TC implies fh"a;tm we are coﬂs'lfructing long classic TCs from short
classic TCs in the spirit of R. M. Tanner. However, we go far beyond just presenting a
new class of interleavers for classic TCs. The proposed inter-block permutation (IBP)
interleavers meet all the implementation requirements for the parallel turbo decoding
such as memory contention-free, low routing complexity and simple memory addressing
circuitry. The IBP interleaver has simple algebraic form; it also allows flexible degrees of
parallelism and is easily adaptable to variable interleaving lengths. Even without high
throughput demand, the IBP design is capable of improving the distance property with
increased equivalent interleaving length but not the decoding delay except for the initial
blocks.

We classify the IBP interleavers into block and stream ones. For both classes we

derive codeword weight bounds for weight-2 input sequences that give us important

1l

guidelines for designing good IBP interleavers. We prove that the algebraic properties
required to guarantee good distance properties satisfying the memory contention-free
requirement as well. For block IBP interleavers, we propose memory mapping func-
tions for flexible parallelism degrees and high-radix decoding units. A network-oriented
design concept is introduced to reduce the routing complexity in the parallel decoding
architectures. We suggest efficient interleaver design flows that offer a wide range of
choices in the interleaving length. A VLSI design example is given to demonstrate that
the proposed interleavers do yield high throughput/low complexity architecture and, at
the same time, give excellent error rate performance.

The stream-oriented IBP interleavers are designed for the pipeline decoding architec-
ture which is suitable for high throughput applications but has to pay the price of large
hardware complexity. In order to achieve optimal trade-off between hardware complexity
and decoding throughput, a dynaglitj" gléc;)(fl..e}“"arqbitecture is proposed. We address the
issues of decoding schedule and 'iﬁemor&!ﬁ%naﬁ;gerr:lé{lt and introduce the novel stopping

mechanisms that incorporate b'_ot_h CLR_C”.'(;,ade‘aﬁd slign check. With a proper decoding

schedule, memory manager andzé@_gﬂy—s’{opp:iﬂg 'rule‘, we are able to reduce the hardware
complexity and achieve improved efrgr rate peff&mance with a shorter average latency.

In order to describe various parallel and pipeline iterative decoding schedules and
analyze their behaviors, we develop a graphic tool called multi-stage factor graphs.
Based on this new tool we derive a new decoding schedule which gives compatible error
rate performance with less memory storage. For completeness, we show some irregular

puncturing patterns that yield good error rate performance.

v

OCEAN

TWAG

Contents

Chinese Abstract i
English Abstract iii
Acknowledgements v
Contents vi

List of Figures ! xii
List of Tables - e 2 VJ: xix
Glossary 'r ~ XX
1 Introduction 1
1.1 Turbo decoding 1

1.2 Performance analysis and graph codes 3
1.3 Low latency/high performance interleavers 4
1.4 Statement of purpose: main contributions L. 7
1.5 Existing interleavers as instances of IBP interleaver 9
1.6 Overview of chapters 10

2 Fundamentals 13
2.1 Digital communication system oo 14
2.1.1 Discrete memoryless channel model 15

vi

2.1.2 Mapper and de-mapper 16

2.1.3 Error control systemo 17
2.2 Convolutional code 17
2.2.1 Mathematical notations 0L 17
222 Encoder 18
2.2.3 State space, state diagram and trellis representation 20
224 Termination Lo 22
2.2.5 Soft output decoding algorithm for convolutional code 24
2.3 Turbocode 29
2.3.1 Encoder 30
2.3.2 Decoder 31
2.4 Factor graph 33
2.5 Convergence analysis . i 35
251 EXIT chart . & .| ﬂ; \. "
2.5.2 Density evolutilpi,} o i]: 37
2.6 High throughput turbc;-"deqd‘dérl"ﬁ"afé-};litecf.}lre 37
2.7 Notations] 38
2.7.1 Definitionso 38
Inter-block permutation interleaver 40
3.1 Inter-block permutation turbo code 41
3.2 Inter-block permutation interleaver 42
3.3 IBP properties. 45
3.3.1 First property: invariant permutation 46
3.3.2 Second property: periodic permutation 47
3.4 Constraints on the intra-block permutations 50
3.4.1 TP-IBPTC 51
3.4.2 TB-IBPTC 53

vii

3.4.3 C-IBPTC
3.5 TB-IBPTC bounds of codeword weights for weight-2 input sequences
3.5.1 The achievable weight-2 lower bound

3.5.2 Analytical results oL

Block-oriented inter-block permutation interleaver

4.1 The parallel turbo decoder architecture and memory contention

4.2 Block-oriented IBPTC
4.2.1 B-IBP interleavero
4.2.2 Parallelization method in the B-IBP manner
4.2.3 Parallelization method in the reversed B-IBP manner
4.2.4 Generalized maximal contention-free and intra-block permutation

4.2.5 High-radix APP decoder and intra-block permutation

CEIS R
4.3.1 Network-orientéd B-IBP éigsi“’gn F.

4.3 Network-oriented interleaver design . - S

4.3.2 DButterfly netwégi{ . ‘”.[~— .
4.3.3 Barrel shifter nefnivdri;. R
4.4 B-IBP interleaver supports Ve;riabl(; ninformation length
4.4.1 Shortening and puncturing
4.4.2 Pruning
4.4.3 Comparison between shortening and pruning
4.5 Aninterleaver design L
4.5.1 Interleaver description
4.5.2 Comparison to 3GPP LTE QPP
4.6 Implementationo
4.7 Simulation results
4.7.1 The interleaver design oL

4.7.2 Shortening and puncturing

viil

%)
56
60

4.7.3 Separate and continuous encoding L. 101

5 Stream-oriented inter-block permutation interleaver 106
5.1 Stream-oriented IBP interleaver and the associated encoding storage . . . 107
5.2 Stream-oriented IBPTC encoding and the associated storage 108
5.3 Pipeline decoder and the associated message-passing on the factor graph 110
5.4 Bound and constraints modification for S-IBP interleaver 111
5.5 Codeword weight upper-bounds of stream-oriented IBPTC 114

5.5.1 The upper-bound for weight-2 input sequences 116
5.5.2 The upper-bound for weight-4 input sequences 118
5.5.3 Interleaving gain comparison 121
5.6 Stream-oriented IBP 121
5.7 Modified semi-random interleayer,. 121
5.8 Simulation Results . . & 4 G o 123
5.8.1 Covariance and'qonvergéxicjé behavmr 124
5.8.2 FError probabilify performaﬁee o .f 126

6 Dynamic IBPTC decoder aﬂhnd-stoppihg-‘criteria 134

6.1 IBP turbo coding system with stopping mechanism 135
6.1.1 System model 135
6.1.2 Iterative decoder with variable termination time 137
6.1.3 Graphical representation of an IBPTC and CRC codes 141

6.2 Dynamic decoder and the associated issues 141
6.2.1 Dynamic decoder 142
6.2.2 Decoding delay 143
6.2.3 Memory contention and decoding schedule for multiple ADUs . . 146
6.2.4 Memory managemento Lo 148

6.3 Multiple-round stopping tests oL 152

X

6.3.1 A general algorithm 0L 153
6.3.2 Tl.m: the m-round CRCST 154
6.3.3 T2.m: the m-round SCST 155
6.3.4 T3.m: the m-round hybrid stopping test (MR-HST) 156
6.3.5 Genie stopping testo 156
6.4 Simulationresultso 157
Multi-stage factor graph 163
7.1 Multi-stage factor graph oo 164
7.1.1 LDPCcode 165
7.1.2 S-IBPTC 169
7.2 Multi-stage factor sub-graph 172
7.2.1 LDPCcode CRRRRREE: v e e e e e e e 173
722 SIBPTC .. .8 . moemad 174
- £ iE|S
7.2.3 Discussion . . &L, J e 175
7.3 Causal multi-stage sub—graph ooe OF = 176
7.4 A memory-saving schedule for S- IBPTC 179
7.5 Simulation results 181
Conclusions 183
Proof of Lemma 3.6 185
Proof of Lemma 3.7 187
Proof of Theorem 3.3 188
Proof of Theorem 5.10 190
Puncturing Patterns 197

Bibliography 198

About the Author 217

X1

List of Figures

1.1

2.1

2.2
2.3

24

2.5
2.6
2.7

3.1
3.2

3.3
3.4
3.5
3.6

An inherent IBP structure can be found in most practical interleavers. . . 10

(a) The block diagram of a generic digital communication system; (b) the
block diagram of a simplified channel model; (c¢) the block diagram of a
discrete memoryless channel model. 14
(a) The controller canonical form; (b) The observer canonical form. . . . 18

(a) The encoder associated with G(D) = (D + D? 14 D + D?); (b) state

diagram; (c) trellis segmént. . oo o B . . 21
(a) The block diagranofturbo chde encoder; (b) the block diagram of

turbo code decoder. . e *ﬁ A 30
An example of a turbo c:odfem factor graph. 34
The parallel turbo decoder architecture. 38

a) The block diagram of a decoding module for one iteration; (b) The

block diagram of the pipeline decoder. 39

The block diagram of inter-block permutation turbo code encoder. 41

(a) Inter-block permutation interleaver; (b) Reversed inter-block permu-

tation interleaver (c¢) Sandwich inter-block permutation interleaver. . . . 43
Partition of equivalence classes; L =66, 7. =9. 56
Set mapping; Ny =3, No=6andn=38. 59
The weight 2 lower bound for the Scrambling function ; jgf; 61
The weight 2 lower bound for the Scrambling function 111521%33. 62

xii

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9
4.10

4.11
4.12

4.13
4.14
4.15

1+D24 D3+ D*

The weight 2 lower bound for the Scrambling function =575

(a) The block diagram of the parallel turbo decoder architecture with
parallelism degree 4; (b) memory contention; (¢) memory contention-free.
The block diagram of a block-oriented IBPTC encoder.
An example of block-oriented IBP interleaving.
(a) The memory mapping for a B-IBP interleaver composed of 6 blocks
to support parallelism degree 6; (b) the merged memory mapping for a
B-IBP interleaver composed of 6 blocks to support parallelism degree 3. .
The reversed memory mapping for the B-IBP interleaver composed of 7
blocks to support parallelism degree 3.
The block diagram of the asymmetric parallel turbo decoder architecture
with 4 memory banks and 3 APP decoders
(a) Two connected trelhs segments referrmg to Fig. 2.3 (c); (b) The
merged trellis segment for the ruaiilxﬂél APP decoder.
An example of butterﬂy_ netwbi?kj_o%epi;ed" turbo code decoder architecture
with parallelism degreeré.-‘_ﬂ" . .. " R
Multiple steams decoding.
An example of barrier shifter network-oriented turbo code decoder archi-
tecture with parallelism degree 8.
Weight-2 and 4 error events for a turbo code.
Influence of the weight-2 error events for both shortening and pruning
strategy.o L
Frame error rate comparison for our implementation.
Chip photo [112]. o
The B-IBP interleaver vs. 3GPP Rel’6 interleaver with the length ranging
from 40 to 1000 bits.

xiil

62

74

4.16

4.17

4.18

4.19

4.20

4.21

4.22

5.1

5.2

5.3
5.4

9.5
5.6

5.7

The B-IBP interleaver vs. 3GPP Rel’6 interleaver with the length ranging
from 1000 to 6144 bits.o 101
The B-IBP interleaver vs. 3GPP LTE QPP interleaver with the length
ranging from 40 to 1000 bits. 102
The B-IBP interleaver vs. 3GPP LTE QPP interleaver with the length
ranging from 1000 to 6144 bits. oL 103
The shortening and puncturing effect for the B-IBP interleaver with the
length ranging from 40 to 1000 bits. 103
The shortening and puncturing effect for the B-IBP interleaver with the
length ranging from 1000 to 6144 bits. 104

The comparison between the separate and continuous encoding for code

The comparison between tlie .separa.ucé’ and continuous encoding for code
rate 3/4. & JEEAENS . 105

(a) Conventional inter=block pé;:@y,tatiqn"(S = 1); (b) Storage saving

inter-block permutation '"(S - 1), . & 109

(a) The block diagram of an S.—IBP'”i“nC decoding module for one iteration;
(b) The block diagram of the S-IBPTC pipeline decoder. 111
The time diagram of the pipeline decoder with 4 APP decoders or I,,,x = 2.112
A factor graph representation for an S-IBPTC encoded system with the
S-IBP span 1. 113
Partition of equivalence classes into subsets; L = 68, A =27, T, =T, = 3. 117
Pre- and post-interleaving nonzero coordinate distributions of weight-4
input sequences that result in low-weight S-IBPTC codewords. 119

Covariance between a priori information input and extrinsic information

Xiv

5.8 Exit chart performance of the S-IBPTC and the classic TC at different

5.9 SNR evolution chart behavior of the S-IBPTC and the classic TC at
different Ey/No's. o o o
5.10 A comparison of covariance of bit-level and symbol-level IBP.
5.11 BER performance of the S-IBPTCs with interleaver delay ~ 800, block
size L = 402 and interleaver span S = 1 and the classic TCs with block
sizes L =400,800.
5.12 BER performance of the S-IBPTCs with interleaver delay ~ 800, block
size L = 265 and interleaver span S = 2 and the the classic TCs with
block sizes L = 400,800 are also given.
5.13 BER performance of S-IBPTCs and the classic TC with interleaver delay
1320 and the 3GPP mterleaver | : o e
5.14 BER performance of S IBPTCéﬁ %md the classm TC with interleaver delay

1320 and the modlﬁed.n sg-eml—lTanndom mterle?wer.

5.15 Influence of the interle;wern ‘Sp'*émn 6ﬁ'afhe BER performance for various S-
IBPTCs with interleaver delay 1390, " L
5.16 BER comparison of S-IBPTCs and the 3GPP defined turbo code of vari-
ous block sizes.
5.17 A comparison of S-IBPDTC applying bit-level and symbol-level IBP with
DTC using both Log-MAP and MAX Log-MAP APP decoders.

6.1 The block diagram of the proposed VIT-APP decoder applied IBP turbo
coding system.
6.2 A graph representation for a CRC and S-IBPTC encoded system with

interleaving span S =1. Lo

6.3 The block diagram of IBPTC dynamic decoder.

XV

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

7.1

7.2
7.3

A comparison of exemplary decoding schedules for classic TC and S-
IBPTC when decoding 7 blocks with 2 iterations (four decoding rounds).
The numbers in the two rectangular grid-like tables represent the order
the APP decoder performs decoding. 144

A multiple zigzag decoding schedule for an S-IBPTC with the span S = 1. 147

A joint memory management and IBPTC decoding procedure. 150
Flow chart of a general m-round stopping test. 155
Block error rate performance of various stopping tests; no memory con-

straint; Dy.e =30 DRs.o 158
Average APP DR performance of various stopping tests; Dy = 30 DRs,
no memory constraint. L Lo 159
The effect of memory constraint and management on the block error rate

performance. Curves labelled with mfimte memory are obtained by as-

suming no memory conéffaint; ?n‘!‘ﬁix;edn -DRS’"; .implies that no early stopping

test is involved. . . % - AN 160

Average APP DR perf&)’rm?hc’fé for -'\;/'-ariO'iﬂLS decoding schemes and condi-
tions. Curves labelled Wi’&ﬁrinﬁni‘o‘e r‘h-e“mory are obtained by assuming
no memory constraint; “fixed DRs” means no early-stopping condition is
imposed. L 161
Block error rate performance of a classic TC using various STs; L = 800
bits and Dy =30 DRs. 162
The effect of various STs on the average APP DR performance of a classic

TC with L =800 and Doy =30DRs. . . . 0 o0 000000000 162

(a) Factor graph representation of an LDPC code; (b) the grouped factor

graph; (c) node grouping. 167
Multi-stage factor graph for conventional BP algorithm. 168
Multi-stage factor graph for horizontal-shuffied BP. 169

Xvi

7.4

7.5

7.6

7.7

7.8
7.9

7.10

7.11

7.12

7.13
7.14
7.15
7.16

E.1

Multi-stage factor graph for the new scheduled BP which reduces cycle
effect. . . . o 170
Factor graph representation of a CRC- and S-IBPTC-coded communica-
tion link.o 171
(a) Node grouping; (b) grouped factor graph. 172
A multi-stage factor graph for the S-IBPTC pipeline decoding schedule. . 173
A multi-stage factor graph for the new S-IBPTC decoding schedule. . . . 174
(a) The multi-stage factor sub-graph associated with Fig. 7.9; (b) the
multi-stage factor sub-graph associated with Fig. 7.3; (¢) the multi-stage
factor sub-graph associated with Fig. 7.4; (d) the initial multi-stage factor
sub-graph associated with Fig. 7.4. o000 L. 175
(a) The multi-stage factor sub-graph extracted from Fig. 7.7; (b) the
multi-stage factor sub—grgph'é};tfac.;c.“(ea from Fig. 7.8. 176
(a) The sub-graph of the MSFZ@; Shown 1n Fig. 7.7; (b) the sub-graph

of the MSFG shown in',_ Fig, 78, (¢) the-causal multi-stage sub-graph

associated with the MSEG showtr 1nF1g 7.7; (d) the causal multi-stage
sub-graph associated with the MSRE shown in Fig. 7.8.. 177
(a) Padded virtual nodes retain the regularity of the CMSSG for the begin-

ning nodes on the MSFG; (b) padded virtual nodes retain the regularity

of the CMSSG for the last nodes on the MSFG. 178
A memory saving schedule for the S-IBPTC. 179
The beginning stages on the partial MSFG associated with Fig. 7.13. . . 180
BER performance as a function of SNR for three decoding schedules. . . 182

Average APP decoding round number performance as a function of SNR

for three decoding schedules. 182

Frame error rate comparison between regular and irregular puncturing

patterns for code rate=3/4 3GPP Rel’6 turbo code. 199

XVil

E.2

E.3

B4

E.5

E.6

E.7

E.8

E.9

Frame error rate comparison between regular and irregular puncturing
patterns for code rate=3/4 B-IBPTC..
Frame error rate comparison between 3GPP Rel’6 turbo code and B-
IBPTC for code rate=3/4 irregular puncturing pattern.
Frame error rate comparison between regular and irregular puncturing
patterns for code rate=4/5 3GPP Rel’6 turbo code.
Frame error rate comparison between regular and irregular puncturing
patterns for code rate=4/5 B-IBPTC.
Frame error rate comparison between 3GPP Rel’6 turbo code and B-
IBPTC for code rate=4/5 irregular puncturing pattern.
Frame error rate comparison between regular and irregular puncturing
patterns for code rate=8/9 3GPP Rel’6 turbo code.
Frame error rate Comparlson between regular and irregular puncturing
patterns for code rate= 8/ 9 B- I]BPTC e

Frame error rate comparlson between 3GPP Rel’6 turbo code and B-

IBPTC for code rate=8 v ;rr-e'gular punc_fpurmg pattern.

xXviil

List of Tables

3.1

4.1
4.2
4.3

4.4
4.5
4.6

5.1

E.1
E.2
E.3

(o, B) for some RSCcodes. 60
Throughput and latency analysis for 8 APP decoders 87
Throughput and latency analysis for 16 APP decoders 88
Parallelism degree corresponding to various data lengths K and the sup-

ported number of interleavers. L. 94

Butterfly B-IBP sequences and the corresponding generator polynomials 95

Double prime interleavgr'"‘;;a:"ram“eiters-‘" R 96
Comparison to different’ turbo‘ (‘gleicéder dési:gns 99
S-IBP Algorithm . . ."r-:. . e ARSI 122
Puncturing patterns for code"rate:“'B"/é‘l 198
Puncturing patterns for code rate=4/5. 198
Puncturing patterns for code rate=8/9. 198

Xix

Glossary

3GPP
3GPP LTE
ADU

APP

ARP
ASIC
AWGN
B-IBP
B-IBPTC
BCH
BCJR
BER
BLER
C-IBPTC
CE

CP

CRC
CRC-SC ST
CRCST
CMSSG
D-IBPTC
DWW
DPSK

DR

DRP

DSP

DTC
DVB-RCS
DVB-RCT
EXIT
ESD

FER

IBP
IBPTC

Third Generation Partnership Project

Third Generation Partnership Project Long Term Evolution
A Posteriori Probability Decoding Unit

A Posteriori Probability

Almost Regular Permutation

Application Specific Integrated Circuit

Additive White Gaussian Noise

Block-Oriented Inter-Block Permutation

Block-Oriented Inter-Block Permutation Turbo Code
Bose-Chaudhuri-Hocquenghem

Bahl-Cocke-Jelinek-Raviv

Bit Error Rate

Block Error Rate _

Continuous Inteﬁr‘-'Block Perﬂillit.a,tion Turbo Code

Cross Entropy.s" ‘ J*i : %
Cyeclic Prefix < s, =

Cyclic Redundancy Check J

Cyclic Redundanci Cheek-pign Check Stopping Test
Cyclic Redunddnﬂcy“ Check 'Stoplping Test

Causal Multi-Stage Sub-Graph

Discontinuous Inter-Block Permutation Turbo Code
Decoding Window Width

Differential Phase Shift Keying

Decoding Round

Dithered Prime Permutation

Digital Signal Processing

Duo-Binary Turbo Code

Digital Video Broadcast-Return Channel Satellite
Digital Video Broadcast-Return Channel Terrestrial
Extrinsic Information Transfer

Extended Stopping Decision

Frame Error Rate

Inter-Block Permutation

Inter-Block Permutation Turbo Code

XX

ID-BICM
IN

IST

LDPC
Log-MAP
MAP
MAX Log-MAP
MIMO
MMSE
MR-HST
MRST
MSFG
MSFSG
MU
OFDM
QAM

QPP

RDR

RS

RSC
S-C-IBPTC
S-IBP
S-IBPDTC
S-IBPTC
S-TB-IBPTC
S-TP-IBPTC
SC

SCST

SNR

SOVA
SRID

ST

SV

SVST
SWAPP
TB-IBPTC
TC

TCM
TP-IBPTC
VTT
VTT-APP

I[terative Decoding Bit-Interleaved Coded Modulation
Iteration Number

Inter-Symbol Interference

Low Density Parity Check

Logarithmic Maximum a Posteriori

Maximum a Posteriori

Maximum Logarithmic Maximum a Posteriori
Multiple Input Multiple Output

Minimum Mean Square Error

Multiple-Round Hybrid Stopping Test
Multiple-Round Stopping Test

Multi-Stage Factor Graph

Multi-Stage Factor Sub-Graph

Memory Unit

Orthogonal Frequency Division Modulation
Quadrature Amplitude Modulation

Quadratic Permutation Polynomial

Repeated Decoding Round

Reed-Solomou :

Recursive . Systemat‘lc Convolutlonal Code

Stream- Orlented Con’tlnuous Inter-Block Permutation Turbo Code
Stream-Oriented Infer-Block Permutatlon
Stream-Oriented .IhIeI;Block Permutation Duo-Binary Turbo Code
Stream-Oriented Tnter-Blodk' Permutation Turbo Code
Stream-Oriented. Tail-Biting Inter-Block Permutation Turbo Code
Stream-Oriented Tail-Padding Inter-Block Permutation Turbo Code
Sign Check

Sign Check stopping Test

Signal to Noise Ratio

Soft Output Viterbi Algorithm

Single Round Interleaving Delay

Stopping Test

Soft Value

Soft Value Stopping Test

Sliding-Window a Posteriori Probability

Tail-Biting Inter-Block Permutation Turbo Code
Turbo Code

Trellis Coded Modulation

Tail-Padding Inter-Block Permutation Turbo Code
Various Termination Time

Various Termination Time-a Posteriori Probability

xxi

Chapter 1

Introduction

The invention of turbo codes by Berrou et al. in the early 1990s [13] has ignited
a revolution within the coding research community. The underlying turbo principle
has since crossed the borderline of coding theory and made far-reaching impacts on
various scientific disciplines like communications, computer science, statistics, physics
and bioinformatics, to name just afew y
i J\ . b

1.1 Turbo decoding®™ - 2

1
J

The now classic turbo code 1s co?ﬁil)osé.c‘lnu(.)f two identical short recursive systematic
convolutional codes and a random-like mterleaver. A message sequence and its inter-
leaved version are separately encoded by two component encoders and the resulting
codeword consists of the original sequence (systematic part) and two parity sequences.
Each parity sequence along with the systematic part or its interleaved version forms a
conventional convolutional codeword.

The original decoder proposed by Berrou et al. has a serial structure with identical a
posteriori probability (APP) decoders. Maximum a posteriori probability (MAP) algo-
rithm [8] is iteratively applied to decode each convolutional code and produce reliability
estimates about the systematic bits. The reliability estimate, which is universally called
extrinsic information now, generated by one APP decoder is interleaved or de-interleaved

and then passed on to the other APP decoder for use as the a priori information needed

in its MAP decoding. Such a turbo-like iterative feedback decoding procedure divides
the formidable task of maximum likelihood (ML) decoding of the complete codeword
into much simpler subtasks of computing the log-likelihood ratio (extrinsic information)
associated with each systematic bit locally and exchanging this information between
each other. It turns out this turbo decoding scheme is very effective and the result-
ing performance comes very close to that of the corresponding ML decoder. Because
of its outstanding performance and moderate hardware complexity, the class of turbo
codes has found its way into industrial standards like 3GPP [1, 2, 3|, IEEE 802.16 [56],
DVB-RCS/RCT [37, 38|, etc.

The turbo decoding process was formulated by Hagenauer et al. [50] as a soft-
in soft-out inference process that accepts soft inputs—including a priori and channel
values—and generate soft outputs which consists of the a priori and channel values and
the extrinsic values. The extrinsic Val'u..en ié then u,ged as an a priori value for the ensuing
decoding round. The turbo dec"é)ding pﬂbice.dure and the way the extrinsic information

is passed is often referred to ‘cinsl,_the [tyrbﬂ‘ol‘. principle. This principle has been applied

to construct and decode serial C-Ejncatei{aféa-'EOnvé,lutional codes [10], turbo TCMs [84],
turbo BCH codes [109], turbo pr(;(iﬁct codes or block turbo codes (BTCs) [81, 80],
turbo Reed-Muller codes [109], and asymmetric turbo codes [91] (which has different
component convolutional codes and offers better performance). Replacing the inner code
of a serial concatenated coding system by a differential phase shift keying modulator or
signal mapper, one obtains turbo DPSK [53] or iterative-decoded bit-interleaved coded
modulation (ID-BICM) [72, 71]. Modelling a channel with memory as a linear FIR filter
or equivalently a finite-state machine so that the combination of coding and channel
effects becomes a serial concatenated system with the channel performing inner coding,
one can detect the received signal by iteratively equalizing the channel effect and then
decoding, resulting in turbo equalization [36], turbo space-time processing [6] and turbo

(iterative) MIMO detection [7], [19]. By using more than two component codes and

multiple interleavers, Boutillon and Gnaeding [22] investigated the structure of multiple
turbo codes. Replacing the one-to-one permutation function by a many-to-one mapping,
Frey and MacKay [45] proposed the so-called irregular turbo codes. stream-oriented

turbo code was proposed by Hall [51], a pipeline architecture was studied in [101].

1.2 Performance analysis and graph codes

The reasons for the extraordinary performance of the TC, although unclear initially,
has been unraveled through many excellent and intensive research efforts. Benedetto and
Montorsi [9] showed that the iterative (turbo) decoding algorithm is capable of achieving
near-ML performance and the error rate performance improves as the interleaver length
increases. They also found that the interleaver length can be traded with component
code’s complexity and that the number of nearest neighbors rather than the minimum
distance dominates the performanéé; .afc Wlea.sl"c: When SNR is small. Perez et al. [74]
analyzed the TC ensemble (oveﬂrjrllalll possuflnﬁ)le _i.",I'i"t'erl'e:fallvers), examined the code’s distance

spectrum and came to a simildr ‘conclusion that thé error floor occurs at moderate to

high SNR is due to the relativ-énl"y.‘ sfﬁélln free diétance of the component code and its
excellent performance at low SNR is‘r‘ésulte“d" ffom spectrum thinning. They found that
the low weight codewords, in particular those generated by weight-2 input sequences,
dominate the error rate performance especially at the error floor region.

The convergence behavior of the turbo decoding algorithm was analyzed by Richard-
son [82, 83| from a geometric viewpoint. He also suggested a density evolution approach
to compute the thresholds for low density parity check (LDPC) codes. The concept of
density evolution was later extended to be applicable to turbo codes [82]. The anal-
ysis of El Gamal and Hammons [39] is based on the fact that the extrinsic values at
the output of an APP decoder is well approximated by Gaussian random variables and
channel values are also Gaussian distributed when the only noise source is AWGN-an

observation first noticed by Wiberg [108]. As a Gaussian distribution is completely char-

acterized by its first two moments, the density evolution information can be replaced
by SNR transfer. Both [39] and Divsalar et al. [34] use similar SNR measures to study
the convergence of turbo decoders. Extrinsic information transfer (EXIT) chart [27, 28]
proposed by ten Brink plots the increase of extrinsic information through the component
decoders based on the measure of mutual information between extrinsic information and
the associated information symbol or code symbol.

A special class of graphs called factor graphs [60, 42] can be used to describe the
behavior and structure of a turbo-like algorithm. A factor graph decomposes the algo-
rithmic structure into function nodes and variable nodes with edges connecting these
function nodes. McEliece et al. [66] discovered the connection between the turbo decod-
ing algorithm and the belief propagation (BP) algorithm in artificial intelligence. The
graphic and BP interpretations of the turbo decoder have great impacts and opened new
arenas on many fronts: new decocling'e.mllngo‘rii:"ﬂffls,.wschedules and new (graph) codes were
proposed, a unified view on itgfative dééodmg ‘allg.(_)rithm, Kalman filter, the forward-

backward, Baum-Welch, and Viﬁerbi[qlgafithms be:come possible, connection between

turbo codes and LDPC codes v-\'f'as éétébiiéﬁgdz tf}at amongst coding theory, statistical

inference, physics was exploited to thie benefits of all involved research communities .

1.3 Low latency/high performance interleavers

The role played by the interleaver in determining the decoding latency, weight dis-
tributions and performance of a TC is of critical importance. A TC usually employs
a block-oriented interleaving so that the message-passing process associated with an it-
erative decoder is confined to proceed within a block. The performance of such a TC
improves as the block size increases. This is in part due to the fact that the range (inter-
leaving length) of the extrinsic information collected for decoding increases accordingly.
But the interleaving size along with the number of iterations are the dominant factors

that determine the decoding latency and complexity which, in turn, are often the main

concerns that precluding the adoptability of such codes in high rate communication or
storage applications.

The semi-random interleaver [44] increases the codeword weights corresponding to
the weight-2 input sequences but not those for weight-4 input sequences. The code
matching interleaver of [40] considers the influence of component codes and extended
the optimization criterion to include the weight-4 input sequences, yielding performance
superior to that based on a semi-random interleaver. The methods proposed in [54, 86]
are based on the analysis of the correlation of extrinsic information resulted from cycles
in the code graph. They design interleaving rules to reduce the cycle effect and obtain
slightly-improved performance.

A common shortcoming of these interleaver designs is their lack of an algebraic
structure. A look-up table is therefore needed in implementation. Structural interleavers
are now abundant: 3GPP Rel’99.“ah'd” Rel’6 ihtg}rleaver [1, 2|, dithered relative prime
interleaver [30, 31], dithered go}ﬂén intéﬁ%a&véﬁ (DRP) [30], almost regular permutation
(ARP) [12, 37, 38, 56], quadrafic polyggfhikﬁ pe'rmﬁﬁ;ation (QPP) [90, 85, 92, 93, 3], to

name the important ones. Thes-'é_giqfér'l'efiv'e‘;r-é"areigenerated by few parameters and the
corresponding storage requirements..ﬂ éife moderéifé.

Besides a simple algebraic structure, we notice a recent trend indicating that high
throughput (; 100 Mbps) turbo decoders [3, 56] are in great demand. The low la-
tency/high throughput applications require that the interleaver be such that the cor-
responding turbo code is parallel decodable. Some design issues arise because of this
requirement. Firstly, we notice that since a parallel decoder consists of many APP de-
coders, each responsible for decoding a (non-overlapping) part of the incoming block,
these decoders would simultaneously and periodically access the memory banks that
store the extrinsic information and channel values through hardwires. Thus the parallel
decodable requirement implies that the interleaver structure must be memory contention-

free and allow simple interconnecting network for hardwire routing. Next, practical

system design concerns call for flexible degrees of parallelism and arbitrary continuous
interleaving length so that one has flexible choice on both the number of APP decoders
and the frame (packet) size.

Random interleavers, although offer satisfactory error rate performance, incur serious
memory contention. Implementing temporary memory buffer [49] to avoid memory
contention is a viable solution but the storage grows linearly with the number of APP
decoders. Resolving the contention by a sophisticated memory mapping function [95]
requires a table for each interleaving length. The table requires memory storage for
addressing and memory control which results in extra hardware complexity. A large
number of interleaving lengths thus need many memory addressing tables and causes
increased hardware complexity. New industrial standards such as 3GPP [1, 2, 3], DVB-
RCS/RCT [37, 38], IEEE 802.16 [56] do not favor this approach for the demand of
large number of interleavers and lijébﬁblé%ffy memory addressing. A variable length

| = |

interleaver structure that resolies mefn!E);W ednteﬁ’gion with on-fly generated memory

mapping function is an efficient é_und \%vglcéﬁ.le approelich.

Some of the existing interle;Vers‘likreﬁfl'i&e-';DRP}‘ ARP and QPP do have simple alge-
braic structures and possess the mérfldry conte“n-t“ion—free property, the DRP even yields
a minimum distance that is close to the known upper bound, resulting in outstanding
performance especially for frame error rate below 1075, However, none of them takes
into account the other requirements which are of concern mainly to the circuit design
community.

A fully-connected network can be used but the complexity grows in proportion to
the square of the parallelism degree. The average routing length also increases, bringing
about longer routing latency and higher power consumption. The network configuration
is close related to the interleaving/deinterleaving rule used. Irregular routing control
should be avoid as it necessitates complex controlling signalling. For more detailed

discussion on the routing network complexity and network configuration signalling please

refer to [78, 68, 67, 33]. Memory addressing also depends on interleaver design. [70, 95,
96] have investigated the memory addressing and permutation table storage problems.
3GPP Rel’99 and Rel’6 [1, 2] applies the prime interleaver as the intra-row permutation
and this interleaver needs storage for the permutation table of each row. The intra-
memory bank addressing induces storage complexity if the table can not be generated
on-fly. Therefore 3GPP LTE QPP [3] avoids the storage and replaces the interleaver.
Popular hardware-friendly designs that avoids the above-mentioned storage requirement
ARP [12, 37, 38, 56] and QPP [90, 85, 92, 93, 3]. Some parallelization methods are
suggested in [49, 20, 98, 97].

1.4 Statement of purpose: main contributions

The above discussion shows designing the interleaver for a T'C for wireless applications
has to consider both error rate péffbrmance éﬁd hardware/ memory complexity. The
main purpose of this thesis is, to presen{: a systematlc and unified interleaver design

flow and guideline that enable one_ {0 Construct an interleaver of arbitrary practical

lengths which not only meet all the above requlrements but also guarantee little or no
performance loss with respect to the that achlevable by the best known code of the same
or comparable interleaving lengths. To distinguish the TC without any constraints and
the TC applying out interleaver, we refer the former class as the classic TC.

The structure we propose is called inter-block permutation (IBP) interleaver. The
IBP technique can be regarded as a simple way to build a larger interleaver based on
smaller interleavers. It performs an extra inter-block permutation on those blocks that
have already been interleaved by intra-block permutation. As the interleaver along
with the component code determines the structure of classic TC, the concept of IBP
interleaver is also similar to Tanner’s approach for constructing a large (long) code with
small codes. The proposed interleaver structure is general enough to encompass all

known important interleavers as special cases yet viable for generating new solutions.

We summarize the main contributions of our work documented in this thesis as

follows.

1. We present a unified approach and design flow to build interleavers that not only
have good distance properties but also meet all the major implementation re-
quirements for high throughput turbo decoders. More specifically, the resulting
interleaver structure (i) is maximum memory contention-free, (ii) allows low com-
plexity routing network structure and simple signalling circuits, (iii) offers flexible
choice in the degrees of parallelism, (iv) is easily tailored to serve the continuous in-
terleaving length requirement, (v) supports the high-radix APP decoder structure

and (v) includes all existing good interleavers as its subclasses.

2. For a stream-oriented application, our technique overcomes the dilemma between
increasing the range of message'ékchaﬁ:ge and extrinsic information collection and
reducing the mterleavmg sme (and therefore the decoding delay). It outperforms
classic TCs with the same decodlng delay and pffers new design choices and trade-

offs that are unavailable for classac LE: demgn

3. We derive codeword weight boﬁnds for weight-2 and weight-4 input sequences.
More importantly, we use these bounds and computer simulations to prove that
the advantages mentioned in 1-2 are achieved with little or no loss in error rate

performance.

4. We present a dynamic corporative pipelined decoder structure that incorporate an
efficient memory manager and a class of highly reliable early-stopping rules. The
proposed decoder structure gives improved performance with reduced latency and

memory requirement.

5. For non-parallel decoding, the IBP interleaver is still capable of reducing the de-

coding latency while maintaining satisfactory performance.

6. A graphic tool called multistage factor graphs is developed to analyze the behavior
of parallel and pipelined decoding schedules. It is applied to design a new pipelined
decoding schedule with reduced memory requirement and can also be used to design

better schedule for decoding LDPC codes.

1.5 Existing interleavers as instances of IBP inter-
leaver

For a classic TC using an IBP interleaver, the encoder partitions the incoming data
sequence into L-bit blocks upon which the IBP interleaver performs intra-block and
then inter-block permutations. For example, the IBP interleaver may move contents of
a block either to coordinates within the same block or to its 25 immediate neighboring
blocks so that the IBP-interleaved contents of a block are spread over a range of 25 4 1
blocks centered at the orlglnal block Such an IBP interleaver is said to have the (left
or right) IBP span S. ' H :‘.. % -

For any reasonable good intéﬂeavegr ofnnsi‘ze N ,7 par;titioning each N-bit group into L =

| N/W |-bit blocks 1mmed1ately transforms the mterleavmg rule into an IBP structure
like that shown in Fig. 1.1. Such a Struétire can also be found in other codes such
as product codes. Consequently, all classic TCs and product codes can be regarded as
subclasses of inter-block permutation turbo codes (IBPTCs). There are, however, two
major distinctions between classic TCs and most other subclasses of IBPTCs.

Firstly, for a classic TC with an interleaving length of W blocks, encoding within each
disjoint group of W consecutive blocks is continuous across blocks while a product code
encodes each row (column) separately (discontinuously). More specifically, the product
code encoder divides information stream into multiple blocks and independently encodes
each block. In general, the class of IBPTCs can encode each block either separately or
continuously. Secondly, an interleaver used in a classic TC, after the above virtual regular

partition, usually yields a non-regular local interleaving structure, i.e., the interleaving

Pre-Permutation

1 2 3 4

Post-Permutation

Figure 1.1: An inherent IBP structure can be found in most practical interleavers.

relation between a block and other blocks in the same group does not follow the same
permutation rule. In contrast, product codes and the proposed IBPTCs have much more
regular local interleaving structures. An appropriate regular local interleaving (and dein-
terleaving) structure makes implgmeh%éfibﬁ "é:asigr and, as mentioned before, provides
properties that are useful for préu_ralllel d;@i:odmg, “‘%fg., (memory access) contention-free

and simple routing requirement,r. 7Moreoye'r:,wv(f"1‘th'or without parallel decoding, as the ex-
= . -]

amples in Section 6.2 show, it also: rleéu'llz‘cs“ in 'féduc;éa decoding delay. Regular (identical)
local interleaving structure support'é".'lé,rgé iahg‘é'bf interleavers, makes the resulting IBP
interleaver expandable and minimize the associated implementation cost, e.g. 3GPP

LTE QPP [3], IEEE 802.16 [56].

1.6 Overview of chapters

In order that this thesis be self-contained we provide major background material
related to our work in Chapter 2. Two fundamental guidelines are provided in Chapter
3 for constructing IBP interleavers with good distance and maximum contention free
properties. The first rule demands that the IBP rule be block-invariant and identical
intra-block permutation e used. The second rule implies that the permutation should

be periodic within its span. Following these and other minor guidelines we are able to

10

construct interleavers that meet most of the hardware requirements while maintaining
good distance properties. Searching for large range of interleaving lengths also become
easier.

We divide the class of IBP interleavers into block-oriented IBP (B-IBP) interleaver
and stream-oriented IBP (S-IBP) interleaver. The B-IBP interleavers are treated in
Chapter 4 while Chapter 5 deals with the stream-oriented IBP (S-IBP) interleavers. The
B-IBP interleavers include popular interleavers such as the ARP and QPP and usually
have hardware constraints more stringent than those on stream ones. Encoding variable
information lengths with the same hardware architecture. We suggest simple memory
mapping functions that support flexible choices in the number of memory banks and APP
decoders. An alternate decomposition of an IBP rule called reverse IBP manner offers
additional flexibility. In order to support the high-radix APP decoder and the generalized
maximum memory contention- free property, e, 1rnpose two constraints on the intra-

block permutation and obtain slmple a,nd1 easﬂy generated memory mapping functions.

Our network-oriented design allows low complex1ty biutterﬂy network and simple routing

control signalling. To deal Wlth_gvarlable message lengths without throughput loss, a
shortening and puncturing algoritlrirrr-is propeeed to maintain both performance and
hardware implementation edge. We provide an interleaver design with the interleaving
length ranging from 40 to 6144 bits. A VLSI implementation example based on this
design with a specific interleaving length of 4096 bits is also given.

We prove that our S-IBP interleaver construction gives larger codeword weight upper-
bounds for the weight-2 and weight-4 input sequences than those of classic TCs with
the same interleaver latency. Our S-IBP interleaver is well suited to pipeline decoder
architectures [101]. To improve both hardware/memory efficiency and error rate perfor-
mance we propose a dynamic decoder architecture which includes a memory manager
and an early-stopping mechanism. The decoder also admits new decoding schedules and

offers trade-off between throughput and hardware/memory complexity.

11

In Chapters 6 we discuss issues concerning the pipelined decoders. Early-stopping in
iterative decoding is an critical and very practical issue. Regarding the iterative decod-
ing as an instance of sequential decision processes, early-stopping reduces the number
of iterations (and thus the computation complexity /power) at high SNR without per-
formance loss at low SNR. CRC code, sign check, soft value (cross entropy) are some of
the more popular stopping schemes [50, 88, 65, 4]. The CRC code offers more reliable
stopping decision than other schemes do at the cost of increased overhead and reduced
bandwidth efficiency. The proposed multiple-round stopping mechanism enhances the
stopping reliability with a smaller overhead, leading to the improved latency and error
rate performance.

Judicial design of decoding schedules is crucial for the parallel or pipeline turbo
decoding. Conventional factor graphs are incapable of describing such decoding sched-
ules for turbo codes and LDPC gp‘dﬁéé.l in...C'HapPer 7, we develop a new graphic tool
called the multi-stage factor gr_é{p'hs toll.;ﬂeifsnr%ge, tlh.q the time-evolving message-passing

and evaluate the performance of ',_fario[u_s, dééoding schedules for the parallel and pipeline

decoders. A good decoding scheagle “is"'irrip'(;r';t“ant 1n rendering satisfactory performance,
e.g., the horizontal shuffled belief p-”rl(n)‘pagation “‘él“gorithm [63] outperforms conventional
belief propagation algorithm [60] in terms of the number of iterations required to achieve
a desired error rate performance. Multi-stage factor graphs can be used to show the cy-
cle effect and design new decoding schedule to avoid short cycles. We propose a novel
decoding schedule for a stream-oriented IBPTC that requires much less memory storage
and slightly increased computation but yields similar error rate performance. Finally,

in Chapter 8 we summarize the main results of our work.

12

Chapter 2

Fundamentals

This chapter provides the backgrounds of this thesis. Channel coding embedded in a
digital communication system [79] overcomes channel impairments, e.g. thermal noise,
multi-path fading, etc. Turbo code [13] is an important candidate among these chan-
nel coding schemes. This code possesses better error rate performance comparing with
the convolutional code with COHStl"é}ihg length41[79] and can apply iterative decoding
algorithm with less Complexityj‘.’.c"o achié@ei'.ﬁthé “pei.rformance comparing to the Viterbi

algorithm. The algorithm adopﬁs maxunum a posteriori (MAP) [8] algorithm to gen-

erate the extrinsic information m]f"orn successwe denc'"Qding as the a priori information and
corrects errors after several iteratic;h"‘s.“ In oi‘"def.to further reduce implementation com-
plexity, many researches [50, 104] focus on the MAP algorithm simplification. Due to
high performance with low computation complexity, many standards adopt turbo code,
e.g. 3GPP Rel’99 and Rel’6 [1, 2], 3GPP LTE [3], DVB-RCS[37], DVB-RCT[38] etc.
3GPP LTE further requires the throughput exceeding 100Mbps and high throughput
turbo decoder architecture becomes important topic; interleaver determines the imple-
mentation complexity and error rate performance. Theoretical performance analysis and
codes characteristics are also of our interest. The factor graph [60, 42] expounds the
structure of turbo code and some decoding algorithms are derived. Given the graph
and decoding algorithm, the extrinsic information transfer (EXIT) chart [27, 28] and

density evolution [34] explain the convergence behavior at various signal-to-noise ratios

13

lnformationD:{diCRC COdEU :{Uﬁ Channel C:{C‘} Symb0| S:{SkL Modulator S(t)

Source "] Encoder "] Encoder "1 Mapper

Y
Distortion
- Channel
Noise

InformationE:{di} Error E:{Ui} Channel I:{y,} Symbol X={x} De-modulatol(t)

Sink | Detector | Decoder De-mapper h

(a)
s ! sty Waveform Channel L
——L»! Modulator De-modulatof————-

Discrete Channel I _ o(t) _n(t_) J

Figure 2.1: (a) The block dlagram of a generlc dlgltal communication system; (b) the
block diagram of a simplified channel meéel—QG) the block diagram of a discrete memo-
ryless channel model. o d

(SNRs) and help us choosing a good code. We can further modify the graph to acquire
some distance bounds [75] which dominate the performance at high SNR. The following

sections detail these implemental and theoretical backgrounds.

2.1 Digital communication system

Fig. 2.1 (a) shows a generic digital communication system block diagram which
includes three parts: 1) channel; 2) modulation, demodulation, mapper and de-mapper;
3) error correction and detection. Channel imposes non-ideal effects and distorts the
modulated continuous waveform. Demodulator and de-mapper convert the distorted

waveform into samples. Error correction recovers these samples and renders decoded

14

sequences. At last error detection verifies the correctness of decoded sequences. The

following subsections will elaborate these three parts.

2.1.1 Discrete memoryless channel model

A memoryless discrete channel model is characterized by a multiplicative distortion

and a complex AWGN in Fig. 2.1 (c¢) and the received sample is
Tr = Qp - 2, + N, (2.1)

where A = {a,} and N = {n,} are identical independent Rayleigh (Rician) distributed
random variables and complex Gaussian distributed random variables with C'(0, Np)
respectively.

This model can replace channel, modulator and de-modulator in Fig. 2.1 (a). We
combine modulator and demodulaﬁgr--to construct a discrete channel model which is
shown in Fig. 2.1 (b). The tb-eiihél 1Iiupiﬁsle 'iptradpced by component devices can be
modelled by the white Gaussian randornrliniy;;"d'c;as‘s.“ ‘P:xs for the non-selective fading [79],
we model fading process «a(t) a,sa Réyle:rgh—or Rici]zmn distributed random process and
the value is almost invariant duri.hgn eacl syg}bo-l"“lgeriod. As we apply a perfect channel
interleaver between de-mapper and channel decoder, the correlation between adjacent
modulation symbols diminishes after channel de-interleaving. Since the fading attenu-
ation is uncorrelated and the thermal noise is white, the channel model can be further
simplified as shown in Fig. 2.1 (c).

Time domain dispersive multi-path fading effect introducing inter-symbol interfer-
ence (ISI) also can be modelled by a memoryless discrete channel model as we apply
orthogonal frequency division modulation (OFDM). OFDM applies a cyclic-prefix (CP)
to maintain the longest path delay within the interval of the CP and we can sample a
symbol period without interferences from other symbols and the ISI effect disappears.

The frequency domain amplitude attenuation incurred from all paths can be modelled

as a Rayleigh distributed random variable if there is no line of sight. If there is a line

15

of sight, the distribution is Rician distributed probability density function (pdf). The
model in Fig. 2.1 (¢) can be re-applied.

The shadowing effect is a long-term effect and generally lasts more than one coding
block. The effect can be modelled into the noise strength. Therefore the simplified
memoryless discrete channel model properly covers most scenarios and this thesis will

apply this model as our simulation assumption.

2.1.2 Mapper and de-mapper

Mapper bridges channel encoder and modulator; de-mapper generates log-likelihood
or log-likelihood ratio for code bits corresponding to a sample x. Mapper maps n code

bits into a modulated symbol S, € S by a mapping rule

(I) . {bm,Oa bm,l> s 7_bm,n—1} — Sm7 (22)

where b, ; € {0,1} and [S| = 2% .Baséfd pﬁ”.the.' mapping rule, de-mapper can apply
) ik N el Y

maximum a posteriori (MAP):..a‘lgorithmj't.r')"‘.generzilte a log-likelihood ratio of the ¢th
code bit corresponding to the z'ﬁhﬂmappfiﬁng- bittas: .

L(c;) = log Zl’mﬂ 0,bni .57 (S| k)

- (2.3)
me,i:me,j,j#i p(sm|xk)

L(¢;) is generally applied as y; to the following channel decoder.

We further consider binary phase shift keying (BPSK) and the mapping rule is

q):{b070:0—>50:+1 (24)

bl,O:]-_)SIZ_]- ’
If P(c; =0) = P(¢; = 1) = 0.5 and the pdf of x given S,, and channel attenuation « is

1 7(1*a5m)2

DX (S0 (X| Sy) = Wexp 202 (2.5)

with 02 = Ny/2, the log-likelihood ratio in eqn. (2.3) with k& = ¢ becomes

e S7 4
L(c;) = log §(50|$t704t) ~ log Px|S0,0 (@S0,) log p(So) _ Aoz,

vty) . 2.6
Gizna) % prsa@lSna) 1 pE) T Ny (20

16

2.1.3 Error control system

Error correction and detection are two main error control functions. Error cor-
rection function applies channel encoder and decoder to overcome channel distortion.
Channel encoder generates coded sequence and channel decoder recovers the distorted
sequence after channel corruption. Convolutional code, turbo code, LDPC code and
Reed-Solomon code are now popular error correction codings. Error detection function
generally relies on a cyclic redundancy check (CRC) code [109]. The CRC code encoder
adds the error check parities behind information sequence and error detection function
verifies the consistency between the decoded information sequence and parities. If the
error verification fails, error control system discards decoded sequence or requests re-
transmission to render higher successful transmission probability. These two functions
enhance and guarantee data transmission robustness via channel corruption.

2.2 Convolutional*codé‘?i] \

Convolutional code encoder-"-__féatuﬂr[efsﬁW&styuéiture which can be realized by finite
shift registers and adders and is sh'novs}n-in Fig. 2.\2.’5The codeword length is not stringently
constrained comparing to the block cé)de, eg RS code. The simple structure results
in that the Viterbi algorithm [103, 41], soft decoding algorithm, is applicable and the
resultant performance is better than the performance of RS code. In order to expound

the code structure, we provide some mathematical notations at first.

2.2.1 Mathematical notations

Denote by Fy[D] the ring of binary polynomials, where the power of D is nonnegative
and the coefficients are in Galois field GF(2), e.g. p(D) = Y ooopiD" € Fs[D] and
pi € GF(2). Multiplication of two polynomials is a polynomial multiplication with
coefficient operation performed under GF'(2). Since the power of D is nonnegative, 1 is

the only only element with its inverse and Fy[D] is a ring.

17

(b)

Figure 2.2: (a) The controller canon-lcal form (B) The observer canonical form.

Fy(D) denotes the field of binary rational functions. Each element in Fy(D) is ex-

pressed by xED), where each pair (D), y(D) € Fy[D] with y(D) # 0. Apparently all

elements E D; € Fy(D) are invertible and they form a field.
We further denote by F$*°[D] and F$*°(D) the a x b matrix of ring of binary polyno-
mials and the a x b matrix of the field of binary rational functions respectively. All entries

in X***(D) € F$**[D] and Y***(D) € F3**(D) belong to Fy[D] and Fy(D) respectively.

If @ = 1, the notations are simplified as F5[D] and F5(D).

2.2.2 Encoder

A rate R = a/b convolutional code encodes input sequence u = upujus ... and gener-

ates code sequence ¢ = ¢oCiCy . .., where u; = {u},u?, - ,uf} and ¢; = {c} cj,], - ;’

18

A sequence can be represented by the delay operator D (D-transform), and we have

u(D) = uy+wD+wD*+ -, (2.7)

C(D) = Co+ C1D + CQD2 + - (28)

where u(D) € F4[D] and ¢(D) € F4[D]. The encoder input and output relation can be

expressed as
c(D) =u(D)G(D), (2.9)

where G(D) € F§**(D) is a transfer function matrix. The matrix has a form

= (Qo+ @D+ +QunD"™) (Fy+ FAD+ -+ F, D™), (2.10)

where Q(D) € F3*¢[D] and F(D) € FgXb[D} The polynomial matrix Q(D) is a diagonal
matrix with @y = I, I, is an a x‘a":idenFityv“.ir‘;léuix, i.e. the elements off the diagonal
entries are zero. The matrix G(D) can bdue“ 1reahzed iﬁ_ﬁthe controller canonical form shown
in Fig. 2.2 (a). Observer canozlnlical foghﬁdheé way in realizing transfer function

matrix. We substitute eqn. (210) 1nto eqn. (2.9).‘.wto render

c(D)=uD)(Fo+FD+---+ FmDm) +c(D)(@QiD+---+Q,D™). (2.11)

Fig. 2.2 (b) shows the corresponding linear circuit which is the observer canonical form
for a convolutional code encoder. Both controller and observer forms realize the transfer
function matrix.

From the above description, we give a formal definition of a convolutional code as

follows.

Definition 1 A code rate R = a/b (binary) convolutional code encoder over the field of

rational functions Fo(D) is a linear mapping
d..: F4(D) — TFYD)
u(D) — ¢(D)

19

which can be represented as

where G(D) € F**(D) is an a x b transfer function matriz of rank a and c(D) is a code

sequence generated from the information sequence u(D).

Systematic recursive convolutional code is of our further interest. The systematic
code has information bits in a code sequence and the transfer function matrix G(D) can
be

G(D) = [l R(D)], (2.12)

where R(D) € F;X(bfa)(D). The recursive code generates large number of nonzero code

bits if u(D)Q (D) ¢ F3[D]. For both structures, we gives definitions as below.

Definition 2 A rate R = a/b convolutional code encoder whose information sequence

appears unchanged among the cgdie 'sequ'u“ 1c.‘ea;”is cdlled a systematic encoder.
o= .“
Definition 3 A rate R = a/b égoﬁvolqt@'oﬁﬁi code encoder whose transfer function matriz

G(D) has Q(D) #1, is a Tecufs'_z'z)Q encoder: 7
2.2.3 State space, state diégra”fh and trellis representation

The encoder shown in Fig. 2.2 (a) is finite state machine and the values in regis-
ters characterize the state space X, i.e. 0 = (01,09, - ,0,) € ¥. When information
sequence is input, the state varies with time. In order to record the state change, we
further define the state at time ¢t as o' = (0},0%,--- 0!) € ¥. The input and output

relation at the time ¢ is
o' = o'A 4+ u,B, (2.13)

¢, =o0'C+uD, (2.14)

where A is the (m x m) state matrix, B is the (a x m) control matrix, C is the (m x b)

observation matrix and D is the (a x b) transition matrix [64]. These two equations

20

ut/c'c?
0/00

() (b)

Figure 2.3: (a) The encoder associated with G(D) = (D + D?,1 + D + D?); (b) state
diagram; (c) trellis segment.

. 5 i =1
evolution involving an input information séquence. -
e | ’ - |

are state space representation of'a Conx{@lhtiéﬁal (::c').de encoder and show the state time

Two kinds of graphical représéntatigﬁme diagram and trellis diagram, can char-
acterize the encoding and facilitdté decoding dléérithm derivation. The state diagram
draws the state transition of the encoder. If there is a transition from the state o to
state o/, we draw a directed edge from state o to state o’ and note “input information
bits/output code bits” on the edge to represent input/output relations. However the
state diagram does not represent the state transition involving with time. We draw a
trellis segment associate with states o and o®*1. If there is a transition from state o to

L we plot a directed edge from state o' to state o'™! and note “input informa-

state o'™
tion bits/output code bits” on the edge. Then we connect trellis segments into a trellis
diagram to represent input information sequence, code sequence and state transition

sequence involving with time. Owing to the trellis representation, the Viterbi [103, 41]

and BCJR [8] algorithms are easily visualized and demonstrated.

21

Example 1 Fig. 2.3 (a) shows a rate R = 1/2 convolutional code with the transfer
function matriz G(D) = (D + D?* 1+ D + D?), where the associated the state matriz,

control matriz, observation matriz and transition matriz are

A:[g H,B:[l o],cz{l 1],andD:[o 1],

(2.15)

Figs. 2.3 (b) and (c) depict the graphical representations. According to eqns. (2.13) and
(2.14), we draw the state diagram shown in Fig. 2.3 (b). A trellis segment associated with
o' and o' is plotted in Fig. 2.3 (¢). Given an initial state condition and a termination

scheme, a complete trellis diagram can be obtained by connecting these trellis segments.

2.2.4 Termination

Tail-padding and tail-biting are, tw’oﬂ bdpﬁl"zﬁ‘ termination methods for a convolutional
code encoding an information sequence Df ﬁmte length L. The tail-padding terminates

codeword at a specific state by paddmg blts and av01ds an unknown end state on decoder

side. The tail-biting keeps the 1n1t1al state and end state the same and the decoder can
guess the both states. However the first s.cheme decreases code rate and the second
scheme induces extra decoder computational complexity.

The tail-padding assigns extra bits behind an information sequence to terminate the
end state to all zero state. The bit assignment is different for the recursive and non-
recursive convolutional codes. For the non-recursive code, we pad a - m zeros behind an
information sequence and the end state becomes the all zero state. However padding
a - m zeros behind an information sequence does not guarantee the end state being the
all zero state for the recursive code. In order to find the padding bits for the recursive

code, we can solve the following equation with o™ = 0 to obtain the padding bits

22

(B, Bpg1s e Urgmet)-

O.L+1 — O'LA + ﬁLB
glt+2 — oL 1A + ﬁi—&-lB

(2.16)
O.L+m — O.L+m71A + ﬁL—}—m—lB

Solving the eqn. (2.16) seems hard but the padding bits can be acquired easier. Take the
encoder shown in Fig. 2.2 (a) as an example, the padding bits are ti,4; = > 1", ajL“Qi,
where 0 < 7 < m.

The tail-biting for a non-recursive convolutional code acquires the end state by flush-
ing the tail bits of an information sequence into an encoder. Because the encoder is
non-recursive, the end state only depends on the last a - m bits of an information se-
quence. We can flush (ug_,,,ur i1, - ,u;_1) into an encoder and initial state is
o9 =or =Y. u;BA™ D=5 Take the encoder shown in 2.2 (a) as an example, the
initial state is (Wp_p, Up a1, - ,uL LA

The tail-biting method for th.e recurswe code requlres double computation complexity
to encode information sequence thce the ﬁ.rst enoodlng obtains the initial state and
the second encoding generates -a:”codewordi'.iDeno_te by o1 and okl the zero-input

solution and the zero-state solutior. ‘Eqn. (2,13)-“ implies

t—1
ot = O_t,[zi] + O_t,[zs] _ O_OAt + ZUSBA(t—l)—S _ O_OAt + Ut,[zs]‘ (217)
s=0
The zero-state solution is o = S0 uBA®D=*. When t = L and ¢° = o*, we
have
0% = ol = c"AL ol (2.18)

If the matrix I + A’ is invertible, we have the initial state as
0¥ = o (T4 AF) (2.19)

The encoder acquires the zero-state solution o™** by inputting information sequence
and calculates the initial state 0® by eqn. (2.19). Then the encoder applies the initial

state 0¥ to generate a codeword.

23

The length of an input information sequence determines if the tail-biting is applicable.
An invertible matrix I+ A’ is the necessary condition to calculate the initial state ¢°. If

there exists an L such that I+ AL = 0, the initial state can not be found and encoding
001

fails. Take 3GPP turbo code [1] as an example. The state matrix is A= | 1 0 0
011

and A7 = I5. It can not encode information sequence when the length is the multiple

of 7.

2.2.5 Soft output decoding algorithm for convolutional code

Soft output convolutional code decoding algorithms are applicable for iterative decod-
ing and of our interest. Popular convolutional code decoding algorithms can be roughly
classified into three classes: maximum a posteriori (MAP) algorithm [8], Viterbi algo-
rithm [103, 41] and sequential decoding algorithm [58]. The MAP algorithm sums up the
likelihoods of all codeword sequendéé. lcqu:esp;éhdilng to a symbol at time ¢ and chooses
the most likely symbol as a dé;;iéion. mhe ..",Eﬂgofi:t'{lm achieves the best symbol error
rate performance but requires t:hé highesf@léxityﬂl due to large amount of codewords.
Thanks for the independent nc;iéq nénbffui)”fi;;ﬁ,a?éumption, Bahl et al. [8] provides a
simplified decoding algorithm and .ﬂ-‘le"comfﬂeﬁi’ty is affordable. The Viterbi algorithm
is a well-known maximum likelihood decoding algorithm. Due to independent noise
corruption assumption, the algorithm can discard partial codewords with less likelihood
in advance and minimize the complexity in searching a most likely codeword. However
the complexity of both algorithms are linear to the number of state and the state grows
exponentially with the length of the constraint length or the number of registers. In
fact, only partial codeword sequences are necessary to record at high SNR and the com-
plexity can be further minimized by sequential decoding algorithm. Sequential decoding
algorithm is a tree search algorithm and always extends the partial codeword on the
most likely path. If the channel condition is good, it acquires the maximum likelihood

codeword with less complexity.

24

Among these three algorithms, MAP algorithm makes decision upon the summed
up likelihoods and the sum can be used as the soft output for iterative decoding. The
Viterbi algorithm and sequential algorithms make decisions upon a searched sequence
and outputting likelihood for all information symbols necessitates larger complexity.
Hagenauer et al. [50] proposed a novel soft output Viterbi algorithm (SOVA) to provide
likelihoods. The SOVA inherits the same low complexity operation on codeword path
searching but still requires the extra complexity for early outputting decisions, temporary
storage proportional to the truncation length and necessitating the trace back [17] or
register exchange [89] to output decisions. The decision making imposes extra complexity
comparing to the MAP algorithm. Therefore the following focuses on the MAP algorithm
and its variants.

Due to the independent noise corruption assumption, the MAP algorithm for convolu-
tional code decoding can be decoqpléd.‘ihfo ;cll.llfée steps: forward recursion, backward re-
cursion and combination. Assur}’{e"a codé?ri‘a;té;a'/b cl:b}lvolutional code of length L, denote

a received codeword samples and a Sf%mp'll‘éﬂlve‘ctcn)r at time t by Y = {yo,y1,--- ,yr-1}

and y, = {y0, 9}, - ,yf‘l}. L-'é’_er C.('Ut',c't,"lul-'t:,'"o““}) be a set containing the codewords

passing through branch B(at,ut,&#l’) e T, T is a set of all branches in the trellis

25

segment. The likelihood of information symbol w; = {uf, u},- -+, uf™'} given Y is

p(w]Y)

> p(Y.c)

ot,ottley ceC(ot,ct,up,0ttl)

Z p(Y[O,t)) C[OJ): Ut)p(yta Ct, O-t+1 |O-t7 Y[O,t)a C[O,t))

ot,ottley ceC(ot,ct,up,0t 1)

I
=
2|
g

(

|
=
<~
g

)

p(Y[t+1,L)a Clt+1,L) |‘7t+1, Y0,641); C[o,t+1))
Z p(Y(.0s €00, 0)P(yes €6, 0o)p(Y 1,1y, Cprsn,py [0)

ot,ottleX ceC(ot et ug,ottl)

Z p(Y[o,t), Clot); Ut)p(Yt|Ct7 UtH, Ut)p(ct, o't |Ut)

ot,ottley ceC(ot,ct,up,0t 1)

I |
A=)
<|~ =~
M i

(Y)

p(Y[t+1,L)a Clt41,L) |0t+1)

- p(Y) Z p(Y 0., 0)p(yeled)p(us, oo)p(Yig,plo™)
p ot,ottley
1

—_
~—

a(at)v(ut)ﬁ(é”‘“i), , . _. (2.20)

p(Y

I
(]

]
ot,ottley =y |.i o

where Y[e,f) - {Y&YG—Ha T an—l}a Lc[e,f): {céace{!—l? e 7cf—1}7 a(at) - p(Y[O,t)ao—t)a

y(w) = p(yiles)p(ug, ottt o) aﬁﬂ_.ﬂ(&?):r; (¥ 1ylo'). The likelihood function p(uy, o'*|o?)

can be further decomposed as
p(ug, oot = p(u)d(uy, o' |oh), (2.21)

where p(u;) is the a priori likelihood and §(uy, o'*!|o?) is an indicator function.

1 ,B(o" u,o")yeT

5(ut’at+l|at) - { 0 ,otherwise (222)

a(o') and B(o') can be recursively calculated and eqns. (2.23) and (2.24) show the

26

forward and backward recursions.

CY(Ut) = ZP<Y[07t)7Ut_laat> :ZP(Yt—lyo't|Y[0,t—1)aUt_l)p(Y[O,t—1)7Ut_1)

ot—1 ot—1

= ZP<YI5—1’ Ci—1, Ut|0t_1)p<Y[07t—1)a Ut_l) = Z a(dt_l)v(ut_l) (2-23)

ot—1 ot—1

Ble) = > p(Yir,o o) =Y p(Ypsrplyn o™, o)ply, o' o")

a—t+l O-tJrl
= Y (Yo p(y e 0 ot) = 3 B0y (w) (2.24)
ot+1 ot+1

In summary, given initial condition a(c®) and B(¢%), the MAP algorithm calculates
a(o') and fB(o"). Then the MAP algorithm computes the likelihood in eqn. (2.20) and
makes decisions.

The initial condition a(c®) and (ol) varies with the termination of convolutional

code and decoding algorithms. The tall paddmg terminates the end state to all zero state

et s ={

., Otherwise , otherwise

and the initial condition is set to a(0) =
The tail-biting keeps the 1n1t1a1 state amu énd state the same and the initial condition

is a(0?) = B(c¥) = 1/|%]. The: optlmal MAP algomthm becomes
_ t+1
p(u]Y) = Y GO_XU;GM ;Ez)BT (2.25)
and it requires approximate |X| times computational complexity than the decoding for
convolutional code applying the tail-padding termination. The complexity comes from
unknown a(c%) and 3(c%). In order to reduce the complexity, we can extend the forward
recursion and backward recursion from a(ol~T1) and S(c”1) to estimate the initial
condition a(c?) and (%), where TL is the training length and a(c?~T%) = g(cT%) =
1/|%|. It only requires 27'L/L more computational complexity. The concept could also
be applied to reduce the MAP decoding storage [104] or for parallel MAP decoding.
The decision of an information bit is our next concern. The likelihood of u! is
p(ullY) = uf,jiz’p(ut’ ut|Y). Therefore we can acquire the decision of the ith bit of an

information symbol by 4; = arg max,; p(u;[Y).

27

The Log-MAP features less implementation complexity and can be acquired by trans-

forming the likelihood into the log-likelihood ratio. The relation is
(2.26)

The ratio can be computed on the log-domain and the corresponding computation can

be further simplified as

Zutdﬁ Zat ottlen & () (utlut - O)ﬁ(+1)
S Lot e a0y (wJuf = D3(0")
Zu{,j#i S ot gtrics; €XDPY a(ot) 44 (ut|uj=0)+B(c")
Zui J#i Zo’t7o-t+1€2 eXpd(UtHﬁ(ut|“§=1)+5(0t+1) ’

L(u) =

= log

(2.27)

where (o) = loga(o'), f(o*) = logB(o"), H(wilui) = log(wlu) and y(wluj) =

p(yilc)p(ug, ui, ot |ot). The forward and backward recursions become

a(o') = logZexp D (ue-) (2.28)
3 g

B0y = log Z exp RagitON (2.29)
; ! a-f+1

[; a

[104] proposed the following functlon
max*(A, B) = log (exp” —I—expé) = rlﬁaX(A, B) +log (1 + exp_lA_Bl) (2.30)

to deal with the log of the sums of two exponential terms. This function is composed of a
maximization and a compensation term log (1 +exp A-F |) which can be implemented
by a look-up-table. Although log and exponential are high complexity operations, both
operations can be substituted by less complexity operations. If there are three terms,

eqn. can be recursively applied as
max* (A, B,C) = max" (A, max* (B, C)), (2.31)

and the log-sum on multiple terms is capable. Therefore the Log-MAP algorithm trans-
fers the multiplication and addition on the real-domain into addition, maximization and

compensation on the log-domain.

28

We describe two kinds of simplification for the Log-MAP algorithm: MAX Log-MAP
and linear Log-MAP [102]. The simplification is related to the compensation term in eqn.
(2.2.5). The MAX Log-MAP algorithm substitutes the summation in eqns. (2.27)-(2.29)

by the maximization and these equations are approximated as

~r ot ~ i A ~t+1
MaX,; , MAXyt ptties expa(o')+ (ut [ui=0)+B(ct 1)
o)

L(ul) =~ log

Max,; ;; MaXgt ot+iey expe’)Hy(uelu;=1)+05(c"+1)
o ’

~ max max (o) + Al = 0) 1 Ao
U%J‘#io’t,ot"'lGE

— max max _&(o?) 4+ y(wlul = 1) + B0 (2.32)
ul j#iotottes
@(Ut) ~ log H%EE(eXpOAé(Ut—l)"F'AY(Ut—I) — H}Ei(d(at_l) + &(utfl) (233)
o (ot 4 (u A ~
B(c") =~ log max expPle) — Iﬁ%f(ﬁ(gtH) + (). (2.34)

It is equivalent to remove the compensation term log(1 + exp 45!} in eqn. (2.2.5).
alr—0) ,0<z<b
0 x>b

proximate the compensation terﬁl"and fﬂf_]iﬁli.res: less"complexity without the performance

The linear Log-MAP applies a linesr function f(z) = to ap-

loss comparing to Log-MAP. Two parameéters (a, b)are subject to the minimization of
=t s . 1

=0

[(f(x) — log(1 + exp‘x))2dx-'"ar“r}d‘"‘tﬁgldﬁfimizéfi value of a and b are —0.24904 and

2.5068.

2.3 Turbo code

Turbo code [13] provides outstanding performance by low complexity iterative decod-
ing algorithm but features a simple parallel concatenated structure. The performance
comes from the few low weight codewords comparing to the convolutional code and this
characteristic enhances error rate performance at low SNR. However the performance
loses to convolutional code with the large free distance at high SNR. The low weight
codeword dominates the performance at high SNR and causes the error floor. The in-
terleaver determines the error floor and an interleaver and the joint design between an

interleaver and component code improves the error floor shape. The interleaver design

29

u Recursive SystematiG—»
» Convolutional Code | C1
+ Encoder —
Interleaver
Recursive SystematiqC2
|—> Convolutional Code —»
Encoder
(a)
1
Y, q Lex
Yo APP Decoder 1
P
1
LpriorT
Interleaver De-Interleaver Interleaver
2
Lex” T |_2
I prior
Y2 |+APP Decoder 2|+
i EIS L% W) - >
(b) f

Figure 2.4: (a) The block diagrarﬁ Q‘ftﬁurbo code “er‘icoder; (b) the block diagram of turbo
code decoder. ;

rules will be provided in chapter 3, 4 and 5. The following subsections will describe the

encoding and decoding methodologies.

2.3.1 Encoder

Turbo code encoder, shown in 2.4 (a), composes of two recursive systematic con-
volutional codes and an interleaver. The interleaver permutes information sequence to
reduce the possibility of generating low weight codeword by both convolutional codes
and enlarge the minimum weight of codewords. Two convolutional codes encode in-
formation sequence and the interleaved information sequence respectively. Due to the

sophisticated systematic encoding, the systematic part cg generated from the upper

30

convolutional code can be shared to the lower convolutional code. Therefore the turbo

encoder applies the systematic part ¢y and parity parts ¢y, cs as a codeword.

2.3.2 Decoder

Turbo code decoder applies iterative decoding and Fig. 2.4 (b) shows the block
diagram. The decoder possesses two a posteriori probability (APP) decoders which
manipulate the received samples and the a priori information to generate the extrin-
sic information and estimate the likelihood. The extrinsic information is interleaved or
de-interleaved as the a priori information for the successive APP decoder. The esti-
mated likelihood is used for decision making as iterative decoding reaches the maximum
decoding round or satisfies the stopping condition.

The decoder can operate information exchange on the bit level and symbol level.
The bit level operation can process tlie’ ihfdfmat.ion represented by log-likelihood ratio
and the necessary storage is less’ éhém th{ait :,Iré;"p,:r.esléhted by likelihood. The symbol level
operation keeps the correlatiOI:{ of a .symb'cn)'l.f It aiéymbol level interleaver is applied,
the symbol level operation connkférgest_,f"é;émﬁd spi]ts for high rate systems, e.g. duo-
binary turbo code [37, 38]. In ordér" to keep the ﬂcorrelation of these bits, the decoder

requires more storage for the symbol level operation. Both algorithms are detailed in

the following.
Binary iterative decoding algorithm

Due to the systematic encoding, we assume ¢, = u} for 0 < i < a. We decompose

the eqn. (2.27) into three terms: the channel value, the a priori information and the

31

extrinsic information. The decomposition is shown as follows.

L(u}) |
g ettt Srgrnen alo)yl = 0)3(0')
O S Dot e a0)y (wiluf = 1))
| Eug':O,ui,j;éz‘ th,gmeg a(o')p(yele)p(uy)d(ug, o +tot) Bo")
S DERIOR S PR =) P AT P COR . O PO e e
p(yile; = 0) p(u; = 0)
p(yile, = 1) plup =1)
> > ale)o(u, o o)) T pwild) T pul)
ui=0, uj jAiotottlen 0<j<b,j#i 0<j<a,j#i
+ log ot gt t+1 J| J J
>, 2 a@s(u, oo) [T el I p(ed)
ut—l ul,jA otottles 0<j<b,j#i 0<j<a,j#i
= LC(ug)"f'Lprior(ug)+Le$(ug)7 (2.35)

. Then the APP decoder simply

iy _ plyilei=0) , iy _ p(ui=0)
where L(u;) = log 7%= and meo?».(‘yt) T-.lf)g p(ui=1)
generates Le,ﬂ(u{) by o

Luo(u) 2 iy ‘Lc< D By (). (2.36)

| 'n]

Non-binary iterative decodfng é-lgbr'itﬁin

The decomposition is derived from the ‘eqn. (2 20).

p(w[Y)
1

= oY) > ale!)y(u)B(e)

p otottles

p(m)p(|C[Oa) t [a,b) | .[a.b) t+1) t t+1
- ~ > atep (vl) o(uy, 0050

p ot,ottled
= p(u)p(\C[O“)pex(ut), (2.37)
where y?) = {yf yit oo d T) = (a0 7Y and e = u, due to the

systematic encoding. The extrinsic information p.,(u;) is acquired by
p(wY)
0,a 0,a ’
p(up (1)

32

(2.38)

pex(ut) -

Decoding on the log-domain requires less complexity. We take logarithm on eqn.

(2.38) and obtain
Lex,S(ut) = LS(“t) - Lc,S<ut) - me'or,S(ut)’ (239>

where Lg(w;) = logp(w|Y), Les(u;) = logp(Oa)|c[0“) and Lyiors(1;) = log p(uy).
The log-likelihood Lg(u,) is acquired by the log-domain calculation, and the forward and
backward recursions refer to eqns. (2.28) and (2.29). Multiplication and addition are
replaced by the addition, maximization and compensation, and log-domain computation
requires less complexity.

We can further subtract log P.,(u;) by log P.,(u; = 0) and the eqn. (2.39) becomes

Pem<ut)
1 =N P
P (w =0
n Oa) [0,a)
p(u t|Y> g (1) p(u)
= 1 _ log 2% 2.4

_.Tsw

;(Oa)|c['0a _ > p(ut:O)7

and the equation is s1mphﬁed as P ,]2

Lewo(uy) ="Tap(w,) — Lanf,) — Lyrioro(uy), (2.41)

[0,a) .[0,a)
where L., 0(11t) = log Pea(ut) Lo(ut) log p(ut]Y) , Lc,0<ut) = log% and
t ¢ =

Py (ut) p(Ut:0|Y)

llt)

Lyioro(uy) = log =) Apparently, the subtraction avoids the storage on Lg(u, =

0) - Lc,O(ut - 0) - Lprior,O(ut - O) - Lex,0<ut - 0) = 0.
2.4 Factor graph

Factor graph [60, 42] is one of the many popular graphs to facilitate our understanding
on code structure and help us to develop the decoding algorithms. It has been widely
used to explain and study low density parity check (LDPC) code [46] and is also ex-
tended to explain turbo code, MMSE equalizer and channel estimation etc. The graph

encompasses factor nodes and edges. The factor node describes the relation between

33

Convolutional code

o 1 (X4 (X4 (X4 (X4 7 [K4 8
N0 O ‘n ‘n ‘l 0 A0 nn 0_@_0_'

| N 2N AN /AN /A W AW

R 1 { IR T IR T ——ua NV ' [I ——u—6 —————— J

Interleaver_ ,‘ __ _ __ _ __ __

\\\\L\\ =<\ E

— = - - - - T - .— > e 1
=TT P s B
A S g < S e S e S A S A S A A
:2 .2 .2 :2 :2 .2 :2 :2 ““O
C, C, c, C, C, Cs Cq c; C,
Convolutional code ® . Equality

EB : Convolutional code

Figure 2.5: An example, of a purbo code factor graph.
connected edges, e.g. equality.= The edge lndlcates the variable, e.g. information bit,
state. One can easily schedule op‘eratioﬁ&eﬁthese fe{ctor nodes to decode.

Fig. 2.5 provides a factor graph example for turbo code. The code applies one bit to
terminate both convolutional codes. 7 mformatlon bits are encoded and 25 code bits are
generated; the code rate is 7/25. The graph is composed of two kinds of factor nodes:
convolutional code and equality. The code node connects information bit, code bits and
states of convolutional code. The equality node connects information bit and interleaved
information bit. Both APP decoders generate the extrinsic information and then APP
decoders pass the generated extrinsic information through the equality node to the
interleaved or de-interleaved coordinates for the other APP decoder respectively. The
graph also shows that decoder does not generate and exchange the extrinsic information

of the terminating bits. The iterative decoding process is visualized and turbo code

structure is understood.

34

2.5 Convergence analysis

One interesting question is how worse the environment an iterative decoding works.
The APP decoder generates the extrinsic information for the successive APP decoder as
the a priori information. We hope the extrinsic information or the a priori information
increasing after several iterations. However it does not always hold. In order to ana-
lyze the convergence behavior, extrinsic information transfer (EXIT) chart and density

evolution are introduced. The following subsections describe both methods.

2.5.1 EXIT chart

The EXIT [27, 28] chart, proposed by ten Brink, describes the input and output
information change during the iterative process and the convergence behavior is pre-
dicted. The mutual information between the a priori information and information bit
is the measure for the input 1nformat10n and the mutual information between the ex-
trinsic information and mformatlon bit ie;the measure for the output information. The
mutual information generally 1ncreases thtbe 1terat10n but it does not always hold
at low SNR. The mutual mformatlon of the generated extrinsic information may be the
same as that of the a priori information and the performance does not improve any-
more. Therefore we can search the minimum SNR among the generated EXIT curves
corresponding to various SNRs such that the cross point disappears. It implies that the
iterative decoding only works above the searched minimum SNR.

Gaussian distribution and independence are two assumption for both input and out-
put information to facilitate the analysis. The Gaussian distributed a priori information
implies a one-to-one mapping between the quantity of the mutual information and the
variance of the a priori information. We can easily generate the a priori information
source given mutual information for the decoder to generate the extrinsic information.
Reversely, we can also estimate the variance of the extrinsic information to obtain the

output mutual information. The independent input assures that we can generate the a

35

priori information source only based on the statistics and the independent output assures
that the likelihoods of a priori information to the next APP decoder are independent.
However the independence assumption does not always hold and the input information
is correlated during the iterative process. Although we may acquire an estimated SNR,
the actual minimum SNR is sometimes higher for the correlated source. We take turbo
code as an example. The error rate curves are not steep when interleaver length is small
due to highly correlated input information. Therefore the method fails as the interleaver
is small. Fortunately both assumptions asymptotically holds for a large code and the
method is still quite helpful in searching a good code.

We describe the relation between the variance and the mutual information. Assume
the Gaussian distributed random variable and information bit random variable are G
and U. Note the conditional probability density function of a priori information G = ¢

given the information bit U = u byy® .

exp. 2% (2.42)

palglw) = ;
G(g|) \//271_—0_2 =

and pg(glu) = pa(—glu) expd™. -The "“Iﬂﬁtdél'ii-hqumation I between the a priori infor-

mation and information bit is

le = I(G;U)
o pGU(guu)
_) log, Leu9:)
3 [routowion Sl
1 /°° pa(glu)
= = paiu(g|u) log dg, 2.43
9 ; . G|U([u) log, %pg(g“] =0)+ %pG(g“] =1) ()

where 0 < I < 1. The relation between the variance og and [is represented as

oo 1 _
Ig(og) =1— / exp ¢ log,(1+ exp?)dg. (2.44)

o \/27raé

We can apply eqn. (2.44) for the a priori information and extrinsic information to
generate input random variable for decoder and calculate the corresponding output

mutual information.

36

2.5.2 Density evolution

The density evolution [82, 83] describes the probability density function change during
the iterative decoding process. The method stops when the density function converges.
However the density function is hard to estimate and the histogram is used to record
the distribution. For the simplicity Gaussian distribution is assumed to approximate
the density function with only two parameters, mean and variance. We calculate the
SNR by the mean and variance and the change of the SNR of the extrinsic and a priori
information describes the change of the density function. The SNR change can be used

to predict the convergence behavior for the EXIT chart.

2.6 High throughput turbo decoder architecture

Enabling multiple APP decoders processing at the same time increases the through-
put of turbo decoding, and there are_two classes of high throughput turbo decoder

H: \ TR
architectures: the parallel turbo decoder and the ptpehne turbo decoder. The parallel

turbo decoder shown in Fig. 2. 6 proceSSéS%ﬁultiple sequences corresponding to the same
decoding round. A codeword sequence is partltloned into multiple sub-sequences, which
are stored in the memory banks, and these APP decoders can apply the sliding-window
APP (SWAPP) decoding algorithm [104, 21] to deal with these sub-sequences and gen-
erate the extrinsic information. The turbo decoder writes the extrinsic information back
to these memory banks according to interleaving or de-interleaving rules.

The pipeline turbo decoder shown in Fig. 2.7 processes continuous APP decoder
rounds at the same time to improve the throughput and therefore these APP de-
coders process codewords corresponding to different blocks with block length L or code-
words with information length L. Fig. 2.7 (a) is a decoding module for one iteration.
Y?, Y}, Y; correspond to the kth block or codeword; Ly, (ug) and L, (u;) correspond

to the a priori information and the generated extrinsic information corresponding to the

kth block or codeword. These modules can be serially concatenated to have the pipeline

37

APP
Decoders

Figure 2.6: The parallel turbo decoder architecture.

turbo decoder shown in Fig. 2.7 (b).

2.7 Notations

2.7.1 Definitions

Definition 4 |z| is the maximumfihteée’r srlri'dll.._pr equal to x.
P50\

Definition 5 [z] is the minimuniinteger larger or equal to .
= . | .-'.'

Definition 6 |i[y; =i mod M,wherez dﬁde.'e,z%e positive integers.

Definition 7 [i|" = b MM =0 , where i is a non-negative integer and M is a
[ilar, il # 0

positive integer.

Definition 8 ||i||y = _ﬁj, where i is a mon-negative integer and M is a positive

integer.

38

L. ()

APP

(L)

Delay (L)

—® Interleaver

Delay (&)

L, p(uk—ll

decoder I—® Interleaver

APP

(L)

Delay (L)

Delay

decoder 27—

-

Lo (Ui)

Deinterleaver—»>

Deinterleaver—»

(2L)

-
_>
_>

-
o
(@)

Decoding
Module 1

Decoding
"‘Module2

P> Delay (L)

-»lllll’

(b)

Decoding
Module I 4

Figure 2.7: a) The block diagram of a decoding module for one iteration; (b) The block

diagram of the pipeline decoder.

39

Chapter 3

Inter-block permutation interleaver

Inter-block permutation (IBP) interleaver features a simple interleaver structure and
one can acquire the interleaver with good distance properties for turbo codes. A general
IBP interleaver encompasses many existing interleavers as special subclasses. It is built
upon smaller interleavers and a re-permutation is applied on these interleavers to con-
struct a larger interleaver. By usmga éuitélglé ‘IBP rule, an IBP turbo code (IBPTC)

can possess good distance propérties. It- ﬁé-th‘erefof_e reasonable to conjecture that the

distance spectrum of an IBPTC‘.‘ applyipg "‘.separate fencoding would offer some desired
properties. w -

Constructing an interleaver baéeli"on any é;(isting block interleavers to render the
better distance properties of an IBPTC is our first purpose. The periodic and invari-
ant permutations are the construction rules. Both rules reduce long length interleaver
searching effort and avoid low weight codeword events. If we have to design 5000 kinds of
interleavers, e.g. 3GPP turbo code interleaver [1], the proposed rule is useful. However,
both rules are not strong enough to guarantee the distance properties and we provide
some loose constraints for the block interleavers to achieve the derived distance bounds.

Providing the joint design between an inter-block permutation and a block interleaver
based on separate tail-biting encoding is the second purpose. We derive a general lower
bound for codeword associated with the weight-2 input sequences for the IBP-interleaved

turbo codes. By analyzing the effects of selected particular system parameters on this

40

u Recursive —»
P Segmentato Convolutional C1
+ Code Encoder [
IBP
Interleaver

Recursive Co
|—> Segmentato Convolutional —»
Code Encoder

Figure 3.1: The block diagram of inter-block permutation turbo code encoder.

general bound we obtain some useful design guidelines. We apply a simplified partition
rule presented in [25] and a regular permutation function to derive the bound. We also
examine some special cases and evaluate the codeword lower bounds of the weight-2

input sequences.

3.1 Inter-block permﬁ't‘at.i"(.)‘n-,‘turbo code
" HALTNA 6

:] J i | ' i,

Fig. 3.1 shows the block diagram of an IBPTC é?lcoder. The main difference is that
the encoder includes extra two.‘"s':égmégfnémwhich Jpartition information sequence and
the interleaved information sequénéés into rpultipié short blocks in accordance with the
block length of an IBP interleaver. The recursive systematic convolutional (RSC) code
encodes these blocks and can apply these three termination methods, namely continuous
[11], tail-padding and tail-biting [106]. In accordance with these options, we define a
continuous IBPTC (C-IBPTC) as one that encodes each data block using the end state
of the previous data block as the initial state and adds the tail-bits only for the last data
block. On the other hand, a discontinuous IBPTC (D-IBPTC) encodes each data block
individually, either by appending the tail-bits at the end of a block or by using the tail-
biting encoding . We refer to the former class as the tail-padding IBPTC (TP-IBPTC)
while the latter class as the tail-biting IBPTC (TB-IBPTC).

41

3.2 Inter-block permutation interleaver

Let u = {w;};=)""" and w; = {ui}i=5" = {uk}’,jj;“)m be an input information
sequence composed of N blocks and the ith block with L symbols respectively, i.e. the
information length is N L symbols. Denote by II a permutation function that maps u
into u’ such that u;; = u;(i7k) or U = u;(k).

Coordinates of an input information sequence are represented in one-dimension and
two-dimension to simplify our discussion in distance property. Two-dimension represen-
tation indicates the ordinal of a block and the ordinal within a block. IBP interleaver
is composed of an inter-block permutation and block interleaver. An inter-block permu-
tation and block interleaver determine the first and second ordinals and the concept of
the interleaver construction can be demonstrated easier. Moreover if we only discuss the
behavior within a block, we can discru.ssnthe -p“ev].rmutation function of the second ordinal.
When we derive the distance pljd:pleftigs_pf a-‘c(;fflplete codeword, all coordinates have
to be considered and one—dimeﬁsion repnll“e"sélrrééti‘o;l 's‘"impliﬁes the notations in this case.

Therefore both representations "-__a"re uéedﬁn—t—his lipeféture. The transformation between

both representations are

fra(®) = (lellz, lilz) (3.2)

where 4, j € Z*, ||i||, = |] and |i|, =i mod L defined in definitions 6 and 8.

Inter-block permutation interleaver I, = Il;pser 0l shown in Fig. 3.2 (a) is com-
posed of two permutation functions Il and Il;,s.q, Where Il and Il;,;., are inter-

block and intra-block permutations. Il maps u into u’ such that u;) = u;mter(i B

IL;14rq s composed of N block interleavers 110, 0 < i < N, where 1540, maps w

: / —_ -1 -1
into uj such that w;;, = Uil I, ., and II.

denote the inverse permutation
functions of Il and Il respectively. Therefore I, maps u into u’ such that

_ !
ul’k - uﬂinter(ivﬂintra,i(k)).

42

|| rlmtrao | | nmlral | | n\mraZ P I nintra
— - — — L - - - - - = — |
I_Iinter
u’O u’l u'2 L I I N B B)
(a)
io il iz O I] uN-l
R
| I-linler
i S Tt .

R R R R
| | L intra,0 | | L intra,1 | |r| intra,2 In intra
- — — — _*_ - — I

Uo U u,

(b)

u, u, u,

g |

S1 S1 S1 S1
| | n intra,0 | | n mtral | | n mlraz |-| intra

- — = — l
- ‘s
T L
-3 -k .
. S2 S2
|| rlmtrao | | nnntral | ln“"“"z 1 s i . N I-ImtraN 1 I I_lmtra

_____ e) o
) =a v,
Uy = A

Figure 3.2: (a) Inter-block permutdfi‘bf; inter]]eavéf; (b) Reversed inter-block permutation
interleaver (c¢) Sandwich inter-block permutation interleaver.

Hinter and II;, y

inter

are characterized by f,(i,7), fp(4) and f4(i,5), f&(j) respectively,
where f,(j) and fd(j) are length-L permutation functions and f,(i,7) and fd(i,j) are
length-N permutation functions corresponding to each j. The permutation rules of

Hinter and IT;, ;

inter

7Tinter<i7j) = (fn@aj):fb(])) (33)
Tinter (1) = (f (3, 9), £ (7)), (34)

43

or

Tinter (1) = fu(llil| L, [1]2) - L+ fo(li]) (3.5)
Tinter (1) = fr(llillz, lilz) - L+ fil(lilL). (3.6)

Our discussion in this thesis mainly focuses on these four functions. We will demonstrate
that f,(j) = f3(j) = j is a good permutation to retain the property of Il;,s.,. Periodic
fn(i,7) and f2(i, j) eliminate the most important low weight codeword error event. These

types of Il are defined in the following.

Definition 9 If f,(j) = fi(j) = 4,V j, then the corresponding inter-block permutation

is called a Type I (inter-block) permutation.

Definition 10 An inter-block permutatzon is a Type II (inter-block) permutation if
i g) = fuli,j +nTs), ¥V i,n and 0 < j, j A nTs < L, where the integer-valued

function f,(i,7) is injective wzthm a perwd Ih*
Definition 11 An inter-block perm.utatwn 7S Type IIT (inter-block) permutation if
3G, 5) = fii,j + nTy), ¥ i,n and e j —i— nTy < L, where the integer-valued

function f2(i,7) is injective within a period Tj.

Definition 12 An inter-block permutation that possesses all the properties of the Types

I, 11, III (inter-block) permutations is a Type IV (inter-block) permutation.

Definition 13 An interleaver is a swap interleaver if ¥V i, n(i) = j = n(j) =i, i.e.

Vi, m(i) =7 1(4).

Reversed IBP interleaver ITff and sandwich IBP interleaver ITj;, are two variants of
IBP interleaver, and these exists an IBP interleaver identical to reversed or sandwich

IBP interleaver. Reversed IBP interleaver is constructed in the reversed manner szp

HR

wntra

oI shown in Fig. 3.2 (b). When a turbo code applies this interleaver, there

inter

44

where TI;L = TIE

intra inter inter

exists a turbo code applying II;;, with Hi’b1 L oIl ! and

inter

I} =M, . Therefore both turbo codes have the same distance spectrum. Sandwich
IBP interleaver is constructed by II§, = 1572 oIS, . oIl shown in Fig. 3.2 (c).

Because 11572 only permutes symbols in each block to the same block, there exists a
I, ... = anfm oIl . and Hfbp =1L ..o Hmtm which is identical to an IBP interleaver.

The properties of Hinp and Hi are equivalent to that of Il;, and the discussion of szp

and szp are omitted.

3.3 IBP properties

This section discusses the properties of an inter-block permutation II;,., while an
intra-block permutation Il is unknown, where Il;,q; = Ipoer Vi. Denote by C =
{cY ¢!, c?} a turbo code codeword associated with an input information sequence u,
where ¢’ is the output parity—bitéédﬁggce of the jth component code while ¢’ = u
represents both the input sequeilée an(i !‘;he' S"y;sterr;dtic (uncoded) output sequences. A

sequence ¢’ also can be partltloned 1nt0 N blocks Gorrespondmg to an input sequence

u and the corresponding sequence is C] = {CO, cl, el N_1}- These sequences are not
necessary with the same length and various lengths do not influence our results.

7

Define two equivalent relations “~” and “=” on the set of integers Z by

li—jlr. =0 < i~}
lille =il = i=j

where i, j € Z, T, is the period (to be defined later) of an RSC code. Clearly, i » j or
1 2 7 means 7 is not equivalent to j in either sense. The first relation ¢ ~ j indicates
(7,7) pair causing a finite weight codeword corresponding to the RSC code with the
period T, and distance property discussion mainly focuses on this kind of finite weight
codeword. The second relation i = j indicates that (i, 7) pair is in the same block and

simplifies our discussion.

45

3.3.1 First property: invariant permutation

The following theorem specifies the conditions under which the free distance of a
C-IBPTC will be greater than or at least equal to that of its corresponding TC applying

00 as its interleaver.

Theorem 3.1 For a classic TC Cre applying a e as its interleaver, the corre-
sponding C-IBPTC Cyy, has a free distance greater than or equal to that of Crc if the
Type I permutation is used and all sequences {Eg,j =0,1,2,i =0,1,--- ,N — 1} of a
minimum weight codeword, C,,;,, = {c°,¢',e*}, of Cu, are also valid codewords of the

corresponding component codes, where Eg = {E’Zk, 0<k<L}

Proof: For a C-IBPTC Cj,, there exists at least a finite-weight data sequence

Win = €° whose corresponding codeword has the minimum weight. Suppose the nonzero

elements of u,,;, are at posmons {(zl, k1), (is; kg) .y (in, kn)} and the corresponding
codeword is C,,;,. Denote by.€" the H?)P 1nterleaved version of ¢°, where {&/,j =
0,1,2,:=0,1,--- N —1}andc —{czk,0<k<L} Thec andc generate, for the

two component codes, the encoded parlty—blt Sequences and c with Hamming weights

wt(cl-

]) and w; (T 2~), respectively. The systematlc parts of both component codes are the

same and the corresponding block are denoted by E?. Let M; be the permutation defined
on the space of all blocks that moves a block to the [th block, i.e., M, : ¢} — ¢}, V k. If

fo(7) = 7 and e = Hpoer, shifting each position (n;, k;) to the [th block by M; gives

Ml(émbp(ni,k’i)) Ml(cfn(nu ki), fo(mbiock (ki))) = Elﬂrbzock(/ﬂ)' (3‘7)

As the 2-tuple (62, Ejl) is a valid codeword of the first component code of Cy;, according to
our assumption, <@ RUACHNSY Ml((_:]l)) , @ denoting addition of binary vectors, is also
a codeword of the same component code. (3.7) implies that (EBJ M (%), D, Ml(i§)>
are valid codewords for the second component code of Cj, and Cr¢ since the additional

IBP does not change the relative positions of input bits within a block. The inequality
wi(ej) +we(e)) = wi(Mi(e])) + we(Mi(c))) = we (Mi(c) & Mi(c))), Vj#1 (3.8)

46

then implies that the free distance of Cjyp, dfree(Cipyp) satisfies

dfree (Citp) Z Z wy (< Z wy <@ M,(c) > dree (Chiock) (3.9)

|
For a D-IBPTC, the sub-codewords € associated with each input block automat-
ically satisfy the requirement on all blocks. Since both tail-padding and tail-biting

convolutional codes are linear codes, we have

Corollary 3.1 For a classic TC Crc, the corresponding D-IBPTC Cy, has a free dis-

tance greater than or equal to that of Cyoer if Winter 15 a Type I permutation.

3.3.2 Second property: periodic permutation

The encoder of an RSC code acts like a scrambler and can be realized by using a shift
register with both feedback and feedforwatdsbranches shown in Fig. 2.2. It is obvious
that such an encoder would have .:é.[;eni?q?lip "}'mptlills.e response. The rate 1/2 RSC code
is specified by the transfer matrlx [1 Q ()F(D)]:, where Q(D), F(D) € Fy(D) and
Q(D) is usually a primitive blnary polyn—ﬁfof dégree m. The period of the impulse
response of the non-systematic part Q (D)F(D) is given by T, whose maximum value
is 2™ — 1. We denote by u” a weight-2 input sequence whose only nonzero elements are
at coordinates i and j; the corresponding codeword is denoted by C%. Therefore, T, is
also the smallest integer such that u¥, i ~ j, will generate a finite-weight output parity

sequence. It is thus easy to show [24]

Lemma 3.1 Let u” be an input sequence to a scrambler with period T, and scrb(u®)
be the corresponding output parity sequence. If i ~ j, then there exist « € N and 3 € Z

such that
wy (serb(u”)) = ali — j|/T. + B, (3.10)

where N is the set of positive integers and o, 3 depend on the encoder (scrambler) struc-

ture.

47

The puncturing may result in that the sequence generation of a scrambler becomes
time-variant. In this case we can search «, [y, (1 and the weight of sequence is bounded

as
ali — j|/T. + By < wy (serb(u”)) < ali — j|/T. + Bu, (3.11)

where ¢ ~ j. In order to simply our discussion the puncturing case will not be considered
in the following. We only remind the effect of the puncturing.

Obviously, if i = j, u¥ will generate an infinite weight parity sequence if there is
no termination at the end of a block. Lemma 3.1 implies that the codeword weight,

w(C¥), of a turbo code satisfies

e(0) 320 (IO -
with equality holds iff
i bnd7) e () (313)

Define iy min < ming jyc.,, B CEYaheressn & {(i, j)]i ~ j, Tup(i) ~ Tip(j)} and

let

Omin = min [[i —j| + [Tiop (0) = v (7)1] - (3.14)

(4,7)Esm
For the class of C-IBPTCs, s min = W2, min = ming jywy(C*), therefore, maximizing
the minimum weight of the codewords associated with the weight-2 input sequences is

equivalent to maximizing dy,,;,,. The next theorem provides an upper bound of wsg np

any IBPTC can achieve, if choosing the intra-block permutation is not an option.

Theorem 3.2 For an IBPTC using an inter-block permutation 11, there exists a
Wintra such that womin < 24+ a(Ts + 1) + 28, if L > T, - Ty, where Ty is the number of

inter-block permuted blocks.

Proof: Consider the partition {0,1,--- ,L — 1} = U?;Bl lT:Sal Sji, where S;; =

{glg € S;, f(p,g) = 1} for some p, S; = {h|lh ~ j, 0 < h < L}, 0 < j < T. and

48

0 <1 < T,. Note that the decomposition S; = ZT:SO_I Sj is induced by the function

I4(p,g) or equivalently, by f.(r,g). Obviously, the codeword weight of the weight-2
information sequence w7y (M) g large, if u'9" with g ~ h. As we are concerned
with wsy i, only those weight-2 sequences with nonzero coordinate pairs in the set,
{(g,h)|g ~ h ~ j, for some j and g, h € Sj; for some [} have to be considered.

Assume that V j, [all pairs {(g, h) € S;} satisty the inequality |¢g — h| > T, - T}. For
any pair (g, h) € Sj;, g < h and the associated interior set V' = {g+1, g+2,--- ,h—1}, we
have |V| > T..-T,. If S;;NV # ¢, there exists a pair (¢', h') € Sj;, where |¢' —h'| < |g—h].
Otherwise, if S;;NV = ¢, by the pigeonhole principle [29], there exists a set S, such that
|Suv (1 V| = 2, which implies that there is a pair (¢', h’) € Sy, where |¢' — h'| < |g — h|.

As both cases lead to contradictions, we conclude that there exists a pair (g, h) € Sy
for some j, 1, such that |g — h| < T, -T,. Since it is always possible to find I,
such that |7T7,bp() = Tpp ()] = Toy eqns (3 12) and (3.13) then imply that ws :, <

ibp

2+a((T.+ 1T, - T)/T)+2ﬁ_2+aTs.+1)+2@ |

Theorem 3.2 indicates that: lack Qf control on the intra-block permutation imposes

an upperbound for ws min whlch an’ IBPT ¢ can aeh1eve The coordinates of nonzero
elements of the interleaved sequence u’-” Wit ¢ = J will either remain in the same block
or be in the different blocks with probabilities close to 1/7, and (75 — 1)/7s when all
coordinates in one block are evenly permuted to these blocks. The resulting codewords
for the latter case are very likely to have large weights while those for the former case
have smaller weights with the worst-case weight of 2 4+ 2a + 23 only.

To avoid generating low weight codewords for u”, we first notice that eqn. (3.12)
implies Wa min > 2 + &(dpmin/T:) + 28. The IBP along with the intra-block permutation
determines the relation between |i — j| and |m,(7) — mp(7)|, and their structures can
be optimized to maximize d,,;,. For a pair of coordinates (i,j) € s, if the integer-
valued function f%(p, k) is injective and satisfies the locally-periodic property for some p,

T4 (p, k) = fdp, k+nTy) for 0 < k+nT, < L, then the requirements, i & j and (i)

49

Tibp(7) IMpLy |7y (7) — Tipp(7) |7, = 0 and therefore |m,(7) — mipp(f)| > lem(Te, Ts), where

lem(a, b) represents the least common multiple of a and b. In other words,

Lemma 3.2 An IBPTC that uses a Type I permutation satisfies

min w(C7) > 2+ a-{[T, + lem(T,, T,)] /T.} + 23. (3.15)

igjvﬂ—ibp (i)gﬂ'ibp (])7(Z7]) €sm

If T, and T are relative prime, then

min w;(C?) > 24+ a- (T, + 1) + 2. (3.16)

1225, mibp (1) = Tibp (5),(4,5) €Em
3.4 Constraints on the intra-block permutations

The constraints for intra-block ple.}fmutation‘"l_.[mtm are also proposed under the derived
rules, where insra; = Hotock Vi The pr’oposéd Bbunds in eqn. (3.16) can not hold for
all intra-block permutations Hmtm due to t,he termmatlon method for each block. The
different methods provide exceptwns ol’r‘t}re—boundary of each block. We derive some
loose constraints for intra-block per-mutatl(”)r} Hz’ntra to retain the bounds under these
IBP rules and various termination methods.

Theorem 3.2 reminds us of the importance of a judicious choice of an intra-block
permutation. For the question of how to choose an intra-block permutation whose
associated ws i, is guaranteed to surpass the worst-case upperbound of Theorem 3.2,
Lemma 3.2 gives only an unrefined answer. We need more elaborate constraints on
the selection of the intra-block permutation to avoid producing a wg ., smaller than
that bound. In general, any one of the four conditions, ¢ 2 j, mu,(i) 2 mp(Jf), @ < 7,
Tiop(1) = Tap(j), is very likely to result in large w;(CY). However, there is still a
small possibility that low weight codewords will be generated. Before presenting the
requirements for eliminating these low weight codewords by using a proper intra-block

permutation, we need to define a few new functions to facilitate our discussion.

20

We denote by u® the weight-1 sequence whose only nonzero element is at coordinate
k and by s/c\r/b() the RSC encoder that encodes a length-L sequence and terminates
at the all-zero state using proper tail-bits. Based on the above definitions, we further

define, for 0 <1,5 < L

L ali—j|+p5, ifi~jg
Jlig) = { wt(s/c}/l)(u"j)), otherwise (8:17)
folinj) = wilserb(u’)) + wy(serb(u’)) (3.18)
J(i3) = { |Zo_ot,7|7 icftile:vgise (3.19)
f4(27]) = mln(fS(Zaj)afS(Zaj+L)7f3(27.7_L)) (32[))

As the way a low weight codeword is generated depends on how the encoder terminates

its state at the end of a block, we begin with TP-IBPTC.

3.4.1 TP-IBPTC

For the class of TP-IBPTG; a Wéi_;g'_}:it:?,:ji:npl;ﬂz- sequence u”, (i,7) € s, can not

generate an infinite-weight codeword beca;liéé the encoder state is forced to be terminated
o | . =]

at the all-zero state at the end Sﬁf_.‘eaéh---glbcl:{:"‘()n':t_he other hand, low-weight codewords

may be generated if
dr(i) +dp () + dr (minp(2)) + dr (minp(4)) < lem(Ts, T,) + T (3.21)

where dp(n) = L —|n|; and in addition, (i) both 4, j and (), 7, (j) are near the ends
of different blocks, (i) ¢ = j, m, (1) = m,(j) and both pairs lie close to the end of a
block, or (iii) @ 2 j or m,(i) 2 my(J7) but both pairs lie close to the end of a block. To
avoid generating low weight codewords out of case (i), we require that
folilz, 712) + f2 (fo (Totoer(1]L)) 5 fo (Toioer(|712))) = B(Te, T), (3.22)
where B(T.,T;) = a [T, + lem(T,,Ts)/T.] + 2. Similarly, for cases (ii)-(iii), Hpoer must
satisfy
Sullile, 131) + f1 (fo (Tetoek([il2)) 5 fo (Tooen(15]2))) = B(Te, T), (3.23)

o1

if i = j and mp, (1) = mipy(7), and

Sullelz, 1312) + f2 (fo (Totock (1212)) » fo (Totoek(15]2))) = B(Te, T) (3.24)
if i 22 j but m,(i) 2 mip(j), and

Sa(lilz, 1712) + f1 (fo (Motock (1212)) » fo (Totoek(15]2))) = B(Te, T5) (3.25)

if 4 2 j but mi,(7) = my (7).
;4o may not meet the above conditions in eqns. (3.22)-(3.25). If we impose more

constraints on 11, and the conditions can be relaxed. It is straightforward to show

Lemma 3.3 For a TP-IBPTC whose inter-block permutation 1l;,e, is of Type IV

min w,(CY) > B(T, T5)
2Y)

if each element in the set T, = {(i,7) : 0 < 4,5 < L — 1, |Tbioek (%) — Toioek(j)|7, = 0}

satisfies

fa(i, 5) + Jénzj(fblock ('il)

vioek(G))= > B(Te, Ts)

fl <Z7 j) + .il(ﬂbloék(z-)-v—ﬂbfeek (j))I > B(Tm Ts) (326>

and ¥ (i,7) ¢ Ty, the following two infzqualilzﬁz:eé are satisfied

J1(4,9) + fo(Toiock (2), Moo (7)) = B(Te, 1)

J2(4,5) + [r(Toiock (2), Toioer (7)) > B(Te, T%). (3.27)

Starting with an arbitrary intra-block permutation, say an s-random interleaver [44],
we can apply the above criterion iteratively to find the smallest L for a given component
code such that w;(C¥) > 2 + B(T.,T,). When L is large enough, e.g., L > 2(T. +
lem(T,, Ty)), the constraints imposed by the above lemma are relatively easy to meet,
i.e., an intra-block permutation that satisfies these constraints is easy to find. For
example, it just has to permute the bits near both ends of a block to those coordinates

far away from the ends.

52

3.4.2 TB-IBPTC

We discuss the constraints of intra-block permutation Il;,;., for TB-IBPTC. The
tail-biting encoding results in the codeword weight of weight-1 and weight-2 input in-

formation sequences determined by block length L. We give two definitions as follows.

Definition 14 scrbl, (u) is the weight of a length— L tail-biting convolutional code output

for an input sequence u.

Definition 15

o0

Sk = JSi()u S, (3.28)

=k

where

Si(l) = {M = a+2scrby(u’) [0 < i<dh

Sull) = {M = serty (") + sl (BRI [i 5 21 T () Tt (3)
Wblock(i) ~ 7Tblock:(j) ﬂ: [0 i>j_-?< l} ; : (3'29)

P

Let m; be the smallest integer of fﬁt{hé setSkObvxouSly, {my} is a nondecreasing series
of k. Denote the least integer k such that my, 2 B(T.,Ts) by kmin-

We observed that, for a TB-IBPTC whose block size L > k,,;,, a weight-2 sequence
u* generates a codeword whose weight is not larger than the bound B(T,,T,) only if

(1,7) € T'r, and (4, j) satisfies the following conditions:

min {|(i = j])|z, (L =i = jDlz.} = 0 (3.30)

(L = [mipp (i) — mip(4)])

min { | (|7, (1) = minp (7)) 22, r.y = 0. (3.31)

min {|i — j|, L — |i — j|}+min {|mi, (1) — minp ()|, L — [T (2) — minp(7)|} < lem(Te, Ts)+T.
(3.32)

Such (i, j) pairs will not exist if T1;,e,- is of Type III and the corresponding Iy,. satisfies

falile, [3]0) + faCho(morock (|7]2)), fo(mhioer(15]2))) > Te + lem(Te, Ts), 0 < i,j < L,

23

V (i,7) € I'z,. In manner similar to the TP-IBPTC case, the above constraint on Iy

can be further lessened when a Type IV permutation is used. In summary,
Lemma 3.4 For a TB-IBPTC that uses a Type IV permutation with a block length
L > kin, Wamin > B(T.,Ts) if the corresponding ye, satisfies

Fllile 1310) + FaTmoes (1), Toat(1710)) = T+ lem(Te T). (3.33)
for all (i,j) € I'r,.

Note that in designing the interleaver for the classic TCs that use the identical tail-
biting convolutional code as the component codes, one must also consider the constraint

similar to Lemma 3.4.

3.4.3 C-IBPTC

For the class of C-IBPTC, we oplyf}ié‘vé to .bbns.ider (1,7) € S$m. Low weight codewords

are associated with those (7, j) peili:r'”s thsléicpmbine,&_pre-interleaved and post-interleaved

distance, [i — j| + [mipp (i) — T,), 15 [smnanl»l"‘.' The upperbound promised by Theorem 5.2
can be achieved if A el 3

Ja(ltlz, |712) + fa(fo(moroer(li] L)), fb(%l;lock(U’L))) > T, + lem(T., Ty), (3.34)

V (i,7) & Tp,, if Tipger is of Type I11.

The constraint (3.34) is used to ensure that the pair (m,(i), T,(7)) though in dif-
ferent blocks (since (i, j) ¢ ['r,) are separated by a large distance.

In analogy to the case of TB-IBPTC, the constraint on Ily,. can be relaxed if the

corresponding II;,., is more restricted. It is easy to show

Lemma 3.5 For a C-IBPTC that uses a Type IV permutation, if the associated 1,1
is such that for all (i,7) & T'p,,

fallilz, 1712) + fa(Teiock (2] 2)s Totoek (14]2)) = Te + lem(Te, Ts),
then wa min > B(Te, Ts).

o4

The above discussion shows that the Type I'V permutation possesses some desired
properties and should be used in conjunction with a proper intra-block permutation.
Hokfelt et al. [54] showed that, as the correlation function of the extrinsic output is
exponentially decayed, the interleaver should separate neighboring bits as far as possible.
The local periodicity requirement of Type I'V permutation is consistent with this intuition
and let bits or samples within the neighborhood of T, —1 blocks be moved to the different
blocks.

3.5 TB-IBPTC bounds of codeword weights for weight-
2 input sequences

Number of blocks for D-IBPTC is of our interest. Classic TC encodes information
sequence and permuted information sequence continuously and this is equivalent to the
D-IBPTC with only one block. Ontheother i‘h"and, the product code [106] arranges N
information bits in a two dimensfl..o"nal arﬂajy i'.ar}d ‘enCédes each row and column separately

(discontinuously). The numbe\rl of blo(_:ks‘ for pre—f)ermutation and post-permutation

associated with the D-IBPTC ate numberof 'rowé‘and columns respectively. Obviously
both coding schemes are two speciz;lmcases o“f‘D—-IBPTC and the optimum segmentation
rule becomes our concern.

We investigate the properties of TB-IBPTC. TB-IBPTC and TP-IBPTC, two D-
IBPTC options, are distinguished by termination methods. The tail-padding assigns
termination bits and some low weight codeword events are associated with these bits.
However the extrinsic information of these bits are unexchangeable during iterative de-
coding and this causes low weight codeword for TP-IBPTC. The tail-biting avoids these
error events induced by the termination bits and the associated codeword weight de-
pends on the length of a block. Furthermore avoiding termination bits does not induce

a loss in spectral efficiency. Therefore we derive the codeword bounds for TB-IBPTC.

25

9118(27 |36 (45|54 |63
1011928 (37|46 |55|64
11]120|29|38|47|56|65
12]121]30|39(48 |57
13]22|31|40(49 |58
14123|32|41|50159
152413342 (51|60
16 (25|34 (43|52 |61
17126 |35(44|53|62

olv|lolo|ldrlw]|~ |o

Figure 3.3: Partition of equivalence classes; L = 66, T, = 9.

3.5.1 The achievable weight-2 lower bound

We provide a simplified coordlnate partltlon rule [25] according to the period of an
RSC code. The RSC code used insa turbq code is.equivalent to an ITR scrambler whose
period has a great impact on thendlstanic‘e Lpi‘eperty of the associated turbo code. The
codeword weight associated Wlth a Welght_2m_put sequence is finite when the difference of
these two nonzero coordinates d1v131b1e by the perlod Breiling [25] applies this property
to partition the coordinates of input sequences into some equivalence classes in which any
two coordinates is associated with a finite weight codeword. Following the same concept,
the simplified partition rule for the ith pre-permutation (k = 0) and post-permutation
(k=1) sets F, ") L =0,1 is given by
i+Tj: 0<j< , 0<i<|Lr,

F® =
) ’L’Tc §Z<TC

L
T (3.35)
i+Tj: 0<j<|&
An exemplary partition of eqn. (3.35) is shown in Fig. 3.3 where the integers represent
the coordinates of either a pre-permutation or post-permutation sequence. Each row

represents an index set ng)

and is of size 8 or 7.
The codeword weights of weight-1 and weight-2 input sequences influence the deriva-

tion of the lower bound. For example: two non-zero coordinates at ¢ and j of a weight-2

26

input information sequence permuted to two different blocks and the RSC generates
two codewords associated with the weight-1 input information sequence. In order to

facilitate our discussion, we give two definitions as follows.

Definition 16 Given a tail-biting recursive convolutional code, we have

Wh(L) = min scrbh (u)), (3.36)

ivjv‘if.ﬂTc7507|L7i+j|Tc7é0
where uy is a weight-2 input sequence with nonzero elements at coordinates i and j in

the kth block.
Definition 17 Given a tail-biting recursive convolutional code, we have
Wi (L) = min scrbf (u},), (3.37)

where Wi, is a weight-1 input sequence with nonzero element at coordinate i in the kth

block.

HAERN

The weight of a weight-2 inpﬁt sequer_f_cg Isour main concern. The codeword weight
7. # 0, |[L—i+jln. #

0 is lower-bounded by Ws(L). When two coordlnates i, j satisfy |i — jlr, = 0 or

scrbl(u}) associated with tWO."C&)OIdi[ﬁé.%.eS—?;;ji Satiéfying li —

L — i+ j|r. = 0, the associated codeword weights are lower-bounded b ozlZ]‘ + G or
| jlr. g y

04M + (3 respectively. We have

ol p i jln =0
W (i,j, L) = ol Ll 3 L= i—jlln. =0 - (3.38)
WQ(L) , otherwise

Furthermore, if the puncturing is not applied, W5(L) can be bounded by = L allTe) 4 3 <
Wy(L) < a(%tn) + .

Since the RSC code output weights of the weight-2 error events are lower-bounded
by the difference of a coordinate pair (i, 7), the weight of a tail-biting encoded classic
TC is lower-bounded by

min (2 + W (i, j, L) + W(n (i), 7(j), L)) (3.39)

7.]

57

where II is a length L permutation function.

Before we establish our main result, we need the following two lemmas.

Lemma 3.6 For each integer set Sp = {0,1,2,..., P — 1}, there exists a permutation
function p such that min;zjes, (i — jlp + |7p(i) — 7p(j)|p, | — jlp + P — |7p(i) —
mp(j)lp, P —li—jlp +|mp(i) = 7p(j)|p, 2P = |i = jlp = |mp(i) — 7p(j)|p) = 7+ 1, where
r= {\/ﬁw — 1. A permutation function satisfying these constraints is

P
» 4

= (3.40)

Proof: See A. [|

Lemma 3.7 Given Ny distinct n-element sets and No distinct (n — 1)-element sets,

where n > 1. If we arrange all elements,in these N1+ Ny sets into a cycle, the minimum

separation among elements in thﬂ,e":sa'me. set z’snlou"fer—bounded by N1+ Ny — (%w for the
By Bl = '

n—element sets, and Ny + Ny = [%J fml“%hle(n—l).— element sets. Moreover, there are
at most | Ns|,, element pairs wzthsepdmtzo-onr —i—ngl — {%W for these n-element sets.
Proof: See B. “5 = o u
Fig. 3.4 shows an exemplary placement for Ny = 3, N, = 6 and n = 8. The minimum
septation in these N; 8-element and N, 7-element sets is at least 7 and 8, respectively.
Moreover, there are only |Ns|s = 6 element pairs with separation 7 for these 8 element
sets.

Based on the above results, we can prove

Theorem 3.3 There exists a TB-IBPTC of block length L whose minimum codeword

weight Wa min for weight-2 input sequences is lower-bounded by

W2, min Z 2+ 25 + min (WZ(L) + aDmin - ﬁv
aszn mln (’7 V Nmal’—‘ ’2|N2|Nma:c) +
Dy MAX ((\/wa — 2Ny o)) , (3.41)

o8

n=8

1
N, +N 4 N, +{N, -1

N2:6

Figure 3.4: Set mapping; N; = 3, N, =6 and n = 8.

where AW (L) > 2+ Dy + WaldV 3, Dyngy T, — | 22|, Dy = T, — | 72|,
Ny = dT, —

] u‘7'1 ol ok
‘L|de TQL?TS-" d':‘gc'd(|L|Tc,Tc) and T is the number of blocks

d 7]\']7710,33:’T

involved in encoding. = T, 3

Proof: See C. o i
If L > (T.+ 2d)M, we have

TcDmin min(2|N2‘Nma17 Nma:p) + TcDmam max(V Nma:r - 2|N2|Nmaz7 0)

L I3
T.dT, Md | 4/ 141 < /T2T,L + d>M? + dM
d { [d2T5H< (d2T8+ +>_\/C + +

< V(L —2dT.T,)L +d®M? +dM < L> —2dML + &®?M? +dM = L, (3.42)

IN

where M = T.T,. Then

aDmin min <2|N2|Nmaza ’7\/ Nmax—‘> + aDmax max <’7\/ Nmax—‘ - 2|N2’Nma170> + ﬁ

al
<
= T

+ 08 <WL(L)+ «a, (3.43)
if no puncturing is applied for the RSC code. Therefore we reach a Corollary as

29

Table 3.1: (a,) for some RSC codes.

| RSC codes | T. | (o, 9) |
1_&%532 3 (272)
1 3
Fi R
1 2 3 4
LD 151 (8,2)

Corollary 3.2 If the block length L is greater than (T. + 2d)M and no puncturing
is applied, then there exists a TB-IBPTC whose minimum codeword weight W min for

weight-2 input sequences is lower-bounded by

w2,min Z 2 + aDmin min <2|N2|Nmaza ’7\/ Nmam})
- Dyap MAX ([\/Nm] — 2[No|ws 0) + 28, (3.44)

where 2W1(L) > 2 + aDpun + WalL) + 3, M = T.T,, Dyun = dTs — {NMJ, Dopas =
’ Nmaz‘ = ’deT-l d= ng(lL

of blocks involved in encoding. . ;,l._; e
‘ |

dT, — L J Ny =dT, — 1., T.) and Ty is the number

‘leTs

3.5.2 Analytical results L & -

We evaluate lower bounds for the RSC codes glven in Table 3.1. Figs. 3.5-3.7 plot
the lower bounds for various 1nterleaver lengths T,L. Larger component code period
generally gives higher lower bound, as indicated by these curves.

Separate encoding improves the lower bounds for some interleaver lengths but also
imposes constraints on interleaver lengths. These figures shows 10-50 weight improve-
ments on the lower bound for long interleaver lengths but W5(L) is small for short
interleaver lengths. Fig. 3.7 indicates that, the lower bound is a decreasing function of
T, for short block length. Corollary 3.2 says that W5(L) is not a dominant factor of the
lower bound if the block length constraint L > (7. + 2d)M is satisfied.

Fig. 3.5 compares the upper bound [25] and the lower bound we derived. The large
“gap” between the upper and lower bounds is due to the fact that [25] does not consider

the weight-2 error events resulted from adjacent partitions but our derivation does. The

60

gap would be much reduced if these events were taken into account.

140

120 4

100

80

60

The Weight-2 Bound

40 1

20

Interleaver Length

. 1+D2
Figure 3.5: The weight 2 lower bound for the Scrambling function ; Jj) 7
We derive a general achlevable codewq)rd Welght lower bound for the weight-2 error
events when a TB-IBPTC uses two 1dent1(:al RSC code The bound implies separate
.
encoding stands a better chance to obtam . Welgh"t 2 lower bound larger than that of
the conventional continuous encodlng scheme 1f the block length is not too small and is

properly chosen. The relationships between these two parameters and the lower bound

provide useful design guideline for TB-IBPTC.

61

150

120

90 +

The Weight-2 Lower Bound

30 : ;
0 400 800 1200

Interleaver Length

Figure 3.6: The weight 2 lower bound for the Scrambling function %.

360
] H
N
280 - I L L
2 T iy If M il
>
o
3 |
g g
5 2004 1‘;1.{%.‘
(\,I W
=]
2
2
© 120
<
'_
40 . ; . ; . : . ,
0 400 800 1200 1600

Interleaver Length

3 . 4 . . 1+D24+D34+D4
Figure 3.7: The weight 2 lower bound for the Scrambling function ﬁ

62

Chapter 4

Block-oriented inter-block
permutation interleaver

Block-oriented inter-block permutation (B-IBP) interleaver is a definite length turbo
code interleaver design regarding to the parallel turbo decoder architecture. The ar-
chitecture has five implementation issues: memory contention [49, 20, 98, 97], network
routing and control signalling [78;%8, 67, 33‘]“., : permutation table storage [70, 95, 96]
and the support of high-radix APP dec'o!‘d“inr:.ig‘..-”‘B—I'BP interleaver can well address these
issues. The invariant IBP and igléntidali%block f)ermutation mentioned in Theorem
3.1 resolve memory Contention.-"rTﬂh“‘é-n.illetx}vo';.k‘—(_)r.i‘énted B-IBP design reduces network
routing complexity and simplifies network control signaling. Choosing an intra-block
permutation whose permutation table can be generated on-fly avoids memory storage
for permutation table. If the block interleaver is generalized maximal contention-free,
the associated B-IBP interleaver is also generalized maximal contention-free. Further-
more if the block interleaver supports the high-radix APP decoder [16], the associated
B-IBP interleaver also supports the high-radix APP decoder. Ome can find popular
interleavers such as almost regular permutation (ARP) [12, 37, 38, 56|, quadratic poly-
nomial permutation (QPP) [90, 85, 92, 93, 3] and inter-window shuffle interleaver [69, 70]
belonging to this class of B-IBP interleaver and enjoy these properties. However the in-
terleaver restricts the interleaver length which is identical to the multiple of the block

length. Therefore we propose shortening position assigning algorithm. This algorithm

63

not only supports various input information lengths but also reduces implementation
complexity without obvious performance degradation. At last an example of the B-IBP
interleavers ranging from 40 to 6144 bits is proposed and this interleaver supports the
above mentioned hardware properties. The associated implementation applying the in-
terleaver with 4096 bits is provided and requires less power consumption comparing to

fashion designs.

4.1 The parallel turbo decoder architecture and mem-
ory contention

The parallel turbo decoder applies N APP decoders instead of a single APP decoder
to increase decoding throughput by N. Since there are N APP decoders, the turbo
decoder requires N memory banks to store recelved samples and the extrinsic messages
while a network connects these APP decoders and memory banks. Fig. 4.1 (a) shows

an example of the architecture Wlth A= 4! and a fully connected network [35] bridges

both sides. These APP decoders apply the shdmg—wmdow APP (SWAPP) decoding

algorithm [104, 21| which can mampulate partlal qqded sequence to generate the extrinsic
information. Therefore we partiti(;ri a"eoded ‘s-equence into N segments so that each
segment is decoded by one APP decoder.

Memory contention occurs due to the serial memory access of these APP decoders
and influences the turbo decoding throughput and turbo decoder complexity. Each APP
decoder requires prior and successive extrinsic messages to decode each bit (symbol) and
it must decode information bits sequentially using a reasonable window size. The APP
decoders sequentially access certain memory banks to fetch or write the extrinsic mes-
sages according to an interleaving-deinterleaving rule. The interleaving-deinterleaving
rule may induce memory contention and more than one APP decoder want to access the
same memory bank simultaneously; see Fig. 4.1 (b). Memory contention decreases de-

coding throughput and increases decoder complexity because these APP decoders require

64

M emory
Banks

APP
Decoders

M emory
Banks

APP
Decoders

M emory
Banks

APP

Figure 4.1: (a) The block diagram of the parallel turbo decoder architecture with par-

allelism degree 4; (b) memory contention; (¢) memory contention-free.

contention avoidance circuit to stagger memory access. [49] proposed using a buffer to

store temporary data to resolve memory contention but the complexity increases linearly

with the number of APP decoders.

An interleaver that resolves memory contention without extra buffer and contention
avoidance circuit will minimize the corresponding decoder complexity. To assure memory
contention-free (see Fig. 4.1 (c)), the interleaving law has to be such that at each

instance there is a one-to-one mapping between the memory banks and APP decoders.

65

It is also desired that the interleaving rule supports various numbers of APP decoders
so that trade-off between complexity and throughput is available. We give a definition

for memory contention-free property to facilitate our discussions.

Definition 18 A length-K interleaver supports memory contention-free property for
N = (%W APP decoders, if there exist two K -to-N mapping functions M and M9 such
that M(iL+k) # M(jL+k), MA(iL+k) # M(jL+k), MUm(iL+k)) # M7 (jL+k))
and M(m7'(iL+k)) #M(r ' (jL+k)),V0<i<j<N,0<k<L 0<iL+k<K
and 0 < jL+k < K.

Assume there are N APP decoders, where the jth APP decoder processes information
sequence ranging from the jLth symbol to the (7 + 1)L — 1th symbol. We allocate
information symbols satisfying the mapping properties described in Definition 18. Then
the jth APP decoder fetches message from.memory bank M(jL + k) (ML + k))
and write message to memory baﬂlil'.)\/ldg (]L —|— k)) (M(7Y(jL + k))) without memory
contention if these N' APP decoders proéess the kth bits in each length-L information
symbol sequence concurrently. The deﬁnrt-teﬁ—Is WGH defined.

One may find a contention- free .deﬁmtlon as:

Definition 19 A length-K interleaver 11 is contention-free for N = (%w APP decoders
if both ¢ = m and ¢ = 7! satisfy

Vﬁ(k’ziL)J 4 Vb(k sz)J . (4.1)

This definition is only a special case corresponding to our Definition 18 with the mapping

functions M(k +4L) =i and M%(k +iL) = i.
4.2 Block-oriented IBPTC

Block-oriented IBPTC (B-IBPTC) as shown in Fig. 4.2 applies B-IBP interleaver. B-

IBP interleaver describes most popular memory contention-free interleavers such as the

66

u Recursive —
* > Segmentatorr# Convolutional Cq
Code Encoder [—»
B-IBP
Interleaver

Recursive Co
——» Segmentatorr— Convolutional
Code Encoder

Figure 4.2: The block diagram of a block-oriented IBPTC encoder.

quadratic polynomial permutation (QPP) [90, 85, 92, 93, 3|, almost regular permutation
(ARP) [12, 37, 38, 56], inter-window shuffle [69, 70] interleavers. Multiple slice turbo
code [47] also belongs to the B-IBPTC with separate encoding. Turbo code applying
these interleavers can utilize the same ‘decgder architecture to increase turbo decoder
throughput. Regarding to maxinial Con§en£j6ﬁ:f;ee property, we also prove that the
B-IBP interleaver is maximal célnfentidﬂ;iffée 1f the.:" lblock interleaver is also a maximal
contention-free interleaver and" the correspondmg general memory mapping function is

described. At last, we dlscuss the support of the high-radix APP decoder and the

associated memory mapping funcmons.

4.2.1 B-IBP interleaver

B-IBP interleaver is a class of IBP interleaver. This interleaver is composed of definite
N length-L blocks. B-IBP interleaver resolves memory contention by two design rules
which are the invariant permutation property and identical intra-block permutation.

Given these two rules, the B-IBP interleaver IIz_;, with N blocks is formulated as
7TB—ibp(Z‘L + k) - WB—inter(ﬂ-intra(iL + k)) - 7T-B—imﬁe’/‘(iL + 7Tblock:(kl))
= fn(i,ﬂ'block(kf))L + Wblock(k')a VO<k<L, 0<i<N, (4.2)

where f,(k) = k for llg_jnier and |Tipgra(K+1L0)| L = Tpioer (k). Fig. 4.3 shows an example

of the B-IBP interleaver with interleaver length 16 bits and block length 4 bits. In this

67

Intra-Block
Permutation

Block-Type
Inter-Block
Permutation

Figure 4.3: An example of block-oriented IBP interleaving.

example, Tyoek(i) = |i + 1|4 and f,(4,7) = ¢ ® j, where & is an exclusive-or operation,
eg. 1®3 =2

Creating good B-IBP 1nterleavers requlr.es less effort and the potential implementa-

tion complexity is avoidable. B- IHP 1n‘F ea) ‘-'generally has good distance property if

the block interleaver possesses g_qod dlstang_ propqﬁy in each block. The B-IBP design

guideline in Theorem 3.2 further enh dlst.ance property of B-IBP interleaver.

Therefore we can search a good sho*rt, -leng_h 131?erleaver and then apply the above B-IBP
design guidelines to acquire good B- IBP l111I;(m::1rleavelrs. Since finding good short length
interleavers requires less effort than finding good long length interleavers, constructing
good B-IBP interleavers becomes simple. We can design B-IBP interleaver in two ways:
given a B-IBP to find a good block interleaver and given a block interleaver to search
a good B-IBP. The first way can impose hardware constraints to B-IBP and reduce the
routing complexity and simplify the associated control signalling. Then the successive
effort is to search a good short length interleaver given the constrained B-IBP. The sec-
ond way is applied when the intra-block permutation is given. Then the next step is
to find good B-IBP. Both ways leave degree of freedom in designing high performance
B-IBP while the implementation complexity is to the least.

B-IBP is also a general description for popular classes of interleavers which support

68

parallel decoding without memory contention. There are two popular interleavers: QPP
and ARP. The QPP has been defined in the 3GPP LTE [3] and the ARP has been applied
to the DVB-RCS/RCT [37, 38] and WiMAX [56]. A length-K QPP is formulated as

morp(i) = |foi® + fiilx, (4.3)

where f; and fy are two integers and references [90, 85] discuss the constraints for both

fiand fo. A length-K ARP is formulated as
WARp(i) = |ZP0 +A+d(i)|[{, (44)

where P, is the relative prime to K, A is a constant, d(i) is a “dither” vector of length

C which is the factor of K. For all block sizes, d(i) has the form

a6) = Falfio) + Bllile) (4.5)

where a(-) and () are both véc'tors 6ﬂre'mg’ch,c.’f'_ The following two theorems prove

that QPP and ARP are B-IBP: iif_lterlttaa_vg'fé‘: &8 -

Theorem 4.4 QPP is a B-IBP inderleaver. 1+
Proof: Suppose L is a factor of K. We decompose eqn. (4.3) as

norp(iL + k)
= |fo(iL + k)* + fi(iL + k)|x
= |(foi®L + 2foik + f1i)L + fok* + fik|k
= [(f2f® L+ 2foik + fri+ || f2k® + fik|[L) L + | [k + fik|o]x

= [(fo®L + 2foik + fri + || fob® + fikl[L) s L+ | fo® + fik]s. (4.6)

Theorem 4.5 ARP is a B-IBP interleaver.

69

Proof: ~ We partition a coordinate set {0,1,2,--- /K — 1} into C subsets Sy =

{iC+k0<i<Z} 0<k<C. According to eqn. (4.4), we have

Tarp(iC 4+ k) = |(C +k)Py+ A+ a(|iC + k|¢) Py + B(]iC + k|¢)|x

— JiCPy+ A(K)|x, (4.7)

where 0 <4 < % Since [14zp is a permutation function and F, is relative prime to K,
there are no 0 < 7,/ < £ such that |iCR|x = |[/'Clg = |j'Clx = [jCPo|k if i # j.
Then II4zp maps all elements in Sy, to Sa/x) and any two elements in different subsets
are mapped to different subsets.

Suppose L is a factor of K and C is a factor of L, eqn. (4.7) is further expressed as

WARP(iL*‘j,C.T.F'*‘k)" T
= |(L+ Oy AR

= iRl + RS Al

= |(iPy + ||JORy # AN [iC Py + A'(B)|Llx

= [iFy +|[jCF ‘*‘V‘Al(k)l‘ll'ﬂ%[’ + |jCPy+ A'(k)|L. (4.8)

Since eqn. (4.8) has the same form to eqn. (4.2) and all elements in each subset S are
permuted to the same subset Sy/x), ARP is a B-IBP interleaver. [|

B-IBP interleaver features memory contention-free with simple memory mapping
function. The invariant permutation property and identical intra-block permutation
avoid memory contention when the number of APP decoders is identical to the factor of
N. The reversed B-IBP manner also resolves memory contention when the number of
APP decoders is smaller than the factor of N. Both methods only require simple on-fly
generated memory mapping functions and avoid the large storage of complex memory
mapping functions [95, 96]. The parallelization methods are described in the following

sections.

70

4.2.2 Parallelization method in the B-IBP manner

B-IBP interleaver composed of N blocks supports turbo decoder with parallelism
degree N or the factor of N. We apply B-IBP to configure the network and intra-block
permutation to determine memory addressing within a memory bank. Then we define

two memory mapping functions M and M?

M@GL+E) = j, (4.9)

MUL+ k) = j. (4.10)
Following equs. (4.2) and (3.6), we have

M5l GL+ 1K) = M5, k)L + w0 (k) = £33, k), (4.11)
M7 _ip(GL+K)) = MU fa(, Totock (k)L + Toioek (k) = fu(d; Totock (k)).(4.12)
Because f,(j,k) and f2(j, k) ar,e': ﬁefm%j;;afcidﬂ fﬁnctions corresponding to each k and
block interleavers are identical=fof all blécks" éécérﬁing to Definition 18, B-IBP inter-
leaver supports memory contentlon—fre(,rwﬂ:h*parallehsm degree N. If the parallelism

degree decreases to any factor of N B- IBP 1nterleaver also supports memory contention-

free. A theorem is given as follows.

Theorem 4.6 If R is a factor of N, there exist memory mapping functions Mg and
M of a B-IBP interleaver composed of N length-L blocks such that the parallelism

degree R is achievable without memory contention.

Proof: For an integer k € [0, L), we first assume k = myoer(k), Mp(jL+k) = ||j||%,
MEGL+k) = ||]HN Si={ii+%i+2, ... i+ N—R}and S={0,1,...,R—1}.
We define an index vector I(i) = N,V 0 <7 < N.

Start from 7 = 0. If there exist any two j,j € Sy such that M%(f.(j1, k)L +

T
~—

= M%&(fo(ja, k)L + k) = m € S, there exists a value m’ € S such that M%(j'L +

= m £ MLfa(G,F)L + k)Y j € Sy, where 1(+|]|N) = N and [j']y =

T
~

71

’fn(jg,l;”% We set M%(f,(jo, k)L + k) = m' and M%(j'L + k) = m. We do this
procedure until M%(f,,(j1, k)L 4 k) # M%E(fn(ja, k)L 4 k), Yj1 # jo € So. Then we set
1 (28 4 |G, B)) = 4, Vj € So, where m = MA(f,(j, F)L +).

Increase i to i + 1. If there exist any two jy,jo € S; such that M%(f, (1, k)L + k) =
M (fulja, k)L + k) = m € S, we search a value m’ € S such that M%(5'L + k) = m’ #
MG(FuGR)L+R).Y § € Siy where T(#52 4 |71y) = N and |71 = [fu(in By 165
exists, we set M%(fn(j1, k)L + k) = m’ and M%&(j'L 4+ k) = m. If j/ does not exist, we
search a value m’ € S such that M%(j"L+k) = m/ # M%(fu(j, k)L+k),¥ j € S;, where
I (’”/TN +]j”]%> = N and |j”|% = | fu (o,)\N If 5 exists, we set M%&(fn(ja, k)L +k) =
m’ and M%(j”L + k) = m. If j” does not exist, we start the following procedure.

There exists j° such that M%(jOL 4+ k) = m’ # M%&(f.(j, k)L + k),Y j € S;, where
7015 = Uit B) g Weset Mk (fu (T (285 + 1700)) L+ k) = m, M&(fulin, B) L+
k) = m' and I(+ | fu(J1,)|N) ALY (m/—N + |]0|N>. There exists j' such that
MG R+) =ty (1T (BT) £+ %) = m € 5, where 17y -
HI (mN -]]0\N>H Ifthereemstsg suchthat /\/ld(2L4+k) =m andI< - |j2\N> =
N, where |2y = G) A S VL, F)L +) = s MAGPL +) —
m, I(L]{V+|j2|%) = j! and I(—an(j k)|N> = N and stop the this proce-

dure. 6T (72 4|72) # N, we set M&(fu(GL)L + k) = m/, ML + k) = m,
I (m;aN (jl,l;;)]%> =1 (m—év + |j2|%) and I (% + |j2]%> = fn(jl,l;:). We search

the following j' and j'*!, the same as the search of j' and j2, we update the corre-

sponding memory mapping function and index factor, where [is odd. Since there are ¢
occupied entries in memory bank m’ and at least i + 2 occupied entries in memory bank
m, there exist a j"+! such that I (""”/TN + |jl+1|%> = N and we stop this procedure.
Then we go back to check if there exist any two ji, j» € S; such that M%&(f,.(j1,];’)L‘i‘
k) = M%(fn(jo, k)L + k) = m € S and update the corresponding mapping function and
index vector. If there exist no ji,jo € S;, we set I(+ | fu(7,)|g> =7,V €S,

where m = M%(f.(j, k)L + k) and increase i to i + 1 and update the corresponding

72

mapping function and index vector.

We do the same procedure on My to acquire the memory mapping function avoiding
memory contention. Therefore for each k, there exist memory mapping functions such
that memory contention-free holds. [|

Theorem 4.6 indicates that there exist memory mapping functions Mz and M$ such
that the parallelism degree can decrease to R. Tarable [95, 96] also provided a similar
proof and result to support memory contention-free but the storage of memory mapping
functions is large. The same case occurs for the memory mapping functions if there is no
constraint on the B-IBP. The following definition describes the constraint on the B-IBP

such that the necessary storage for the memory mapping function is to the least.

Definition 20 The memory mapping functions Mg and M% for a B-IPB interleaver
composed of N length-L blocks is regular if Mgr(jL+ k1) = Mg(jL+ky) and ME(GL+

ki) = MAGL + k), Y0 < i < N GE ky, by < Bl

If the memory mapping functions are reé&léll";"'thé .ne"?essary storage of memory mapping
function decreases to 1/L. L"—ﬁ 3

Fig. 4.4 demonstrates two exéiﬁbles of tl”1§ palfgllel turbo decoding procedure for the
memory mapping and merged memory mapping. The length-42 B-IBP interleaver is
composed of N = 6 blocks and each block contains 7 symbols. At first, suppose there
are N = 6 APP decoders, the jth APP decoder processes from w; to u;¢ in Fig. 4.4 (a).
At each instance, these bits processed by these APP decoders are permuted to different
memory banks and memory contention is avoided. If the necessary parallelism degree is 3
which is the factor of N = 6, we merges even memory banks with the prior odd memory
banks. Then these three APP decoders access information bits from wg, us, s as
shown in Fig. 4.4. The lower turbo decoder complexity is achievable and the memory
contention-free holds.

Unified memory bank is one implementation advantage of B-IBP interleaver. One

can find that the block permutation is identical in each memory bank. This implies

73

Memory
Bank 0
Memory
Bank 1

Memory
Bank 2

Memory
Bank 3
Memory
Bank 4
Memory
Bank 5

Memory
Bank 0

Memory

Memory
Bank 2

nterleaver composed of 6 blocks to
ory mapping for a B-IBP interleaver

Figure 4.4: (a) The memory
support parallelism degree 6;

that only one memory control element is necessary to coordinate these memory banks.
In other words we can apply a memory bank with wider input/output port instead of
multiple memory banks with narrower input/output port. This saves control elements
and the resultant turbo decoder complexity is further eliminated.

This method does not resolve memory contention for the number of APP decoders is
not equal to any factor of N. If these APP decoders start decoding from the beginning
of a block, there is at least one block which can not be processed at the same time,
i.e. the decoding latency increases. If these APP decoders do not start decoding form
the beginning of a block, memory contention may occur given the memory mapping
functions in eqns. (4.9), (4.10). A dilemma occurs. The following subsection provides

another view for the B-IBP interleaver to overcome this situation.

74

4.2.3 Parallelization method in the reversed B-IBP manner

The reversed manner of B-IBP interleaver resolves memory contention for the case
that the number of APP decoders P is less than N or not the factor of N. We exchange
the roles of intra-block permutation and inter-block permutation; the intra-block per-
mutation configures the network and the inter-block permutation determines memory

addressing within a memory bank. Then we give memory mapping functions M and

M¢? as

ML+ k) = k, (4.13)

MAGL+ k) = k. (4.14)

We allocate the starting ordinals of the adjacent APP decoders are separated by (%w or

L%J such that their decodings ﬁmsh at, close 1nstance while the ordinals corresponding

to these blocks are different. Followmg the.eqn. (4,2), we acquire
EISAR
=12 I

M pr<jL+k>>% ML + 54 = mik), (1.15)

MU (mp_inp(§L + k) ; (fN<jv Wblock(k’))L + Totock (k) = Thiock (k). (4.16)

Since these decoders access from different ordinals in these blocks, memory contention is
avoided. Even these APP decoders fetch or write on the successive S symbols, ;" (|k+
S|p) and ;) (|k+S|.) are still different for these APP decoders and memory contention-
free still holds.

Fig. 4.5 demonstrates an example of this reversed memory mapping. The length-
42 B-IBP interleaver is composed of 7 blocks. We apply 6 memory banks for P = 3
APP decoders. The stating positions for these APP decoder are 0, 14 and 28 and the
corresponding ordinals in these blocks are 0, 2 and 4 respectively. Therefore these APP
decoders write messages back to memory banks without memory contention. The same
as the interleaving procedure, the deinterleaving procedure also starts from 0, 14, 28 and

the mapping avoids memory contention.

5

Identical Intra-Block Per mutation

v

Memory
Bank 0
Memory
Bank 1
Memory
Bank 2
Memory
Bank 3
Memory
Bank 4
Memory
Bank 5

Figure 4.5: The reversed memory mapping for the B-IBP interleaver composed of 7
blocks to support parallelism degree 3.

M emory

Banks L Z 3 ¢
APP -

Decoders i 2 e

Figure 4.6: The block diagram of the asymmetric parallel turbo decoder architecture
with 4 memory banks and 3 APP decoders.

Since the number of APP decoders is different to the number of blocks, an asym-
metric decoder architecture appears. Fig. 4.6 shows an example of the architecture
which possesses three APP decoders and four memory banks. One can find that one
extra memory bank is necessary and at least one more memory control element is re-
quired. Furthermore, the starting positions of these APP decoders in memory banks
are not identical and these memory banks apply different memory addressing for these
APP decoders. Unified memory bank is generally impossible. These implementation

disadvantages comes from the asymmetric architecture.

76

4.2.4 Generalized maximal contention-free and intra-block per-
mutation

Maximal contention-free property is proposed in [92] and an interleaver possessing

this property supports flexible parallelism degree. The definition is given below.

Definition 21 A length-K interleaver 11 is mazimal contention-free if both ¢ = m and

¢ =1 satisfy

V(kzzL)J L V(ijL)J’ (4.17)

for all factors L of K, where 0 < k< L and 0 <i<j < %

When we apply the memory mapping function in eqns. (4.9) and (4.10), the interleaver
supports memory contention-free with parallelism degree the factors of K.

Definition 21 is narrow sense a@d"éomé ‘good interleavers satisfying Definition 18
may be skipped due to eqn. (4.],75. thlml vls/l'é‘::a‘;pp.ij.memory mapping functions in eqns.

(4.13) and (4.14), there exists; an int rlea{}ér satisfying Definition 21 avoids memory

f

contention. Definition 21 may ﬁ'ot sUp_pbrb-tffemory contention-free as memory mapping
functions in eqns. (4.13) and (4.14)7arevapphicd. Definition 21 seems restrictive and

necessitates modification. We give a new generalized definition as below.

Definition 22 A length-K interleaver is generalized maximal contention-free if there

exist memory mapping functions for all factors of K satisfy Definition 18.

This definition provides a concrete picture in finding interleavers with both good error
rate performance and more flexibility in memory contention-free property.

The B-IPB interleaver with the block interleaver satisfying generalized maximal
contention-free property is also a generalized maximal contention-free interleaver. In
most cases B-IBP interlaever is not a generalized maximal contention-free interleaver
because intra-block permutation is not an option. Section 4.2.2 shows that a length-N L

B-IBP interleaver supports parallelism degree to any factor of the total number blocks N

7

but does not promise that any factor of NL is supportable. However if the block inter-
leaver is a generalized maximal contention-free interleaver, there exists memory mapping
functions to support parallelism degree which is any factor of L. Therefore these exist
composite memory mapping functions such that B-IBP interleaver is also a generalized

memory contention-free interleaver. The theorem is provided as follows.

Theorem 4.7 If the block interleaver is a generalized mazximal contention-free inter-

leaver, the B-IBP interleaver is also a generalized maximal contention-free interleaver.

Proof: 'The block interleaver is a generalized maximal contention-free interleaver

and there exist memory mapping functions M; e and MY, . avoiding memory con-

3,bloc
tention with parallelism degree ¢ which is the factor of block length L. Suppose there
are N blocks for the B-IBP interleaver and Theorem 4.6 shows that there exist mem-
ory mapping functions My p_rp P and"./'\/l"z el fB'P avoiding memory contention with the

degree k which is the factor of. N ASSume Q =3 gcd(z) We construct a compos-

ite memory mapping functions: Mmc B IBP and M ki C—B—IBP supporting parallelism

degree ki as

NL |
Mki,C—B—IBP <mﬂ + n) = MkQ B—IBP (' ’TTL— +n

L—l—‘m——l—n

NL
"‘Mé’,bzock (‘mﬂ +n L)) 4.18)
NL NL NL 7
Mgz‘,C—B—IBP <mﬂ + ”) = MZQ,B—IBP (' ‘mﬂ +n|| L+ ‘mﬂ +n) é
L L

k() and é are factors of N and L respectively, and these memory mapping functions

d
Miq.5-18P, Mig g 18P, M & block and M

: mlNL‘ _ ‘mgNL‘
© block exist. If |—kl ;= |"5;7|,, Where

0 <my < my < ki, Mg p—1p and M, p_;5p avoid memory contention. If ‘ml—NL|L

‘ moNL
ki

;» where 0 < my < my < ki, M & block and M4 avoid memory contention

Zblk:

due to ||], — [#45| g = 0.

78

We apply both memory mapping functions to IIp_;, and H —inp and have

NL
Myic-B-1BP (ng_ibp < - T n))

L
= Myq-18BP (ngibp (’ ‘mﬂ +n

NL
L+ ‘m—,—kn
ki

L

IE
)] Q
)
/| NL
s Tlock \ |- T 1
L

ki L)) bt
)) é"‘ M & block (ﬂ-block (‘mNL +n)) , (4.20)
L L

NL
Mii,O—B-]BP (WB—ibp <mﬂ + n))

L
= MZQ,B—IBP (WB ibp (’ ‘m— +n

_ 1
+M%,block (szock (‘m 1 +n

= Myo.-1BP (fﬁl <’ m— +n

N L
Totock | [M—— + 1

L+‘m—+n

)

SRR,
d .
s (s (MG,
W= 5 NL
= MkQB mp |\ fo b m—+n s Moloek | |M—— + 1 L+
; ki L" J ki L

(‘ NL %
Thlock | |TM—— + 14
ki

| . H
NeETTTE b NL
.L> >'C—2 ot Mé’,?i_?ck; (Wblock (‘mﬂ +n

)) a2

If |m1].VL‘L ‘mQNL|La where 0 < my < my < ki, Mygp-rsp and Mjy 5 rpp avoid
: mlNL mQNL) .
memory contention. If |™XE| £ . 22| where 0 < my < may < ki, Mé,bzock and
d mlNL mQNL
Mé,blo . avoid memory contention due to H ‘L ‘ | ‘LQ/Z 0. u

Theorem 4.7 introduces memory mapping functions for the B-IBP interleaver sup-
porting generalized maximal contention-free property and the necessary condition is that
the block interleaver is a generalized maximal contention-free interleaver. Therefore we
can search existing good short block interleaver such as QPP or ARP to construct the
B-IBP interleaver; the resultant distance property is generally good and generalized

maximal contention-free is satisfied.

79

4.2.5 High-radix APP decoder and intra-block permutation

The high-radix APP decoder [16] improves turbo decoding throughput, network
complexity and storage by paying the trellis complexity. The APP decoder processes
multiple trellis segments or multiple information bits at each unit time to increase de-
coding throughput. Since the decoding throughput increases, less APP decoders can
achieve the same decoding throughput comparing to the baseline radix-2 APP decoder
and the associated network complexity is less. Less APP decoders also require less stor-
age for state metrics, received samples and extrinsic information in the turbo decoder.
However more trellis segments or information bits processed at each unit time induces
exponential growth trellis complexity in the APP decoder. For example, 6 bits processed
at one unit time implies 2° = 64 edges coming out from one state and in total 64 - |3
edges appears but 1 bit processed at one unit time means 2 edges emit from one state
and in total 2-6 - |X| = 12 |3 Qd"gé:; come ou;c:l, .“V'V‘h.ere |X| is the number of total states.
Therefore the high-radix APP dlecloder ehl‘ar'ges fréllis complexity or routing complexity.

Take the radix-4 APP deco&?i“ [16] a&@@mplégto compare the routing complexity.
Fig. 4.7 draws two trellises to Compareboth the _réﬁdiX—Z and radix-4 APP decoders. Fig.
4.7 (a) is the trellis composed of two trellis se“lgnments referring to Fig. 2.3 (¢). The radix-2
APP decoder processes this trellis by two unit times. Fig. 4.7 (b) plots the merged trellis
and in one unit time two bits are processed. If the parallelism degree 32 is necessary, a
32 x 32 network can be replaced by two 16 x 16 networks when the radix-4 APP decoder
substitutes the radix-2 APP decoder. The associated network complexity decreases and
the number of APP decoders decrease by two respectively.

In order to support the radix-2% APP decoder, the APP decoder has to access and
write consecutive B information bits without memory contention. Suppose the block
interleaver Iy, has length L and B is the factor of L, where the condition that B is
the factor of L implies that the trellis segment does not change at the last for the APP

decoder. We give a definition as follows.

80

o' o' o'’ g’ g'*?
00 00 » 00 00 00
01 01 01 01 01
10 10 10 10 10
11 11 11 11 11

(@)

(b)

Figure 4.7: (a) Two connected trellis segments referring to Fig. 2.3 (c); (b) The merged
trellis segment for the radix-4 APP decoder.

Definition 23 If the block interleaver 1y Supports memory contention-free for the

radiz-2% APP decoder, there exist memory mapping functions Mppiock and M o0,

such that |
; Eleak)
o | 5 = < a .
MppociliB+J) # MB,blo]ck(ZB + k), (4.22)
MdB,block(ZB—I_]) ‘ #wnMdB,block(iB + k)? (423>
M B biock (Tpra (1B + SINTE M B prock (Tpae (iB + k), (4.24)
MdB,bzock(Wblock(iB +7)) # MdB,bzock(Wblock(iB +k)), (4.25)

whereO§i<%,O§j<k<B.

Recall the length-L ARP interleaver in eqn. (4.4) and the proof in Theorem 4.5, the
permutation function moves elements in Sy to Sa/(x), where Sj, = {iC’ +kj0<i< %},
0 < k < C. Therefore, the ARP interleaver can support the radix-2¢ APP decoder by
the memory mapping functions

M piock(iC + j) = 7, (4.26)

MdC’,block(iC +J) =17 (4.27)
The B-IBP interleaver supports the radix-2% APP decoder if the block interleaver

81

supports the radix-22 APP decoder. A theorem is given below.

Theorem 4.8 If the block interleaver supports the radiz-22 APP decoder, the associated

B-IBP interleaver also supports the radiz-2% APP decoder.

Proof: The block interleaver supports the radix-22 APP decoder and there exists
memory mapping functions Mp piock and M ;.. avoiding memory contention where B
is the factor of L. Suppose there are N blocks for the B-IBP interleaver and Theorem 4.6
shows that there exist memory mapping functions My, s_;pp and M p_;pp avoiding
memory contention where k is the factor of N. We construct a composite memory

mapping functions Mypc_p—rpp and Mip o p_;pp as

Mipc—p-igp(mL+n) = Mypg_ipp(mL+n)B+ Mppiok(n), (4.28)

MZB,C—B—IBP(mL +n) = "Mz',ET:IBP(mL +n)B + MdB,block;(n)' (4.29)

Then we have iy ﬂ"i x L
MkB,C—B—iJ%P(?E?ﬁﬁ%ﬁ#*‘)
= Mys15p(75 g LATINE + M piock (T (7)), (4.30)

MzB,C—B—IBP(WB—ibp(mL +n))

= Mz,B—IBP(WB—ibp<mL +n))B + M%,block(ﬂ-bloclﬂ(n))' (4.31)

4.3 Network-oriented interleaver design

Network-oriented B-IBP design avoids the routing complexity and simplifies the
control signalling for the parallel turbo decoder architecture. In general the network
complexity is a critical issue for the parallel decoder architectures. Large network com-
plexity decreases the density on the chip and increases the cost, e.g. LDPC code decoders

26, 62, 55]. Large network complexity also lengthens the routes on the chip. The longer

82

routs, the longer interconnection delay [61] as the process goes advance. The parallel
turbo decoder also necessitates a network between APP decoders and memory banks,
and the network complexity increases with decoding throughput. Therefore network
complexity issue also occurs to the parallel turbo decoder. For the B-IBPTC decoder,
the B-IBP generally configures the network routing and we can design the B-IBP based

on a low complexity routing network to prevent the potential routing complexity.

4.3.1 Network-oriented B-IBP design

B-IBP generally determines the network configuration and intra-block permutation
controls the memory addressing. When we consider a B-IBP interleaver with N blocks
and turbo decoder composed of P APP decoders, there exists a P x N network between
APP decoders and memory banks. We can choose any network with less complexity
comparing to the fully-connected P 1\ he't"mrk [35]; the resultant routing complexity

decreases. Therefore the construetion mﬁl%ho(i is described in the following three steps.

1. Choose a P x N network::bridge PﬁAPP déco'(z"lers and N memory banks.
2. Select some routes on this ﬂéﬁwork.
3. Arrange the selected routes as the B-IBP.

The following two subsections will provide two low complexity networks and we will

discuss their features.

4.3.2 Butterfly network

An N x N Butterfly network [68, 67] is the simplest network with the edge complexity
2N log N comparing to the fully-connected network with the edge complexity N? [35],
where N is the power of 2. The number of network configurations is 2% 122N However
this network results in the most routing congestions and therefore the network gener-

ally is not applicable for the parallel turbo decoder design as the interleaver is not an

83

Decoders

Figure 4.8: An example of butterfly network-oriented turbo code decoder architecture
with parallelism degree 8.

option such as QPP interleaver. However, the network-oriented design prevents routing

congestions even if butterfly network is applied for the turbo decoder. Enjoying this low
L HATh &

=1

complexity network becomes possible. = .~ - » -
Fig. 4.8 shows a turbo decoder architecture [112] composed of 8 APP decoders and
8 memory banks, and there is a'ﬁth“rgé—stage bu_tt‘érﬂy network in between. We choose

five network configurations:

o (. Al — M1, A2 — M2, A3 — M3, A4 — M4, A5 — M5, A6 — MG,
A7 — M7 and A8 — MS.

o (5. Al — M2, A2 — M1, A3 — M4, A4 — M3, A5 — M6, A6 — M5,
A7 — M8 and A8 — MT.

o (U5: Al — M3, A2 — M4, A3 — M1, Ad — M2, A5 — M7, A6 — MS,
AT — M5 and A8 — M6.

o Uy Al — M5, A2 — M6, A3 — M7, A4 — M8, A5 — M1, A6 — M2,
A7 — M3 and A8 — MA4.

84

o C5: Al — M7, A2 — M8, A3 — M5, A4 — M6, A5 — M3, A6 — M4,
A7 — M1 and A8 — M2.

We suppose the network configuration changing with the repeated order {C}, Cy, Cs, Cy,
C5,C1,Csy, ...} and this is the constructed B-IBP.

B controlling bits can configure a B-layer butterfly network instead of B - 251
controlling bits. In Fig. 4.8 the butterfly network generally necessitates 3 -4 = 12
controlling bits to configure the network with 3 - 22 crossbar switches. For the selected
network configurations {Cy, Cy, C3, Cy, Cs}, three bits can configure this 3-layer
butterfly network due to each layer switched together; the configuration C5 switches the
layer 3, the configuration C53 switches the layer 2, the configuration C} switches the layer
1, the configuration Cy switches the layers 1 and 2. Therefore network oriented design

can further take controlling s1gna111ng into account to simplify network configuration.

The B-IBP interleaver Wthh supports butterﬂy network with the identical layer-
switching is formulated as - .': ‘_ s]
| _ : . 'al

7"-buz‘/terj"ly,Bfibp(Z-L:"—'b j):'(Z @ f(wbloqk(J)))L + Thlock (j)u (432>

where I(-) corresponds to the control signaliing sequence in which each symbol has bit
width B, 0 <i < 28 and @ is a width B exclusive-or operation.
If we want to decrease the parallelism degree to the factor R of N, we modify eqns.

(4.9) and (4.10) to acquire

MGL+k) = ljll s, (4.33)

MIGL+ k) = |1l 5, (434)
where R is the factor of N. Eqns. (4.11), and (4.12) become

M(r5L,GL+8) = |IfaG, 0]y, (4.35)

MU (mp_ip(GL+ k) = |fald, Totock (k)| (4.36)

85

v VoV v
M7
N27 N28
N17 N18
APP
Decoders AT

Figure 4.9: Multiple steams decoding.

ALLREN & Fa
One can find the memory mappigg"::‘fﬁhcjiqns_ aremnot only regular but also simple.

Butterfly network-oriented tu,rbo "d'e:(':g ér pports multiple streams decoding which

highly benefits uplink transmission, Vi.n_‘;Itfi::HoWnlink;:' multiple streams occur less for a

1855

mobile station. In uplink multiﬂé: ‘-u;s_':ér-s -interéc:‘q-‘ﬁ'i;ifith a base station concurrently and

multiple short length streams occur ofterz “ In order to achieve high throughput, the
previous parallelization method with the sliding window APP algorithm [104] can be
applied. However the window-based algorithm introduces a training window interval
and outputting time interval which process no information and introduce extra latencies.
Therefore the shorter the segment length, the lower the decoder throughput. Fig. 4.9
shows a sub-network configuration from Fig. 4.8; the turbo decoder with N = 8 APP
decoders becomes four turbo decoders with N = 4,2,1,1 APP decoders; the decoder
can decode multiple short streams separately without extra storage for the extrinsic
information and received samples, and the portion of wasted time intervals becomes less.

Therefore butterfly network-oriented turbo decoder benefits uplink decoding throughput.

An example is given in analyzing the throughput under this parallel multiple streams

86

Table 4.1: Throughput and latency analysis for 8 APP decoders

8 streams and 8 APP decoders
femmz) Parallel decoding 8 Serial decoding 1
100MHz streams with P=1 stream with P=8
Throughput [Mbps| | Latency [us] | Throughput [Mbps] | Latency [us]
K=512 44.44 92.16 25 20.48
K =256 40 51.2 16.67 15.36
K=128 33.33 30.72 10 12.8

decoding and serial single stream decoding. We have parameters as follows.

e [,.«: number of maximum iterations

K: length of processed data

e IW: training window

® femmuz: operating frequen_'qf E| :'.' ey

The formula of latency and throughphtfa-re—ﬁ -

Latenéy[ﬁs]" =sh

Throughputprpps)

P: number of APP decoders progessinig one stream

S (5] +27)

fc[MHz]

Kfc[MHz}

o ([5] 1 27)

(4.37)

(4.38)

Tables 4.1 and 4.2 provide throughput and latency analysis for multiple streams and

single stream decoding. The training window W is 32 and the maximum iteration I,y

is 8. Operating frequency is 100 MHz. The throughput of multiple streams decoding is

higher than that of single stream decoding and the difference becomes larger as the data

length goes down. Obviously, the training window induces the decrease of throughput

and shorter data length suffers more.

The butterfly network-oriented B-IBP interleaver imposes the restriction on the num-

ber of blocks which is the power of 2. If the necessary number of APP decoders is not the

87

Table 4.2: Throughput and latency analysis for 16 APP decoders

16 streams and 16 APP decoders
femmz) Parallel decoding 16 Serial decoding 1
100MHz streams with P=1 stream with P=16
Throughput [Mbps| | Latency [us] | Throughput [Mbps] | Latency [us]
K=512 88.89 92.16 33.33 15.36
K =256 80 51.2 20 12.8
K=128 66.67 30.72 11.11 11.52

power of 2, this restricts the turbo decoder design. For example: the desired through-
put only necessitates 17 APP decoders, and either extra 15 APP decoders or 15 extra
memory banks with complex memory addressing is necessary. One solution is to apply
the graph using to describe Winograd transform [110]. Another solution is to apply the

barrel shifter network to retain low complexity network configuration.

4.3.3 Barrel shifter netwo;:k T

Barrel shifter network [111] 1:;:. alsol adow complex1ty routing network and fashion
QC-LDPC [43] also designs the parlty check matrlx based on this network. The objec-
tive of this network is to cychcally Sh.Ift blts and thls network switches each layer by
left or right 1, 2,..., 25, where B is the tqtal number of layers. The network requires
B = [log, N| controlling bits to determine the network configuration due to each layer
switching together. The number of N does not restrict to 2% and this provides a flex-
ibility as designing the B-IBP. If N = 2B the network has the same edge complexity
comparing to the butterfly network. However the identical layer switching also imposes
a stringent constraint in constructing the B-IBP. The maximum possible number of net-
work configuration is restricted to 2% which is much less than that of butterfly network
23 1os2 N Thig may incur performance degradation as creating the associated B-IBP
interleaver. By the way this network, the same as butterfly network, is generally not
applicable for the parallel turbo decoder if the interleaver is not an option.

Fig. 4.10 shows a turbo decoder architecture which applies barrel shifter network

88

Decoders

Figure 4.10: An example of barrier shifter network-oriented turbo code decoder archi-
tecture with parallelism degree 8.

to interconnect both APP decoders “ and memory banks. The network is composed
of three layers. Layer 1 Switc‘h"‘e‘slj“‘rout_qs rié}it"“-by 0 or 4, Layer 2 switches routes
right by 0 or 2 and Layer 3 s.witches!ré)y:iteé rlghl; by 0 or 1. If we want to route
A1, A2, A3, A4, A5, A, ATIAS\bATE, AT, M8, M1, M2, M3, M4, M5, the
network switches layers 1 and 3 by4 ;ﬁd 1 énd_layer 2 by 0.

Since the operation of barrel shifte&r net&brk is cyclic shift, the B-IBP interleaver is

described as

Toutter fly, B—ibp (1L +) = |t + I(Toiock(J)) N+ L + Toiock(7), (4.39)

where N is the number of blocks and I(-) corresponds to the control signalling sequence

in which each symbol has bit width [log N].

4.4 B-IBP interleaver supports variable information
length

B-IBP interleaver imposes a constraint on the input sequence length which is the

multiple of block length. WiMAX [56] pads dummy bits to resolve this problem but

89

extra dummy bits decrease bandwidth efficiency. Information bit shortening [109] and
interleaver pruning [32] are both applicable for turbo code to match various information
sequence lengths. As for maintaining identical code rate, the shortening requires punc-
turing extra code bits but it may pay at most 2 to the decrease of the minimum distance.
Interleaver pruning shortens interleaver by removing permutation positions but this may
cause serious minimum distance decrease due to the change of permutation table. The

following subsections will describe and compare both strategies.

4.4.1 Shortening and puncturing

The shortening and puncturing support various lengths of input data sequence with-
out sacrificing code rate and the spaced shortening assigning algorithm reduces decoder
control complexity without significant performance loss. The shortening is applicable to
increase supportable length for inputidata éé‘qugpee by removing the dummy bits to fit
the desired interleaver length bef(;ré tranémlsslon “The puncturing further removes the

fEfa

parity bits corresponding to th_é- dummy nb[iféf‘and C()::cie rate maintains the same.

The shortening and punctur:in:g st:;.a;ééMrea&g the distance by at most 2 for each
shortened position. The shorteniﬁé"‘"str‘ategy“@ssrighiis a dummy bit before encoding. After
encoding it removes the dummy bit and the associated parity bits. Because the parity
bit is removed, the shortened codeword weight decreases by at most 2.

However, the shortening induces extra complexity in APP decoder design and the
extra shortening cycle is necessary. In order to maintain multiple processors processing
shortening cycle as possible at the same time, the shortening positions have to be spaced
by an interval. The space also spreads the influence of shortening positions and keeps
the performance without significant degradation induced by the puncturing.

Shortening position assigning algorithm is characterized by two stages. The first

stage calculates the shortening width Wspoen. The second stage assigns the shortening

positions. There are Ngporien = Kp_1p — K shortening positions to be shortened, where

90

K is input information length and Kg_;gp is the length of B-IBP interleaver. The max-
imum number of shortened positions for all blocks is N7, shoten = (%] and there are
Ny arax = | Nshorten|n blocks shortening Np sporten, positions and the associated shorten-
ing width is Wporten = [ﬁmw The second stage determines the shortening posi-
tions. The first Ny prax blocks shorten symbols at {0, Wnorten s 2Wshorten s - - - » (NL shorten—
1)Wihorten }- The following N— Ny arax blocks shorten symbols at {0, Wenorten » 2Wshorten
oo oy (NL shorten —2)Winhorten }- This assigning algorithm promises these APP decoders ma-
nipulate the shortening cycles at the same time as much as possible when the number

of APP decoders are the factor of N while the shortened positions are spread to the

farthest.

4.4.2 Pruning

Interleaver pruning [32] removesfilié-permutation entries to shorten the interleaver.

Assume there exists an interleaver withppermutation function II. We prune one position

1= 5 1

7 and the resultant pruned interleaver Hpril;;;ef has th?, function
- | =

T P el () <)

N) — L , 1sggvand (1) > m()

Tprune (1) = m(i+1) "TEES jand (i 4+ 1) < w(y) (4.40)
m(i+1)—1 ,i>jand 7w(i+1) > 7(y)

We can apply this formula recursively to create an interleaver with any length shorter

than the length of II.

4.4.3 Comparison between shortening and pruning

Turbo code error events are highly correlated with the non-zero element coordi-
nates of an input sequence. The component code of turbo code is a recursive convolu-
tional code and low weight output sequences are usually corresponding to some special
patterns. Fig. 4.11 shows two important error events, the weight-2 and weight-4 error

events. A coordinate pair generates a finite weight codeword if coordinates difference is

91

mT, mT, pT,

| I—|J i I—|j I|<—:
Pre-Permutatios
Post-Permutatios
J I I i j' k'
— — —
nT, qTe nT,
(a) (b)

Figure 4.11: Weight-2 and 4 error events for a turbo code.

multiple of T, for both pre-permutation and post-permutation where 7, is the period of
the component code. A good interleaver always promises large m and n in Fig. 4.11 (a)
and m, n, p and ¢ in Fig. 4.11 (b) and’the c'c‘)"rresponding codeword weights are large. A
good interleaver generally has la,ir;gendistqu]lqg épdéhortening strategy does not influence
performance significantly if the: -S:lrlortgning "f)(ﬂ)‘.sitions": are not close as our algorithm.

The pruning strategy may sng;mﬁcantlmrease the minimum distance of the turbo
code with the pruned interleaver cn:br"‘nparing‘to 'é.mother interleaver. The strategy as-
signs a dummy bit and skips the bit when encoding. Therefore a pruned interleaver is
completely different to the mother interleaver. Fig. 4.12 (b) shows an example. The
pruning shifts 77 = j 4+ 1 to j due one position is pruned before j” and after i. Because
the difference between ¢ and j” is T, + 1, it does not generate low weight codeword.
However the difference between ¢ and j” is T, and a low weight codeword occurs for the
turbo code applying the pruned interleaver because the difference between i’ and j' is
also T.. Even if a mother interleaver has an outstanding distance property, the pruned
interleaver has completely different nature to the mother interleaver. Furthermore the
more bits pruned, the more kinds of interleavers generated.

Interleaver pruning [32] has been applied in 3GPP Rel’99 and Rel’6 [1, 2] turbo code

92

Shortened

anc ///POQUon
| |

Pruned
Position

() (b)

Figure 4.12: Influence of the weight-2 error events for both shortening and pruning
strategy.

to create various interleaver lengths ‘ranglin‘Tg from 40 to 5114 bits. This strategy provides

By

various interleavers but it induces low Weighﬁ.codevx}f)rd for turbo code with the pruned
interleaver. The performance is Tnot stabme to tihe pruning strategy. This explains
the 3GPP Rel’99 and Rel’6 [1, 2-]"fur:b0 co‘(.i‘ing“ I;ossessing higher error floor for some
interleaver lengths. Our simulation results evidence this.

The shortening and puncturing strategy requires less efforts in searching wide range
of interleavers than the pruning strategy. The shortening only decreases the distance by
at most 2 for each shortened bit. We can simply verify the case shortening most bits.
If the performance does not degrade obviously, we accept the interleaver. However, the
pruning strategy generates different nature interleavers. If at most 30 positions have to
be pruned, 31 kinds of interleavers include the mother interleaver have to be verified.
Therefore shortening and puncturing strategy simplifies our verification flow in searching

interleavers within a wide range.

93

Table 4.3: Parallelism degree corresponding to various data lengths K and the supported
number of interleavers.

K N | Number of interleavers
40 < K <200 1 69
201 < K <320 2 26
321 < K <960 8 34
961 < K <2560 | 16 43
2561 < K <6144 | 32 48

4.5 An interleaver design

An example is provided in this section. The interleaver length ranges from 40 to
6144 bits. The block interleaver supports generalized maximal contention-free and the
permutation function can be generated on-fly for both interleaving and de-interleaving.
Furthermore the radix-4 APP decoder [16] is applicable. The B-IBP supports butterfly-
network and controlling signals can bg genera?gd by shift register. Our simulation results
also show that the performance i$ not “ir‘r“l;ferior: to jche QPP interleaver which has been
defined in the 3GPP LTE [3]. The requ"i!r%c.il. s;t.lf)faée.‘.‘:for the parameters is also less than

that for the QPP interleaver. e ﬁ_ ! .

4.5.1 Interleaver descriﬁtibn

The interleaver Iz _;pp; is shown in eqn. (4.41), where 0 < i < Kp_rpp, I(:) is
the IBP sequence and the IBP period T' is defined in Table 4.4. The block interleaver
shown in eqn. (4.42) is double prime interleaver I1pp composed of two prime interleavers
permuting odd and even ordinals individually. This interleaver is characterized by two
parameters p and s, the values associated various block lengths L are shown in Table
4.5. This formula matches eqn. (4.39) and simple butterfly network is applicable for the

parallel turbo decoder.

WB,[BPI(Z'L —+]) - (Z @ [(|7TDP(])‘T)) . L -+ WDp(j). (441)

94

Table 4.4: Butterfly B-IBP sequences and the corresponding generator polynomials

N | T | I(}) Polynomial

1T [1 |10 No

2 |2 [{0.1} No

8 |8 |{0,1,2,4,3,6,7,5} Poly;gp(8) =11: 2% +x +1

{0,1,2, 4,8, 3, 6, 12, 11,

16116 5, 10, 7, 14, 15, 13, 9}

{1,2, 4, 8, 16, 5, 10, 20, 13, 26, 17, 7,
32 [31| 14, 28, 29, 31, 27, 19, 3, 6, 12, 24, 21, Poly,zp(32) =37 :2° + 22 + 1
15, 30, 25, 23, 11, 22, 9, 18}

Tpp(i) = H%
H%J Xp+3’£> X241 | iisodd

J X p@) X 2 , 1 1s even (4.42)

The inter-block permutation sequences shown in Table 4.3 can be generated by shift
register which is friendly to implemegtation-.- .§}nce these sequences can be generated by
shift register and the correspon@iﬁé’ éfo,r’;@;gel Gan.l:.')'é_. reduced. The initial values for these
sequences are set to 1(0) =0 a_hd I(1) zwllforN ..:'-':1, 2,8,16 and 1(0) =1 for N = 31.
The rest numbers are generatel;_lﬁjby éqrr—€4—43),wfllere Poly,;zp(N) is shown in Table
44. %

1(i) =

Ii—1)<<1 , I(i—1) < N/2
{ 1 (4.43)

(]Z(z — 1) << 1)@ Poly,sp(N) , I(i—1) > N/2

4.5.2 Comparison to 3GPP LTE QPP

3GPP LTE [3] adopts QPP interleaver [90] for turbo code. The interleaver length
ranges from 40 to 6144 bits and this is the same as our design. There are 188 kinds of
interleavers and each interleaver adopts two parameters. Each parameter requires 10 bits
to store. Including interleaver length, the interleaver table necessitates 188-3-10 = 5760
bits. The turbo code applying this interleaver generally necessitates fully-connected
network to bridge APP decoders and memory banks. The network configuration requires

to resolve the equation (4.6) to acquire the network control signalling.

95

Table 4.5: Double prime interleaver parameters

L \p|s| L |p|s| L |p|s| L |p|s| L |p|s| L |p]|s
40 | 7| 3 | 44 | 5 | 13| 46 | 17| 8 | 48 |17 [12| 50 [11| 5 | 52 | 3 | 12
54 | 5 |13 B8 |16 11|60 |23 11| 62 |26 9 | 64 | 5 |18] 66 | 5 |13
68 | 3 | 17| 72 |25 18| 74 |10 8 | 76 |29 | 14| 78 | 22|30 | 80 |23 |25
82 |12 18| 8 |10 | 17| 88 |41 22| 90 |31]|19| 92 |31 23| 94 | 6 |14

96 | 4321|100 | 11|25 |102| 32|17 | 104 |31 |24 | 106 |44 | 22| 108 | 17 | 26

110 | 16 | 27 | 114 | 16 | 27 | 116 | 47 | 7 | 118 | 43 | 28 | 120 | 11 | 29 | 122 | 18 | 34

124 145129 | 128 | 17 |24 | 130 | 11 |29 | 132 | 47 |27 | 134 | 6 |32 | 136 | 21 | 35

138 |40 | 45| 142 |29 | 36 | 144 | 11 | 29 | 146 | 47 | 34 | 148 | 51 | 35 | 150 | 11 | 16

152 | 3135|156 | 55 | 28 | 158 | 28 | 34 | 160 | 47 | 39 | 162 | 44 | 62 | 164 | 13 | 31

166 | 34 | 40 | 170 | 14 | 35 | 172 | 51 | 39 | 174 | 53 | 42 | 176 | 35 | 44 | 178 | 28 | 42

180 | 17 | 44 | 184 | 19 | 46 | 186 | 38 | 45 | 188 | 25 | 39 | 190 | 37 | 43 | 192 | 17 | 40

194 | 8 | 45| 198 | 31 | 48 | 200 | 41 | 50

Our design provides 220 kinds of interleavers. The parameters for double prime
interleaver table, IBP generator polynomials and interleaver ranges necessitate storage.
Double prime interleaver desires two parameters and each parameter only requires 6 bits.
The interleaver length requires 8 blts I|BP sequence requires 5 bits. Interleaver range
requires 13 bits for each length.: In total th1s desrgn requlres 69-2-6+69-8+3-5+6-13 =
1473 bits. This design further supports butterﬂy network and the control signalling can
be generated by shift register. Our deslgn also Supports generalized maximal contention-
free as the QPP intereaver. Our simulation results shown in Section 4.7 indicate that our
design outperforms the QPP interleaver in many cases. Therefore no matter in hardware

complexity or performance, our design is better than the 3GPP LTE QPP interleaver.

4.6 Implementation

This implementation [112] follows the structure proposed in Section 4.5 and suits for
the butterfly network architecture. The interleaver length is 4096 bits and the associ-
ated B-IBP interleaver is composed of N = 32 length-128 blocks. Each block applies
the double prime interleaver with parameters (p,s) = (15,23). The IBP sequence is
{0,1,2,4,8,16,5,10,20,13,26,17,7,14, 28,29, 31,27,19, 3,6, 12,24, 21, 15, 30, 25, 23, 11, 22,

96

¢

| A D\ \
0.1 o

i B-BPTC =

]| Fixed Point

4| —®— Max Log-MAP

SF=0.75

—&— Max Log-MAP
0.01 | Floating Point
3| —4&— Log-MAP
] —¥— Max Log-MAP
1| 3GPP Rel'99 and Rel'6 Q
Fixed Point A
1E-3 | —0— Max Log-MAP
3 SF=0.75 A\
1| —o—Max Log-MAP \A\ =) 5
1l Floating Point
AN . i °

Frame Error Rate

1 —2—Log-MAP
1E-4 | —v—Max Log-MAP

T —
T Tr T 7T T T T T T T T 1
0.6 0.8 1.0 1.2 14 16 18

E,/N, (dB)

Figure 4.13: Frame error rate comparison for our implementation.

9,18}. The component code is G (D)= [1 ffﬁt%;] which is identical to that defined in

the 3GPP [1, 2, 3] but each bloék“is sebﬁfa;te- -t'ail—l'.)i_ting encoded. This implementation

applies MAX Log-MAP with s'(_:ai,_ling Lfactor 0.75 [73]. Fig. 4.13 shows the performance

comparison between our B—IBP:T‘K‘C.“émﬂ“?)d;PP ti%fbo code with 8 iterations. Our im-
plementation after fixed point simhiétion is-sﬁi;erior to the 3GPP code applying the
maximum log-MAP algorithm with the scaling factor in fixed point by 0.1dB and infe-
rior to the 3GPP code applying the log-MAP algorithm in floating point by 0.1dB at
frame error rate (FER) 2 x 107%.

The decoder chip [112] is fabricated with a 0.13 pm 1P8M CMOS technology, and
the die photo is shown in Fig. 4.14. The core area occupies 17.8 mm? with 2.67M gates
count, including the 3.33 mm? memory block. The chip achieves maximum 160Mb/s
with power consumption 275 mW at 1.32 V supply and operating frequency 80MHz and
the associated energy efficiency is 0.22 nJ/b/iter at 8 iterations. Table 4.6 compares
our result with other state-of-the-arts. Our design possesses the most superior energy

efficiency [16, 20, 101].

97

Qutput Buffer

32 MAP Decoders

We compares the performance basedierthe 3GPP defined turbo code with G (D) =

[1 %} . The first part concerns the performance of our design proposed in Section

4.5. We compare our design with the 3GPP Rel’99 and Rel’6 [1, 2] and the 3GPP LTE
QPP [3]. Then we evaluate the performance of our shortening and puncturing algorithm.

At last the effect of separate encoding of various code rates is shown.

4.7.1 The interleaver design

This part simulates the turbo code with code rate=1/3 while the both convolutional
code is tail-padded. All cases apply Max Log-MAP decoding algorithm with 8 iterations.
AWGN channel is the simulation scenario. The compared interleaver lengths range from
40 to 6144 bits.

Figs. 4.15 and 4.16 plot the curves of the required E,/N, for various error rate

98

Table 4.6: Comparison to different turbo decoder designs

B-IBPTC [112] [16] [20] [101]
Technology 0.13 um 0.18 wm | 0.18 pm | 0.13 um
Core Area 17.81 mm? 14.5 mm? | 7.16 mm? | 10 mm?

Block Size 4096 5114 384 2048

[terations 8 6 4.43)

Frequency SOMHz 145MHz | 160MHz | 352MHz
Throughput 160Mbps 24Mbps | 71.7Mbps | 352Mbps
Power 275mW 1450mW N/A 2464mW

Energy 0.22 10.0 2.19 1.4
Efficiency nJ/b/iter nJ/b/iter | nJ/b/iter | nJ/b/iter

performance to compare the 3GPP Rel’99 and Rel’6 turbo code [1, 2] with our design.
Our design outperforms the 3GPP Rel’99 and Rel’6. The performance gain is signifi-
cant especially for long interleaver length and FER=10"%. Our design provides stable
performance for the entire range.

As our prediction in the Compé}pisbﬁ .bét\;;fééh- i.pterleaver pruning and shortening and

puncturing. The pruning strateg'y“ genérﬁf% d-ifferént nature interleavers to the mother

interleavers and may introducé low weight codewoid for the turbo code applying the
= | . 1

pruned interleaver. The perforl-'marllée-'iigélilut-'é“ evi'c:].énce that the pruning is not a good
strategy to support variable input length and’ d‘e.t-“eriorates the performance significantly.

Figs. 4.17 and 4.18 plot the curves of the required E,/N, for various error rate
performance to compare the 3GPP LTE QPP turbo code [3] with our design. Our
design outperforms the 3GPP LTE for some cases. B-IBP interleaver has large degree of
freedom and we can adjust the B-IBP or the block interleaver to reach the better distance
spectrum and avoid the weakness for some interleaver length. However the QPP only
requires two parameters to construct an interleaver which supports generalized maximal
contention-free property, this also imposes limit to the distance property. Reference [93]
has shown that the maximum achievable minimum distance for the interleaver length
2 < K <4096, and there are many cases the minimum weight are upper-bounded by

32. Our simulation results show that there are some spikes for the 3GPP LTE curves

99

—=—FER=10"
—«—FER=10"
—+— FER=10"

1 & 3GPP Rel'6
|
404 4

M

b

—+— FER=10"
FER=10"° B-IBPTC

—=—FER=10"
——FER=10"
——FER=10"

w

N

1
—

b 0

N
>
Il

Required E /N _(dB)

g
=2}
Il

0.8

0 200 400 600 800 1000
Interleaver Length

Figure 4.15: The B-IBP interleaver vs. 3GPP Rel’6 interleaver with the length ranging
from 40 to 1000 bits.

and these results reflect this fact. . _ N
E4=": 5\

4.7.2 Shortening and:-puncturing = -
= . =

This part evaluates the perfo}'maﬁ'eé' of '('):Li'f"'pro"pased shortening and puncturing algo-

rithm. We still simulate the turbo c;)ae withicode rate=1 /3 while the both convolutional
codes are tail-padded. All cases apply Max Log-MAP decoding algorithm with 8 itera-
tions. AWGN channel is the simulation scenario. Our design in Section 4.5 is applied
and 219 cases are compared except for the length 40. The number of shortened bits is
at most to 127 bits. Figs. 4.17 and 4.18 plot the curves of the required E,/Ny for vari-
ous error rate performance and the performance is very similar for all cases. Although
the shortening and puncturing may decrease the codeword weight by at most 2 for one
shortened bit but the performance does not degrade significantly in our simulation even
though 127 bits are shortened. Our spaced shortening position assigning algorithm not

only favors the implementation but also retains the performance.

100

1.6 4

3GPP Rel'6
—+—FER=10"
—<—FER=10"
—+—FER=10"
—~—FER=10"*
B-IBPTC
—=—FER=10"
—~—FER=10"
—+— FER=10"
—~—FER=10"*

1.4 %

124 =

b 0

1.0 A

Required E /N_(dB)

0.8 -

0.6 : ; . ;
1000 2000 3000 4000 5000 6000

Interleaver Length

Figure 4.16: The B-IBP interleaver vs. 3GPP Rel’6 interleaver with the length ranging
from 1000 to 6144 bits.

4.7.3 Separate and contmuous encodmg

|£l'

The performance of the sepa'rate and*c“ontinhouus encoding is our last concern. We

simulate the turbo code with Code ratecl 2R and 3 / 4 while the tail-biting is applied. All
cases apply linear Log-MAP decodlng algorlthm Wlth 8 iterations. AWGN channel is the
simulation environment. The compared interleaver lengths are 256, 512, 1024, 2046 and
4096 bits while the length-64 and length-128 block interleavers apply two parameters
(p,s) = (5,32) and (p, s) = (47,7), respectively. When the code rate=1/2 shown in Fig.
4.21, the separate encoding outperforms the continuous encoding and it also implies
the separate encoding enhances the distance property. When the code rate=3/4 shown
in Fig. 4.22, the continuous encoding outperforms the separate encoding. The short
block length and component code with code rate=6/7 induce low extrinsic information
absolute value and the performance degrades. As for interleaver length=1024 bits and
code rate=3/4, the separate encoding outperforms the continuous encoding when £, /N

> 3.5dB. It means that the separate encoding has potential to provide the better distance

101

3GPP LTE QPP
—=— FER=10"
—~— FER=10"
—+— FER=10"
FER=10" ——FER=10"
B-IBPTC

4 —-—FER=10"
FER=10 o FER=107
—— FER=10"
—— FER=10"

>
o
N 1

]

b
=

Required E /N _(dB)
N
N
1

A e S S
T T

0.8 T T
600 800 1000

B-o--0—f-0-g oG —0
T

T ;
400
Interleaver Length

Figure 4.17: The B-IBP interleaver vs. 3GPP LTE QPP interleaver with the length
ranging from 40 to 1000 bits.

property even for the high code

102

16+ 3GPP LTE QPP
—— FER=10"
—«— FER=10"
—+—FER=10"
—+— FER=10"
B-IBPTC

—— FER=10"
—— FER=10"
4 | —=—FER=10°
—— FER=10"

...
-

%l’*m&fwwxh
:,MW-,,,,&/:}AWWM

0.6 . ; . ; : . : . : . :
1000 2000 3000 4000 5000 6000

0

b

Required E /N_(dB)

Interleaver Length

Figure 4.18: The B-IBP interleaver vs. 3GPP LTE QPP interleaver with the length
ranging from 1000 to 6144 bits. AALALE > .

= -y B-IBPTC
4.0 STERRANE ——— FER=10"
———FER=10"
1 ——FER=10"
I A FER=10"
o 32 ‘ FER=10 Shortened B-IBPTC
=] ~ — -1
= FER=10 3 FER=10 ,
z 1 » ——— FER=10"
~a FER=10 ——FER=10"
Wooa 4
—— ——— FER=10
]
= |
o
(7]
o
1.6 -
0.8 . T . T : T : . !
0 200 400 600 800 1000

Interleaver Length

Figure 4.19: The shortening and puncturing effect for the B-IBP interleaver with the
length ranging from 40 to 1000 bits.

103

1.6

B-IBPTC
] ——FER=10"
4 ——FER=10"
1.4 A =
10 —— FER=10"
i —10° FER=10"*
o \ Shortened B-IBPTC
Z 12 2 FER=10"
2
ZO —— FER=10
= 1 ———FER=10"
w
? 104
—_ T
= -
o
g i
o4
0.8 -
0.6 : . : . .

1000 2000 3000 4000 5000 6000

Interleaver Length

Figure 4.20: The shortening and puncturing effect for the B-IBP interleaver with the
length ranging from 1000 to 6144 bitsaiiiise,

1 = - 1
= ST Continuous
—8— K=256 L=128 N=2
—e— K=512 L=64 N=8
0.1 —A— K=1024 L=128 N=8
= —¥— K=2048 L=128 N=16
N 4 K=4096 L=128 N=32
m N N Separate
% 001 n —0— K=256 L=128 N=2
x \ —0—K=512 L=64 N=8
5 \ —£— K=1024 L=128 N=8
0 \m | —v— K=2048 L=128 N=16
o 13 \ —O— K=4096 =128 N=32
s WA
L i‘\ \. \5\
1E-4 oA o' N
\ N e
\ A \°\ N\
* V. N L]
v A, *, O
1E-5 . . ; . ; . ; . ; . s
05 1.0 15 2.0 25 3.0

E,/N, (dB)

Figure 4.21: The comparison between the separate and continuous encoding for code
rate 1/2.

104

Continuous encoding
—8— K=256 L=128 N=2
—®— K=512 L=64 N=8
—A—K=1024 L=128 N=8
—W¥— K=2048 L=128 N=16
E\ —4&— K=4096 L=128 N=32
u} Separate encoding
—0— K=256 L=128 N=2
—O—K=512 L=64 N=8
—{4— K=1024 L=128 N=8
—V— K=2048 L=128 N=16
—O— K=4096 L=128 N=32

iE|a "\
1E-4 = : e PO Qe R\

0.1

0.01

1E-3

Frame Error Rate

o) O,
oy
\\ \o\ﬂ
o ~
\. O\B
1E-5 . T . |
4.5 5.0 5.5

Figure 4.22: The comparison between the separate and continuous encoding for code
rate 3/4.

105

Chapter 5

Stream-oriented inter-block
permutation interleaver

stream-oriented IBP interleaver is designed for indefinite information length, and
the associated stream-oriented IBPTC (S-IBPTC) suits for high throughput pipeline
decoding architecture and outperforms classm TC under the same interleaver delay.
Pipeline decoder is constructed by multlple APP decoders. These APP decoders serially
decode codeword sequences and the mteﬂea,ver delay determines the latency between
two adjacent APP decoders. S}nce i Jﬂ%APP dlecoders process at the same time,
high throughput decoding is achlevable F(r)r'éxa_nllple: [101] applies 10 APP decoders to
achieve 352Mb /s throughput and interieaverhdelay is 2048 bits or 5.82us. However, these
APP decoders decode these classic TCs independently and the performance is limited
by the length of each codeword. In order to improve the performance, we construct a
stream-oriented IBP (S-IBP) itnerleaver with the same interleaver delay. Due to the
extra relation between neighboring blocks, information can be passed to the neighboring
blocks in each decoding iteration. The more decoding iteration, the more information
gathered, the better performance. By the way, we can apply a good block interleaver
for the intra-block permutation and the resultant S-IBP interleaver would have good
distance properties. Therefore, S-IBPTC has better performance and distance properties
than classic TC under the same interleaver delay while we can enjoy the high throughput

decoding coming from the pipeline architecture.

106

5.1 Stream-oriented IBP interleaver and the associ-
ated encoding storage

An S-IBP interleaver IIg_;, = ILs_inter © Il is a sub-class of the IBP interleaver

described in Section 3.2 and the interleaving and deinterleaving rules are formulated as

Ts—ip(t) = falllillL: Torock([i]L)) - L+ fo(Terock (7)) (5.1)

Tslip(®) = Falllillz.lilz) - L+ fi (M (lil))- (5.2)
The interleaver confines symbols in each block only permuted with that in at most priori
Sy and successive Sy neighboring blocks; where S, and Sy are backward and forward
spans, i.e. [illL — Sy < fu(llillz, lil2) < llillz + S¢ and [lillz — S < fi(llillz, i) <
][+ Sp. If S =S, =S5y, Hg_ipp is a symmetric S-IBP, which is of our main interest,
and S is S-IBP interleaver span. These spans determine interleaver delay, encoding and

decoding latencies.

We describe the relation betsweer] inféﬂe‘a er (déi_nterleaver) delay and these spans as
follows. Denote the interleaver iﬂd',(_elay 9gd"déinteflea§er delay by D; and D, where

D; = max{k)T "b;';':méx{k —) (5.3)

From eqns. (5.1) and (5.2), the interleaver and deinterleaver delays of a Ilg_;, are

bounded by
Dis-rpp = max{k — ms_ip(k)} = max{k — fu([[l|z, [F]2) - L = fo(lk[2)}
= max{k — ([klr = S)L = fo(k)} < (S + 1)L (5.4)
and
Dys-1pp = ml?x{k: — g lip(k)} = max {k— 301K, 1klL) - L= fil (kL) }
= max{k — ([klr = S7)L — fo(k)} < (Sy +1)L. (5.5)

The bounds (S,+1)L and (Sy+1)L are set as the interleaver and deinterleaver delays for
IIs_pp and Hgiibp due to unknown intra-block permutation which is our one assumption

described in Chapter 3. If Ilg ;e is symmetric, both bounds are (S + 1)L.

107

5.2 Stream-oriented IBPTC encoding and the asso-
ciated storage

An S-IBPTC encoder only requires temporary interleaving storage which is propor-
tional to the interleaver delay. Figs. 2.4 (a) and 3.1 show the block diagrams of classic
TC and IBPTC encoders. In general both interleavers have to store complete permuted
sequence then encoding because the interleaving finishes almost when complete informa-
tion sequence is input. Therefore, the storage is equal to the entire information length.
In contrary to classic TC and IBPTC, the storage is not an entire information length for
S-IBPTC because the interleaving of S-IBP interleaver can output permuted sequence
in advance. The S-IBPTC encoder encodes the interleaved block u after the (i + S,)th
block u;g, received and permuted while the (i + S,)th block u, g, is also permuted to

the (i + .5, + Sy)th block uj, g 45 Aft,er encgﬁling of the block u}, the encoder discards

RIS N
symbols instead of an entire information Js@quence. “Even the input information length

the block u} and the necessary témporaxy stqrége. is equal to at most (Sy+ S, + 1)L

is infinite, the temporary storagé for ES’—.,"H‘.‘Sl_D_:I';;_C1dQeSJi not exceed the total blocks within
its S-IBP interleaver spans. kN

The swap interleaver further reduées te;ﬁporary storage and implementation com-
plexity for S-IBP interleaving and deinterleaving, where the swap interleaver has been
defined as V i w(i) = 7 (7). In general S-IBP interleaver moves bits in a given block
to positions within itself and those in the neighboring Sy + S, blocks, the associated
interleaver normally stores at least (S; + S, 4+ 1)L symbols. If we can detain forward
permutation procedure, it implies only (S, + 1)L symbols necessary for temporary in-
terleaving storage. For the deinterleaving, the necessary storage is (Sy + 1)L symbols.
We take a symmetric swap S-IBP interleaver with S = 1 as an example. Fig. 1 (a)
shows conventional storage for S-IBP interleaver. The symbols in the Block II have to
be permuted to the Block I and Block III and the associated storage is (25 + 1)L = 3L

symbols. If the interleaver is a swap interleaver, we can detain the forward permutation

108

Block | Block Il Block Il

Information
Sequence

IBP interleave:
Sequence

Information
Sequence

IBPlnmrbave1 1 |) |103| 4 | 5

Sequence
Information | 1 | 2 | 3 | 4 | 5 | |1oo 101|102|103|104|105| |2oo 201|202|203|204|205| |3oo|
Sequence
IBP interleave |2oo 201|102|203|204|105| |3oo|
Sequence

Te-- -7 (b)

When one starts to interleave (or de mh’c—:_'fewé) Block III, Block I has been completely

interleaved (or de-interleaved), its content was dumped and the corresponding space is
emptied and becomes available for storing new content again. The storage spaces en-
closed by dotted ellipses are thus not needed. Therefore we do not have to move those
forwardly-permuted symbols until after all earlier (backward) blocks have been filled by
interleaved (or deinterleaved) symbols and after their contents have been dumped. For
simplicity, the interleaver has only to perform memory content swapping between current
block and the backward blocks. If Ilg_;,., is a Type IV inter-block permutation, the only
IBP operation is simply m — m —nL, where n € {1,2,---,S}. Moreover, a symmetric
swap interleaver has the same interleaving and deinterleavering structure and can be

implemented by single permutation table or algorithm. These advantages of symmetric

109

swap IBP interleavers will still be maintained when we consider the implementation of

the combined intra- and inter-block permutations.

5.3 Pipeline decoder and the associated message-
passing on the factor graph

Fig. 5.2 (a) shows an S-IBPTC decoding module for one iteration. The parenthe-
sized numbers in each block indicate the corresponding latencies. A pipeline structure
similar to that proposed by Hall [51] is shown in Fig. 5.2(b). The pipeline structure ren-
ders short decoding latency at the expense of increased complexity that is proportional
to the number of the decoding modules. L,,,(ux) and L, (uy) represent the a priori
and the extrinsic information associated with the kth block ug, and Ly, (u),_g, ;) and
L..(ux_g,—1) represent the a priori and the extrinsic information associated with the
(k — S, — 1)th interleaved block u}c_srl Lapp(uk) and Liy,(u),_g ;) are acquired from

the S-IBP deinterleaver and S—I_BP intéﬁ'l-ééve_r; “and"‘the corresponding storage for both

interleavers is (Sy + S, + 1)L s-yi:nbolg, Wthh 1S éimijar to the temporary storage in the
encoding. If IIg_;,zer is a swap i;iﬂtenrléei{ffé;,‘f;}-i;é gtdfage of interleaving and deinterleaving
can be further reduced to (S, + 1)L mand (Sy ¥ 1)L symbols respectively.

We apply the factor graph and decoding time diagram to demonstrate the edge of
the S-IBPTC to classic TC under the same interleaver delay 2L when high throughput
pipeline decoding is applied. Fig. 5.3 shows the pipeline decoding time diagram of
the S-IBPTC and classic TC and Fig. 5.4 shows the factor graph of the S-IBPTC. An
S-IPBTC composed of six length-L blocks with S = 1 is adopted in this example and
the corresponding classic TC has interleaver length 2L. We consider the third block ug
in Fig. 5.4. The first APP decoding of usz starts at 2L, and the generated extrinsic
information is passed to uj and u}. The second APP decoding of u}, and u/ start at 3L
and 5L respectively and the generated extrinsic information is passed to u; and us as the

a priori information for the third APP decoding. Therefore the information is passed to

110

Lapp(uk Lex(uk) Lapp (u'k-Sb—l Lex(u'k—sb—l)

—p APP IBP APP IBP
decoder ¥ Interleaver—®decoder 2—®{ Deinterleaver—»
(L) (SoL) (L) (SL)
—P>
yO IBP IBP
. Delay (L) (> Interleaver - @ Delay (L) —¥® Deinterleaver—
. (SL) (SL)
Y Delay
- (SpL+ SiL+2L) >
y : | |
k Delay Delay
—P>
(SsL+0) —e > (st >
(a)
> Decoding > Decoding e Decoding
Module 1 Module2 ™ ’MOdUIelmaX
(D)

Figure 5.2: (a) The block diagtamn of an SABPTC “decoding module for one iteration;
(b) The block diagram of the SEIBPIC*pipeline decoder.

five blocks in one iteration, i.e. the information spreads five blocks. Therefore the more
blocks connected, the better performance. However the decoding of classic TC only
acquires information within its block. When extreme throughput decoding throughput
is necessary and the pipeline decoding is the only solution, S-IBPTC outperforms classic

TC.

5.4 Bound and constraints modification for S-IBP

interleaver

Theorem 3.2 provides an upper bound for IBPTC and this bound is also applicable
for S-IBPTC. However all data sequences are of finite length in practice and there are

either no or not enough blocks for the first S, — 1 and the last Sy — 1 blocks to perform

111

P IT 2|L 3|L 4|L 5|L 6|L 7|L 8|L 9|L 1(|)L 1ZILL 1|2L
I I I I I I I I I I I I I

Streaming-type IBPTC with block length

1st APP u u u u u
Decoder 1 Uy 3 4 5 6

2nd APP ! ! !
D ecoder u, u, u; u, Uy U
s b s Uy U, s

I !
e v UL U v

1st APP u u u
Decoder 1 2 3

2nd APP u’ u' u
Decoder 1 2 3

3rd APP u u u
Decoder ! 2 3

4th APP bR, U u' u'
Decoder S ! 2 3

HAT %

Figure 5.3: The time diagram 01; I-tlhe pipﬂlél{irft_le--"‘dééoxdér with 4 APP decoders or I, = 2.
= | | ﬁ_ iy -

either the complete backward or forvvard in;cel-r—bl(_)(.jk permutations. Therefore, we have to

modify the S-IBP range for those blocks by géducing either the forward or the backward

span. Assuming that there are N > max(Sy, S) blocks and denoting by Sy (¢) and S (¢)

the forward and backward spans of the ith block, we require that for 0 <i < N,
Sf(l) = min (Sf, N -1+ 1) > Sb(l) = min (Sb, Z) . (56)
Theorem 3.2 is modified accordingly.

Corollary 5.3 For finite-length data sequences and a given inter-block permutation,
inter, whose spans are specified by eqn. (5.6), 3 1l such that the corresponding
S-IBPTC satisfies Wa min < 2+c-min(Sy+2,S,+2)+20, if L > T, -min(Sr+1, Sp+1).

To accommodate the S-IBP ranges defined by eqn. (5.6) for the finite-length inputs,

the range of f,(||||1,|i|.) and the period Ty of a Type II or III inter-block permutation

112

Y3
I : Convolutional Code
HH: Channel Effect

[]: Permutation and Equality

Figure 5.4: A factor graph repfesentatidn;‘for an-S-IBPTC encoded system with the
S-IBP span 1. ‘ = :

must be adjusted according to
max (=S, —i[z) < fu(llillL, lil2) < min (Sp, N =1 —i[L), (5.7)

n+Sp+1, it0<n<S
Ts(n) =< N—n+S, fN-S<n<N |, (5.8)
Sr+Sy,+1, otherwise

where 0 <n < N.

Even with the above modifications, low-weight codewords can still be generated for
some weight-2 input sequences and block lengths for the first and last blocks must be
adjusted. Periodic inter-block permutation is of our interest but there are too many back-
ward permuted symbols due to same block length for all blocks and different inter-block
permutation period Ty for the first block; the last block faces the same circumstance. A

simple solution is to adjust the block lengths of the beginning S, and the last Sy blocks

113

such that the block length of the ith block satisfies
nTs(n) < L(n) < nTs(n) + Ts(n), (5.9)
for some n.

Lemma 5.8 For an N-block S-IBPTC whose block lengths L(n) are given by eqn. (5.9)
and whose e, is of a Type IV inter-block permutation with local interleaving periods

defined by (5.8),

i T.+1 1., T
min w (CH) > 2 4+ o | = em(T,, Ts(n))

i%jaﬂ'ibp(i)%ﬂ'ibp(j) c

+28. (5.10)

Finite-length versions of Lemmas 3.3-3.4 can also be established if the block length
and the corresponding S-IBP rule meet the requirements stated in the above lemma. For

a stream-oriented C-IBPTC (S-C-IBPTC), however, I1;,. needs to satisfy the additional

requirement that for all 0 <4, < L such that Hﬂ'block() — Tptock(J)||7. = 0
f1i,7) + f1<7rblock<i>,7rbloe};<" = ‘2‘4 [T * RaidthL: R)} Los (5aD)
When this requirement is also met then Weﬂ’rave f
nilijn wt(C”) > 2“+ [T +lcmgc’sb + 1)] + 28. (5.12)

5.5 Codeword weight upper-bounds of stream-oriented
IBPTC

This section derives upper-bounds for the weights of S-IBPTC codewords associated
with weight-2 and weight-4 input sequences. These upper-bounds are valid for all stream-
oriented IBP interleavers.

Recall that Lemma 5.1 implies that, the minimum codeword weight, ws ., for the
weight-2 input sequences whose coordinates (i, j) of nonzero elements satisfy ¢ ~ j and

7(i) ~ m(j) is upper-bounded by

Womin < 2+ o - ('i_jH‘;(i)_W(j)’) + 28, (5.13)

114

where it is understood that the constants a and (might not have the same values as
those of eqn. (3.12). A bound much tighter than eqn. (5.13) can be obtained by applying
the approach suggested by Breiling [25] who partitions the coordinates set associated
with both pre-interleaved and post-interleaved sequences into equivalence classes induced

by the equivalent relation “~7.

Each equivalence class is further divided into subsets
F.={z+mT.,m=0,1,--- |F.| — 1}, where z is the smallest index in F ,.

An output (parity) sequence will be of finite weight if the coordinate pair (i, 7)
associated with the weight-2 input sequence u” belongs to the same equivalence class.
The parity sequence weight is small if the pair (i, 7), besides being in the same equivalence
class, are in the proximity of each other, i.e., if (i,j) € F ., for some z and the width of
F.=(F:| —1)T, is small.

To avoid generating low-weight codewords, therefore, an optimal interleaver should
send any pair of coordinates in a glven .s‘lllbﬁse;c. to diﬂerent equivalent classes and, if that is
not possible, to different subset_s';Qi* at lééijs,it :t(;:jﬁwo :f.air—apart coordinates within a subset.
Let F gm) and A,,, (0 <z < Am) be Fhesubsets an.lél the number of subsets associated

with the coordinates of the mtﬁ'_coﬁip’oﬂehf';éncd:gér input sequence. The cardinalities

of the A,, subsets differ at most by 1, el '|-‘Fgm)] = |L/A,] or |L/A,,] + 1. Invoking
the aforementioned pigeonhole principle, Breiling showed that if the pair (A;, Ay) is such
that [L/A;] > As then any interleaver would map a pair of coordinates (7, j) that lies

(2)

in the same subset " to (m(),m(j)) which also belongs to an identical subset F

Y

resulting in

w(CY) <24 a (Lﬂ + Lﬂ — 2) + 2. (5.14)

Minimizing the right hand side of the above inequality with respect to the the pair

(A1, As), Breiling then obtained a very tight upper-bound.

115

5.5.1 The upper-bound for weight-2 input sequences

It is clear that, given the same set of parameters {L,A;, T,, |F |}, an S-IBP in-
terleaver has subsets within its span to choose from for placing members of the set
{m(i),i € Fgl)}, for some 0 < z < L. Thus, assuming a large enough block size L, the
priority of an optimal S-IBP rule in permuting coordinates of the same equivalence class
follows the order: (i) to different blocks, (ii) to different equivalent classes of the same
block, (iii) to different subsets of the same equivalent class, and finally, (iv) to far-apart
coordinates within the same subset. Obviously, the partition of an equivalence class
into subsets plays a pivotal role in optimizing an S-IBP rule. With a minimum loss of
generality, we assume ||Aq||ar = [|A2||y = 0, M = T,T,, where Ty = 25 + 1. Given these

parameter values, we consider the following (subset) partition.

ilas + i = lilad] |] + Ml < [0 < <ILls — LI}
i + (L1, — LG | bl L1, + 1L1a] |] + 245
0<j<|£]|, |L|A,?—|L|MKZ<A;€— }
A = Qi+ 02l — 12 | AR Tfs, — 0+ D) [] + 051 (5.15)
o§j<—ALk_,Ak—'-"M<z<Ak—(|L|M)}>
{lias + 1Z4a, — 1Z0n] [2V (L1, — M 4 |Llad] | £] + 0
| 0<j< s Ak—(M—|L\M)§z'<Ak}.

An exemplary partition of eqn. (5.15) is shown in Fig. 5.5 where the integers
represent the coordinates of either an input or output sequence and each row consists
of three segments with a segment representing a subset of size 3 or 2. The S-IBP rule
sends bits in rows labelled by different capital letters to different blocks while those in
the same row are interleaved to the same block.

By using an argument similar to that leading to eqn. (5.14) and invoking the partition
of eqn. (5.15) along with the permutation rule (i)-(iv) mentioned at the beginning

paragraph of this subsection, we obtain

Theorem 5.9 For the class of S-IBPTCs, the minimum codeword weight wa .y, for

116

9118|27|36|45|54 |63
1011928 | 37|46 |55|64
11120129 38|47 |56]|65
12121130 |39]48 |57|66
13(22131(40]49|58|67
14123132 |41]|50|59|68
15124133 |42|51|60
16 25|34 |43]|52]|61
17126]35|44153|62

—

o

1

w
OIN|ojoa|ldMlw]INMN]- |O

Figure 5.5: Partition of equivalence classes into subsets; L = 68, A =27, T, =T, = 3.

weight-2 input sequences is upper-bounded by

T.LT [T, L
v <240 @ RN |} 2) + 29

where (A1, As) € D x D, D = {2« FLIM| — 1, if L > MT, and

L Y
When A1 = Ay, we have

T.L
w2, T Y

(5.16)

(5.17)

Proof: Eqn. (5.17) follows directly from the partition in eqn. (5.15) and the optimal

periodic S-IBP. The corresponding interleaver results in bound-achieving codewords C%

(i,7) € Sm, when [ALJ > % Hence

AN .
(1{?,11\112) A1 A2 a H/1\11n

The upper-bound (5.16) can be rewritten as

: T,L L
Womin < 2+« (H{{lln{[Al w + |7Tc([ﬁ—| _1J } —2) +23 (5.19)

If we choose (A, As) = (Mg, Ag) with Ag = M([¥E] — 1), ie., Ao is a multiple of M

and A2 < T,L, then (5.16) implies

T,L

§2+2aq L W—1)+2ﬁ

VT.L — M
< 242 (Lol)+2ﬁ (5.20)
[Ry .
VT.L — T,T.
|

Theorem 5.9 implies that wg ,,:, grows linearly with «/7,L when L is large.

SE(a

5.5.2 The upper-bounld:‘f(n)r? qughti4. input sequences

Let the coordinates of nonzero elements of a weight-4 input sequence be (i, j, k, 1),
= | 1

where i < j < k < . If we Ld_iyide.-'nthés'é";COOr@inates and their permuted positions
respectively into two pairs each a.c'ﬂcl(‘)rrding to “t'lr;eir natural order, i.e., (i,j), (k1) and
say, (m(i),m(k)), (m(4),m(1)), then a low-weight codeword results if each pair belongs to
the same subset. More specifically, the minimum codeword weight, wy i, for weight-4
input sequences whose nonzero coordinates (i, j, k,l) are such that i ~ j, k ~ [, 7(i) ~
mw(k),m(j) ~ w(l) satisfy

i =gl |k = U+ [7(@) = 7(k)| +[7(5) = 7(D)]
T.

Wamin <4+ () +23 (5.21)

or

i =gl 1k = U+ [7(0) = 7(G)] + |7 (k) — 7 (D)]
Tc

Wamin <4+ () +28. (5.22)

if (4,7, k,1) are such that i ~ j, k ~ I, 7(i) ~ 7(j), m(k) ~ 7(l).

118

X y . Z
| u—~u I u'’/~u I |
Mgy (0% 1T (Y) 17T (w): ()
q‘ Ty g U Ty yU) I
X y (a)) Z
LN I L v
------------------- T
\\\\\\\ 4 1Tl (2)
I I‘ y 4 'I y'ee I
u’T[ibp(X u'nibp(W
(o),
X y — ’ Z
| u/\u] ‘M | u u |

u

| V, '/ I “' vl | |
u'nibp (X)\/u’nibp (w) u'nibp (y) %'nibp (Z)

(d)

Figure 5.6: Pre- and post-interleaving nonzero coordinate distributions of weight-4 input
sequences that result in low-weight S-IBPTC codewords.

119

These upper-bounds are obtained by considering the three pre- and post-interleaving
distributions of the 4-tuple (i, j, k,[) shown in Fig. 5.6 (a)-(c). These three are the
distributions that most likely lead to low-weight codewords. There are other candidate
distributions (e.g., Fig. 5.6 (d)) but the corresponding upper-bounds are likely to be
larger that those given by eqns. (5.21) and (5.22).

Following an approach similar to that of [25] and taking into account the extra

degrees of freedom offered by an S-IBP interleaver, we obtain

Theorem 5.10 The S-IBPTC minimum codeword weight for weight-4 input sequences

158 upper-bounded by

<442 < i { Fﬂ + Fﬂ } 2) +4p (5.23)
W4 min < | min — .
4 (A1,A2) Al A2

2
when (A1, As) € D x D satisfies (i) Al() > () (ii) * TS k) A0 > <ﬁ> , and (iii)
|Nilpy =0, i =1,2, whereD-{lQ LL/ZJ} Q—L—J and k =1,2,--- T, — 1.

Moreover, for the special case,. Al = A2 4ahd zf L > 1OT3 + T2 — TS and Ts > 1 the

upper-bound yields the compact.. ewpres*sggn ‘ 3

min < dHpda—="0— 440, 5.24
w4, + O[C”_'_ TSTC + /6 ()

where

T, 4 217 3
C = + \/——+\/(%) D \/———\/p1 (525)
p = 3T°L— 5 (T, + 2T2)? (5.26)
2

@ = —T2L*+ (T?+2THL — 2—7(T +272)%. (5.27)
Proof: See Appendix B. [|

Again, we observe that for large L, the upper-bound grows linearly with (TSL)é. The
minimum codeword weights associated with weight-2 and weight-4 input sequences are

upper-bounded by the increasing functions of T, L.

120

5.5.3 Interleaving gain comparison

The minimum weight codeword upper-bound of weight-2 and weight-4 input se-
quences are derived above and S-IBPTC outperforms classic TC in distance properties
when the interleaver delay is the same for both S-IBPTC and classic TC. We consider
the interleaver delay is (S + 1)L and the equivalent block size of classic TC is also
(S + 1)L. Let waminpiock ad Wy minpiock: be the minimum codeword weights associated
with weight-2 and weight-4 input sequences of classic TC with block size (S + 1)L, then
we have [25]

+ 26 (5.28)
(S+1)L

(S+1)L—1)3—((S+1)L—-1)54+1-T,
Comparing the above equations with eqns. (5.17) and (5.24) and noting that T, = 25+1,

W2, min,block S 2 + 200 (S T 1)L T

W4, min,block S 4+4C(+45 (529)

we conclude that, as far as Weighf;Q and W.éig"‘ht.—él input sequences are concerned, a

A=, % 1 1
‘good” S-IBPTC can bring about imprcjv‘tarpght“‘fact;ors of (2 — SLH) 2 and (2 — S%rl) 3

]
1

respectively. =l ~ |
5.6 Stream-oriented IBR

Theorems 3.1 and 3.2 give us two guidelines for designing an IBP. In the previous
paragraph, we show that the S-IBP with the swap structure has an implementation edge.
Shown in Table 5.1 is a symmetric S-IBP with S = S; = S, and interleaver delay is

(S +1)L. It can be easily seen that

Corollary 5.4 The algorithm in Table 5.1 satisfies the requirements of both Type IV

and Type V inter-block permutation.

5.7 Modified semi-random interleaver

Semi-random interleavers [44] are designed to eliminate “short cycles” that send

two close-by bits to the vicinity of each other after interleaving. These interleavers are,

121

Table 5.1: S-IBP Algorithm

Variables

L-block length

N-total number of blocks

K-block number index

D(m,k)-data on the kth block mth position

Recursion

for K=0 to N-1
for i=0 to.i=

if (. o .

swap D(m,K) and D(m,K-i-1)
set m=m+2S+1
end
end
end
end

122

however, originally designed to work in the block interleaving setting, therefore they can
not avoid two new classes of short cycles arising in S-TB-IBPTC and S-C-IBPTC. A tail-
biting convolutional code begins and ends at the same state, hence if two close-by bits
in a block are respectively intra-block permuted to the beginning and the ending parts
of that block, and if the two bits remain in the same block after the S-IBP interleaving,
a short cycle will result as the proposed S-IBP does not alter their relative positions
within a block. For the class of S-C-IBPTC, we also want to prevent similar intra-block
interleaving results because the S-IBP interleaver may send such a pair to the ending
and beginning parts of two neighboring blocks. We therefore modify the constraint of

[44] as
Amin (1, 7) + dpin(7(2), 7(5)) > S2, 0 <i,j <L (5.30)

where d,in(i,7) = min(|i — j|, L —ﬂ\[’i"j'—.. 7. This new constraint excludes the possibility
that two symbols at the beginnihg and n’tﬂe‘.enﬂing".parts of a block would remain there

after the interleaving. Zn = ; 2

5.8 Simulation Reéﬁlf_s

This section shows extrinsic information updating behavior and provides results of
error rate performance. As mentioned in Section 5.3, inter-block permutation provides
relation across adjacent blocks and the information are spread to other blocks by the
assistance of message-passing but this is only an intuitive explanation for the edge of
S-IBPTC. In order the visualize the effect of message-passing, we demonstrate the be-
havior of the evolution between the a priori information and extrinsic information at
each iteration, and covariance, mutual information and SNR are used to measure this
evolution. The covariance between the a priori and extrinsic information indicates how
much new information generated after each APP decoding and less covariance implies

more information generated. The mutual information and SNR come from the extrinsic

123

information transfer chart (EXIT chart) of [27, 28] and the extrinsic information SNR
evolution chart of [34]. They are also used to study the convergence behavior of iterative
decoding schemes and both methods have been described in Chapter 2. The quantiza-
tion will show the edge of S-IBPTC to classic TC. Then we provide some curves of error
rate performance for S-IBPTC and classic TC to evidence these behaviors.

In order to provide a fair comparison and for repeatable simulations, we use the
component codes and interleavers defined in 3GPP and DVB-RCS/RCT [1, 37, 38| in

this section.

5.8.1 Covariance and convergence behavior

At first we show the behavior of 3GPP [1] defined turbo code. The code rate is 1/3,
and the covariance behavior, mutual information and SNR evolutions are shown.

Fig. 5.7 shows the covariance behav1or for. both S-IBPTC and classic TC with the
same interleaver delay, where the S IBR ui?terleaver has S = 1 and interleaver delay 800
and the interleaving depth for the classm TC is'l; = 800 It indicates that the covariance
is small for the S-IBPTC even at SNR— 0 5dB Whlle much higher covariance is observed
for the classic TC at much hlgher SNR The S IBP collects extrinsic information from
farther and farther away as the number of iterations increases and we have expected
that it results in smaller covariance.

Fig. 5.8 compares the EXIT evolutions of our proposal and the classic TC with the
same interleaver delay. The S-IBPTC yields mutual information almost equal to one at
SNR = 0.5 and 1.0 dB, but the classic TC needs SNR = 2.0 dB to reach similar conver-
gence point. The SNR evolution chart shown in Fig. 5.9 exhibits similar behavior of the
two codes, all indicating the proposed S-IBPTC gives superior convergence behavior.
Both figures also reveal that our code has a much faster convergence speed. The much

larger step of the S-IBPTC curves means the associated APP decoder generates more

information or extrinsic information with larger signal to noise ratio for the next stage

124

1.0+

ol S1BPTC .
é g/./././:1;.;-"—'—'—'7' = 05dB [®
S o8- v e —&—1.0dB
S5 5 /' TF~t—s | Turbo Code
£5 of” O —=—05dB [*
SE o6l 0/‘* N —e— 1008
= / R % —#%— 1.5dB
c 9 1 = N o —O—2.0dB
oY) * & .
= < [] \ \O\Q

= - B =~

2 g 04 \ C0-0u
ﬁ 2 1 /g; | {%O;Q*Q‘Qﬁﬁﬂ
e
-
8
c
>3
o
0

Y / "] \
\
0.2 /2/2?' @,< i\
1 /?g/. M \ EE\EE\
00 ——C‘% j:/l/l EB\EB\m Eixaa\aaﬂﬂﬂ;mimim?m?mﬁ

Number of APP decoding rounds

Figure 5.7: Covariance between a priori information input and extrinsic information
output.

decoder. Such a trend has been exﬁéctgd When we examine the factor graph structure
- |

of the S-IBPTC in Fig. 5.4.

Bit-level and symbol-level I:BlP are @pfﬁpared for duo-binary turbo code (DTC) de-

fined in DVB-RCS/RCT [37, 38] “Fhis code appliés duo-binary RSC and a symbol-based
interleaver. This interleaver appliesm i-ﬁfra—arfd ih£er—symbol permutation and two bits in
one symbol are grouped and permuted to very close destination. However [54] indicated
that interleaver should lower down the covariance of the a priori information of two bits
if two bits are close and a good interleaver permutes two close-by bits as far as possi-
ble. Intuitively this symbol-based interleaver results in high covariance of the extrinsic
information for two bits belonging to one symbol and this may be harmful to error rate
performance. Therefore two options of S-IBP are compared: bit-level and symbol-level
S-IBPs. Fig. 5.10 shows a simulation examples of 0.5 and 1.0 dB for symbol-level and
bit-level S-IBP. 53Bytes=424bits block interleaver are chosen as our intra-block per-
mutation. The covariance of symbol-level S-IBP is always much higher than that of

bit-level S-IBP. No matter on 0.5 dB and 1.0dB, symbol-level S-IBP provides near 0.7-

125

1.0 4

28 s
S8 | ‘ @
£3 o
.§ 2 i |
g5 ‘o B8 ®

o
é 5 0.6 - o %
£2 S-IBPTC
S E 1 s —&— 0,508
s2 ., = B —@— 1.0dB
© = Ca .‘7.
%5 oo Turbo Code
= E & v o9 —=— 0.5dB
2% —eo —— 1.0dB
Eg 92 L B —#— 1.50B
52 %éﬂ;i ~ & 2008
R) :
— QO
g E 0.0 : . : . : . : : r !
p=}
=3 0.0 0.2 0.4 0.6 0.8 1.0

Mutual information of a priori information of the 1st
decoder and extrinsic information of the 2nd decoder

Figure 5.8: Exit chart performance of the S-IBPTC and the classic TC at different
Ey/Ny's.

0.8 covariance and this means ‘atl beginmqg "sonllé:_iterations, a priori information can
== % | N

not give enough information tazboth bits inone symbol. Bit-level S-IBP renders much

lower correlation at beginning itératiégs-; and-it indicates that a priori information tak-

ing new information in assisting decoding.. This result confirms our prediction. We have

a property as follow.

Property 1 For duo-binary turbo code, two bits in each symbol should be permuted to

and from two bits in different blocks by an S-IBP.

5.8.2 Error probability performance

Computer simulation results reported in this section firstly use the RSC code of the

3GPP standard, G(D) = [1, %] [1], the interleaver of the same standard or the
modified semi-random interleaver of eqn. (5.30) for the intra-block permutation while
the S-IBP follows the algorithm of Table 5.1. Each simulation run consists of 1000 blocks

for S-IBPTC. We use the Log-MAP or MAX-Log-MAP algorithms to decode classic TC

126

14

12 s B—

10

1 K
=2 —H
8 §§ S-IBPTC
1 I

—#8— 0.5dB
6 = I —&— 1.0dB

i 7$ Turbo Code
—=&—0.5dB
—e—1.0dB
@ ® —%— 1.5dB
—>—2.0dB

SNR of a priori information of 2nd decoder
SNR of extrinsic information of 1st decoder
&
|

o

T T T T T T
0 2 4 6 8 10 12 14

SNR of a priori information of 1st decoder
= SNR of extrinsic information of 2nd decoder

Figure 5.9: SNR evolution chart behavior of the S-IBPTC and the classic TC at different
Eb/N()’S.

and stream-oriented TP- IBPTC (S TP IBPTC) and the sliding-window Log-MAP or
the sliding-window MAX- Log—MAP algoll“litilrﬂls to decodlng stream-oriented TB-IBPTC
(S-TB-IBPTC) and S-C- IBPTC In Ihosi;_cases We compare the performance of classic
TC and S-IBPTC under the assumptlon that elther both codes have the same interleaver
delay.

Figs. 5.11 and 5.12 show the BER performance of rate 1/3 turbo coded systems
with 10 iterations and Log-MAP algorithm. The interleaver parameter values for the S-
IBPTCs are L =402, S =1 or L =265, S = 2. Compared with the performance of the
classic TC with L = 400, the S-IBPTCs yield 0.7-0.9 dB performance gain at BER=10"
and 1.0-1.2 dB gain at BER=10"5. When both codes have the same interleaver delay,
the S-IBPTCs provides 0.4-0.6 dB performance gain at BER between 10~* and 107°.

Figs 5.13 and 5.14 show the BER performance of rate 1/2 turbo coded systems. The
MAX-Log-MAP algorithm is used in this example. We compare the performance of the
classic TC with L = 1320 and the S-IBPTCs with L = 660, S =1 and L = 440, S = 2.

Using L = 660, S = 1 and the 3GPP interleaver as the intra-block permutation, the

127

1.0 4

087 /v ——
 A—

064 Pl

02- / /'

Bit-level S-IBP
—=&— SNR=0.5dB
—&— SNR=1.0dB
Symbol-level S-IBP
—#A— SNR=0.5dB

Covariance of a priori information
of two bits in one symbol

| |
| —v— SNR=1.0dB
T T T T T - 1 1
1 2 3 4 5 6

Number of iterations

Figure 5.10: A comparison of covariance of bit-level and symbol-level IBP.

S-IBPTCs have 0.4-0.45 dB and 0.3,dB/gditr at BER=10"° and 107°, respectively. For
other cases, the S-IBPTCs give: 04*0415; dlBgalnat BER=10"" and 0.4-0.6 dB gain
(except for the case S—TP—IBRTC with iL= 440,{3’ = 2) at BER=10"°% Tt is clear
that the S-IBPTCs outperform-'-fc.:he Cias§m_TC§, Witrlll nearly the same interleaver delay.
Furthermore, the proposed modiﬁ.éal s-random i‘hﬁg}leaver outperforms the 3GPP defined
interleaver, especially when the interleaver span is small S = 1.

These figures reveal that the proposed S-IBPTCs yield superior performance, sharper
slope of the BER curve at the waterfall region and lower error floor when compared with
the corresponding performance curves of the classic TCs for a variety of different code
rates and decoding algorithms. The improvement is more impressive for smaller block
interleaver with the same interleaver delay, i.e. a larger S-IBP interleaver span S leads
to better performance.

Fig. 5.15 shows the BER performance of rate 1/3 S-IBPTCs that use the 3GPP
interleaver as the intra-block interleaver. Either the Log-MAP algorithm or the Log-

MAP algorithm is used and 15 decoding iterations is assumed. All these S-IBP parameter

128

R=1/3 PCCC
S-IBPTC

8-state (13/15) 1=400,5=1
10 iterations S-C-IBPTC
0.01 Log-MAP —4A—3GPP

—£—5,220
S-TB-IBPTC
——3GPP
—0—5,220
S-TP-IBPTC
—8—3GPP
—0—S =20

Turbo Céde
L=400
—*—3GPP
—%*—S§,=20

L=800
~—»—3GPP

——s,=27

3GPP interleaver

1E-3

1E-4

Bit Error Rate

1E-5

1E-6

E/N, in dB

Figure 5.11: BER performance of the S-IBPTCs with interleaver delay ~ 800, block size
L = 402 and interleaver span S = 1 and the classic TCs with block sizes L = 400, 800.

values, (L, S) = (660, 1), (440, 2) (330 3) g-i\./e f‘"he same interleaver delay of 1320 bits.
The performance is consistent Wlth our predlctlon the larger the interleaver span is,
the better the system performance beC@%The iaerformance deteriorates when the
period of encoder, T,, and the perlod of the S- IBP mterleaver T, are the same. For this
case the lower-bound of eqn. (3.16) becomes 2(1 + o +) which is much smaller than
the corresponding upper-bound given in Theorem 3.2. By contrast, the two bounds are
much closer if T, # T, and both bounds give identical value if T, and T are relative
prime.

Finally, we want to show that the S-IBPTC requires an interleaver latency much
smaller than that of classic TCs with similar BER performance. Fig. 5.16 shows the
BER performance of rate 1/3 turbo coded systems that employ 10 decoding iterations
and the Log-MAP algorithm. All the interleavers are taken from the 3GPP interleaver.
The average interleaver and deinterleaver latency of the S-IBPTCs is about 800. It is
observed that the performance of the S-IBPTCs is bounded by those of turbo codes

with block size L = 2800 and L = 3600. In other words, an S-IBPTCs achieves BER

129

R=1/3 PCCC SBPTC
8-state (13/15) L=265,5=2

i 1 S-C-IBPTC
10 iterations “Gop
Log-MAP —v—5,=17
S-TB-IBPTC
—&—3GPP
—<4—s,=17

1E-3
S-TP-IBPTC
—=8—3GPP
—e—5 =17

1E-4 Turbo Code

Bit Error Rate

1E-5

1E-6

E/N, in dB

Figure 5.12: BER performance of the S-IBPTCs with interleaver delay ~ 800, block size
L = 265 and interleaver span S = 2 and the the classic TCs with block sizes L = 400, 800
are also given.

performance similar to that of a'lcl‘assic ’f@ i'which -fé_quires an interleaving latency 3.5 to

4.5 times longer. 5. P & ’.;

All these figures show that the S TB IBPTC has the best performance, followed by
the S-C-IBPTC and then the S-TP-IBPTGI
This part evaluates the performance of stream-oriented IBP duo-binary turbo code

(S-IBPDTC) and compare with the duo-binary turbo code (DTC) defined in DVB-

O Y. AR
RCS/RCT [37, 38] The RSC COde, G(D) = 01 (1+D+D3)(1+D+D2) (1+D)(1+D+D2)
1+D2+4+D3 1+ D2+ D3

defined in the DVB-RCS/RCT [37, 38| is used as the component code. The stream-
oriented IBP duo-binary turbo code (S-IBPDTC) applies the 53Bytes DVB-RCS/RCT
interleaver as its intra-block permutation and the bit-level and symbol-level S-IBPs ap-
plies the algorithm shown in Table 5.1. The DTCs with 53Bytes and 106Bytes inter-
leavers are simulated as reference curves. Each simulation run consists of 1000 blocks
for the S-IBPDTC. Sliding window Log-MAP and sliding window MAX Log-MAP al-

gorithms are also used in this simulation. Fig. 5.17 shows the simulation results. The

130

S-IBPTC
S-TP-IBPTC
—®— 1=440,S=2
— 00— L=660,S=1
S-TB-IBPTC

0.01 5 AN —— 1=440,5=2
3 —<O— L=660,5=1

® 1g3] N S-C-IBPTC
8 N —A— | =440,5=2
x] N —A—1.=660,5=1
o 1 N\ Turbo Code
o 1E-4 4 \\ —%— L=1320
G X

1E-54 | R=1/2PCCC

3 | 8-state (15/13) N
1 | 10iterations \A
1E-6 MAX Log-MAP N
i | 3GPP interleaver \A e *
] *
1% 0 S S
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

E,/N, in dB

Figure 5.13: BER performance of S-IBPTCs and the classic TC with interleaver delay
1320 and the 3GPP interleaver.

bit-level and symbol-level S- IBPDTCS outperform the DTC with 53Bytes by 0.8—1.0dB
and 0.6 — 0.8dB at block error rate (BLER)—lO < H we consider the same interleaving
delay, the bit-level and symbol- le'vel S- IBﬂQs outperform the DTC with 53Bytes by
0.5 —0.9dB and 0.2 — 0.6dB at BLERle 4 “Under the same block size or identical
interleaving delay, the S-IBPDTC outf)erforlms the DTCs.

The comparison between the bit-level and symbol-level IBPs is also of our interest.
The symbol-level IBP outperforms the bit-level IBP at low SNR but loses at high SNR.
This implies that the bit-level IBP provides better distance property than the symbol-
level IBP. However the bit-level IBP necessities the marginalization for conversion from
a symbol to two bits on the decoder and this induces information loss. If the target
BLER is on 1072, the symbol-level IBPDTC is a better choice. If the target BLER is

on 10~ or lower, the bit-level IBPDTC is our favorite.

131

0.1 4
0.01
] sBPTC
£ 1E3{ STPBPTC
14] —=—L=440,s=25=21
5 1 ——L=660,5=1,5,=23
;g 1E44 s-TB-IBPTC
= 1 —#—L=240,s=25=21
@ 1 L=660,5=1,5 =23
1E5H s.c.BpPTC
] —4A—1=440,8=2,5 =21
1 2 L= =1,S.=2
166 660,5=1,S,=23
34 Turbo Code
] —*1=1320,5,=30
1E-7 P e—— T
0.6 0.8 1.0 12 14 16 18 2.0
E/N,indB

Figure 5.14: BER performance of S=IBPTCs and the classic TC with interleaver delay
1320 and the modified semi-random interleayer.

0.1 . ¥ :
Kk, R=1/3 PCCC
8-state (15/13)
15 iterations
Log-MAP

3GPP interleaver

L=660,S=1

—®— S-TP-IBPTC
—*— S-TB-IBPTC
—&— S-C-IBPTC
L=440,S=2

—#— S-TP-IBPTC
—#— S-TB-IBPTC
—&— S-C-IBPTC
L=330,S=3

—{— S-TP-IBPTC
—%— S-TB-IBPTC
—0O—S-C-IBPTC

1E-3

1E-4

Bit Error Rate

1E-5

1E-6

E/N, in dB

Figure 5.15: Influence of the interleaver span on the BER performance for various S-
IBPTCs with interleaver delay 1320.

132

0.1

S-IBPTC
S-TP-IBPTC
—#— L=265,S=2
—=®— L=400,S=1
S-TB-IBPTC
—<p— L=265,S=2
—4&— L=400,S=1
S-C-IBPTC
—&— L=265,S=2
—A—1.=400,S=1
Qo Turbo Code
—O— L=800
—=— L=1200
—%— L=2000
1E-5 R=1/3 PCCC —e— L=2800

8-state (15/13) —&— L=3600

10 iterations o]

Log-MAP
1E-6 3GPP interleaver

0.01

1E-3

1E-4

Bit Error Rate

T
0.6 0.8 1.0 1.2 1.4 16
Eb/N0 in dB

Figure 5.16: BER comparison of S-IBPTCs and the 3GPP defined turbo code of various
block sizes. TN

DVB-RCS Defined
DTC & Interleaver || PTC
15 iterations L=53 Bytes

A\ Code Rate=1/3 A—SWLM

A —A— SWMLM
L=106 Bytes
\ —¥—SWLM
R —7— SW MLM
\ \ S-IBPDTC
. L=53 Bytes
\ Bit Level
\ \ —®— SWLM
\ v\A A —O— SW MLM
o \V\ Symbol Level
\
o

. \ —e—SWLM
o} V. A
—O—SW MLM

Block Error Rate

[]
T T T T T T 1
10 12 14 16 18 20 22
E,/N,indB

Figure 5.17: A comparison of S-IBPDTC applying bit-level and symbol-level IBP with
DTC using both Log-MAP and MAX Log-MAP APP decoders.

133

Chapter 6

Dynamic IBPTC decoder and
stopping criteria

This chapter presents a novel dynamic decoder architecture for IBPTC. A general
multiple-round stopping test and a memory manager are proposed as an integrated part
of the decoder. A scheduler is needed to coordmate the shared hardware resources,
namely, the APP decoding umts and memory storage The scheduler can arrange the
processing procedure of these APP decoﬁers- in aceordance with the pipeline decoder
and the dynamic decoder can reach the _sante perfbrmance the decoder implementa-
tion trade-off between decoder complex1ty and decodmg throughput is easily achievable.
The dynamic decoder can implement stopping test inside to early stop decoding; the
computation complexity or power consumption is further reduced. If the dynamic de-
coder decodes an S-IBPTC, the storage of received samples and extrinsic information
can be further released in advance by the result of stopping test and the necessary
storage of the dynamic decoder can be less comparing to that of the pipeline decoder.
The highly reliable multiple-round stopping test provides extra information assisting
in decoding neighboring unstopped blocks; this decreases both the number of average
decoding rounds and error rates. Therefore the joint stopping mechanism dynamic de-
coder not only requires less hardware complexity but also achieves better error rate and
average decoding rounds performance comparing to the pipeline decoder. The following

sections will describe the dynamic decoder and the associated modification in reducing

134

complexity and power consumption for S-IBPTC. The multiple-round stopping test will

be described in the later section.

6.1 IBP turbo coding system with stopping mecha-
nism

This section presents a reliable stopping mechanism for an IBPTC codec system.
The extrinsic information used in a conventional turbo decoder is usually generated in
the course of decoding a component code and there are many well-developed soft output
decoding algorithms. An error detection code that is often used in a packet switching
network can also generate extrinsic information with no extra cost/complexity when the
corresponding undetectable error probability is negligibly small. However, the detector
output is generally used for making a stopping decision only. In order to utilize this
stopping message, we can partitip‘n:“éh‘riﬁfo.‘r.“n“‘i'altinon sequence into multiple blocks and

]

these blocks are separately CRCJCOded.fT-ﬁlf- 0:_1"16‘ bIQck is stopped and some blocks are

unstopped, the “pass” message éan be npaSsed to tHe unstopped blocks as the a priori

information. IBPTC suits this ﬁ&tyré'"and‘.é;h h?l;%[e better performance by paying little
incremental complexity and slightly exXtrh C‘RC overhead. The detail will be expounded

in the following subsections.

6.1.1 System model

Shown in Fig. 6.1 is a generic block diagram for a joint stopping test iterative
encoding and decoding system using an IBPTC. The input data sequence D is parti-
tioned into blocks of the same length, {d;,ds, -}, where d; is a row vector of length
L — Kcre representing the ith block. They are CRC-encoded into u = {uy,uy, - -},
where w; = {w;o, i1, - - - ,ui(L_l)} is a row vector with length L. u is formed by padding
at the end of each data block parity bits that are the coefficients of the remainder poly-

nomial r(x) obtained by dividing a data polynomial associated with a data block by a

135

D CRC Code| U BpTC | C
' Encoder | Encoder > Channel
:- ——————————————— |
4 _ . | AG-D
AD,a Y- AW Stopping |A() 4—0“\#
|- Condition |{e— APP Decode Y
I A= Checker <ol I |
|

Figure 6.1: The block diagram of the proposed VI'T-APP decoder applied IBP turbo
coding system.

binary generator polynomial g(jx‘)"‘of ofd'_eir :'.K'C"R‘C.'-- Of course, the degree of r(x) is less

than Kcgre. The correspondiri_gl-_ probabﬂif

of "und;etectable error is roughly equal to

2—Kcre In other words, longer CRC 'é"(.)dleé;(ﬁ)ssgés‘ better error detection capability.

The CRC encoder output u an-ﬂdlﬂ its per'fr'uitled version u’ = {u’y,uy, -} are then
encoded to form the coded sequence ¢ = {c%, ¢!, c?}, where ¢’ = {c!,c}, -} and the
superscript 7 is used to denote the systematic part (i = 0), the first encoder’s output
(parity) sequence (i = 1) and the second encoder’s output sequence (i = 2).

The decoder uses one or multiple APP decoding units (ADUs) like that shown in
lower part of Fig. 6.1 to decode the corresponding received sequence Y = {y?, y1, y? y9,y3,
¥3,- -}, where y’ is the subsequence corresponding to c’; other notations are defined
in the Subsection 6.1.2. An ADU consists of an APP decoder and a stopping condition
checker. It also performs the corresponding interleaving or de-interleaving and other
related operations but for simplicity we do not show these operations in this figure.

The stopping condition checker applies CRC check and/or other forms of stopping

136

tests (STs) to verify if the APP decoder output satisfies the stopping criterion. An affir-
mative answer leads to the decision to stop (terminate) decoding the block in question
and this is the only possible early-stopping opportunity for classic TCs. Besides such
a regular early-stopping, however, there are two other early-stopping opportunities for
IBPTCs since no matter whether the decoder output passes the ST, the corresponding
soft output is interleaved or de-interleaved to the neighboring blocks. The ADU will then
examine each related block to see if a block’s content has been filled with stop-decoding
decisions. If such a block is found the ADU will issue a termination decision accordingly.
The ADU can also run STs on these blocks and make a termination decision. We refer to
the latter two early-stopping possibilities as extended (or pre-decoding) early-stoppings.

Note that a decoding iteration consists of two decoding rounds (DRs) that are respec-
tively responsible for decoding the pre—permuted (non-interleaved) cl. and post-permuted
(interleaved) blocks c and CRC Check 1S feasﬂole for pre-permuted blocks only. Hence
in the first DR one can perform both re@l}llar and extended early-stopping tests, but in

the second DR, only extended early—stopplng is Vlable unless the ST does not involve a

CRC check. Examples are glven 1n Sectlon 6. 2; 4 to further elaborate this property of
IBPTCs. | |

6.1.2 Iterative decoder with variable termination time

A conventional iterative decoder is composed of one or more APP decoders that will
not stop decoding until a fixed number of decoding iterations have been performed. With
an early-stopping mechanism in place, as shown in Fig. 6.1, the decoding procedure can
stop (terminate) at the end of an iteration (two decoding rounds) or at the end of a DR.
We refer to such a decoder as a variable termination time APP (VTT-APP) decoder
or simply a VI'T decoder. When an ST is included in the turbo decoding process, the
test results in either a stop- or a continue-decoding decision. Given the decision, which

is very useful side information, our computation of the extrinsic information and soft

137

Y, YaYas Y5 ¥s
0E 0EH 1 EH 1
dlcl 4| /Ca d5C Cs
u Usg

1. I

u4 u5

c c’

2 2 2 2 2
Y1 Y2 Y3 Y4 Ys

[l : Convolutional Code
HH: Channel Effect

E Per mutation and Equality
0 CRCCode |]

Figure 6.2: A graph representatlon for a CRC and*S-IBPTC encoded system with in-
terleaving span S = 1. X

output should be modified accordingly.

Note that all STs, whether they are used in classic TCs or IBPTCs, incur additional
computational complexity which is usually more than compensated for by the reduced
average DRs brought about by the use of a ST.

Let A(u) = log? UE“ =9 he the log-likelihood ratio of the random variable u where
pu(-) denotes the probability density function of w. If uj; represents the kth bit of the
jth block and A® (), A (u;)) denote the corresponding estimated log-likelihood ratio
and the extrinsic information obtained at the end of the jth block’s ith DR, we have

[50]
AP (wji) = A (uzpe) = AT (ugie) = Le - o, (6.1)

e

138

We assume that Ag_l)(ujk) =0, Vj,k L.=4aF/Ny represents the channel reliability,
where a is the signal amplitude which is usually normalized to 1 for additive white
Gaussian noise (AWGN) channel, E being the signal energy per symbol while Ny is the
noise power spectral density.

For the ith DR of the jth data block, the VI'T-APP decoder in charge uses received
sequence yJ,y; or y; and the a priori information {Agi_l)(ujk)}ijg_l as its input and
outputs {A((f) (ur) Yi=5~* for use in the next DR as the a priori information until i =
Doy, where Dy .y is the maximum allowed APP DRs; see Fig. 6.1.

A tentative decision 4}, on the kth bit of the jth block at the end of the ith APP

DR can be obtained by

e =11, AD(uy) < 0, (6.2)

Let Q(ﬁ;) be the stopping indiﬂca’tﬁblr for tﬁé"t‘eptative decision vector of the jth block

at the ith DR, @) = (i, @4, -2 0k, 31)-0'500 € Do, Where

u;) = 1 : (6.3)

Q@) = €1, cif_r-fl-i-" Sitishiefthe ST
-0, = otherwise

Given the ST result, the conditional Soft Valué.Ag)(ujk) and the extrinsic information
Agg(uﬂc) are given by

Plusi=0]@(a))

:1] .
i lo - , u) =1
AD () = 1B Plwemifam)m) @) (6.4)
A (), Q(uj) =0
and
AL (i) = AY (ugi) = A (uzp), (6.5)
The extrinsic information AS%,TT(ujk) of an APP decoder then becomes
Ay () = Al () + AP (i) = A (wsn) = ALypr(usn) = Ly (6.6)

The resulting VIT-APP decoder is shown in Fig. 6.1.

139

To ease the burden of computing the conditional log-likelihood function that appears

in eqn. (6.4), we make the ideal assumption that the stopping test is perfect, i.e.,
Py, is correct|Q(u)) = 1) =1, V k.
With this perfect stopping decision assumption, eqn. (6.4) becomes

Ag) (ng) _ { A(i)(ujk:) + 00, Q(Eé) = (6.7)

1
A (uz), Q) =0"
and eqn. (6.6) is modified accordingly.

The perfect stopping assumption actually makes the computation of extrinsic infor-
mation or soft output easier as when the tentative decision vector ﬁ; meets the stopping
condition, then AS%,TT(ujk) has only two values +oo. When the perfect stopping as-
sumption is approximately true (say, the false stopping probability is less than 1079),
a practical approximation is to asgi-g’ii a ﬁxed 1ﬂl’argme number to AS}/TT(UJ-;C). However, it
should be noted that, after inte_rie'éiving (b_ﬂ; d.e"«:ihteﬁé_fwing, the large metric value will be

passed to neighboring blocks and th(?n_,‘pb '“"che‘ corresponding partial path metric com-

puters, eliminating other brancﬁe§ Wthh are "'n'ot fjaésociated with these bits. Hence the
passing of the extrinsic information 6f'-these=pérféct detected bits to neighboring blocks
further reduce the complexity of the associated APP decoder. Moreover, as the APP
decoder selects survivor branches based on the relative magnitudes of the partial path
metrics only, the actual value assigned to AS%/TT(ujk) is immaterial. In fact, it can be as
simple as a binary sign telling the APP decoder which branches should be eliminated.
All these nice features depend, besides the IBP design, on the availability of a highly
reliable ST such that the perfect stopping assumption holds with a probability close to
1, which is the subject of the stopping mechanism design. Note that although there is
no perfect ST and the probability that a ST gives a wrong block stopping decision is
nonzero, the influence of these wrong indications result in no catastrophic failure as our

numerical results will demonstrate in Section 6.4.

140

6.1.3 Graphical representation of an IBPTC and CRC codes

Fig. 6.2 is a graphical representation for the system of Fig. 6.1 with an S-IBPTC
and CRC codes and is extended from Fig. 5.4 with additional CRC code functions.
This graph plots the S-IBPTC exploiting a symmetric S-IBP interleaver of the span
S =1 and an input data sequence u partitioned into five blocks. Each block is encoded
by CRC code. The dark, gray, crossed and blank squares represent respectively the
functions of convolution codec, CRC code, S-IBP interleaving and the channel effect.
The CRC function is connected to the permutation and equality node. This graph further
indicates the relation between IBPTC and CRC codes and shows the message-passing
for the VI'T-APP decoder.

Section 5.3 has elaborated the message-passing regarding to an S-IBPTC. An S-
IBPTC decoder can exploit information collected from 4S7 + 1 adjacent blocks in [
iterations as the number of block ‘ilé‘“‘lnargq end;éh,.e.g. the message of the block us in
Fig. 6.2 can be passed to w alnd us 11!1 1‘on:i.';é:-”'i’c“er'ém‘t.ilon. The extra CRC nodes in Fig.
6.2 provide extra information a'fﬁt'er e‘a’chﬁ{A‘P%P_ DR. If; the decoded block passes the CRC
check condition, the CRC node —?gfer}‘q“fgt.es ‘.exn;:.ra_e.)k:‘trinsic information for the block and
the information will be passed to the other blocks as the a priori information to decode.
Therefore the graph brings out the message-passing associated with the further CRC

functions.

6.2 Dynamic decoder and the associated issues

This section describes a low complexity and flexible decoder architecture for IBPTC
comparing to the pipeline decoder. The required number of APP decoders is flexible
and the implementation cost can be eliminated to the least. The decoder further applies
an ST to terminate decoding of blocks and reduce memory usage. The decoder can also
apply the VIT-APP decoder to provide better performance. Therefore this dynamic

decoder provides the most flexibility in implementing an IBPTC decoder with least

141

A

Scheduler

A 4

A

A 4 A 4

DAPS Intelﬁ;aver <> Memory

ecoders (Extrinsic
7y Information)
Y

Memory

: IBP
— (Received De-interleaver_
Samples) <

Figure 6.3: The block diagram of IBPTC dynamic decoder.

hardware complexity.

6.2.1 Dynamic decode'r‘ |

Implementing a dynamic decoder shown in Flg 6.3 has more flexibility between

decoder complexity and decodlng throughput comparlng to implementing the pipeline
decoder. The hardware complexity of the pipeline decoder is linear to the maximum
number of decoding round D,,., because the decoder is composed of D, APP de-
coders. The throughput of the pipeline decoder is the same as the throughput of each
APP decoder. If the designated decoding throughput is less than the decoding through-
put of the pipeline decoder, the pipeline decoder becomes an over-design. In fact, we
can decouple the decoding of an IBPTC into multiple sub-decodings associated with
these blocks and schedule these sub-decodings. Therefore the dynamic decoder ap-
plies a scheduler to coordinate these APP decoders to decode an IBPTC. Since we can
schedule these sub-decodings, the fixed number of APP decoders is not necessary and
the complexity of dynamic decoder can vary with the decoding throughput. Even the

desired throughput exceeds the throughput of the pipeline decoder, we also can imple-

142

ment more APP decoders to reach the desired throughput if the IBP interleaver is the
contention-free interleaver which describes in Chapter 4. The dynamic decoder provides

more implementation options than the pipeline decoder.

6.2.2 Decoding delay

Decoding delay is perhaps the most important issue in high speed decoder design.
The decoding delay associated with an S-IBPTC for a parallel decoder is minimized by
using a proper decoding schedule. Even if only one APP decoder is used, as we will
see shortly, the decoding schedule still plays a pivotal role in minimizing the decoding
delay of an S-IBPTC. The delay associated with B-IBPTC is similar to classic TC but
B-IBPTC provides more decoding options due to its IBP nature. The decoding delay
can also be reduced by a proper schedule as S-IBPTC and will be discussed later.

We first analyze the decoding delays when only one APP decoder is used. The
single-round interleaving (or de'—'i;ltlerleaivir}g):.,d.ellgxy is proportional to the interleaving
delay. But the total decoding aélay i.s a:n’ﬁl.éh mor:é:a complicated issue. For a decoder
that uses a single ADU, the decéd-ing‘éa"‘l’zimnds‘ n]rlainly on three variables: the single-
round interleaving delay (SRID), the Si_ngle-rlouﬁ&ﬂAPP decoding delay, and the number
of decoding iterations. As the single-round APP decoding delay (speed) is usually much
less than the SRID, we ignore the APP decoding delay in the subsequent discussion.

For the first decoding of each incoming block, there can be zero waiting time, but
for later DRs the corresponding delays depend on, among other things, the decoding
schedule used. With the same block size, the decoding delay of the first received block
for the classic TC is definitely shorter than that for the S-IBPTC. But if one considers
a period that consists of multiple blocks (otherwise one will not have enough blocks to
perform inter-block permutation) and takes the decoding schedule into account, then
the average decoding delay difference can be completely eliminated. This is because

the APP decoder (including the interleaver and deinterleaver) will not stay idle until

143

Classic TC/S-IBPTC

Block
e N 112 |3 |4 |5 |6 |7
Decoding
Round
1 115294171711215219
14
2 23| &5 1LY 810 816225012953
3 361 oM 321725123542 %5
4 |34 B1y1o19195,29552957%854

Figure 6.4: A comparison of exemplary decoding schedules for classic TC and S-IBPTC
when decoding 7 blocks with 2 iterations (four decoding rounds). The numbers in the
two rectangular grid-like tables represent the order the APP decoder performs decoding.

all blocks within the span of a given block are received. Instead, the APP decoder will

perform decoding-interleaving or deintérleavihg operations for other blocks according to

a predetermined decoding schedale befc‘)nkéjit” cat dols_o for the given block (and the given

DR). -~ By :

If we define the total decoding d‘ela"};z’eis"tlﬂ'e ;uiﬂqe span between the instant a decoder
receives the first input sample (froﬁi the mput | buffer) and the moment it outputs its
last decision then it is possible that both the S-IBP and the classic approaches yield the
same total decoding delay even if only one APP decoder is used. We use the following
example and Fig. 6.4 to support our claim; its generalization is straightforward.

Suppose we receive a total of 7 blocks of samples (in a packet, say) and want to
finish decoding in 2 iterations (4 DRs) and a schedule for both classic TC and S-IBPTC
are shown in Fig. 6.4. The first block of the classic TC is decoded by the first 4
decoding rounds (the leftmost column) but that of the S-IBPTC is decoded by the first,
third, sixth and tenth decoding rounds. One can easily see that a classic TC decoder
would output the first decoded block in 4 DT cycles, where DT is the number of cycles
needed to perform a single-block APP decoding plus SRID. The S-IBPTC decoder, on

144

the other hand, needs 10 DT cycles to output its first decoded block. However, if one
further examines the decoding delays associated with the remaining blocks, then one
finds they are 8, 12, 16, 20, 24, and 28 DT cycles for the classic TC decoder while those
for the S-IBPTC decoder are 14, 18, 22, 25, 27 and 28 DT cycles, respectively. So in
the end, both approaches reach the final decision at the same time.

It can be shown that, for a decoder with D ., DRs and S = 1, both decoders result

of %‘“”_1) DT cycles between two adjacent output blocks,

in a constant delay
except for the first block and the last Dy, — 1 blocks. For an S = 1 S-IBPTC, the
decoder requires a first-block decoding delay of M DT cycles while that for
the classic TC is only Dy DT cycles. The inter-block decoding delays, i.e., decoding
latency between two consecutive output blocks, for the last D, — 1 output blocks
of the S-IBPTC decoder using a decoding schedule similar to that shown in Fig. 6.4
(e.g., the one shown in Fig. 6.5)"'f(l)£rnr1‘anr.“11“6n(.)ﬂtonic decreasing arithmetic sequence

{Dmax(DQmax*U -1, Dma"(DQ“‘aX*U _ M = ,Dj}:‘.. (m DT cycles). The inter-block decoding

delay of a classic TC decoder rénl,l_ains[q p()ﬂﬁlstant' Dygax DT cycles. On the average, both

codes give the same inter-block -'de@d.i'f;g" C‘l'éi;zi'yT

Although we have assumed a ét-feam—ori"eﬁ’c-e;d scenario so far, our arguments are
valid for the conventional block-oriented consideration as well. It is thus of paramount
importance that we recapture the IBP concept from the block-oriented viewpoint before
returning to the main discourse.

Consider the example illustrated in Fig. 6.4. For a classic TC with an interleaving
(block) size of 7L bits, the first-block decoding delay for a 2-iteration single-ADU decoder
is 28 DT cycles. But if one divides this 7L-bit block into 7 subblocks and uses a special
block-oriented interleaver which performs successive intra-subblock and inter-subblock
permutations on these subblocks, the corresponding (2-iteration single-ADU) decoding
delays in DT cycles for these subblocks are 14, 18, 22, 25, 27 and 28, respectively.

Therefore, although both code structures result in identical total decoding delay the

145

IBPTC structure is able to supply partial decoded outputs much earlier. This feature,
when combined with proper intra-(sub)block and inter-(sub)block interleaving rules,
multiple ADUs, optimized decoding schedule and implementation resource management,
become very beneficial for high speed applications. More importantly, it can been shown
by computer simulations that a turbo code with such an interleaver does not yield
performance inferior to that of a classic TC with a block-oriented interleaver (e.g., 3GPP

interleavers) of the same size.

6.2.3 Memory contention and decoding schedule for multiple
ADUs

The above assessment on the encoding/decoding delay is made under the assumptions
that both codes use the same block size L, no early stopping mechanism is applied,
and a single ADU is used. The delay.- will -be shortened if the latter two assumptions
are removed. In particular, the decodurg delay ¢an be reduced significantly by using
multiple ADUs for parallel decoding. V\/hen l1terat1ve APP decoding is performed by
multiple ADUs, these ADUs have tol aceess—rﬁemory iVlet interleaver (or deinterleaver) for
extrinsic information update and eXChange To have the maximum delay reduction, the
interleaver should also have a parallel structure to avoid memory access collision. It can
be shown that the structure of IBP interleavers allows flexible degrees of parallelism and
highly parallel memory access. In fact, Theorem 3.1 implies that a good IBP interleaver
should possess the local-invariant property that preserves the relative position within a
block during the IBP process. This property promises contention-free across the span
(parallel-decodable blocks) of the IBP interleaver. Furthermore, like the contention-free
interleaver design presented in [92], closed-form contention-free IBP rules are available,
and more importantly they guarantee some good distance properties for the associated
IBPTC.

Just the same as the single ADU case, the decoding schedule for multiple ADUs

is a critical design concern. An example of decoding an S-IBPTC with multiple APP

146

Figure 6.5: A multiple zigzag decoding schedule for an S-IBPTC with the span S = 1.

decoders is given in Fig. 6.5. Although both S-IBPTCs and classic TCs can use multiple
decoders for parallel decoding and apply ah‘early stopping mechanism to shorten the
decoding latency, we will provdnumeriq;allly m. Section 6.4 that the former class does
derive much more benefit in block error rate (BLER) performance.

We have demonstrated the 1mportance of the decoding schedule in minimizing the
decoding delay. Parallel decoding is a'popular de51gn option to shorten the latency. Fig.
6.5 shows a multiple expanding-window zigzag schedule table for decoding an S-IBPTC
with the span S = 1 and four ADUs, denoted respectively by a, b, ¢ and d. Data
blocks processed in the odd rows are in the original (pre-permutation) order while those
processed in the even rows are in the interleaved (post-permutation) order. Each dashed
or dotted zigzag curve represents the schedule for an ADU. The symbol x,,, denotes
the nth DR of the mth phase in the ADU x’s schedule, where a DR represents the
APP decoding of a pre- or post-permuted block and the associated interleaving or de-
interleaving and the mth phase refers to the mth parallel line associated with an ADU’s
decoding schedule. Obviously, the mth decoding phase of x is followed by the (m + 1)th

decoding phase to its right.

147

Taking the decoding schedule of ADU ¢ as an example, its first DR of the first
phase c¢y; corresponds to the first DR of Block 3 while the first phase’ second DR
c1o corresponds to the second DR of Block 2. c¢qo can be performed, as the schedule
table shows, after Blocks 1,2,3 have been decoded once and the corresponding extrinsic
information output has been inter-block interleaved so that the post-permuted Block 2
has all a priori information needed for a new DR. c finishes its first phase after c;3 is
done. It then proceeds with the first DR of the next phase co1, i.e., the first DR of
Block 7. An ADU can not start a new DR until the DR on its top is completed, e.g.,
agg, k > 2 cannot start unless the DR corresponding to djs is finished.

An ADU can make regular stopping decisions in odd rows” DRs and extended stop-
ping decisions (ESDs), unless a non-CRC-based ST is used. CRC-based ST makes
regular stopping decision in odd row. ESD is generally made to stop decoding a block in
even row by checking if all related“bl'ojé.l.{é pass CRC condition or the shortage of memory
which will be described in the f(“)"lrll(')wing? dﬁibseotlon For example, in a3 (cy5) we check if

Block 3 passes the ST and early ',_stoppi"ngﬂ‘éln this block becomes effective if affirmative.

ADU a (c) then go on to exanfine Wh’éthéf-'ﬁu (€36) is necessary by checking whether
both ¢13 and di3 (ags and bgs) pass.ﬂ the A YRR Well When this condition is satisfied, de-
coding of Block 2 is terminated. On the other hand, in byy no ST is performed but after
de-interleaving its output we run a ST on the content of ba; before next APP decoding
round, which contains de-interleaved outputs from d;4 and ass. We stop decoding Block
2 and bys is no longer needed (because of our schedule and the S-IBP structure, co5 and
dss can not yet be verified although extrinsic information from by, will be passed on to

them) if the ST result is positive.

6.2.4 Memory management

From the above discussion, it is clear that decoding many blocks at the same time

requires no small storage area for ASIC or DSP implementation. One should therefore

148

try to make the most of the memory space available. The decoder needs space to store (I)
received samples undergoing decoding, (II) extrinsic information, (III) decoded bits to
be forwarded to a higher layer for further processing, and (IV) received samples awaiting
decoding. The management of the last category, assuming no buffer overflow, requires
only an indicator signal to forward a new block of received samples to the part of the
storage area designated for category (I) that was just released due to a stopping decision.

Category (III) is needed because of the stopping time variation across blocks. Its
management is straightforward and, besides, it requires much less storage space. As
mentioned in Subsection 6.1.2, assigning the extrinsic values for ST-approved bits a
constant large value is equivalent to using a (special) binary-valued bit to indicate which
partial paths should survive in the APP decoding process. Hence the decoded bits serve
the dual purposes of representing the decoder decisions and bookkeeping the survivor
paths. The management of cate.goﬂleﬂs. (I) and ..(JII), however, needs more efforts and
careful considerations. 3.r!?i 3

As long as the probabilityi (ﬂf termirié't'ion—d"efyihg blocks exists, practical latency

consideration will force us to set” an upper 11m1t Dmax on the number of DRs. It can be
shown that an unterminated block prevents the decoder from discarding y? associated
with those terminated blocks within its span. When the number of blocks that terminate
at or around the Dy, th DR is large so will be the memory required. Hardware constraint
thus imposes another threshold M.y, the maximum affordable (allowable) memory units
(MU) where an MU refers to the space for storing categories (I) and (II) associated with
a block of data in the decoder. As our sole purpose is to demonstrate the critical role
a memory manager plays in the VI'T-APP decoder, we assume, for simplicity, that
the same number of bits is used to represent the extrinsic information of a bit and the
corresponding received sample. An MU is thus assumed to contain KL bits, where a
K-bit word is used to store either the extrinsic information or received baseband sample

associated with a transmitted bit.

149

IBP interleaving or
de-interleaving and
reguer or ESDs

initialize
a phase

Y

€s

No
proceed

Yes

memory releas
procedure 1

to the next load
APP decoding decoding received
round ? samples

forced ESD and
memory release
procedure 2

forced ESD ang
memory releasé
procedure 2

T |

)

Figure 6.6: A joint memo_r;}‘manaj‘g?me"gt‘ and IBPTC decoding procedure.
el N

Because of the stopping tirﬁ_é V&gigﬁﬁ_ﬁq_atur.e of our decoder, a memory manager
has to take into account both th;e"sho-lds, Dmax and M 1ax 80 as to optimize the perfor-
mance. When a block has failed to pass the .ST for Dy times, it will automatically be
discarded and the MUs storing the corresponding categories (I) and (II) information are
released accordingly. Chances are more than one block that reach the threshold D,y
simultaneously and it is even more likely that the decoder runs out of MUs before a
block reaches the threshold D,,... For both cases, one should then give up decoding one
or some of the unterminated blocks. It is both reasonable and intuitively-appearing to
terminate the most ancient block, i.e., the one which has failed the ST most often. We
refer to these memory shortage induced stopping as forced early stopping.

Fig. 6.6 shows a finite-memory IBPTC decoding procedure for one phase of an

ADU. The procedure involves APP decoding, interleaving, deinterleaving, regular and

extended stopping decisions, and memory check and release. The last two operations are

150

collectively called the memory management scheme which is responsible for verifying if
there is enough memory during the decoding process and make a proper memory-release
decision if there is not enough storage space. As there is no computation involved at all,
the complexity is moderate at most.

Denote by Mg, My and Mg, the numbers of free (unused) MUs, ADUs, and the
required MUs for storing one received block. It follows that Mg = z for a rate R =1/x
turbo code. The decoder is initialized with Mp = M,... An ADU begins a phase
by checking if Mp > Mp (Box 2) where the additional MU is for storing extrinsic
information. If Mp does not meet the condition, the memory manager determines
which block is to be discarded, makes a forced ESDs, and releases the related storage
space (Box 4). Otherwise, the decoder moves the received samples of the new block from
where they were saved (in the buffer area) to the corresponding category (I) MUs (Box

Deciding which block is to bé".g'iven uﬂ)_ ;’lssnnple ;’;md clear since our decoding schedule

allows only a single most an(:lent block i its left- most active column at any time. When

a forced ESD is made the ADU makes hard de0131ons on the block to be discarded and
releases the related categories (I) and (1T) MUs. As the discarded block is always the
most ancient block and our decoding schedule is such that all blocks to its left must
have been terminated for one reason or another, we are left with the problem of dealing
with the related unstopped blocks,the S adjacent blocks to its right for S-IBPTC, if they
have not been terminated. At least two alternatives exist for solving this problem. The
first solution, which leads to better performance at the cost of higher complexity, is to
interleave or de-interleave the extrinsic values for use in decoding the related unstopped
blocks, the S blocks to its right for S-IBPTC, without further updates. The second one
is to make hard-decisions (stop any further decoding) on all related unstopped blocks,
S blocks within its (right) span for S-IBPTC, releasing their category (I) MUs while

keeping their category (II) MUs for use in decoding other related blocks.

151

At beginning of each DR, we ask the decoder whether the scheduled DR is needed
(Box 5). Unless the decoder has been notified to by-pass the ensuing DR, we still have
to ask if the space for storing the extrinsic information of the coming DR is available.
When such a space is not available (Mg = 0) the decoder has to find room for the next
DR by discarding the most ancient unterminated block and following the memory release
procedure described above (Box 7). The operations in Box 9 include those described in
the last paragraph of Subsection 6.1.2. When a regular or extended stopping decision
is made, the memory manager releases the corresponding category (II) and parts of
category (I) memory (Box 10), memory release procedure 1) and notifies the decoder

that further decodings on these blocks are no longer necessary.

6.3 Multiple-round stopping tests

Early stopping mechanism offéfé the ex‘gfél“ benefit of lower the computing power

. . i HALS S & . .
needed for achieving a given performanceland further accelerates an iterative decoder’s

decoding speed. The issue of :l((liecodelﬁ’@pingf criteria has been widely discussed
(50, 88, 65, 4]. These criteria can becla531ﬁed _”i%lto four categories: (i) cross entropy
(CE) stopping criteria, (ii) sign Ch(;CR"(SC) ”'s"to“pping criteria, (iii) soft value (SV) stop-
ping criteria and (iv) cyclic redundancy check (CRC) stopping criteria. The last one
guarantees the correctness of decoded bits with a high probability while the others only
promise the convergence of the decoded bit sequence. The SC and the CRC stopping
criteria use the bit operations only while the remaining two categories operate over the
floating-point domain. Moreover, CE and SV stopping criteria have to optimize thresh-
old for different channel conditions whence is less robust. On the other hand, CRC
codes have been widely used in the data link or higher layer as part of the error-control
mechanism and is an indispensable component of a packet-oriented data communication

system. Using CRC codes as a part of the stopping criterion thus causes little or no

extra complexity.

152

[65] summarized various ST's for turbo decoders using sign check, soft values and CRC
checks. The sign check stopping test (SCST) compares the tentative decoded bits from
two successive rounds. A tentative decoded block passes the test if most or all of them
are consistent. The soft value stopping test (SVST) compares the soft value(s) with a
threshold; the soft values can be the reliability of tentative decoded soft bits, the average
soft value of a block, the extrinsic value of the least reliable bit etc. The CRC stopping
test (CRCST) uses the CRC result to decide if further decoding of a block is needed.
SCST and CRCST operate over bit level but SVST operates over the real-domain. The
performance of SVST is subject to the choice of the threshold which, in turn, is a function
of the channel condition and code structure. Moreover, the convergence rate of soft bit
values also depends on the above two factors [65, 4]. In short, the classes of CRCST,
SCST or their variations have the complexity and robustness advantages over the class

of SVST.

6.3.1 A general algorithm "!"iﬂ .‘.‘:

All early stopping tests are éeéluentpinéll‘mum‘.]They either compare or manipulate
some values corresponding to twc‘)."eb'r‘l_secut‘i.ye“' DRS, or just check a single DR output
to make a stop-or-continue decoding decision. In contrast, our proposed tests make
a stop-decoding decision based on multiple observations and are thus referred to as
multiple-round stopping tests (MRSTSs)

It is well-known that a statistical decision based on a single observation is inferior to
that based on multiple observations which, however, require a longer observation time
(or equivalently, larger sample size). The MRST has the distinct capability of balancing
performance (reliability of the test) and cost (time or sample size needed to make a
termination decision). A dismissal on a decoder output is issued as soon as it fails a

single test but a decision to stop decoding a block has to wait until the same block is

verified by several rounds of test. Therefore, incorrect tentative decoder outputs are

153

quickly discarded while any final decision on a block is prudently made. While the
first round of an MRST provides an initial tentative decision, the additional verification
test rounds greatly reduce the probability of false stopping and give more robust and
reliable decision; this avoids spreading incorrect information to neighboring blocks for
IBPTC VTT-APP decoder. An m-round stopping test using a short CRC-8 code gives
a false detection probability similar to that of using a long CRC-8m code but with only
1/m overhead bits. Moreover, since a correct stopping on a certain block helps bringing
earlier stoppings to its adjacent blocks for the IBPTC decoder, the average decoding
delay is shortened as well.

A flow chart of the general MRST is shown in Fig. 6.7. In this figure, 7 is used to
denote the ith DR, p represents the number of times a block has passed a ST and can
be regarded as a quality indicator, m is the required quality condition and D,,., is the
maximum number of DRs allowe.cnl‘."'"E.i.tnhér p :m or 1 = Dyax will force the decoding

| = |

process to be terminated. As discussed !fl‘;l :Subsec-t:ipn 6.1.2, an ST is performed at the

end of an iteration (even DRs): d_r the beglnmng of-an odd DR. For the latter case, an

ST means checking if all pre—pefmutéd""l;lbékg"Witf}in its span have satisfied the stopping
condition. A special case of MRST IS the muifii)le—round SCST of [65]. It was found
that the block error rate performance improves as the number of test rounds increases.

As mentioned before, we shall not consider the class of SVSTs. Multiple-round

CRCST, SCST and a hybrid CRC-SC ST are briefly defined in the following.

6.3.2 T1.m: the m-round CRCST

This scheme is based on an m-round CRC test. A block is said to pass the m-round

CRCST if all m consecutive tentative decision vectors ﬁ}_mﬂ, ﬁ;_"”z, e ,ﬁ; succeed

in passing the same CRC test, i.e., ICRC(ﬁg) =1, l=i—m+1,i—m-+2,---,iand

1 < Dpax, where

1, u passes CRC condition

0, otherwise (6.8)

Tene(d) - {

154

Input

Initial

i=0;p=0

: P Stopping
g Ejoenceo i(tjtlar:gtiroonu)nd (:; :: ;) Condition
Check
Fail
No Pass
. o i RRANGLEs .
I=Dpgx? €— p=m? p=p+1
=H J l_'n F ‘ ‘ ‘
Ye_sl i Yesl i
“. “stopping

‘oo Decisiopn

Figure 6.7: Flow chart of a general m-round stopping test.

As the error detection capability of a CRC code is an increasing function of the code

length, one can trade the order m for the code length.

6.3.3 T2.m: the m-round SCST

This ST [65] compares tentative decoded bits in m (m > 2) consecutive DRs or
iterations. The decoder stops when the nth tentative decision vector, ¢ < D,,.., are the

same with the previous m — 1 tentative decision vectors, i.e.,

ﬂ;;erl _ aé;er? - = a;.k, Vk, 0<k<L. (6.9)

155

Note that MR-SCST checks the convergence of tentative decisions, it does not guarantee

the convergence to the correct decisions.

6.3.4 T3.m: the m-round hybrid stopping test (MR-HST)

Unlike classic TCs, errors in ST's for IBPTC will propagate to different blocks and
might lead to a catastrophic consequence. A highly reliable ST can be obtained by
increasing m or it can be obtained by incorporating multiple criteria in a single round.
A block that passes both CRC and SC tests is more reliable than one that passes only
a single test.

Hence, we suggest the hybrid stopping criterion
Iore (W)—1 Viii—m<I<i, it <D, (6.10)

and
W = Al 2 §A v k, 0 < k< Ly i < Dina. (6.11)

If the CRC-8 is used, the undetect eITor probablhty is approximately 27% only. The
probability that the sign check does not match the CRC result is of the order 2716 or
2 x 1075 due to the CRC test is equivalently passed twice. Using a longer CRC code
increases the reliability of a CRC stopping test but it also induces an increased overhead.
Additional sign consistency check is the price we paid for using this stopping mechanism

to cut down the CRC overhead but the cost is little.

6.3.5 Genie stopping test

Genie ST is a hypothetic ideal test that is capable of verifying the tentative decision
vector without error. The performance of this ideal test is used as the ultimate bound
for reference purpose.

At the first glance, we might expect the hybrid test or higher-order (larger m) tests

to take more DRs since a received block is less likely to pass both SC and CRC or a

156

higher-order requirement. But the fact is that a correct block decision, through the
IBP interleaving, will help other blocks to meet the stopping condition sooner while an
incorrect one tends to has an adverse effect. Our numerical experiment indicates that
the hybrid test not only gives better performance but also requires less average DRs.

This is another advantage of IBPTCs that is not shared by classic TCs.

6.4 Simulation results

The simulation results reported in this section is based on the following assumptions

and parameters. The component code of the rate=1/3 TC, G(D) = [1, 111%2:533},
and the CRC-8(=“110011011") code used are the same as those specified in the 3GPP
standard [1] except that the component code is tail-biting [106] encoded. The APP
decoder uses the Log-MAP algorithm and the S-IBP of Table 5.1 while the interleaving
length and S-IBP span are left as .,Véjﬁalnbrlqs; MR: 3 MUs and N = 1000 per simulation

run are assumed. Except for t_‘jh.e' Clenie- B':_Tz‘.f,"oilr ‘simulations do not assume a perfect

stopping test for a block. :nl | ﬁﬁ 7 '1:

The effects of various ST's onthe S—IBPTCVTT—APP decoder performance for the
system with S =1, L = 400, Dyax : 30 ‘and "téii—biting encoding are shown in Figs. 6.8
and 6.9. Multiple-round CRCST, SCST and HST are considered. For comparison, we
include performance curves of the decoder using the genie ST, that with fixed 20 and 30
DRs (10 and 15 iterations) and, for reference purpose, that of the classic TC with block
length L = 800 using the genie ST with Dy, = 30.

Block error rate performance improves as the number of test rounds m increases no
matter which ST is used. Fig. 6.8 shows that T1.3 outperforms T1.2 for E;,/Ny greater
than 0.3 dB. Tests using sign-check alone, T2.3 and T2.5, are inferior to other stopping
tests since, as mentioned before, the class of sign-check tests check if decoded bits con-

verge but does not guarantee the correctness of the tentative decoded vectors. Incorrect

stopping decisions will spread false information to the neighboring blocks through in-

157

Turbo Code
L=800 D__ =30 || | STB/IBPTC

X Variable DRs
—4— Genie b =30
— max
—&—T12
——T13
——T23

\ —O0—T25

° —A—T32

0.01 X x A T33
$: —*— Genie

° Fixed DRs
—*—D__ =20
—+%—D, =30

0.1

1E-3

Block Error Rate

1E-4 =y .
T

0.0 0.2 0.4 0.6 0.8 1.0 1.2
E,/N, (dB)

Figure 6.8: Block error rate performance of various stopping tests; no memory constraint;
Dinax = 30 DRs.

terleaving and result in degraded 'ﬁler'nform“ance". .T'l..?), T3.2, T3.3 and the one with fixed

30 DRs yield the best performa;ll"(;e and"'cﬂeiy are azhlilqost as good as the genie ST. Using
T3.2 for early stopping, the S—IBPT@ hMN 06Il dB gain against the classic TC for
BLER=10"3 ~ 10~* although t..}'i:e“__'a:.v..éﬁrag.e Aégpdfﬁg delay per DR for both codes are
about the same. B

Fig. 6.9 shows the average DR performance of various STs. Except for the two
sign-check tests, all STs require less than 20 or 10 APP DRs (10 or 5 iterations) when
Ey/Ny is greater than 0.2 or 0.6 dB. Considering both block error rate and average
latency performance, we conclude that, among the STs we have examined, T3.2 is the
best choice.

The numerical results presented so far assume no memory constraint. Figs. 6.10 and
6.11 reveal the impact of finite memory size for the system that employs a T3.2-aided
VTT-APP decoder and the memory management algorithm of the previous section with

block length L = 400, the span S = 1 and M,; = 1. Fig. 6.10 shows block error rate

performance for different memory constraints. For convenience of comparison, we also

158

Variable DRs

0 D_ =30
§ —&—T1.2
o —4—T1.3
o —e—T23
2 —0—T25
K] —A—T32
2 —A—T3.3
[a) —X*— Genie
& Fixed DRs
< —-D_ =20
bS] —— Dmax=30
g N —
1S "
g 10 \X \Q O\O\
]] = D— E—
2 T T,
2 T
< 5 T T T T T T T T T 1

0.0 0.2 0.4 0.6 0.8 1.0

E/N, (dB)

Figure 6.9: Average APP DR performance of various stopping tests; Dy.x = 30 DR,
no memory constraint.

present three cases without memofsf'éonstraint oﬁ"e with Dy = 200, the other two with
H: |

fixed DRs. It is reasonable to ﬁnd that larger ﬁémoﬂy sizes give better performance. At
higher E,/Ny(> 0.8 dB), all performanc&e&p&es Convlerge to the same one since all VTI'T-
APP decoders finish decoding after only a few DRs (see Fig. 6.11) and memory size is
no longer a problem. The fact that the cases Dmax = 100 with 100 MUs, and D, = 30
with 100 MUs give almost identical performance indicates that increasing D,,., beyond
a certain number (30 in this case) can not improve block error rate performance and the
memory size becomes the dominant factor. Performance for the decoder with D, = 200
and no memory constraint (it can be shown that 804 MUs is sufficient for this case, which
is at least eight time larger than that required by other decoders) is clearly better than
the other decoders when E,/Ny < 0.6 dB but this edge is gradually diminished after 0.6
dB.

The average DR performance is given in Fig. 6.11. For E,/Ny > 0.5 dB, all VTT-
APP decoders need less than or equal to 10 DRs (5 iterations). But when E,/N, <

0.3 dB, the performance curves are distinctly different-if we do not impose a memory

159

Infinite Memory

Vairable DRs

——D =200

Fixed DRs

—*—D_ =2084MUs
—s+—D_ =30124 MUs

Block Error Rate

4
Finite Memory
D =30

e
—0— 50 MUs *
—-A— 60 MUs &
—v— 80 MUs ,\u *
o 100 MUs N \ﬁ ©
100 MUs \
=~

Dmax :50 \
4 |—e—D =100 =
1E-4 max

1E-3

Figure 6.10: The effect of memory constraint and management on the block error rate
performance. Curves labelled with infinite memory are obtained by assuming no memory
constraint; “fixed DRs” implies that no early stopping test is involved.

constraint, the average DR Will_l.irllcreaslgiéi:g.r_j;iﬁéaﬂf{y as Ey/Ny decreases. Most of the
computation effort will be Wasfp;i, SOEi%‘E@IﬁOI}AE. In other words, at the low Ej /Ny
region, ST can not offer early stopplng ld..elc-.i:;ior_ll:.-'H‘nImposing a memory constraint and
invoking a proper memory manage.n;e-n{; algiiciri-;;hm provide a solution that forces early
stoppings, saving computing power and memory at the cost of a small performance loss.
Finally, we find that, comparing with our proposed schemes, the two decoders with fixed
DRs (20 and 30) usually need much more memory and DRs.

The effectiveness of various STs on the performance of a classic TC with L = 800
are shown in Fig. 6.12 and Fig. 6.13 where D,., = 30 DRs and tail-biting encoding
are assumed. The performance of T1.1 with CRC-24 is worse than those of T1.2 and
T3.2 with CRC-8. Using CRC-8, T2.3 provides error rate performance similar to that
of T3.2 but at the cost of one more DR. Both tests yield performance very close to
that of the genie ST. In summary, these two figures show that (i) the proposed MRSTSs

can also be used in classic TC-coded systems and (ii) using a proper MRST has the

160

40 *

Infinite Memory Finite Memory
Vairable DRs D, ..=30

351 ——D_ =200 —O—50 MUs
Fixed DRs —A—60 MUs
—e—D_ =2084MUs —>— 80 MUs

"
30 —*—D_ =30124MUs [T 100MUs

*

%)
o
c
>
<]
a4
=)
=
g
8 %1 =D =100
E
o ——
o \§ .
< 20 Wo ° ° ° °
S -
© —A
i \A\
S O——0 \
z O
2 10 e
o ——
8 .\‘\‘
o T —_
> &
< 5 T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
E,/N, (dB)

Figure 6.11: Average APP DR performance for various decoding schemes and conditions.
Curves labelled with infinite memory are obtained by assuming no memory constraint;
“fixed DRs” means no early-stopping condition is imposed.

benefits of reduced CRC overhead and- bﬁRS decod.mg latency) without compromising
the performance. The latter conclusw:n lmphes that a multiple-round stopping test with
a short CRC code is better than a Slngle round stOpplng test with a much longer CRC

code. Of course, the same advantages are shared by IBPTC-coded systems as well.

161

—&— Genie
T1.1

—s— CRC-8
—#— CRC-12
—&— CRC-16
—4&— CRC-24
T1.m CRC-8
—A—T1.2
—A—T1.3
T2.m
——T23
—O—T25
T3.m CRC-8
—*—T3.2
—%—T3.3

0.1

0.01

1E-3

Block Error Rate

1E-4

Figure 6.12: Block error rate performance of a classic TC using various STs; L = 800
bits and D, = 30 DRs.

T1.m CRC-8
—w—T1.2
—Vv—T13
T2.m
——T23
——T25
T3.m CRC-8
—%—T3.2
—%—T3.3

Average Number of APP Decoding Rounds

E,/N, (dB)

Figure 6.13: The effect of various ST's on the average APP DR performance of a classic
TC with L = 800 and D,,.x = 30 DRs.

162

Chapter 7

Multi-stage factor graph

Multi-stage factor graph (MSFG) extended from factor graph [60, 42] elaborates
message-passing for iterative decoding. Factor graph expounds a code structure and one
can operate belief propagation (BP) algorithm on the graph. However, the graph only
shows possible paths on the graph but does not indicate the schedule of real message-
passing. The MSFG, a directed graph,descrlbes the message-passing which reflects a

decoding schedule. With the ass_'is’éance of %chis_"graph"‘the impact of the decoding schedule

on computing complexity and* s“’poragev n_réd{lirerﬁentﬁ can be analyzed. Moreover, our
representations avoid ambiguouzs”."dnes‘éflii)t‘i(‘)'rll-"ibfj q)';.clic or loopy message-passing events.
Multi-stage factor sub-graph (MSFSG) and -causal multi-stage sub-graph (CMSSG)
shorten representation of the lengthy MSFG without demonstration loss of message-
passing and can be directed converted into hardware circuitry or used to design decoding
schedule. The MSFG is a regular graph and looks like a duplication of a sub-graph when
the decoding schedule is regular. MSFSG, a sub-graph extracted from MSFG, describes
the operation procedure associated with decoding round or iteration and it is useful to
represent block-oriented code such as B-IBPTC, classic TC, LDPC [46], etc. Causal
multi-stage sub-graph (CMSSG), a sub-graph extracted from the MSFG, describes the
operation procedure associated with each input bit or block of the stream-oriented code
such as S-IBPTC, convolutional LDPC code [76, 94], etc. Therefore MSFSG and CMSSG

reveal the decoding schedule which can be directly applied by the dynamic decoder shown

163

in Fig. 6.3 to coordinate multiple APP decoders. MSFSG and CMSSG also reflect the
schedule of corresponding function nodes or hardware circuitry.

At last, we apply the CMSSG to acquire a new decoding schedule for the dynamic
decoder. The new decoding schedule requires less storage space without compromising
performance for S-IBPTC and the new schedule also offers performance improvement

comparing to the pipeline decoder. The cost is more computing power especially at low

SNR.

7.1 Multi-stage factor graph

The multi-stage factor graph (MSFG) describes message-passing for iterative de-
coding process. The edge between function nodes on factor graph are undirected but
message-passing are different to the opposite connected function nodes. We modify the
undirect edge into two opposite dlreeted edges to. reﬂect different message during itera-
tive process. Then we duplicate, thls dlreched graph .redlrect edges on the directed graph
to connect these duplicated graph and lalﬂ(ldes by stage index. Then the new graph
reflects real message-passing prooedure durmg 1terat1ve process. In short, directed edges
show the message-passing and stages mark the processing order on the MSFG.

The construction method is composed of following skills: grouping and labelling,
duplication and stage stamping, edge replacement, edge redirecting, edge wiping and
edge adding. Grouping and labelling provide a hierarchical graph representation to
simplify the representation of MSFG. Duplication and stamping impose time concept
on the graph. Edge replacement distinguishes messages by directions. Edge redirecting,
wiping and adding connect multiple layers and reschedule message-passing. The first
purpose of edge redirecting connects multiple grouped graphs. The second purpose of
edge redirecting is to redirect the edge to prior stage or later stage to increase or detain
message-passing. Edge wiping removes edges and the corresponding message-passing

and node operations are deactivated. At last edge adding amends edges when a node

164

requires a message when edge redirecting removes some edges at the initial stages. These

steps are described as follows.

e This step groups function nodes and edges into a grouped node and label these

grouped nodes.

e This step duplicates the grouped graph into multiple layers and stamps stage on

these labelled grouped nodes.
e This step replaces the undirected edges into two directed edges.

e This step redirects the directed edge to connect these grouped graphes, adds extra
directed edges to enable the node processing and wipes some directed edges to

detain the processing of function nodes.

We apply LDPC code [46] and Sa—IBPTC" "c‘ode as examples to draw the MSFGs cor-
responding to various schedules. For LD|HC code ‘Wwe compare conventional belief prop-
agation (BP) algorithm [60] and horlzontal—shufﬂed BP algorithm [63]. Furthermore we
will provide another graph to demonstrat%ew BP algorithm which reduces the cycle
effect but requires more storage. We also plot two MSFGs for the S-IBPTC associated
with Fig. 6.2. One graph is in accordance with the S-IBPTC pipeline decoding and the
other is an aggressive schedule to increase message-passing speed. Both LDPC code and

S-IBPTC are described in the following two subsections.

7.1.1 LDPC code

Fig. 7.1 (a) shows a (7,3) LDPC code factor graph with communication link and
the associated parity check matrix is eqn. (7.1). The LDPC-encoded code bit ¢; is
corrupted by noise before becoming the received sample y;. On this graph, the round
node corresponds to the equality function and the cross square node corresponds to
the parity check function. Conventional BP algorithm floods information based on this

graph. The round node generates the extrinsic information based on the equality relation

165

for the cross square nodes, and the cross square node generates the extrinsic information
based on the parity check relation for the round nodes. After several iterations, the
estimated reliability converges and we apply the reliability on the round to acquire to
the decoded codeword. However the decoded codeword may not be optimal because
the cycle enhances the effect of some received samples. The following MSFGs will
demonstrates the effect amongst various decoding schedules.

We construct the MSFG shown in Fig. 7.2 to demonstrate the message-passing of
conventional BP algorithm. We group edges {y;, ¢;} and function nodes into a node O;
and check node into a node O, to render one grouped factor graph. Then we duplicate
the graph into four graphs and remove check node part and the associated edges at the
last graph. We label these nodes according to the stage from 1 to 7, where {O;} are
labelled into {O}, 0%, 02, OT} and {O,} are labelled into {O?, O}, O%}. Then we replace
each edge by opposite directed eglgéé and fé.aiieqt the directed edges on even stage to
nodes on the following odd stagé.' Thehr!ﬂijve. i%éve fi_g. 7.2 showing the message-passing

for conventional BP algorithm.: = 2

H = (7.1)

o~ OO
— O O &

1
0
1
1

(U R T
e)

1
0
0

oo o =i

We plot another MSFG shown in Fig. 7.3 for the message-passing corresponding to
horizontal-shuffled BP (HSBP) algorithm [63]. This algorithm groups check nodes and
schedules the operation of these grouped check nodes. In Fig. 7.3, the nodes {0, 0%}
and the nodes {O%, O} are grouped separately, where the group {0}, 05} and the group
are wiped out.

The fact that the HSBP algorithm outperforms conventional BP algorithm can be
explained by both Figs. 7.2 and 7.3. In Fig. 7.2, start from the O}, there are two

message-passing routes: O} — 07 — 03 — O] — 02 and O} — 03 — 03 — O} — O?.

166

1
|
0

O Qz__ 93__ 94
(b) (©)

Figure 7.1: (a) Factor graph representatlon ‘of an LDPC code; (b) the grouped factor
graph; (¢) node grouping. -

Both routes merge at the fifth stage IH.FJ.g._ZT3 the route O} — 0% — 02 — O] — O
is shifted to O3 — O} — O2 — O6 — OF. Therefore the message associated with the
node Os come back to the node O later and the influence of the node Oy decreases more
comparing to conventional BP algorithm. By the way the node O} acquires information
from the node O2 which has been updated and therefore the node O} can apply more
information to generate the extrinsic information. This improves the convergent speed
for LDPC code decoding.

Fig. 7.4 provides another schedule for LDPC code decoding to decrease the cycle
effect but requires more buffer. The edge O} — O™ is redirected to O} — O5. The
edge O) — O! is redirected to OF — O} The edges O) — O™ Oi — OL™ and
O — 0! are redirect to Of — O™ OL — O and O} — O%" respectively. We
add five edges Of — 03, O} — 07, O} — O3, O} — O3 and O} — OF on this graph

for the processing of the nodes {O%, 03, 0%, O%}. Start from the node O}, there are two

167

Figure 7.2: Multi—stage‘,‘ factpr,gfé;bil for C(;nventional BP algorithm.
message-passing routes: Of — OF - O 0% — O and O} — O3 — O} — 0% — O1.
These two routes merge at the seventh stage and this decreases the influence of the node
Os. However the cost is extra buffer. Take the nodes O3 and Of as an example, the
node accesses information from the node O} and the information from the node OF has
to be stored. Comparing to both conventional BP and the HSBP algorithms, the cycle
effect decreases but the necessary storage increases.

Figs. 7.2-7.4 provide examples for the last MSFG construction step which influences
the performance significantly. Edge wiping decreases the operation of function nodes
to save computation power. Edge redirecting further detains or advances the message-
passing. Edge adding amends edges on the redirected graph to enable the processing of

the nodes whose edges redirected to another nodes. Next subsection depicts examples

168

Figure 7.3: Multi—stége f‘&{(;‘prf)rﬁgrg:ph .forihorizontal-shufﬂed BP.

for S-IBPTC.

7.1.2 S-IBPTC

Fig. 7.5 represents a hierarchical factor graph of a coded communication link based on
S-IBPTC and CRC codes. There are five data blocks and S-IBP interleaver span S is 1.
d; denotes the ith input data block. u; and u) denote the corresponding CRC encoded
sequence and its permuted version. The convolutional-encoded codeword sequences
c?, ¢!, ¢? are corrupted by noise before becoming the received sequences y?, yi, y?.
The decoder (node) performs APP decoding to generate the reliability for the data CRC
encoded block and its permuted version and the CRC detector (node) checks the decoded

block to make a stop-or-go decision for the ensuing APP decoding and outputs related

169

Figure 7.4: Multi-stage factor gr-ai:ph fc\)rvthe";u;vv SChe"Ja:iuled BP which reduces cycle effect.
information. The IBP interleaver "(“hn(‘)de) sends ;Ehe extrinsic information to due nodes.
This graph indicates relations amongst nodes but still does not detail message-passing
as previous LDPC code factor graph. We thus construct MSFG to describe the behavior
of the decoding process.

The grouping and labelling step is used to simplify the following drawings and dis-
cussions. We use nodes O; and O, to denote the upper branch that includes the set of

nodes {d;, u;, ¢, ¢!, y?, y;} and the lower branch-nodes {u}, c¢?, y?} respectively;

see Fig. 7.6 (a). Fig. 7.6 (b) shows the grouped factor graph of the system shown in
Fig. 7.5.
We extend undirected factor graph to a directed MSFG shown in Fig. 7.7. Nodes O;

and O, shown in Fig. 7.6 (b) are stamped by O7 and O respectively, where j denotes

170

y: Y3 ya yi ye
[l : Convolutional Code
HH: Channel Effect

[]: Per mutati on and Equality
[: CRE Cadel]

Figure 7.5: Factor graph representation‘of a CRC- and S-IBPTC-coded communication
link. ey TELRLE

the jth APP decoding round (ADR) corresponding to the ith block. This graph has six
stages and the corresponding number of iterations is 3. The performance of Fig. 7.7 is
equivalent to the pipeline decoder. We refer this schedule to pipeline schedule.

One can redirect directed edges to create a new MSFG. We redirect Q7 — Ogjf and
Ol — 0*] to O} — 0.} and O] — 0I*] and we a new MSFG shown in Fig. 7.8.

The redirecting enables early decoding of some selected blocks. Consider the two
routes O} — O — 03 — 03 — O3 — OY and O} — 03 — O3 — OV in Figs. 7.7 and
7.8 respectively. For the first route the node OY is not activated until the 5th block is
received while the same node can be activated when the 4th block is received. When the

total encoded data length is much larger than 5 blocks, the decoding latency for node 0%

171

Figure 7.6: (a) Nodg ‘grﬂoupiné;“ (b) grouped factor graph.
S .

of Fig. 7.7 becomes longer. Howi;ver the hiéssage—pqissing range of a node in Fig. 7.8 is

less than that in Fig. 7.7. The ﬁode & can be eéply activated and the necessary buffer
is reduced. However this induces error [mate performance loss due to less information
acquired for processing as stopping mechanism and storage constraint are not applied

and imposed.

7.2 Multi-stage factor sub-graph

Multi-stage factor sub-graph (MSFSG) is useful to describe message-passing related
to one iteration or close several iterations, and this graph help us acquiring the corre-
sponding hardware circuitry, decoding schedule or work balancing with the best trade-oft
between complexity and throughput. MSFSG is a sub-graph of MSFG without loss of
message-passing description. The MSFG clearly shows message-passing but requires

multiple stages. The number of stages increases with the number of iterations and this

172

Figure 7.7: A multi-stage factor graph for the S-IBPTC pipeline decoding schedule.

enlarges the graph. Fortunately, ‘th"e"MSFG”"is.regular and can be decomposed into
multiple small and almost identical sub;gyaphs. “We extract this sub-graph from the

MSFG and name this sub-graph MSFSG: “The function nodes equivalent to hardware

circuit and this subgraph repré’s_ent‘s‘ the oﬁérétit?ns corresponding to a time interval.
One can group partial function nodéé with simil'a;r computation complexity or hardware
complexity and reschedule this groups to achieve the same performance. This indicates
a hardware design flow for iterative decoding. The same as the previous section, we still
apply the LDPC code and S-IBPTC code as examples. These exemplary graphs may be

not the most compact graph but this help us to acquire drawing concepts.

7.2.1 LDPC code

Fig. 7.9 shows the MSFSGs which are sub-graphs of Figs. 7.9, 7.3 and 7.4. Conven-
tional BP algorithm provides the most regular graph and three-stages sub-graph shown

in Fig. 7.9 (a) are enough to represent Fig. 7.9.

173

AN

I
00,

.n—\ooo .NOOO ‘ooooo .#OOO

Figure 7.8: A multi-stage factor graph for the new S-IBPTC decoding schedule.

The HSBP algorithm decouples_thel¢héék,node processing into two groups and the
necessary number of stages to reﬁ.rne.sént 'this graph is five and the associated MSFSG is
shown in Fig. 7.9 (b). Because: only pal‘tléuil parlty funct10n nodes are processed at some
stages, the nodes {O5™, O, (9’+3 :O"F%}—ﬁbe w1ped out and the associated nodes
{0%, 0}, 01 05} can also be ehmlnated from th1s graph.

The new BP algorithm shown in Fig. 7.4 reduces the cycle effect but the graph is very
irregular. Some edges go across two stages and five stages are necessary to demonstrate
the graph of regular part. Fig. 7.9 (c) shows the associated MSFSG. However at initial
stages the nodes {03, 0}, O}} pass messages to the second and fourth stages. This

irregularity requires an extra initial sub-graph drawn in Fig. 7.13 (d) to complete the

message-passing representation.

7.2.2 S-IBPTC

Fig. 7.11 plots the S-IBPTC MSFSG associated with Figs. 7.7 and 7.8. The pipeline
schedule only passes information to the next stage and three stages are enough to repre-

sent the associated MSFG; Fig. 7.11 (a) plots the associated MSFSG. The new S-IBPTC

174

| | | OI OI OI OI OIZQ OLQ BQ
Q d Q a, Q 3.0) N
P |
- =< . /,-\\ // | |
S . o
CID:(Z C?:(Z C?:(z C?:_ﬁz f?ﬂ ﬁwz \\.\ /./)\/\/x-//:///-\f:l/ -
O O O ((?d) Oi? Q\? O Qfﬁf@a \\;3\
YeliNelfodoloheiione
C%Z ‘ Q " 0 O' Oll+4 O|2+4 Oé+4 OAI;+4 O:—)M Oé+4 O;M
O|+ O|+ O|+].O|+1. (C)

— \\

cgﬁ O.+2% ZQO.@%.;QO.@OM CI0.0:@ 0 00/@9: 00 00

o; o Mo o"ﬁ‘ ofFToft

/\/\

\

\\\

@ lm. A gt o'“(%ﬁ) r+@0.+4 o Q’o@‘ OU 03 @I oﬁo@ o'@

(b)

iF) ‘
Figure 7.9: (a) The multi-stage: factor sub—graph aSS@(nated with Fig. 7.9; (b) the multi-
stage factor sub-graph assomated Wlth'F‘fg_7'3 (c) the multi-stage factor sub-graph

associated with Fig. 7.4; (d) the 1n1t1al mult], st,age factor sub-graph associated with
Fig. 7.4.

L& e

schedule shown in Fig. 7.8 passes messages across three stages and therefore four stages

are necessary to represent the complete graph. Fig. 7.11 (b) shows the associated

MSFSG.

7.2.3 Discussion

The MSFG is generally regular. The extraction of the MSFSG depends on the
number stages an edge striding across. The irregularity often occurs at the initial stage

and an extra sub-graph is generally necessary.

175

Qo;/ O, Qoi 0, OOC; Qo ,Qo ,QO' ,Qo QO'
>t

o '“é o G0 'f/ o 5 oz;i o

6‘/ |+%‘/ |+24é>/ i+ OI+ OI+2¢/|+2$‘6|+2‘%H2¢6H2¢0H2

éfo'“”‘éfo'*“éfo'* o'*“é)o'*?’

Figure 7.10: (a) The multi-stage factor sub-graph extracted from Fig. 7.7; (b) the
multi-stage factor sub-graph extracted from Fig. 7.8.

(a)

7.3 Causal multi-stage sub-graph

A causal multi-stage sub-graph (CMSSG) 1s ﬁé‘ed to describe the message-passing for
the indefinite length or stream—ériénted éld‘déssuch éﬁ our S-IBPTC and the LDPC con-
volutional code [76, 94], and a decodmg Schednle oF the associated hardware circuit can
be acquired via this graph. For an. 1ndeﬁn1te length code, a decoder generally decodes a
code sequence by a sliding-window manner such as truncated Viterbi decoding algorithm
and the pipeline decoding of S-IBPTC to reduce decoding complexity. Therefore we can
give an order on the code sequence or information sequence by symbol or block. For one
instant of a code symbol or coded block, we can divide the MSFG into three parts: the
processed part, the processable part and unprocessable part corresponding to the code
symbol or coded block. The processed part means function nodes which are processable
if all code symbols and coded blocks prior the the code or coded block are input. The
processable means function nodes which are processable when the processed part has
operated and the code symbol or coded block is input. The unprocessable part corre-
sponds to the rest of the MSFG. We can remove the processed part and unprocessable

part from the MSFG and left the processable part. We modify the processable part as

176

1
1

Figure 7.11: (a) The sub-graph of the MSEG shown in Fig. 7.7; (b) the sub-graph
of the MSFG shown in Fig. 7.8; (¢):the causal multi-stage sub-graph associated with
the MSFG shown in Fig. 7.7; (d) the causal multi-stage sub-graph associated with the
MSFG shown in Fig. 7.8.

the CMSSG and this graph shows the decoding schedule which can be used to design
the decoding schedule, i.e. a schedule for the S-IBPTC dynamic decoder. We also can
acquire the associated circuitry from the CMSSG.

Fig. 7.11 shows two examples. Assume the 4th block is input and we extract sub-
graphs shown in Figs. 7.11 (a) and (b) from Figs. 7.7 and 7.8. In Fig. 7.7, the sub-graph
is composed of {O}, Qg, O3, O1}; real-line denotes message-passing for the instance of
the 4th block input and dashed-line denotes message-passing with the other sub-graphs.

We eliminate dashed-line and tilt sub-graph to render the corresponding CMSSG Fig.

177

1 1 1 1 1 1
E45 P44 E43 P43 E41 P4o

1 1 1 1
E75 P74 E73 I:)72
(b)
Figure 7.12: (a) Padded virtual nodes retain the regularity of the CMSSG for the begin-

ning nodes on the MSFG; (b) padded virtual nodes retain the regularity of the CMSSG
for the last nodes on the MSFG.

1 1
E71 P7O

7.11 (c) composed of {P},, Py, Pl, Pi;}. Similarly, we can have the CMSSG Fig.
7.11 (d) corresponding to Fig. 7.8.

Decoding schedule for each 1nput 1nsta11ce is also clearly pointed out by these graphs.
In Fig. 7.11 (c), decoder decodes ahgn n.odes P40 — P}, — Pl, — Pi,. In Fig. 7.11
(d), decoder decodes align nodes P41 — Efu b P412 = P3, — Ply — Pi,.

The ordinal number of the e_ntage tQ'Ih,e:?iQde.%l or le for the original MSFG can
be calculated as follows. Deﬁne.’éﬂh“e geximum"stéée of each column in the CMSSG by
Ns(l) = arg; maX(P]l,P). The ordmal number of Pj; or P]l is @ + Z Ns(m). P,
and P]l in the CMSSG can be simply mapped to OHZ'” 1 Ns0m) and Q;J:ZZT”ZI Ns(m) 4y,
the MSFG respectively.

Virtual node concept simplifies the drawing of the CMSSG regarding to the beginning
and last nodes which have no prior and successive nodes to process and we can apply one
graph to represent corresponding to all code symbols or coded blocks. A virtual node is
in a sense a deactivated node. Fig. 7.12 shows examples for decoding schedule shown in
Fig. 7.7. Figs. 7.12 (a) and (b) plot virtual nodes P},, Pj; for the near beginning node
and Pl and Pl for the near ending node. Therefore P}, is a virtual node if (j —1) > N

or (j—1) < 1, where N is total number of code symbols or coded blocks and 1 is the first

ordinal. The inclusion of virtual nodes in a CMSSG enables us to describe the complete

178

Figure 7.13: A meniory saving, Séh@dule for the S-IBPTC.
Elapt®]

decoding schedule by a single gtaph and-ir

‘tual‘ nodés retain the regularity of a CMSSG

and simplify the drawing.

7.4 A memory-saving schedule for S-IBPTC

Fig. 6.3 has shown the dynamic decoder and the decoding schedule determines
the error rate performance and memory usage. Increasing convergence rate implies
that tentative information is to be kept in the memory pool shorter and the necessary
memory storage deceases accordingly. Thus memory shortage is likely to occur at low
SNRs as early-stopping implemented in the dynamic decoder, leading to more forced
early-terminations and deteriorated performance. A candidate solution to avoid forced
early-terminations is to start a new decoding round before all the information within its
span becomes available. Inevitably, such an early-start decoding has to use some non-

updated extrinsic information. Invoking the early-start concept, we propose the decoding

179

Figure 7.14: The beginning stages on the partial MSFG associated with Fig. 7.13.

schedule shown in Fig. 7.13. There are three schedule-related parameters: iteration
number (IN), repeated decoding round (RDR) and decoding window width (DWW).
When the maximum numbers [of P;Z of both schedule are set to 5, the pipeline schedule
for each input block undergoes at rnost 6 ADRS but the proposed schedule undergoes at

(IN+DWW)4(IN+1)RDR + 1 25 ADRS Slnce the information associated with

each block is used more times, -the decodbr converges with less information (but worse
performance) and therefore requlres smaller memory space.

The kth incoming block can be 1rnrned1ately decoded and interleaved by the pre-
permutation node P}, whose post—perrnutetron counterpart will not be initiated until
all related blocks are received. Fig. 7.14 shows the corresponding partial MSFG with
4 stages and one can find the pre-permutation part successively processed by twice at
beginning. This benefits the S-IBPTC performance but pays the computation power.

At low SNRs, the convergence speed is slow and the required memory storage is
large. The proposed schedule allows more ADRs with less information for each block
even if the available memory is limited. This feature provides an alternative to avoid

memory shortage-induced performance loss at low SNRs.

180

7.5 Simulation results

Fig. 7.15 and Fig. 7.16 show the BER and average ADRs performance. The 3GPP
defined interleaver and rate 1/3 turbo code [1] are used with a block length of 400 bits.
Tail-biting encoding [107] and Log-MAP decoding with the T3.3 HST. One memory
unit (MU) has space for 400 soft-bits. 3 MUs and 1 MU are needed for the received
samples and extrinsic information per block. Denoted by Schedule A and Schedule B
respectively the two schedules shown in Fig. 7.13 with and without the node P},

In Fig. 7.15, Schedule A with IN=10, RDR=2, DWW=2 and 45 MUs outperforms
the pipeline schedule with 80 MUs, yielding a memory reduction greater than 43.75%.
However, the former needs about ten and four more ADRs for SNR = 0 dB and SNR >
0.4 dB, respectively. The memory saving is obtained at the expense of higher compu-
tation complexity. It is comforting to see thaﬂp. the proposed schedule requires no more
than ten average ADRs for SN R >O 8dBﬂ |

Increasing DWW improves the BER perlfonrl'rr.lanc.e at the cost of increased computing
complexity; see Fig. 7.16. For IN—10 RDR—% Schedule A with DWW=3 and 45 MUs
outperforms that with DWW=2 and 745 MUs: ‘T‘he same figure indicates that Schedule
A with DWW=2 and 50 MUs outpé.rforrrg that with DWW=1 and 50 MUs. The
increase of memory also helps enhancing the BER performance. With IN=10, RDR=2
and DWW=2, the performance of Schedule A improves when the memory size increases
from 40 MUs to 50 MUs. However, additional five more ADRs are needed at SNR =
0.0 dB. Finally, we note that Schedule A slightly outperforms Schedule B for 50 MUs,
IN=10, RDR=2 and DWW=2. The required average ADRs is also slightly higher.

181

Schedule A

MEM=40

—%*— IN=10 RDR=2 DWW=2
MEM=45

—4A— IN=10 RDR=2 DWW=2
—4— IN=10 RDR=2 DWW=3
MEM=50

—O—IN=10 RDR=2 DWW=1

0.01

1E-3

)
T —4&— IN=10 RDR=2 DWW=2
o 1E4 Schedule B
s —0— MEM=50 IN=10
o RDR=2 DWW=2
=

1E-5

Pipeline Schedule
O~ MEM=50
1E-6 v~ MEM=60

O~ MEM=80

T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
E,/N, (dB)

Figure 7.15: BER performance as a function of SNR for three decoding schedules.

4| Pipeline Schedule
Schedule A

* B
” - =
e mim:gg —*— IN=10 RDR=2 DWW=2
8 30 ~ MEM=45
> —A— IN=10 RDR=2 DWW=2
£ —£4— IN=10 RDR=2 DWW=3
=] —
S 5 MEM=50
8 —<— IN=10 RDR=2 DWW=1
° —— IN=10 RDR=2 DWW=2
[N
a 20 Schedule B
< MEM=50
S ‘ —0O— IN=10 RDR=2 DWW=2
o 60
g 154 \o\ol\i”\' _—
[S Vv — A . A
5 ° v ——
c O\O\g\ \8\ —
@ = B
o 10 U
< O—0
g o
<

5 T 1

00 01 02 03 04 05 06 07 08 09 10

E,/N, (dB)

Figure 7.16: Average APP decoding round number performance as a function of SNR
for three decoding schedules.

182

Chapter 8

Conclusions

This thesis consists of four major parts with a single focus on the interleaver design
for low-latency high performance TCs. We propose a general class of interleavers and
study its algebraic properties. We review hardware architecture and constraints for par-
allel decodable classic TCs and prove that the proposed IBP interleaver does satisfy all
the hardware constraints. In parf@it@ﬁ'lélulj? our a'e"‘s-.i"gn meets the memory contention-free

requirement and is network—ori“érnted, 14",’ it ‘jy‘ield‘s",'_‘low routing complexity and simple

network configuration. The pr{)I')_osedI- intéfieavef iné:ludes most popular interleaver de-
signs, e.g. QPP, ARP, inter—winzdow‘"“Sﬂﬁfﬂéa—';ih’teﬂea\/er as special cases.

The IBP interleaver consists of.” ‘;Wo sep‘a"réble interleaving stages: intra-block and
inter-block permutations. Our construction considers both unknown and known intra-
block permutations. For unknown intra-block permutations we derive two permuta-
tion rules that guarantee desired distance properties for the resulting classic TC. The
code distance upper-bounds and lower-bounds are derived for the case that one can
freely choose both inter- and intra-block permutations. Continuous, tail-biting and tail-
padding encodings are all considered. In order to support the high-radix APP decoder
and generalized maximal contention-free requirements, we impose new constraints on
the intra-block permutation and propose the associated memory mapping functions.

A decoder architecture for both stream-oriented and block-oriented IBPTCs is pro-

posed. The decoder uses a parallel/pipelined decoding schedule which incorporates a

183

multiple-round early-stopping rule and a memory management scheme. The stopping
rule requires short overhead but offers very reliable stopping decisions, giving improved
latency and error rate performance. The memory manager makes efficient use of the
memory space available and offers new trade-off between thecomplexity and perfor-
mance.

To analyze and describe various decoding schedules for IBPTCs we generalize the
static factor graph representation and develop the multi-stage factor graphs. This tech-
nique is capable of expounding the behaviors of IBPTCs and LDPC codes. Using MS-
FGs, we develop a new decoding schedule for stream-oriented IBPTCs with the reduced
memory storage and improved performance.

We have addressed almost all critical performance and implementation issues con-
cerning the design of high throughput TCs and provided good, if not the best, solutions.
Some algorithms proposed here age"ajllslé). aﬁp};ﬁéabl@ to other applications. For examples,
the early-stopping rules can be lISGd for df];le.rlteratlve decoding or equalization schemes,

and the multi-stage factor graph_s are gséfﬁl n "desi;gning new LDPC or general graph

code’s decoding schedules or evé"'nj newgraph "'cod':qs‘ with enhanced performance.

184

Appendix A

Proof of Lemma 3.6

It is obvious that this lemma holds if |i — j|p > r and P — |i — j|p > r. Hence we

consider | — j|p <7 or P — |i — j|p < 1 only.

When i > jand 0 <i—j <7, ged(P,r) <7 and r = [V/P] — 1 < /P implies that

q= P/ged(P,r) > L > /P >r while 0 <i—j < r leads to

i—j+|q+j:i|"‘q-,: i—jtat(—9) _ q
Z_]+|]|q_|z|q'; ”] ‘l"fv"j‘q'_‘l|q>0’
p i il Si-i—(i-j) _
1] - -] - b

| - q- . J . q
‘ J’]’q 3 Mq < 0.

It follows that

. . ot —) P |
[mp(i) — ()P = TH—J —‘m+‘74|]|q
P Plp
q P
and
: . 1=) i — |5
P_|7TP(Z)_7TP(]>|P = P- TZ+7||q —‘r‘]_’_w
¢ 1p pPlp

v

P—lrr—1)+1p,=P—1*+r—1

> P l—rl4r—1=r.

(A.2)

(A.3)

Therefore, min; jes, (i — j + |mp(i) — 7p(j)|p,i —j + P — |wp(i) — 7p(j)|p) > r+ 1.

185

This permutation function is g-invariant in that

[mp(li —qlp) — mp(l7 —alp)lp
(i—q) —1i—dql
q

(J—aq) =17 —dqlq
q

(i —q) + —|r(j —aq) +

P
J = 1ilq

PP

= [mp(i) = 7p(7)lp (A.4)

1+ e [|Z|q

—’rj—i—

P P
We now show that both the remaining cases can be converted into the above case.

(A) For the case i < jand 0 < j—i <r,wehave |[i —jlp=|i+ P—jlp=1|i+ P —
mq— (j —mq)|p = [i' = j'| and |7p(|i+ P —mq|p) —7p(|j —malp)|p = |7p(i) —7p(j)|p,
P> =i+ P—mqlp>j =1|j—mqg|p >0 for some m > 0.

B)YUi>j, P—li—jlp=IP+j—ilp=|P+j—mqg— (i —mg)|=]|j'—iland
mp(li —mglp) —=mp(|P +j—mqlp)|p = |mp(i) = 7p(j)lp, P >i' = |i+ P —mqlp > j' =

|7 —mgq|p > 0 for some m > 0.

186

Appendix B

Proof of Lemma 3.7

We place the elements in the jth n-element set in a cycle by 741 (Nl + N2 — L%J),
where 0 < i < nand 0 < j < N;. The elements of the jth (n —1)-element set are placed
at positions indexed by

{MJ (N1 + My) + Ni+ [iNo — N1+ jla,

My
e, iNy+j < Ms, (B.1)

Ni|Nol, + Mgk {N—%ﬁuJ (N} + My) + N
+lNg—+j — N{= M3y, otherwise,
where 0 <1 <n—1, N; < j< Nl—i—N SN, = Ny — L%J, M, = Ny — (%w and

M3 = Mi|Ns|,. It is easy to see tliat such an afrangement achieve the bounds and no

larger minimum separation can be found.

187

Appendix C

Proof of Theorem 3.3

Tail-biting encoding results in low-weight codewords whose nonzero coordinates are

confined to the tail and the head parts of two consecutive sets. This happens if one

(k)

nonzero coordinate of a weight-2 input sequence belongs to f; and the other one

belongs to F‘(fch_mTc . One can then place the set F‘ +T Ll right after the set

|Te

ng) so that they form a cycle. {3 gcd(!L

TC,) = d, we have d cycles with the mth

(k) k) (k) sb J<>‘ ' (k)
cycle being f 7, —{ o 728 el J|m+z<Tc |L+TC " (G @i, }
where 0 < m < d. - | | f

Mapping the coordinates mF ff?”“éedﬁéﬁtiallly to the integers in the interval [0,

Fm) —1==2—1|, we obtain the set S 2 4) 0,1,2,--- — 1. We further par-
| =

tition SN(k)I into dTy sets {S;}, where |S;| = Nyuw = [dQTW for 0 <i< N; = |§‘de
and |S;| = Npin = LdQTJ for dTy, — Ny = ‘L|dTS < i < dTy. According to Lemma

3.7, we can maximize the minimum separation of S; to D,,;,, = dly — { NN2 -‘ and

Do = dTy — { J for 0 <i < Ny and dTy — Ny <1 < dT; respectively.

We can construct an IBP rule such that p € S; and ¢ € S; are permuted to the same
block iff |i — j|7, = 0. Since all blocks can apply the same partition rule for permutation,
such an IBP rule does exist.

Incorporating separate encoding results in that two indexes in two different blocks

produce a codeword weight larger than the bound, either the pre-permuted or the post-

permuted pair makes the codeword weight 2W;(L). Therefore we consider the case two

188

indexes are permuted to the same block.
There are d sets S; and d sets S‘f(z)l. All S; C S“?(l)‘ can be permuted to different
S

Fo If two indexes are in two different S;’s, either the pre-permuted or the post-
permuted pair makes the codeword weight > Ws(L), which is larger than the bound.
Therefore we only have to consider the case when a coordinate pair belongs to the same
S; before and after permutation.

According to Lemmoa 3.6, the separation sum of pre-permutation and post-permutation
for S; with Nyep and Ny, elements can be [v/ Ny, | and [v/Np, | respectively. Ac-
cording to Lemma 3.7, the minimum separation of two adjacent indexes is D,,;, and
there are at most |Ns|y,,.. pairs with such a separation. The minimum codeword weight
is thus lower-bounded by 2+ oD,y min(2| Na|n,oes [V Niaz |) + @Dyge max([v/ N | —
2|Na|Nppae, 0) + 2.

Finally, we notice that small Welght error event occurs when the two coordinate pair
W . andﬂ IL—|Z—J|

permuted pair (mz (i), 77, (])) 1S greater than T Dmm The corresponding codeword

(i,7) € F p is such that |i — j

1. # 0 and the separation of the

weight will be at least 2 + Wo(L) + oszm = B Therefore we have

w;(CY) > 24268+ min (WQ(L) + aDpin, — 3,
i
aDmin min (2‘N2‘Nmaz7 ’7\/ Nmax—‘>
+aD,,,, max (%/NW] 2Ny o)) . (C.1)

189

Appendix D

Proof of Theorem 5.10

We first notice that, besides those finite weight codewords resulting from termination,
as illustrated in Fig. 5.6, there are three conditions under which a weight-4 input se-
quence of an S-IBPTC will generate a finite-weight codeword. In Case (a), the codeword
consists of two finite-weight segments (111 dlfferent blocks) generated respectively by two
weight-2 input sequences and thus: the correspondmg codeword weight upper-bound is
simply twice that given in 7T, heorem 5. 9‘ Case (b) considers the situation when two

pairs of coordinates from Fi ; and F {) of elther the same block or different blocks are

permuted to the same block w1th" Qne 'coordlnaten ﬁrom each pair mapped to two subsets
F ,(f) and F l(Q), where the pair (k, 1), k;«é { bel‘bngé to the same equivalence class while the
remaining two coordinates mapped to another two subsets %’ and F %2) with m # n in
another equivalence class. Case (c) is similar to Case (b) except that the two subsets
that contain the two permuted pairs are in different blocks.

Note that if &k = [and m = n then the both cases will result in a codeword weight
upper-bound similar to that obtained in [25]. But this is impossible as coordinates from
different blocks will not be mapped into coordinates in the same subset (defined by eqn.
(5.15)) by an optimal interleaver. This is because the spatial symmetric structure of a
classic TC implies that, for every input sequence u of the code C that uses the inter-

leaver 7, 3 u’ such that the codewords generated by (u,7) and (u/,7~') have identical

weight. This observation and the fact that both component encoder outputs, c; and cs,

190

contribute equally to the resulting codeword weight suggest that 7 and 7~! have the
same effect on the weight distribution, and that optimizing the deinterleaver rule results
in the same mapping as the optimal interleaver.

Since we have to consider the scenario k # [and m # n only, the worst case occurs
when both |k — I and |m — n| are less than T,T,.. In other words, Cases (b) and (c)

concern the situation in which the pairs (m,(x), T (w)) and (i, (y), Tip(2)) belong

(2)

to distinct supersubsets where a supersubset [;" consists of M /Ty = T, consecutive

subsets of the same equivalence class. Each block therefore has TA supersubsets, and
F,(f) and FI(Q) are in the same supersubset ,5(-2) if |k|ar = |l|p = 7 and ||k = 1|7, =0, or
equivalently, F UZ o1 FIIJI\Tc+ch+\J\TcM’ 1=12

Let A7 and Ay be the number of coordinates subsets per block for the input and
permuted sequences. The subset partition rule, eqn. (5.15), implies that Q < | F | <

Q + 1, where Q = [£|. For Cz}se"""(].c‘)), each subset has either (le) or (2) distinct

coordinates pairs and each bloc‘lﬂlg has atl: l‘east _/\ () such pairs. Our S-IBP interleaver

maps ‘},—i sets of coordinates t&_ol,_each _block Wlthm; its span, or equivalently, a block

“receives” coordinates from T} ﬁejghbdfihg:i');l()ckéj.‘ The optimal S-IBP rule would map

a pair of coordinates in the same s-ﬁ-iﬁset to'-‘diff.erent equivalence classes or blocks and,
when this is not possible, to different supersubsets of the same block.

A pair of coordinates (i,7) in Fgl) can be mapped to any one of the (%22) pairs of
distinct supersubsets F (2) (2) ,J # k of a neighboring block. A periodic S-IBP requires
that at least Tslj\,—i(g) distinct pairs of coordinates from T, neighboring blocks be per-

muted to the same block. The pigeonholes principle implies that Case (b) will occur

(%)= (%) o3

For Case (c) the pairs (m, (), mipy(w)) and (7, (y), minp(2)) are in two distinet blocks.

if

If the two distinct blocks are separated by k blocks (k = 1 means they are two successive

blocks), then (m,(z), Tinp(w)), (Tirp(y), Tinp(2)) are mapped from Ty — k neighboring

191

blocks in which each block contains % supersubsets and each supersubset has at most
(2+41)% and at least Q2 coordinates pairs to the two designated blocks. Therefore, finite

weight codewords result if

(T, — k)%m > (%)2 (D.2)

and we obtain upper-bounded

T, - L T, - L
<) ' —)
W4, min,ibp > 4+ 2a ((/{111711\112) { ’7 Al “ + ’V A2 —‘ } 2) + 45 (D 3)

where (A1, Ag) are subject to the constraints, (C1): ||A1||y = ||A2]|a = 0, (C2): Ay (g) >

2

2
(%), and (C3): L= k)A 0% > (%) . Since Q2 = LA%J > A% — 1, we rewrite (D.1) and
(D.2) as

), > (& _ 1) A (D.4)
T, - k A1 (iLi 1)2 2(&)2 (D.5)

We carry out the minimization Wlth respeet-tg-@/\l, Ag) by first finding the two minimums

with respect to the constraints (Cl) / (C2) ands (Cl) /(C3), respectively, and then select
the smaller one of these two. Using the sunphﬁed assumption [25] that the cardinalities
of Ay and Ay are the same and to distinguish the two candidate minimums, we set
Ay = Ay = Az in (D.5) and A; = Ay = Ay in (D.5) so that the above two inequalities
become

A3 — (T, + 2T A5 + 3T?A3L — T2L* < 0 (D.6)
A2 — T (T, — k)A2 + 2T (T, — k)AL L — To(T, — k)L? <0 (D.7)

By defining X; = Ag—T‘“_TZTSQ and Xy = A4—@, we rewrite the above inequalities

as

1 2
X} + (3T3L — g(TS + 2T3)2) X+ <—T3L2 + (T3 +2THL — 2—7(T5 + 2T3)3> <0
(D.8)

192

1
X5+ (ZTS(TS — k)L — ng(TS — k)2) X,

2
+ (—TS(T EYL* + ZT*(T, — k)*L —

Following the

b1
q1
D2

q2

If L > 1073 4 72 —

b1 =

g1 =

G2 =

b1 —DP2 =

2 —T3T, — k;)3) <0 (D.9)

37 27 ¢

standard procedure for solving a cubic equation [48], we define

1
= 3T°L — g(Ts + 2772)2,

2
= —T2L*+ (T +2THL — 2—7(Ts + 2772)3,
1
= 2T(T, — k)L — §T3(Ts — k)%,
2 2
= —T,(T,—k)L*+ ng(TS — k)L — 27T§(T5 — k)3

Ts
=, then

1 4 4 1
372 — g(TS +2T2)* = T2 (3L - ng — =T, — —)

3 3
2 3 2 4 2 4 1

T2 (1073 +37T2 —1— -T2~ -T,—~) >0 (D.10)

i) 3 -S'l 3 3

i B 23 1
21.(T, - W)L ST ST, — 1) (L - GTT)
-K -
2T, (T, — k) (L.— —TS(TS» - 1)) >0 (D.11)
~T2L* + (T2 + 2T4)L — E(T ~H 2T2) < —T2L* + (TP +2THL
~T?L(L —T, — sz)
~T?L (130T3 + T2 % — T, — 2T3> <0 (D.12)
2 2 2 2 3 3

~T(Ts — k)L* + TX(T, — k)*L — —=T(T, — k)

3 27

2
—T,(T, — k)L* + 3Tj(T k2L

2
~T(Ty — k)L (L — ng)
1 T, 2

~T,(T, — k)L (30T3 +T? — ? - ng) <0 (D.13)

1 1
3T?L — —(T, + 2172)* = 2T,(T, — k)L + =T*(T, — k)?
3 3
2 1 2\2 2 1 2 2 4 2 4
3T?L — —(Ty + 272 — 2T2L + -T? = T?L — -T? — —T,
3 3 3 3
T, 4

10 4
T? T24+T2— 2) - T2~ -T,>0 D.14
(3 + 3) 37¢ 3 ()

193

q2 — 1

=TT~ KL+ STHT, - KL~ T,

2
44&7—UE+M®L+§#E+Zﬁ)
2 2
>kﬂﬁ+§ﬁu;4¥L—a§+m®L>Ln(L+§f—a§+ﬂ®)

1 T,
>zm<0ﬂ+ﬂ ——afmﬁ0>a (D.15)

3 3

These results imply ()% + (£)? > 0, (2)* 4 (£)* > 0 and

G:

are zeros of f(z) = 2*+p1r+q and h() =z —i—pgx—l—qg, respectively. As both f(z) and
g(x) are monotonically increasing functlons and f(x) =322 +p; > ¢'(z) = 32> + py >

0,V z, f(x) < g(x),¥ © < z, where Z is the single intersection point given by

.~ Q2= q1

T > 0.
pP1— P2
The fact that

q—qg q2 — g q—q3 P142 — p2q
f(:&):(2 1)—1—])12 1—|—q1:(2 1)+12 241

P1 — D2 P1— D2 P1 — D2 P1— D2

3
> (Q2 611) +p2Q2 p2Q1>0' (D.20)
P1— P2 P1— D2

implies that the only real zero of f(z), G, is larger than that of g(z), H, and thus C' > D.
Substituting A; = C' into (A.3), we obtain an upper-bound with a very complicated

expression. To have an upper-bound with a simpler form, we notice that ||A;||yr=7.7, = 0

194

gives

max A\; = T,T, { >C —-T,T, (D.21)

T

Hence a less tight upper-bound is given by

T, - L
W4, min,ibp S 4+ 4o <H/1\1n{" A —‘ — 1}) +4ﬁ

T,L
= 4+ 4o — | 1| +48

T.T. | 15|

T,L T,L
< — | - " 1+ 43 (D.22
< 4+4a<{C_TSTC—‘ 1>+4ﬁ<4—|—4a C—TSTC+ B ()

The upper-bound of weight-4 input sequence in the Case (a) is twice the upper-bound

of weight-2 input sequence shown in eqn. (5.17).

Note that _
. ST, +2T2
B o- \/ RN (57 + ()
= = TR 3 2
T.L
S (D.23)
and
T, + 277 ’ T, + 217
(E - % + TSL) =—¢—D (E - % + TJ/) : (D.24)

In other words, E is a zero of the polynomial

T, + 272 3 T, + 27?2
g(m)z(m—Ts+ TSL> —i—pl(x—TS—l—\/TsL +q

which, like f(x) defined before, is a monotonically increasing function and has only one

195

real zero. For T > 2,

T, + 272 3 T, + 272
9(0) = <—Ts+ T5L> +p1 (—TS+\/TSL +aq

3 5
= T4 (Tg + 3T52) L% — (T2 +2T%)L

< I} (T2L% + <T2 +3T3))

1
1 T\ 2 3 5
< Lt (T2 (30T3 T? — 3) + (Tg + 3T52)> <0 (D.25)

3 5
The last inequality holds because both T2 (7% + T2 — L2} and T2 + 3T are positive

real numbers and

1 T 3 5 1 T2
T 0T3+T2 —(T¢ +312)* = —0T7+T§——S—9T§—6T3—T3
3 3 3 3
40 T?
> §T5+2T5 3 — 9T — 6T - T?

eors o -T2 > 0,
Hence E is positive and so f‘ b : "_ 8 -
4 4 W 4
+ O‘ C TT 45
< 4+ 404 + 4ﬁ

VT.L — T,T.

T.L
= 2(24+20———+23). D.26
(astL_TsTc 6) ()

196

Appendix E

Puncturing Patterns

Puncturing systematic bits enhances the error rate performance and references [59,
52] have shown evidences. This part proposes irregular puncturing patterns for code rates
3/4, 4/5 and 8/9. Tables E.1, E.2 and E.3 show the regular and irregular puncturing
patterns for code rates 3/4, 4/5 and 8 / 9 respectlvely Cy corresponds to the systematic
part, and C; and Correspond to the parlty part associated with information sequence
and interleaved information sequence redpeetlvely.-n The puncturing period is 48 in these

puncturing tables and 1" and 0 denote kept and punctured These puncturing patterns

are searched for the G(D) = [1 111521%33] deﬁned in 3GPP turbo code [1, 2, 3].
These puncturing patterns are compared by 3GPP Rel’6 turbo code interleaver
[1, 2] and the B-IBP interleaver described in Section 4.5. The parameters of the dou-
ble prime interleaver are (p,s) = (5,18) for L = 64 and (p,s) = (47,7) for L =
128, and the IBP sequences are {0,1} for N = 2, {0,1,2,4,3,6,7,5} for N = 8,
{0,1,2,4,8,3,6,12,11,5,10,7,14,15,13,9} for N = 16 and {0, 1,2,4,8, 16,5, 10, 20, 13,
26,17,7,14,28,29,31,27,19,3,6,12,24, 21,15, 30,25,23,11,22,9,18} for N = 32. Lin-
ear log-MAP algorithm with 8 iterations is applied and AWGN channel is considered.
Figs. E.4-E.9 show the simulation results. These figures reveals that irregular punc-
turing pattern outperforms regular puncturing pattern by 0.1-1.0 dB at FER=10"*
cept for code rate=8/9 with K = 256. Puncturing too many systematic bits at high rate

for short block length does not benefit the error rate performance although the distance

197

Table E.1: Puncturing patterns for code rate=3/4.

Regular Puncturing Pattern

Co

11111111

11111111 11111111 11111111 11111111

11111111

Ch

10000010

00001000 00100000 10000010 00001000

00100000

Cy

10000010

00001000 00100000 10000010 00001000

00100000

Irregular Puncturing Pattern

10111111

10111111 10111111 10111111 10111111

10111111

G

01000100

01000100 01000100 01000100 01000100

01000000

&

01000100

01000100 01000100 01000100 01000100

01000000

Table E.2: Puncturing patterns for code rate=4/5.

Regular Puncturing Pattern

Co

11111111

11111111 11111111 11111111 11111111

11111111

Cy

10000000

10000000 10000000 10000000 10000000

10000000

Cy

10000000

10000000 10000000 10000000 10000000

10000000

Irregular Puncturing Pattern

Co

10111111

10111111 10111111 10111111 10111111

10111111

Gy

01000100

01000000 01000100 01000000 01000100

01000000

Cy

01000100

01000000 01000100 ,,01000000 01000100

01000000

property may be improved. : | 5

.

The performance gain for the B IBPTC 1s‘more than that for 3GPP Rel’6 turbo code.

When code rate=3/4 and 4/5, the performance eurves for interleaver length 4096 bits
are crossed but this does not occur for the B-IBPT C. Our irregular puncturing pattern

benefit more a turbo code with better distance property.

Table E.3: Puncturing patterns for code rate=8/9.

Regular Puncturing Pattern

Co

11111111

11111111 11111111 11111111 11111111

11111111

Cy

10000000

00000000 10000000 00000000 10000000

00000000

Cy

10000000

00000000 10000000 00000000 10000000

00000000

Irregular Puncturing Pattern

Co

10111111

11111011 11111111 10111111 11111011

11111111

G

10100000

00000100 00000000 01000000 00000100

00000000

&

10100000

00000100 00000000 01000000 00000100

00000000

198

1
Regular Puncturing
N e — 8 K=256
N —@— K=512
01 \Q\ N\ ~ — A K=1024
\ AN —w— K=2048
\\v\v N Ssﬂ\ —— K=4096
o Qe \v \‘\O\ Irregular Puncturing
<001 —O— K=
: LRNRS o
S VRN A O\. —A—K=1024
] \ * \ \ \ —— K=2048
o 1E3 A\ a9 —O— K=4096
g <& N v \o
5 N \v\ O\. \.
- \<> N A Xy \o\.\ N
~ \ & ®
1E-4 0} N \A\ v \O \.s
N N\
v \A\‘ \o \Q\;\
AN NS <8
1E-5
T T T T T T T T T T T T T
2.0 25 3.0 35 4.0 45 5.0 55
E,/N, (dB)

Figure E.1: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=3/4 3GPP Rel’6 turbo code.

.

T Regular Puncturing
TR —=— =128, N=2

N by L —®1=64,N=8
01 O\Véig\u A 1=128 N=8
' > v\\A \D —w—L=128, N=16
\A\ LN —— =128, N=32
\\7\'\ A D\ Irregular Puncturing
2 & a —O0— L=128, N=2
& oo \v A A\‘ \n —O— =64, N=8
5 0% \ O&, Na A 17128, N=8
5 —y— L=128, N=16
Y 1Ea 3 Z\ X\v\A O\o k- —O— =128, N=32
§ % \v\v Ako\o o
Lgli x‘ BV A\ AN N n

< RS
®.]
1E-4 \ N B N A ~o
V. 2 ®]
& g A\ v \2 \E\ N
v A\A \O \E\
1E-5 T T T T T T T T T T T 2l
2.0 25 3.0 3.5 4.0 4.5 5.0
E,/N, (dB)

Figure E.2: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=3/4 B-IBPTC.

199

B-IBPTC

—m— =128, N=2
—®— L=64, N=8
—4A— =128, N=8
—W¥—L=128, N=16

0.1

4

4

7
7

Ny EER
SR B AN NN e =

o v O, [m) A K104

I.E 1E-3 \V\ sA\A\.\O \D i ifiggz

E \ O\' \ \ \.\O\\ =

[

1E-4

s
e
< //D
J
./ O/
/Y
e
%

<
4/

T T T T T T T T
35 4.0 4.5 5.

E,/N, (dB)

w
o

Figure E.3: Frame error rate comparison between 3GPP Rel’6 turbo code and B-IBPTC
for code rate=3/4 irregular puncturing pattern.

i o 4
O .
- 1 s & =
| e e B
| it =
. o]
: —§= J
1 G0
?\ % Regular Puncturing
] e —=— K=256
] \ L —e— K=512
. —A— K=1024
0.1
E \O N —w— K=2048
] \E\ —@— K=4096
] Py \ .o Irregular Puncturing
@ A - —0— K=256
5 001
g 3 \ A\ \ RE\ —O— K=512
=] Qey \‘\ g —A—K=1024
2] \\’ v oy a e \. ——K=2048
p 163 <>\ N\ \ \ SR m| o k=409
5 E % AV
LT o\

: Pa
lE—4—§ \2V\Wk \O a QE\

V.
. 0 AR
. \v\e O{\G\A
*e Uy Ny
1E5 y & A =
T T T T T T T T T T T T T T
2.0 25 3.0 35 4.0 45 5.0 55
E,/N, (dB)

Figure E.4: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=4/5 3GPP Rel’6 turbo code.

200

Frame Error Rate

1 %g -, Regular Puncturing
S - —m— =128, N=2
N —e— =64, N=8
DN A 1=128,N=8
0.1 <>\‘v \5§u —v— =128, N=16
\\\v\ NN —& =128, N=32
O\‘\V\\A O\l§ Irregular Puncturing
\v v A\ E\ —0O— L=128, N=2
0.01 ‘\ N\ 'a g —O— =64, N=8
A v A\ N A L=128, N=8
o "\ a "\, | —v—L=128 N=16
W RN @ _ —O— =128, N=32
1E-3 < ‘\v '\é\A\ \\ —
S \ LN
NS N AN \
v ‘\‘ A\ A O\ U
1E-4 Sy R\ e =\
VR R T N \D\
S \V * v\v\ \A NN .\D
\ NN N u
v \A . \.
1E-5 . I T T | — \+ 1
2.0 2.5 3.0 35 4.0 45 5.0 55
Eb/N0 (dB)

Figure E.5: Frame error rate comparison between regular and irregular puncturing pat-

terns for code rate=4/5 B-IBPTC. ______

Frame Error Rate

1E-3

1E-4

B-IBPTC

—®— =128, N=2
—®— =64, N=8
—A— =128, N=8
—W%—L=128, N=16
—4&— =128, N=32
3GPP Rel'6

—— K=256
—O—K=512
—A— K=1024
—V— K=2048
—O— K=4096

E,/N, (dB)

Figure E.6: Frame error rate comparison between 3GPP Rel’6 turbo code and B-IBPTC
for code rate=4/5 irregular puncturing pattern.

201

Regular Puncuring
—®— K=256
—@— K=512
—A— K=1024
—W¥— K=2048
—&— K=4096
Irregular Puncturing
—— K=256
—O—K=512
—A— K=1024

A \\ —— K=2048
1E.3 b e W Ol % —O—K=4096
S V\ N \Q \O\. I~

0.1

0.01

Frame Error Rate

1E-4 \v AN \?\A\ \Ui.i
N,

1E-5 T T T T T T T T T T T
30 35 40 45 50 55 60 65 70 75

E,/N, (dB)

Figure E.7: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=8/9 3GPP Rel’6 turbo code.

B-IBPTC

Regular Puncturing
—®— | =128, N=2
—&— =64, N=8
—A— =128, N=8
—w— L=128, N=16
—&— L=128, N=32

0.1

Q
g 0.01 Irregular Puncturing
- ——L=128, N=2
Ct) —O— L=64, N=8
i} 3 —4— =128, N=8
QE) 1E- —v— L=128, N=16
IS —O—L=128, N=32
LL —
O,
1E-4 \D\:‘
\D\
N N

E,/N, (dB)

Figure E.8: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=8/9 B-IBPTC.

202

0.1

0.01

1E-3

Frame Error Rate

1E-4

1E-5

Figure E.9: Frame error rate comparison between 3GPP Rel’6 turbo code and B-IBPTC
for code rate=8/9 irregular puncturing pattern.

203

B-IBPTC

—®— =128, N=2
—®— =64, N=8
—A— =128, N=8
—w¥—L=128, N=16
—&—L=128, N=32
3GPP Rel'6

—— K=256

Bibliography

1]

TS 25.222 v3.1.1 Multiplexing and channel coding (TDD), 3GPP TSG RAN WG,
Dec. 1999.

TS 25.212 v6.4.0 Multiplezing and channel coding (FDD), 3GPP TSG RAN WG,
Mar. 2005.

TS 36.212 V1.0.0 Multiplexing and channel coding, 3GPP TSG RAN WGI1, Mar.

2007.

| = |

o HAITR s
D. Agrawal, A. Vardy, “Tle turbo decoding algorithm and its phase trajectories,”
in IEEE Trans. Inform. Theory, Nol&d7 mo. 2, pp. 699-722, Feb. 2001.

J. B. Anderson, S. M. Hladik,zﬁTailbitiqg MAP decoders,” in IEFE J. Select. Areas
Commun., vol. 16, no. 2, pp. 297-302, Feb. 1998.

S. L. Ariyavisitakul, “Turbo space-time processing to improve wireless channel ca-

pacity,” IEEFE Trans. Commun., vol.48, no. 8, pp. 1347-1359, Aug. 2000.

S. Baero, J. Hagenauer, M. Witzke, “Iterative detection of MIMO transmission
using a list-sequenctial (LISS) detector,” in Int’l Conf. Commun., Anchorage, USA,

May 2003.

L. R. Bahl, J. Cocke, F. Jelinek, F. Raviv, "Optimal decoding of linear codes for
minimizing symbol error rate,” IEEE Trans. on Inform. Theory, vol. 20, no. 2, pp.

284-287, Mar. 1974.

204

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Benedetto, G. Montorsi, “Unveiling turbo codes: some results on parallel con-
catenated coding schemes,” IEEFE Trans. Inform. Theory, vol. 42, no. 2, pp. 409-428,
Mar. 1996.

S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara, “A soft-input soft-output APP
module for iterative decoding of concatenated codes,” in IEEE Commun. Letters,

vol. 1, no. 1, pp. 22-24, Jan. 1997.

S. Benedetto, G. Montorsi, “Performance of continuous and blockwise decoded turbo

codes,” IEEE Commun. Lett., vol. 1, no. 3, pp. 77-79, May 1997.

C. Berrou, Y. Saouter, C. Douillard, S. Kérouédan, M. Jézéquel, “Designing good
permutations for turbo codes: towards a single model,” in Proc. IEEE Int’l Conf.

Commun., Paris, France, vol. 1, pp. 34_1—345, Jun. 2004.

C. Berrou, A. Glavieux, 5}11;1 B H.gTh“pirﬁéjshima, “Near Shannon limit error-

Efa

correcting coding and decoding: turb''()':(zodes,‘ﬂp in Proc. Proc. IEEE Int’l Conf.
.n 1 L — - ']i
Commun., Geneva, Switzetland, ppa1064=1070, May 1993.

C. Berrou, M. Jézéquel, “Non—b‘inary“'Cohvolutioanl codes for turbo coding,” in

Electronics. Letters, vol. 35, no. 1, pp. 39-40, Jan 1999.

C. Berrou, M. Jézéquel, C. Douillard, S. Kerouedan, “The advantages of non-binary

turbo codes,” in Proc. ITW2001, Sep. 2001.

M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, C. Nicol, “A 24Mb/s radix-4
log MAP turbo decoder for 3GPP-HSDPA mobile wireless,” in ISSCC' Dig. Tech.
Papers, pp. 151-484, 2003.

P.J. Black, T.H.-Y. Meng, “Hybrid survivor path architectures for Viterbi decoders,”

ICASSP 93, vol. 1, pp. 433-436, Apr. 1993.

205

[18]

[19]

[20]

[22]

23]

[25]

[26]

W. J. Blackert, E. K. Hall, S. G. Wilson, “Turbo code termination and interleaver

conditions,” FElectron. Lett., vol. 31, pp. 2082-2084, Nov. 1995.

D. W. Bliss, A. M. Chan, N. B. Chang, “MIMO wireless communication channel
phenomenology,” in IEEE Trans. Antennas and Propagation, vol. 52, no. 8, pp.
2073-2082, Aug. 2004.

B. Bougard, A. Giulietti, V. Derudder, J. Willem, S. Dupond, L. Hollevoet, F.
Catthoor, L. V. der Perre, H. D. Man, R. Lauwereins, “A scalable 8.7nj/bit
75.6Mb/s parallel concatenated convolutional (turbo-)codec,” in ISSCC Dig. Tech.

Papers, pp. 152-484, 2003.

E. Boutillon, W. J. Gross, P. G. Gulak, “VLSI architectures for the MAP algo-
rithm,” in IEEE Trans. Commun..,"v‘ol._"f')l, no. 2, pp. 175-185 , Feb. 2003.

E. Boutillon, D. Gnaedig,: “Maanln}lm spread of D-dimensional multiple turbo
codes,” IEEE Trans. C’ommun Vol 53 0. 8} pp 1237-1242, Aug. 2005.

L n‘ -]

J. Boutros, G. Caire, E. Vlterbo . Sawaya, S. Vialle, "Turbo code at 0.03 dB

from capacity limit,” in Proc. Int’l Syhlpo on Inform. Theory, pp. 56, 30 Jun.-5
Jul. 2002.

M. Breiling, J. B. Huber, “Upper bound on the minimum distance of turbo codes,”

IEEE Trans. Commun., pp. 808-815, May 2001.

M. Breiling, J. B. Huber, “Combinatorial analysis of the minimum distance of turbo

codes,” IEEE Trans. Inform. Theory, pp. 2737-2750, Nov. 2001.

A. J. Blanksby, C. J. Howland, “A 690mW 1Gb/s 1024-b, rate-1/2 low-density
parity-check code decoder,” in IEEE Journal of Solid-State Circuits, vol. 37, no. 3,

pp- 404-412, Mar. 2002.

206

[27]

28]

[29]

[30]

[32]

[33]

[34]

S. T. Brink, “Convergence of iterative decoding,” in Electronics Letters, vol. 35, no.

13, pp. 1117-1119, Jun. 1999.

S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated

codes,” in IEEFE Trans. Commun., vol. 49, no. 10, pp. 1727-1737, Oct. 2001.

R. Brualdi, Introductory Combinatorics, Amsterdam, The Netherlands: North-

Holland, 1977.

S. Crozier, J. Lodge, P. Guinand, A. Hunt, “Performance of turbo codes with
relative prime and golden interleaving strategies”, in Proc. of the 6th Int’l Mobile
Satellite Conference (IMSC "99), Ottawa, Ontario, Canada, pp. 268-275, Jun. 16-
18, 1999.

S. Crozier, P. Guinand, “Distancesuppér hounds and true miimum distance restuls
for turbo codes with DRP .inn.fceﬂea{\}lgfs_,”"'in ﬁrqc. 3rd Int’l Sympo. on Turbo Codes
‘ A= = Lk Y

& Related Topics, Brest, F_fénce, p..-‘l-‘69".-172, gbp. 2003.

| J

F. Daneshgaran, P. Mulas;"émpg,"‘ "‘T'nilzéfllgéye_ri,pruning for construction of variable-
length turbo codes,” in Tmng.”fnform‘.' Theory vol. 50, no.3, pp. 455-466, Mar.

2004.

V. C. Gaudet, R. J. Gaudet, G. Gulak, “Programmable interleaver design for analog

Y

iterative decoders,” in IEEE Trans. on Circuits and Systems-1I: Analog and Digital

Signal Processing, vol. 49, no. 7, pp. 457-464 , Jul. 2002.

D. Divsalar, S. Dolinar, F. Pollara, “Iterative turbo decoder analysis based on den-
sity evolution.” in IEEFE J. Select. Areas Commun., vol. 19, no. 5, pp. 891-907, May
2001.

207

[35]

[36]

[37]

[38]

[44]

R. Dobkin, M. Peleg, R. Ginosar, “Parallel interleaver design and VLSI architecture
for low-lantecy MAP turbo decoders,” in IEEE Trans. VLSI Systems, vol. 13, no.
4, pp. 427-438 | Apr. 2005.

C. Douillard, M. Jézéquel, C. Berrou, “Iterative correction of intersymbol interfer-
ence: turbo-equalization,” in European Trans. Telecommunications, vol. 6, no. 5,

pp. 507-511, Sep./Oct. 1995.

DVB, "Interaction channel for satellite distribution systems,” ETSI EN 301 790,

V1.2.2, pp. 21-24, Dec. 2000.

DVB, "Interaction channel for digital terrestrial television,” ETSI EN 301 958,
V1.1.1, pp. 28-30, Aug. 2001.

H. El Gamal, A. R. Hammons, Jr.s‘Amalyzing the turbo decoder using the Gaussian
approximation,” in IFEE Tmns [nrf?(ml‘nTﬁéory, vol. 47, no. 2, pp. 671-686, Feb.
o= Y .“

2001. i ey e

= el =

W. Feng, J. Yuan, B. S. Vue@f‘ic’",l “p -'é:'Ode:}natched interleaver design for turbo
codes,” in IEEE Trans. Comﬁdhr, VOl.“-50“, -no. 6, pp. 926-937, Jun. 2002.

G. D. Forney, “The Viterbi algorithm,” Proc. of the IEEFE, vol 61, no. 3, pp. 268-278,
Mar. 1973.

G. D. Forney, Jr., “Codes on graphs: normal realizations,” in IEEE Trans. Inform.

Theory, vol. 47, no. 2, pp. 520-548, Feb. 2001.

M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant per-
mutation matrices,” in IEEFE Trans. Inform. Theory, vol. 50, no. 8, pp. 1788-1793,

Aug. 2004.

C. Fragouli, R. D. Wesel, “Semi-random interleaver design criteria,” in Proc. Globe-

com’99, Rio de Janeiro, Brazil, pp. 2352-2356, 1999.

208

[45]

[46]

[47]

[51]

[52]

[54]

B. J. Frey, D. J. C. MacKay, “Irregular turbocodes,”in Proc. Int’l Symposium on

Information Theory, pp. 121, Jun. 25-30, 2000.
R. G. Galleger, Low-density parity-check codes, MIT Press, Cambridge, Mass., 1963.

0. Gazi, O. Yilmaz, “Fast decodable turbo codes,” in IEEE Commun. Letters, vol.

11, no. 2, pp. 173-175, Feb. 2007.

W. Gellert, H. Justner, M. Hellwich, H. Kastner, The Vnr Concise Encyclopedia of
Mathematics, Van Nostrand Reinhold, pp. 97-99, 1977.

A. Giulietti, L. Van der Perre, M. Strum, “Parallel turbo coding interleavers: avoid-
ing collisions in accesses to storage elements,” in Electronics Letter, vol. 38, no. 5,

pp. 232-234, Feb. 2002.

J. Hagenauer, E. Offer, and- L Papke,l Tﬂ"‘Ibgrative decoding of binary block and
convolutional codes” IEEE '"T rams. ;Ib'_%}‘drm'.: 'Thé'gry, vol. 42, no. 2, pp. 429-445, Mar.
1996. 2wl - F

| 1]

E. K. Hall, S. G. Wilson, Z‘S‘ﬁrgam—orienfged'"-turbo codes,” IEEE Trans. Inform.
Theory, vol. 47, no. 5, pp. 1813-1831, Jul. 2001.

K. Hasung, G. L. Stiiber, “Rate compatible punctured turbo coding for W-CDMA,”
in Proc. IEEE Int’l Conf. Personal Wireless Commun., pp. 143-147, Dec. 2000.

P. Hoeher, J. Lodge, ““Turbo DPSK?”: iterative differential PSK demodulation and
channel decodign,” in IEEE Trans. Commun., vol. 47, no. 6, pp. 837-843 , Jun.
1999.

J. Hokfelt, O. Effors, T. Maseng, “A turbo code interleaver design criterion based
on the performance of iterative decoding,” IEFEE Commun. Lett, vol. 5, no. 2, pp.

52-54, Feb. 2001.

209

[55]

[56]

[57]

[58]

[59]

[64]

[65]

C. J. Howland, A. J. Blanksby, ”A 220mW 1Gb/s 1024-b, rate-1/2 low-density
parity-check code decoder,” in IEEE Conf. on Custom Integrated Clircuits, pp. 293-
296, May. 2001.

IEEE Std 802.16e-2005, 802.16 TGe, Feb. 2006.

H. Jin, A. Khandekar, R. J. McEliece, “Irregular repeat-accumulate codes,” in Proc.

3rd Int’l Sympo. on Turbo Codes € Related Topics, Brest, France, pp. 1-8, Sep. 2000.

R. Johannesson, K. Sh. Zigangirov, Fundamentals of Convolutional Codes, The

Institute of Electrical and Electronics Engineering, Inc, 1999.

M. A. Kousa, A. H. Mugaibel, “Puncturing effects on turbo codes,” in IEE Proc.

Commun., vol. 149, pp. 132-138, Jun. 2002.

F. R. Kschischang, B. J. Frey,"_H.'—A. LoeﬂligérJ “Factor graphs and the sum-product
algorithm,” in IFEFE Tmnsir Inforfrﬁ!T iThcp@, w"fQ‘l. 47, no. 2, pp. 498-519, Feb. 2001.

T.-C. Lee, J. Cong, “The new lihe Hrr-I-G—de&gn,”l in IEEFE Spectrum, pp. 52-58, Mar.
1997. ' i

C.-C. Lin, K.-L. Lin, H.-C. Chang, C.-Y. Lee, A 3.33Gb/s (1200,720) low-density
parity check code decoder,” in Proc. ESSCIRC 2005, pp.211-214, Sep. 2005.

M. M. Mansour and N. R. Shanbhag, “High throughput LDPC decoders,” in IEEFE
Trans. VLSI Systems, vol. 11, pp. 976-996, Dec. 2003.

J. L. Massey, M. K. Sain, “Codes, automata, and continuous systems: explicit

interconnections,” IEEE Trans. on Automatic Control, AC-12:644-650, 1968.

A. Matache, S. Dolinar, F. Pollara, “Stopping rules for turbo decoders,” in TMO
Progress Report 42-142, 15 Aug. 2000.

210

[66]

[68]

[70]

[71]

[72]

R. J. McEliece, D. J. C. MacKay, J.-F Cheng “Turbo decoding as an instance of
Pearl’s “Belief propagation” algorithm,” in IEEFE J. Select. Areas Commun., vol.
16, no. 2, pp. 260-264, Feb. 1998.

H. Moussa, O. Muller, A. Baghdadi, M. M. Jézéquel, “Butterfly and Benes-based
on-chip communication networks for multiprocessor turbo decoding,” in Proc. De-

sign, Automation and Test in FEurope, pp. 654-659, Apr. 2007.

O. Muller, A. Baghdadi, M. Jézéquel, “ASIP-based multiprocessor SOC design for
simple and double binary turbo decoding,” in Proc. Design, Automation and Test

i Furope, pp. 6-10, Mar. 2006.

A. Nimbalker, K. T. Blankenship, B. Classon, T. E. Fuja, D. J. Costello, Jr., “Inter-
window shuffle interleavers for high thr_pughput turbo decoding,” in Proc. 3rd Int’l

Sympo. on Turbo Codes € Rel&ied rTﬂopz'vcls‘", B:est, France, pp. 355-358, Sep. 2003.
o+ ¥ H__.‘ Y 3

E[S)

A. Nimbalker, T. E. Fuja, D. J. Costello Jr"::, T. K. Blankenship, B. Classon,
.n 1 L — - ']i
“Contention-free interleavérs,” in<ProcInt I Symposium on Information Theory,

pp. 52, Jun. 27-Jul. 2, 2004. 5}

S. Y. Le Goff, “Signal constellations for bit-interleaved coded modulation,” in IEEFE

Trans. Inform. Theory, vol. 49, no. 1, pp.307-313, Jan. 2003.

X. Li, J. A. Ritcey, “Trellis-coded modulation with bit interleaving and iterative
decoding,” in IEEFE J. Select. Areas Commun., vol. 17, no. 4, pp. 715-724, Apr.
1999.

S. Paraharalabos, P. Sweeney, B. G. Evans, “Constant log-MAP decoding algorithm
for duo-binary turbo codes,” in Flectronics Letters, vol. 42, no. 12, pp. 709-710, Jun.
2006.

211

[74]

[75]

[76]

[79]

[30]

[81]

[82]

[83]

L. C. Perez, J. Seghers, D. J. Costello, “A distance spectrum interpretation of turbo
codes,” IEEFE Trans. Inform. Theory, Vol. 42, no. 6, pp. 1698-1709, Nov. 1996.

A. Perotti, S. Benedetto, “A new upper bound on the minimum distance of turbo

codes,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 2985-2997, Dec. 2004.

J. Pittermann, M. Lentmaier, K. S. Zigangirov, “On bandwidth-efficient convolu-
tional LDPC code,” in Proc. Int’l Sympo. on Inform. Theory, pp. 235, 29 Jun.-4
Jul. 2003.

V. Poor, S. Verdd, “Probability of error in MMSE multiuser detection,” in I[FEE
Trans. Inform. Theory, vol. 43, no. 3, pp. 858-871, May 1997.

G. Prescher, T. Gemmeke, T. G. Noll, ”A parametrizable low-power high-
throughput turbo-decoder,” in [BEE IOAS:SP 2005, vol. 5, pp. 25-28, Mar. 2005.
J. G. Proakis, Digital comﬁidhicaﬁrﬁsf-@ﬁ,"M-c'_‘GraW Hill, Inc., 2000.

R. M. Pyndiah, “Near-opti-;gﬁum Heeeé—m-gof .pfbduct codes: block turbo codes,” in

IEEE Trans. Commun., vol. 463pp. 1()03—“‘101"-0, Aug. 1998.

R. M. Pyndiah, A. Glavieux, A. Picart, S. Jacq, “Near Optimum decoding of
pruduct codes,” in Proc. IEFE Globecom’94, San Francisco, USA, vol. 1, pp. 339-
343, Nov. 28-Dec. 2 1994.

T. J. Richardson, R. L. Urbanke, “Thresholds for turbo codes,” in Proc. IEEE Int’l

Symp. Inform. Theory, Sorrento, Italy, pp. 172, June 2000.

T. J. Richardson, R. L. Urbanke, “The capacity of low-density parity-check codes
under message-passing decoding,” in IEEE Trans. Inform. Theory, vol. 47, no. 2,

pp- 599-618, Feb. 2001.

212

[84]

[85]

[36]

[87]

[38]

[89]

[90]

P. Robertson, T. Worz, “Bandwidth-efficient turbo trellis-coded modulation using
puctured component codes,” in IEEE J. Select. Areas Commun., pp. 206-218, Feb.
1998.

J. Ryu, O. Y. Takeshita, “On quadratic inverses for quadratic permutation poly-
nomials over integer rings,” in [FEE Trans. Inform. Theory, vol. 52, no. 3, pp.

1254-1260, Mar. 2006.

H. R. Sadjadpour, N. J. A. Sloane, M. Salehi, G. Nebe, “Interleaver design for turbo
codes,” IEEFE J. Select. Areas Commun., vol. 19, no. 5, pp. 831-836, May 2001.

[. Sason, S. Shamai,“Improved upper bounds on the ML decoding error proba-
bility of parrallel and serial concatenated turbo codes via their ensemble distance

spectrum,” in IEEE Trans. [nformﬂ. Theory, vol. 46, no. 1, pp. 24-47 Jan. 2000.

R. Y. Shao, S. Lin, and M. P G. Fdﬁ:“%qriéip, “.TWO simple stopping criteria for turbo
=[0I
decoding,” in IEEE Trans: Commun., 306147, 5o. 8, Aug. 1999.

|]

Jens Sparso, Henrik N. J(;tggh“‘séh,"E;ial'{ Pziaske, Steen Pendersen, and Thomas
Rubner-Petersen, “An area—efﬁ(;ieht tob”olbéy for VLSI implementation of Viterbi
decoders and other shuffle-exchange type structures,” IEEFE J. Solid-State Circuit,
vol. 26, No.2, pp. 90-97, February 1991.

J. Sun, O. Y. Takeshita, “Interleavers for turbo codes using permutation polynomi-
als over integer rings,” in IFEFE Trans. Inform. Theory, vol. 51, no. 1, pp. 101-119,
Jan. 2005.

O. Y. Takeshita, O. M. Collins, P. C. Massey, D. J. Costello, Jr., “A note on

asymmetric turbo codes,” in IEEE Commun. Letters, vol. 3, pp. 69-71, Mar. 1999.

213

[92]

[93]

[94]

[97]

(98]

[99]

0. Y. Takeshita, “On maximum contention-free interleavers and permutation poly-

nomials over integer rings,” in [EEE Trans. Inform. Theory, vol. 52, no. 3, pp.

1249V1253, Mar. 2006.

O. Y. Takeshita, “Permutation polynomial interleavers: an algebraic-geometric per-

spective,” in IEEFE Trans. Inform. Theory, vol. 53, no. 6, pp. 2116-2132, Jun. 2007.

R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, D. J. Costello “LDPC block
and convolutional codes based circulant matrices,” in IEEFE Trans. Inform. Theory,

vol. 50, no. 12, pp. 2966-2984, Dec. 2004.

A. Tarable, S. Benedetto, “Mapping interleaving laws to parallel turbo decoder

architectures,” in IEEE Commun. Letters, vol. 8, no. 3, pp. 162-164, Mar. 2004.

A. Tarable, S. Benedetto, G. Montousi; "‘quping interleaving laws to parallel turbo
and LDPC decoder architeptilfes,”y H 1ELE ."‘Tmns. Inform. Theory, vol. 50, no. 9,
o= . Y .

pp. 2002-2009, Sep. 2004. = s =

|]

M. Thul, N. Wehn, L. Rao,z"‘.‘EnéiB”l'iﬁgj'H'i;gh—throughput turbo-decoding throughput
concurrent interleaving,” in Pfdc."]EEE "Iﬁt’l Sympo. on Circuits and Systems, pp.

897-900, Phoenix, USA, May 2002.

M. J. Thul, F. Gilbert, N. Wehn, “Optimized concurrent interleaver for high-speed
turbo-decoding,” in Proc. IEEE Int’l Conf. on Electronics, Circuits and Systems,
Dubrovnik, Croatia, pp. 1099-1102, Sep. 2002.

G. Ungerboeck, “Channel coding with multilevel /phase signals,” in IEEE Trans.

Inform. Theory, vol. 28, no. 1, pp. 55-67, Jan. 1982.

[100] G. Ungerboeck, “Trellis-coded modulation with redundant signal sets part I: in-

troduction,” in IEEE Commun. Magazine, vol. 25, no. 2, pp. 5-11, Feb. 1987.

214

[101] P. Urard, L. Paumier, M. Viollet, E. Lantreibecq, H. Michel, S. Muroor, B. Gupta,
“A generic 350Mb/s turbo-codec based on a 16-states SISO decoder,” in ISSCC' Dig.
Tech. Papers, pp. 424-536, 2004.

[102] M. C. Valenti, J. Sun, “The UMTS turbo code and an efficient decoder implemen-
tation suitable for software-defined radios,” in Int’l Journal of Wireless Information

Networks, vol. 8, no. 4, pp. 203-215, Oct. 2001.

[103] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, no 2, pp. 260-269,
Apr. 1967.

[104] A. J. Viterbi, “An intuitive justification and a simplified implementation of the
MAP decoder for convolutional codes,” IEEE J. Select. Areas Commun., vol. 16,
no. 2, pp. 260-264, Feb, 1998807

E(S).

[105] K. Wu, H. Li, Y. Wang, “The influenct of ihtetleaver on the minimum distance of
.n 1 ["‘"—‘n - ,]i
turbo code,” in Electron. Lett., Nolm351ne: 17, pp. 1456-1458, Aug. 1999.

[106] C. Weiss, C. Bettstetter and Sﬂ. ‘R‘iedel,”"‘C‘ode construction and decoding of parallel
concatenated tail-biting codes,” IEEE Trans. Inform. Theory, Vol. 47, no. 1, pp.
366-386, Jan. 2001.

[107] C. Weiss, C. Bettstetter, S. Riedel, D. J. Costello, “Turbo decoding with tail-biting
trellis,” in ISSSE’'98, Pisa, Ttaly, pp. 343-348, 1998.

[108] N. Wiberg, Codes and decoding on general graphs, Ph. D. thesis, Department of

Electrical Engineering, U. Linkoping, Sweden, 1996.

[109] S. B. Wicker, Error Control Systems for Disgital Communication and Storage 2nd,

Prentice Hall Internationl, Inc., 1995.

215

[110] S. Winograd, “On computing the discrete Fourier transform,” in Mathematics of

Computation, vol. 32, pp. 175-199, 1978.

[111] W. Wolf Modern VLSI Design-System on Chip Design 3rd, Baker & Taylor Books,
2002.

[112] C.-C Wong, C.-H. Tang, M.-W. Lai, Y.-X. Zheng, C.-C. Lin, H.-C. Chang, C.-
Y. Lee, Yu T. Su, “A 0.22n]J/iter 0.13um turbo decoder chip using inter-block
permutation interleaver,” in Proc. IEEE CICC 2007, San Jose, California, USA,
Sep. 16-19, 2007.

216

6 4

217

21

6

6

2002

2005
2006
4 G 3GPP
LDPC code France
Tel ecom 2007

218

219

