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用於高傳輸率渦輪碼之 

交錯器設計 

 

研究生：鄭延修         指導教授：蘇育德 

 

國立交通大學電信工程研究學系 

 

中文摘要 

 

渦輪碼以其優異的性能獲得通訊界的青睞，但為達到較佳的效能，渦輪碼需

要進行較多次的遞回運算並搭配較長的交錯器，也因此造成較長的解碼延遲。因

此我們提出一種系統化的交錯器設計流程去解決解碼延遲與解碼效能之間的兩

難。我們的設計考量代數特性與硬體限制。從代數特性的觀點來看，此設計利用

較短的交錯器去建構較長的交錯器以保持較佳的碼距特性，我們所提出的交錯器

還可額外滿足高解碼率與平行解碼的硬體限制，其中包括避免記憶體衝突，有限

的網路複雜度以及較簡單的記憶體控制線路。所提出的交錯器有較簡單的代數形

式，也允許較有彈性的平行度並較容易適應各種不同的交錯器長度。就算並非應

用於平行解碼，在相同的交錯器長度下，本設計亦提供較佳的碼距特性。 

 

我們將區塊間交錯重排交錯器分成方塊式與串接式，針對兩者我們為重量為

二的輸入序列推導碼重邊界，此推導亦給了我們設計區塊間重排交錯器的參考依

據，我們另外證明為了達成好的碼重性質並避免記憶體競爭的代數性質。針對方

塊式區塊間重排交錯器，我們提出記憶體配置函數去描述與提供具彈性的解碼器

平行度與支援高基數後驗機率解碼器。網路導向設計概念解決了平行解碼架構下

網路複雜度的問題。我們亦提出有效率的交錯器設計流程去做大範圍的交錯器設



 ii

計。我們亦用一個超大型積體電路設計去展現本設計確可同時兼顧高速與低複雜

並提供較好的錯誤率。 

 

串接式區塊間交錯排列交錯器是針對導管型解碼架構而設計，此架構非常適

合高解碼率應用但須付出複雜度的代價。為了得到複雜度與解碼率的最佳折衷

點，我們提出了一個動態結構。我們處理其所面對的解碼排程與記憶體控制問

題，我們亦介紹了一種新穎的結合冗餘檢測碼與正負號檢測的終止機制，在一個

較佳的解碼排程，記憶體控管與終止機制下，我們可以減少硬體複雜度並在較短

的平均解碼延遲下達成更好的錯誤率。 

 

為了描述各種遞回式解碼排程與分析其特性，我們發展了一個圖形工具稱為

多階層元素圖，基於這個新工具，我們推導了可提供較佳錯誤率與使用較少記憶

體的新解碼排程，基於完整性，我們亦展出非規則性打洞樣式去提供更好的錯誤

率。 



Inter-Block Permutation Interleaver Design for High

Throughput Turbo Code

Student: Yan-Xiu Zheng Advisor: Yu T. Su

Institute of Communications Engineering

National Chiao Tung University

Abstract

With all its remarkable performance, the classic turbo code (TC) suffers from pro-

longed latency due to the relatively large iteration number and the lengthy interleaving

delay required to ensure the desired error rate performance. We present a systematic

approach that solves the dilemma between decoding latency and error rate performance.

Our approach takes both algebraic and hardware constraints into account. From the

algebraic point of view, we try to build large interleavers out of small interleavers. The

structure of classic TC implies that we are constructing long classic TCs from short

classic TCs in the spirit of R. M. Tanner. However, we go far beyond just presenting a

new class of interleavers for classic TCs. The proposed inter-block permutation (IBP)

interleavers meet all the implementation requirements for the parallel turbo decoding

such as memory contention-free, low routing complexity and simple memory addressing

circuitry. The IBP interleaver has simple algebraic form; it also allows flexible degrees of

parallelism and is easily adaptable to variable interleaving lengths. Even without high

throughput demand, the IBP design is capable of improving the distance property with

increased equivalent interleaving length but not the decoding delay except for the initial

blocks.

We classify the IBP interleavers into block and stream ones. For both classes we

derive codeword weight bounds for weight-2 input sequences that give us important
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guidelines for designing good IBP interleavers. We prove that the algebraic properties

required to guarantee good distance properties satisfying the memory contention-free

requirement as well. For block IBP interleavers, we propose memory mapping func-

tions for flexible parallelism degrees and high-radix decoding units. A network-oriented

design concept is introduced to reduce the routing complexity in the parallel decoding

architectures. We suggest efficient interleaver design flows that offer a wide range of

choices in the interleaving length. A VLSI design example is given to demonstrate that

the proposed interleavers do yield high throughput/low complexity architecture and, at

the same time, give excellent error rate performance.

The stream-oriented IBP interleavers are designed for the pipeline decoding architec-

ture which is suitable for high throughput applications but has to pay the price of large

hardware complexity. In order to achieve optimal trade-off between hardware complexity

and decoding throughput, a dynamic decoder architecture is proposed. We address the

issues of decoding schedule and memory management and introduce the novel stopping

mechanisms that incorporate both CRC code and sign check. With a proper decoding

schedule, memory manager and early-stopping rule, we are able to reduce the hardware

complexity and achieve improved error rate performance with a shorter average latency.

In order to describe various parallel and pipeline iterative decoding schedules and

analyze their behaviors, we develop a graphic tool called multi-stage factor graphs.

Based on this new tool we derive a new decoding schedule which gives compatible error

rate performance with less memory storage. For completeness, we show some irregular

puncturing patterns that yield good error rate performance.
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Chapter 1

Introduction

The invention of turbo codes by Berrou et al. in the early 1990s [13] has ignited

a revolution within the coding research community. The underlying turbo principle

has since crossed the borderline of coding theory and made far-reaching impacts on

various scientific disciplines like communications, computer science, statistics, physics

and bioinformatics, to name just a few.

1.1 Turbo decoding

The now classic turbo code is composed of two identical short recursive systematic

convolutional codes and a random-like interleaver. A message sequence and its inter-

leaved version are separately encoded by two component encoders and the resulting

codeword consists of the original sequence (systematic part) and two parity sequences.

Each parity sequence along with the systematic part or its interleaved version forms a

conventional convolutional codeword.

The original decoder proposed by Berrou et al. has a serial structure with identical a

posteriori probability (APP) decoders. Maximum a posteriori probability (MAP) algo-

rithm [8] is iteratively applied to decode each convolutional code and produce reliability

estimates about the systematic bits. The reliability estimate, which is universally called

extrinsic information now, generated by one APP decoder is interleaved or de-interleaved

and then passed on to the other APP decoder for use as the a priori information needed

1



in its MAP decoding. Such a turbo-like iterative feedback decoding procedure divides

the formidable task of maximum likelihood (ML) decoding of the complete codeword

into much simpler subtasks of computing the log-likelihood ratio (extrinsic information)

associated with each systematic bit locally and exchanging this information between

each other. It turns out this turbo decoding scheme is very effective and the result-

ing performance comes very close to that of the corresponding ML decoder. Because

of its outstanding performance and moderate hardware complexity, the class of turbo

codes has found its way into industrial standards like 3GPP [1, 2, 3], IEEE 802.16 [56],

DVB-RCS/RCT [37, 38], etc.

The turbo decoding process was formulated by Hagenauer et al. [50] as a soft-

in soft-out inference process that accepts soft inputs–including a priori and channel

values–and generate soft outputs which consists of the a priori and channel values and

the extrinsic values. The extrinsic value is then used as an a priori value for the ensuing

decoding round. The turbo decoding procedure and the way the extrinsic information

is passed is often referred to as the turbo principle. This principle has been applied

to construct and decode serial concatenated convolutional codes [10], turbo TCMs [84],

turbo BCH codes [109], turbo product codes or block turbo codes (BTCs) [81, 80],

turbo Reed-Muller codes [109], and asymmetric turbo codes [91] (which has different

component convolutional codes and offers better performance). Replacing the inner code

of a serial concatenated coding system by a differential phase shift keying modulator or

signal mapper, one obtains turbo DPSK [53] or iterative-decoded bit-interleaved coded

modulation (ID-BICM) [72, 71]. Modelling a channel with memory as a linear FIR filter

or equivalently a finite-state machine so that the combination of coding and channel

effects becomes a serial concatenated system with the channel performing inner coding,

one can detect the received signal by iteratively equalizing the channel effect and then

decoding, resulting in turbo equalization [36], turbo space-time processing [6] and turbo

(iterative) MIMO detection [7], [19]. By using more than two component codes and
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multiple interleavers, Boutillon and Gnaeding [22] investigated the structure of multiple

turbo codes. Replacing the one-to-one permutation function by a many-to-one mapping,

Frey and MacKay [45] proposed the so-called irregular turbo codes. stream-oriented

turbo code was proposed by Hall [51], a pipeline architecture was studied in [101].

1.2 Performance analysis and graph codes

The reasons for the extraordinary performance of the TC, although unclear initially,

has been unraveled through many excellent and intensive research efforts. Benedetto and

Montorsi [9] showed that the iterative (turbo) decoding algorithm is capable of achieving

near-ML performance and the error rate performance improves as the interleaver length

increases. They also found that the interleaver length can be traded with component

code’s complexity and that the number of nearest neighbors rather than the minimum

distance dominates the performance, at least when SNR is small. Perez et al. [74]

analyzed the TC ensemble (over all possible interleavers), examined the code’s distance

spectrum and came to a similar conclusion that the error floor occurs at moderate to

high SNR is due to the relatively small free distance of the component code and its

excellent performance at low SNR is resulted from spectrum thinning. They found that

the low weight codewords, in particular those generated by weight-2 input sequences,

dominate the error rate performance especially at the error floor region.

The convergence behavior of the turbo decoding algorithm was analyzed by Richard-

son [82, 83] from a geometric viewpoint. He also suggested a density evolution approach

to compute the thresholds for low density parity check (LDPC) codes. The concept of

density evolution was later extended to be applicable to turbo codes [82]. The anal-

ysis of El Gamal and Hammons [39] is based on the fact that the extrinsic values at

the output of an APP decoder is well approximated by Gaussian random variables and

channel values are also Gaussian distributed when the only noise source is AWGN–an

observation first noticed by Wiberg [108]. As a Gaussian distribution is completely char-
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acterized by its first two moments, the density evolution information can be replaced

by SNR transfer. Both [39] and Divsalar et al. [34] use similar SNR measures to study

the convergence of turbo decoders. Extrinsic information transfer (EXIT) chart [27, 28]

proposed by ten Brink plots the increase of extrinsic information through the component

decoders based on the measure of mutual information between extrinsic information and

the associated information symbol or code symbol.

A special class of graphs called factor graphs [60, 42] can be used to describe the

behavior and structure of a turbo-like algorithm. A factor graph decomposes the algo-

rithmic structure into function nodes and variable nodes with edges connecting these

function nodes. McEliece et al. [66] discovered the connection between the turbo decod-

ing algorithm and the belief propagation (BP) algorithm in artificial intelligence. The

graphic and BP interpretations of the turbo decoder have great impacts and opened new

arenas on many fronts: new decoding algorithms, schedules and new (graph) codes were

proposed, a unified view on iterative decoding algorithm, Kalman filter, the forward-

backward, Baum-Welch, and Viterbi algorithms become possible, connection between

turbo codes and LDPC codes was established, that amongst coding theory, statistical

inference, physics was exploited to the benefits of all involved research communities .

1.3 Low latency/high performance interleavers

The role played by the interleaver in determining the decoding latency, weight dis-

tributions and performance of a TC is of critical importance. A TC usually employs

a block-oriented interleaving so that the message-passing process associated with an it-

erative decoder is confined to proceed within a block. The performance of such a TC

improves as the block size increases. This is in part due to the fact that the range (inter-

leaving length) of the extrinsic information collected for decoding increases accordingly.

But the interleaving size along with the number of iterations are the dominant factors

that determine the decoding latency and complexity which, in turn, are often the main
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concerns that precluding the adoptability of such codes in high rate communication or

storage applications.

The semi-random interleaver [44] increases the codeword weights corresponding to

the weight-2 input sequences but not those for weight-4 input sequences. The code

matching interleaver of [40] considers the influence of component codes and extended

the optimization criterion to include the weight-4 input sequences, yielding performance

superior to that based on a semi-random interleaver. The methods proposed in [54, 86]

are based on the analysis of the correlation of extrinsic information resulted from cycles

in the code graph. They design interleaving rules to reduce the cycle effect and obtain

slightly-improved performance.

A common shortcoming of these interleaver designs is their lack of an algebraic

structure. A look-up table is therefore needed in implementation. Structural interleavers

are now abundant: 3GPP Rel’99 and Rel’6 interleaver [1, 2], dithered relative prime

interleaver [30, 31], dithered golden interleaver (DRP) [30], almost regular permutation

(ARP) [12, 37, 38, 56], quadratic polynomial permutation (QPP) [90, 85, 92, 93, 3], to

name the important ones. These interleavers are generated by few parameters and the

corresponding storage requirements are moderate.

Besides a simple algebraic structure, we notice a recent trend indicating that high

throughput (¿ 100 Mbps) turbo decoders [3, 56] are in great demand. The low la-

tency/high throughput applications require that the interleaver be such that the cor-

responding turbo code is parallel decodable. Some design issues arise because of this

requirement. Firstly, we notice that since a parallel decoder consists of many APP de-

coders, each responsible for decoding a (non-overlapping) part of the incoming block,

these decoders would simultaneously and periodically access the memory banks that

store the extrinsic information and channel values through hardwires. Thus the parallel

decodable requirement implies that the interleaver structure must be memory contention-

free and allow simple interconnecting network for hardwire routing. Next, practical
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system design concerns call for flexible degrees of parallelism and arbitrary continuous

interleaving length so that one has flexible choice on both the number of APP decoders

and the frame (packet) size.

Random interleavers, although offer satisfactory error rate performance, incur serious

memory contention. Implementing temporary memory buffer [49] to avoid memory

contention is a viable solution but the storage grows linearly with the number of APP

decoders. Resolving the contention by a sophisticated memory mapping function [95]

requires a table for each interleaving length. The table requires memory storage for

addressing and memory control which results in extra hardware complexity. A large

number of interleaving lengths thus need many memory addressing tables and causes

increased hardware complexity. New industrial standards such as 3GPP [1, 2, 3], DVB-

RCS/RCT [37, 38], IEEE 802.16 [56] do not favor this approach for the demand of

large number of interleavers and low complexity memory addressing. A variable length

interleaver structure that resolves memory contention with on-fly generated memory

mapping function is an efficient and welcome approach.

Some of the existing interleavers like the DRP, ARP and QPP do have simple alge-

braic structures and possess the memory contention-free property, the DRP even yields

a minimum distance that is close to the known upper bound, resulting in outstanding

performance especially for frame error rate below 10−6. However, none of them takes

into account the other requirements which are of concern mainly to the circuit design

community.

A fully-connected network can be used but the complexity grows in proportion to

the square of the parallelism degree. The average routing length also increases, bringing

about longer routing latency and higher power consumption. The network configuration

is close related to the interleaving/deinterleaving rule used. Irregular routing control

should be avoid as it necessitates complex controlling signalling. For more detailed

discussion on the routing network complexity and network configuration signalling please
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refer to [78, 68, 67, 33]. Memory addressing also depends on interleaver design. [70, 95,

96] have investigated the memory addressing and permutation table storage problems.

3GPP Rel’99 and Rel’6 [1, 2] applies the prime interleaver as the intra-row permutation

and this interleaver needs storage for the permutation table of each row. The intra-

memory bank addressing induces storage complexity if the table can not be generated

on-fly. Therefore 3GPP LTE QPP [3] avoids the storage and replaces the interleaver.

Popular hardware-friendly designs that avoids the above-mentioned storage requirement

ARP [12, 37, 38, 56] and QPP [90, 85, 92, 93, 3]. Some parallelization methods are

suggested in [49, 20, 98, 97].

1.4 Statement of purpose: main contributions

The above discussion shows designing the interleaver for a TC for wireless applications

has to consider both error rate performance and hardware/memory complexity. The

main purpose of this thesis is to present a systematic and unified interleaver design

flow and guideline that enable one to construct an interleaver of arbitrary practical

lengths which not only meet all the above requirements but also guarantee little or no

performance loss with respect to the that achievable by the best known code of the same

or comparable interleaving lengths. To distinguish the TC without any constraints and

the TC applying out interleaver, we refer the former class as the classic TC.

The structure we propose is called inter-block permutation (IBP) interleaver. The

IBP technique can be regarded as a simple way to build a larger interleaver based on

smaller interleavers. It performs an extra inter-block permutation on those blocks that

have already been interleaved by intra-block permutation. As the interleaver along

with the component code determines the structure of classic TC, the concept of IBP

interleaver is also similar to Tanner’s approach for constructing a large (long) code with

small codes. The proposed interleaver structure is general enough to encompass all

known important interleavers as special cases yet viable for generating new solutions.
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We summarize the main contributions of our work documented in this thesis as

follows.

1. We present a unified approach and design flow to build interleavers that not only

have good distance properties but also meet all the major implementation re-

quirements for high throughput turbo decoders. More specifically, the resulting

interleaver structure (i) is maximum memory contention-free, (ii) allows low com-

plexity routing network structure and simple signalling circuits, (iii) offers flexible

choice in the degrees of parallelism, (iv) is easily tailored to serve the continuous in-

terleaving length requirement, (v) supports the high-radix APP decoder structure

and (v) includes all existing good interleavers as its subclasses.

2. For a stream-oriented application, our technique overcomes the dilemma between

increasing the range of message exchange and extrinsic information collection and

reducing the interleaving size (and therefore the decoding delay). It outperforms

classic TCs with the same decoding delay and offers new design choices and trade-

offs that are unavailable for classic TC design.

3. We derive codeword weight bounds for weight-2 and weight-4 input sequences.

More importantly, we use these bounds and computer simulations to prove that

the advantages mentioned in 1-2 are achieved with little or no loss in error rate

performance.

4. We present a dynamic corporative pipelined decoder structure that incorporate an

efficient memory manager and a class of highly reliable early-stopping rules. The

proposed decoder structure gives improved performance with reduced latency and

memory requirement.

5. For non-parallel decoding, the IBP interleaver is still capable of reducing the de-

coding latency while maintaining satisfactory performance.
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6. A graphic tool called multistage factor graphs is developed to analyze the behavior

of parallel and pipelined decoding schedules. It is applied to design a new pipelined

decoding schedule with reduced memory requirement and can also be used to design

better schedule for decoding LDPC codes.

1.5 Existing interleavers as instances of IBP inter-

leaver

For a classic TC using an IBP interleaver, the encoder partitions the incoming data

sequence into L-bit blocks upon which the IBP interleaver performs intra-block and

then inter-block permutations. For example, the IBP interleaver may move contents of

a block either to coordinates within the same block or to its 2S immediate neighboring

blocks so that the IBP-interleaved contents of a block are spread over a range of 2S + 1

blocks centered at the original block. Such an IBP interleaver is said to have the (left

or right) IBP span S.

For any reasonable good interleaver of size N , partitioning each N -bit group into L =

⌊N/W ⌋-bit blocks immediately transforms the interleaving rule into an IBP structure

like that shown in Fig. 1.1. Such a structure can also be found in other codes such

as product codes. Consequently, all classic TCs and product codes can be regarded as

subclasses of inter-block permutation turbo codes (IBPTCs). There are, however, two

major distinctions between classic TCs and most other subclasses of IBPTCs.

Firstly, for a classic TC with an interleaving length of W blocks, encoding within each

disjoint group of W consecutive blocks is continuous across blocks while a product code

encodes each row (column) separately (discontinuously). More specifically, the product

code encoder divides information stream into multiple blocks and independently encodes

each block. In general, the class of IBPTCs can encode each block either separately or

continuously. Secondly, an interleaver used in a classic TC, after the above virtual regular

partition, usually yields a non-regular local interleaving structure, i.e., the interleaving

9
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Figure 1.1: An inherent IBP structure can be found in most practical interleavers.

relation between a block and other blocks in the same group does not follow the same

permutation rule. In contrast, product codes and the proposed IBPTCs have much more

regular local interleaving structures. An appropriate regular local interleaving (and dein-

terleaving) structure makes implementation easier and, as mentioned before, provides

properties that are useful for parallel decoding, e.g., (memory access) contention-free

and simple routing requirement. Moreover, with or without parallel decoding, as the ex-

amples in Section 6.2 show, it also results in reduced decoding delay. Regular (identical)

local interleaving structure supports large range of interleavers, makes the resulting IBP

interleaver expandable and minimize the associated implementation cost, e.g. 3GPP

LTE QPP [3], IEEE 802.16 [56].

1.6 Overview of chapters

In order that this thesis be self-contained we provide major background material

related to our work in Chapter 2. Two fundamental guidelines are provided in Chapter

3 for constructing IBP interleavers with good distance and maximum contention free

properties. The first rule demands that the IBP rule be block-invariant and identical

intra-block permutation e used. The second rule implies that the permutation should

be periodic within its span. Following these and other minor guidelines we are able to

10



construct interleavers that meet most of the hardware requirements while maintaining

good distance properties. Searching for large range of interleaving lengths also become

easier.

We divide the class of IBP interleavers into block-oriented IBP (B-IBP) interleaver

and stream-oriented IBP (S-IBP) interleaver. The B-IBP interleavers are treated in

Chapter 4 while Chapter 5 deals with the stream-oriented IBP (S-IBP) interleavers. The

B-IBP interleavers include popular interleavers such as the ARP and QPP and usually

have hardware constraints more stringent than those on stream ones. Encoding variable

information lengths with the same hardware architecture. We suggest simple memory

mapping functions that support flexible choices in the number of memory banks and APP

decoders. An alternate decomposition of an IBP rule called reverse IBP manner offers

additional flexibility. In order to support the high-radix APP decoder and the generalized

maximum memory contention-free property, we impose two constraints on the intra-

block permutation and obtain simple and easily generated memory mapping functions.

Our network-oriented design allows low complexity butterfly network and simple routing

control signalling. To deal with variable message lengths without throughput loss, a

shortening and puncturing algorithm is proposed to maintain both performance and

hardware implementation edge. We provide an interleaver design with the interleaving

length ranging from 40 to 6144 bits. A VLSI implementation example based on this

design with a specific interleaving length of 4096 bits is also given.

We prove that our S-IBP interleaver construction gives larger codeword weight upper-

bounds for the weight-2 and weight-4 input sequences than those of classic TCs with

the same interleaver latency. Our S-IBP interleaver is well suited to pipeline decoder

architectures [101]. To improve both hardware/memory efficiency and error rate perfor-

mance we propose a dynamic decoder architecture which includes a memory manager

and an early-stopping mechanism. The decoder also admits new decoding schedules and

offers trade-off between throughput and hardware/memory complexity.

11



In Chapters 6 we discuss issues concerning the pipelined decoders. Early-stopping in

iterative decoding is an critical and very practical issue. Regarding the iterative decod-

ing as an instance of sequential decision processes, early-stopping reduces the number

of iterations (and thus the computation complexity/power) at high SNR without per-

formance loss at low SNR. CRC code, sign check, soft value (cross entropy) are some of

the more popular stopping schemes [50, 88, 65, 4]. The CRC code offers more reliable

stopping decision than other schemes do at the cost of increased overhead and reduced

bandwidth efficiency. The proposed multiple-round stopping mechanism enhances the

stopping reliability with a smaller overhead, leading to the improved latency and error

rate performance.

Judicial design of decoding schedules is crucial for the parallel or pipeline turbo

decoding. Conventional factor graphs are incapable of describing such decoding sched-

ules for turbo codes and LDPC codes. In Chapter 7, we develop a new graphic tool

called the multi-stage factor graphs to describe the the time-evolving message-passing

and evaluate the performance of various decoding schedules for the parallel and pipeline

decoders. A good decoding schedule is important in rendering satisfactory performance,

e.g., the horizontal shuffled belief propagation algorithm [63] outperforms conventional

belief propagation algorithm [60] in terms of the number of iterations required to achieve

a desired error rate performance. Multi-stage factor graphs can be used to show the cy-

cle effect and design new decoding schedule to avoid short cycles. We propose a novel

decoding schedule for a stream-oriented IBPTC that requires much less memory storage

and slightly increased computation but yields similar error rate performance. Finally,

in Chapter 8 we summarize the main results of our work.
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Chapter 2

Fundamentals

This chapter provides the backgrounds of this thesis. Channel coding embedded in a

digital communication system [79] overcomes channel impairments, e.g. thermal noise,

multi-path fading, etc. Turbo code [13] is an important candidate among these chan-

nel coding schemes. This code possesses better error rate performance comparing with

the convolutional code with constraint length 41 [79] and can apply iterative decoding

algorithm with less complexity to achieve the performance comparing to the Viterbi

algorithm. The algorithm adopts maximum a posteriori (MAP) [8] algorithm to gen-

erate the extrinsic information for successive decoding as the a priori information and

corrects errors after several iterations. In order to further reduce implementation com-

plexity, many researches [50, 104] focus on the MAP algorithm simplification. Due to

high performance with low computation complexity, many standards adopt turbo code,

e.g. 3GPP Rel’99 and Rel’6 [1, 2], 3GPP LTE [3], DVB-RCS[37], DVB-RCT[38] etc.

3GPP LTE further requires the throughput exceeding 100Mbps and high throughput

turbo decoder architecture becomes important topic; interleaver determines the imple-

mentation complexity and error rate performance. Theoretical performance analysis and

codes characteristics are also of our interest. The factor graph [60, 42] expounds the

structure of turbo code and some decoding algorithms are derived. Given the graph

and decoding algorithm, the extrinsic information transfer (EXIT) chart [27, 28] and

density evolution [34] explain the convergence behavior at various signal-to-noise ratios
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Figure 2.1: (a) The block diagram of a generic digital communication system; (b) the
block diagram of a simplified channel model; (c) the block diagram of a discrete memo-
ryless channel model.

(SNRs) and help us choosing a good code. We can further modify the graph to acquire

some distance bounds [75] which dominate the performance at high SNR. The following

sections detail these implemental and theoretical backgrounds.

2.1 Digital communication system

Fig. 2.1 (a) shows a generic digital communication system block diagram which

includes three parts: 1) channel; 2) modulation, demodulation, mapper and de-mapper;

3) error correction and detection. Channel imposes non-ideal effects and distorts the

modulated continuous waveform. Demodulator and de-mapper convert the distorted

waveform into samples. Error correction recovers these samples and renders decoded
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sequences. At last error detection verifies the correctness of decoded sequences. The

following subsections will elaborate these three parts.

2.1.1 Discrete memoryless channel model

A memoryless discrete channel model is characterized by a multiplicative distortion

and a complex AWGN in Fig. 2.1 (c) and the received sample is

xk = αk · zk + nk, (2.1)

where A = {αk} and N = {nk} are identical independent Rayleigh (Rician) distributed

random variables and complex Gaussian distributed random variables with C(0, N0)

respectively.

This model can replace channel, modulator and de-modulator in Fig. 2.1 (a). We

combine modulator and demodulator to construct a discrete channel model which is

shown in Fig. 2.1 (b). The thermal noise introduced by component devices can be

modelled by the white Gaussian random process. As for the non-selective fading [79],

we model fading process α(t) as a Rayleigh or Rician distributed random process and

the value is almost invariant during each symbol period. As we apply a perfect channel

interleaver between de-mapper and channel decoder, the correlation between adjacent

modulation symbols diminishes after channel de-interleaving. Since the fading attenu-

ation is uncorrelated and the thermal noise is white, the channel model can be further

simplified as shown in Fig. 2.1 (c).

Time domain dispersive multi-path fading effect introducing inter-symbol interfer-

ence (ISI) also can be modelled by a memoryless discrete channel model as we apply

orthogonal frequency division modulation (OFDM). OFDM applies a cyclic-prefix (CP)

to maintain the longest path delay within the interval of the CP and we can sample a

symbol period without interferences from other symbols and the ISI effect disappears.

The frequency domain amplitude attenuation incurred from all paths can be modelled

as a Rayleigh distributed random variable if there is no line of sight. If there is a line
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of sight, the distribution is Rician distributed probability density function (pdf). The

model in Fig. 2.1 (c) can be re-applied.

The shadowing effect is a long-term effect and generally lasts more than one coding

block. The effect can be modelled into the noise strength. Therefore the simplified

memoryless discrete channel model properly covers most scenarios and this thesis will

apply this model as our simulation assumption.

2.1.2 Mapper and de-mapper

Mapper bridges channel encoder and modulator; de-mapper generates log-likelihood

or log-likelihood ratio for code bits corresponding to a sample xk. Mapper maps n code

bits into a modulated symbol Sm ∈ S by a mapping rule

Φ : {bm,0, bm,1, . . . , bm,n−1} → Sm, (2.2)

where bi,j ∈ {0, 1} and |S| = 2n. Based on the mapping rule, de-mapper can apply

maximum a posteriori (MAP) algorithm to generate a log-likelihood ratio of the tth

code bit corresponding to the ith mapping bit as

L(ct) = log

∑
bm,i=0,bm,j ,j 6=i p(Sm|xk)∑
bm,i=1,bm,j ,j 6=i p(Sm|xk)

. (2.3)

L(ct) is generally applied as yt to the following channel decoder.

We further consider binary phase shift keying (BPSK) and the mapping rule is

Φ :

{
b0,0 = 0 → S0 = +1
b1,0 = 1 → S1 = −1

. (2.4)

If P (ct = 0) = P (ct = 1) = 0.5 and the pdf of x given Sm and channel attenuation α is

pX|Sm,α(x|Sm, α) =
1√

2πσ2
exp− (x−αSm)2

2σ2 (2.5)

with σ2 = N0/2, the log-likelihood ratio in eqn. (2.3) with k = t becomes

L(ct) = log
p(S0|xt, αt)

p(S1|xt, αt)
= log

pX|S0,α(xt|S0, αt)

pX|S1,α(xt|S1, αt)
+ log

p(S0)

p(S1)
=

4αtxt

N0

. (2.6)
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2.1.3 Error control system

Error correction and detection are two main error control functions. Error cor-

rection function applies channel encoder and decoder to overcome channel distortion.

Channel encoder generates coded sequence and channel decoder recovers the distorted

sequence after channel corruption. Convolutional code, turbo code, LDPC code and

Reed-Solomon code are now popular error correction codings. Error detection function

generally relies on a cyclic redundancy check (CRC) code [109]. The CRC code encoder

adds the error check parities behind information sequence and error detection function

verifies the consistency between the decoded information sequence and parities. If the

error verification fails, error control system discards decoded sequence or requests re-

transmission to render higher successful transmission probability. These two functions

enhance and guarantee data transmission robustness via channel corruption.

2.2 Convolutional code

Convolutional code encoder features simple structure which can be realized by finite

shift registers and adders and is shown in Fig. 2.2. The codeword length is not stringently

constrained comparing to the block code, e.g. RS code. The simple structure results

in that the Viterbi algorithm [103, 41], soft decoding algorithm, is applicable and the

resultant performance is better than the performance of RS code. In order to expound

the code structure, we provide some mathematical notations at first.

2.2.1 Mathematical notations

Denote by F2[D] the ring of binary polynomials, where the power of D is nonnegative

and the coefficients are in Galois field GF (2), e.g. p(D) =
∑∞

i=0 piD
i ∈ F2[D] and

pi ∈ GF (2). Multiplication of two polynomials is a polynomial multiplication with

coefficient operation performed under GF (2). Since the power of D is nonnegative, 1 is

the only only element with its inverse and F2[D] is a ring.
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Figure 2.2: (a) The controller canonical form; (b) The observer canonical form.

F2(D) denotes the field of binary rational functions. Each element in F2(D) is ex-

pressed by x(D)
y(D)

, where each pair x(D), y(D) ∈ F2[D] with y(D) 6= 0. Apparently all

elements x(D)
y(D)

∈ F2(D) are invertible and they form a field.

We further denote by Fa×b
2 [D] and Fa×b

2 (D) the a× b matrix of ring of binary polyno-

mials and the a×b matrix of the field of binary rational functions respectively. All entries

in Xa×b(D) ∈ Fa×b
2 [D] and Y a×b(D) ∈ Fa×b

2 (D) belong to F2[D] and F2(D) respectively.

If a = 1, the notations are simplified as Fb
2[D] and Fb

2(D).

2.2.2 Encoder

A rate R = a/b convolutional code encodes input sequence u = u0u1u2 . . . and gener-

ates code sequence c = c0c1c2 . . . , where ui = {u1
i , u

2
i , · · · , ua

i } and cj = {c1
j , c

2
j , · · · , cb

j}.
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A sequence can be represented by the delay operator D (D-transform), and we have

u(D) = u0 + u1D + u2D
2 + · · · , (2.7)

c(D) = c0 + c1D + c2D
2 + · · · , (2.8)

where u(D) ∈ Fa
2[D] and c(D) ∈ Fb

2[D]. The encoder input and output relation can be

expressed as

c(D) = u(D)G(D), (2.9)

where G(D) ∈ Fa×b
2 (D) is a transfer function matrix. The matrix has a form

G(D) = Q−1(D)F(D)

= (Q0 + Q1D + · · · + QmDm)−1(F0 + F1D + · · · + FmDm), (2.10)

where Q(D) ∈ Fa×a
2 [D] and F(D) ∈ Fa×b

2 [D]. The polynomial matrix Q(D) is a diagonal

matrix with Q0 = Ia, Ia is an a × a identity matrix, i.e. the elements off the diagonal

entries are zero. The matrix G(D) can be realized in the controller canonical form shown

in Fig. 2.2 (a). Observer canonical form is another way in realizing transfer function

matrix. We substitute eqn. (2.10) into eqn. (2.9) to render

c(D) = u(D)(F0 + F1D + · · · + FmDm) + c(D)(Q1D + · · · + QmDm). (2.11)

Fig. 2.2 (b) shows the corresponding linear circuit which is the observer canonical form

for a convolutional code encoder. Both controller and observer forms realize the transfer

function matrix.

From the above description, we give a formal definition of a convolutional code as

follows.

Definition 1 A code rate R = a/b (binary) convolutional code encoder over the field of

rational functions F2(D) is a linear mapping

Φcc : Fa
2(D) → Fb

2(D)

u(D) 7→ c(D)
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which can be represented as

c(D) = u(D)G(D),

where G(D) ∈ Fa×b
2 (D) is an a× b transfer function matrix of rank a and c(D) is a code

sequence generated from the information sequence u(D).

Systematic recursive convolutional code is of our further interest. The systematic

code has information bits in a code sequence and the transfer function matrix G(D) can

be

G(D) = [Ia R(D)], (2.12)

where R(D) ∈ F
a×(b−a)
2 (D). The recursive code generates large number of nonzero code

bits if u(D)Q−1(D) /∈ Fa
2[D]. For both structures, we gives definitions as below.

Definition 2 A rate R = a/b convolutional code encoder whose information sequence

appears unchanged among the code sequences is called a systematic encoder.

Definition 3 A rate R = a/b convolutional code encoder whose transfer function matrix

G(D) has Q(D) 6= Ia is a recursive encoder.

2.2.3 State space, state diagram and trellis representation

The encoder shown in Fig. 2.2 (a) is finite state machine and the values in regis-

ters characterize the state space Σ, i.e. σ = (σ1, σ2, · · · , σm) ∈ Σ. When information

sequence is input, the state varies with time. In order to record the state change, we

further define the state at time t as σt = (σt
1, σ

t
2, · · · , σt

m) ∈ Σ. The input and output

relation at the time t is

σt+1 = σtA + utB, (2.13)

ct = σtC + utD, (2.14)

where A is the (m×m) state matrix, B is the (a×m) control matrix, C is the (m× b)

observation matrix and D is the (a × b) transition matrix [64]. These two equations
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Figure 2.3: (a) The encoder associated with G(D) = (D + D2, 1 + D + D2); (b) state
diagram; (c) trellis segment.

are state space representation of a convolutional code encoder and show the state time

evolution involving an input information sequence.

Two kinds of graphical representations, state diagram and trellis diagram, can char-

acterize the encoding and facilitate decoding algorithm derivation. The state diagram

draws the state transition of the encoder. If there is a transition from the state σ to

state σ′, we draw a directed edge from state σ to state σ′ and note “input information

bits/output code bits” on the edge to represent input/output relations. However the

state diagram does not represent the state transition involving with time. We draw a

trellis segment associate with states σt and σt+1. If there is a transition from state σt to

state σt+1, we plot a directed edge from state σt to state σt+1 and note “input informa-

tion bits/output code bits” on the edge. Then we connect trellis segments into a trellis

diagram to represent input information sequence, code sequence and state transition

sequence involving with time. Owing to the trellis representation, the Viterbi [103, 41]

and BCJR [8] algorithms are easily visualized and demonstrated.
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Example 1 Fig. 2.3 (a) shows a rate R = 1/2 convolutional code with the transfer

function matrix G(D) = (D + D2, 1 + D + D2), where the associated the state matrix,

control matrix, observation matrix and transition matrix are

A =

[
0 1
0 0

]
, B =

[
1 0

]
,C =

[
1 1
1 1

]
, and D =

[
0 1

]
.

(2.15)

Figs. 2.3 (b) and (c) depict the graphical representations. According to eqns. (2.13) and

(2.14), we draw the state diagram shown in Fig. 2.3 (b). A trellis segment associated with

σt and σt+1 is plotted in Fig. 2.3 (c). Given an initial state condition and a termination

scheme, a complete trellis diagram can be obtained by connecting these trellis segments.

2.2.4 Termination

Tail-padding and tail-biting are two popular termination methods for a convolutional

code encoding an information sequence of finite length L. The tail-padding terminates

codeword at a specific state by padding bits and avoids an unknown end state on decoder

side. The tail-biting keeps the initial state and end state the same and the decoder can

guess the both states. However the first scheme decreases code rate and the second

scheme induces extra decoder computational complexity.

The tail-padding assigns extra bits behind an information sequence to terminate the

end state to all zero state. The bit assignment is different for the recursive and non-

recursive convolutional codes. For the non-recursive code, we pad a ·m zeros behind an

information sequence and the end state becomes the all zero state. However padding

a · m zeros behind an information sequence does not guarantee the end state being the

all zero state for the recursive code. In order to find the padding bits for the recursive

code, we can solve the following equation with σL+m = 0 to obtain the padding bits
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(ũL, ũL+1, · · · , ũL+m−1).

σL+1 = σLA + ũLB
σL+2 = σL+1A + ũL+1

L B
...

σL+m = σL+m−1A + ũL+m−1B

(2.16)

Solving the eqn. (2.16) seems hard but the padding bits can be acquired easier. Take the

encoder shown in Fig. 2.2 (a) as an example, the padding bits are ũL+j =
∑m

i=1 σL+i
j Qi,

where 0 ≤ j < m.

The tail-biting for a non-recursive convolutional code acquires the end state by flush-

ing the tail bits of an information sequence into an encoder. Because the encoder is

non-recursive, the end state only depends on the last a · m bits of an information se-

quence. We can flush (uL−m,uL−m+1, · · · ,uL−1) into an encoder and initial state is

σ0 = σL =
∑m−1

s=0 usBA(m−1)−s. Take the encoder shown in 2.2 (a) as an example, the

initial state is (uL−m,uL−m+1, · · · ,uL−1).

The tail-biting method for the recursive code requires double computation complexity

to encode information sequence twice: the first encoding obtains the initial state and

the second encoding generates a codeword. Denote by σt,[zi] and σt,[zs] the zero-input

solution and the zero-state solution. Eqn. (2.13) implies

σt = σt,[zi] + σt,[zs] = σ0At +
t−1∑

s=0

usBA(t−1)−s = σ0At + σt,[zs]. (2.17)

The zero-state solution is σt,[zs] =
∑t−1

s=0 usBA(t−1)−s. When t = L and σ0 = σL, we

have

σ0 = σL = σ0AL + σL,[zs]. (2.18)

If the matrix I + AL is invertible, we have the initial state as

σ0 = σL,[zs]
(
I + AL

)−1
. (2.19)

The encoder acquires the zero-state solution σL,[zs] by inputting information sequence

and calculates the initial state σ0 by eqn. (2.19). Then the encoder applies the initial

state σ0 to generate a codeword.
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The length of an input information sequence determines if the tail-biting is applicable.

An invertible matrix I+AL is the necessary condition to calculate the initial state σ0. If

there exists an L such that I + AL = 0, the initial state can not be found and encoding

fails. Take 3GPP turbo code [1] as an example. The state matrix is A =




0 0 1
1 0 0
0 1 1




and A7 = I3. It can not encode information sequence when the length is the multiple

of 7.

2.2.5 Soft output decoding algorithm for convolutional code

Soft output convolutional code decoding algorithms are applicable for iterative decod-

ing and of our interest. Popular convolutional code decoding algorithms can be roughly

classified into three classes: maximum a posteriori (MAP) algorithm [8], Viterbi algo-

rithm [103, 41] and sequential decoding algorithm [58]. The MAP algorithm sums up the

likelihoods of all codeword sequences corresponding to a symbol at time t and chooses

the most likely symbol as a decision. The algorithm achieves the best symbol error

rate performance but requires the highest complexity due to large amount of codewords.

Thanks for the independent noise corruption assumption, Bahl et al. [8] provides a

simplified decoding algorithm and the complexity is affordable. The Viterbi algorithm

is a well-known maximum likelihood decoding algorithm. Due to independent noise

corruption assumption, the algorithm can discard partial codewords with less likelihood

in advance and minimize the complexity in searching a most likely codeword. However

the complexity of both algorithms are linear to the number of state and the state grows

exponentially with the length of the constraint length or the number of registers. In

fact, only partial codeword sequences are necessary to record at high SNR and the com-

plexity can be further minimized by sequential decoding algorithm. Sequential decoding

algorithm is a tree search algorithm and always extends the partial codeword on the

most likely path. If the channel condition is good, it acquires the maximum likelihood

codeword with less complexity.
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Among these three algorithms, MAP algorithm makes decision upon the summed

up likelihoods and the sum can be used as the soft output for iterative decoding. The

Viterbi algorithm and sequential algorithms make decisions upon a searched sequence

and outputting likelihood for all information symbols necessitates larger complexity.

Hagenauer et al. [50] proposed a novel soft output Viterbi algorithm (SOVA) to provide

likelihoods. The SOVA inherits the same low complexity operation on codeword path

searching but still requires the extra complexity for early outputting decisions, temporary

storage proportional to the truncation length and necessitating the trace back [17] or

register exchange [89] to output decisions. The decision making imposes extra complexity

comparing to the MAP algorithm. Therefore the following focuses on the MAP algorithm

and its variants.

Due to the independent noise corruption assumption, the MAP algorithm for convolu-

tional code decoding can be decoupled into three steps: forward recursion, backward re-

cursion and combination. Assume a code rate a/b convolutional code of length L, denote

a received codeword samples and a sample vector at time t by Y = {y0,y1, · · · ,yL−1}

and yt = {y0
t , y

1
t , · · · , yb−1

t }. Let C(σt, ct,ut, σ
t+1) be a set containing the codewords

passing through branch B(σt,ut, σ
t+1) ∈ T , T is a set of all branches in the trellis
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segment. The likelihood of information symbol ut = {u0
t , u

1
t , · · · , ua−1

t } given Y is

p(ut|Y)

=
1

p(Y)

∑

σt,σt+1∈Σ

∑

c∈C(σt,ct,ut,σt+1)

p(Y, c)

=
1

p(Y)

∑

σt,σt+1∈Σ

∑

c∈C(σt,ct,ut,σt+1)

p(Y[0,t), c[0,t), σ
t)p(yt, ct, σ

t+1|σt,Y[0,t), c[0,t))

p(Y[t+1,L), c[t+1,L)|σt+1,Y[0,t+1), c[0,t+1))

=
1

p(Y)

∑

σt,σt+1∈Σ

∑

c∈C(σt,ct,ut,σt+1)

p(Y[0,t), c[0,t), σ
t)p(yt, ct, σ

t+1|σt)p(Y[t+1,L), c[t+1,L)|σt+1)

=
1

p(Y)

∑

σt,σt+1∈Σ

∑

c∈C(σt,ct,ut,σt+1)

p(Y[0,t), c[0,t), σ
t)p(yt|ct, σ

t+1, σt)p(ct, σ
t+1|σt)

p(Y[t+1,L), c[t+1,L)|σt+1)

=
1

p(Y)

∑

σt,σt+1∈Σ

p(Y[0,t), σ
t)p(yt|ct)p(ut, σ

t+1|σt)p(Y[t+1,L)|σt+1)

=
1

p(Y)

∑

σt,σt+1∈Σ

α(σt)γ(ut)β(σt+1), (2.20)

where Y[e,f) = {ye,ye+1, · · · ,yf−1}, c[e,f) = {ce, ce+1, · · · , cf−1}, α(σt) = p(Y[0,t), σ
t),

γ(ut) = p(yt|ct)p(ut, σ
t+1|σt) and β(σt) = p(Y[t,L)|σt). The likelihood function p(ut, σ

t+1|σt)

can be further decomposed as

p(ut, σ
t+1|σt) = p(ut)δ(ut, σ

t+1|σt), (2.21)

where p(ut) is the a priori likelihood and δ(ut, σ
t+1|σt) is an indicator function.

δ(ut, σ
t+1|σt) =

{
1 ,B(σt,ut, σ

t+1) ∈ T
0 , otherwise

. (2.22)

α(σt) and β(σt) can be recursively calculated and eqns. (2.23) and (2.24) show the
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forward and backward recursions.

α(σt) =
∑

σt−1

p(Y[0,t), σ
t−1, σt) =

∑

σt−1

p(yt−1, σ
t|Y[0,t−1), σ

t−1)p(Y[0,t−1), σ
t−1)

=
∑

σt−1

p(yt−1, ct−1, σ
t|σt−1)p(Y[0,t−1), σ

t−1) =
∑

σt−1

α(σt−1)γ(ut−1) (2.23)

β(σt) =
∑

σt+1

p(Y[t,L), σ
t+1|σt) =

∑

σt+1

p(Y[t+1,L)|yt, σ
t+1, σt)p(yt, σ

t+1|σt)

=
∑

σt+1

p(Y[t+1,L)|σt+1)p(yt, ct, σ
t+1|σt) =

∑

σt+1

β(σt+1)γ(ut) (2.24)

In summary, given initial condition α(σ0) and β(σL), the MAP algorithm calculates

α(σt) and β(σt). Then the MAP algorithm computes the likelihood in eqn. (2.20) and

makes decisions.

The initial condition α(σ0) and β(σL) varies with the termination of convolutional

code and decoding algorithms. The tail-padding terminates the end state to all zero state

and the initial condition is set to α(σ0) =

{
1 , σ0 = 0
0 , otherwise

and β(σL) =

{
1 , σL = 0
0 , otherwise

.

The tail-biting keeps the initial state and end state the same and the initial condition

is α(σ0) = β(σL) = 1/|Σ|. The optimal MAP algorithm becomes

p(ut|Y) =
1

p(Y)

∑

σ0=σL∈Σ

∑

σt,σt+1∈Σ

α(σt)γ(ut)β(σt+1) (2.25)

and it requires approximate |Σ| times computational complexity than the decoding for

convolutional code applying the tail-padding termination. The complexity comes from

unknown α(σ0) and β(σL). In order to reduce the complexity, we can extend the forward

recursion and backward recursion from α(σL−TL) and β(σTL) to estimate the initial

condition α(σ0) and β(σL), where TL is the training length and α(σL−TL) = β(σTL) =

1/|Σ|. It only requires 2TL/L more computational complexity. The concept could also

be applied to reduce the MAP decoding storage [104] or for parallel MAP decoding.

The decision of an information bit is our next concern. The likelihood of ui
t is

p(ui
t|Y) =

∑
uj

t ,j 6=i p(ut, u
i
t|Y). Therefore we can acquire the decision of the ith bit of an

information symbol by ûi
t = arg maxui

t
p(ui

t|Y).
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The Log-MAP features less implementation complexity and can be acquired by trans-

forming the likelihood into the log-likelihood ratio. The relation is

L(ui
t) = log

p(ui
t = 0|Y)

p(ui
t = 1|Y)

. (2.26)

The ratio can be computed on the log-domain and the corresponding computation can

be further simplified as

L(ui
t) = log

∑
uj

t ,j 6=i

∑
σt,σt+1∈Σ α(σt)γ(ut|ui

t = 0)β(σt+1)
∑

uj
t ,j 6=i

∑
σt,σt+1∈Σ α(σt)γ(ut|ui

t = 1)β(σt+1)

= log

∑
uj

t ,j 6=i

∑
σt,σt+1∈Σ expα̂(σt)+γ̂(ut|ui

t=0)+β̂(σt+1)

∑
uj

t ,j 6=i

∑
σt,σt+1∈Σ expα̂(σt)+γ̂(ut|ui

t=1)+β̂(σt+1)
, (2.27)

where α̂(σt) = log α(σt), β̂(σt) = log β(σt), γ̂(ut|ui
t) = log γ(ut|ui

t) and γ(ut|ui
t) =

p(yt|ct)p(ut, u
i
t, σ

t+1|σt). The forward and backward recursions become

α̂(σt) = log
∑

σt−1

expα̂(σt−1)+γ̂(ut−1) (2.28)

β̂(σt) = log
∑

σt+1

expβ̂(σt+1)+γ̂(ut) . (2.29)

[104] proposed the following function

max∗(A,B) = log
(
expA + expB

)
= max(A,B) + log

(
1 + exp−|A−B|) (2.30)

to deal with the log of the sums of two exponential terms. This function is composed of a

maximization and a compensation term log
(
1 + exp−|A−B|) which can be implemented

by a look-up-table. Although log and exponential are high complexity operations, both

operations can be substituted by less complexity operations. If there are three terms,

eqn. can be recursively applied as

max∗(A,B,C) = max∗(A, max∗(B,C)), (2.31)

and the log-sum on multiple terms is capable. Therefore the Log-MAP algorithm trans-

fers the multiplication and addition on the real-domain into addition, maximization and

compensation on the log-domain.
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We describe two kinds of simplification for the Log-MAP algorithm: MAX Log-MAP

and linear Log-MAP [102]. The simplification is related to the compensation term in eqn.

(2.2.5). The MAX Log-MAP algorithm substitutes the summation in eqns. (2.27)-(2.29)

by the maximization and these equations are approximated as

L(ui
t) ≈ log

maxuj
t ,j 6=i maxσt,σt+1∈Σ expα̂(σt)+γ̂(ut|ui

t=0)+β̂(σt+1)

maxuj
t ,j 6=i maxσt,σt+1∈Σ expα̂(σt)+γ̂(ut|ui

t=1)+β̂(σt+1)

= max
uj

t ,j 6=i
max

σt,σt+1∈Σ
α̂(σt) + γ̂(ut|ui

t = 0) + β̂(σt+1)

− max
uj

t ,j 6=i
max

σt,σt+1∈Σ
α̂(σt) + γ̂(ut|ui

t = 1) + β̂(σt+1) (2.32)

α̂(σt) ≈ log max
σt−1

expα̂(σt−1)+γ̂(ut−1) = max
σt−1

α̂(σt−1) + γ̂(ut−1) (2.33)

β̂(σt) ≈ log max
σt+1

expβ̂(σt+1)+γ̂(ut) = max
σt+1

β̂(σt+1) + γ̂(ut). (2.34)

It is equivalent to remove the compensation term log(1 + exp−|A−B|) in eqn. (2.2.5).

The linear Log-MAP applies a linear function f(x) =

{
a(x − b) , 0 ≤ x < b

0 , x ≥ b
to ap-

proximate the compensation term and requires less complexity without the performance

loss comparing to Log-MAP. Two parameters (a, b) are subject to the minimization of
∫ ∞

x=0
(f(x) − log(1 + exp−x))2dx and the optimized value of a and b are −0.24904 and

2.5068.

2.3 Turbo code

Turbo code [13] provides outstanding performance by low complexity iterative decod-

ing algorithm but features a simple parallel concatenated structure. The performance

comes from the few low weight codewords comparing to the convolutional code and this

characteristic enhances error rate performance at low SNR. However the performance

loses to convolutional code with the large free distance at high SNR. The low weight

codeword dominates the performance at high SNR and causes the error floor. The in-

terleaver determines the error floor and an interleaver and the joint design between an

interleaver and component code improves the error floor shape. The interleaver design
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Figure 2.4: (a) The block diagram of turbo code encoder; (b) the block diagram of turbo
code decoder.

rules will be provided in chapter 3, 4 and 5. The following subsections will describe the

encoding and decoding methodologies.

2.3.1 Encoder

Turbo code encoder, shown in 2.4 (a), composes of two recursive systematic con-

volutional codes and an interleaver. The interleaver permutes information sequence to

reduce the possibility of generating low weight codeword by both convolutional codes

and enlarge the minimum weight of codewords. Two convolutional codes encode in-

formation sequence and the interleaved information sequence respectively. Due to the

sophisticated systematic encoding, the systematic part c0 generated from the upper
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convolutional code can be shared to the lower convolutional code. Therefore the turbo

encoder applies the systematic part c0 and parity parts c1, c2 as a codeword.

2.3.2 Decoder

Turbo code decoder applies iterative decoding and Fig. 2.4 (b) shows the block

diagram. The decoder possesses two a posteriori probability (APP) decoders which

manipulate the received samples and the a priori information to generate the extrin-

sic information and estimate the likelihood. The extrinsic information is interleaved or

de-interleaved as the a priori information for the successive APP decoder. The esti-

mated likelihood is used for decision making as iterative decoding reaches the maximum

decoding round or satisfies the stopping condition.

The decoder can operate information exchange on the bit level and symbol level.

The bit level operation can process the information represented by log-likelihood ratio

and the necessary storage is less than that represented by likelihood. The symbol level

operation keeps the correlation of a symbol. If a symbol level interleaver is applied,

the symbol level operation converges faster and suits for high rate systems, e.g. duo-

binary turbo code [37, 38]. In order to keep the correlation of these bits, the decoder

requires more storage for the symbol level operation. Both algorithms are detailed in

the following.

Binary iterative decoding algorithm

Due to the systematic encoding, we assume ci
t = ui

t for 0 ≤ i < a. We decompose

the eqn. (2.27) into three terms: the channel value, the a priori information and the
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extrinsic information. The decomposition is shown as follows.

L(ui
t)

= log

∑
uj

t ,j 6=i

∑
σt,σt+1∈Σ α(σt)γ(ut|ui

t = 0)β(σt+1)
∑

uj
t ,j 6=i

∑
σt,σt+1∈Σ α(σt)γ(ut|ui

t = 1)β(σt+1)

= log

∑
ui

t=0,uj
t ,j 6=i

∑
σt,σt+1∈Σ α(σt)p(yt|ct)p(ut)δ(ut, σ

t+1|σt)β(σt+1)
∑

ui
t=1,uj

t ,j 6=i

∑
σt,σt+1∈Σ α(σt)p(yt|ct)p(ut)δ(ut, σt+1|σt)β(σt+1)

= log
p(yi

t|ci
t = 0)

p(yi
t|ci

t = 1)
+ log

p(ui
t = 0)

p(ui
t = 1)

+ log

∑

ui
t=0,uj

t ,j 6=i

∑

σt,σt+1∈Σ

α(σt)δ(ut, σ
t+1|σt)β(σt+1)

∏

0≤j<b,j 6=i

p(yj
t |cj

t)
∏

0≤j<a,j 6=i

p(uj
t)

∑

ui
t=1,uj

t ,j 6=i

∑

σt,σt+1∈Σ

α(σt)δ(ut, σ
t+1|σt)β(σt+1)

∏

0≤j<b,j 6=i

p(yj
t |cj

t)
∏

0≤j<a,j 6=i

p(uj
t)

= Lc(u
j
t) + Lprior(u

j
t) + Lex(u

j
t), (2.35)

where Lc(u
j
t) = log

p(yi
t|ci

t=0)

p(yi
t|ci

t=1)
and Lprior(u

j
t) = log

p(ui
t=0)

p(ui
t=1)

. Then the APP decoder simply

generates Lex(u
j
t) by

Lex(u
j
t) = L(ui

t) − Lc(u
j
t) − Lprior(u

j
t). (2.36)

Non-binary iterative decoding algorithm

The decomposition is derived from the eqn. (2.20).

p(ut|Y)

=
1

p(Y)

∑

σt,σt+1∈Σ

α(σt)γ(ut)β(σt+1)

=
p(ut)p

(
y

[0,a)
t |c[0,a)

t

)

p(Y)

∑

σt,σt+1∈Σ

α(σt)p
(
y

[a,b)
t |c[a,b)

t

)
δ(ut, σ

t+1|σt)β(σt+1)

= p(ut)p
(
y

[0,a)
t |c[0,a)

t

)
pex(ut), (2.37)

where y
[i,j)
t = {yi

t, y
i+1
t , · · · , yj−1

t }, c
[i,j)
t = {ci

t, c
i+1
t , · · · , cj−1

t } and c
[0,a)
t = ut due to the

systematic encoding. The extrinsic information pex(ut) is acquired by

pex(ut) =
p(ut|Y)

p(ut)p
(
y

[0,a)
t |c[0,a)

t

) . (2.38)
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Decoding on the log-domain requires less complexity. We take logarithm on eqn.

(2.38) and obtain

Lex,S(ut) = LS(ut) − Lc,S(ut) − Lprior,S(ut), (2.39)

where LS(ut) = log p(ut|Y), Lc,S(ut) = log p
(
y

[0,a)
t |c[0,a)

t

)
and Lprior,S(ut) = log p(ut).

The log-likelihood LS(ut) is acquired by the log-domain calculation, and the forward and

backward recursions refer to eqns. (2.28) and (2.29). Multiplication and addition are

replaced by the addition, maximization and compensation, and log-domain computation

requires less complexity.

We can further subtract log Pex(ut) by log Pex(ut = 0) and the eqn. (2.39) becomes

log
Pex(ut)

Pex(ut = 0)

= log
p(ut|Y)

p(ut = 0|Y)
− log

p
(
y

[0,a)
t |c[0,a)

t

)

p
(
y

[0,a)
t |c[0,a)

t = 0
) − log

p(ut)

p(ut = 0)
, (2.40)

and the equation is simplified as

Lex,0(ut) = L0(ut) − Lc,0(ut) − Lprior,0(ut), (2.41)

where Lex,0(ut) = log Pex(ut)
Pex(ut=0)

, L0(ut) = log p(ut|Y)
p(ut=0|Y)

, Lc,0(ut) = log
p
(
y

[0,a)
t |c[0,a)

t

)

p
(
y

[0,a)
t |c[0,a)

t =0
) and

Lprior,0(ut) = log p(ut)
p(ut=0)

. Apparently, the subtraction avoids the storage on L0(ut =

0) = Lc,0(ut = 0) = Lprior,0(ut = 0) = Lex,0(ut = 0) = 0.

2.4 Factor graph

Factor graph [60, 42] is one of the many popular graphs to facilitate our understanding

on code structure and help us to develop the decoding algorithms. It has been widely

used to explain and study low density parity check (LDPC) code [46] and is also ex-

tended to explain turbo code, MMSE equalizer and channel estimation etc. The graph

encompasses factor nodes and edges. The factor node describes the relation between
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Figure 2.5: An example of a turbo code factor graph.

connected edges, e.g. equality. The edge indicates the variable, e.g. information bit,

state. One can easily schedule operations of these factor nodes to decode.

Fig. 2.5 provides a factor graph example for turbo code. The code applies one bit to

terminate both convolutional codes. 7 information bits are encoded and 25 code bits are

generated; the code rate is 7/25. The graph is composed of two kinds of factor nodes:

convolutional code and equality. The code node connects information bit, code bits and

states of convolutional code. The equality node connects information bit and interleaved

information bit. Both APP decoders generate the extrinsic information and then APP

decoders pass the generated extrinsic information through the equality node to the

interleaved or de-interleaved coordinates for the other APP decoder respectively. The

graph also shows that decoder does not generate and exchange the extrinsic information

of the terminating bits. The iterative decoding process is visualized and turbo code

structure is understood.
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2.5 Convergence analysis

One interesting question is how worse the environment an iterative decoding works.

The APP decoder generates the extrinsic information for the successive APP decoder as

the a priori information. We hope the extrinsic information or the a priori information

increasing after several iterations. However it does not always hold. In order to ana-

lyze the convergence behavior, extrinsic information transfer (EXIT) chart and density

evolution are introduced. The following subsections describe both methods.

2.5.1 EXIT chart

The EXIT [27, 28] chart, proposed by ten Brink, describes the input and output

information change during the iterative process and the convergence behavior is pre-

dicted. The mutual information between the a priori information and information bit

is the measure for the input information and the mutual information between the ex-

trinsic information and information bit is the measure for the output information. The

mutual information generally increases with the iteration but it does not always hold

at low SNR. The mutual information of the generated extrinsic information may be the

same as that of the a priori information and the performance does not improve any-

more. Therefore we can search the minimum SNR among the generated EXIT curves

corresponding to various SNRs such that the cross point disappears. It implies that the

iterative decoding only works above the searched minimum SNR.

Gaussian distribution and independence are two assumption for both input and out-

put information to facilitate the analysis. The Gaussian distributed a priori information

implies a one-to-one mapping between the quantity of the mutual information and the

variance of the a priori information. We can easily generate the a priori information

source given mutual information for the decoder to generate the extrinsic information.

Reversely, we can also estimate the variance of the extrinsic information to obtain the

output mutual information. The independent input assures that we can generate the a
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priori information source only based on the statistics and the independent output assures

that the likelihoods of a priori information to the next APP decoder are independent.

However the independence assumption does not always hold and the input information

is correlated during the iterative process. Although we may acquire an estimated SNR,

the actual minimum SNR is sometimes higher for the correlated source. We take turbo

code as an example. The error rate curves are not steep when interleaver length is small

due to highly correlated input information. Therefore the method fails as the interleaver

is small. Fortunately both assumptions asymptotically holds for a large code and the

method is still quite helpful in searching a good code.

We describe the relation between the variance and the mutual information. Assume

the Gaussian distributed random variable and information bit random variable are G

and U . Note the conditional probability density function of a priori information G = g

given the information bit U = u by

pG(g|u) =
1√

2πσ2
G

exp
−

(
g−

uσ2
G

2

)2

2σ2
G , (2.42)

and pG(g|u) = pG(−g|u) expgu. The mutual information IG between the a priori infor-

mation and information bit is

IG = I(G; U)

=
∑

u

∫ ∞

−∞
pG,U(g, u) log2

pG,U(g, u)

pG(g)pU(u)
dg

=
1

2

∑

u

∫ ∞

−∞
pG|U(g|u) log2

pG(g|u)
1
2
pG(g|U = 0) + 1

2
pG(g|U = 1)

dg, (2.43)

where 0 ≤ IG ≤ 1. The relation between the variance σG and IG is represented as

IG(σG) = 1 −
∫ ∞

−∞

1√
2πσ2

G

exp
−

(
g−

σ2
G
2

)2

2σ2
G log2(1 + expg)dg. (2.44)

We can apply eqn. (2.44) for the a priori information and extrinsic information to

generate input random variable for decoder and calculate the corresponding output

mutual information.
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2.5.2 Density evolution

The density evolution [82, 83] describes the probability density function change during

the iterative decoding process. The method stops when the density function converges.

However the density function is hard to estimate and the histogram is used to record

the distribution. For the simplicity Gaussian distribution is assumed to approximate

the density function with only two parameters, mean and variance. We calculate the

SNR by the mean and variance and the change of the SNR of the extrinsic and a priori

information describes the change of the density function. The SNR change can be used

to predict the convergence behavior for the EXIT chart.

2.6 High throughput turbo decoder architecture

Enabling multiple APP decoders processing at the same time increases the through-

put of turbo decoding, and there are two classes of high throughput turbo decoder

architectures: the parallel turbo decoder and the pipeline turbo decoder. The parallel

turbo decoder shown in Fig. 2.6 processes multiple sequences corresponding to the same

decoding round. A codeword sequence is partitioned into multiple sub-sequences, which

are stored in the memory banks, and these APP decoders can apply the sliding-window

APP (SWAPP) decoding algorithm [104, 21] to deal with these sub-sequences and gen-

erate the extrinsic information. The turbo decoder writes the extrinsic information back

to these memory banks according to interleaving or de-interleaving rules.

The pipeline turbo decoder shown in Fig. 2.7 processes continuous APP decoder

rounds at the same time to improve the throughput and therefore these APP de-

coders process codewords corresponding to different blocks with block length L or code-

words with information length L. Fig. 2.7 (a) is a decoding module for one iteration.

Y0
k, Y1

k, Y2
k correspond to the kth block or codeword; Lapp(uk) and Lex(uk) correspond

to the a priori information and the generated extrinsic information corresponding to the

kth block or codeword. These modules can be serially concatenated to have the pipeline
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Figure 2.6: The parallel turbo decoder architecture.

turbo decoder shown in Fig. 2.7 (b).

2.7 Notations

2.7.1 Definitions

Definition 4 ⌊x⌋ is the maximum integer small or equal to x.

Definition 5 ⌈x⌉ is the minimum integer larger or equal to x.

Definition 6 |i|M = i mod M , where i and M are positive integers.

Definition 7 |i|M =

{
i, |i|M = 0

|i|M , |i|M 6= 0
, where i is a non-negative integer and M is a

positive integer.

Definition 8 ||i||M =
⌊

i
M

⌋
, where i is a non-negative integer and M is a positive

integer.
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Figure 2.7: a) The block diagram of a decoding module for one iteration; (b) The block
diagram of the pipeline decoder.
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Chapter 3

Inter-block permutation interleaver

Inter-block permutation (IBP) interleaver features a simple interleaver structure and

one can acquire the interleaver with good distance properties for turbo codes. A general

IBP interleaver encompasses many existing interleavers as special subclasses. It is built

upon smaller interleavers and a re-permutation is applied on these interleavers to con-

struct a larger interleaver. By using a suitable IBP rule, an IBP turbo code (IBPTC)

can possess good distance properties. It is therefore reasonable to conjecture that the

distance spectrum of an IBPTC applying separate encoding would offer some desired

properties.

Constructing an interleaver based on any existing block interleavers to render the

better distance properties of an IBPTC is our first purpose. The periodic and invari-

ant permutations are the construction rules. Both rules reduce long length interleaver

searching effort and avoid low weight codeword events. If we have to design 5000 kinds of

interleavers, e.g. 3GPP turbo code interleaver [1], the proposed rule is useful. However,

both rules are not strong enough to guarantee the distance properties and we provide

some loose constraints for the block interleavers to achieve the derived distance bounds.

Providing the joint design between an inter-block permutation and a block interleaver

based on separate tail-biting encoding is the second purpose. We derive a general lower

bound for codeword associated with the weight-2 input sequences for the IBP-interleaved

turbo codes. By analyzing the effects of selected particular system parameters on this
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Figure 3.1: The block diagram of inter-block permutation turbo code encoder.

general bound we obtain some useful design guidelines. We apply a simplified partition

rule presented in [25] and a regular permutation function to derive the bound. We also

examine some special cases and evaluate the codeword lower bounds of the weight-2

input sequences.

3.1 Inter-block permutation turbo code

Fig. 3.1 shows the block diagram of an IBPTC encoder. The main difference is that

the encoder includes extra two segmentators which partition information sequence and

the interleaved information sequences into multiple short blocks in accordance with the

block length of an IBP interleaver. The recursive systematic convolutional (RSC) code

encodes these blocks and can apply these three termination methods, namely continuous

[11], tail-padding and tail-biting [106]. In accordance with these options, we define a

continuous IBPTC (C-IBPTC) as one that encodes each data block using the end state

of the previous data block as the initial state and adds the tail-bits only for the last data

block. On the other hand, a discontinuous IBPTC (D-IBPTC) encodes each data block

individually, either by appending the tail-bits at the end of a block or by using the tail-

biting encoding . We refer to the former class as the tail-padding IBPTC (TP-IBPTC)

while the latter class as the tail-biting IBPTC (TB-IBPTC).
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3.2 Inter-block permutation interleaver

Let u = {ui}i=N−1
i=0 and ui = {ui,k}k=L−1

k=0 = {uk}k=(i+1)L−1
k=iL be an input information

sequence composed of N blocks and the ith block with L symbols respectively, i.e. the

information length is NL symbols. Denote by Π a permutation function that maps u

into u′ such that ui,k = u′
π(i,k) or uk = u′

π(k).

Coordinates of an input information sequence are represented in one-dimension and

two-dimension to simplify our discussion in distance property. Two-dimension represen-

tation indicates the ordinal of a block and the ordinal within a block. IBP interleaver

is composed of an inter-block permutation and block interleaver. An inter-block permu-

tation and block interleaver determine the first and second ordinals and the concept of

the interleaver construction can be demonstrated easier. Moreover if we only discuss the

behavior within a block, we can discuss the permutation function of the second ordinal.

When we derive the distance properties of a complete codeword, all coordinates have

to be considered and one-dimension representation simplifies the notations in this case.

Therefore both representations are used in this literature. The transformation between

both representations are

f21(i, j) = iL + j (3.1)

f12(i) = (||i||L, |i|L) , (3.2)

where i, j ∈ Z+, ||i||L =
⌊

i
L

⌋
and |i|L = i mod L defined in definitions 6 and 8.

Inter-block permutation interleaver Πibp = Πinter◦Πintra shown in Fig. 3.2 (a) is com-

posed of two permutation functions Πinter and Πintra, where Πinter and Πintra are inter-

block and intra-block permutations. Πinter maps u into u′ such that ui,k = u′
πinter(i,k).

Πintra is composed of N block interleavers Πintra,i, 0 ≤ i < N , where Πintra,i maps ui

into u′
i such that ui,k = u′

i,πintra,i(k). Π−1
intra and Π−1

inter denote the inverse permutation

functions of Πintra and Πinter respectively. Therefore Πibp maps u into u′ such that

ui,k = u′
πinter(i,πintra,i(k)).
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Figure 3.2: (a) Inter-block permutation interleaver; (b) Reversed inter-block permutation
interleaver (c) Sandwich inter-block permutation interleaver.

Πinter and Π−1
inter are characterized by fn(i, j), fb(j) and fd

n(i, j), fd
b (j) respectively,

where fb(j) and fd
b (j) are length-L permutation functions and fn(i, j) and fd

n(i, j) are

length-N permutation functions corresponding to each j. The permutation rules of

Πinter and Π−1
inter are

πinter(i, j) = (fn(i, j), fb(j)) (3.3)

π−1
inter(i, j) = (fd

n(i, j), fd
b (j)), (3.4)
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or

πinter(i) = fn(||i||L, |i|L) · L + fb(|i|L) (3.5)

π−1
inter(i) = fd

n(||i||L, |i|L) · L + fd
b (|i|L). (3.6)

Our discussion in this thesis mainly focuses on these four functions. We will demonstrate

that fb(j) = fd
b (j) = j is a good permutation to retain the property of Πintra. Periodic

fn(i, j) and fd
n(i, j) eliminate the most important low weight codeword error event. These

types of Πinter are defined in the following.

Definition 9 If fb(j) = fd
b (j) = j,∀ j, then the corresponding inter-block permutation

is called a Type I (inter-block) permutation.

Definition 10 An inter-block permutation is a Type II (inter-block) permutation if

fn(i, j) = fn(i, j + nTs), ∀ i, n and 0 ≤ j, j + nTs < L, where the integer-valued

function fn(i, j) is injective within a period Ts.

Definition 11 An inter-block permutation is a Type III (inter-block) permutation if

fd
n(i, j) = fd

n(i, j + nTs), ∀ i, n and 0 ≤ j, j + nTs < L, where the integer-valued

function fd
n(i, j) is injective within a period Ts.

Definition 12 An inter-block permutation that possesses all the properties of the Types

I, II, III (inter-block) permutations is a Type IV (inter-block) permutation.

Definition 13 An interleaver is a swap interleaver if ∀ i, π(i) = j ⇒ π(j) = i, i.e.

∀ i, π(i) = π−1(i).

Reversed IBP interleaver ΠR
ibp and sandwich IBP interleaver ΠS

ibp are two variants of

IBP interleaver, and these exists an IBP interleaver identical to reversed or sandwich

IBP interleaver. Reversed IBP interleaver is constructed in the reversed manner ΠR
ibp =

ΠR
intra ◦ ΠR

inter shown in Fig. 3.2 (b). When a turbo code applies this interleaver, there
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exists a turbo code applying Πibp with Π−1
ibp = Π−1

inter ◦ Π−1
intra where Π−1

inter = ΠR
inter and

Π−1
intra = ΠR

intra. Therefore both turbo codes have the same distance spectrum. Sandwich

IBP interleaver is constructed by ΠS
ibp = ΠS,2

intra ◦ ΠS
inter ◦ ΠS,1

intra shown in Fig. 3.2 (c).

Because ΠS,2
intra only permutes symbols in each block to the same block, there exists a

Π′
inter = ΠS,2

intra ◦ΠS
inter and ΠS

ibp = Π′
inter ◦ΠS,1

intra which is identical to an IBP interleaver.

The properties of ΠR
ibp and ΠS

ibp are equivalent to that of Πibp and the discussion of ΠR
ibp

and ΠS
ibp are omitted.

3.3 IBP properties

This section discusses the properties of an inter-block permutation Πinter while an

intra-block permutation Πintra is unknown, where Πintra,i = Πblock ∀i. Denote by C =

{c0, c1, c2} a turbo code codeword associated with an input information sequence u,

where cj is the output parity-bit sequence of the jth component code while c0 = u

represents both the input sequence and the systematic (uncoded) output sequences. A

sequence cj also can be partitioned into N blocks corresponding to an input sequence

u and the corresponding sequence is cj = {cj
0, c

j
1, · · · , cj

N−1}. These sequences are not

necessary with the same length and various lengths do not influence our results.

Define two equivalent relations “∼” and “∼=” on the set of integers Z by

|i − j|Tc
= 0 ⇐⇒ i ∼ j

||i||L = ||j||L ⇐⇒ i ∼= j

where i, j ∈ Z, Tc is the period (to be defined later) of an RSC code. Clearly, i ≁ j or

i ≇ j means i is not equivalent to j in either sense. The first relation i ∼ j indicates

(i, j) pair causing a finite weight codeword corresponding to the RSC code with the

period Tc, and distance property discussion mainly focuses on this kind of finite weight

codeword. The second relation i ∼= j indicates that (i, j) pair is in the same block and

simplifies our discussion.
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3.3.1 First property: invariant permutation

The following theorem specifies the conditions under which the free distance of a

C-IBPTC will be greater than or at least equal to that of its corresponding TC applying

Πblock as its interleaver.

Theorem 3.1 For a classic TC CTC applying a Πblock as its interleaver, the corre-

sponding C-IBPTC Cibp has a free distance greater than or equal to that of CTC if the

Type I permutation is used and all sequences {c̄j
i , j = 0, 1, 2, i = 0, 1, · · · , N − 1} of a

minimum weight codeword, Cmin = {c̄0, c̄1, c̄2}, of Cibp are also valid codewords of the

corresponding component codes, where c̄j
i = {c̄j

i,k, 0 ≤ k < L}.

Proof: For a C-IBPTC Cibp, there exists at least a finite-weight data sequence

umin = c0 whose corresponding codeword has the minimum weight. Suppose the nonzero

elements of umin are at positions {(i1, k1), (i2, k2), . . . , (in, kn)} and the corresponding

codeword is C̄min. Denote by c̃0 the IBP-interleaved version of c̄0, where {c̃j
i , j =

0, 1, 2, i = 0, 1, · · · , N − 1} and c̃j
i = {c̃j

i,k, 0 ≤ k < L}. The c̄0
j and c̃0

j generate, for the

two component codes, the encoded parity-bit sequences, c̄1
j and c̄2

j with Hamming weights

wt(c̄
1
j) and wt(c̄

2
j), respectively. The systematic parts of both component codes are the

same and the corresponding block are denoted by c̄0
j . Let Ml be the permutation defined

on the space of all blocks that moves a block to the lth block, i.e., Ml : ci
k → ci

l,∀ k. If

fb(j) = j and Πintra,i = Πblock, shifting each position (ni, ki) to the lth block by Ml gives

Ml(c̃πibp(ni,ki)) = Ml(c̃fn(ni,ki),fb(πblock(ki))) = c̃l,πblock(ki). (3.7)

As the 2-tuple (c̄0
j , c̄

1
j) is a valid codeword of the first component code of Cibp according to

our assumption,
(⊕

j Ml(c̄
0
j),

⊕
j Ml(c̄

1
j)

)
,
⊕

denoting addition of binary vectors, is also

a codeword of the same component code. (3.7) implies that
(⊕

j Ml(c̃
0
j),

⊕
j Ml(x̄

2
j)

)

are valid codewords for the second component code of Cibp and CTC since the additional

IBP does not change the relative positions of input bits within a block. The inequality

wt(c
i
j) + wt(c

i
l) = wt(Ml(c

i
j)) + wt(Ml(c

i
l)) ≥ wt

(
Ml(c

i
j) ⊕ Ml(c

i
l)
)
, ∀j 6= l (3.8)
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then implies that the free distance of Cibp, dfree(Cibp) satisfies

dfree (Cibp) =
∑

i

∑

j

wt(c̄
i
j) ≥

∑

i

wt

(
⊕

j

Ml(c̄
i
j)

)
≥ dfree (Cblock) (3.9)

For a D-IBPTC, the sub-codewords c̄j
i associated with each input block automat-

ically satisfy the requirement on all blocks. Since both tail-padding and tail-biting

convolutional codes are linear codes, we have

Corollary 3.1 For a classic TC CTC, the corresponding D-IBPTC Cibp has a free dis-

tance greater than or equal to that of Cblock if Πinter is a Type I permutation.

3.3.2 Second property: periodic permutation

The encoder of an RSC code acts like a scrambler and can be realized by using a shift

register with both feedback and feedforward branches shown in Fig. 2.2. It is obvious

that such an encoder would have a periodic impulse response. The rate 1/2 RSC code

is specified by the transfer matrix [1, Q−1(D)F (D)], where Q(D), F (D) ∈ F2(D) and

Q(D) is usually a primitive binary polynomial of degree m. The period of the impulse

response of the non-systematic part, Q−1(D)F (D), is given by Tc whose maximum value

is 2m − 1. We denote by uij a weight-2 input sequence whose only nonzero elements are

at coordinates i and j; the corresponding codeword is denoted by Cij. Therefore, Tc is

also the smallest integer such that uij, i ∼ j, will generate a finite-weight output parity

sequence. It is thus easy to show [24]

Lemma 3.1 Let uij be an input sequence to a scrambler with period Tc and scrb(uij)

be the corresponding output parity sequence. If i ∼ j, then there exist α ∈ N and β ∈ Z

such that

wt

(
scrb(uij)

)
= α|i − j|/Tc + β, (3.10)

where N is the set of positive integers and α, β depend on the encoder (scrambler) struc-

ture.

47



The puncturing may result in that the sequence generation of a scrambler becomes

time-variant. In this case we can search α, βU , βL and the weight of sequence is bounded

as

α|i − j|/Tc + βL ≤ wt

(
scrb(uij)

)
≤ α|i − j|/Tc + βU , (3.11)

where i ∼ j. In order to simply our discussion the puncturing case will not be considered

in the following. We only remind the effect of the puncturing.

Obviously, if i ≁ j, uij will generate an infinite weight parity sequence if there is

no termination at the end of a block. Lemma 3.1 implies that the codeword weight,

wt(C
ij), of a turbo code satisfies

wt

(
Cij

)
≥ 2 + α

( |i − j| + |π(i) − π(j)|
Tc

)
+ 2β, (3.12)

with equality holds iff

i ∼ j and π(i) ∼ π(j). (3.13)

Define w̃2,min
def
= min(i,j)∈sm

wt(C
ij), where sm

def
= {(i, j)|i ∼ j, πibp(i) ∼ πibp(j)} and

let

δmin = min
(i,j)∈sm

[|i − j| + |πibp(i) − πibp(j)|] . (3.14)

For the class of C-IBPTCs, w̃2,min = w2,min
def
= min(i,j)wt(C

ij), therefore, maximizing

the minimum weight of the codewords associated with the weight-2 input sequences is

equivalent to maximizing δmin. The next theorem provides an upper bound of w2,min

any IBPTC can achieve, if choosing the intra-block permutation is not an option.

Theorem 3.2 For an IBPTC using an inter-block permutation Πinter, there exists a

Πintra such that w2,min ≤ 2 + α(Ts + 1) + 2β, if L > Tc · Ts, where Ts is the number of

inter-block permuted blocks.

Proof: Consider the partition {0, 1, · · · , L − 1} =
⋃Tc−1

j=0

⋃Ts−1
l=0 Sjl, where Sjl =

{g|g ∈ Sj, f
d
n(p, g) = l} for some p, Sj = {h|h ∼ j, 0 6 h < L}, 0 ≤ j < Tc and
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0 ≤ l < Ts. Note that the decomposition Sj =
⋃Ts−1

l=0 Sjl is induced by the function

fd
n(p, g) or equivalently, by fn(r, g). Obviously, the codeword weight of the weight-2

information sequence uπ−1
ibp

(g)π−1
ibp

(h) is large, if u′gh with g ≁ h. As we are concerned

with w2,min, only those weight-2 sequences with nonzero coordinate pairs in the set,

{(g, h)|g ∼ h ∼ j, for some j and g, h ∈ Sjl for some l} have to be considered.

Assume that ∀ j, l all pairs {(g, h) ∈ Sjl} satisfy the inequality |g − h| > Tc · Ts. For

any pair (g, h) ∈ Sjl, g < h and the associated interior set V = {g+1, g+2, · · · , h−1}, we

have |V | > Tc ·Ts. If Sjl∩V 6= φ, there exists a pair (g′, h′) ∈ Sjl, where |g′−h′| < |g−h|.

Otherwise, if Sjl∩V = φ, by the pigeonhole principle [29], there exists a set Suv such that

|Suv

⋂
V | > 2, which implies that there is a pair (g′, h′) ∈ Suv, where |g′ − h′| < |g − h|.

As both cases lead to contradictions, we conclude that there exists a pair (g, h) ∈ Sjl

for some j, l, such that |g − h| ≤ Tc · Ts. Since it is always possible to find Πintra

such that |π−1
ibp(g) − π−1

ibp(h)| = Tc, eqns. (3.12) and (3.13) then imply that w2,min ≤

2 + α((Tc + Tc · Ts)/Tc) + 2β = 2 + α(Ts + 1) + 2β.

Theorem 3.2 indicates that lack of control on the intra-block permutation imposes

an upperbound for w2,min which an IBPTC can achieve. The coordinates of nonzero

elements of the interleaved sequence u′ij with i ∼= j will either remain in the same block

or be in the different blocks with probabilities close to 1/Ts and (Ts − 1)/Ts when all

coordinates in one block are evenly permuted to these blocks. The resulting codewords

for the latter case are very likely to have large weights while those for the former case

have smaller weights with the worst-case weight of 2 + 2α + 2β only.

To avoid generating low weight codewords for uij, we first notice that eqn. (3.12)

implies w̃2,min ≥ 2 + α(δmin/Tc) + 2β. The IBP along with the intra-block permutation

determines the relation between |i − j| and |πibp(i) − πibp(j)|, and their structures can

be optimized to maximize δmin. For a pair of coordinates (i, j) ∈ sm, if the integer-

valued function fd
n(p, k) is injective and satisfies the locally-periodic property for some p,

fd
n(p, k) = fd

n(p, k +nTs) for 0 ≤ k +nTs < L, then the requirements, i ∼= j and πibp(i) ∼=
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πibp(j) imply |πibp(i)−πibp(j)|Ts
= 0 and therefore |πibp(i)−πibp(j)| ≥ lcm(Tc, Ts), where

lcm(a, b) represents the least common multiple of a and b. In other words,

Lemma 3.2 An IBPTC that uses a Type III permutation satisfies

min
i∼=j,πibp(i)∼=πibp(j),(i,j)∈sm

wt(C
ij) ≥ 2 + α · {[Tc + lcm(Tc, Ts)] /Tc} + 2β. (3.15)

If Tc and Ts are relative prime, then

min
i∼=j,πibp(i)∼=πibp(j),(i,j)∈sm

wt(C
ij) ≥ 2 + α · (Ts + 1) + 2β. (3.16)

3.4 Constraints on the intra-block permutations

The constraints for intra-block permutation Πintra are also proposed under the derived

rules, where Πintra,i = Πblock ∀i. The proposed bounds in eqn. (3.16) can not hold for

all intra-block permutations Πintra due to the termination method for each block. The

different methods provide exceptions on the boundary of each block. We derive some

loose constraints for intra-block permutation Πintra to retain the bounds under these

IBP rules and various termination methods.

Theorem 3.2 reminds us of the importance of a judicious choice of an intra-block

permutation. For the question of how to choose an intra-block permutation whose

associated w2,min is guaranteed to surpass the worst-case upperbound of Theorem 3.2,

Lemma 3.2 gives only an unrefined answer. We need more elaborate constraints on

the selection of the intra-block permutation to avoid producing a w2,min smaller than

that bound. In general, any one of the four conditions, i ≇ j, πibp(i) ≇ πibp(j), i ≁ j,

πibp(i) ≁ πibp(j), is very likely to result in large wt(C
ij). However, there is still a

small possibility that low weight codewords will be generated. Before presenting the

requirements for eliminating these low weight codewords by using a proper intra-block

permutation, we need to define a few new functions to facilitate our discussion.
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We denote by uk the weight-1 sequence whose only nonzero element is at coordinate

k and by s̃crb(·) the RSC encoder that encodes a length-L sequence and terminates

at the all-zero state using proper tail-bits. Based on the above definitions, we further

define, for 0 ≤ i, j < L

f1(i, j) =

{
α|i − j| + β, if i ∼ j

wt(s̃crb(u
ij)), otherwise

(3.17)

f2(i, j) = wt(s̃crb(u
i)) + wt(s̃crb(u

j)) (3.18)

f3(i, j) =

{
|i − j|, if i ∼ j
∞, otherwise

(3.19)

f4(i, j) = min(f3(i, j), f3(i, j + L), f3(i, j − L)). (3.20)

As the way a low weight codeword is generated depends on how the encoder terminates

its state at the end of a block, we begin with TP-IBPTC.

3.4.1 TP-IBPTC

For the class of TP-IBPTC, a weight-2 input sequence uij, (i, j) /∈ sm, can not

generate an infinite-weight codeword because the encoder state is forced to be terminated

at the all-zero state at the end of each block. On the other hand, low-weight codewords

may be generated if

dL(i) + dL(j) + dL (πibp(i)) + dL (πibp(j)) < lcm(Ts, Tc) + Tc (3.21)

where dL(n) = L−|n|L and in addition, (i) both i, j and πibp(i), πibp(j) are near the ends

of different blocks, (ii) i ∼= j, πibp(i) ∼= πibp(j) and both pairs lie close to the end of a

block, or (iii) i ≇ j or πibp(i) ≇ πibp(j) but both pairs lie close to the end of a block. To

avoid generating low weight codewords out of case (i), we require that

f2(|i|L, |j|L) + f2 (fb (πblock(|i|L)) , fb (πblock(|j|L))) ≥ B(Tc, Ts), (3.22)

where B(Tc, Ts) = α [Tc + lcm(Tc, Ts)/Tc] + 2β. Similarly, for cases (ii)-(iii), Πblock must

satisfy

f1(|i|L, |j|L) + f1 (fb (πblock(|i|L)) , fb (πblock(|j|L))) ≥ B(Tc, Ts), (3.23)
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if i ∼= j and πibp(i) ∼= πibp(j), and

f1(|i|L, |j|L) + f2 (fb (πblock(|i|L)) , fb (πblock(|j|L))) ≥ B(Tc, Ts) (3.24)

if i ∼= j but πibp(i) ≇ πibp(j), and

f2(|i|L, |j|L) + f1 (fb (πblock(|i|L)) , fb (πblock(|j|L))) ≥ B(Tc, Ts) (3.25)

if i ≇ j but πibp(i) ∼= πibp(j).

Πintra may not meet the above conditions in eqns. (3.22)-(3.25). If we impose more

constraints on Πinter and the conditions can be relaxed. It is straightforward to show

Lemma 3.3 For a TP-IBPTC whose inter-block permutation Πinter is of Type IV

min
i,j

wt(C
ij) ≥ B(Tc, Ts)

if each element in the set ΓTs
= {(i, j) : 0 ≤ i, j ≤ L − 1, |πblock(i) − πblock(j)|Ts

= 0}

satisfies

f2(i, j) + f2(πblock(i), πblock(j)) ≥ B(Tc, Ts)

f1(i, j) + f1(πblock(i), πblock(j)) ≥ B(Tc, Ts) (3.26)

and ∀ (i, j) /∈ ΓTs
the following two inequalities are satisfied

f1(i, j) + f2(πblock(i), πblock(j)) ≥ B(Tc, Ts)

f2(i, j) + f1(πblock(i), πblock(j)) ≥ B(Tc, Ts). (3.27)

Starting with an arbitrary intra-block permutation, say an s-random interleaver [44],

we can apply the above criterion iteratively to find the smallest L for a given component

code such that wt(C
ij) ≥ 2 + B(Tc, Ts). When L is large enough, e.g., L > 2(Tc +

lcm(Tc, Ts)), the constraints imposed by the above lemma are relatively easy to meet,

i.e., an intra-block permutation that satisfies these constraints is easy to find. For

example, it just has to permute the bits near both ends of a block to those coordinates

far away from the ends.
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3.4.2 TB-IBPTC

We discuss the constraints of intra-block permutation Πintra for TB-IBPTC. The

tail-biting encoding results in the codeword weight of weight-1 and weight-2 input in-

formation sequences determined by block length L. We give two definitions as follows.

Definition 14 scrbl
tb(u) is the weight of a length−L tail-biting convolutional code output

for an input sequence u.

Definition 15

Sk =
∞⋃

l=k

[S1(l) ∪ S2(l)] , (3.28)

where

S1(l) =
{
M = α + 2scrbl

tb(u
i) |0 ≤ i < l

}

S2(l) =
{
M = scrbl

tb(u
ij) + scrbl

tb(u
πblock(i)πblock(j)) |i ≁ j, i ≁ j ± l, πblock(i) ≁ πblock(j),

πblock(i) ≁ πblock(j) ± l, 0 ≤ i, j < l} (3.29)

Let mk be the smallest integer of the set Sk. Obviously, {mk} is a nondecreasing series

of k. Denote the least integer k such that mk ≥ B(Tc, Ts) by kmin.

We observed that, for a TB-IBPTC whose block size L ≥ kmin, a weight-2 sequence

uij generates a codeword whose weight is not larger than the bound B(Tc, Ts) only if

(i, j) ∈ ΓTs
and (i, j) satisfies the following conditions:

min {|(|i − j|)|Tc
, |(L − |i − j|)|Tc

} = 0 (3.30)

min {|(|πibp(i) − πibp(j)|)|Tc
, |(L − |πibp(i) − πibp(j)|)|Tc

} = 0. (3.31)

min {|i − j|, L − |i − j|}+min {|πibp(i) − πibp(j)|, L − |πibp(i) − πibp(j)|} < lcm(Tc, Ts)+Tc.

(3.32)

Such (i, j) pairs will not exist if Πinter is of Type III and the corresponding Πblock satisfies

f4(|i|L, |j|L) + f4(fb(πblock(|i|L)), fb(πblock(|j|L))) ≥ Tc + lcm(Tc, Ts), 0 ≤ i, j < L,
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∀ (i, j) ∈ ΓTs
. In manner similar to the TP-IBPTC case, the above constraint on Πblock

can be further lessened when a Type IV permutation is used. In summary,

Lemma 3.4 For a TB-IBPTC that uses a Type IV permutation with a block length

L ≥ kmin, w2,min ≥ B(Tc, Ts) if the corresponding Πblock satisfies

f4(|i|L, |j|L) + f4(πblock(|i|L), πblock(|j|L)) ≥ Tc + lcm(Tc, Ts). (3.33)

for all (i, j) ∈ ΓTs
.

Note that in designing the interleaver for the classic TCs that use the identical tail-

biting convolutional code as the component codes, one must also consider the constraint

similar to Lemma 3.4.

3.4.3 C-IBPTC

For the class of C-IBPTC, we only have to consider (i, j) ∈ sm. Low weight codewords

are associated with those (i, j) pairs whose combined pre-interleaved and post-interleaved

distance, |i− j|+ |πibp(i)−πibp(j)|, is small. The upperbound promised by Theorem 3.2

can be achieved if

f4(|i|L, |j|L) + f4(fb(πblock(|i|L)), fb(πblock(|j|L))) ≥ Tc + lcm(Tc, Ts), (3.34)

∀ (i, j) /∈ ΓTs
, if Πinter is of Type III.

The constraint (3.34) is used to ensure that the pair (πibp(i), πibp(j)) though in dif-

ferent blocks (since (i, j) /∈ ΓTs
) are separated by a large distance.

In analogy to the case of TB-IBPTC, the constraint on Πblock can be relaxed if the

corresponding Πinter is more restricted. It is easy to show

Lemma 3.5 For a C-IBPTC that uses a Type IV permutation, if the associated Πintra

is such that for all (i, j) /∈ ΓTs
,

f4(|i|L, |j|L) + f4(πblock(|i|L), πblock(|j|L)) ≥ Tc + lcm(Tc, Ts),

then w2,min ≥ B(Tc, Ts).
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The above discussion shows that the Type IV permutation possesses some desired

properties and should be used in conjunction with a proper intra-block permutation.

Hokfelt et al. [54] showed that, as the correlation function of the extrinsic output is

exponentially decayed, the interleaver should separate neighboring bits as far as possible.

The local periodicity requirement of Type IV permutation is consistent with this intuition

and let bits or samples within the neighborhood of Ts−1 blocks be moved to the different

blocks.

3.5 TB-IBPTC bounds of codeword weights for weight-

2 input sequences

Number of blocks for D-IBPTC is of our interest. Classic TC encodes information

sequence and permuted information sequence continuously and this is equivalent to the

D-IBPTC with only one block. On the other hand, the product code [106] arranges N

information bits in a two dimensional array and encodes each row and column separately

(discontinuously). The number of blocks for pre-permutation and post-permutation

associated with the D-IBPTC are number of rows and columns respectively. Obviously

both coding schemes are two special cases of D-IBPTC and the optimum segmentation

rule becomes our concern.

We investigate the properties of TB-IBPTC. TB-IBPTC and TP-IBPTC, two D-

IBPTC options, are distinguished by termination methods. The tail-padding assigns

termination bits and some low weight codeword events are associated with these bits.

However the extrinsic information of these bits are unexchangeable during iterative de-

coding and this causes low weight codeword for TP-IBPTC. The tail-biting avoids these

error events induced by the termination bits and the associated codeword weight de-

pends on the length of a block. Furthermore avoiding termination bits does not induce

a loss in spectral efficiency. Therefore we derive the codeword bounds for TB-IBPTC.
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Figure 3.3: Partition of equivalence classes; L = 66, Tc = 9.

3.5.1 The achievable weight-2 lower bound

We provide a simplified coordinate partition rule [25] according to the period of an

RSC code. The RSC code used in a turbo code is equivalent to an IIR scrambler whose

period has a great impact on the distance property of the associated turbo code. The

codeword weight associated with a weight-2 input sequence is finite when the difference of

these two nonzero coordinates divisible by the period. Breiling [25] applies this property

to partition the coordinates of input sequences into some equivalence classes in which any

two coordinates is associated with a finite weight codeword. Following the same concept,

the simplified partition rule for the ith pre-permutation (k = 0) and post-permutation

(k = 1) sets ̥
(k)
i , k = 0, 1 is given by

̥
(k)
i =





{
i + Tcj : 0 ≤ j <

⌈
L
Tc

⌉}
, 0 ≤ i < |L|Tc{

i + Tcj : 0 ≤ j <
⌊

L
Tc

⌋}
, |L|Tc

≤ i < Tc

. (3.35)

An exemplary partition of eqn. (3.35) is shown in Fig. 3.3 where the integers represent

the coordinates of either a pre-permutation or post-permutation sequence. Each row

represents an index set ̥
(k)
i and is of size 8 or 7.

The codeword weights of weight-1 and weight-2 input sequences influence the deriva-

tion of the lower bound. For example: two non-zero coordinates at i and j of a weight-2
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input information sequence permuted to two different blocks and the RSC generates

two codewords associated with the weight-1 input information sequence. In order to

facilitate our discussion, we give two definitions as follows.

Definition 16 Given a tail-biting recursive convolutional code, we have

W2(L) = min
i,j,|i−j|Tc 6=0,|L−i+j|Tc 6=0

scrbL
tb(u

ij
k ), (3.36)

where uij
k is a weight-2 input sequence with nonzero elements at coordinates i and j in

the kth block.

Definition 17 Given a tail-biting recursive convolutional code, we have

W1(L) = min
i

scrbL
tb(u

i
k), (3.37)

where ui
k is a weight-1 input sequence with nonzero element at coordinate i in the kth

block.

The weight of a weight-2 input sequence is our main concern. The codeword weight

scrbL
tb(u

ij
k ) associated with two coordinates i, j satisfying |i − j|Tc

6= 0, |L − i + j|Tc
6=

0 is lower-bounded by W2(L). When two coordinates i, j satisfy |i − j|Tc
= 0 or

|L − i + j|Tc
= 0, the associated codeword weights are lower-bounded by α |i−j|

Tc
+ β or

α (L−|i−j|)
Tc

+ β respectively. We have

W (i, j, L) =





α |i−j|
Tc

+ β , |i − j|Tc
= 0

αL−|i−j|
Tc

+ β , |L − |i − j||Tc
= 0

W2(L) , otherwise

. (3.38)

Furthermore, if the puncturing is not applied, W2(L) can be bounded by α·(L−Tc)
Tc

+ β ≤

W2(L) ≤ α·(L+Tc)
Tc

+ β.

Since the RSC code output weights of the weight-2 error events are lower-bounded

by the difference of a coordinate pair (i, j), the weight of a tail-biting encoded classic

TC is lower-bounded by

min
i,j

(2 + W (i, j, L) + W (π(i), π(j), L)) (3.39)
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where Π is a length L permutation function.

Before we establish our main result, we need the following two lemmas.

Lemma 3.6 For each integer set SP = {0, 1, 2, ..., P − 1}, there exists a permutation

function ΠP such that mini6=j∈SP
(|i − j|P + |πP (i) − πP (j)|P , |i − j|P + P − |πP (i) −

πP (j)|P , P − |i− j|P + |πP (i)− πP (j)|P , 2P − |i− j|P − |πP (i)− πP (j)|P ) ≥ r + 1, where

r =
⌈√

P
⌉
− 1. A permutation function satisfying these constraints is

πP (i) =

∣∣∣∣ri +
i − |i|q

q

∣∣∣∣
P

, q =
P

gcd(P, r)
. (3.40)

Proof: See A.

Lemma 3.7 Given N1 distinct n-element sets and N2 distinct (n − 1)-element sets,

where n > 1. If we arrange all elements in these N1 +N2 sets into a cycle, the minimum

separation among elements in the same set is lower-bounded by N1 + N2 −
⌈

N2

n

⌉
for the

n−element sets, and N1 + N2 −
⌊

N2

n

⌋
for the (n− 1)−element sets. Moreover, there are

at most |N2|n element pairs with separation N1 + N2 −
⌈

N2

n

⌉
for these n-element sets.

Proof: See B.

Fig. 3.4 shows an exemplary placement for N1 = 3, N2 = 6 and n = 8. The minimum

septation in these N1 8-element and N2 7-element sets is at least 7 and 8, respectively.

Moreover, there are only |N2|8 = 6 element pairs with separation 7 for these 8 element

sets.

Based on the above results, we can prove

Theorem 3.3 There exists a TB-IBPTC of block length L whose minimum codeword

weight w2,min for weight-2 input sequences is lower-bounded by

w2,min ≥ 2 + 2β + min (W2(L) + αDmin − β,

αDmin min
(⌈√

Nmax

⌉
, 2|N2|Nmax

)
+

αDmax max
(⌈√

Nmax

⌉
− 2|N2|Nmax

, 0
))

, (3.41)
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Figure 3.4: Set mapping; N1 = 3, N2 = 6 and n = 8.

where 2W1(L) ≥ 2 + αDmin + W2(L) + β, Dmin = dTs −
⌈

N2

Nmax

⌉
, Dmax = dTs −

⌊
N2

Nmax

⌋
,

N2 = dTs −
∣∣L

d

∣∣dTs
, Nmax =

⌈
L

d2Ts

⌉
, d=gcd(|L|Tc

, Tc) and Ts is the number of blocks

involved in encoding.

Proof: See C.

If L ≥ (Tc + 2d)M , we have

TcDmin min(2|N2|Nmax
,
√

Nmax) + TcDmax max(
√

Nmax − 2|N2|Nmax
, 0)

≤ TcdTs

⌈√⌈
L

d2Ts

⌉⌉
< Md

(√
L

d2Ts

+ 1 + 1

)
≤

√
T 2

c TsL + d2M2 + dM

≤
√

(L − 2dTcTs)L + d2M2 + dM ≤
√

L2 − 2dML + d2M2 + dM = L, (3.42)

where M = TcTs. Then

αDmin min
(
2|N2|Nmax

,
⌈√

Nmax

⌉)
+ αDmax max

(⌈√
Nmax

⌉
− 2|N2|Nmax

, 0
)

+ β

≤ αL

Tc

+ β ≤ W2(L) + α, (3.43)

if no puncturing is applied for the RSC code. Therefore we reach a Corollary as
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Table 3.1: (α, β) for some RSC codes.
RSC codes Tc (α, β)

1+D2

1+D+D2 3 (2, 2)
1+D+D3

1+D2+D3 7 (4, 2)
1+D2+D3+D4

1+D+D4 15 (8, 2)

Corollary 3.2 If the block length L is greater than (Tc + 2d)M and no puncturing

is applied, then there exists a TB-IBPTC whose minimum codeword weight w2,min for

weight-2 input sequences is lower-bounded by

w2,min ≥ 2 + αDmin min
(
2|N2|Nmax

,
⌈√

Nmax

⌉)

+αDmax max
(⌈√

Nmax

⌉
− 2|N2|Nmax

, 0
)

+ 2β, (3.44)

where 2W1(L) > 2 + αDmin + W2(L) + β, M = TcTs, Dmin = dTs −
⌈

N2

Nmax

⌉
, Dmax =

dTs −
⌊

N2

Nmax

⌋
, N2 = dTs −

∣∣L
d

∣∣dTs
, Nmax =

⌈
L

d2Ts

⌉
, d=gcd(|L|Tc

, Tc) and Ts is the number

of blocks involved in encoding.

3.5.2 Analytical results

We evaluate lower bounds for the RSC codes given in Table 3.1. Figs. 3.5-3.7 plot

the lower bounds for various interleaver lengths TsL. Larger component code period

generally gives higher lower bound, as indicated by these curves.

Separate encoding improves the lower bounds for some interleaver lengths but also

imposes constraints on interleaver lengths. These figures shows 10–50 weight improve-

ments on the lower bound for long interleaver lengths but W2(L) is small for short

interleaver lengths. Fig. 3.7 indicates that, the lower bound is a decreasing function of

Ts for short block length. Corollary 3.2 says that W2(L) is not a dominant factor of the

lower bound if the block length constraint L ≥ (Tc + 2d)M is satisfied.

Fig. 3.5 compares the upper bound [25] and the lower bound we derived. The large

“gap” between the upper and lower bounds is due to the fact that [25] does not consider

the weight-2 error events resulted from adjacent partitions but our derivation does. The
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gap would be much reduced if these events were taken into account.
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Figure 3.5: The weight 2 lower bound for the Scrambling function 1+D2

1+D+D2 .

We derive a general achievable codeword weight lower bound for the weight-2 error

events when a TB-IBPTC uses two identical RSC code. The bound implies separate

encoding stands a better chance to obtain a weight-2 lower bound larger than that of

the conventional continuous encoding scheme if the block length is not too small and is

properly chosen. The relationships between these two parameters and the lower bound

provide useful design guideline for TB-IBPTC.
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Figure 3.6: The weight 2 lower bound for the Scrambling function 1+D+D3

1+D2+D3 .

0 400 800 1200 1600

40

120

200

280

360

 T
s
=1

 T
s
=2

 T
s
=3

T
he

 W
ei

gh
t-

2 
Lo

w
er

 B
ou

nd


Interleaver Length

Figure 3.7: The weight 2 lower bound for the Scrambling function 1+D2+D3+D4

1+D+D4 .
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Chapter 4

Block-oriented inter-block
permutation interleaver

Block-oriented inter-block permutation (B-IBP) interleaver is a definite length turbo

code interleaver design regarding to the parallel turbo decoder architecture. The ar-

chitecture has five implementation issues: memory contention [49, 20, 98, 97], network

routing and control signalling [78, 68, 67, 33], permutation table storage [70, 95, 96]

and the support of high-radix APP decoding. B-IBP interleaver can well address these

issues. The invariant IBP and identical intra-block permutation mentioned in Theorem

3.1 resolve memory contention. The network-oriented B-IBP design reduces network

routing complexity and simplifies network control signaling. Choosing an intra-block

permutation whose permutation table can be generated on-fly avoids memory storage

for permutation table. If the block interleaver is generalized maximal contention-free,

the associated B-IBP interleaver is also generalized maximal contention-free. Further-

more if the block interleaver supports the high-radix APP decoder [16], the associated

B-IBP interleaver also supports the high-radix APP decoder. One can find popular

interleavers such as almost regular permutation (ARP) [12, 37, 38, 56], quadratic poly-

nomial permutation (QPP) [90, 85, 92, 93, 3] and inter-window shuffle interleaver [69, 70]

belonging to this class of B-IBP interleaver and enjoy these properties. However the in-

terleaver restricts the interleaver length which is identical to the multiple of the block

length. Therefore we propose shortening position assigning algorithm. This algorithm
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not only supports various input information lengths but also reduces implementation

complexity without obvious performance degradation. At last an example of the B-IBP

interleavers ranging from 40 to 6144 bits is proposed and this interleaver supports the

above mentioned hardware properties. The associated implementation applying the in-

terleaver with 4096 bits is provided and requires less power consumption comparing to

fashion designs.

4.1 The parallel turbo decoder architecture and mem-

ory contention

The parallel turbo decoder applies N APP decoders instead of a single APP decoder

to increase decoding throughput by N . Since there are N APP decoders, the turbo

decoder requires N memory banks to store received samples and the extrinsic messages

while a network connects these APP decoders and memory banks. Fig. 4.1 (a) shows

an example of the architecture with N = 4 and a fully-connected network [35] bridges

both sides. These APP decoders apply the sliding-window APP (SWAPP) decoding

algorithm [104, 21] which can manipulate partial coded sequence to generate the extrinsic

information. Therefore we partition a coded sequence into N segments so that each

segment is decoded by one APP decoder.

Memory contention occurs due to the serial memory access of these APP decoders

and influences the turbo decoding throughput and turbo decoder complexity. Each APP

decoder requires prior and successive extrinsic messages to decode each bit (symbol) and

it must decode information bits sequentially using a reasonable window size. The APP

decoders sequentially access certain memory banks to fetch or write the extrinsic mes-

sages according to an interleaving-deinterleaving rule. The interleaving-deinterleaving

rule may induce memory contention and more than one APP decoder want to access the

same memory bank simultaneously; see Fig. 4.1 (b). Memory contention decreases de-

coding throughput and increases decoder complexity because these APP decoders require
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Figure 4.1: (a) The block diagram of the parallel turbo decoder architecture with par-
allelism degree 4; (b) memory contention; (c) memory contention-free.

contention avoidance circuit to stagger memory access. [49] proposed using a buffer to

store temporary data to resolve memory contention but the complexity increases linearly

with the number of APP decoders.

An interleaver that resolves memory contention without extra buffer and contention

avoidance circuit will minimize the corresponding decoder complexity. To assure memory

contention-free (see Fig. 4.1 (c)), the interleaving law has to be such that at each

instance there is a one-to-one mapping between the memory banks and APP decoders.
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It is also desired that the interleaving rule supports various numbers of APP decoders

so that trade-off between complexity and throughput is available. We give a definition

for memory contention-free property to facilitate our discussions.

Definition 18 A length-K interleaver supports memory contention-free property for

N =
⌈

K
L

⌉
APP decoders, if there exist two K-to-N mapping functions M and Md such

that M(iL+k) 6= M(jL+k), Md(iL+k) 6= Md(jL+k), Md(π(iL+k)) 6= Md(π(jL+k))

and M(π−1(iL + k)) 6= M(π−1(jL + k)), ∀ 0 ≤ i < j < N , 0 ≤ k < L, 0 ≤ iL + k < K

and 0 ≤ jL + k < K.

Assume there are N APP decoders, where the jth APP decoder processes information

sequence ranging from the jLth symbol to the (j + 1)L − 1th symbol. We allocate

information symbols satisfying the mapping properties described in Definition 18. Then

the jth APP decoder fetches message from memory bank M(jL + k) (Md(jL + k))

and write message to memory bank Md(π(jL + k)) (M(π−1(jL + k))) without memory

contention if these N APP decoders process the kth bits in each length-L information

symbol sequence concurrently. The definition is well-defined.

One may find a contention-free definition as

Definition 19 A length-K interleaver Π is contention-free for N =
⌈

K
L

⌉
APP decoders

if both φ = π and φ = π−1 satisfy
⌊

φ(k + iL)

L

⌋
6=

⌊
φ(k + jL)

L

⌋
. (4.1)

This definition is only a special case corresponding to our Definition 18 with the mapping

functions M(k + iL) = i and Md(k + iL) = i.

4.2 Block-oriented IBPTC

Block-oriented IBPTC (B-IBPTC) as shown in Fig. 4.2 applies B-IBP interleaver. B-

IBP interleaver describes most popular memory contention-free interleavers such as the
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Figure 4.2: The block diagram of a block-oriented IBPTC encoder.

quadratic polynomial permutation (QPP) [90, 85, 92, 93, 3], almost regular permutation

(ARP) [12, 37, 38, 56], inter-window shuffle [69, 70] interleavers. Multiple slice turbo

code [47] also belongs to the B-IBPTC with separate encoding. Turbo code applying

these interleavers can utilize the same decoder architecture to increase turbo decoder

throughput. Regarding to maximal contention-free property, we also prove that the

B-IBP interleaver is maximal contention-free if the block interleaver is also a maximal

contention-free interleaver and the corresponding general memory mapping function is

described. At last, we discuss the support of the high-radix APP decoder and the

associated memory mapping functions.

4.2.1 B-IBP interleaver

B-IBP interleaver is a class of IBP interleaver. This interleaver is composed of definite

N length-L blocks. B-IBP interleaver resolves memory contention by two design rules

which are the invariant permutation property and identical intra-block permutation.

Given these two rules, the B-IBP interleaver ΠB−ibp with N blocks is formulated as

πB−ibp(iL + k) = πB−inter(πintra(iL + k)) = πB−inter(iL + πblock(k))

= fn(i, πblock(k))L + πblock(k), ∀ 0 ≤ k < L, 0 ≤ i < N, (4.2)

where fb(k) = k for ΠB−inter and |πintra(k+ iL)|L = πblock(k). Fig. 4.3 shows an example

of the B-IBP interleaver with interleaver length 16 bits and block length 4 bits. In this
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Figure 4.3: An example of block-oriented IBP interleaving.

example, πblock(i) = |i + 1|4 and fn(i, j) = i ⊕ j, where ⊕ is an exclusive-or operation,

e.g. 1 ⊕ 3 = 2.

Creating good B-IBP interleavers requires less effort and the potential implementa-

tion complexity is avoidable. B-IBP interleaver generally has good distance property if

the block interleaver possesses good distance property in each block. The B-IBP design

guideline in Theorem 3.2 further enhances the distance property of B-IBP interleaver.

Therefore we can search a good short length interleaver and then apply the above B-IBP

design guidelines to acquire good B-IBP interleavers. Since finding good short length

interleavers requires less effort than finding good long length interleavers, constructing

good B-IBP interleavers becomes simple. We can design B-IBP interleaver in two ways:

given a B-IBP to find a good block interleaver and given a block interleaver to search

a good B-IBP. The first way can impose hardware constraints to B-IBP and reduce the

routing complexity and simplify the associated control signalling. Then the successive

effort is to search a good short length interleaver given the constrained B-IBP. The sec-

ond way is applied when the intra-block permutation is given. Then the next step is

to find good B-IBP. Both ways leave degree of freedom in designing high performance

B-IBP while the implementation complexity is to the least.

B-IBP is also a general description for popular classes of interleavers which support
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parallel decoding without memory contention. There are two popular interleavers: QPP

and ARP. The QPP has been defined in the 3GPP LTE [3] and the ARP has been applied

to the DVB-RCS/RCT [37, 38] and WiMAX [56]. A length-K QPP is formulated as

πQPP (i) = |f2i
2 + f1i|K , (4.3)

where f1 and f2 are two integers and references [90, 85] discuss the constraints for both

f1 and f2. A length-K ARP is formulated as

πARP (i) = |iP0 + A + d(i)|K , (4.4)

where P0 is the relative prime to K, A is a constant, d(i) is a “dither” vector of length

C which is the factor of K. For all block sizes, d(i) has the form

d(i) = P0α(|i|C) + β(|i|C), (4.5)

where α(·) and β(·) are both vectors of length C. The following two theorems prove

that QPP and ARP are B-IBP interleavers.

Theorem 4.4 QPP is a B-IBP interleaver.

Proof: Suppose L is a factor of K. We decompose eqn. (4.3) as

πQPP (iL + k)

= |f2(iL + k)2 + f1(iL + k)|K

= |(f2i
2L + 2f2ik + f1i)L + f2k

2 + f1k|K

= |(f2i
2L + 2f2ik + f1i + ||f2k

2 + f1k||L)L + |f2k
2 + f1k|L|K

= |(f2i
2L + 2f2ik + f1i + ||f2k

2 + f1k||L)|K
L
L + |f2k

2 + f1k|L. (4.6)

Theorem 4.5 ARP is a B-IBP interleaver.
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Proof: We partition a coordinate set {0, 1, 2, · · · , K − 1} into C subsets Sk =
{
iC + k|0 ≤ i < K

C

}
, 0 ≤ k < C. According to eqn. (4.4), we have

πARP (iC + k) = |(iC + k)P0 + A + α(|iC + k|C)P0 + β(|iC + k|C)|K

= |iCP0 + kP0 + A + α(k)P0 + β(k)|K

= |iCP0 + A′(k)|K , (4.7)

where 0 ≤ i < K
C

. Since ΠARP is a permutation function and P0 is relative prime to K,

there are no 0 ≤ i′, j′ < K
C

such that |iCP0|K = |i′C|K = |j′C|K = |jCP0|K if i 6= j.

Then ΠARP maps all elements in Sk to SA′(k) and any two elements in different subsets

are mapped to different subsets.

Suppose L is a factor of K and C is a factor of L, eqn. (4.7) is further expressed as

πARP (iL + jC + k)

= |(iL + jC)P0 + A′(k)|K

= |iP0L + jCP0 + A′(k)|K

= |(iP0 + ||jCP0 + A′(k)||L)L + |jCP0 + A′(k)|L|K

= |iP0 + ||jCP0 + A′(k)||L|K
L
L + |jCP0 + A′(k)|L. (4.8)

Since eqn. (4.8) has the same form to eqn. (4.2) and all elements in each subset Sk are

permuted to the same subset SA′(k), ARP is a B-IBP interleaver.

B-IBP interleaver features memory contention-free with simple memory mapping

function. The invariant permutation property and identical intra-block permutation

avoid memory contention when the number of APP decoders is identical to the factor of

N . The reversed B-IBP manner also resolves memory contention when the number of

APP decoders is smaller than the factor of N . Both methods only require simple on-fly

generated memory mapping functions and avoid the large storage of complex memory

mapping functions [95, 96]. The parallelization methods are described in the following

sections.
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4.2.2 Parallelization method in the B-IBP manner

B-IBP interleaver composed of N blocks supports turbo decoder with parallelism

degree N or the factor of N . We apply B-IBP to configure the network and intra-block

permutation to determine memory addressing within a memory bank. Then we define

two memory mapping functions M and Md

M(jL + k) = j, (4.9)

Md(jL + k) = j. (4.10)

Following eqns. (4.2) and (3.6), we have

M(π−1
B−ibp(jL + k)) = M(fd

n(j, k)L + π−1
block(k)) = fd

n(j, k), (4.11)

Md(πB−ibp(jL + k)) = Md(fn(j, πblock(k))L + πblock(k)) = fn(j, πblock(k)).(4.12)

Because fn(j, k) and fd
n(j, k) are permutation functions corresponding to each k and

block interleavers are identical for all blocks, according to Definition 18, B-IBP inter-

leaver supports memory contention-free with parallelism degree N . If the parallelism

degree decreases to any factor of N , B-IBP interleaver also supports memory contention-

free. A theorem is given as follows.

Theorem 4.6 If R is a factor of N , there exist memory mapping functions MR and

Md
R of a B-IBP interleaver composed of N length-L blocks such that the parallelism

degree R is achievable without memory contention.

Proof: For an integer k ∈ [0, L), we first assume k̃ = πblock(k), MR(jL+k) = ||j||N
R
,

Md
R(jL + k̃) = ||j||N

R
, Si =

{
i, i + N

R
, i + 2N

R
, . . . , i + N − R

}
and S = {0, 1, . . . , R− 1}.

We define an index vector I(i) = N,∀ 0 ≤ i < N .

Start from i = 0. If there exist any two j1, j2 ∈ S0 such that Md
R(fn(j1, k̃)L +

k̃) = Md
R(fn(j2, k̃)L + k̃) = m ∈ S, there exists a value m′ ∈ S such that Md

R(j′L +

k̃) = m′ 6= Md
R(fn(j, k̃)L + k̃),∀ j ∈ S0, where I

(
m′N

R
+ |j′|N

R

)
= N and |j′|N

R
=
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|fn(j2, k̃)|N
R
. We set Md

R(fn(j2, k̃)L + k̃) = m′ and Md
R(j′L + k̃) = m. We do this

procedure until Md
R(fn(j1, k̃)L + k̃) 6= Md

R(fn(j2, k̃)L + k̃), ∀j1 6= j2 ∈ S0. Then we set

I
(

mN
R

+ |fn(j, k̃)|R
)

= j, ∀j ∈ S0, where m = Md
R(fn(j, k̃)L + k̃).

Increase i to i + 1. If there exist any two j1, j2 ∈ Si such that Md
R(fn(j1, k̃)L + k̃) =

Md
R(fn(j2, k̃)L + k̃) = m ∈ S, we search a value m′ ∈ S such that Md

R(j′L + k̃) = m′ 6=

Md
R(fn(j, k̃)L + k̃),∀ j ∈ Si, where I

(
m′N

R
+ |j′|N

R

)
= N and |j′|N

R
= |fn(j1, k̃)|N

R
. If j′

exists, we set Md
R(fn(j1, k̃)L + k̃) = m′ and Md

R(j′L + k̃) = m. If j′ does not exist, we

search a value m′ ∈ S such that Md
R(j′′L+k̃) = m′ 6= Md

R(fn(j, k̃)L+k̃),∀ j ∈ Si, where

I
(

m′N
R

+ |j′′|N
R

)
= N and |j′′|N

R
= |fn(j2, k̃)|N

R
. If j′′ exists, we set Md

R(fn(j2, k̃)L+ k̃) =

m′ and Md
R(j′′L + k̃) = m. If j′′ does not exist, we start the following procedure.

There exists j0 such that Md
R(j0L + k̃) = m′ 6= Md

R(fn(j, k̃)L + k̃),∀ j ∈ Si, where

|j0|N
R

= |fn(j1, k̃)|N
R
. We set Md

R

(
fn

(
I
(

m′N
R

+ |j0|N
R

)
, k̃

)
L + k̃

)
= m, Md

R(fn(j1, k̃)L+

k̃) = m′ and I
(

mN
R

+ |fn(j1, k̃)|N
R

)
= I

(
m′N

R
+ |j0|N

R

)
. There exists j1 such that

Md
R(fn(j1, k̃)L + k̃) = Md

R

(
fn

(
I
(

mN
R

+ |j0|N
R

)
, k̃

)
L + k̃

)
= m ∈ S, where ||j1||N

R
=

∣∣∣
∣∣∣I

(
mN
R

+ |j0|N
R

)∣∣∣
∣∣∣

N
R

. If there exists j2 such that Md
R(j2L+k̃) = m′ and I

(
m′N

R
+ |j2|N

R

)
=

N , where |j2|N
R

= |fn(j1, k̃)|N
R
, we set Md

R(fn(j1, k̃)L + k̃) = m′, Md
R(j2L + k̃) =

m, I
(

m′N
R

+ |j2|N
R

)
= j1 and I

(
m′N

R
+ |fn(j1, k̃)|N

R

)
= N and stop the this proce-

dure. If I
(

m′N
R

+ |j2|N
R

)
6= N , we set Md

R(fn(j1, k̃)L + k̃) = m′, Md
R(j2L + k̃) = m,

I
(

m′N
R

+ |fn(j1, k̃)|N
R

)
= I

(
mN
R

+ |j2|N
R

)
and I

(
mN
R

+ |j2|N
R

)
= fn(j1, k̃). We search

the following jl and jl+1, the same as the search of j1 and j2, we update the corre-

sponding memory mapping function and index factor, where l is odd. Since there are i

occupied entries in memory bank m′ and at least i+2 occupied entries in memory bank

m, there exist a jl+1 such that I
(

m′N
R

+ |jl+1|N
R

)
= N and we stop this procedure.

Then we go back to check if there exist any two j1, j2 ∈ Si such that Md
R(fn(j1, k̃)L+

k̃) = Md
R(fn(j2, k̃)L+ k̃) = m ∈ S and update the corresponding mapping function and

index vector. If there exist no j1, j2 ∈ Si, we set I
(

mN
R

+ |fn(j, k̃)|N
R

)
= j, ∀j ∈ Si,

where m = Md
R(fn(j, k̃)L + k̃) and increase i to i + 1 and update the corresponding
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mapping function and index vector.

We do the same procedure on MR to acquire the memory mapping function avoiding

memory contention. Therefore for each k, there exist memory mapping functions such

that memory contention-free holds.

Theorem 4.6 indicates that there exist memory mapping functions MR and Md
R such

that the parallelism degree can decrease to R. Tarable [95, 96] also provided a similar

proof and result to support memory contention-free but the storage of memory mapping

functions is large. The same case occurs for the memory mapping functions if there is no

constraint on the B-IBP. The following definition describes the constraint on the B-IBP

such that the necessary storage for the memory mapping function is to the least.

Definition 20 The memory mapping functions MR and Md
R for a B-IPB interleaver

composed of N length-L blocks is regular if MR(jL+k1) = MR(jL+k2) and Md
R(jL+

k1) = Md
R(jL + k2), ∀0 ≤ i < N, 0 ≤ k1, k2 < L.

If the memory mapping functions are regular, the necessary storage of memory mapping

function decreases to 1/L.

Fig. 4.4 demonstrates two examples of the parallel turbo decoding procedure for the

memory mapping and merged memory mapping. The length-42 B-IBP interleaver is

composed of N = 6 blocks and each block contains 7 symbols. At first, suppose there

are N = 6 APP decoders, the jth APP decoder processes from uj,0 to uj,6 in Fig. 4.4 (a).

At each instance, these bits processed by these APP decoders are permuted to different

memory banks and memory contention is avoided. If the necessary parallelism degree is 3

which is the factor of N = 6, we merges even memory banks with the prior odd memory

banks. Then these three APP decoders access information bits from u0,0, u2,0, u4,0 as

shown in Fig. 4.4. The lower turbo decoder complexity is achievable and the memory

contention-free holds.

Unified memory bank is one implementation advantage of B-IBP interleaver. One

can find that the block permutation is identical in each memory bank. This implies
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Figure 4.4: (a) The memory mapping for a B-IBP interleaver composed of 6 blocks to
support parallelism degree 6; (b) the merged memory mapping for a B-IBP interleaver
composed of 6 blocks to support parallelism degree 3.

that only one memory control element is necessary to coordinate these memory banks.

In other words we can apply a memory bank with wider input/output port instead of

multiple memory banks with narrower input/output port. This saves control elements

and the resultant turbo decoder complexity is further eliminated.

This method does not resolve memory contention for the number of APP decoders is

not equal to any factor of N . If these APP decoders start decoding from the beginning

of a block, there is at least one block which can not be processed at the same time,

i.e. the decoding latency increases. If these APP decoders do not start decoding form

the beginning of a block, memory contention may occur given the memory mapping

functions in eqns. (4.9), (4.10). A dilemma occurs. The following subsection provides

another view for the B-IBP interleaver to overcome this situation.
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4.2.3 Parallelization method in the reversed B-IBP manner

The reversed manner of B-IBP interleaver resolves memory contention for the case

that the number of APP decoders P is less than N or not the factor of N . We exchange

the roles of intra-block permutation and inter-block permutation; the intra-block per-

mutation configures the network and the inter-block permutation determines memory

addressing within a memory bank. Then we give memory mapping functions M and

Md as

M(jL + k) = k, (4.13)

Md(jL + k) = k. (4.14)

We allocate the starting ordinals of the adjacent APP decoders are separated by
⌈

K
P

⌉
or

⌊
K
P

⌋
such that their decodings finish at close instance while the ordinals corresponding

to these blocks are different. Following the eqn. (4.2), we acquire

M(π−1
B−ibp(jL + k)) = M(fd

n(j, k)L + π−1
block(k)) = π−1

block(k), (4.15)

Md(πB−ibp(jL + k)) = Md(fn(j, πblock(k))L + πblock(k)) = πblock(k). (4.16)

Since these decoders access from different ordinals in these blocks, memory contention is

avoided. Even these APP decoders fetch or write on the successive S symbols, π−1
block(|k+

S|L) and π−1
block(|k+S|L) are still different for these APP decoders and memory contention-

free still holds.

Fig. 4.5 demonstrates an example of this reversed memory mapping. The length-

42 B-IBP interleaver is composed of 7 blocks. We apply 6 memory banks for P = 3

APP decoders. The stating positions for these APP decoder are 0, 14 and 28 and the

corresponding ordinals in these blocks are 0, 2 and 4 respectively. Therefore these APP

decoders write messages back to memory banks without memory contention. The same

as the interleaving procedure, the deinterleaving procedure also starts from 0, 14, 28 and

the mapping avoids memory contention.
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Figure 4.5: The reversed memory mapping for the B-IBP interleaver composed of 7
blocks to support parallelism degree 3.
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Figure 4.6: The block diagram of the asymmetric parallel turbo decoder architecture
with 4 memory banks and 3 APP decoders.

Since the number of APP decoders is different to the number of blocks, an asym-

metric decoder architecture appears. Fig. 4.6 shows an example of the architecture

which possesses three APP decoders and four memory banks. One can find that one

extra memory bank is necessary and at least one more memory control element is re-

quired. Furthermore, the starting positions of these APP decoders in memory banks

are not identical and these memory banks apply different memory addressing for these

APP decoders. Unified memory bank is generally impossible. These implementation

disadvantages comes from the asymmetric architecture.
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4.2.4 Generalized maximal contention-free and intra-block per-
mutation

Maximal contention-free property is proposed in [92] and an interleaver possessing

this property supports flexible parallelism degree. The definition is given below.

Definition 21 A length-K interleaver Π is maximal contention-free if both φ = π and

φ = π−1 satisfy

⌊
φ(k + iL)

L

⌋
6=

⌊
φ(k + jL)

L

⌋
, (4.17)

for all factors L of K, where 0 ≤ k < L and 0 ≤ i < j < K
L
.

When we apply the memory mapping function in eqns. (4.9) and (4.10), the interleaver

supports memory contention-free with parallelism degree the factors of K.

Definition 21 is narrow sense and some good interleavers satisfying Definition 18

may be skipped due to eqn. (4.17). When we apply memory mapping functions in eqns.

(4.13) and (4.14), there exists an interleaver satisfying Definition 21 avoids memory

contention. Definition 21 may not support memory contention-free as memory mapping

functions in eqns. (4.13) and (4.14) are applied. Definition 21 seems restrictive and

necessitates modification. We give a new generalized definition as below.

Definition 22 A length-K interleaver is generalized maximal contention-free if there

exist memory mapping functions for all factors of K satisfy Definition 18.

This definition provides a concrete picture in finding interleavers with both good error

rate performance and more flexibility in memory contention-free property.

The B-IPB interleaver with the block interleaver satisfying generalized maximal

contention-free property is also a generalized maximal contention-free interleaver. In

most cases B-IBP interlaever is not a generalized maximal contention-free interleaver

because intra-block permutation is not an option. Section 4.2.2 shows that a length-NL

B-IBP interleaver supports parallelism degree to any factor of the total number blocks N
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but does not promise that any factor of NL is supportable. However if the block inter-

leaver is a generalized maximal contention-free interleaver, there exists memory mapping

functions to support parallelism degree which is any factor of L. Therefore these exist

composite memory mapping functions such that B-IBP interleaver is also a generalized

memory contention-free interleaver. The theorem is provided as follows.

Theorem 4.7 If the block interleaver is a generalized maximal contention-free inter-

leaver, the B-IBP interleaver is also a generalized maximal contention-free interleaver.

Proof: The block interleaver is a generalized maximal contention-free interleaver

and there exist memory mapping functions Mi,block and Md
i,block avoiding memory con-

tention with parallelism degree i which is the factor of block length L. Suppose there

are N blocks for the B-IBP interleaver and Theorem 4.6 shows that there exist mem-

ory mapping functions Mk,B−IBP and Md
k,B−IBP avoiding memory contention with the

degree k which is the factor of N . Assume Q = gcd
(

N
k
, i

)
. We construct a compos-

ite memory mapping functions Mki,C−B−IBP and Md
ki,C−B−IBP supporting parallelism

degree ki as

Mki,C−B−IBP

(
m

NL

ki
+ n

)
= MkQ,B−IBP

(∣∣∣∣
∣∣∣∣m

NL

ki
+ n

∣∣∣∣
∣∣∣∣
L

L +

∣∣∣∣m
NL

ki
+ n

∣∣∣∣
L

)
i

Q

+M i
Q

,block

(∣∣∣∣m
NL

ki
+ n

∣∣∣∣
L

)
, (4.18)

Md
ki,C−B−IBP

(
m

NL

ki
+ n

)
= Md

kQ,B−IBP

(∣∣∣∣
∣∣∣∣m

NL

ki
+ n

∣∣∣∣
∣∣∣∣
L

L +

∣∣∣∣m
NL

ki
+ n

∣∣∣∣
L

)
i

Q

+Md
i
Q

,block

(∣∣∣∣m
NL

ki
+ n

∣∣∣∣
L

)
. (4.19)

kQ and i
Q

are factors of N and L respectively, and these memory mapping functions

MkQ,B−IBP , Md
kQ,B−IBP , M i

Q
,block and Md

i
Q

,block
exist. If

∣∣m1NL
ki

∣∣
L

=
∣∣m2NL

ki

∣∣
L
, where

0 ≤ m1 < m2 < ki, MkQ,B−IBP and Md
kQ,B−IBP avoid memory contention. If

∣∣m1NL
ki

∣∣
L
6=

∣∣m2NL
ki

∣∣
L
, where 0 ≤ m1 < m2 < ki, M i

Q
,block and Md

i
Q

,block
avoid memory contention

due to
∣∣∣∣m1NL

ki

∣∣
L
−

∣∣m2NL
ki

∣∣
L

∣∣
LQ/i

= 0.
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We apply both memory mapping functions to ΠB−ibp and Π−1
B−ibp and have

Mki,C−B−IBP

(
π−1

B−ibp

(
m

NL

ki
+ n

))

= MkQ,B−IBP

(
π−1

B−ibp

(∣∣∣∣
∣∣∣∣m

NL

ki
+ n

∣∣∣∣
∣∣∣∣
L
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∣∣∣∣m
NL
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+ n

∣∣∣∣
L

))
i

Q

+M i
Q

,block

(
π−1

block

(∣∣∣∣m
NL

ki
+ n

∣∣∣∣
L

))
,

= MkQ,B−IBP

(
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n
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, (4.20)

Md
ki,C−B−IBP

(
πB−ibp

(
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= Md
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If
∣∣m1NL

ki

∣∣
L

=
∣∣m2NL

ki

∣∣
L
, where 0 ≤ m1 < m2 < ki, MkQ,B−IBP and Md

kQ,B−IBP avoid

memory contention. If
∣∣m1NL

ki

∣∣
L
6=

∣∣m2NL
ki

∣∣
L
, where 0 ≤ m1 < m2 < ki, M i

Q
,block and

Md
i
Q

,block
avoid memory contention due to

∣∣∣∣m1NL
ki

∣∣
L
−

∣∣m2NL
ki

∣∣
L

∣∣
LQ/i

= 0.

Theorem 4.7 introduces memory mapping functions for the B-IBP interleaver sup-

porting generalized maximal contention-free property and the necessary condition is that

the block interleaver is a generalized maximal contention-free interleaver. Therefore we

can search existing good short block interleaver such as QPP or ARP to construct the

B-IBP interleaver; the resultant distance property is generally good and generalized

maximal contention-free is satisfied.
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4.2.5 High-radix APP decoder and intra-block permutation

The high-radix APP decoder [16] improves turbo decoding throughput, network

complexity and storage by paying the trellis complexity. The APP decoder processes

multiple trellis segments or multiple information bits at each unit time to increase de-

coding throughput. Since the decoding throughput increases, less APP decoders can

achieve the same decoding throughput comparing to the baseline radix-2 APP decoder

and the associated network complexity is less. Less APP decoders also require less stor-

age for state metrics, received samples and extrinsic information in the turbo decoder.

However more trellis segments or information bits processed at each unit time induces

exponential growth trellis complexity in the APP decoder. For example, 6 bits processed

at one unit time implies 26 = 64 edges coming out from one state and in total 64 · |Σ|

edges appears but 1 bit processed at one unit time means 2 edges emit from one state

and in total 2 · 6 · |Σ| = 12 · |Σ| edges come out, where |Σ| is the number of total states.

Therefore the high-radix APP decoder enlarges trellis complexity or routing complexity.

Take the radix-4 APP decoder [16] as an example to compare the routing complexity.

Fig. 4.7 draws two trellises to compare both the radix-2 and radix-4 APP decoders. Fig.

4.7 (a) is the trellis composed of two trellis segments referring to Fig. 2.3 (c). The radix-2

APP decoder processes this trellis by two unit times. Fig. 4.7 (b) plots the merged trellis

and in one unit time two bits are processed. If the parallelism degree 32 is necessary, a

32×32 network can be replaced by two 16×16 networks when the radix-4 APP decoder

substitutes the radix-2 APP decoder. The associated network complexity decreases and

the number of APP decoders decrease by two respectively.

In order to support the radix-2B APP decoder, the APP decoder has to access and

write consecutive B information bits without memory contention. Suppose the block

interleaver Πblock has length L and B is the factor of L, where the condition that B is

the factor of L implies that the trellis segment does not change at the last for the APP

decoder. We give a definition as follows.
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Figure 4.7: (a) Two connected trellis segments referring to Fig. 2.3 (c); (b) The merged
trellis segment for the radix-4 APP decoder.

Definition 23 If the block interleaver Πblock supports memory contention-free for the

radix-2B APP decoder, there exist memory mapping functions MB,block and Md
B,block

such that

MB,block(iB + j) 6= MB,block(iB + k), (4.22)

Md
B,block(iB + j) 6= Md

B,block(iB + k), (4.23)

MB,block(π
−1
block(iB + j)) 6= MB,block(π

−1
block(iB + k)), (4.24)

Md
B,block(πblock(iB + j)) 6= Md

B,block(πblock(iB + k)), (4.25)

where 0 ≤ i < L
B
, 0 ≤ j < k < B.

Recall the length-L ARP interleaver in eqn. (4.4) and the proof in Theorem 4.5, the

permutation function moves elements in Sk to SA′(k), where Sk =
{
iC + k|0 ≤ i < L

C

}
,

0 ≤ k < C. Therefore, the ARP interleaver can support the radix-2C APP decoder by

the memory mapping functions

MC,block(iC + j) = j, (4.26)

Md
C,block(iC + j) = j. (4.27)

The B-IBP interleaver supports the radix-2B APP decoder if the block interleaver

81



supports the radix-2B APP decoder. A theorem is given below.

Theorem 4.8 If the block interleaver supports the radix-2B APP decoder, the associated

B-IBP interleaver also supports the radix-2B APP decoder.

Proof: The block interleaver supports the radix-2B APP decoder and there exists

memory mapping functions MB,block and Md
B,block avoiding memory contention where B

is the factor of L. Suppose there are N blocks for the B-IBP interleaver and Theorem 4.6

shows that there exist memory mapping functions Mk,B−IBP and Md
k,B−IBP avoiding

memory contention where k is the factor of N . We construct a composite memory

mapping functions MkB,C−B−IBP and Md
kB,C−B−IBP as

MkB,C−B−IBP (mL + n) = Mk,B−IBP (mL + n)B + MB,block(n), (4.28)

Md
kB,C−B−IBP (mL + n) = Md

k,B−IBP (mL + n)B + Md
B,block(n). (4.29)

Then we have

MkB,C−B−IBP (π−1
B−ibp(mL + n))

= Mk,B−IBP (π−1
B−ibp(mL + n))B + MB,block(π

−1
block(n)), (4.30)

Md
kB,C−B−IBP (πB−ibp(mL + n))

= Md
k,B−IBP (πB−ibp(mL + n))B + Md

B,block(πblock(n)). (4.31)

4.3 Network-oriented interleaver design

Network-oriented B-IBP design avoids the routing complexity and simplifies the

control signalling for the parallel turbo decoder architecture. In general the network

complexity is a critical issue for the parallel decoder architectures. Large network com-

plexity decreases the density on the chip and increases the cost, e.g. LDPC code decoders

[26, 62, 55]. Large network complexity also lengthens the routes on the chip. The longer

82



routs, the longer interconnection delay [61] as the process goes advance. The parallel

turbo decoder also necessitates a network between APP decoders and memory banks,

and the network complexity increases with decoding throughput. Therefore network

complexity issue also occurs to the parallel turbo decoder. For the B-IBPTC decoder,

the B-IBP generally configures the network routing and we can design the B-IBP based

on a low complexity routing network to prevent the potential routing complexity.

4.3.1 Network-oriented B-IBP design

B-IBP generally determines the network configuration and intra-block permutation

controls the memory addressing. When we consider a B-IBP interleaver with N blocks

and turbo decoder composed of P APP decoders, there exists a P ×N network between

APP decoders and memory banks. We can choose any network with less complexity

comparing to the fully-connected P × N network [35]; the resultant routing complexity

decreases. Therefore the construction method is described in the following three steps.

1. Choose a P × N network bridge P APP decoders and N memory banks.

2. Select some routes on this network.

3. Arrange the selected routes as the B-IBP.

The following two subsections will provide two low complexity networks and we will

discuss their features.

4.3.2 Butterfly network

An N×N Butterfly network [68, 67] is the simplest network with the edge complexity

2N log N comparing to the fully-connected network with the edge complexity N2 [35],

where N is the power of 2. The number of network configurations is 2
N
2

log2 N . However

this network results in the most routing congestions and therefore the network gener-

ally is not applicable for the parallel turbo decoder design as the interleaver is not an
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Figure 4.8: An example of butterfly network-oriented turbo code decoder architecture
with parallelism degree 8.

option such as QPP interleaver. However the network-oriented design prevents routing

congestions even if butterfly network is applied for the turbo decoder. Enjoying this low

complexity network becomes possible.

Fig. 4.8 shows a turbo decoder architecture [112] composed of 8 APP decoders and

8 memory banks, and there is a three-stage butterfly network in between. We choose

five network configurations:

• C1: A1 → M1, A2 → M2, A3 → M3, A4 → M4, A5 → M5, A6 → M6,

A7 → M7 and A8 → M8.

• C2: A1 → M2, A2 → M1, A3 → M4, A4 → M3, A5 → M6, A6 → M5,

A7 → M8 and A8 → M7.

• C3: A1 → M3, A2 → M4, A3 → M1, A4 → M2, A5 → M7, A6 → M8,

A7 → M5 and A8 → M6.

• C4: A1 → M5, A2 → M6, A3 → M7, A4 → M8, A5 → M1, A6 → M2,

A7 → M3 and A8 → M4.
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• C5: A1 → M7, A2 → M8, A3 → M5, A4 → M6, A5 → M3, A6 → M4,

A7 → M1 and A8 → M2.

We suppose the network configuration changing with the repeated order {C1, C2, C3, C4,

C5, C1, C2, ....} and this is the constructed B-IBP.

B controlling bits can configure a B-layer butterfly network instead of B · 2B−1

controlling bits. In Fig. 4.8 the butterfly network generally necessitates 3 · 4 = 12

controlling bits to configure the network with 3 · 22 crossbar switches. For the selected

network configurations {C1, C2, C3, C4, C5}, three bits can configure this 3-layer

butterfly network due to each layer switched together; the configuration C2 switches the

layer 3, the configuration C3 switches the layer 2, the configuration C4 switches the layer

1, the configuration C5 switches the layers 1 and 2. Therefore network oriented design

can further take controlling signalling into account to simplify network configuration.

The B-IBP interleaver which supports butterfly network with the identical layer-

switching is formulated as

πbutterfly,B−ibp(iL + j) = (i ⊕ I(πblock(j)))L + πblock(j), (4.32)

where I(·) corresponds to the control signalling sequence in which each symbol has bit

width B, 0 ≤ i < 2B and ⊕ is a width B exclusive-or operation.

If we want to decrease the parallelism degree to the factor R of N , we modify eqns.

(4.9) and (4.10) to acquire

M(jL + k) = ||j||N
R
, (4.33)

Md(jL + k) = ||j||N
R
, (4.34)

where R is the factor of N . Eqns. (4.11), and (4.12) become

M(π−1
B−ibp(jL + k)) = ||fd

n(j, k)||N
R
, (4.35)

Md(πB−ibp(jL + k)) = ||fn(j, πblock(k))||N
R
. (4.36)
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Figure 4.9: Multiple steams decoding.

One can find the memory mapping functions are not only regular but also simple.

Butterfly network-oriented turbo decoder supports multiple streams decoding which

highly benefits uplink transmission. In downlink, multiple streams occur less for a

mobile station. In uplink multiple users interact with a base station concurrently and

multiple short length streams occur often. In order to achieve high throughput, the

previous parallelization method with the sliding window APP algorithm [104] can be

applied. However the window-based algorithm introduces a training window interval

and outputting time interval which process no information and introduce extra latencies.

Therefore the shorter the segment length, the lower the decoder throughput. Fig. 4.9

shows a sub-network configuration from Fig. 4.8; the turbo decoder with N = 8 APP

decoders becomes four turbo decoders with N = 4, 2, 1, 1 APP decoders; the decoder

can decode multiple short streams separately without extra storage for the extrinsic

information and received samples, and the portion of wasted time intervals becomes less.

Therefore butterfly network-oriented turbo decoder benefits uplink decoding throughput.

An example is given in analyzing the throughput under this parallel multiple streams
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Table 4.1: Throughput and latency analysis for 8 APP decoders
8 streams and 8 APP decoders

fc[MHz] :
100MHz

Parallel decoding 8
streams with P=1

Serial decoding 1
stream with P=8

Throughput [Mbps] Latency [µs] Throughput [Mbps] Latency [µs]
K=512 44.44 92.16 25 20.48
K=256 40 51.2 16.67 15.36
K=128 33.33 30.72 10 12.8

decoding and serial single stream decoding. We have parameters as follows.

• Imax: number of maximum iterations

• K: length of processed data

• W : training window

• P : number of APP decoders processing one stream

• fc[MHz]: operating frequency

The formula of latency and throughput are

Latency[µs] =
2Imax

(⌈
K
P

⌉
+ 2W

)

fc[MHz]

(4.37)

Throughput[Mbps] =
Kfc[MHz]

2Imax

(⌈
K
P

⌉
+ 2W

) (4.38)

Tables 4.1 and 4.2 provide throughput and latency analysis for multiple streams and

single stream decoding. The training window W is 32 and the maximum iteration Imax

is 8. Operating frequency is 100 MHz. The throughput of multiple streams decoding is

higher than that of single stream decoding and the difference becomes larger as the data

length goes down. Obviously, the training window induces the decrease of throughput

and shorter data length suffers more.

The butterfly network-oriented B-IBP interleaver imposes the restriction on the num-

ber of blocks which is the power of 2. If the necessary number of APP decoders is not the
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Table 4.2: Throughput and latency analysis for 16 APP decoders
16 streams and 16 APP decoders

fc[MHz] :
100MHz

Parallel decoding 16
streams with P=1

Serial decoding 1
stream with P=16

Throughput [Mbps] Latency [µs] Throughput [Mbps] Latency [µs]
K=512 88.89 92.16 33.33 15.36
K=256 80 51.2 20 12.8
K=128 66.67 30.72 11.11 11.52

power of 2, this restricts the turbo decoder design. For example: the desired through-

put only necessitates 17 APP decoders, and either extra 15 APP decoders or 15 extra

memory banks with complex memory addressing is necessary. One solution is to apply

the graph using to describe Winograd transform [110]. Another solution is to apply the

barrel shifter network to retain low complexity network configuration.

4.3.3 Barrel shifter network

Barrel shifter network [111] is also a low complexity routing network and fashion

QC-LDPC [43] also designs the parity check matrix based on this network. The objec-

tive of this network is to cyclically shift bits and this network switches each layer by

left or right 1, 2, . . . , 2B, where B is the total number of layers. The network requires

B = ⌈log2 N⌉ controlling bits to determine the network configuration due to each layer

switching together. The number of N does not restrict to 2B and this provides a flex-

ibility as designing the B-IBP. If N = 2B, the network has the same edge complexity

comparing to the butterfly network. However the identical layer switching also imposes

a stringent constraint in constructing the B-IBP. The maximum possible number of net-

work configuration is restricted to 2B which is much less than that of butterfly network

2
N
2

log2 N . This may incur performance degradation as creating the associated B-IBP

interleaver. By the way this network, the same as butterfly network, is generally not

applicable for the parallel turbo decoder if the interleaver is not an option.

Fig. 4.10 shows a turbo decoder architecture which applies barrel shifter network
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Figure 4.10: An example of barrier shifter network-oriented turbo code decoder archi-
tecture with parallelism degree 8.

to interconnect both APP decoders and memory banks. The network is composed

of three layers. Layer 1 switches routes right by 0 or 4, Layer 2 switches routes

right by 0 or 2 and Layer 3 switches routes right by 0 or 1. If we want to route

A1, A2, A3, A4, A5, A6, A7, A8 to M6, M7, M8, M1, M2, M3, M4, M5, the

network switches layers 1 and 3 by 4 and 1 and layer 2 by 0.

Since the operation of barrel shifter network is cyclic shift, the B-IBP interleaver is

described as

πbutterfly,B−ibp(iL + j) = |i + I(πblock(j))|N · L + πblock(j), (4.39)

where N is the number of blocks and I(·) corresponds to the control signalling sequence

in which each symbol has bit width ⌈log N⌉.

4.4 B-IBP interleaver supports variable information

length

B-IBP interleaver imposes a constraint on the input sequence length which is the

multiple of block length. WiMAX [56] pads dummy bits to resolve this problem but
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extra dummy bits decrease bandwidth efficiency. Information bit shortening [109] and

interleaver pruning [32] are both applicable for turbo code to match various information

sequence lengths. As for maintaining identical code rate, the shortening requires punc-

turing extra code bits but it may pay at most 2 to the decrease of the minimum distance.

Interleaver pruning shortens interleaver by removing permutation positions but this may

cause serious minimum distance decrease due to the change of permutation table. The

following subsections will describe and compare both strategies.

4.4.1 Shortening and puncturing

The shortening and puncturing support various lengths of input data sequence with-

out sacrificing code rate and the spaced shortening assigning algorithm reduces decoder

control complexity without significant performance loss. The shortening is applicable to

increase supportable length for input data sequence by removing the dummy bits to fit

the desired interleaver length before transmission. The puncturing further removes the

parity bits corresponding to the dummy bits and code rate maintains the same.

The shortening and puncturing strategy decreases the distance by at most 2 for each

shortened position. The shortening strategy assigns a dummy bit before encoding. After

encoding it removes the dummy bit and the associated parity bits. Because the parity

bit is removed, the shortened codeword weight decreases by at most 2.

However, the shortening induces extra complexity in APP decoder design and the

extra shortening cycle is necessary. In order to maintain multiple processors processing

shortening cycle as possible at the same time, the shortening positions have to be spaced

by an interval. The space also spreads the influence of shortening positions and keeps

the performance without significant degradation induced by the puncturing.

Shortening position assigning algorithm is characterized by two stages. The first

stage calculates the shortening width Wshorten. The second stage assigns the shortening

positions. There are Nshorten = KB−IBP −K shortening positions to be shortened, where
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K is input information length and KB−IBP is the length of B-IBP interleaver. The max-

imum number of shortened positions for all blocks is NL,shoten =
⌈

Nshorten

N

⌉
and there are

NN,MAX = |Nshorten|N blocks shortening NL,shorten positions and the associated shorten-

ing width is Wshorten =
⌈

L
NL,shorten

⌉
. The second stage determines the shortening posi-

tions. The first NN,MAX blocks shorten symbols at {0 ,Wshorten , 2Wshorten , . . . , (NL,shorten−

1)Wshorten}. The following N−NN,MAX blocks shorten symbols at {0 ,Wshorten , 2Wshorten ,

. . . , (NL,shorten−2)Wshorten}. This assigning algorithm promises these APP decoders ma-

nipulate the shortening cycles at the same time as much as possible when the number

of APP decoders are the factor of N while the shortened positions are spread to the

farthest.

4.4.2 Pruning

Interleaver pruning [32] removes the permutation entries to shorten the interleaver.

Assume there exists an interleaver with permutation function Π. We prune one position

j and the resultant pruned interleaver Πprune has the function

πprune(i) =





π(i) , i < j and π(i) < π(j)
π(i) − 1 , i < j and π(i) > π(j)
π(i + 1) , i > j and π(i + 1) < π(j)
π(i + 1) − 1 , i > j and π(i + 1) > π(j)

. (4.40)

We can apply this formula recursively to create an interleaver with any length shorter

than the length of Π.

4.4.3 Comparison between shortening and pruning

Turbo code error events are highly correlated with the non-zero element coordi-

nates of an input sequence. The component code of turbo code is a recursive convolu-

tional code and low weight output sequences are usually corresponding to some special

patterns. Fig. 4.11 shows two important error events, the weight-2 and weight-4 error

events. A coordinate pair generates a finite weight codeword if coordinates difference is
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Figure 4.11: Weight-2 and 4 error events for a turbo code.

multiple of Tc for both pre-permutation and post-permutation where Tc is the period of

the component code. A good interleaver always promises large m and n in Fig. 4.11 (a)

and m, n, p and q in Fig. 4.11 (b) and the corresponding codeword weights are large. A

good interleaver generally has large distance and shortening strategy does not influence

performance significantly if the shortening positions are not close as our algorithm.

The pruning strategy may significantly decrease the minimum distance of the turbo

code with the pruned interleaver comparing to a mother interleaver. The strategy as-

signs a dummy bit and skips the bit when encoding. Therefore a pruned interleaver is

completely different to the mother interleaver. Fig. 4.12 (b) shows an example. The

pruning shifts j′′ = j + 1 to j due one position is pruned before j′′ and after i. Because

the difference between i and j′′ is Tc + 1, it does not generate low weight codeword.

However the difference between i and j′′ is Tc and a low weight codeword occurs for the

turbo code applying the pruned interleaver because the difference between i′ and j′ is

also Tc. Even if a mother interleaver has an outstanding distance property, the pruned

interleaver has completely different nature to the mother interleaver. Furthermore the

more bits pruned, the more kinds of interleavers generated.

Interleaver pruning [32] has been applied in 3GPP Rel’99 and Rel’6 [1, 2] turbo code
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Figure 4.12: Influence of the weight-2 error events for both shortening and pruning
strategy.

to create various interleaver lengths ranging from 40 to 5114 bits. This strategy provides

various interleavers but it induces low weight codeword for turbo code with the pruned

interleaver. The performance is not stable due to the pruning strategy. This explains

the 3GPP Rel’99 and Rel’6 [1, 2] turbo coding possessing higher error floor for some

interleaver lengths. Our simulation results evidence this.

The shortening and puncturing strategy requires less efforts in searching wide range

of interleavers than the pruning strategy. The shortening only decreases the distance by

at most 2 for each shortened bit. We can simply verify the case shortening most bits.

If the performance does not degrade obviously, we accept the interleaver. However, the

pruning strategy generates different nature interleavers. If at most 30 positions have to

be pruned, 31 kinds of interleavers include the mother interleaver have to be verified.

Therefore shortening and puncturing strategy simplifies our verification flow in searching

interleavers within a wide range.

93



Table 4.3: Parallelism degree corresponding to various data lengths K and the supported
number of interleavers.

K N Number of interleavers
40 ≤ K ≤ 200 1 69
201 ≤ K ≤ 320 2 26
321 ≤ K ≤ 960 8 34
961 ≤ K ≤ 2560 16 43
2561 ≤ K ≤ 6144 32 48

4.5 An interleaver design

An example is provided in this section. The interleaver length ranges from 40 to

6144 bits. The block interleaver supports generalized maximal contention-free and the

permutation function can be generated on-fly for both interleaving and de-interleaving.

Furthermore the radix-4 APP decoder [16] is applicable. The B-IBP supports butterfly-

network and controlling signals can be generated by shift register. Our simulation results

also show that the performance is not inferior to the QPP interleaver which has been

defined in the 3GPP LTE [3]. The required storage for the parameters is also less than

that for the QPP interleaver.

4.5.1 Interleaver description

The interleaver ΠB−IPBI is shown in eqn. (4.41), where 0 ≤ i < KB−IBP , I(·) is

the IBP sequence and the IBP period T is defined in Table 4.4. The block interleaver

shown in eqn. (4.42) is double prime interleaver ΠDP composed of two prime interleavers

permuting odd and even ordinals individually. This interleaver is characterized by two

parameters p and s, the values associated various block lengths L are shown in Table

4.5. This formula matches eqn. (4.39) and simple butterfly network is applicable for the

parallel turbo decoder.

πB−IBPI(iL + j) = (i ⊕ I(|πDP (j)|T )) · L + πDP (j). (4.41)
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Table 4.4: Butterfly B-IBP sequences and the corresponding generator polynomials
N T I(·) Polynomial
1 1 {0} No
2 2 {0 ,1} No
8 8 {0 ,1 ,2 ,4 ,3 ,6 ,7 ,5} PolyIBP (8) = 11 : x3 + x + 1

16 16
{0 , 1 , 2, 4, 8, 3, 6, 12, 11,
5, 10, 7, 14, 15, 13, 9} PolyIBP (16) = 19 : x4 + x + 1

32 31
{1 , 2 , 4, 8, 16, 5, 10, 20, 13, 26, 17, 7,
14, 28, 29, 31, 27, 19, 3, 6, 12, 24, 21,
15, 30, 25, 23, 11, 22, 9, 18}

PolyIBP (32) = 37 : x5 + x2 + 1

πDP (i) =





(∣∣⌊ i
2

⌋
× p

∣∣
L
2

)
× 2 , i is even(∣∣⌊ i

2

⌋
× p + s

∣∣
L
2

)
× 2 + 1 , i is odd

. (4.42)

The inter-block permutation sequences shown in Table 4.3 can be generated by shift

register which is friendly to implementation. Since these sequences can be generated by

shift register and the corresponding storage can be reduced. The initial values for these

sequences are set to I(0) = 0 and I(1) = 1 for N = 1, 2, 8, 16 and I(0) = 1 for N = 31.

The rest numbers are generated by eqn. (4.43), where PolyIBP (N) is shown in Table

4.4.

I(i) =

{
I(i − 1) << 1 , I(i − 1) < N/2
(I(i − 1) << 1) ⊕ PolyIBP (N) , I(i − 1) ≥ N/2

. (4.43)

4.5.2 Comparison to 3GPP LTE QPP

3GPP LTE [3] adopts QPP interleaver [90] for turbo code. The interleaver length

ranges from 40 to 6144 bits and this is the same as our design. There are 188 kinds of

interleavers and each interleaver adopts two parameters. Each parameter requires 10 bits

to store. Including interleaver length, the interleaver table necessitates 188 ·3 ·10 = 5760

bits. The turbo code applying this interleaver generally necessitates fully-connected

network to bridge APP decoders and memory banks. The network configuration requires

to resolve the equation (4.6) to acquire the network control signalling.
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Table 4.5: Double prime interleaver parameters
L p s L p s L p s L p s L p s L p s
40 7 3 44 5 13 46 17 8 48 17 12 50 11 5 52 3 12
54 5 13 58 16 11 60 23 11 62 26 9 64 5 18 66 5 13
68 3 17 72 25 18 74 10 8 76 29 14 78 22 30 80 23 25
82 12 18 86 10 17 88 41 22 90 31 19 92 31 23 94 6 14
96 43 21 100 11 25 102 32 17 104 31 24 106 44 22 108 17 26
110 16 27 114 16 27 116 47 7 118 43 28 120 11 29 122 18 34
124 45 29 128 17 24 130 11 29 132 47 27 134 6 32 136 21 35
138 40 45 142 29 36 144 11 29 146 47 34 148 51 35 150 11 16
152 31 35 156 55 28 158 28 34 160 47 39 162 44 62 164 13 31
166 34 40 170 14 35 172 51 39 174 53 42 176 35 44 178 28 42
180 17 44 184 19 46 186 38 45 188 25 39 190 37 43 192 17 40
194 8 45 198 31 48 200 41 50

Our design provides 220 kinds of interleavers. The parameters for double prime

interleaver table, IBP generator polynomials and interleaver ranges necessitate storage.

Double prime interleaver desires two parameters and each parameter only requires 6 bits.

The interleaver length requires 8 bits. IBP sequence requires 5 bits. Interleaver range

requires 13 bits for each length. In total, this design requires 69·2·6+69·8+3·5+6·13 =

1473 bits. This design further supports butterfly network and the control signalling can

be generated by shift register. Our design also supports generalized maximal contention-

free as the QPP intereaver. Our simulation results shown in Section 4.7 indicate that our

design outperforms the QPP interleaver in many cases. Therefore no matter in hardware

complexity or performance, our design is better than the 3GPP LTE QPP interleaver.

4.6 Implementation

This implementation [112] follows the structure proposed in Section 4.5 and suits for

the butterfly network architecture. The interleaver length is 4096 bits and the associ-

ated B-IBP interleaver is composed of N = 32 length-128 blocks. Each block applies

the double prime interleaver with parameters (p, s) = (15, 23). The IBP sequence is

{0, 1, 2, 4, 8, 16, 5, 10, 20, 13, 26, 17, 7, 14, 28, 29, 31, 27, 19, 3, 6, 12, 24, 21, 15, 30, 25, 23, 11, 22,
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Figure 4.13: Frame error rate comparison for our implementation.

9, 18}. The component code is G(D) =
[
1 1+D+D3

1+D2+D3

]
which is identical to that defined in

the 3GPP [1, 2, 3] but each block is separate tail-biting encoded. This implementation

applies MAX Log-MAP with scaling factor 0.75 [73]. Fig. 4.13 shows the performance

comparison between our B-IBPTC and 3GPP turbo code with 8 iterations. Our im-

plementation after fixed point simulation is superior to the 3GPP code applying the

maximum log-MAP algorithm with the scaling factor in fixed point by 0.1dB and infe-

rior to the 3GPP code applying the log-MAP algorithm in floating point by 0.1dB at

frame error rate (FER) 2 × 10−4.

The decoder chip [112] is fabricated with a 0.13 µm 1P8M CMOS technology, and

the die photo is shown in Fig. 4.14. The core area occupies 17.8 mm2 with 2.67M gates

count, including the 3.33 mm2 memory block. The chip achieves maximum 160Mb/s

with power consumption 275 mW at 1.32 V supply and operating frequency 80MHz and

the associated energy efficiency is 0.22 nJ/b/iter at 8 iterations. Table 4.6 compares

our result with other state-of-the-arts. Our design possesses the most superior energy

efficiency [16, 20, 101].
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Figure 4.14: Chip photo [112].

4.7 Simulation results

We compares the performance based on the 3GPP defined turbo code with G(D) =
[
1 1+D+D3

1+D2+D3

]
. The first part concerns the performance of our design proposed in Section

4.5. We compare our design with the 3GPP Rel’99 and Rel’6 [1, 2] and the 3GPP LTE

QPP [3]. Then we evaluate the performance of our shortening and puncturing algorithm.

At last the effect of separate encoding of various code rates is shown.

4.7.1 The interleaver design

This part simulates the turbo code with code rate=1/3 while the both convolutional

code is tail-padded. All cases apply Max Log-MAP decoding algorithm with 8 iterations.

AWGN channel is the simulation scenario. The compared interleaver lengths range from

40 to 6144 bits.

Figs. 4.15 and 4.16 plot the curves of the required Eb/N0 for various error rate
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Table 4.6: Comparison to different turbo decoder designs
B-IBPTC [112] [16] [20] [101]

Technology 0.13 µm 0.18 µm 0.18 µm 0.13 µm
Core Area 17.81 mm2 14.5 mm2 7.16 mm2 10 mm2

Block Size 4096 5114 384 2048
Iterations 8 6 4.43 5
Frequency 80MHz 145MHz 160MHz 352MHz

Throughput 160Mbps 24Mbps 71.7Mbps 352Mbps
Power 275mW 1450mW N/A 2464mW
Energy 0.22 10.0 2.19 1.4

Efficiency nJ/b/iter nJ/b/iter nJ/b/iter nJ/b/iter

performance to compare the 3GPP Rel’99 and Rel’6 turbo code [1, 2] with our design.

Our design outperforms the 3GPP Rel’99 and Rel’6. The performance gain is signifi-

cant especially for long interleaver length and FER=10−4. Our design provides stable

performance for the entire range.

As our prediction in the comparison between interleaver pruning and shortening and

puncturing. The pruning strategy generates different nature interleavers to the mother

interleavers and may introduce low weight codeword for the turbo code applying the

pruned interleaver. The performance results evidence that the pruning is not a good

strategy to support variable input length and deteriorates the performance significantly.

Figs. 4.17 and 4.18 plot the curves of the required Eb/N0 for various error rate

performance to compare the 3GPP LTE QPP turbo code [3] with our design. Our

design outperforms the 3GPP LTE for some cases. B-IBP interleaver has large degree of

freedom and we can adjust the B-IBP or the block interleaver to reach the better distance

spectrum and avoid the weakness for some interleaver length. However the QPP only

requires two parameters to construct an interleaver which supports generalized maximal

contention-free property, this also imposes limit to the distance property. Reference [93]

has shown that the maximum achievable minimum distance for the interleaver length

2 ≤ K ≤ 4096, and there are many cases the minimum weight are upper-bounded by

32. Our simulation results show that there are some spikes for the 3GPP LTE curves
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Figure 4.15: The B-IBP interleaver vs. 3GPP Rel’6 interleaver with the length ranging
from 40 to 1000 bits.

and these results reflect this fact.

4.7.2 Shortening and puncturing

This part evaluates the performance of our proposed shortening and puncturing algo-

rithm. We still simulate the turbo code with code rate=1/3 while the both convolutional

codes are tail-padded. All cases apply Max Log-MAP decoding algorithm with 8 itera-

tions. AWGN channel is the simulation scenario. Our design in Section 4.5 is applied

and 219 cases are compared except for the length 40. The number of shortened bits is

at most to 127 bits. Figs. 4.17 and 4.18 plot the curves of the required Eb/N0 for vari-

ous error rate performance and the performance is very similar for all cases. Although

the shortening and puncturing may decrease the codeword weight by at most 2 for one

shortened bit but the performance does not degrade significantly in our simulation even

though 127 bits are shortened. Our spaced shortening position assigning algorithm not

only favors the implementation but also retains the performance.
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Figure 4.16: The B-IBP interleaver vs. 3GPP Rel’6 interleaver with the length ranging
from 1000 to 6144 bits.

4.7.3 Separate and continuous encoding

The performance of the separate and continuous encoding is our last concern. We

simulate the turbo code with code rate=1/2 and 3/4 while the tail-biting is applied. All

cases apply linear Log-MAP decoding algorithm with 8 iterations. AWGN channel is the

simulation environment. The compared interleaver lengths are 256, 512, 1024, 2046 and

4096 bits while the length-64 and length-128 block interleavers apply two parameters

(p, s) = (5, 32) and (p, s) = (47, 7), respectively. When the code rate=1/2 shown in Fig.

4.21, the separate encoding outperforms the continuous encoding and it also implies

the separate encoding enhances the distance property. When the code rate=3/4 shown

in Fig. 4.22, the continuous encoding outperforms the separate encoding. The short

block length and component code with code rate=6/7 induce low extrinsic information

absolute value and the performance degrades. As for interleaver length=1024 bits and

code rate=3/4, the separate encoding outperforms the continuous encoding when Eb/N0

> 3.5dB. It means that the separate encoding has potential to provide the better distance

101



0 200 400 600 800 1000

0.8

1.6

2.4

3.2

4.0

FER=10-3

FER=10-4

FER=10-2

FER=10-1

3GPP LTE QPP

 FER=10-1

 FER=10-2

 FER=10-3

 FER=10-4

B-IBPTC

 FER=10-1

 FER=10-2

 FER=10-3

 FER=10-4
R

eq
ui

re
d 

E
 b/N

 0 (
dB

)

Interleaver Length

Figure 4.17: The B-IBP interleaver vs. 3GPP LTE QPP interleaver with the length
ranging from 40 to 1000 bits.

property even for the high code rate.
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Figure 4.18: The B-IBP interleaver vs. 3GPP LTE QPP interleaver with the length
ranging from 1000 to 6144 bits.
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Figure 4.19: The shortening and puncturing effect for the B-IBP interleaver with the
length ranging from 40 to 1000 bits.
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Figure 4.20: The shortening and puncturing effect for the B-IBP interleaver with the
length ranging from 1000 to 6144 bits.
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Figure 4.21: The comparison between the separate and continuous encoding for code
rate 1/2.
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Figure 4.22: The comparison between the separate and continuous encoding for code
rate 3/4.
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Chapter 5

Stream-oriented inter-block
permutation interleaver

stream-oriented IBP interleaver is designed for indefinite information length, and

the associated stream-oriented IBPTC (S-IBPTC) suits for high throughput pipeline

decoding architecture and outperforms classic TC under the same interleaver delay.

Pipeline decoder is constructed by multiple APP decoders. These APP decoders serially

decode codeword sequences and the interleaver delay determines the latency between

two adjacent APP decoders. Since multiple APP decoders process at the same time,

high throughput decoding is achievable. For example: [101] applies 10 APP decoders to

achieve 352Mb/s throughput and interleaver delay is 2048 bits or 5.82µs. However, these

APP decoders decode these classic TCs independently and the performance is limited

by the length of each codeword. In order to improve the performance, we construct a

stream-oriented IBP (S-IBP) itnerleaver with the same interleaver delay. Due to the

extra relation between neighboring blocks, information can be passed to the neighboring

blocks in each decoding iteration. The more decoding iteration, the more information

gathered, the better performance. By the way, we can apply a good block interleaver

for the intra-block permutation and the resultant S-IBP interleaver would have good

distance properties. Therefore, S-IBPTC has better performance and distance properties

than classic TC under the same interleaver delay while we can enjoy the high throughput

decoding coming from the pipeline architecture.
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5.1 Stream-oriented IBP interleaver and the associ-

ated encoding storage

An S-IBP interleaver ΠS−ibp = ΠS−inter ◦ Πintra is a sub-class of the IBP interleaver

described in Section 3.2 and the interleaving and deinterleaving rules are formulated as

πS−ibp(i) = fn(||i||L, πblock(|i|L)) · L + fb(πblock(|i|L)) (5.1)

π−1
S−ibp(i) = fd

n(||i||L, |i|L) · L + fd
b (π−1

block(|i|L)). (5.2)

The interleaver confines symbols in each block only permuted with that in at most priori

Sb and successive Sf neighboring blocks; where Sb and Sf are backward and forward

spans, i.e. ||i||L − Sb ≤ fn(||i||L, |i|L) ≤ ||i||L + Sf and ||i||L − Sf ≤ fd
n(||i||L, |i|L) ≤

||i||L + Sb. If S = Sb = Sf , ΠS−ibp is a symmetric S-IBP, which is of our main interest,

and S is S-IBP interleaver span. These spans determine interleaver delay, encoding and

decoding latencies.

We describe the relation between interleaver (deinterleaver) delay and these spans as

follows. Denote the interleaver delay and deinterleaver delay by Di and Dd, where

Di = max
k

{k − π(k)}, Dd = max
k

{k − π−1(k)}. (5.3)

From eqns. (5.1) and (5.2), the interleaver and deinterleaver delays of a ΠS−ibp are

bounded by

Di,S−IBP = max
k

{k − πS−ibp(k)} = max
k

{k − fn(||k||L, |k|L) · L − fb(|k|L)}

= max
k

{k − (|k|L − Sb)L − fb(k)} ≤ (Sb + 1)L (5.4)

and

Dd,S−IBP = max
k

{k − π−1
S−ibp(k)} = max

k

{
k − fd

n(||k||L, |k|L) · L − fd
b (|k|L)

}

= max
k

{k − (|k|L − Sf )L − fb(k)} ≤ (Sf + 1)L. (5.5)

The bounds (Sb+1)L and (Sf +1)L are set as the interleaver and deinterleaver delays for

ΠS−ibp and Π−1
S−ibp due to unknown intra-block permutation which is our one assumption

described in Chapter 3. If ΠS−inter is symmetric, both bounds are (S + 1)L.
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5.2 Stream-oriented IBPTC encoding and the asso-

ciated storage

An S-IBPTC encoder only requires temporary interleaving storage which is propor-

tional to the interleaver delay. Figs. 2.4 (a) and 3.1 show the block diagrams of classic

TC and IBPTC encoders. In general both interleavers have to store complete permuted

sequence then encoding because the interleaving finishes almost when complete informa-

tion sequence is input. Therefore, the storage is equal to the entire information length.

In contrary to classic TC and IBPTC, the storage is not an entire information length for

S-IBPTC because the interleaving of S-IBP interleaver can output permuted sequence

in advance. The S-IBPTC encoder encodes the interleaved block u′
i after the (i + Sb)th

block ui+Sb
received and permuted while the (i + Sb)th block ui+Sb

is also permuted to

the (i + Sb + Sf )th block u′
i+Sb+Sf

. After encoding of the block u′
i, the encoder discards

the block u′
i and the necessary temporary storage is equal to at most (Sf + Sb + 1)L

symbols instead of an entire information sequence. Even the input information length

is infinite, the temporary storage for S-IBPTC does not exceed the total blocks within

its S-IBP interleaver spans.

The swap interleaver further reduces temporary storage and implementation com-

plexity for S-IBP interleaving and deinterleaving, where the swap interleaver has been

defined as ∀ i π(i) = π−1(i). In general S-IBP interleaver moves bits in a given block

to positions within itself and those in the neighboring Sf + Sb blocks, the associated

interleaver normally stores at least (Sf + Sb + 1)L symbols. If we can detain forward

permutation procedure, it implies only (Sb + 1)L symbols necessary for temporary in-

terleaving storage. For the deinterleaving, the necessary storage is (Sf + 1)L symbols.

We take a symmetric swap S-IBP interleaver with S = 1 as an example. Fig. 1 (a)

shows conventional storage for S-IBP interleaver. The symbols in the Block II have to

be permuted to the Block I and Block III and the associated storage is (2S + 1)L = 3L

symbols. If the interleaver is a swap interleaver, we can detain the forward permutation
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IBP interleaved
Sequence

1 2 103 4 5 ...... 100 101 102 3 104 105 ...... 200 ......

Information
Sequence

1 2 3 4 5 ...... 100 101 102 103 104 105 ...... 200 201 202 203 204 205 ...... 300

IBP interleaved
Sequence

...... 101 202 3 104 205 ...... 200 201 102 203 204 105 ...... 300

Information
Sequence

1 2 3 4 5 ...... 100 101 102 103 104 105 ...... 200 201 202 203 204 205 ...... 300

Information
Sequence

1 2 3 4 5 ...... 100 101 102 103 104 105 ...... 200 201 202 203 204 205 ...... 300

IBP interleaved
Sequence

1 2 103 4 5 ...... 100 101 3 104 ...... 200 202 205 ......

Block I Block II Block III

I II III
(a)

(b)

Figure 5.1: (a) Conventional inter-block permutation (S = 1); (b) Storage saving inter-
block permutation (S = 1).

procedure, Fig. 5.1 (b) shows that the necessary storage is (S + 1)L = 2L symbols.

When one starts to interleave (or de-interleave) Block III, Block I has been completely

interleaved (or de-interleaved), its content was dumped and the corresponding space is

emptied and becomes available for storing new content again. The storage spaces en-

closed by dotted ellipses are thus not needed. Therefore we do not have to move those

forwardly-permuted symbols until after all earlier (backward) blocks have been filled by

interleaved (or deinterleaved) symbols and after their contents have been dumped. For

simplicity, the interleaver has only to perform memory content swapping between current

block and the backward blocks. If ΠS−inter is a Type IV inter-block permutation, the only

IBP operation is simply m → m− nL, where n ∈ {1, 2, · · · , S}. Moreover, a symmetric

swap interleaver has the same interleaving and deinterleavering structure and can be

implemented by single permutation table or algorithm. These advantages of symmetric
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swap IBP interleavers will still be maintained when we consider the implementation of

the combined intra- and inter-block permutations.

5.3 Pipeline decoder and the associated message-

passing on the factor graph

Fig. 5.2 (a) shows an S-IBPTC decoding module for one iteration. The parenthe-

sized numbers in each block indicate the corresponding latencies. A pipeline structure

similar to that proposed by Hall [51] is shown in Fig. 5.2(b). The pipeline structure ren-

ders short decoding latency at the expense of increased complexity that is proportional

to the number of the decoding modules. Lapp(uk) and Lex(uk) represent the a priori

and the extrinsic information associated with the kth block uk, and Lapp(u
′
k−Sb−1) and

Lex(uk−Sb−1) represent the a priori and the extrinsic information associated with the

(k − Sb − 1)th interleaved block u′
k−Sb−1. Lapp(uk) and Lapp(u

′
k−Sb−1) are acquired from

the S-IBP deinterleaver and S-IBP interleaver, and the corresponding storage for both

interleavers is (Sf + Sb + 1)L symbols which is similar to the temporary storage in the

encoding. If ΠS−inter is a swap interleaver, the storage of interleaving and deinterleaving

can be further reduced to (Sb + 1)L and (Sf + 1)L symbols respectively.

We apply the factor graph and decoding time diagram to demonstrate the edge of

the S-IBPTC to classic TC under the same interleaver delay 2L when high throughput

pipeline decoding is applied. Fig. 5.3 shows the pipeline decoding time diagram of

the S-IBPTC and classic TC and Fig. 5.4 shows the factor graph of the S-IBPTC. An

S-IPBTC composed of six length-L blocks with S = 1 is adopted in this example and

the corresponding classic TC has interleaver length 2L. We consider the third block u3

in Fig. 5.4. The first APP decoding of u3 starts at 2L, and the generated extrinsic

information is passed to u′
2 and u′

4. The second APP decoding of u′
2 and u′

4 start at 3L

and 5L respectively and the generated extrinsic information is passed to u1 and u5 as the

a priori information for the third APP decoding. Therefore the information is passed to
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Deinterleaver
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Delay
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Delay (L)
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Module2

......
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0
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ky

( )kapp uL ( )kex uL ( )1−−′
bSkapp uL ( )1−−′

bSkex uL

Figure 5.2: (a) The block diagram of an S-IBPTC decoding module for one iteration;
(b) The block diagram of the S-IBPTC pipeline decoder.

five blocks in one iteration, i.e. the information spreads five blocks. Therefore the more

blocks connected, the better performance. However the decoding of classic TC only

acquires information within its block. When extreme throughput decoding throughput

is necessary and the pipeline decoding is the only solution, S-IBPTC outperforms classic

TC.

5.4 Bound and constraints modification for S-IBP

interleaver

Theorem 3.2 provides an upper bound for IBPTC and this bound is also applicable

for S-IBPTC. However all data sequences are of finite length in practice and there are

either no or not enough blocks for the first Sb − 1 and the last Sf − 1 blocks to perform

111



0 L 2L 3L 4L 5L 6L 7L 8L 9L 10L 11L 12L

Streaming-type IBPTC with block lengthL
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Classic turbo code with block length 2L
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4th APP
Decoder
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1u′
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2u′

3u

3u

3u′

3u′

6u

6u

6u′
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Figure 5.3: The time diagram of the pipeline decoder with 4 APP decoders or Imax = 2.

either the complete backward or forward inter-block permutations. Therefore, we have to

modify the S-IBP range for those blocks by reducing either the forward or the backward

span. Assuming that there are N ≫ max(Sf , Sb) blocks and denoting by Sf (i) and Sb(i)

the forward and backward spans of the ith block, we require that for 0 ≤ i < N ,

Sf (i) = min (Sf , N − i + 1) , Sb(i) = min (Sb, i) . (5.6)

Theorem 3.2 is modified accordingly.

Corollary 5.3 For finite-length data sequences and a given inter-block permutation,

Πinter, whose spans are specified by eqn. (5.6), ∃ Πintra such that the corresponding

S-IBPTC satisfies w2,min ≤ 2+α ·min(Sf +2, Sb +2)+2β, if L > Tc ·min(Sf +1, Sb +1).

To accommodate the S-IBP ranges defined by eqn. (5.6) for the finite-length inputs,

the range of fn(||i||L, |i|L) and the period Ts of a Type II or III inter-block permutation
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Figure 5.4: A factor graph representation for an S-IBPTC encoded system with the
S-IBP span 1.

must be adjusted according to

max (−Sb,−|i|L) ≤ fn(||i||L, |i|L) ≤ min (Sf , N − 1 − |i|L) , (5.7)

Ts(n) =





n + Sf + 1, if 0 ≤ n < Sb

N − n + Sb, if N − Sf ≤ n < N
Sf + Sb + 1, otherwise

, (5.8)

where 0 ≤ n < N .

Even with the above modifications, low-weight codewords can still be generated for

some weight-2 input sequences and block lengths for the first and last blocks must be

adjusted. Periodic inter-block permutation is of our interest but there are too many back-

ward permuted symbols due to same block length for all blocks and different inter-block

permutation period Ts for the first block; the last block faces the same circumstance. A

simple solution is to adjust the block lengths of the beginning Sb and the last Sf blocks
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such that the block length of the ith block satisfies

nTs(n) ≤ L(n) < nTs(n) + Ts(n), (5.9)

for some n.

Lemma 5.8 For an N -block S-IBPTC whose block lengths L(n) are given by eqn. (5.9)

and whose Πinter is of a Type IV inter-block permutation with local interleaving periods

defined by (5.8),

min
i∼=j,πibp(i)∼=πibp(j)

wt(C
ij) ≥ 2 + α

[
Tc + lcm(Tc, Ts(n))

Tc

]
+ 2β. (5.10)

Finite-length versions of Lemmas 3.3-3.4 can also be established if the block length

and the corresponding S-IBP rule meet the requirements stated in the above lemma. For

a stream-oriented C-IBPTC (S-C-IBPTC), however, Πblock needs to satisfy the additional

requirement that for all 0 ≤ i, j < L such that ||πblock(i) − πblock(j)||Ts
= 0

f1(i, j) + f1(πblock(i), πblock(j)) ≥ 2 + α

[
Tc + lcm(Tc, Sb + 1)

Tc

]
+ 2β. (5.11)

When this requirement is also met then we have

min
i,j

wt(C
ij) ≥ 2 + α

[
Tc + lcm(Tc, Sb + 1)

Tc

]
+ 2β. (5.12)

5.5 Codeword weight upper-bounds of stream-oriented

IBPTC

This section derives upper-bounds for the weights of S-IBPTC codewords associated

with weight-2 and weight-4 input sequences. These upper-bounds are valid for all stream-

oriented IBP interleavers.

Recall that Lemma 3.1 implies that, the minimum codeword weight, w2,min, for the

weight-2 input sequences whose coordinates (i, j) of nonzero elements satisfy i ∼ j and

π(i) ∼ π(j) is upper-bounded by

w2,min ≤ 2 + α ·
( |i − j| + |π(i) − π(j)|

Tc

)
+ 2β, (5.13)
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where it is understood that the constants α and β might not have the same values as

those of eqn. (3.12). A bound much tighter than eqn. (5.13) can be obtained by applying

the approach suggested by Breiling [25] who partitions the coordinates set associated

with both pre-interleaved and post-interleaved sequences into equivalence classes induced

by the equivalent relation “∼”. Each equivalence class is further divided into subsets

̥z = {z + mTc,m = 0, 1, · · · , |̥z| − 1}, where z is the smallest index in ̥z.

An output (parity) sequence will be of finite weight if the coordinate pair (i, j)

associated with the weight-2 input sequence uij belongs to the same equivalence class.

The parity sequence weight is small if the pair (i, j), besides being in the same equivalence

class, are in the proximity of each other, i.e., if (i, j) ∈ ̥z for some z and the width of

̥z = (|̥z| − 1)Tc is small.

To avoid generating low-weight codewords, therefore, an optimal interleaver should

send any pair of coordinates in a given subset to different equivalent classes and, if that is

not possible, to different subsets or at least to two far-apart coordinates within a subset.

Let ̥
(m)
z and Λm, (0 ≤ z < Λm) be the subsets and the number of subsets associated

with the coordinates of the mth component encoder input sequence. The cardinalities

of the Λm subsets differ at most by 1, i.e., |̥(m)
z | = ⌊L/Λm⌋ or ⌊L/Λm⌋ + 1. Invoking

the aforementioned pigeonhole principle, Breiling showed that if the pair (Λ1, Λ2) is such

that ⌈L/Λ1⌉ > Λ2 then any interleaver would map a pair of coordinates (i, j) that lies

in the same subset ̥
(1)
z to (π(i), π(j)) which also belongs to an identical subset ̥

(2)
z′ ,

resulting in

wt(C
ij) ≤ 2 + α

(⌈
L

Λ1

⌉
+

⌈
L

Λ2

⌉
− 2

)
+ 2β. (5.14)

Minimizing the right hand side of the above inequality with respect to the the pair

(Λ1, Λ2), Breiling then obtained a very tight upper-bound.
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5.5.1 The upper-bound for weight-2 input sequences

It is clear that, given the same set of parameters {L, Λi, Tc, |̥(i)
z |}, an S-IBP in-

terleaver has subsets within its span to choose from for placing members of the set

{π(i), i ∈ ̥
(1)
z }, for some 0 ≤ z < L. Thus, assuming a large enough block size L, the

priority of an optimal S-IBP rule in permuting coordinates of the same equivalence class

follows the order: (i) to different blocks, (ii) to different equivalent classes of the same

block, (iii) to different subsets of the same equivalent class, and finally, (iv) to far-apart

coordinates within the same subset. Obviously, the partition of an equivalence class

into subsets plays a pivotal role in optimizing an S-IBP rule. With a minimum loss of

generality, we assume ||Λ1||M = ||Λ2||M = 0, M = TsTc, where Ts = 2S +1. Given these

parameter values, we consider the following (subset) partition.

̥
(k)
i =





{
|i|M + [i − |i|M ]

⌈
L
Λk

⌉
+ Mj| 0 ≤ j <

⌈
L
Λk

⌉
, 0 ≤ i < |L|Λk

− |L|M
}

,{
|i|M + [|L|Λk

− |L|M ]
⌈

L
Λk

⌉
+ [i − |i|M − |L|Λk

+ |L|M ]
⌊

L
Λk

⌋
+ Mj|

0 ≤ j <
⌊

L
Λk

⌋
, |L|Λk

− |L|M ≤ i < Λk − M
}

,{
|i|M + [|L|Λk

− |L|M ]
⌈

L
Λk

⌉
+ [Λk − |L|Λk

− M + |L|M ]
⌊

L
Λk

⌋
+ Mj|

0 ≤ j <
⌈

L
Λk

⌉
, Λk − M ≤ i < Λk − (M − |L|M)

}
,{

|i|M + [|L|Λk
− |L|M ]

⌈
L
Λk

⌉
+ [Λk − |L|Λk

− M + |L|M ]
⌊

L
Λk

⌋
+ Mj|

0 ≤ j <
⌊

L
Λk

⌋
, Λk − (M − |L|M) ≤ i < Λk

}
.

(5.15)

An exemplary partition of eqn. (5.15) is shown in Fig. 5.5 where the integers

represent the coordinates of either an input or output sequence and each row consists

of three segments with a segment representing a subset of size 3 or 2. The S-IBP rule

sends bits in rows labelled by different capital letters to different blocks while those in

the same row are interleaved to the same block.

By using an argument similar to that leading to eqn. (5.14) and invoking the partition

of eqn. (5.15) along with the permutation rule (i)-(iv) mentioned at the beginning

paragraph of this subsection, we obtain

Theorem 5.9 For the class of S-IBPTCs, the minimum codeword weight w2,min for
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Figure 5.5: Partition of equivalence classes into subsets; L = 68, Λ = 27, Tc = Ts = 3.

weight-2 input sequences is upper-bounded by

w2,min ≤ 2 + α

(
min

(Λ1,Λ2)

{⌈
TsL

Λ1

⌉
+

⌈
TsL

Λ2

⌉}
− 2

)
+ 2β (5.16)

where (Λ1, Λ2) ∈ D × D, D = {1, 2, · · · , ⌈L/M⌉ − 1}, if L > MTc and

⌈
L

Λ1

⌉
>

Λ2

Ts

.

When Λ1 = Λ2, we have

w2,min ≤ 2 + 2α
TsL√

TsL − TsTc

+ 2β, (5.17)

.

Proof: Eqn. (5.17) follows directly from the partition in eqn. (5.15) and the optimal

periodic S-IBP. The corresponding interleaver results in bound-achieving codewords Cij,

(i, j) ∈ sm, when ⌈ L
Λ1
⌉ > Λ2

Ts
. Hence

min
(Λ1,Λ2)

{⌈
TsL

Λ1

⌉
+

⌈
TsL

Λ2

⌉}
= min

Λ1

{⌈
TsL

Λ1

⌉
+ min

⌈ L
Λ1

⌉>Λ2
Ts

⌈
TsL

Λ2

⌉}

≤ min
Λ1

{⌈
TsL

Λ1

⌉
+

⌈
L

Tc(⌈ L
TcΛ1

⌉ − 1)

⌉}
(5.18)
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The upper-bound (5.16) can be rewritten as

w2,min ≤ 2 + α

(
min
Λ1

{⌈
TsL

Λ1

⌉
+

⌈
L

Tc(⌈ L
TcΛ1

⌉ − 1)

⌉}
− 2

)
+ 2β (5.19)

If we choose (Λ1, Λ2) = (Λ0, Λ0) with Λ0 = M(⌈
√

TsL
M

⌉ − 1), i.e., Λ0 is a multiple of M

and Λ2
0 < TsL, then (5.16) implies

w2,min ≤ 2 + 2α

(⌈
TsL

M · (⌈
√

TsL
M

⌉ − 1)

⌉
− 1

)
+ 2β

≤ 2 + 2α

(⌈
TsL√

TsL − M

⌉
− 1

)
+ 2β

< 2 + 2α

(
TsL√

TsL − TsTc

)
+ 2β (5.20)

Theorem 5.9 implies that w2,min grows linearly with
√

TsL when L is large.

5.5.2 The upper-bound for weight-4 input sequences

Let the coordinates of nonzero elements of a weight-4 input sequence be (i, j, k, l),

where i < j < k < l. If we divide these coordinates and their permuted positions

respectively into two pairs each according to their natural order, i.e., (i, j), (k, l) and

say, (π(i), π(k)), (π(j), π(l)), then a low-weight codeword results if each pair belongs to

the same subset. More specifically, the minimum codeword weight, w4,min, for weight-4

input sequences whose nonzero coordinates (i, j, k, l) are such that i ∼ j, k ∼ l, π(i) ∼

π(k), π(j) ∼ π(l) satisfy

w4,min ≤ 4 + α ·
( |i − j| + |k − l| + |π(i) − π(k)| + |π(j) − π(l)|

Tc

)
+ 2β (5.21)

or

w4,min ≤ 4 + α ·
( |i − j| + |k − l| + |π(i) − π(j)| + |π(k) − π(l)|

Tc

)
+ 2β. (5.22)

if (i, j, k, l) are such that i ∼ j, k ∼ l, π(i) ∼ π(j), π(k) ∼ π(l).
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Figure 5.6: Pre- and post-interleaving nonzero coordinate distributions of weight-4 input
sequences that result in low-weight S-IBPTC codewords.
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These upper-bounds are obtained by considering the three pre- and post-interleaving

distributions of the 4-tuple (i, j, k, l) shown in Fig. 5.6 (a)-(c). These three are the

distributions that most likely lead to low-weight codewords. There are other candidate

distributions (e.g., Fig. 5.6 (d)) but the corresponding upper-bounds are likely to be

larger that those given by eqns. (5.21) and (5.22).

Following an approach similar to that of [25] and taking into account the extra

degrees of freedom offered by an S-IBP interleaver, we obtain

Theorem 5.10 The S-IBPTC minimum codeword weight for weight-4 input sequences

is upper-bounded by

w4,min ≤ 4 + 2α

(
min

(Λ1,Λ2)

{⌈
TsL

Λ1

⌉
+

⌈
TsL

Λ2

⌉}
− 2

)
+ 4β (5.23)

when (Λ1, Λ2) ∈ D × D satisfies (i) Λ1

(
Ω
2

)
>

(Λ2
Ts
2

)
, (ii) (Ts−k)

Ts
· Λ1Ω

2 >
(

Λ2

Ts

)2

, and (iii)

|Λi|M = 0, i = 1, 2, where D = {1, 2, · · · , ⌊L/2⌋}, Ω = ⌊ L
Λ1
⌋ and k = 1, 2, · · · , Ts − 1.

Moreover, for the special case, Λ1 = Λ2 and if L > 10
3
T 3

s + T 2
s − Ts

3
and TS > 1 the

upper-bound yields the compact expression

w4,min ≤ 4 + 4α
TsL

C − TsTc

+ 4β, (5.24)

where

C =
Ts + 2T 2

s

3
+

3

√

−q1

2
+

√(p1

3

)3

+
(q1

2

)2

+
3

√

−q1

2
−

√(p1

3

)3

+
(q1

2

)2

(5.25)

p1 = 3T 2
s L − 1

3
(Ts + 2T 2

s )2, (5.26)

q1 = −T 2
s L2 + (T 3

s + 2T 4
s )L − 2

27
(Ts + 2T 2

s )3. (5.27)

Proof: See Appendix B.

Again, we observe that for large L, the upper-bound grows linearly with (TsL)
1
3 . The

minimum codeword weights associated with weight-2 and weight-4 input sequences are

upper-bounded by the increasing functions of TsL.

120



5.5.3 Interleaving gain comparison

The minimum weight codeword upper-bound of weight-2 and weight-4 input se-

quences are derived above and S-IBPTC outperforms classic TC in distance properties

when the interleaver delay is the same for both S-IBPTC and classic TC. We consider

the interleaver delay is (S + 1)L and the equivalent block size of classic TC is also

(S + 1)L. Let w2,min,block and w4,min,block be the minimum codeword weights associated

with weight-2 and weight-4 input sequences of classic TC with block size (S +1)L, then

we have [25]

w2,min,block ≤ 2 + 2α
(S + 1)L√

(S + 1)L − Tc

+ 2β (5.28)

w4,min,block ≤ 4 + 4α
(S + 1)L

((S + 1)L − 1)
2
3 − ((S + 1)L − 1)

1
3 + 1 − Tc

+ 4β. (5.29)

Comparing the above equations with eqns. (5.17) and (5.24) and noting that Ts = 2S+1,

we conclude that, as far as weight-2 and weight-4 input sequences are concerned, a

‘good’ S-IBPTC can bring about improvement factors of
(
2 − 1

S+1

) 1
2 and

(
2 − 1

S+1

) 1
3 ,

respectively.

5.6 Stream-oriented IBP

Theorems 3.1 and 3.2 give us two guidelines for designing an IBP. In the previous

paragraph, we show that the S-IBP with the swap structure has an implementation edge.

Shown in Table 5.1 is a symmetric S-IBP with S = Sf = Sb and interleaver delay is

(S + 1)L. It can be easily seen that

Corollary 5.4 The algorithm in Table 5.1 satisfies the requirements of both Type IV

and Type V inter-block permutation.

5.7 Modified semi-random interleaver

Semi-random interleavers [44] are designed to eliminate “short cycles” that send

two close-by bits to the vicinity of each other after interleaving. These interleavers are,
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Table 5.1: S-IBP Algorithm
Variables
L-block length
N-total number of blocks
K-block number index
D(m,k)-data on the kth block mth position
Recursion
for K=0 to N-1

for i=0 to i=S-1
if (K-i > 0)

if (K mod (2·(i+1)) < i+1)
set m=2·i+1

else
set m=2·i+2

end
while (m < L)

swap D(m,K) and D(m,K-i-1)
set m=m+2S+1

end
end

end
end
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however, originally designed to work in the block interleaving setting, therefore they can

not avoid two new classes of short cycles arising in S-TB-IBPTC and S-C-IBPTC. A tail-

biting convolutional code begins and ends at the same state, hence if two close-by bits

in a block are respectively intra-block permuted to the beginning and the ending parts

of that block, and if the two bits remain in the same block after the S-IBP interleaving,

a short cycle will result as the proposed S-IBP does not alter their relative positions

within a block. For the class of S-C-IBPTC, we also want to prevent similar intra-block

interleaving results because the S-IBP interleaver may send such a pair to the ending

and beginning parts of two neighboring blocks. We therefore modify the constraint of

[44] as

dmin(i, j) + dmin(π(i), π(j)) > S2, 0 ≤ i, j < L (5.30)

where dmin(i, j) = min(|i − j|, L − |i − j|). This new constraint excludes the possibility

that two symbols at the beginning and the ending parts of a block would remain there

after the interleaving.

5.8 Simulation Results

This section shows extrinsic information updating behavior and provides results of

error rate performance. As mentioned in Section 5.3, inter-block permutation provides

relation across adjacent blocks and the information are spread to other blocks by the

assistance of message-passing but this is only an intuitive explanation for the edge of

S-IBPTC. In order the visualize the effect of message-passing, we demonstrate the be-

havior of the evolution between the a priori information and extrinsic information at

each iteration, and covariance, mutual information and SNR are used to measure this

evolution. The covariance between the a priori and extrinsic information indicates how

much new information generated after each APP decoding and less covariance implies

more information generated. The mutual information and SNR come from the extrinsic
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information transfer chart (EXIT chart) of [27, 28] and the extrinsic information SNR

evolution chart of [34]. They are also used to study the convergence behavior of iterative

decoding schemes and both methods have been described in Chapter 2. The quantiza-

tion will show the edge of S-IBPTC to classic TC. Then we provide some curves of error

rate performance for S-IBPTC and classic TC to evidence these behaviors.

In order to provide a fair comparison and for repeatable simulations, we use the

component codes and interleavers defined in 3GPP and DVB-RCS/RCT [1, 37, 38] in

this section.

5.8.1 Covariance and convergence behavior

At first we show the behavior of 3GPP [1] defined turbo code. The code rate is 1/3,

and the covariance behavior, mutual information and SNR evolutions are shown.

Fig. 5.7 shows the covariance behavior for both S-IBPTC and classic TC with the

same interleaver delay, where the S-IBP interleaver has S = 1 and interleaver delay 800

and the interleaving depth for the classic TC is L = 800. It indicates that the covariance

is small for the S-IBPTC even at SNR= 0.5 dB while much higher covariance is observed

for the classic TC at much higher SNR. The S-IBP collects extrinsic information from

farther and farther away as the number of iterations increases and we have expected

that it results in smaller covariance.

Fig. 5.8 compares the EXIT evolutions of our proposal and the classic TC with the

same interleaver delay. The S-IBPTC yields mutual information almost equal to one at

SNR = 0.5 and 1.0 dB, but the classic TC needs SNR = 2.0 dB to reach similar conver-

gence point. The SNR evolution chart shown in Fig. 5.9 exhibits similar behavior of the

two codes, all indicating the proposed S-IBPTC gives superior convergence behavior.

Both figures also reveal that our code has a much faster convergence speed. The much

larger step of the S-IBPTC curves means the associated APP decoder generates more

information or extrinsic information with larger signal to noise ratio for the next stage
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Figure 5.7: Covariance between a priori information input and extrinsic information
output.

decoder. Such a trend has been expected when we examine the factor graph structure

of the S-IBPTC in Fig. 5.4.

Bit-level and symbol-level IBP are compared for duo-binary turbo code (DTC) de-

fined in DVB-RCS/RCT [37, 38]. This code applies duo-binary RSC and a symbol-based

interleaver. This interleaver applies intra-and inter-symbol permutation and two bits in

one symbol are grouped and permuted to very close destination. However [54] indicated

that interleaver should lower down the covariance of the a priori information of two bits

if two bits are close and a good interleaver permutes two close-by bits as far as possi-

ble. Intuitively this symbol-based interleaver results in high covariance of the extrinsic

information for two bits belonging to one symbol and this may be harmful to error rate

performance. Therefore two options of S-IBP are compared: bit-level and symbol-level

S-IBPs. Fig. 5.10 shows a simulation examples of 0.5 and 1.0 dB for symbol-level and

bit-level S-IBP. 53Bytes=424bits block interleaver are chosen as our intra-block per-

mutation. The covariance of symbol-level S-IBP is always much higher than that of

bit-level S-IBP. No matter on 0.5 dB and 1.0dB, symbol-level S-IBP provides near 0.7-
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Mutual information of a priori information of the 1st 
decoder and extrinsic information of the 2nd decoder

Figure 5.8: Exit chart performance of the S-IBPTC and the classic TC at different
Eb/N0’s.

0.8 covariance and this means at beginning some iterations, a priori information can

not give enough information to both bits in one symbol. Bit-level S-IBP renders much

lower correlation at beginning iterations, and it indicates that a priori information tak-

ing new information in assisting decoding. This result confirms our prediction. We have

a property as follow.

Property 1 For duo-binary turbo code, two bits in each symbol should be permuted to

and from two bits in different blocks by an S-IBP.

5.8.2 Error probability performance

Computer simulation results reported in this section firstly use the RSC code of the

3GPP standard, G(D) =
[
1, 1+D+D3

1+D2+D3

]
[1], the interleaver of the same standard or the

modified semi-random interleaver of eqn. (5.30) for the intra-block permutation while

the S-IBP follows the algorithm of Table 5.1. Each simulation run consists of 1000 blocks

for S-IBPTC. We use the Log-MAP or MAX-Log-MAP algorithms to decode classic TC
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Figure 5.9: SNR evolution chart behavior of the S-IBPTC and the classic TC at different
Eb/N0’s.

and stream-oriented TP-IBPTC (S-TP-IBPTC) and the sliding-window Log-MAP or

the sliding-window MAX-Log-MAP algorithms to decoding stream-oriented TB-IBPTC

(S-TB-IBPTC) and S-C-IBPTC. In most cases, we compare the performance of classic

TC and S-IBPTC under the assumption that either both codes have the same interleaver

delay.

Figs. 5.11 and 5.12 show the BER performance of rate 1/3 turbo coded systems

with 10 iterations and Log-MAP algorithm. The interleaver parameter values for the S-

IBPTCs are L = 402, S = 1 or L = 265, S = 2. Compared with the performance of the

classic TC with L = 400, the S-IBPTCs yield 0.7–0.9 dB performance gain at BER=10−4

and 1.0–1.2 dB gain at BER=10−6. When both codes have the same interleaver delay,

the S-IBPTCs provides 0.4–0.6 dB performance gain at BER between 10−4 and 10−6.

Figs 5.13 and 5.14 show the BER performance of rate 1/2 turbo coded systems. The

MAX-Log-MAP algorithm is used in this example. We compare the performance of the

classic TC with L = 1320 and the S-IBPTCs with L = 660, S = 1 and L = 440, S = 2.

Using L = 660, S = 1 and the 3GPP interleaver as the intra-block permutation, the
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S-IBPTCs have 0.4–0.45 dB and 0.3 dB gain at BER=10−5 and 10−6, respectively. For

other cases, the S-IBPTCs give 0.4–0.45 dB gain at BER=10−5 and 0.4-0.6 dB gain

(except for the case S-TP-IBPTC with L = 440, S = 2) at BER=10−6. It is clear

that the S-IBPTCs outperform the classic TCs with nearly the same interleaver delay.

Furthermore, the proposed modified s-random interleaver outperforms the 3GPP defined

interleaver, especially when the interleaver span is small S = 1.

These figures reveal that the proposed S-IBPTCs yield superior performance, sharper

slope of the BER curve at the waterfall region and lower error floor when compared with

the corresponding performance curves of the classic TCs for a variety of different code

rates and decoding algorithms. The improvement is more impressive for smaller block

interleaver with the same interleaver delay, i.e. a larger S-IBP interleaver span S leads

to better performance.

Fig. 5.15 shows the BER performance of rate 1/3 S-IBPTCs that use the 3GPP

interleaver as the intra-block interleaver. Either the Log-MAP algorithm or the Log-

MAP algorithm is used and 15 decoding iterations is assumed. All these S-IBP parameter
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Figure 5.11: BER performance of the S-IBPTCs with interleaver delay ≈ 800, block size
L = 402 and interleaver span S = 1 and the classic TCs with block sizes L = 400, 800.

values, (L, S) = (660, 1), (440, 2) or (330, 3), give the same interleaver delay of 1320 bits.

The performance is consistent with our prediction: the larger the interleaver span is,

the better the system performance becomes. The performance deteriorates when the

period of encoder, Tc, and the period of the S-IBP interleaver, Ts, are the same. For this

case the lower-bound of eqn. (3.16) becomes 2(1 + α + β) which is much smaller than

the corresponding upper-bound given in Theorem 3.2. By contrast, the two bounds are

much closer if Tc 6= Ts and both bounds give identical value if Tc and Ts are relative

prime.

Finally, we want to show that the S-IBPTC requires an interleaver latency much

smaller than that of classic TCs with similar BER performance. Fig. 5.16 shows the

BER performance of rate 1/3 turbo coded systems that employ 10 decoding iterations

and the Log-MAP algorithm. All the interleavers are taken from the 3GPP interleaver.

The average interleaver and deinterleaver latency of the S-IBPTCs is about 800. It is

observed that the performance of the S-IBPTCs is bounded by those of turbo codes

with block size L = 2800 and L = 3600. In other words, an S-IBPTCs achieves BER
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Figure 5.12: BER performance of the S-IBPTCs with interleaver delay ≈ 800, block size
L = 265 and interleaver span S = 2 and the the classic TCs with block sizes L = 400, 800
are also given.

performance similar to that of a classic TC which requires an interleaving latency 3.5 to

4.5 times longer.

All these figures show that the S-TB-IBPTC has the best performance, followed by

the S-C-IBPTC and then the S-TP-IBPTC.

This part evaluates the performance of stream-oriented IBP duo-binary turbo code

(S-IBPDTC) and compare with the duo-binary turbo code (DTC) defined in DVB-

RCS/RCT [37, 38]. The RSC code, G(D) =

[
1 0 1+D+D3

1+D2+D3
1+D3

1+D2+D3

0 1 (1+D+D3)(1+D+D2)
1+D2+D3

(1+D3)(1+D+D2)
1+D2+D3

]
,

defined in the DVB-RCS/RCT [37, 38] is used as the component code. The stream-

oriented IBP duo-binary turbo code (S-IBPDTC) applies the 53Bytes DVB-RCS/RCT

interleaver as its intra-block permutation and the bit-level and symbol-level S-IBPs ap-

plies the algorithm shown in Table 5.1. The DTCs with 53Bytes and 106Bytes inter-

leavers are simulated as reference curves. Each simulation run consists of 1000 blocks

for the S-IBPDTC. Sliding window Log-MAP and sliding window MAX Log-MAP al-

gorithms are also used in this simulation. Fig. 5.17 shows the simulation results. The
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Figure 5.13: BER performance of S-IBPTCs and the classic TC with interleaver delay
1320 and the 3GPP interleaver.

bit-level and symbol-level S-IBPDTCs outperform the DTC with 53Bytes by 0.8−1.0dB

and 0.6− 0.8dB at block error rate (BLER)=10−4. If we consider the same interleaving

delay, the bit-level and symbol-level S-IBPDTCs outperform the DTC with 53Bytes by

0.5 − 0.9dB and 0.2 − 0.6dB at BLER=10−4. Under the same block size or identical

interleaving delay, the S-IBPDTC outperforms the DTCs.

The comparison between the bit-level and symbol-level IBPs is also of our interest.

The symbol-level IBP outperforms the bit-level IBP at low SNR but loses at high SNR.

This implies that the bit-level IBP provides better distance property than the symbol-

level IBP. However the bit-level IBP necessities the marginalization for conversion from

a symbol to two bits on the decoder and this induces information loss. If the target

BLER is on 10−2, the symbol-level IBPDTC is a better choice. If the target BLER is

on 10−4 or lower, the bit-level IBPDTC is our favorite.
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Figure 5.14: BER performance of S=IBPTCs and the classic TC with interleaver delay
1320 and the modified semi-random interleaver.
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Figure 5.15: Influence of the interleaver span on the BER performance for various S-
IBPTCs with interleaver delay 1320.
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Figure 5.16: BER comparison of S-IBPTCs and the 3GPP defined turbo code of various
block sizes.
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Figure 5.17: A comparison of S-IBPDTC applying bit-level and symbol-level IBP with
DTC using both Log-MAP and MAX Log-MAP APP decoders.
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Chapter 6

Dynamic IBPTC decoder and
stopping criteria

This chapter presents a novel dynamic decoder architecture for IBPTC. A general

multiple-round stopping test and a memory manager are proposed as an integrated part

of the decoder. A scheduler is needed to coordinate the shared hardware resources,

namely, the APP decoding units and memory storage. The scheduler can arrange the

processing procedure of these APP decoders in accordance with the pipeline decoder

and the dynamic decoder can reach the same performance; the decoder implementa-

tion trade-off between decoder complexity and decoding throughput is easily achievable.

The dynamic decoder can implement stopping test inside to early stop decoding; the

computation complexity or power consumption is further reduced. If the dynamic de-

coder decodes an S-IBPTC, the storage of received samples and extrinsic information

can be further released in advance by the result of stopping test and the necessary

storage of the dynamic decoder can be less comparing to that of the pipeline decoder.

The highly reliable multiple-round stopping test provides extra information assisting

in decoding neighboring unstopped blocks; this decreases both the number of average

decoding rounds and error rates. Therefore the joint stopping mechanism dynamic de-

coder not only requires less hardware complexity but also achieves better error rate and

average decoding rounds performance comparing to the pipeline decoder. The following

sections will describe the dynamic decoder and the associated modification in reducing
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complexity and power consumption for S-IBPTC. The multiple-round stopping test will

be described in the later section.

6.1 IBP turbo coding system with stopping mecha-

nism

This section presents a reliable stopping mechanism for an IBPTC codec system.

The extrinsic information used in a conventional turbo decoder is usually generated in

the course of decoding a component code and there are many well-developed soft output

decoding algorithms. An error detection code that is often used in a packet switching

network can also generate extrinsic information with no extra cost/complexity when the

corresponding undetectable error probability is negligibly small. However, the detector

output is generally used for making a stopping decision only. In order to utilize this

stopping message, we can partition an information sequence into multiple blocks and

these blocks are separately CRC-coded. If one block is stopped and some blocks are

unstopped, the “pass” message can be passed to the unstopped blocks as the a priori

information. IBPTC suits this nature and can have better performance by paying little

incremental complexity and slightly extra CRC overhead. The detail will be expounded

in the following subsections.

6.1.1 System model

Shown in Fig. 6.1 is a generic block diagram for a joint stopping test iterative

encoding and decoding system using an IBPTC. The input data sequence D is parti-

tioned into blocks of the same length, {d1,d2, · · · }, where di is a row vector of length

L − KCRC representing the ith block. They are CRC-encoded into u = {u1,u2, · · · },

where ui = {ui0, ui1, · · · , ui(L−1)} is a row vector with length L. u is formed by padding

at the end of each data block parity bits that are the coefficients of the remainder poly-

nomial r(x) obtained by dividing a data polynomial associated with a data block by a
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Figure 6.1: The block diagram of the proposed VTT-APP decoder applied IBP turbo
coding system.

binary generator polynomial g(x) of order KCRC . Of course, the degree of r(x) is less

than KCRC . The corresponding probability of undetectable error is roughly equal to

2−KCRC . In other words, longer CRC codes possess better error detection capability.

The CRC encoder output u and its permuted version u′ = {u′
1,u

′
2, · · · } are then

encoded to form the coded sequence c = {c0, c1, c2}, where ci = {ci
1, c

i
2, · · · } and the

superscript i is used to denote the systematic part (i = 0), the first encoder’s output

(parity) sequence (i = 1) and the second encoder’s output sequence (i = 2).

The decoder uses one or multiple APP decoding units (ADUs) like that shown in

lower part of Fig. 6.1 to decode the corresponding received sequence Y = {y0
1,y

1
1,y

2
1,y

0
2,y

1
2,

y2
2, · · · }, where yi

j is the subsequence corresponding to ci
j; other notations are defined

in the Subsection 6.1.2. An ADU consists of an APP decoder and a stopping condition

checker. It also performs the corresponding interleaving or de-interleaving and other

related operations but for simplicity we do not show these operations in this figure.

The stopping condition checker applies CRC check and/or other forms of stopping
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tests (STs) to verify if the APP decoder output satisfies the stopping criterion. An affir-

mative answer leads to the decision to stop (terminate) decoding the block in question

and this is the only possible early-stopping opportunity for classic TCs. Besides such

a regular early-stopping, however, there are two other early-stopping opportunities for

IBPTCs since no matter whether the decoder output passes the ST, the corresponding

soft output is interleaved or de-interleaved to the neighboring blocks. The ADU will then

examine each related block to see if a block’s content has been filled with stop-decoding

decisions. If such a block is found the ADU will issue a termination decision accordingly.

The ADU can also run STs on these blocks and make a termination decision. We refer to

the latter two early-stopping possibilities as extended (or pre-decoding) early-stoppings.

Note that a decoding iteration consists of two decoding rounds (DRs) that are respec-

tively responsible for decoding the pre-permuted (non-interleaved) c1
j and post-permuted

(interleaved) blocks c2
j and CRC check is feasible for pre-permuted blocks only. Hence

in the first DR one can perform both regular and extended early-stopping tests, but in

the second DR, only extended early-stopping is viable unless the ST does not involve a

CRC check. Examples are given in Section 6.2.4 to further elaborate this property of

IBPTCs.

6.1.2 Iterative decoder with variable termination time

A conventional iterative decoder is composed of one or more APP decoders that will

not stop decoding until a fixed number of decoding iterations have been performed. With

an early-stopping mechanism in place, as shown in Fig. 6.1, the decoding procedure can

stop (terminate) at the end of an iteration (two decoding rounds) or at the end of a DR.

We refer to such a decoder as a variable termination time APP (VTT-APP) decoder

or simply a VTT decoder. When an ST is included in the turbo decoding process, the

test results in either a stop- or a continue-decoding decision. Given the decision, which

is very useful side information, our computation of the extrinsic information and soft
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Figure 6.2: A graph representation for a CRC and S-IBPTC encoded system with in-
terleaving span S = 1.

output should be modified accordingly.

Note that all STs, whether they are used in classic TCs or IBPTCs, incur additional

computational complexity which is usually more than compensated for by the reduced

average DRs brought about by the use of a ST.

Let Λ(u) = log pU (u=0)
pU (u=1)

be the log-likelihood ratio of the random variable u where

pU(·) denotes the probability density function of u. If ujk represents the kth bit of the

jth block and Λ(i)(ujk), Λ
(i)
e (ujk) denote the corresponding estimated log-likelihood ratio

and the extrinsic information obtained at the end of the jth block’s ith DR, we have

[50]

Λ(i)
e (ujk) = Λ(i)(ujk) − Λ(i−1)

e (ujk) − Lc · y0
jk, (6.1)
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We assume that Λ
(−1)
e (ujk) = 0, ∀ j, k. Lc = 4aEs/N0 represents the channel reliability,

where a is the signal amplitude which is usually normalized to 1 for additive white

Gaussian noise (AWGN) channel, Es being the signal energy per symbol while N0 is the

noise power spectral density.

For the ith DR of the jth data block, the VTT-APP decoder in charge uses received

sequence y0
j ,y

1
j or y2

j and the a priori information {Λ(i−1)
e (ujk)}k=L−1

k=0 as its input and

outputs {Λ(i)
e (ujk)}k=L−1

k=0 for use in the next DR as the a priori information until i =

Dmax, where Dmax is the maximum allowed APP DRs; see Fig. 6.1.

A tentative decision ûi
jk on the kth bit of the jth block at the end of the ith APP

DR can be obtained by

ûi
jk =

{
0 , Λ(i)(ujk) ≥ 0,
1 , Λ(i)(ujk) < 0.

. (6.2)

Let Q(ûi
j) be the stopping indicator for the tentative decision vector of the jth block

at the ith DR, ûi
j = (ûi

j0, û
i
j1, · · · , ûi

j(L−1)), 0 < i ≤ Dmax, where

Q(ûi
j) =

{
1, if ûi

j satisfies the ST
0, otherwise

. (6.3)

Given the ST result, the conditional soft value Λ
(i)
S (ujk) and the extrinsic information

Λ
(i)
e,S(ujk) are given by

Λ
(i)
S (ujk) =





log
P [ujk=0|Q(ûi

j)=1 ]
P [ujk=1|Q(ûi

j)=1 ]
, Q(ûi

j) = 1

Λ(i)(ujk), Q(ûi
j) = 0

(6.4)

and

Λ
(i)
e,S(ujk) = Λ

(i)
S (ujk) − Λ(i)(ujk). (6.5)

The extrinsic information Λ
(i)
e,V TT (ujk) of an APP decoder then becomes

Λ
(i)
e,V TT (ujk) = Λ

(i)
e,S(ujk) + Λ(i)

e (ujk) = Λ
(i)
S (ujk) − Λ

(i−1)
e,V TT (ujk) − Lcy

0
jk. (6.6)

The resulting VTT-APP decoder is shown in Fig. 6.1.
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To ease the burden of computing the conditional log-likelihood function that appears

in eqn. (6.4), we make the ideal assumption that the stopping test is perfect, i.e.,

P (ûi
jk is correct|Q(ûi

j) = 1) = 1, ∀ k.

With this perfect stopping decision assumption, eqn. (6.4) becomes

Λ
(i)
S (ujk) =

{
Λ(i)(ujk) · ∞, Q(ûi

j) = 1
Λ(i)(ujk), Q(ûi

j) = 0
, (6.7)

and eqn. (6.6) is modified accordingly.

The perfect stopping assumption actually makes the computation of extrinsic infor-

mation or soft output easier as when the tentative decision vector ûi
j meets the stopping

condition, then Λ
(i)
e,V TT (ujk) has only two values ±∞. When the perfect stopping as-

sumption is approximately true (say, the false stopping probability is less than 10−5),

a practical approximation is to assign a fixed large number to Λ
(i)
e,V TT (ujk). However, it

should be noted that, after interleaving or de-interleaving, the large metric value will be

passed to neighboring blocks and then to the corresponding partial path metric com-

puters, eliminating other branches which are not associated with these bits. Hence the

passing of the extrinsic information of these perfect detected bits to neighboring blocks

further reduce the complexity of the associated APP decoder. Moreover, as the APP

decoder selects survivor branches based on the relative magnitudes of the partial path

metrics only, the actual value assigned to Λ
(i)
e,V TT (ujk) is immaterial. In fact, it can be as

simple as a binary sign telling the APP decoder which branches should be eliminated.

All these nice features depend, besides the IBP design, on the availability of a highly

reliable ST such that the perfect stopping assumption holds with a probability close to

1, which is the subject of the stopping mechanism design. Note that although there is

no perfect ST and the probability that a ST gives a wrong block stopping decision is

nonzero, the influence of these wrong indications result in no catastrophic failure as our

numerical results will demonstrate in Section 6.4.
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6.1.3 Graphical representation of an IBPTC and CRC codes

Fig. 6.2 is a graphical representation for the system of Fig. 6.1 with an S-IBPTC

and CRC codes and is extended from Fig. 5.4 with additional CRC code functions.

This graph plots the S-IBPTC exploiting a symmetric S-IBP interleaver of the span

S = 1 and an input data sequence u partitioned into five blocks. Each block is encoded

by CRC code. The dark, gray, crossed and blank squares represent respectively the

functions of convolution codec, CRC code, S-IBP interleaving and the channel effect.

The CRC function is connected to the permutation and equality node. This graph further

indicates the relation between IBPTC and CRC codes and shows the message-passing

for the VTT-APP decoder.

Section 5.3 has elaborated the message-passing regarding to an S-IBPTC. An S-

IBPTC decoder can exploit information collected from 4SI + 1 adjacent blocks in I

iterations as the number of block is large enough, e.g. the message of the block u3 in

Fig. 6.2 can be passed to u1 and u5 in one iteration. The extra CRC nodes in Fig.

6.2 provide extra information after each APP DR. If the decoded block passes the CRC

check condition, the CRC node generates extra extrinsic information for the block and

the information will be passed to the other blocks as the a priori information to decode.

Therefore the graph brings out the message-passing associated with the further CRC

functions.

6.2 Dynamic decoder and the associated issues

This section describes a low complexity and flexible decoder architecture for IBPTC

comparing to the pipeline decoder. The required number of APP decoders is flexible

and the implementation cost can be eliminated to the least. The decoder further applies

an ST to terminate decoding of blocks and reduce memory usage. The decoder can also

apply the VTT-APP decoder to provide better performance. Therefore this dynamic

decoder provides the most flexibility in implementing an IBPTC decoder with least
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Figure 6.3: The block diagram of IBPTC dynamic decoder.

hardware complexity.

6.2.1 Dynamic decoder

Implementing a dynamic decoder shown in Fig. 6.3 has more flexibility between

decoder complexity and decoding throughput comparing to implementing the pipeline

decoder. The hardware complexity of the pipeline decoder is linear to the maximum

number of decoding round Dmax because the decoder is composed of Dmax APP de-

coders. The throughput of the pipeline decoder is the same as the throughput of each

APP decoder. If the designated decoding throughput is less than the decoding through-

put of the pipeline decoder, the pipeline decoder becomes an over-design. In fact, we

can decouple the decoding of an IBPTC into multiple sub-decodings associated with

these blocks and schedule these sub-decodings. Therefore the dynamic decoder ap-

plies a scheduler to coordinate these APP decoders to decode an IBPTC. Since we can

schedule these sub-decodings, the fixed number of APP decoders is not necessary and

the complexity of dynamic decoder can vary with the decoding throughput. Even the

desired throughput exceeds the throughput of the pipeline decoder, we also can imple-
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ment more APP decoders to reach the desired throughput if the IBP interleaver is the

contention-free interleaver which describes in Chapter 4. The dynamic decoder provides

more implementation options than the pipeline decoder.

6.2.2 Decoding delay

Decoding delay is perhaps the most important issue in high speed decoder design.

The decoding delay associated with an S-IBPTC for a parallel decoder is minimized by

using a proper decoding schedule. Even if only one APP decoder is used, as we will

see shortly, the decoding schedule still plays a pivotal role in minimizing the decoding

delay of an S-IBPTC. The delay associated with B-IBPTC is similar to classic TC but

B-IBPTC provides more decoding options due to its IBP nature. The decoding delay

can also be reduced by a proper schedule as S-IBPTC and will be discussed later.

We first analyze the decoding delays when only one APP decoder is used. The

single-round interleaving (or de-interleaving) delay is proportional to the interleaving

delay. But the total decoding delay is a much more complicated issue. For a decoder

that uses a single ADU, the decoding delay depends mainly on three variables: the single-

round interleaving delay (SRID), the single-round APP decoding delay, and the number

of decoding iterations. As the single-round APP decoding delay (speed) is usually much

less than the SRID, we ignore the APP decoding delay in the subsequent discussion.

For the first decoding of each incoming block, there can be zero waiting time, but

for later DRs the corresponding delays depend on, among other things, the decoding

schedule used. With the same block size, the decoding delay of the first received block

for the classic TC is definitely shorter than that for the S-IBPTC. But if one considers

a period that consists of multiple blocks (otherwise one will not have enough blocks to

perform inter-block permutation) and takes the decoding schedule into account, then

the average decoding delay difference can be completely eliminated. This is because

the APP decoder (including the interleaver and deinterleaver) will not stay idle until
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Figure 6.4: A comparison of exemplary decoding schedules for classic TC and S-IBPTC
when decoding 7 blocks with 2 iterations (four decoding rounds). The numbers in the
two rectangular grid-like tables represent the order the APP decoder performs decoding.

all blocks within the span of a given block are received. Instead, the APP decoder will

perform decoding-interleaving or deinterleaving operations for other blocks according to

a predetermined decoding schedule before it can do so for the given block (and the given

DR).

If we define the total decoding delay as the time span between the instant a decoder

receives the first input sample (from the input buffer) and the moment it outputs its

last decision then it is possible that both the S-IBP and the classic approaches yield the

same total decoding delay even if only one APP decoder is used. We use the following

example and Fig. 6.4 to support our claim; its generalization is straightforward.

Suppose we receive a total of 7 blocks of samples (in a packet, say) and want to

finish decoding in 2 iterations (4 DRs) and a schedule for both classic TC and S-IBPTC

are shown in Fig. 6.4. The first block of the classic TC is decoded by the first 4

decoding rounds (the leftmost column) but that of the S-IBPTC is decoded by the first,

third, sixth and tenth decoding rounds. One can easily see that a classic TC decoder

would output the first decoded block in 4 DT cycles, where DT is the number of cycles

needed to perform a single-block APP decoding plus SRID. The S-IBPTC decoder, on
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the other hand, needs 10 DT cycles to output its first decoded block. However, if one

further examines the decoding delays associated with the remaining blocks, then one

finds they are 8, 12, 16, 20, 24, and 28 DT cycles for the classic TC decoder while those

for the S-IBPTC decoder are 14, 18, 22, 25, 27 and 28 DT cycles, respectively. So in

the end, both approaches reach the final decision at the same time.

It can be shown that, for a decoder with Dmax DRs and S = 1, both decoders result

in a constant delay of Dmax(Dmax−1)
2

DT cycles between two adjacent output blocks,

except for the first block and the last Dmax − 1 blocks. For an S = 1 S-IBPTC, the

decoder requires a first-block decoding delay of Dmax(Dmax+1)
2

DT cycles while that for

the classic TC is only Dmax DT cycles. The inter-block decoding delays, i.e., decoding

latency between two consecutive output blocks, for the last Dmax − 1 output blocks

of the S-IBPTC decoder using a decoding schedule similar to that shown in Fig. 6.4

(e.g., the one shown in Fig. 6.5) form a monotonic decreasing arithmetic sequence
{

Dmax(Dmax−1)
2

− 1, Dmax(Dmax−1)
2

− 3, · · · , 0
}

(in DT cycles). The inter-block decoding

delay of a classic TC decoder remains a constant Dmax DT cycles. On the average, both

codes give the same inter-block decoding delay.

Although we have assumed a stream-oriented scenario so far, our arguments are

valid for the conventional block-oriented consideration as well. It is thus of paramount

importance that we recapture the IBP concept from the block-oriented viewpoint before

returning to the main discourse.

Consider the example illustrated in Fig. 6.4. For a classic TC with an interleaving

(block) size of 7L bits, the first-block decoding delay for a 2-iteration single-ADU decoder

is 28 DT cycles. But if one divides this 7L-bit block into 7 subblocks and uses a special

block-oriented interleaver which performs successive intra-subblock and inter-subblock

permutations on these subblocks, the corresponding (2-iteration single-ADU) decoding

delays in DT cycles for these subblocks are 14, 18, 22, 25, 27 and 28, respectively.

Therefore, although both code structures result in identical total decoding delay the
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IBPTC structure is able to supply partial decoded outputs much earlier. This feature,

when combined with proper intra-(sub)block and inter-(sub)block interleaving rules,

multiple ADUs, optimized decoding schedule and implementation resource management,

become very beneficial for high speed applications. More importantly, it can been shown

by computer simulations that a turbo code with such an interleaver does not yield

performance inferior to that of a classic TC with a block-oriented interleaver (e.g., 3GPP

interleavers) of the same size.

6.2.3 Memory contention and decoding schedule for multiple
ADUs

The above assessment on the encoding/decoding delay is made under the assumptions

that both codes use the same block size L, no early stopping mechanism is applied,

and a single ADU is used. The delay will be shortened if the latter two assumptions

are removed. In particular, the decoding delay can be reduced significantly by using

multiple ADUs for parallel decoding. When iterative APP decoding is performed by

multiple ADUs, these ADUs have to access memory via interleaver (or deinterleaver) for

extrinsic information update and exchange. To have the maximum delay reduction, the

interleaver should also have a parallel structure to avoid memory access collision. It can

be shown that the structure of IBP interleavers allows flexible degrees of parallelism and

highly parallel memory access. In fact, Theorem 3.1 implies that a good IBP interleaver

should possess the local-invariant property that preserves the relative position within a

block during the IBP process. This property promises contention-free across the span

(parallel-decodable blocks) of the IBP interleaver. Furthermore, like the contention-free

interleaver design presented in [92], closed-form contention-free IBP rules are available,

and more importantly they guarantee some good distance properties for the associated

IBPTC.

Just the same as the single ADU case, the decoding schedule for multiple ADUs

is a critical design concern. An example of decoding an S-IBPTC with multiple APP
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Figure 6.5: A multiple zigzag decoding schedule for an S-IBPTC with the span S = 1.

decoders is given in Fig. 6.5. Although both S-IBPTCs and classic TCs can use multiple

decoders for parallel decoding and apply an early stopping mechanism to shorten the

decoding latency, we will prove numerically in Section 6.4 that the former class does

derive much more benefit in block error rate (BLER) performance.

We have demonstrated the importance of the decoding schedule in minimizing the

decoding delay. Parallel decoding is a popular design option to shorten the latency. Fig.

6.5 shows a multiple expanding-window zigzag schedule table for decoding an S-IBPTC

with the span S = 1 and four ADUs, denoted respectively by a, b, c and d. Data

blocks processed in the odd rows are in the original (pre-permutation) order while those

processed in the even rows are in the interleaved (post-permutation) order. Each dashed

or dotted zigzag curve represents the schedule for an ADU. The symbol xmn denotes

the nth DR of the mth phase in the ADU x’s schedule, where a DR represents the

APP decoding of a pre- or post-permuted block and the associated interleaving or de-

interleaving and the mth phase refers to the mth parallel line associated with an ADU’s

decoding schedule. Obviously, the mth decoding phase of x is followed by the (m+1)th

decoding phase to its right.
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Taking the decoding schedule of ADU c as an example, its first DR of the first

phase c11 corresponds to the first DR of Block 3 while the first phase’ second DR

c12 corresponds to the second DR of Block 2. c12 can be performed, as the schedule

table shows, after Blocks 1,2,3 have been decoded once and the corresponding extrinsic

information output has been inter-block interleaved so that the post-permuted Block 2

has all a priori information needed for a new DR. c finishes its first phase after c13 is

done. It then proceeds with the first DR of the next phase c21, i.e., the first DR of

Block 7. An ADU can not start a new DR until the DR on its top is completed, e.g.,

a2k, k > 2 cannot start unless the DR corresponding to d12 is finished.

An ADU can make regular stopping decisions in odd rows’ DRs and extended stop-

ping decisions (ESDs), unless a non-CRC-based ST is used. CRC-based ST makes

regular stopping decision in odd row. ESD is generally made to stop decoding a block in

even row by checking if all related blocks pass CRC condition or the shortage of memory

which will be described in the following subsection. For example, in a23 (c25) we check if

Block 3 passes the ST and early stopping on this block becomes effective if affirmative.

ADU a (c) then go on to examine whether a24 (c26) is necessary by checking whether

both c13 and d13 (a25 and b25) pass the ST as well. When this condition is satisfied, de-

coding of Block 2 is terminated. On the other hand, in b24 no ST is performed but after

de-interleaving its output we run a ST on the content of b25 before next APP decoding

round, which contains de-interleaved outputs from d14 and a24. We stop decoding Block

2 and b25 is no longer needed (because of our schedule and the S-IBP structure, c25 and

d25 can not yet be verified although extrinsic information from b24 will be passed on to

them) if the ST result is positive.

6.2.4 Memory management

From the above discussion, it is clear that decoding many blocks at the same time

requires no small storage area for ASIC or DSP implementation. One should therefore
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try to make the most of the memory space available. The decoder needs space to store (I)

received samples undergoing decoding, (II) extrinsic information, (III) decoded bits to

be forwarded to a higher layer for further processing, and (IV) received samples awaiting

decoding. The management of the last category, assuming no buffer overflow, requires

only an indicator signal to forward a new block of received samples to the part of the

storage area designated for category (I) that was just released due to a stopping decision.

Category (III) is needed because of the stopping time variation across blocks. Its

management is straightforward and, besides, it requires much less storage space. As

mentioned in Subsection 6.1.2, assigning the extrinsic values for ST-approved bits a

constant large value is equivalent to using a (special) binary-valued bit to indicate which

partial paths should survive in the APP decoding process. Hence the decoded bits serve

the dual purposes of representing the decoder decisions and bookkeeping the survivor

paths. The management of categories (I) and (II), however, needs more efforts and

careful considerations.

As long as the probability of termination-defying blocks exists, practical latency

consideration will force us to set an upper limit Dmax on the number of DRs. It can be

shown that an unterminated block prevents the decoder from discarding y2 associated

with those terminated blocks within its span. When the number of blocks that terminate

at or around the Dmaxth DR is large so will be the memory required. Hardware constraint

thus imposes another threshold Mmax, the maximum affordable (allowable) memory units

(MU) where an MU refers to the space for storing categories (I) and (II) associated with

a block of data in the decoder. As our sole purpose is to demonstrate the critical role

a memory manager plays in the VTT-APP decoder, we assume, for simplicity, that

the same number of bits is used to represent the extrinsic information of a bit and the

corresponding received sample. An MU is thus assumed to contain KL bits, where a

K-bit word is used to store either the extrinsic information or received baseband sample

associated with a transmitted bit.
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Figure 6.6: A joint memory management and IBPTC decoding procedure.

Because of the stopping time variation nature of our decoder, a memory manager

has to take into account both thresholds, Dmax and Mmax so as to optimize the perfor-

mance. When a block has failed to pass the ST for Dmax times, it will automatically be

discarded and the MUs storing the corresponding categories (I) and (II) information are

released accordingly. Chances are more than one block that reach the threshold Dmax

simultaneously and it is even more likely that the decoder runs out of MUs before a

block reaches the threshold Dmax. For both cases, one should then give up decoding one

or some of the unterminated blocks. It is both reasonable and intuitively-appearing to

terminate the most ancient block, i.e., the one which has failed the ST most often. We

refer to these memory shortage induced stopping as forced early stopping.

Fig. 6.6 shows a finite-memory IBPTC decoding procedure for one phase of an

ADU. The procedure involves APP decoding, interleaving, deinterleaving, regular and

extended stopping decisions, and memory check and release. The last two operations are
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collectively called the memory management scheme which is responsible for verifying if

there is enough memory during the decoding process and make a proper memory-release

decision if there is not enough storage space. As there is no computation involved at all,

the complexity is moderate at most.

Denote by MF , Md and MR, the numbers of free (unused) MUs, ADUs, and the

required MUs for storing one received block. It follows that MR = x for a rate R = 1/x

turbo code. The decoder is initialized with MF = Mmax. An ADU begins a phase

by checking if MF > MR (Box 2) where the additional MU is for storing extrinsic

information. If MF does not meet the condition, the memory manager determines

which block is to be discarded, makes a forced ESDs, and releases the related storage

space (Box 4). Otherwise, the decoder moves the received samples of the new block from

where they were saved (in the buffer area) to the corresponding category (I) MUs (Box

3).

Deciding which block is to be given up is simple and clear since our decoding schedule

allows only a single most ancient block in its left-most active column at any time. When

a forced ESD is made the ADU makes hard decisions on the block to be discarded and

releases the related categories (I) and (II) MUs. As the discarded block is always the

most ancient block and our decoding schedule is such that all blocks to its left must

have been terminated for one reason or another, we are left with the problem of dealing

with the related unstopped blocks,the S adjacent blocks to its right for S-IBPTC, if they

have not been terminated. At least two alternatives exist for solving this problem. The

first solution, which leads to better performance at the cost of higher complexity, is to

interleave or de-interleave the extrinsic values for use in decoding the related unstopped

blocks, the S blocks to its right for S-IBPTC, without further updates. The second one

is to make hard-decisions (stop any further decoding) on all related unstopped blocks,

S blocks within its (right) span for S-IBPTC, releasing their category (I) MUs while

keeping their category (II) MUs for use in decoding other related blocks.
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At beginning of each DR, we ask the decoder whether the scheduled DR is needed

(Box 5). Unless the decoder has been notified to by-pass the ensuing DR, we still have

to ask if the space for storing the extrinsic information of the coming DR is available.

When such a space is not available (MF = 0) the decoder has to find room for the next

DR by discarding the most ancient unterminated block and following the memory release

procedure described above (Box 7). The operations in Box 9 include those described in

the last paragraph of Subsection 6.1.2. When a regular or extended stopping decision

is made, the memory manager releases the corresponding category (II) and parts of

category (I) memory (Box 10), memory release procedure 1) and notifies the decoder

that further decodings on these blocks are no longer necessary.

6.3 Multiple-round stopping tests

Early stopping mechanism offers the extra benefit of lower the computing power

needed for achieving a given performance and further accelerates an iterative decoder’s

decoding speed. The issue of (decoders’) stopping criteria has been widely discussed

[50, 88, 65, 4]. These criteria can be classified into four categories: (i) cross entropy

(CE) stopping criteria, (ii) sign check (SC) stopping criteria, (iii) soft value (SV) stop-

ping criteria and (iv) cyclic redundancy check (CRC) stopping criteria. The last one

guarantees the correctness of decoded bits with a high probability while the others only

promise the convergence of the decoded bit sequence. The SC and the CRC stopping

criteria use the bit operations only while the remaining two categories operate over the

floating-point domain. Moreover, CE and SV stopping criteria have to optimize thresh-

old for different channel conditions whence is less robust. On the other hand, CRC

codes have been widely used in the data link or higher layer as part of the error-control

mechanism and is an indispensable component of a packet-oriented data communication

system. Using CRC codes as a part of the stopping criterion thus causes little or no

extra complexity.
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[65] summarized various STs for turbo decoders using sign check, soft values and CRC

checks. The sign check stopping test (SCST) compares the tentative decoded bits from

two successive rounds. A tentative decoded block passes the test if most or all of them

are consistent. The soft value stopping test (SVST) compares the soft value(s) with a

threshold; the soft values can be the reliability of tentative decoded soft bits, the average

soft value of a block, the extrinsic value of the least reliable bit etc. The CRC stopping

test (CRCST) uses the CRC result to decide if further decoding of a block is needed.

SCST and CRCST operate over bit level but SVST operates over the real-domain. The

performance of SVST is subject to the choice of the threshold which, in turn, is a function

of the channel condition and code structure. Moreover, the convergence rate of soft bit

values also depends on the above two factors [65, 4]. In short, the classes of CRCST,

SCST or their variations have the complexity and robustness advantages over the class

of SVST.

6.3.1 A general algorithm

All early stopping tests are sequential in nature. They either compare or manipulate

some values corresponding to two consecutive DRs, or just check a single DR output

to make a stop-or-continue decoding decision. In contrast, our proposed tests make

a stop-decoding decision based on multiple observations and are thus referred to as

multiple-round stopping tests (MRSTs)

It is well-known that a statistical decision based on a single observation is inferior to

that based on multiple observations which, however, require a longer observation time

(or equivalently, larger sample size). The MRST has the distinct capability of balancing

performance (reliability of the test) and cost (time or sample size needed to make a

termination decision). A dismissal on a decoder output is issued as soon as it fails a

single test but a decision to stop decoding a block has to wait until the same block is

verified by several rounds of test. Therefore, incorrect tentative decoder outputs are
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quickly discarded while any final decision on a block is prudently made. While the

first round of an MRST provides an initial tentative decision, the additional verification

test rounds greatly reduce the probability of false stopping and give more robust and

reliable decision; this avoids spreading incorrect information to neighboring blocks for

IBPTC VTT-APP decoder. An m-round stopping test using a short CRC-8 code gives

a false detection probability similar to that of using a long CRC-8m code but with only

1/m overhead bits. Moreover, since a correct stopping on a certain block helps bringing

earlier stoppings to its adjacent blocks for the IBPTC decoder, the average decoding

delay is shortened as well.

A flow chart of the general MRST is shown in Fig. 6.7. In this figure, i is used to

denote the ith DR, p represents the number of times a block has passed a ST and can

be regarded as a quality indicator, m is the required quality condition and Dmax is the

maximum number of DRs allowed. Either p = m or i = Dmax will force the decoding

process to be terminated. As discussed in Subsection 6.1.2, an ST is performed at the

end of an iteration (even DRs) or the beginning of an odd DR. For the latter case, an

ST means checking if all pre-permuted blocks within its span have satisfied the stopping

condition. A special case of MRST is the multiple-round SCST of [65]. It was found

that the block error rate performance improves as the number of test rounds increases.

As mentioned before, we shall not consider the class of SVSTs. Multiple-round

CRCST, SCST and a hybrid CRC-SC ST are briefly defined in the following.

6.3.2 T1.m: the m-round CRCST

This scheme is based on an m-round CRC test. A block is said to pass the m-round

CRCST if all m consecutive tentative decision vectors ûi−m+1
j , ûi−m+2

j , · · · , ûi
j succeed

in passing the same CRC test, i.e., ICRC(ûl
j) = 1, l = i − m + 1, i − m + 2, · · · , i and

i ≤ Dmax, where

ICRC(û) =

{
1, û passes CRC condition
0, otherwise

. (6.8)
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Figure 6.7: Flow chart of a general m-round stopping test.

As the error detection capability of a CRC code is an increasing function of the code

length, one can trade the order m for the code length.

6.3.3 T2.m: the m-round SCST

This ST [65] compares tentative decoded bits in m (m ≥ 2) consecutive DRs or

iterations. The decoder stops when the nth tentative decision vector, i ≤ Dmax, are the

same with the previous m − 1 tentative decision vectors, i.e.,

ûi−m+1
jk = ûi−m+2

jk = · · · = ûi
jk, ∀ k, 0 ≤ k < L. (6.9)
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Note that MR-SCST checks the convergence of tentative decisions, it does not guarantee

the convergence to the correct decisions.

6.3.4 T3.m: the m-round hybrid stopping test (MR-HST)

Unlike classic TCs, errors in STs for IBPTC will propagate to different blocks and

might lead to a catastrophic consequence. A highly reliable ST can be obtained by

increasing m or it can be obtained by incorporating multiple criteria in a single round.

A block that passes both CRC and SC tests is more reliable than one that passes only

a single test.

Hence, we suggest the hybrid stopping criterion

ICRC(ûl
j) = 1, ∀ l, i − m < l ≤ i, i ≤ Dmax, (6.10)

and

ûi−m+1
jk = ûi−m+2

jk = · · · = ûi
jk, ∀ k, 0 ≤ k < L, i ≤ Dmax. (6.11)

If the CRC-8 is used, the undetect error probability is approximately 2−8 only. The

probability that the sign check does not match the CRC result is of the order 2−16 or

2 × 10−5 due to the CRC test is equivalently passed twice. Using a longer CRC code

increases the reliability of a CRC stopping test but it also induces an increased overhead.

Additional sign consistency check is the price we paid for using this stopping mechanism

to cut down the CRC overhead but the cost is little.

6.3.5 Genie stopping test

Genie ST is a hypothetic ideal test that is capable of verifying the tentative decision

vector without error. The performance of this ideal test is used as the ultimate bound

for reference purpose.

At the first glance, we might expect the hybrid test or higher-order (larger m) tests

to take more DRs since a received block is less likely to pass both SC and CRC or a
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higher-order requirement. But the fact is that a correct block decision, through the

IBP interleaving, will help other blocks to meet the stopping condition sooner while an

incorrect one tends to has an adverse effect. Our numerical experiment indicates that

the hybrid test not only gives better performance but also requires less average DRs.

This is another advantage of IBPTCs that is not shared by classic TCs.

6.4 Simulation results

The simulation results reported in this section is based on the following assumptions

and parameters. The component code of the rate=1/3 TC, G(D) =
[
1, 1+D2+D3

1+D+D3

]
,

and the CRC-8(=“110011011”) code used are the same as those specified in the 3GPP

standard [1] except that the component code is tail-biting [106] encoded. The APP

decoder uses the Log-MAP algorithm and the S-IBP of Table 5.1 while the interleaving

length and S-IBP span are left as variables; MR = 3 MUs and N = 1000 per simulation

run are assumed. Except for the Genie ST, our simulations do not assume a perfect

stopping test for a block.

The effects of various STs on the S-IBPTC VTT-APP decoder performance for the

system with S = 1, L = 400, Dmax = 30 and tail-biting encoding are shown in Figs. 6.8

and 6.9. Multiple-round CRCST, SCST and HST are considered. For comparison, we

include performance curves of the decoder using the genie ST, that with fixed 20 and 30

DRs (10 and 15 iterations) and, for reference purpose, that of the classic TC with block

length L = 800 using the genie ST with Dmax = 30.

Block error rate performance improves as the number of test rounds m increases no

matter which ST is used. Fig. 6.8 shows that T1.3 outperforms T1.2 for Eb/N0 greater

than 0.3 dB. Tests using sign-check alone, T2.3 and T2.5, are inferior to other stopping

tests since, as mentioned before, the class of sign-check tests check if decoded bits con-

verge but does not guarantee the correctness of the tentative decoded vectors. Incorrect

stopping decisions will spread false information to the neighboring blocks through in-
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Figure 6.8: Block error rate performance of various stopping tests; no memory constraint;
Dmax = 30 DRs.

terleaving and result in degraded performance. T1.3, T3.2, T3.3 and the one with fixed

30 DRs yield the best performance and they are almost as good as the genie ST. Using

T3.2 for early stopping, the S-IBPTC has 0.4 ∼ 0.6 dB gain against the classic TC for

BLER=10−3 ∼ 10−4 although the average decoding delay per DR for both codes are

about the same.

Fig. 6.9 shows the average DR performance of various STs. Except for the two

sign-check tests, all STs require less than 20 or 10 APP DRs (10 or 5 iterations) when

Eb/N0 is greater than 0.2 or 0.6 dB. Considering both block error rate and average

latency performance, we conclude that, among the STs we have examined, T3.2 is the

best choice.

The numerical results presented so far assume no memory constraint. Figs. 6.10 and

6.11 reveal the impact of finite memory size for the system that employs a T3.2-aided

VTT-APP decoder and the memory management algorithm of the previous section with

block length L = 400, the span S = 1 and Md = 1. Fig. 6.10 shows block error rate

performance for different memory constraints. For convenience of comparison, we also
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Figure 6.9: Average APP DR performance of various stopping tests; Dmax = 30 DRs,
no memory constraint.

present three cases without memory constraint, one with Dmax = 200, the other two with

fixed DRs. It is reasonable to find that larger memory sizes give better performance. At

higher Eb/N0(> 0.8 dB), all performance curves converge to the same one since all VTT-

APP decoders finish decoding after only a few DRs (see Fig. 6.11) and memory size is

no longer a problem. The fact that the cases Dmax = 100 with 100 MUs, and Dmax = 30

with 100 MUs give almost identical performance indicates that increasing Dmax beyond

a certain number (30 in this case) can not improve block error rate performance and the

memory size becomes the dominant factor. Performance for the decoder with Dmax = 200

and no memory constraint (it can be shown that 804 MUs is sufficient for this case, which

is at least eight time larger than that required by other decoders) is clearly better than

the other decoders when Eb/N0 < 0.6 dB but this edge is gradually diminished after 0.6

dB.

The average DR performance is given in Fig. 6.11. For Eb/N0 ≥ 0.5 dB, all VTT-

APP decoders need less than or equal to 10 DRs (5 iterations). But when Eb/N0 <

0.3 dB, the performance curves are distinctly different–if we do not impose a memory
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Figure 6.10: The effect of memory constraint and management on the block error rate
performance. Curves labelled with infinite memory are obtained by assuming no memory
constraint; “fixed DRs” implies that no early stopping test is involved.

constraint, the average DR will increase significantly as Eb/N0 decreases. Most of the

computation effort will be wasted, so is the memory. In other words, at the low Eb/N0

region, ST can not offer early stopping decision. Imposing a memory constraint and

invoking a proper memory management algorithm provide a solution that forces early

stoppings, saving computing power and memory at the cost of a small performance loss.

Finally, we find that, comparing with our proposed schemes, the two decoders with fixed

DRs (20 and 30) usually need much more memory and DRs.

The effectiveness of various STs on the performance of a classic TC with L = 800

are shown in Fig. 6.12 and Fig. 6.13 where Dmax = 30 DRs and tail-biting encoding

are assumed. The performance of T1.1 with CRC-24 is worse than those of T1.2 and

T3.2 with CRC-8. Using CRC-8, T2.3 provides error rate performance similar to that

of T3.2 but at the cost of one more DR. Both tests yield performance very close to

that of the genie ST. In summary, these two figures show that (i) the proposed MRSTs

can also be used in classic TC-coded systems and (ii) using a proper MRST has the
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Figure 6.11: Average APP DR performance for various decoding schemes and conditions.
Curves labelled with infinite memory are obtained by assuming no memory constraint;
“fixed DRs” means no early-stopping condition is imposed.

benefits of reduced CRC overhead and DRs (decoding latency) without compromising

the performance. The latter conclusion implies that a multiple-round stopping test with

a short CRC code is better than a single-round stopping test with a much longer CRC

code. Of course, the same advantages are shared by IBPTC-coded systems as well.
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Figure 6.12: Block error rate performance of a classic TC using various STs; L = 800
bits and Dmax = 30 DRs.
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Figure 6.13: The effect of various STs on the average APP DR performance of a classic
TC with L = 800 and Dmax = 30 DRs.
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Chapter 7

Multi-stage factor graph

Multi-stage factor graph (MSFG) extended from factor graph [60, 42] elaborates

message-passing for iterative decoding. Factor graph expounds a code structure and one

can operate belief propagation (BP) algorithm on the graph. However, the graph only

shows possible paths on the graph but does not indicate the schedule of real message-

passing. The MSFG, a directed graph, describes the message-passing which reflects a

decoding schedule. With the assistance of this graph the impact of the decoding schedule

on computing complexity and storage requirements can be analyzed. Moreover, our

representations avoid ambiguous description of cyclic or loopy message-passing events.

Multi-stage factor sub-graph (MSFSG) and causal multi-stage sub-graph (CMSSG)

shorten representation of the lengthy MSFG without demonstration loss of message-

passing and can be directed converted into hardware circuitry or used to design decoding

schedule. The MSFG is a regular graph and looks like a duplication of a sub-graph when

the decoding schedule is regular. MSFSG, a sub-graph extracted from MSFG, describes

the operation procedure associated with decoding round or iteration and it is useful to

represent block-oriented code such as B-IBPTC, classic TC, LDPC [46], etc. Causal

multi-stage sub-graph (CMSSG), a sub-graph extracted from the MSFG, describes the

operation procedure associated with each input bit or block of the stream-oriented code

such as S-IBPTC, convolutional LDPC code [76, 94], etc. Therefore MSFSG and CMSSG

reveal the decoding schedule which can be directly applied by the dynamic decoder shown
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in Fig. 6.3 to coordinate multiple APP decoders. MSFSG and CMSSG also reflect the

schedule of corresponding function nodes or hardware circuitry.

At last, we apply the CMSSG to acquire a new decoding schedule for the dynamic

decoder. The new decoding schedule requires less storage space without compromising

performance for S-IBPTC and the new schedule also offers performance improvement

comparing to the pipeline decoder. The cost is more computing power especially at low

SNR.

7.1 Multi-stage factor graph

The multi-stage factor graph (MSFG) describes message-passing for iterative de-

coding process. The edge between function nodes on factor graph are undirected but

message-passing are different to the opposite connected function nodes. We modify the

undirect edge into two opposite directed edges to reflect different message during itera-

tive process. Then we duplicate this directed graph, redirect edges on the directed graph

to connect these duplicated graph and label nodes by stage index. Then the new graph

reflects real message-passing procedure during iterative process. In short, directed edges

show the message-passing and stages mark the processing order on the MSFG.

The construction method is composed of following skills: grouping and labelling,

duplication and stage stamping, edge replacement, edge redirecting, edge wiping and

edge adding. Grouping and labelling provide a hierarchical graph representation to

simplify the representation of MSFG. Duplication and stamping impose time concept

on the graph. Edge replacement distinguishes messages by directions. Edge redirecting,

wiping and adding connect multiple layers and reschedule message-passing. The first

purpose of edge redirecting connects multiple grouped graphs. The second purpose of

edge redirecting is to redirect the edge to prior stage or later stage to increase or detain

message-passing. Edge wiping removes edges and the corresponding message-passing

and node operations are deactivated. At last edge adding amends edges when a node
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requires a message when edge redirecting removes some edges at the initial stages. These

steps are described as follows.

• This step groups function nodes and edges into a grouped node and label these

grouped nodes.

• This step duplicates the grouped graph into multiple layers and stamps stage on

these labelled grouped nodes.

• This step replaces the undirected edges into two directed edges.

• This step redirects the directed edge to connect these grouped graphes, adds extra

directed edges to enable the node processing and wipes some directed edges to

detain the processing of function nodes.

We apply LDPC code [46] and S-IBPTC code as examples to draw the MSFGs cor-

responding to various schedules. For LDPC code, we compare conventional belief prop-

agation (BP) algorithm [60] and horizontal-shuffled BP algorithm [63]. Furthermore we

will provide another graph to demonstrate the new BP algorithm which reduces the cycle

effect but requires more storage. We also plot two MSFGs for the S-IBPTC associated

with Fig. 6.2. One graph is in accordance with the S-IBPTC pipeline decoding and the

other is an aggressive schedule to increase message-passing speed. Both LDPC code and

S-IBPTC are described in the following two subsections.

7.1.1 LDPC code

Fig. 7.1 (a) shows a (7, 3) LDPC code factor graph with communication link and

the associated parity check matrix is eqn. (7.1). The LDPC-encoded code bit ci is

corrupted by noise before becoming the received sample yi. On this graph, the round

node corresponds to the equality function and the cross square node corresponds to

the parity check function. Conventional BP algorithm floods information based on this

graph. The round node generates the extrinsic information based on the equality relation
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for the cross square nodes, and the cross square node generates the extrinsic information

based on the parity check relation for the round nodes. After several iterations, the

estimated reliability converges and we apply the reliability on the round to acquire to

the decoded codeword. However the decoded codeword may not be optimal because

the cycle enhances the effect of some received samples. The following MSFGs will

demonstrates the effect amongst various decoding schedules.

We construct the MSFG shown in Fig. 7.2 to demonstrate the message-passing of

conventional BP algorithm. We group edges {yi, ci} and function nodes into a node Oi

and check node into a node Oi to render one grouped factor graph. Then we duplicate

the graph into four graphs and remove check node part and the associated edges at the

last graph. We label these nodes according to the stage from 1 to 7, where {Oi} are

labelled into {O1
i , O

3
i , O

5
i , O

7
i } and {Oi} are labelled into {O2

i , O
4
i , O

6
i }. Then we replace

each edge by opposite directed edges and redirect the directed edges on even stage to

nodes on the following odd stage. Then we have Fig. 7.2 showing the message-passing

for conventional BP algorithm.

H =




1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1


 . (7.1)

We plot another MSFG shown in Fig. 7.3 for the message-passing corresponding to

horizontal-shuffled BP (HSBP) algorithm [63]. This algorithm groups check nodes and

schedules the operation of these grouped check nodes. In Fig. 7.3, the nodes {Oi
1, O

i
2}

and the nodes {Oi
3, O

i
4} are grouped separately, where the group {Oi

1, O
i
2} and the group

{Oi
3, O

i
4)} process in turn. Then the edges corresponding to {O2

1, O
2
2, O

6
1, O

6
2, O

4
3, O

4
4, O

8
3, O

8
4}

are wiped out.

The fact that the HSBP algorithm outperforms conventional BP algorithm can be

explained by both Figs. 7.2 and 7.3. In Fig. 7.2, start from the O1
5, there are two

message-passing routes: O1
5 → O2

1 → O3
6 → O4

4 → O5
5 and O1

5 → O2
4 → O3

6 → O4
1 → O5

5.
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Figure 7.1: (a) Factor graph representation of an LDPC code; (b) the grouped factor
graph; (c) node grouping.

Both routes merge at the fifth stage. In Fig. 7.3, the route O1
5 → O2

4 → O3
6 → O4

1 → O5
5

is shifted to O3
5 → O4

4 → O5
6 → O6

1 → O7
5. Therefore the message associated with the

node O5 come back to the node O5 later and the influence of the node O5 decreases more

comparing to conventional BP algorithm. By the way the node O4
4 acquires information

from the node O3
7 which has been updated and therefore the node O4

4 can apply more

information to generate the extrinsic information. This improves the convergent speed

for LDPC code decoding.

Fig. 7.4 provides another schedule for LDPC code decoding to decrease the cycle

effect but requires more buffer. The edge Oi
2 → Oi+1

2 is redirected to Oi
2 → Oi+3

2 . The

edge Oi
4 → Oi+1

4 is redirected to Oi
4 → Oi+3

4 The edges Oi
6 → Oi+1

1 , Oi
6 → Oi+1

3 and

Oi
6 → Oi+1

4 are redirect to Oi
6 → Oi+3

1 , Oi
6 → Oi+3

3 and Oi
6 → Oi+3

4 respectively. We

add five edges O1
2 → O2

2, O1
4 → O2

4, O1
6 → O2

1, O1
6 → O2

3 and O1
6 → O2

4 on this graph

for the processing of the nodes {O2
1, O

2
2, O

2
3, O

2
4}. Start from the node Oi

5, there are two
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Figure 7.2: Multi-stage factor graph for conventional BP algorithm.

message-passing routes: O1
5 → O2

1 → O3
6 → O6

4 → O7
5 and O1

5 → O2
4 → O3

6 → O6
1 → O7

5.

These two routes merge at the seventh stage and this decreases the influence of the node

O5. However the cost is extra buffer. Take the nodes O4
3 and O6

3 as an example, the

node accesses information from the node O1
6 and the information from the node O3

6 has

to be stored. Comparing to both conventional BP and the HSBP algorithms, the cycle

effect decreases but the necessary storage increases.

Figs. 7.2-7.4 provide examples for the last MSFG construction step which influences

the performance significantly. Edge wiping decreases the operation of function nodes

to save computation power. Edge redirecting further detains or advances the message-

passing. Edge adding amends edges on the redirected graph to enable the processing of

the nodes whose edges redirected to another nodes. Next subsection depicts examples
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Figure 7.3: Multi-stage factor graph for horizontal-shuffled BP.

for S-IBPTC.

7.1.2 S-IBPTC

Fig. 7.5 represents a hierarchical factor graph of a coded communication link based on

S-IBPTC and CRC codes. There are five data blocks and S-IBP interleaver span S is 1.

di denotes the ith input data block. ui and u′
i denote the corresponding CRC encoded

sequence and its permuted version. The convolutional-encoded codeword sequences

c0
i , c1

i , c2
i are corrupted by noise before becoming the received sequences y0

i , y1
i , y2

i .

The decoder (node) performs APP decoding to generate the reliability for the data CRC

encoded block and its permuted version and the CRC detector (node) checks the decoded

block to make a stop-or-go decision for the ensuing APP decoding and outputs related
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Figure 7.4: Multi-stage factor graph for the new scheduled BP which reduces cycle effect.

information. The IBP interleaver (node) sends the extrinsic information to due nodes.

This graph indicates relations amongst nodes but still does not detail message-passing

as previous LDPC code factor graph. We thus construct MSFG to describe the behavior

of the decoding process.

The grouping and labelling step is used to simplify the following drawings and dis-

cussions. We use nodes Oi and Oi to denote the upper branch that includes the set of

nodes {di, ui, c0
i , c1

i , y0
i , y1

i } and the lower branch–nodes {u′
i, c2

i , y2
i }–respectively;

see Fig. 7.6 (a). Fig. 7.6 (b) shows the grouped factor graph of the system shown in

Fig. 7.5.

We extend undirected factor graph to a directed MSFG shown in Fig. 7.7. Nodes Oi

and Oi shown in Fig. 7.6 (b) are stamped by Oj
i and Oj

i respectively, where j denotes
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Figure 7.5: Factor graph representation of a CRC- and S-IBPTC-coded communication
link.

the jth APP decoding round (ADR) corresponding to the ith block. This graph has six

stages and the corresponding number of iterations is 3. The performance of Fig. 7.7 is

equivalent to the pipeline decoder. We refer this schedule to pipeline schedule.

One can redirect directed edges to create a new MSFG. We redirect Oj
i → Oj+1

i+1 and

Oj
i → Oj+1

i−1 to Oj
i → Oj−1

i+1 and Oj
i → Oj+3

i−1 and we a new MSFG shown in Fig. 7.8.

The redirecting enables early decoding of some selected blocks. Consider the two

routes O1
5 → O2

5 → O3
4 → O4

3 → O5
2 → O6

1 and O1
3 → O2

3 → O3
2 → O6

1 in Figs. 7.7 and

7.8 respectively. For the first route the node O6
1 is not activated until the 5th block is

received while the same node can be activated when the 4th block is received. When the

total encoded data length is much larger than 5 blocks, the decoding latency for node O6
1
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Figure 7.6: (a) Node grouping; (b) grouped factor graph.

of Fig. 7.7 becomes longer. However the message-passing range of a node in Fig. 7.8 is

less than that in Fig. 7.7. The node O6
1 can be early activated and the necessary buffer

is reduced. However this induces error rate performance loss due to less information

acquired for processing as stopping mechanism and storage constraint are not applied

and imposed.

7.2 Multi-stage factor sub-graph

Multi-stage factor sub-graph (MSFSG) is useful to describe message-passing related

to one iteration or close several iterations, and this graph help us acquiring the corre-

sponding hardware circuitry, decoding schedule or work balancing with the best trade-off

between complexity and throughput. MSFSG is a sub-graph of MSFG without loss of

message-passing description. The MSFG clearly shows message-passing but requires

multiple stages. The number of stages increases with the number of iterations and this
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Figure 7.7: A multi-stage factor graph for the S-IBPTC pipeline decoding schedule.

enlarges the graph. Fortunately, the MSFG is regular and can be decomposed into

multiple small and almost identical sub-graphs. We extract this sub-graph from the

MSFG and name this sub-graph MSFSG. The function nodes equivalent to hardware

circuit and this subgraph represents the operations corresponding to a time interval.

One can group partial function nodes with similar computation complexity or hardware

complexity and reschedule this groups to achieve the same performance. This indicates

a hardware design flow for iterative decoding. The same as the previous section, we still

apply the LDPC code and S-IBPTC code as examples. These exemplary graphs may be

not the most compact graph but this help us to acquire drawing concepts.

7.2.1 LDPC code

Fig. 7.9 shows the MSFSGs which are sub-graphs of Figs. 7.9, 7.3 and 7.4. Conven-

tional BP algorithm provides the most regular graph and three-stages sub-graph shown

in Fig. 7.9 (a) are enough to represent Fig. 7.9.
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Figure 7.8: A multi-stage factor graph for the new S-IBPTC decoding schedule.

The HSBP algorithm decouples the check node processing into two groups and the

necessary number of stages to represent this graph is five and the associated MSFSG is

shown in Fig. 7.9 (b). Because only partial parity function nodes are processed at some

stages, the nodes {Oi+1
3 , Oi+1

4 , Oi+3
1 , Oi+3

2 } can be wiped out and the associated nodes

{Oi
3, O

i
4, O

i+4
1 , Oi+4

2 } can also be eliminated from this graph.

The new BP algorithm shown in Fig. 7.4 reduces the cycle effect but the graph is very

irregular. Some edges go across two stages and five stages are necessary to demonstrate

the graph of regular part. Fig. 7.9 (c) shows the associated MSFSG. However at initial

stages the nodes {O1
2, O

1
4, O

1
6} pass messages to the second and fourth stages. This

irregularity requires an extra initial sub-graph drawn in Fig. 7.13 (d) to complete the

message-passing representation.

7.2.2 S-IBPTC

Fig. 7.11 plots the S-IBPTC MSFSG associated with Figs. 7.7 and 7.8. The pipeline

schedule only passes information to the next stage and three stages are enough to repre-

sent the associated MSFG; Fig. 7.11 (a) plots the associated MSFSG. The new S-IBPTC
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Figure 7.9: (a) The multi-stage factor sub-graph associated with Fig. 7.9; (b) the multi-
stage factor sub-graph associated with Fig. 7.3; (c) the multi-stage factor sub-graph
associated with Fig. 7.4; (d) the initial multi-stage factor sub-graph associated with
Fig. 7.4.

schedule shown in Fig. 7.8 passes messages across three stages and therefore four stages

are necessary to represent the complete graph. Fig. 7.11 (b) shows the associated

MSFSG.

7.2.3 Discussion

The MSFG is generally regular. The extraction of the MSFSG depends on the

number stages an edge striding across. The irregularity often occurs at the initial stage

and an extra sub-graph is generally necessary.
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Figure 7.10: (a) The multi-stage factor sub-graph extracted from Fig. 7.7; (b) the
multi-stage factor sub-graph extracted from Fig. 7.8.

7.3 Causal multi-stage sub-graph

A causal multi-stage sub-graph (CMSSG) is used to describe the message-passing for

the indefinite length or stream-oriented codes such as our S-IBPTC and the LDPC con-

volutional code [76, 94], and a decoding schedule or the associated hardware circuit can

be acquired via this graph. For an indefinite length code, a decoder generally decodes a

code sequence by a sliding-window manner such as truncated Viterbi decoding algorithm

and the pipeline decoding of S-IBPTC to reduce decoding complexity. Therefore we can

give an order on the code sequence or information sequence by symbol or block. For one

instant of a code symbol or coded block, we can divide the MSFG into three parts: the

processed part, the processable part and unprocessable part corresponding to the code

symbol or coded block. The processed part means function nodes which are processable

if all code symbols and coded blocks prior the the code or coded block are input. The

processable means function nodes which are processable when the processed part has

operated and the code symbol or coded block is input. The unprocessable part corre-

sponds to the rest of the MSFG. We can remove the processed part and unprocessable

part from the MSFG and left the processable part. We modify the processable part as
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Figure 7.11: (a) The sub-graph of the MSFG shown in Fig. 7.7; (b) the sub-graph
of the MSFG shown in Fig. 7.8; (c) the causal multi-stage sub-graph associated with
the MSFG shown in Fig. 7.7; (d) the causal multi-stage sub-graph associated with the
MSFG shown in Fig. 7.8.

the CMSSG and this graph shows the decoding schedule which can be used to design

the decoding schedule, i.e. a schedule for the S-IBPTC dynamic decoder. We also can

acquire the associated circuitry from the CMSSG.

Fig. 7.11 shows two examples. Assume the 4th block is input and we extract sub-

graphs shown in Figs. 7.11 (a) and (b) from Figs. 7.7 and 7.8. In Fig. 7.7, the sub-graph

is composed of {O1
4, O2

3, O3
2, O4

1}; real-line denotes message-passing for the instance of

the 4th block input and dashed-line denotes message-passing with the other sub-graphs.

We eliminate dashed-line and tilt sub-graph to render the corresponding CMSSG Fig.
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Figure 7.12: (a) Padded virtual nodes retain the regularity of the CMSSG for the begin-
ning nodes on the MSFG; (b) padded virtual nodes retain the regularity of the CMSSG
for the last nodes on the MSFG.

7.11 (c) composed of {P 1
40, P 1

41, P 1
42, P 1

43}. Similarly, we can have the CMSSG Fig.

7.11 (d) corresponding to Fig. 7.8.

Decoding schedule for each input instance is also clearly pointed out by these graphs.

In Fig. 7.11 (c), decoder decodes align nodes P 1
40 → P 1

41 → P 1
42 → P 1

43. In Fig. 7.11

(d), decoder decodes align nodes P 1
41 → P 2

41 → P 1
42 → P 2

42 → P 1
43 → P 2

43.

The ordinal number of the stage to the node P i
jl or P i

jl for the original MSFG can

be calculated as follows. Define the maximum stage of each column in the CMSSG by

NS(l) = argi max(P i
jl, P

i
jl). The ordinal number of P i

jl or P i
jl is i +

∑l−1
m=1 NS(m). P i

jl

and P i
jl in the CMSSG can be simply mapped to O

i+
∑l−1

m=1 NS(m)

j−l and O
i+

∑l−1
m=1 NS(m)

j−l in

the MSFG respectively.

Virtual node concept simplifies the drawing of the CMSSG regarding to the beginning

and last nodes which have no prior and successive nodes to process and we can apply one

graph to represent corresponding to all code symbols or coded blocks. A virtual node is

in a sense a deactivated node. Fig. 7.12 shows examples for decoding schedule shown in

Fig. 7.7. Figs. 7.12 (a) and (b) plot virtual nodes P 1
44, P 1

45 for the near beginning node

and P 1
70 and P 1

71 for the near ending node. Therefore P i
jl is a virtual node if (j − l) > N

or (j− l) < 1, where N is total number of code symbols or coded blocks and 1 is the first

ordinal. The inclusion of virtual nodes in a CMSSG enables us to describe the complete
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Figure 7.13: A memory saving schedule for the S-IBPTC.

decoding schedule by a single graph and virtual nodes retain the regularity of a CMSSG

and simplify the drawing.

7.4 A memory-saving schedule for S-IBPTC

Fig. 6.3 has shown the dynamic decoder and the decoding schedule determines

the error rate performance and memory usage. Increasing convergence rate implies

that tentative information is to be kept in the memory pool shorter and the necessary

memory storage deceases accordingly. Thus memory shortage is likely to occur at low

SNRs as early-stopping implemented in the dynamic decoder, leading to more forced

early-terminations and deteriorated performance. A candidate solution to avoid forced

early-terminations is to start a new decoding round before all the information within its

span becomes available. Inevitably, such an early-start decoding has to use some non-

updated extrinsic information. Invoking the early-start concept, we propose the decoding
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Figure 7.14: The beginning stages on the partial MSFG associated with Fig. 7.13.

schedule shown in Fig. 7.13. There are three schedule-related parameters: iteration

number (IN), repeated decoding round (RDR) and decoding window width (DWW).

When the maximum numbers l of P i
jl of both schedule are set to 5, the pipeline schedule

for each input block undergoes at most 6 ADRs but the proposed schedule undergoes at

most
(IN+DWW)(IN+1)RDR

4
+ 1 = 25 ADRs. Since the information associated with

each block is used more times, the decoder converges with less information (but worse

performance) and therefore requires smaller memory space.

The kth incoming block can be immediately decoded and interleaved by the pre-

permutation node P 1
k0 whose post-permutation counterpart will not be initiated until

all related blocks are received. Fig. 7.14 shows the corresponding partial MSFG with

4 stages and one can find the pre-permutation part successively processed by twice at

beginning. This benefits the S-IBPTC performance but pays the computation power.

At low SNRs, the convergence speed is slow and the required memory storage is

large. The proposed schedule allows more ADRs with less information for each block

even if the available memory is limited. This feature provides an alternative to avoid

memory shortage-induced performance loss at low SNRs.
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7.5 Simulation results

Fig. 7.15 and Fig. 7.16 show the BER and average ADRs performance. The 3GPP

defined interleaver and rate 1/3 turbo code [1] are used with a block length of 400 bits.

Tail-biting encoding [107] and Log-MAP decoding with the T3.3 HST. One memory

unit (MU) has space for 400 soft-bits. 3 MUs and 1 MU are needed for the received

samples and extrinsic information per block. Denoted by Schedule A and Schedule B

respectively the two schedules shown in Fig. 7.13 with and without the node P 1
k0.

In Fig. 7.15, Schedule A with IN=10, RDR=2, DWW=2 and 45 MUs outperforms

the pipeline schedule with 80 MUs, yielding a memory reduction greater than 43.75%.

However, the former needs about ten and four more ADRs for SNR = 0 dB and SNR >

0.4 dB, respectively. The memory saving is obtained at the expense of higher compu-

tation complexity. It is comforting to see that the proposed schedule requires no more

than ten average ADRs for SNR > 0.8dB.

Increasing DWW improves the BER performance at the cost of increased computing

complexity; see Fig. 7.16. For IN=10, RDR=2, Schedule A with DWW=3 and 45 MUs

outperforms that with DWW=2 and 45 MUs. The same figure indicates that Schedule

A with DWW=2 and 50 MUs outperforms that with DWW=1 and 50 MUs. The

increase of memory also helps enhancing the BER performance. With IN=10, RDR=2

and DWW=2, the performance of Schedule A improves when the memory size increases

from 40 MUs to 50 MUs. However, additional five more ADRs are needed at SNR =

0.0 dB. Finally, we note that Schedule A slightly outperforms Schedule B for 50 MUs,

IN=10, RDR=2 and DWW=2. The required average ADRs is also slightly higher.
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Figure 7.15: BER performance as a function of SNR for three decoding schedules.
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for three decoding schedules.
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Chapter 8

Conclusions

This thesis consists of four major parts with a single focus on the interleaver design

for low-latency high performance TCs. We propose a general class of interleavers and

study its algebraic properties. We review hardware architecture and constraints for par-

allel decodable classic TCs and prove that the proposed IBP interleaver does satisfy all

the hardware constraints. In particular, our design meets the memory contention-free

requirement and is network-oriented, i.e., it yields low routing complexity and simple

network configuration. The proposed interleaver includes most popular interleaver de-

signs, e.g. QPP, ARP, inter-window shuffled interleaver as special cases.

The IBP interleaver consists of two separable interleaving stages: intra-block and

inter-block permutations. Our construction considers both unknown and known intra-

block permutations. For unknown intra-block permutations we derive two permuta-

tion rules that guarantee desired distance properties for the resulting classic TC. The

code distance upper-bounds and lower-bounds are derived for the case that one can

freely choose both inter- and intra-block permutations. Continuous, tail-biting and tail-

padding encodings are all considered. In order to support the high-radix APP decoder

and generalized maximal contention-free requirements, we impose new constraints on

the intra-block permutation and propose the associated memory mapping functions.

A decoder architecture for both stream-oriented and block-oriented IBPTCs is pro-

posed. The decoder uses a parallel/pipelined decoding schedule which incorporates a
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multiple-round early-stopping rule and a memory management scheme. The stopping

rule requires short overhead but offers very reliable stopping decisions, giving improved

latency and error rate performance. The memory manager makes efficient use of the

memory space available and offers new trade-off between thecomplexity and perfor-

mance.

To analyze and describe various decoding schedules for IBPTCs we generalize the

static factor graph representation and develop the multi-stage factor graphs. This tech-

nique is capable of expounding the behaviors of IBPTCs and LDPC codes. Using MS-

FGs, we develop a new decoding schedule for stream-oriented IBPTCs with the reduced

memory storage and improved performance.

We have addressed almost all critical performance and implementation issues con-

cerning the design of high throughput TCs and provided good, if not the best, solutions.

Some algorithms proposed here are also applicable to other applications. For examples,

the early-stopping rules can be used for other iterative decoding or equalization schemes,

and the multi-stage factor graphs are useful in designing new LDPC or general graph

code’s decoding schedules or even new graph codes with enhanced performance.
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Appendix A

Proof of Lemma 3.6

It is obvious that this lemma holds if |i − j|P ≥ r and P − |i − j|P ≥ r. Hence we

consider |i − j|P < r or P − |i − j|P < r only.

When i > j and 0 < i − j < r, gcd(P, r) ≤ r and r = ⌈
√

P ⌉ − 1 <
√

P implies that

q = P/gcd(P, r) ≥ P
r

>
√

P > r while 0 < i − j < r leads to

i − j + |j|q − |i|q
q

=





i−j+|q+j−i|q
q

= i−j+q+(j−i)
q

= 1,

if |j|q − |i|q > 0,
i−j−|i−j|q

q
= i−j−(i−j)

q
= 0,

if |j|q − |i|q < 0.

(A.1)

It follows that

|πP (i) − πP (j)|P =

∣∣∣∣
∣∣∣∣ri +

i − |i|q
q

∣∣∣∣
P

−
∣∣∣∣rj +

j − |j|q
q

∣∣∣∣
P

∣∣∣∣
P

=

∣∣∣∣r(i − j) +
i − j + |j|q − |i|q

q

∣∣∣∣
P

≥ r (A.2)

and

P − |πP (i) − πP (j)|P = P −
∣∣∣∣
∣∣∣∣ri +

i − |i|q
q

∣∣∣∣
P

−
∣∣∣∣rj +

j − |j|q
q

∣∣∣∣
P

∣∣∣∣
P

≥ P − |r(r − 1) + 1|P = P − r2 + r − 1

≥ r2 + 1 − r2 + r − 1 = r. (A.3)

Therefore, mini,j∈SP
(i − j + |πP (i) − πP (j)|P , i − j + P − |πP (i) − πP (j)|P ) ≥ r + 1.
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This permutation function is q-invariant in that

|πP (|i − q|P ) − πP (|j − q|P )|P

=

∣∣∣∣
∣∣∣∣r(i − q) +

(i − q) − |i − q|q
q

∣∣∣∣
P

−
∣∣∣∣r(j − q) +

(j − q) − |j − q|q
q

∣∣∣∣
P

∣∣∣∣
P

=

∣∣∣∣
∣∣∣∣ri +

i − |i|q
q

∣∣∣∣
P

−
∣∣∣∣rj +

j − |j|q
q

∣∣∣∣
P

∣∣∣∣
P

= |πP (i) − πP (j)|P (A.4)

We now show that both the remaining cases can be converted into the above case.

(A) For the case i < j and 0 < j − i < r, we have |i− j|P = |i + P − j|P = |i + P −

mq− (j−mq)|P = |i′− j′| and |πP (|i+P −mq|P )−πP (|j−mq|P )|P = |πP (i)−πP (j)|P ,

P > i′ = |i + P − mq|P > j′ = |j − mq|P ≥ 0 for some m > 0.

(B) If i > j, P − |i − j|P = |P + j − i|P = |P + j − mq − (i − mq)| = |j′ − i′| and

|πP (|i−mq|P )−πP (|P + j −mq|P )|P = |πP (i)−πP (j)|P , P > i′ = |i+P −mq|P > j′ =

|j − mq|P ≥ 0 for some m > 0.
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Appendix B

Proof of Lemma 3.7

We place the elements in the jth n-element set in a cycle by j + i
(
N1 + N2 −

⌊
N2

n

⌋)
,

where 0 ≤ i < n and 0 ≤ j < N1. The elements of the jth (n−1)-element set are placed

at positions indexed by





⌊
iN2+j−N1

M1

⌋
(N1 + M1) + N1 + |iN2 − N1 + j|M1 ,

iN2 + j ≤ M3,

N1|N2|n + M3 +
⌊

iN2+j−N1−M3

M2

⌋
(N1 + M2) + N1

+|iN2 + j − N1 − M3|M2 , otherwise,

(B.1)

where 0 ≤ i < n − 1, N1 ≤ j < N1 + N2, M1 = N2 −
⌊

N2

n

⌋
, M2 = N2 −

⌈
N2

n

⌉
and

M3 = M1|N2|n. It is easy to see that such an arrangement achieve the bounds and no

larger minimum separation can be found.
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Appendix C

Proof of Theorem 3.3

Tail-biting encoding results in low-weight codewords whose nonzero coordinates are

confined to the tail and the head parts of two consecutive sets. This happens if one

nonzero coordinate of a weight-2 input sequence belongs to ̥
(k)
i and the other one

belongs to ̥
(k)
|i+Tc−|L|Tc |Tc

. One can then place the set ̥
(k)
|i+Tc−|L|Tc |Tc

right after the set

̥
(k)
i so that they form a cycle. If gcd(|L|Tc

, Tc) = d, we have d cycles with the mth

cycle being ˜̥ (k)
m =

{
̥

(k)
m , ̥

(k)
|m+Tc−|L|Tc |Tc

, ̥
(k)
|m+2(Tc−|L|Tc )|Tc

, · · · , ̥
(k)

|m+(Tc
d
−1)(Tc−|L|Tc )|

Tc

}
,

where 0 ≤ m < d.

Mapping the coordinates in ˜̥ (k)
m sequentially to the integers in the interval [0,

| ˜̥ (k)
m | − 1 = L

d
− 1

]
, we obtain the set S| ˜̥ (k)

m | =
{
0, 1, 2, · · · , L

d
− 1

}
. We further par-

tition S| ˜̥ (k)
m | into dTs sets {Si}, where |Si| = Nmax =

⌈
L

d2Ts

⌉
for 0 ≤ i < N1 =

∣∣L
d

∣∣dTs

and |Si| = Nmin =
⌊

L
d2Ts

⌋
for dTs − N2 =

∣∣L
d

∣∣dTs ≤ i < dTs. According to Lemma

3.7, we can maximize the minimum separation of Si to Dmin = dTs −
⌈

N2

Nmax

⌉
and

Dmax = dTs −
⌊

N2

Nmax

⌋
for 0 ≤ i < N1 and dTs − N2 ≤ i < dTs respectively.

We can construct an IBP rule such that p ∈ Si and q ∈ Sj are permuted to the same

block iff |i−j|Ts
= 0. Since all blocks can apply the same partition rule for permutation,

such an IBP rule does exist.

Incorporating separate encoding results in that two indexes in two different blocks

produce a codeword weight larger than the bound, either the pre-permuted or the post-

permuted pair makes the codeword weight 2W1(L). Therefore we consider the case two
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indexes are permuted to the same block.

There are d sets Si and d sets S| ˜̥ (2)
m |. All Si ⊂ S| ˜̥ (1)

m | can be permuted to different

S| ˜̥ (2)
m |. If two indexes are in two different Si’s, either the pre-permuted or the post-

permuted pair makes the codeword weight ≥ W2(L), which is larger than the bound.

Therefore we only have to consider the case when a coordinate pair belongs to the same

Si before and after permutation.

According to Lemma 3.6, the separation sum of pre-permutation and post-permutation

for Si with Nmax and Nmin elements can be
⌈√

Nmax

⌉
and

⌈√
Nmin

⌉
respectively. Ac-

cording to Lemma 3.7, the minimum separation of two adjacent indexes is Dmin and

there are at most |N2|Nmax
pairs with such a separation. The minimum codeword weight

is thus lower-bounded by 2+αDmin min(2|N2|Nmax
,
⌈√

Nmax

⌉
)+αDmax max(

⌈√
Nmax

⌉
−

2|N2|Nmax
, 0) + 2β.

Finally, we notice that small weight error event occurs when the two coordinate pair

(i, j) ∈ ˜̥m is such that |i − j|Tc
6= 0 and |L − |i − j||Tc

6= 0 and the separation of the

permuted pair (π| ˜̥ m|(i), π| ˜̥ m|(j)) is greater than TcDmin. The corresponding codeword

weight will be at least 2 + W2(L) + αDmin + β. Therefore, we have

wt(C
ij) ≥ 2 + 2β + min

i,j
(W2(L) + αDmin − β,

αDmin min
(
2|N2|Nmax

,
⌈√

Nmax

⌉)

+αDmax max
(⌈√

Nmax

⌉
− 2|N2|Nmax

, 0
))

. (C.1)
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Appendix D

Proof of Theorem 5.10

We first notice that, besides those finite weight codewords resulting from termination,

as illustrated in Fig. 5.6, there are three conditions under which a weight-4 input se-

quence of an S-IBPTC will generate a finite-weight codeword. In Case (a), the codeword

consists of two finite-weight segments (in different blocks) generated respectively by two

weight-2 input sequences and thus the corresponding codeword weight upper-bound is

simply twice that given in Theorem 5.9. Case (b) considers the situation when two

pairs of coordinates from ̥
(1)
i and ̥

(1)
j of either the same block or different blocks are

permuted to the same block with one coordinate from each pair mapped to two subsets

̥
(2)
k and ̥

(2)
l , where the pair (k, l), k 6= l belongs to the same equivalence class while the

remaining two coordinates mapped to another two subsets ̥
(2)
m and ̥

(2)
n with m 6= n in

another equivalence class. Case (c) is similar to Case (b) except that the two subsets

that contain the two permuted pairs are in different blocks.

Note that if k = l and m = n then the both cases will result in a codeword weight

upper-bound similar to that obtained in [25]. But this is impossible as coordinates from

different blocks will not be mapped into coordinates in the same subset (defined by eqn.

(5.15)) by an optimal interleaver. This is because the spatial symmetric structure of a

classic TC implies that, for every input sequence u of the code C that uses the inter-

leaver π, ∃ u′ such that the codewords generated by (u, π) and (u′, π−1) have identical

weight. This observation and the fact that both component encoder outputs, c1 and c2,
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contribute equally to the resulting codeword weight suggest that π and π−1 have the

same effect on the weight distribution, and that optimizing the deinterleaver rule results

in the same mapping as the optimal interleaver.

Since we have to consider the scenario k 6= l and m 6= n only, the worst case occurs

when both |k − l| and |m − n| are less than TsTc. In other words, Cases (b) and (c)

concern the situation in which the pairs (πibp(x), πibp(w)) and (πibp(y), πibp(z)) belong

to distinct supersubsets where a supersubset ˜̥ (2)
j consists of M/Ts = Tc consecutive

subsets of the same equivalence class. Each block therefore has Λ
Ts

supersubsets, and

̥
(2)
k and ̥

(2)
l are in the same supersubset ˜̥ (2)

j if |k|M = |l|M = j and ||k − l||Ts
= 0, or

equivalently, ˜̥ (i)
p =

⋃Ts−1
k=0 ̥

(i)
||j||Tc+kTc+|j|TcM , i = 1, 2.

Let Λ1 and Λ2 be the number of coordinates subsets per block for the input and

permuted sequences. The subset partition rule, eqn. (5.15), implies that Ω ≤ |̥(j)
i | ≤

Ω + 1, where Ω = ⌊ L
Λi
⌋. For Case (b), each subset has either

(
Ω+1

2

)
or

(
Ω
2

)
distinct

coordinates pairs and each block has at least Λi

(
Ω
2

)
such pairs. Our S-IBP interleaver

maps Λ1

Ts
sets of coordinates to each block within its span, or equivalently, a block

“receives” coordinates from Ts neighboring blocks. The optimal S-IBP rule would map

a pair of coordinates in the same subset to different equivalence classes or blocks and,

when this is not possible, to different supersubsets of the same block.

A pair of coordinates (i, j) in ̥
(1)
i can be mapped to any one of the

(Λ2
Ts
2

)
pairs of

distinct supersubsets ˜̥ (2)
j , ˜̥ (2)

k , j 6= k of a neighboring block. A periodic S-IBP requires

that at least Ts
Λ1

Ts

(
Ω
2

)
distinct pairs of coordinates from Ts neighboring blocks be per-

muted to the same block. The pigeonholes principle implies that Case (b) will occur

if

Λ1

(
Ω

2

)
>

(Λ2

Ts

2

)
. (D.1)

For Case (c) the pairs (πibp(x), πibp(w)) and (πibp(y), πibp(z)) are in two distinct blocks.

If the two distinct blocks are separated by k blocks (k = 1 means they are two successive

blocks), then (πibp(x), πibp(w)), (πibp(y), πibp(z)) are mapped from Ts − k neighboring
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blocks in which each block contains Λ1

Ts
supersubsets and each supersubset has at most

(Ω+1)2 and at least Ω2 coordinates pairs to the two designated blocks. Therefore, finite

weight codewords result if

(Ts − k)
Λ1

Ts

Ω2 >

(
Λ2

Ts

)2

(D.2)

and we obtain upper-bounded

w4,min,ibp ≤ 4 + 2α ·
(

min
(Λ1,Λ2)

{⌈
Ts · L
Λ1

⌉
+

⌈
Ts · L
Λ2

⌉}
− 2

)
+ 4β (D.3)

where (Λ1, Λ2) are subject to the constraints, (C1): ||Λ1||M = ||Λ2||M = 0, (C2): Λ1

(
Ω
2

)
>

(Λ2
Ts
2

)
, and (C3): (Ts−k)

Ts
Λ1Ω

2 >
(

Λ2

Ts

)2

. Since Ω = ⌊ L
Λ1
⌋ > L

Λ1
− 1, we rewrite (D.1) and

(D.2) as

Λ1

(
L

Λ1

− 1

) (
L

Λ1

− 2

)
≥

(
Λ2

Ts

− 1

)
Λ2

Ts

(D.4)

Ts − k

Ts

Λ1

(
L

Λ1

− 1

)2

≥
(

Λ2

Ts

)2

(D.5)

We carry out the minimization with respect to (Λ1, Λ2) by first finding the two minimums

with respect to the constraints (C1)/(C2) and (C1)/(C3), respectively, and then select

the smaller one of these two. Using the simplified assumption [25] that the cardinalities

of Λ1 and Λ2 are the same and to distinguish the two candidate minimums, we set

Λ1 = Λ2 = Λ3 in (D.5) and Λ1 = Λ2 = Λ4 in (D.5) so that the above two inequalities

become

Λ3
3 − (Ts + 2T 2

s )Λ2
3 + 3T 2

s Λ3L − T 2
s L2 ≤ 0 (D.6)

Λ3
4 − Ts(Ts − k)Λ2

4 + 2Ts(Ts − k)Λ4L − Ts(Ts − k)L2 ≤ 0 (D.7)

By defining X1 = Λ3−Ts−2T 2
s

3
and X2 = Λ4−Ts(Ts−k)

3
, we rewrite the above inequalities

as

X3
1 +

(
3T 2

s L − 1

3
(Ts + 2T 2

s )2

)
X1 +

(
−T 2

s L2 + (T 3
s + 2T 4

s )L − 2

27
(Ts + 2T 2

s )3

)
≤ 0

(D.8)
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X3
2 +

(
2Ts(Ts − k)L − 1

3
T 2

s (Ts − k)2

)
X2

+

(
−Ts(Ts − k)L2 +

2

3
T 2

s (Ts − k)2L − 2

27
T 3

s (Ts − k)3

)
≤ 0 (D.9)

Following the standard procedure for solving a cubic equation [48], we define

p1 = 3T 2
s L − 1

3
(Ts + 2T 2

s )2,

q1 = −T 2
s L2 + (T 3

s + 2T 4
s )L − 2

27
(Ts + 2T 2

s )3,

p2 = 2Ts(Ts − k)L − 1

3
T 2

s (Ts − k)2,

q2 = −Ts(Ts − k)L2 +
2

3
T 2

s (Ts − k)2L − 2

27
T 3

s (Ts − k)3.

If L > 10
3
T 3

s + T 2
s − Ts

3
, then

p1 = 3T 2
s L − 1

3
(Ts + 2T 2

s )2 = T 2
s

(
3L − 4

3
T 2

s − 4

3
Ts −

1

3

)

> T 2
s

(
10T 3

s + 3T 2
s − 1 − 4

3
T 2

s − 4

3
Ts −

1

3

)
> 0 (D.10)

p2 = 2Ts(Ts − k)L − 1

3
T 2

s (Ts − k)2 = 2Ts(Ts − k)

(
L − 1

6
Ts(Ts − k)

)

> 2Ts(Ts − k)

(
L − 1

6
Ts(Ts − 1)

)
> 0 (D.11)

q1 = −T 2
s L2 + (T 3

s + 2T 4
s )L − 2

27
(Ts + 2T 2

s )3 < −T 2
s L2 + (T 3

s + 2T 4
s )L

= −T 2
s L(L − Ts − 2T 2

s )

< −T 2
s L

(
10

3
T 3

s + T 2
s − Ts

3
− Ts − 2T 2

s

)
< 0 (D.12)

q2 = −Ts(Ts − k)L2 +
2

3
T 2

s (Ts − k)2L − 2

27
T 3

s (Ts − k)3

< −Ts(Ts − k)L2 +
2

3
T 2

s (Ts − k)2L

< −Ts(Ts − k)L

(
L − 2

3
T 2

s

)

< −Ts(Ts − k)L

(
10

3
T 3

s + T 2
s − Ts

3
− 2

3
T 2

s

)
< 0 (D.13)

p1 − p2 = 3T 2
s L − 1

3
(Ts + 2T 2

s )2 − 2Ts(Ts − k)L +
1

3
T 2

s (Ts − k)2

> 3T 2
s L − 1

3
(Ts + 2T 2

s )2 − 2T 2
s L +

1

3
T 2

s = T 2
s L − 4

3
T 2

s − 4

3
Ts

> T 2
s

(
10

3
T 3

s + T 2
s − Ts

3

)
− 4

3
T 2

s − 4

3
Ts > 0 (D.14)
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q2 − q1

= −Ts(Ts − k)L2 +
2

3
T 2

s (Ts − k)2L − 2

27
T 3

s (Ts − k)3

+T 2
s L2 − (T 3

s + 2T 4
s )L +

2

27
(Ts + 2T 2

s )3

> kTsL
2 +

2

3
T 2

s (Ts − k)2L − (T 3
s + 2T 4

s )L > LTs

(
L +

2

3
T 2

s − (T 2
s + 2T 3

s )

)

> LTs

(
10

3
T 3

s + T 2
s − Ts

3
− (T 2

s + 2T 3
s )

)
> 0. (D.15)

These results imply (p1

3
)3 + ( q1

2
)2 > 0, (p2

3
)3 + ( q2

2
)2 > 0 and

Λ3 ≤
Ts + 2T 2

s

3
+

3

√

−q1

2
+

√
(
p1

3
)3 + (

q1

2
)2 +

3

√

−q1

2
−

√
(
p1

3
)3 + (

q1

2
)2 def

= C(D.16)

Λ4 ≤
Ts(Ts − k)

3
+

3

√

−q2

2
+

√
(
p2

3
)3 + (

q2

2
)2 +

3

√

−q2

2
−

√
(
p2

3
)3 + (

q2

2
)2 def

= D.(D.17)

It can be shown that

G =
3

√

−q1

2
+

√
(
p1

3
)3 + (

q1

2
)2 +

3

√

−q1

2
−

√
(
p1

3
)3 + (

q1

2
)2 > 0 (D.18)

H =
3

√

−q2

2
+

√
(
p2

3
)3 + (

q2

2
)2 +

3

√

−q2

2
−

√
(
p2

3
)3 + (

q2

2
)2 > 0 (D.19)

are zeros of f(x) = x3+p1x+q1 and h(x) = x3+p2x+q2, respectively. As both f(x) and

g(x) are monotonically increasing functions and f ′(x) = 3x2 + p1 > g′(x) = 3x2 + p2 >

0,∀ x, f(x) < g(x),∀ x < x̂, where x̂ is the single intersection point given by

x̂ =
q2 − q1

p1 − p2

> 0.

The fact that

f(x̂) =

(
q2 − q1

p1 − p2

)3

+ p1
q2 − q1

p1 − p2

+ q1 =

(
q2 − q1

p1 − p2

)3

+
p1q2 − p2q1

p1 − p2

>

(
q2 − q1

p1 − p2

)3

+
p2q2 − p2q1

p1 − p2

> 0. (D.20)

implies that the only real zero of f(x), G, is larger than that of g(x), H, and thus C > D.

Substituting Λi = C into (A.3), we obtain an upper-bound with a very complicated

expression. To have an upper-bound with a simpler form, we notice that ||Λi||M=TcTs
= 0
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gives

max Λi = TsTc

⌊
C

Ts · Tc

⌋
> C − TsTc (D.21)

Hence a less tight upper-bound is given by

w4,min,ibp ≤ 4 + 4α

(
min
Λi

{⌈
Ts · L

Λi

⌉
− 1

})
+ 4β

= 4 + 4α







TsL

TsTc

⌊
C

TsTc

⌋



− 1


 + 4β

≤ 4 + 4α

(⌈
TsL

C − TsTc

⌉
− 1

)
+ 4β < 4 + 4α · TsL

C − TsTc

+ 4β (D.22)

The upper-bound of weight-4 input sequence in the Case (a) is twice the upper-bound

of weight-2 input sequence shown in eqn. (5.17).

Note that

E
def
= C −

√
TsL

Ts + 2T 2
s

3
+

3

√

−q1

2
+

√
(
p1

3
)3 + (

q1

2
)2

+
3

√

−q1

2
−

√
(
p1

3
)3 + (

q1

2
)2 −

√
TsL

(D.23)

and

(
E − Ts + 2T 2

s

3
+

√
TsL

)3

= −q1 − p1

(
E − Ts + 2T 2

s

3
+

√
TsL

)
. (D.24)

In other words, E is a zero of the polynomial

g(x) =

(
x − Ts + 2T 2

s

3
+

√
TsL

)3

+ p1

(
x − Ts + 2T 2

s

3
+

√
TsL

)
+ q1

which, like f(x) defined before, is a monotonically increasing function and has only one
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real zero. For Ts ≥ 2,

g(0) =
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The last inequality holds because both T 2
s

(
10
3
T 3

s + T 2
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3

)
and T

3
2
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5
2

s are positive

real numbers and
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Hence E is positive and so

4 + 4α · TsL
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+ 4β

< 4 + 4α
TsL√

TsL − TsTc

+ 4β

= 2

(
2 + 2α

TsL√
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Appendix E

Puncturing Patterns

Puncturing systematic bits enhances the error rate performance and references [59,

52] have shown evidences. This part proposes irregular puncturing patterns for code rates

3/4, 4/5 and 8/9. Tables E.1, E.2 and E.3 show the regular and irregular puncturing

patterns for code rates 3/4, 4/5 and 8/9 respectively. C0 corresponds to the systematic

part, and C1 and C2 correspond to the parity part associated with information sequence

and interleaved information sequence respectively. The puncturing period is 48 in these

puncturing tables and ’1’ and ’0’ denote kept and punctured. These puncturing patterns

are searched for the G(D) =
[
1 1+D+D3

1+D2+D3

]
defined in 3GPP turbo code [1, 2, 3].

These puncturing patterns are compared by 3GPP Rel’6 turbo code interleaver

[1, 2] and the B-IBP interleaver described in Section 4.5. The parameters of the dou-

ble prime interleaver are (p, s) = (5, 18) for L = 64 and (p, s) = (47, 7) for L =

128, and the IBP sequences are {0, 1} for N = 2, {0, 1, 2, 4, 3, 6, 7, 5} for N = 8,

{0, 1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9} for N = 16 and {0, 1, 2, 4, 8, 16, 5, 10, 20, 13,

26, 17, 7, 14, 28, 29, 31, 27, 19, 3, 6, 12, 24, 21, 15, 30, 25, 23, 11, 22, 9, 18} for N = 32. Lin-

ear log-MAP algorithm with 8 iterations is applied and AWGN channel is considered.

Figs. E.4-E.9 show the simulation results. These figures reveals that irregular punc-

turing pattern outperforms regular puncturing pattern by 0.1-1.0 dB at FER=10−4 ex-

cept for code rate=8/9 with K = 256. Puncturing too many systematic bits at high rate

for short block length does not benefit the error rate performance although the distance
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Table E.1: Puncturing patterns for code rate=3/4.
Regular Puncturing Pattern

C0 11111111 11111111 11111111 11111111 11111111 11111111
C1 10000010 00001000 00100000 10000010 00001000 00100000
C2 10000010 00001000 00100000 10000010 00001000 00100000

Irregular Puncturing Pattern
C0 10111111 10111111 10111111 10111111 10111111 10111111
C1 01000100 01000100 01000100 01000100 01000100 01000000
C2 01000100 01000100 01000100 01000100 01000100 01000000

Table E.2: Puncturing patterns for code rate=4/5.
Regular Puncturing Pattern

C0 11111111 11111111 11111111 11111111 11111111 11111111
C1 10000000 10000000 10000000 10000000 10000000 10000000
C2 10000000 10000000 10000000 10000000 10000000 10000000

Irregular Puncturing Pattern
C0 10111111 10111111 10111111 10111111 10111111 10111111
C1 01000100 01000000 01000100 01000000 01000100 01000000
C2 01000100 01000000 01000100 01000000 01000100 01000000

property may be improved.

The performance gain for the B-IBPTC is more than that for 3GPP Rel’6 turbo code.

When code rate=3/4 and 4/5, the performance curves for interleaver length 4096 bits

are crossed but this does not occur for the B-IBPTC. Our irregular puncturing pattern

benefit more a turbo code with better distance property.

Table E.3: Puncturing patterns for code rate=8/9.
Regular Puncturing Pattern

C0 11111111 11111111 11111111 11111111 11111111 11111111
C1 10000000 00000000 10000000 00000000 10000000 00000000
C2 10000000 00000000 10000000 00000000 10000000 00000000

Irregular Puncturing Pattern
C0 10111111 11111011 11111111 10111111 11111011 11111111
C1 10100000 00000100 00000000 01000000 00000100 00000000
C2 10100000 00000100 00000000 01000000 00000100 00000000
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Figure E.1: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=3/4 3GPP Rel’6 turbo code.
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Figure E.2: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=3/4 B-IBPTC.
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Figure E.3: Frame error rate comparison between 3GPP Rel’6 turbo code and B-IBPTC
for code rate=3/4 irregular puncturing pattern.
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Figure E.4: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=4/5 3GPP Rel’6 turbo code.
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Figure E.5: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=4/5 B-IBPTC.
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Figure E.6: Frame error rate comparison between 3GPP Rel’6 turbo code and B-IBPTC
for code rate=4/5 irregular puncturing pattern.
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Figure E.7: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=8/9 3GPP Rel’6 turbo code.
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Figure E.8: Frame error rate comparison between regular and irregular puncturing pat-
terns for code rate=8/9 B-IBPTC.
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Figure E.9: Frame error rate comparison between 3GPP Rel’6 turbo code and B-IBPTC
for code rate=8/9 irregular puncturing pattern.
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