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Most previous research into the job-shop scheduling problem has concentrated on finding a single opti-
mal solution (e.g., makespan), even though the actual requirement of most production systems requires
multi-objective optimization. The aim of this paper is to construct a particle swarm optimization (PSO)
for an elaborate multi-objective job-shop scheduling problem. The original PSO was used to solve contin-
uous optimization problems. Due to the discrete solution spaces of scheduling optimization problems,
the authors modified the particle position representation, particle movement, and particle velocity in this
study. The modified PSO was used to solve various benchmark problems. Test results demonstrated that
the modified PSO performed better in search quality and efficiency than traditional evolutionary
heuristics.
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1. Introduction

The job-shop scheduling problem (JSP) has been studied for
more than 50 years in both academic and industrial environments.
Jain and Meeran (1999) provided a concise overview of JSPs over
the last few decades and highlighted the main techniques. The
JSP is the most difficult class of combinational optimization. Garey,
Johnson, and Sethi (1976) demonstrated that JSPs are non-deter-
ministic polynomial-time hard (NP-hard); hence we cannot find
an exact solution in a reasonable computation time. The single-
objective JSP has attracted wide research attention. Most studies
of single-objective JSPs result in a schedule to minimize the time
required to complete all jobs, i.e., to minimize the makespan
ðCmaxÞ. Many approximate methods have been developed to over-
come the limitations of exact enumeration techniques. These
approximate approaches include simulated annealing (SA) (Lour-
enço, 1995), tabu search (Nowicki & Smutnicki, 1996; Pezzella &
Merelli, 2000; Sun, Batta, & Lin, 1995) and genetic algorithms
(GA) (Bean, 1994; Gonçalves, Mendes, & Resende, 2005; Kobayashi,
Ono, & Yamamura, 1995; Wang & Zheng, 2001). However, real-
world production systems require simultaneous achievement of
multiple objective requirements. This means that the academic
concentration of objectives in the JSP must been extended from
single to multiple. Recent related JSP research with multiple objec-
tives is summarized as below.

Ponnambalam, Ramkumar, and Jawahar (2001) has offered a
multi-objective GA to derive optimal machine-wise priority dis-
patching rules for resolving job-shop problems with objective
ll rights reserved.
functions that consider minimization of makespan, total tardiness,
and total machine idle time. Ponnambalam’s multi-objective ge-
netic algorithm (MOGA) has been tested with various published
benchmarks, and is capable of providing optimal or near-optimal
solutions. A Pareto front provides a set of best solutions to deter-
mine the tradeoffs between the various objects, and good parame-
ter settings and appropriate representations can enhance the
behavior of an evolution algorithm. Esquivel, Ferrero, and Gallard
(2002) studied the influence of distinct parameter combinations
as well as different chromosome representations. Initial results
showed that:

(i) larger numbers of generations favor the building of a Pareto
front because the search process does not stagnate, even
though it may be rather slow,

(ii) Multi-recombination helps to speed the search and to find a
larger set size when seeking the Pareto optimal set, and

(iii) operation-based representation is better than priority-list
and job-based representation selected for contrast under
recombination methods.

The Pareto archived simulated annealing (PASA) method, a
meta-heuristic procedure based on the SA algorithm, was devel-
oped by Suresh and Mohanasndaram (2006) to find non-domi-
nated solution sets for the JSP with the objectives of minimizing
the makespan and the mean flow time of jobs. The superior perfor-
mance of the PASA can be attributed to the mechanism it uses to
accept the candidate solution. Candido, Khator, and Barcia (1998)
addressed JSPs with numbers of more realistic constraints, such
as jobs with several subassembly levels, alternative processing
plans for parts and alternative resources of operations, and the
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requirement for multiple resources to process an operation. The ro-
bust procedure worked well in all problem instances and proved to
be a promising tool for solving more realistic JSPs. Lei and Wu
(2006) first designed a crowding-measure-based multi-objective
evolutionary algorithm (CMOEA) makes use of the crowding-mea-
sure to adjust the external population and assign different fitness
for individuals. Compared to the strength Pareto evolutionary algo-
rithm, CMOEA performs well in job-shop scheduling with two
objectives including minimization of makespan and total tardiness.

One of the latest evolutionary techniques for unconstrained
continuous optimization is particle swarm optimization (PSO) pro-
posed by Kennedy and Eberhart (1995). PSO has been successfully
used in different fields due to its ease of implementation and com-
putational efficiency. Even so, application of PSO to the combina-
tion optimization problem is rare. Coello, Plido, and Lechga
(2004) provided an approach in which Pareto dominance is incor-
porated into PSO to allow the heuristic to handle problems with
several object functions. The algorithm uses a secondary repository
of particles to guide particle flight. That approach was validated
using several test functions and metrics drawn from the standard
literature on evolutionary multi-objective optimization. The re-
sults show that the approach is highly competitive. Liang, Ge,
Zho, and Guo (2005) invented a novel PSO-based algorithm for
JSPs. That algorithm effectively exploits the capability of distrib-
uted and parallel computing systems, with simulation results
showing the possibility of high-quality solutions for typical bench-
mark problems. Lei (2008) presented a PSO for the multi-objective
JSP to minimize makespan and total job tardiness simultaneously.
Job-shop scheduling can be converted into a continuous optimiza-
tion problem by constructing the corresponding relationship be-
tween a real vector and a chromosome obtained using the
priority rule-based representation method. The global best posi-
tion selection is combined with crowding-measure-based archive
maintenance to design a Pareto archive PSO. That algorithm is
capable of producing a number of high-quality Pareto optimal
scheduling plans.

Hybrid algorithms that combine different approaches to build
on their strengths have led to another branch of research. Wang
and Zheng (2001) combined GA with SA in a hybrid framework,
in which the GA was introduced to present a parallel search archi-
tecture, and SA was used to increase the probability of escape from
local optima at high temperatures. Computer simulation results
showed that the hybrid strategy was very effective and robust,
and could find optima for almost all benchmark instances. Xia
and Wu (2005) developed an easily implemented approach for
the multi-objective flexible JSP based on the combination of PSO
and SA. They demonstrated that their proposed algorithm was a
viable and effective approach to the multi-objective flexible JSP,
especially for large-scale problems. Ripon (2007) extended the idea
in the jumping genes genetic algorithm, a hybrid approach capable
of searching for near-optimal and non-dominated solutions with
better convergence by simultaneously optimizing criteria.

Previous literature indicates that there has been little study of
the JSP with multiple objectives. In this study, we use a new
evolutionary PSO technique to solve the JSP with multiple
objectives.
2. Job-shop scheduling problem

A typical JSP can be formulated as follows. There are n jobs to be
processed through m machines. Each job must pass through each
machine once and only once. Each job should be processed through
the machines in a particular order, and there are no precedence
constraints among the different job operations. Each machine can
perform only one job at a time, and it cannot be interrupted. In
addition, the operation time is fixed and known in advance. The
objective of the JSP is to find a schedule to minimize the time re-
quired to complete all jobs, that is, to minimize the makespan
Cmax. In this study, we attempt to attain the three objectives (i.e.,
minimizing makespan, machine idle time, and total tardiness)
simultaneously. We formulate the multi-objective JSP using the
following notation:

n is the total number of jobs to be scheduled,
m is the total number of machines in the process,
tði; jÞ is the processing time for job i on machine j
ði ¼ 1;2; . . . nÞ; ðj ¼ 1;2; . . . mÞ,
Li is the lateness of job i,
fp1;p2; . . . ;png is the permutation of jobs.

The objectives considered in this paper are formulated as
follows:

Completion time (makespan) Cðp; jÞ

Cðp1;1Þ ¼ tðp1;1Þ ð1Þ
Cðpi;1Þ ¼ Cðpi�1;1Þ þ tðpi;1Þ i ¼ 2; . . . ; n ð2Þ
Cðp1; jÞ ¼ Cðp1; j� 1Þ þ tðp; jÞ j ¼ 2; . . . ;m ð3Þ
Cðpi; jÞ ¼max Cðpi�1; jÞ;Cðpi; j� 1Þg þ tðpi; jÞ i ¼ 2; . . . ;n; ð4Þ

j ¼ 2; . . . ;m

Makespan; f C max ¼ Cðpn;mÞ ð5Þ

Total tardiness; f total tardiness ¼
Xn

i¼1

max½0; Li� ð6Þ

Total idle time; f total idle time ¼ fCðp1; j� 1Þ þ
Xn

i¼2

fmaxfCðpi; j� 1Þ

� Cðpi�1; jÞ; 0ggjj ¼ 2 . . . mg ð7Þ
3. PSO background

PSO is based on observations of the social behavior of animals,
such as birds in flocks or fish in schools, as well as on swarm the-
ory. The population consisting of individuals or particles is initial-
ized randomly. Each particle is assigned with a randomized
velocity according to its own movement experience and that of
the rest of the population. The relationship between the swarm
and particles in PSO is similar to the relationship between the pop-
ulation and chromosomes in a GA.

In PSO, the problem solution space is formulated as a search
space. Each particle position in the search space is a correlated
solution to the problem. Particles cooperate to determine the best
position (solution) in the search space (solution space).

Suppose that the search space is D-dimensional and there are q
particles in the swarm. Particle i is located at position Xi ¼
fxi

1; x
i
2; . . . ; xi

Dg and has velocity Vi ¼ fv i
1;v i

2; . . . ;v i
Dg, where

i ¼ 1;2; . . . ;q. Based on the PSO algorithm, each particle move to-
wards its own best position (pbest), denoted as Pbesti ¼
fpbesti

1; pbesti
2; . . . ; pbesti

ng, and the best position of the whole
swarm (gbest) is denoted as Gbest ¼ fgbest1; gbest2; . . . ; gbestng
with each iteration. Each particle changes its position according
to its velocity, which is randomly generated toward the pbest and
gbest positions. For each particle r and dimension s, the new veloc-
ity v r

s and position xr
s of particles can be calculated by the following

equations:

v r
sðsÞ ¼ w� v r

sðs� 1Þ þ c1 � rand1

� ½pbestr
sðs� 1Þ � xr

sðs� 1Þ� þ c2

� rand2 � ½gbestr
sðs� 1Þ � xr

sðs� 1Þ� ð8Þ
xr

sðsÞ ¼ xr
sðs� 1Þ þ v r

sðs� 1Þ ð9Þ



Table 1
2� 2 Example.

Jobs Machine sequence Processing times

1 1, 2 pð1;2Þ=5; pð2;1Þ=4
2 2, 1 pð2;2Þ=4; pð1;2Þ=3
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In Eqs. (8) and (9), s is the iteration number. The inertial weight w is
used to control exploration and exploitation. A large w value keeps
the particles moving at high velocity and prevents them from
becoming trapped in local optima. A small w value ensures a low
particle velocity and encourages particles to exploit the same search
area. The constants c1 and c2 are acceleration coefficients to deter-
mine whether particles prefer to move closer to the pbest or gbest
positions. The rand1 and rand2 are two independent random num-
bers uniformly distributed between 0 and 1. The termination crite-
rion of the PSO algorithm includes a maximum number of
generations, a designated value of pbest, and lack of further improve-
ment in pbest. The standard PSO process is outlined as follows:

Step 1: Initialize a population of particles with random positions
and velocities in a D-dimensional search space.

Step 2: Update the velocity of each particle using Eq. (8).
Step 3: Update the position of each particle using Eq. (9).
Step 4: Map the position of each particle into the solution space

and evaluate its fitness value according to the desired
optimization fitness function. Simultaneously update
the pbest and gbest positions if necessary.

Step 5: Loop to Step 2 until the termination criterion is met, usu-
ally after a sufficient good fitness or a maximum number
of iterations.

The original PSO was designed for a continuous solution space.
We must modify the PSO position representation, particle velocity,
and particle movement so they work better with combinational
optimization problems. These changes are described in next
section.

4. Proposed method

There are four types of feasible schedules in JSPs, including
inadmissible, semi-active, active, and non-delay. The optimal sche-
dule is guaranteed to be an active schedule. We can decode a par-
ticle position into an active schedule employing Giffler and
Thompson (1960) heuristic. There are two different representa-
tions of particle position associated with a schedule. The results
of Zhang, Li, Li, and Hang (2005) demonstrated that permutation-
based position representation outperforms priority-based repre-
sentation. While choosing to implement permutation-based posi-
tion presentation, we must also adjust the particle velocity and
particle movement. In addition, we also propose the maintenance
of Pareto optima and a diversification procedure to achieve better
performance.

4.1. Position representation

In this study, we randomly generated a group of particles (solu-
tions) represented by a permutation sequence that is an ordered
list of operations. For an n-job m-machine problem, the position
of particle k can be represented by an m� n matrix, i.e.,

Xk ¼

xk
11 xk

12 . . . xk
1 n

xk
21 xk

22 . . . xk
2n

..

. ..
. ..

.

xk
m1 xk

m2 . . . xk
mn

2
6664

3
7775, where xk

ij denotes the priority of oper-

ation oij, which means the operation of job j that must be processed
on machine i.

The Giffler and Thompson (G&T) algorithm is briefly described
below.

Notation:

ði; jÞ is the operation of job j that must be processed on machine
i.
S is the partial schedule that contains scheduled operations.
X is the set of operations that can be scheduled.
sði;jÞ is the earliest time at which operation ði; jÞ belonging to X
can be started.
pði;jÞ is the processing time of operation ði; jÞ.
fði;jÞ is the earliest time at which operation ði; jÞ belonging to X
can be finished, fði;jÞ ¼ sði;jÞ þ pði;jÞ.

G&T algorithm:

Step 1: Initialize S ¼ /; X to contain all operations without
predecessors.

Step 2: Determine f � ¼ minði;jÞ2X ffði;jÞg and the machine m� on
which f � can be realized.

Step 3:
(1) Identify the operation set ði0; j0Þ 2 X such that ði0; j0Þ

requires machine m�, and sði0 ;j0 Þ < f �

(2) Choose ði; jÞ from the operation set identified in Step
3(1) with the largest priority.

(3) Add ði; jÞ to S.
(4) Assign sði;jÞ as the starting time of ði; jÞ.

Step 4: If a complete schedule has been generated, stop. Other-
wise, delete ði; jÞ from X, include its immediate succes-
sor in X, and then go to Step 2.

Tables 1 and 2 shows the mechanism of the G&T algorithm

using a 2� 2 example. The position of particle k is Xk ¼ 2 1
1 2

� �
.

Initialization

Step 1: S ¼ /; X ¼ fð1; 1Þ; ð2; 2Þg.

Iteration 1

Step 2: sð1;1Þ ¼ 0;sð2;2Þ ¼ 0; fð1;1Þ ¼ 5; fð2;2Þ ¼ 4; f � ¼minffð1;1Þ; fð2;2Þg ¼
4;m� ¼ 2.

Step 3: Identify the operation set {(2,2)}; choose operation (2,2)
that has the largest priority, and add it into schedule S.

Step 4: Update X ¼ fð1;1Þ; ð1;2Þg; go to Step 2.

Iteration 2

Step 2: sð1;1Þ ¼ 0;sð1;2Þ ¼ 4; fð1;1Þ ¼ 5; fð1;2Þ ¼ 7; f � ¼minffð1;1Þ; fð1;2Þg ¼
5;m� ¼ 1.

Step 3: Identify the operation set {(1,1), (1,2)}; choose opera-
tion (1,2) that has the largest priority, and add it into
schedule S.

Step 4: Update X ¼ fð1;1Þg; go to Step 2.

Iteration 3

Step 2: sð1;1Þ ¼ 7; fð1;1Þ ¼ 12; f � ¼ minffð1;1Þg ¼ 12;m� ¼ 1.
Step 3: Identify the operation set {(1,1)}; choose operation (1,1)

that has the largest priority, and add it into schedule S.
Step 4: Update X ¼ fð2;1Þg; go to Step 2.



Table 2
Comparison of MOGA and MOPSO with three objectives.

Benchmark N m Makespan
(MOGA)

Makespan
(MOPSO)

%
Deviation

Total idle time
(MOGA)

Total idle time
(MOPSO)

%
Deviation

Total tardiness
(MOGA)

Total tardiness
(MOPSO)

%
Deviation

abz5 10 10 1587 1338 0 8097 3978 0 1948 611 0
abz6 10 10 1369 1046 0 7744 2937 0 1882 339 0
ft10 10 10 1496 1045 0 9851 1999 0 3459 1534 0
la16 10 10 1452 1040 0 9169 2718 0 1127 1417 0.25732
la17 10 10 1172 889 0 7044 3365 0 1779 53 0
la19 10 10 1251 938 0 7164 2796 0 1581 733 0
la20 10 10 1419 985 0 8745 2883 0 1451 407 0
orb01 10 10 1704 1181 0 11631 3909 0 3052 191 0
orb02 10 10 1284 1029 0 7585 3539 0 1565 137 0
orb03 10 10 1643 1114 0 11138 3788 0 4140 247 0
orb04 10 10 1543 1122 0 9802 3921 0 4951 221 0
orb05 10 10 1323 1013 0 8322 3727 0 2195 30 0
orb06 10 10 1645 1144 0 10836 3478 0 2601 0 0
orb07 10 10 583 302 0 3423 1381 0 699 0 0
orb08 10 10 1340 1000 0 8840 3542 0 3498 253 0
orb09 10 10 1462 1044 0 9439 4224 0 2029 0 0
orb10 10 10 1382 1077 0 8271 4177 0 1806 0 0
la01 10 5 1256 709 0 3431 571 0 3324 721 0
la02 10 5 1066 713 0 2687 573 0 2081 425 0
la03 10 5 821 671 0 1722 633 0 1926 373 0
la04 10 5 861 631 0 1798 557 0 3194 673 0
la05 10 5 893 593 0 2182 473 0 1716 736 0
ft06 6 6 76 56 0 259 100 0 31 3 0
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Iteration 4

Step 2: sð2;1Þ ¼ 12; fð2;1Þ ¼ 16; f � ¼ minffð2;1Þg ¼ 16;m� ¼ 2.
Step 3: Identify the operation set {(2,1)}; choose operation (2,1)

that has the largest priority, and add it into schedule S.
Step 4: A complete schedule has been generated, so stop the

process.

The proposed PSO differs from the original PSO in the informa-
tion stored in the pbest and gbest solutions. While the original PSO
keeps the best positions found so far, the proposed PSO maintains
the best schedule generated by the G&T algorithm. In the previous
example, the schedule Sk rather than the position Xk is retained in

the pbest and gbest solutions, where Sk is 2 1
2 1

� �
. The movement of

particles is modified in accordance with the representation of par-
ticle position based on the insertion operator.

4.2. Particle velocity

The original PSO velocity concept assumes that each particle
moves according to the velocity determined by the distance between
the previous position of the particle and the gbest (pbest) solution.
The two major purposes of the particle velocity are to keep the par-
ticle moving toward the gbest and pbest solutions, and to maintain
inertia to prevent particles from becoming trapped in local optima.

In the proposed PSO, we concentrate on preventing particles
from becoming trapped in local optima rather than moving them
toward the gbest (pbest) solution. If the priority value is increased
or decreased by the present velocity in the current iteration, we
keep the priority value increasing or decreasing at the beginning
of the next iteration with probability w, which is the inertial
weight in PSO. The larger the value of w, the more the iteration pri-
ority value keeps increasing or decreasing, and the more the diffi-
cult it is for the particle to return to its current position. For an n-
job problem, the velocity of particle k can be represented as

Vk ¼ ½vk
1v

k
2 . . . vk

n�;vk
i 2 f�1;0;1g;

where vk
i is the velocity of ji of particle k

The initial velocity of particles is generated randomly. Instead of
considering the distance from xk

i to pbestk
i ðgbestiÞ, our PSO considers
whether the value of xk
i is larger or smaller than pbestk

i ðgbestiÞ. If xk
i

decreases in the present iteration, this mean that pbestk
i ðgbestiÞ is

smaller than xk
i and xk

i is set moving toward pbestk
i ðgbestiÞ by letting

vk
i  �1. Therefore, in the next iteration, xk

i is kept decreasing by
one (i.e., xk

i  xk
i � 1) with probability w. Conversely, if xk

i increases
in this iteration, then pbestk

i ðgbestiÞ is larger than xk
i , and xk

i is set
moving toward pbestk

i ðgbestiÞ by setting vk
i  1. Therefore, in the

next iteration, xk
i is kept increasing by one (i.e., xk

i  xk
i þ 1) with

probability w.
The inertial weight w influences the velocity of the particles in

the PSO. We randomly update velocities at the beginning of the
iteration. For each particle k and operation ji, if vk

i does not equal
to 0, vk

i will be set to 0 with probability ð1�wÞ. This forces xk
i to

stop increasing or decreasing continuously in this iteration with
probability ð1�wÞ while xk

i keeps increasing or decreasing.

4.3. Particle movement

The particle movement is based on the swap operator proposed
by Sha and Hsu (2006) and Sha and Hsu (2008).

Notation:

xk
i is the schedule list at machine i of particle k.

pbestk
i is the schedule list at machine i of the kth pbest solution.

gbesti is the schedule list at machine i of the gbest solution.
c1 and c2 are constants between 0 and 1 such that c1 þ c2 6 1.

The swap procedure occurs as shown below.

Step 1: Randomly choose a position f from xk
i .

Step 2: Mark the job on position f of xk
i by K1.

Step 3: If the random number rand < c1 then seek the position
of K1 in pbestk

i ; otherwise, seek the position of K1 in
gbesti. Denote the position that has been found in
pbestk

i or gbesti by f0, and the job in position f0 of xk
i by

K2.
Step 4: If K2 has been denoted, vk

iJ1
¼ 0, and vk

iJ2
¼ 0, then swap

K1 and K2 in xk
i ; vk

iJ1
 1.

Step 5: If all the positions of xk
i have been considered, then stop.

If not, and if f < n, then f fþ 1; otherwise, f 1. Go
to Step 2.
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For example, consider the 6-job problem where xk
i ¼

½4 2 1 3 6 5�; pbestk
i ¼ ½1 5 4 2 6 3�; gbesti ¼ ½3 2 6 4 5 1�;vk

i ¼
½0 0 1 0 0 0�; c1 ¼ 0:6, and c2 ¼ 0:2.

Step 1: The position of xk
i is randomly chosen: f ¼ 3.

Step 2: The job in the 3rd position of xk
i is job 1, i.e., K1 ¼ 1.

Step 3: A random number rand is generated; assume rand=0.7.
Since rand > c1, we compare each position of gbesti with
K1 and the matched position f0 ¼ 6. The job in the 6th
position of xk

i is job 5, i.e., K2 ¼ 5.
Step 4: Since vk

i4 ¼ 0 and vk
i5 ¼ 0, swap jobs 1 and 5 in xk

i so
xk

i ¼ ½4 2 5 3 6 1�. Then let vk
i4  1 and

vk
i ¼ ½0 0 1 1 0 0�.

Step 5: Let f 4 and go to Step 2. Repeat the process until all
positions of xk

i have been considered.

4.4. Diversification strategy

If all the particles have the same non-dominated solutions, they
will be trapped in local optima. To prevent this from happening, a
diversification strategy is proposed to keep the non-dominated
solutions different. Once any new solution is generated by parti-
cles, the non-dominating solution set will be updated in these
three situations:

(i) If the solution of the particle dominates the gbest solution,
assign the particle solution to the gbest.

(ii) If the solution of the particle equals to any solution in the
non-dominated solution set, replace the non-dominated
solution with the particle solution.

(iii) If the solution of the particle is dominated by the worst non-
dominated solution and not equal to any non-dominated
solution, set the worst non-dominated solution equal to
the particle solution.
5. Computational results

The proposed multi-objective PSO (MOPSO) algorithm was
tested on benchmark problems obtained from the OR-Library
(Beasley, 1990; Taillard, 1993). The program was coded in Visual
C++ and run 40 times on each problem on a Pentium 4 3.0-GHz
computer with 1 GB of RAM running Windows XP. During the pilot
experiment, we used four swarm sizes N (10, 30, 60, and 80) to test
the algorithm. The outcome of N ¼ 80 was best, so that value was
used in all further tests. Parameters c1 and c2 were tested at vari-
ous values in the range 0.1–0.7 in increments of 0.2. The inertial
weight w was reduced from wmaxto wmin during iterations, where
wmax was set to 0.5, 0.7, and 0.9, and wmin was set to 0.1, 0.3, and
0.5. The combination of c1 ¼ 0:7; c2 ¼ 0:1;wmax ¼ 0:7 and
wmin ¼ 0:3 gave the best results. The maximum iteration limit
was set to 60 and the maximum archive size was set to 80.

The MOGA proposed by (Pezzella & Merelli, 2000) was chosen
as a baseline against which to compare the performance of our
PSO algorithm. The objectives considered in the MOGA algorithm
are minimization of makespan, minimization of total tardiness,
and minimization of machine idle time. The MOGA methodology
is based on the machine-wise priority dispatching rule (pdr) and
the G&T procedure (Giffler & Thompson, 1960). The each gene rep-
resents a pdr code. The G&T procedure was used to generate an ac-
tive feasible schedule. The MOGA fitness function is the weighted
sum of makespan, total tardiness, and total idle time of machines
with random weights.

The computation results showed that the relative error of the
solution for Cmax and total idle time determined by the proposed
MOPSO was better in 23 out of 23 problems than the MOGA. In
22 of the 23 problems, the proposed PSO performed better for
the solution considering total tardiness. Overall, the proposed
MOPSO was superior to the MOGA in solving the JSP with multiple
objectives.

6. Conclusion

While there has been a large amount of research into the JSP,
most of this has focused on minimizing the maximum completion
time (i.e., makespan). There exist other objectives in the real-
world, such as the minimization of machine idle time that might
help improve efficiency and reduce production costs. PSO, inspired
by the behavior of birds in flocks and fish in schools, has the advan-
tages of simple structure, easy implementation, immediate acces-
sibility, short search time, and robustness. However, few
applications of PSO to multi-objective JSPs can be found in the lit-
erature. Therefore, we presented a MOPSO method for solving the
JSP with multiple objectives, including minimization of makespan,
total tardiness, and total machine idle time.

The original PSO was proposed for continuous optimization
problems. To make it suitable for job-shop scheduling (i.e., a com-
binational problem), we modified the representation of particle po-
sition, particle movement, and particle velocity. We also
introduced a mutation operator and used a diversification strategy.
The results demonstrated that the proposed MOPSO could obtain
more optimal solutions than the MOGA. The relative error ratios
of each problem scenario in our MOPSO algorithm were less than
in the MOGA. The performance measure results also revealed that
the proposed MOPSO algorithm outperformed MOGA in simulta-
neously minimizing makespan, total tardiness, and total machine
idle time.

We will attempt to apply MOPSO to other shop scheduling
problems with multiple objectives in future research. Other possi-
ble topics for further study include the modification of the particle
position representation, particle movement, and particle velocity.
In addition, issues related to Pareto optimization, such as solution
maintenance strategy and performance measurement, merit future
investigation.
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Appendix A

Pseudo-code of the PSO for the multi-objective JSP is as follows.
Initialize a population of particles with random positions.
for each particle k do

Evaluate Xk(the position of particle k)
Save the pbestk to optimal solution set S

end for
Set gbest solution equal to the best pbestk

repeat

Updates particles velocities
for each particle k do
Move particle k

Evaluate Xk

Update gbest, pbest, and S
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end for

until maximum iteration limit is reached

References

Bean, J. (1994). Genetic algorithms and random keys for sequencing and
optimization. Operations Research Society of America (ORSA) Journal on
Computing, 6, 154–160.

Beasley, J. E. (1990). OR-Library: Distributing test problems by electronic mail.
Journal of the Operational Research Society, 41(11), 1069–1072.

Candido, M. A. B., Khator, S. K., & Barcia, R. M. (1998). A genetic algorithm based
procedure for more realistic job shop scheduling problems. International Journal
of Production Research, 36(12), 3437–3457.

Coello, C. A., Plido, G. T., & Lechga, M. S. (2004). Handling multiple objectives with
particle swarm optimization. IEEE Transactions on Evolutionary Computation,
8(3), 256–278.

Esquivel, S. C., Ferrero, S. W., & Gallard, R. H. (2002). Parameter settings and
representations in Pareto-based optimization for job shop scheduling.
Cybernetics and Systems: An international Journal, 33, 559–578.

Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and
jobshop scheduling. Mathematics of Operations Research, 1, 117–129.

Giffler, J., & Thompson, G. L. (1960). Algorithms for solving production scheduling
problems. Operations Research, 8, 487–503.

Gonçalves, J. F., Mendes, J. J. M., & Resende, M. G. C. (2005). A hybrid genetic
algorithm for the job shop scheduling problem. European Journal of Operational
Research, 167(1), 77–95.

Jain, A. S., & Meeran, S. (1999). Deterministic job-shop scheduling: Past, present and
future. European Journal of Operational Research, 113, 390–434.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of
IEEE international conference on neural networks 1995 (pp. 1942–1948).

Kobayashi, S., Ono, I. & Yamamura, M. (1995). An efficient genetic algorithm for job
shop scheduling problems. In L.J. Eshelman (Ed.), Proceedings of the sixth
international conference on genetic algorithms (pp. 506–511). San Francisco, CA:
Morgan Kaufman Publishers.

Lei, D., & Wu, Z. (2006). Crowding-measure-based multi-objective evolutionary
algorithm for job shop scheduling. International Journal of Advanced
Manufacturing Technology, 30, 112–117.
Lei, D. (2008). A Pareto archive particle swarm optimization for multi-objective job
shop scheduling. Computers and Industrial Engineering, 54(4), 960–971.

Liang, Y. C., Ge, H. W., Zho, Y., Guo, X. C., et al. (2005). A particle swarm
optimization-based algorithm for job-shop scheduling problems. International
Journal of Computational Methods, 2(3), 419–430.

Lourenço, H. R. (1995). Local optimization and the job-shop scheduling problem.
European Journal of Operational Research, 83, 347–364.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop
problem. Management Science, 42(6), 797–813.

Pezzella, F., & Merelli, E. (2000). A tabu search method guided by shifting bottleneck
for the job shop scheduling problem. European Journal of Operational Research,
120(2), 297–310.

Ponnambalam, S. G., Ramkumar, V., & Jawahar, N. (2001). A multi-objective genetic
algorithm for job shop scheduling. Production Planning and Control, 12(8),
764–774.

Ripon, K. S. N. (2007). Hybrid evolutionary approach for multi-objective job-
shop scheduling problem. Malaysian Journal of Computer Science, 20(2),
183–198.

Sha, D. Y., & Hsu, C.-Y. (2006). A hybrid particle swarm optimization for job
shop scheduling problem. Computers and Industrial Engineering, 51(4),
791–808.

Sha, D. Y., & Hsu, C.-Y. (2008). A new particle swarm optimization for the
open shop scheduling problem. Computers and Operations Research, 35,
3243–3261.

Sun, D., Batta, R., & Lin, L. (1995). Effective job shop scheduling through active chain
manipulation. Computers and Operations Research, 22(2), 159–172.

Suresh, R. K., & Mohanasndaram, K. M. (2006). Pareto archived simulated annealing
for job shop scheduling with multiple objectives. International Journal of
Advanced Manufacturing Technology, 29, 184–196.

Taillard, E. D. (1993). Benchmarks for basic scheduling problems. European Journal
of Operational Research, 64, 278–285.

Wang, L., & Zheng, D.-Z. (2001). An effective hybrid optimization strategy for job-
shop scheduling problems. Computers and Operations Research, 28, 585–596.

Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-
objective flexible job-shop scheduling problems. Computers and Industrial
Engineering, 48, 409–425.

Zhang, H., Li, X., Li, H., & Hang, F. (2005). Particle swarm optimization-based
schemes for resource-constrained project scheduling. Automation in
Construction, 14(3), 393–404.


	A multi-objective PSO for job-shop scheduling problems
	Introduction
	Job-shop scheduling problem
	PSO background
	Proposed method
	Position representation
	Particle velocity
	Particle movement
	Diversification strategy

	Computational results
	Conclusion
	Acknowledgement
	Appendix A
	References


