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A NEW MODEL AND HEURISTIC ALGORITHMS FOR THE

MULTIPLE-DEPOT VEHICLE SCHEDULING PROBLEM

Jin-Yuan Wang and Chih-Kang Lin*

ABSTRACT

The multiple-depot vehicle scheduling problem (MDVSP) addresses the work of
assigning vehicles to serve a given set of time trips with the consideration of certain
requirements representing the market rules.  Extensive studies in the literature ad-
dress the MDVSP, but because of the complexity of the problem, the findings of those
researchers are still not enough to represent real world situations in Taiwan.  Formu-
lation for the MDVSP typically contains the following assumptions: (1) the size of
fleet or maximum number of available vehicles at each depot is known already, (2) all
trip serving costs are usually simplified as a single term in the objective function,
which fails to reflect public transit operator concerns, (3) the applied deadheading
strategy is static less flexibility, (4) there is no discussion of differences of route
change frequency in the problem.  This paper presents a new MDVSP model to ad-
dress the above issues.  A greedy heuristic algorithm based on the divide-and-conquer
technique is also proposed to solve the MDVSP effectively.  Computational tests are
performed on the Kinmen Bus Administration (KBA) and results demonstrate that the
proposed new model and the greedy heuristic algorithm for the MDVSP are effective
in solving real world problems.

Key Words: transportation, multiple-depot vehicle scheduling problem (MDVSP),
heuristic, greedy algorithm.

*Corresponding author. (Tel: 886-3-5131336; Fax: 886-3-
5725804; Email: john101@faculty.nctu.edu.tw)

The authors are with the Department of Transportation Technology
and Management, National Chiao Tung University, Hsinchu 300,
Taiwan, R.O.C.

I. INTRODUCTION

Vehicle scheduling is one of the most important
transportation industry jobs, especially for public
transit services.  This problem addresses the work of
assigning vehicles to serve a given set of time trips,
considering certain market rule requirements.  An
optimal schedule generally satisfies minimum fleet
size of vehicles and minimum operational costs in-
cluding costs for vehicle idle time at depots and the
number of deadhead trips.  Extensive studies in the
literature address the multiple-depot vehicle sched-
uling problem (MDVSP).  Bodin and Golden (1983)
(1981), and Ball et al. (1995) point out some critical
requirements for this problem formulation, such as
vehicle idle time, number of depots, fleet size, and

deadhead trips.  Minimizing the number of required
vehicles and operational costs which combine vehicle
idle time and deadhead trip costs are the main com-
ponents in the MDVSP objective function.  Previous
studies propose some approximate exact solution al-
gorithms to deal with the MDVSP.  Those efforts help
efficiently solve the MDVSP and obtain a reasonable
answer.  Studies by Carraresi and Gallo (1983),
Carpaneto et al. (1989), Mesquita and Paixão (1990),
Lamatsch (1992), Forbes et al. (1994), Ribeiro and
Soumis (1994), Beasley and Cao (1996), Kokott and
Löbel (1996), Löbel (1997), Haghni et al. (2002),
Haghani and Banihashemi (2003), Gintner et al.
(2005), Pepin et al. (2006), Kliewer et al. (2006) and
Hadjar et al. (2006) also show these efforts.

The assumptions mentioned above however, are
still not enough to represent real world situations in
Taiwan (Wang and Lin, 2003).  Formulation for the
MDVSP typically contains the following assumptions:
(1) the size of fleet or maximum number of available
vehicles at each depot is known already, (2) all trip
serving costs are usually simplified as a single term
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in the objective function, which fails to reflect pub-
lic transit operator concerns, (3) sufficient flexibility
for adopting different deadheading strategies in for-
mulation is not provided, (4) there is no discussion
of different route change frequencies in the problem.
These assumptions leave significant limitations while
applying the MDVSP to solve real world problems,
especially for public transit.

Operators are usually troubled in deciding the
number of available vehicles at each depot in practice.
In particular, assigning too many vehicles to one de-
pot can cause vehicle shortages at other depots.
Moreover, finding a good solution is crucial for the
Taiwan public transit industry, since prices are gen-
erally kept low for the public welfare.  As a result,
most Taiwan public transit operators focus on reduc-
ing vehicle fleet size as much as possible even in the
schedule planning stage. Some studies (Bodin and
Golden, 1981; Carraresi and Gallo, 1983; Ball et al.,
1995) argue that it is not necessary to minimize the
number of required vehicles since it is not a short term
planning concern.  Extra vehicles, if they do exist,
can be used for other profit-making activities such as
chartering, if required vehicles are kept to a minimum.

Different types of costs need to be considered
separately in order to address different decision makers’
preferences.  Considering public transit operation needs
in terms of cost, one should represent more than one
perspective.  Most researchers use only a single de-
terministic term to present the concept of cost accom-
modated in the objective function, which is not a problem
from a mathematical point of view.  However, it could
be a problem for the decision maker of public transit
operation by this approach, since it is not easy to in-
tegrate different types of cost into a single one.

Deadhead trip arrangement is a common trade
off influencing operating efficiency.  Most research-
ers base model formulation on a pre-determined
network.  Associated deadhead arcs and costs are added
to the network if deadhead trips are allowed.  Again,
this is perfectly suitable from the theoretical point of
view. However, public transit operators in the real
world might want to try adopting different deadhead
strategies before making decisions.  It is a flexible
way to incorporate the deadhead trip consideration
into the model formulation, as constraint functions.

Changing service routes is not considered a good
public transit practice.  Real world drivers are usu-
ally assigned to a specific vehicle route they are fa-
miliar with.  A vehicle assigned to serve more routes
requires a driver familiar with all those routes.  Most
operators agree that keeping route change frequency
as low as possible is important (Wang and Lin, 2006).
Most studies, unfortunately, seem to ignore this issue.

Literature findings show that the computation
capability of existing optimization technologies for

solving the MDVSP are limited according to the prob-
lem size (i.e. number of trips) since it is character-
ized as NP-hard (Bertossi et al., 1987).  Finding the
optimal solution within an acceptable time is a prob-
lem when exceeding 850 trips for the MDVSP (Hadjar
et al., 2006).  For handling large scale MDVSPs, there
are some applied techniques such as the column gen-
eration algorithm (Ribeiro and Soumis, 1994; Löbel,
1997), the Lagrangian relaxation algorithm (Mesquita
and Paixão, 1990; Lamatsch, 1992; Kokott and Löbel,
1996), metaheuristics algorithms: the Tabu search al-
gorithm (Cordeau et al., 2001; Pepin et al., 2006),
Genetic Algorithms (Su and Yu, 2006), and many other
proposed heuristic algorithms: an auction algorithm
for the quasi- assignment formulation (Freling, 1997),
a schedule first-cluster second approach (Daduna and
Paixão, 1995) and a cluster first-schedule second ap-
proach (Carraresi and Gallo, 1983) can be found in
related studies.  Most of these algorithms solve the
MDVSP efficiently and effectively with the prereq-
uisite of having a particular network structure to ease
the solution process (Pepin et al., 2006).  However,
time-consuming network constructions are not accept-
able in real world public transit operations.  Therefore,
solving large scale MDVSPs efficiently and effectively
remains a challenge.  It also determines whether or
not the identified solutions can be applied in real world
operations.  This is particularly true for transit op-
erations that require quick responses.

This paper proposes a new MDVSP model with
the objectives of minimizing vehicle idle time, mini-
mizing fleet size, minimizing service route change
frequency, and deadhead trip strategy concerns.  This
study also presents a heuristic solution procedure by
dividing the MDVSP into relatively easy problems
to solve this model efficiently and effectively.  The
rest of the paper is organized as follows: This work
first introduces a new MDVSP model formulation,
and then illustrates a greedy algorithm for solving the
MDVSP formulation.  Finally, a real case in Taiwan
is adopted to show the efficiency and effectiveness
of the theoretical approach in this study.

II. A NEW MDVSP MODEL FORMULATION

1. The Basic Assumptions Made for the MDVSP

Figure 1 graphically illustrates the MDVSP.  The
horizontal and vertical axes represent time span and
depot locations respectively.  N trips have to be per-
formed by a minimal number of vehicles daily.  Each
box represents a single trip, which includes service
duration, departure depot, arrival depot, and service
vehicle index.  The arc, connecting two boxes, indi-
cates the sequence of trips served by a vehicle.  Each
block includes trips that satisfy constraints and can
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be served by one vehicle, and each vehicle must re-
turn to the same depot from where it departs.  Blocks
in the MDVSP are acyclic, i.e. there are no cycles in
the block, because of the time dimension. A number
of basic assumptions for this MDVSP made by this
study are listed below.
(1) Each trip must be served by one and only one

vehicle;
(2) All trips need to be served by a minimal number

of vehicles;
(3) The following attributes of each trip are known.

That is, each trip i is associated with the informa-
tion of departure depot, arrival depot, departure
time, length of service time (or duration), specific
route number, and cost of serving the trip;

(4) Different types of deadhead trip (to be discussed
later) are allowed;

(5) For any feasible solution, the costs of perform-
ing all trips (ΣN

i = 1oci) are the same, so this cost
can be ignored.

The MDVSP is defined formally as: where N =
{1, 2, ..., n} represents the known trip set, and I de-
notes the feasible set of pairs of trips, each pair is
connected by an arc.  With each depot p ∈ P, this
formulation associates the graph G p = (V p, A p), where
n + p denotes the pth depot, V p = N ∪ {n + p}, and A p

= I ∪ {n + p} × N) ∪ (N ×{ n + p}).  The arc cost cij,
(i, j) ∈ A p, is independent of p if (i, j) ∈ I, while
cn + p, j for j ∈ N, and ci, n + p for i ∈ N, which depends
on p.  x p

ij is the flow for type p through arc (i, j) ∈ A p.

2. Model Formulation

According to the notations of graph theory men-
tioned above, the proposed mathematical formulation for
the MDVSP used in this study is introduced as follows.

Minimize

α( cijxij
pΣ

i, j ∈ N
Σ

p ∈ P
)

+ β ( xn + p, j
pΣ

j ∈ N
Σ

p ∈ P
+ xj, n + p

pΣ
j ∈ N

)

+ λ( (
γ j – γ i

(γ j + γ i)
xij

pΣ
i, j ∈ N

Σ
p ∈ P

) + ω ( ξ ijxij
pΣ

i, j ∈ N
Σ

p ∈ P

+ ξ j, n + pxj, n + p
pΣ

j ∈ N
+ ξn + p, jxn + p, j

pΣ
j ∈ N

)  (1)

s.t.

xij
pΣ

i ∈ N
+ xn + p, j

p = xji
p + xj, n + p

pΣ
i ∈ N

 ∀p ∈ P  ∀j ∈ N

(2)

( xij
pΣ

j ∈ N
+ xi, n + p

p )Σ
p ∈ P

= 1 ∀i ∈ N (3)

(p – si)xn + p, i
pΣ

i ∈ N
≤ 0 ∀p ∈ P (4)

(p – e j)xj, n + p
pΣ

j ∈ N
≤ 0 ∀p ∈ P (5)

(ei – s j)xij
pΣ

p ∈ P
≤ 0 ∀(i, j) ∈ I (6)

Trip 3
(07:20~09:00)
Depot : D → A

Vehicle 2

Trip 1
(06:00~07:00)
Depot : C → D

Vehicle 2

Trip 2
(06:15~07:20)
Depot : A → B

Vehicle 1

Trip 5
(09:00~10:00)
Depot : C → D

Vehicle 1

Trip 6
(10:00~11:00)
Depot : A → B

Vehicle 2

Trip N-1
(21:30~22:40)
Trip: B → C

Vehicle 2

Trip N
(22:00~23:30)
Trip: D → A

Vehicle 1

Trip 4
(07:30~08:40)
Depot : B → C

Vehicle 1

D

Depots Depots

06 : 0000 : 00 07 : 00 08 : 00 09 : 00 10 : 00 11 : 00 22 : 00 23 : 00 24 : 00
Time

C

B

A

D

C

B

A

Fig. 1  Daily operation diagram for multiple depot vehicle scheduling
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x p
ij ∈ {0, 1} ∀p ∈ P (7)

xij
p =

1 if trips i and j are served
consecutively by avehicle
from depot p

0 otherwise ;

The objective function (Eq. (1)) can be decom-
posed into four parts, seeking to minimize total costs.
Its logical meaning can be described as follows.

The first part (α( cijxij
pΣ

i, j ∈ N
Σ

p ∈ P
))  of Eq. (1)

represents the summation of total vehicle idle time
cost, since extra idle time at depots usually increases
personnel cost or makes the crew scheduling prob-
lem more difficult (Baita et al., 2000).  The cost of
vehicle idle time can be measured based on the pay
rate (dollars/min) for a hired driver, represented
in the model as parameter α.  The second part
(β ( xn + p, j

pΣ
j ∈ N

Σ
p ∈ P

+ xj, n + p
pΣ

j ∈ N
)) of Eq. (1) represents

the total cost of vehicle depreciation, measured based
on its purchase cost and its reasonable lifetime.  The

third part (λ( (
γ j – γ i

(γ j + γ i)
xij

p)Σ
i, j ∈ N

Σ
p ∈ P

) of Eq. (1) repre-

sents the total routes changing time with the best
arrangement.  Parameter λ represents the penalty for
every route change.  For any two trips i, j, γi and γj

representing the specific route numbers respectively,
they are compatible when serving trip j immediately
after trip i using the same vehicle.  If γi ≠ γj, the value

of the the ceiling function (
γ j – γ i

(γ j + γ i)
) is one, which

represents one route-change per block, and the cost
value of λ increases in the objective function.  On

the contrary, if γi = γj, the value of the ceiling func-

tion (
γ j – γ i

(γ j + γ i)
) is zero, which means there is no pen-

alty to the objective function value.  The last part (ω Σ
p ∈ P

.( ξ ijxij
pΣ

i, j ∈ N
  + ξ j, n + pxj, n + p

pΣ
j ∈ N

 + ξn + p, jxn + p, j
pΣ

j ∈ N
))

of Eq. (1) represents the total cost of performing dead-
head trips.  This formulation allows deadhead trips
between different depots if the arrival terminal of trip
i and the departure terminal of trip j are not the same
when these two trips i, j are compatible.  Based on
this definition, this part of the objective function con-
sists of three items: the weighted cost for deadhead
trips occurring from depots to departure terminal of
trips, between the departure and arrival terminals of
any trips, and from departure terminal of trips to all
depots.   While deadhead trips take place in all blocks
in the situation described above, the cost of ω × ξij

increases in the objective function.  These four parts
of Eq. (1) are commonly used in solving vehicle
scheduling problems.

Equation (2) is a flow conservation constraint
which makes sure the number of arcs leaving a trip is
equal to the arcs entering the same trip.  Eq. (3) is a
constraint to ensure that each trip is served by one and
only one vehicle.  Eqs. (4), (5), and (6) can be regarded
as Either-Or constraints which limit the chance of a
deadhead trip occurring.  Eq. (4) prohibits deadhead
occurrence from depots to any trips when the serial
number of a depot is not the same as departure termi-
nal of a trip, as Fig. 2 shows.  Based on this constraint,
if p (number of depots) is not the same as sj (departure
terminal of trip j), then the variable x p

n + p, j must be
equal to zero.  This ensures that a deadhead trip from

Depot 1
(Serial number p = 1)

Depot 2
(Serial number p = 2)

Trip 1
Depot: 2 → 1

Trip 2
Depot: 1 → 2

Trip 3
Depot: 2 → 1

(1)
Depot 1

(Serial number p = 1)

Depot 2
(Serial number p = 2)

(2)

(3)

(1) It makes sure that deadhead occurring from depot 1 to departure terminal of trip 1 will not happen when Eq. (4) exists in the model 
formulation.

(2) It makes sure that no deadhead occurrence between trip 1 and trip 3 when Eq. (6) exists in the model formulation.
(3) It makes sure that deadhead occurring from arrival terminal of trip 3 to depot 2 will nothappenwhen Eq. (5) exists in the model 

formulation.

Fig. 2  Example of explanation for Eqs. (4), (5), and (6)
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a depot p to departure terminal of trip j will not hap-
pen in any block.  Eq. (5) is similar to Eq. (4), which
prohibits a deadhead trip from any trips to depots when
arrival terminal of that trip is not the same as the se-
rial number of a depot, as Fig. 2 shows.  In this constraint,
if p is not the same as ei (arrival terminal of trip i),
then the variable x p

i, n + p must be equal to zero.  This
ensures that a deadhead trip from arrival terminal of
trip i to a depot p will not happen in any block.  Likewise,
Eq. (6) ensures no deadhead occurrence between any
two trips when arrival terminal of a trip is not the same
as departure terminal of the other trip, as Fig. 2 shows.
According to this constraint, if sj is not the same as ei,
then the variable x p

ij must be equal to zero.  Eq. (7)
indicates all variables are binary.  The solution for this
MDVSP problem formulation finds a set of blocks to
minimize the objective value so an ideal vehicle allo-
cation plan with a minimal fleet size can be identified.

3. Deadhead Trips Adopting Strategies

Deadhead trips can be classified into two
categories, the “depot deadhead trip” occurring be-
tween depot and trip, and the “street deadhead trip”
occurring between two trips.  The deadhead trip is a
common status in vehicle scheduling problems.  The
current study adopts four strategies representing dead-
head trip tolerance of these two categories.  Constraint
Eqs (4), (5) and (6), defined below, decide the differ-
ent strategies.

(1) All depot deadhead trips and street dead-
head trips are allowed: Eqs. (4), (5) and (6)
should be included in the model.

(2) Depot deadhead trips are allowed and street
deadhead trips are not allowed: Eqs.  (4)
and (5) should be included in the model.

(3) Depot deadhead trips are not allowed and
street deadhead trips are allowed: only Eq.
(6) should be included in the model.

(4) All depot deadhead trips and street dead-
head trips are not allowed: none of Eqs. (4),
(5) or (6) should be included in the model.

If the fourth strategy is adopted, the total num-
ber of trips departing from each depot must be equal
to the total number of trips returning to the same
depot, i.e. Eq. (8) should be included in the model.
Otherwise, the solution is not feasible.

xn + p, i
pΣ

i ∈ N
= xj, n + p

pΣ
j ∈ N

  ∀p ∈ P (8)

III. A GREEDY HEURISTIC ALGORITHM
FOR SOLVING THE MDVSP MODEL

It is already known that the MDVSP is charac-
terized as NP-hard when depot number exceeds two,

and the single depot problem can be solved in the
polynomial time (Hadjar et al., 2006).  The vehicle
scheduling problem with single depot can be mod-
eled as a minimum cost flow problem and solved with
efficient algorithms to optimality (Gintner et al.,
2005).  This work develops a heuristics algorithm ap-
plying the divide-and-conquer technique to solve the
MDVSP model, according to the above-mentioned
discussion.

1. Problem Solving Procedure

According to the graph theory concept, the pro-
posed MDVSP formulation includes P networks,
where P is the number of depots (i.e. there are P de-
pots-as-nodes).  There are N trips-as-nodes in each
network, where N  is the total number of trips.
Besides, all networks correspond to P depots-as-
nodes.  Under the proposed heuristic algorithm, the
MDVSP can be divided into several simplified sets
of networks based on P depots.  Each network corre-
sponds to a single depot vehicle scheduling problem
(SDVSP), while each problem takes into account all
depots.  Select a SDVSP associated with the chosen
depot from the MDVSP formulation as a starting
point, and ignore other models for a moment.
Mathematically, the simplified SDVSP can be solved
efficiently.  Follow this with a search for feasible
blocks in which depot deadhead trips are not allowed
for the chosen depot.  The variables for these fea-
sible blocks are fixed in the following searches.  This
process narrows the search scope and increases search
efficiency in the remaining SDVSP models.  The
problem solving procedure repeats until every depot
is selected and the MDVSP solution is obtained by
aggregating all feasible SDVSP solutions.

This heuristic can be regarded as a greedy
algorithm, and the process of solving each SDVSP model
considers all the interactions between the total num-
ber of trips and all depots.  A greedy algorithm can
generally achieve a solution by making sequential
choices, each of which simply looks at the best choice
at the moment (Neapolitan and Naimipour, 2004).  The
traditional greedy rule performs following a defined
criterion which satisfies some local optimal consider-
ations at a time.  According to the requirement of
MDVSP, it is regarded as a reasonable rule for find-
ing the maximum number of trips served by each de-
pot in the proposed greedy heuristic algorithm.  It is
known that, although a greedy algorithm is no guar-
antee of an optimal solution, one often leads to an ef-
ficient solution fast (Neapolitan and Naimipour, 2004).

This solving procedure can be defined as below:
Step 1. Assign depot number in ascendant order fol-

lowing the number of trips.  And divide the
given MDVSP formulation into a set of
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SDVSP models.
Step 2. Set p := 1.
Step 3. If p := |P|, go to Step 7, otherwise proceed to

Step 4.
Step 4. Solve the SDVSP with an efficient algorithm

while only considering depot p.
Step 5. Add every feasible block in which depot

deadhead trips are not allowed into set S and
fix the variables in these feasible blocks.

Step 6. Define, p := p + 1, and proceed to Step 3.
Step 7. Output set S as a final solution to the given

MDVSP.

2. Selection Rule for A Starting Point in the
Greedy Heuristic Algorithm

Selecting a good starting point rule is generally
an important step for a greedy algorithm.  Each de-
pot is first assigned a serial number continuously fol-
lowing the number of trips in our solving procedure.
This study adopts three different rules to precede
problem computation: Following increasing order,
decreasing order, and random order of depots in or-
der to compare the results of selecting different rules.
The selection rules are described as follows.

(a) Select depots following increasing serial
number order: This heuristic algorithm first
divides the given MDVSP into a serial of
SDVSP’s following an increasing depot
number order.  The solution procedure is in-
troduced in section III.

(b) Select depot following decreasing serial
number order: The steps of this heuristic
algorithm are similar to (a), except for fol-
lowing the decreasing order of depot serial
number.  The solution procedure is the same
as the one mentioned in section III except
steps 2, 3 and 6 are replaced by:
Step 2. Set p := |P|, and ignore the other de-

pots for a moment.
Step 3. If p := 1 go to Step 7, otherwise pro-

ceed to Step 4.
Step 6. Define p := p – 1, and returns to Step

3.
(c) Select depot serial number arbitrarily: The

steps of this heuristic algorithm are also
similar to both heuristics mentioned above,
except instead of following the increasing
or decreasing order of depot serial numbers,
it selects the depot serial number arbitrarily.
The solution procedure is also similar to the
one mentioned in section III except that Step
2, 3 and 6 are replaced by the following:
Step 2. Set U = P.  Select an initial depot

arbitrarily pi ∈ U, and U = U – pi.
Step 3. If U = ∅, go to Step 7, otherwise

proceed to Step 4.
Step 6. Select another depot arbitrarily pj ∈

U, and define U = U – pj, then return
to Step 3.

IV. COMPUTATIONAL TESTS

1. Results of A Case Study

The adopted greedy heuristic solving procedures
solve a real case to demonstrate the efficiency and
effectiveness of the proposed formulation and the
heuristic algorithm.  A MDVSP model is set up to
replicate the situation occurring in the Kinmen Bus
Administration (KBA).  The theoretical optimal so-
lution and existing arrangement are used to compare
with solutions obtained by the proposed problem solv-
ing algorithms.  The computations are executed on a
personal computer with a Pentium-IV  CPU 3.2GHz
and 3.25GB main memory.  All models in the numeri-
cal experiments are solved with ILOG CPLEX 7.0.

The KBA case includes three depots, A, B, C,
currently serving six routes (A-A, A-B, A-C, B-B,
B-C, C-C).  Twenty-nine vehicles are operated daily,
offering a total of 395 trips.  The three starting point
selection rules have all show possible computation
result differences.  The parameters’ values provided
by the manager in the KBA case are set as follows: α
= 3.33(NT dollar/min), β = 1,644(NT dollar/per ve-
hicle per day), λ = 10 (NT dollar/per round), and ω =
4.67(NT dollar/min).

The experiments adopt only the strategy of all
depot deadhead trips and street deadhead trips are
allowed, for computation convenience.  Table 1 shows
the computation results.  Compared to the existing
arrangement represented as KBA, the solutions ob-
tained by the three different starting point selection
rules reduce the total cost by 19.99%, 19.94%, and
20.05% respectively.  Similarly, compared to KBA,
the theoretical optimal solution reduces the total cost
by 21.77%, showing that the solutions obtained by
the proposed heuristic algorithms are close to the optimal
solution.  Cost saving mainly comes from improving
vehicle idle time and preventing unnecessary route
changing.  Improved vehicle idle time percentages are
from 44.00% to 44.40%, the theoretical optimal so-
lution improves 48.82%.  Improved percentages on
cost of changing route are from 41.79% to 43.28%,
the theoretical optimal solution improves 41.79%.  Three
vehicles are saved by all three selection rules apply-
ing in the heuristic algorithm and the percentage of
vehicle capital cost saving are all 10.34%.  The sav-
ings of deadhead trips cost in the three results ob-
tained by the heuristic algorithm are all worse than
KBA and the theoretical optimal solution.  This re-
sult shows that applying the heuristic algorithm is not
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necessarily a guarantee of saving improvement in all
cost items.  Compared to the theoretical optimal solution,
the total cost reduction obtained by the heuristic al-
gorithm using the three different starting point selec-
tion rules ranges from 2.16% to 2.29%, close enough
in this case.  The computation times of the heuristic
algorithm by three different starting point selection
rules are all significantly less than that for finding
the theoretical optimal solution.  The time saving rates
are 99.43%, 99.32% and 98.16% by three different
selection rules respectively.  This result indicates that
the heuristic approach solves the MDVSP much more
efficiently, a very important result in practical applica-
tion.

This research modifies the KBA case by adding
the number of trips arbitrarily to evaluate the perfor-
mance of the greedy algorithm applied to a larger scale
problem such as a global airline or maritime operation.
Testing is conducted for cases composing 593, 790,
988, 1,185, 1,383, and 1,580 trips.  Table 2 summa-
rizes computation results. Findings show that the number
of variables in the problem increases significantly fol-
lowing the increasing problem scale (i.e numbers of
trips).  The result shows that under the same computer

processing capability, the optimal solution cannot be
found if the number of trips exceeds 1,383.  The re-
sult also shows that compared to objective values in
solutions obtained by the heuristic algorithm compared
to theoretical optimal solutions, differences remain
within the range of 1.41% to 2.99%.  Computation times
on the other hand, save more than 97.99%.

2. Sensitivity Analysis of the MDVSP Parameter
Values

Sensitivity analysis shows the difference in re-
sults by changing MDVSP parameter values.  The two
important parameters adopted in the proposed
MDVSP model are vehicle depreciation cost and cost
of deadhead trips per minute because the necessary
fleet size in the KBA case is a crucial concern for
decision makers and the savings of deadhead trips cost
in the three results obtained by the heuristic algorithm
are all worse than KBA and the theoretical optimal
solution.  For testing purposes, ten different scenarios
for each parameter value scenario (vehicle deprecia-
tion cost, deadhead trip cost) are increased 10% arbi-
trarily every time (seen Table 3).

Table 1  Test results for the KBA problem
Note: The exchange rate was NT $1 = US $0.03051

Vehicle idle Vehicle Changing Deadhead Total cost Gap with # of
time depreciation route cost trip cost (NT dollars) exact vehicles

(NT dollars) cost (NT dollars) (NT dollars) (%) used
(NT dollars)

Heuristic 1a 13,905 42,744    760 1,987 59,396 2.23 26
KBA 25,008 47,676 1,340    215 74,239 – 29

Heuristic 2b 14,004 42,744    760 1,926 59,434 2.29 26
KBA 25,008 47,676 1,340    215 74,239 – 29

Heuristic 3c 13,904 42,744    780 1,926 59,354 2.16 26
KBA  25,008 47,676 1,340    215 74,239 – 29

Exact 12,797 44,388    780    107 58,072 27

Saving over the solution of KBA (%) Computation Saving

Vehicle Vehicle Changing Deadhead Total  time time
idle depreciation route cost trip cost (Sec) (%)
time cost

Heuristic 1a 44.39 10.34 43.28 -824.18 19.99     2.9 99.43
KBA – – – – – – –

Heuristic 2b 44.00 10.34 43.28 -795.81 19.94     3.5 99.32
KBA – – – – – – –

Heuristic 3c 44.40 10.34 41.79 -795.81 20.05     4.3 99.16
KBA – – – – – – –

Exact 48.82   6.89 41.79     50.23 21.77 511.0
a: Using the selection rule with increasing order of depot serial number
b: Using the selection rule with decreasing order of depot serial number
c: Using the selection rule with depot serial number at random
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The first sensitivity analysis shows the difference
in resulting from changing vehicle depreciation cost.
Table 3 shows that total cost increases if vehicle de-
preciation cost increases.  But it is quite obvious that
the other three cost items, such as vehicle idle time,
changing routes and deadhead trips, all remain the same
no matter which starting point selection rule is adopted
while vehicle depreciation cost exceeds 2,630.4.  The
total cost increases steadily as vehicle depreciation cost
increases, as shown.  Results show that vehicle depre-
ciation cost is insensitive to the other three cost items
and total cost while the value is larger than 2,630.4.
When vehicle depreciation cost reaches 1972.8, the
number of required vehicles remains twenty-five, which
seems to be the minimum number needed in the KBA
case.  Results show that the difference between the
results of total cost obtained by the heuristic algorithm
and the theoretical optimal solution reduce as vehicle
depreciation cost increases.  Fig. 3 shows the percent-
age of gap between the heuristic algorithm using the
three different starting point selection rules and the
theoretical optimal solutions versus vehicle deprecia-
tion cost for the KBA.

The second sensitivity analysis shows the dif-
ference in results from changing deadhead trip cost.
Table 4 again shows that total cost increases if dead-
head trip cost increases.  Results in the ten scenarios
show that vehicle idle time costs remain nearly the
same for each selection rule, but compared to the theo-
retical optimal solution, the vehicle idle time costs
increase as deadhead trip costs increase.  Deadhead
trip cost on the other hand, seems to have no effect
on vehicle depreciation costs and changing routes cost
because vehicle depreciation cost and changing routes
cost remain nearly the same.  Results show that dead-
head trip cost has little impact on solutions obtained
by the heuristic algorithm, but has most effect on the
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1.20%
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0.80%
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Fig. 3 The percentage of gap between the heuristic algorithms
and the theoretical optimal solutions (o.s.) vs. vehicle de-
preciation cost

theoretical optimal solution.  A large gap in dead-
head trip cost between the heuristic algorithm using
the three different starting point selection rules and
the theoretical optimal solution exists, as shown.  This
gap indicates that the difference between total cost
obtained by the heuristic algorithm and the theoreti-
cal optimal solution is mostly reflected in deadhead
trip cost.  Results also show that the differences be-
tween the results of total cost obtained by the heuris-
tic algorithm and the theoretical optimal solution tend
to increase as deadhead trip cost increases.  Fig. 4
shows the percentage of gap between the heuristic
algorithm using the three different starting point se-
lection rules and the theoretical optimal solutions ver-
sus deadhead trip cost for the KBA.

V. CONCLUSIONS

This paper presents a new model formulation for
the MDVSP for public transit services.  This study
also proposes a greedy heuristic algorithm based on
divide-and-conquer technique to solve the MDVSP.
Performances of the proposed model and the heuris-
tic algorithm have been shown to be very efficient
based on real case data provided by the KBA.  Solu-
tion results are also reasonably close to the theoreti-
cal optimal solution.  Computer running time can be
reduced more than 98.16% compared to the theoreti-
cal optimal solution.  The problem-solving algorithm
also provides better capability to deal with lager scale
problems (representing more depots and trips).  Sen-
sitivity analyses also show that the lower bound of
vehicle depreciation cost leading to the minimum
number of required vehicles seems to exist in in-
stances of MDVSP.  The analyses also show that the
greater the vehicle depreciation cost, the closer the
solutions obtained by the heuristic algorithm are to
the theoretical optimal solution, but the greater the
deadhead trip cost, the further the solutions obtained
by the heuristic algorithm are from the theoretical
optimal solution conversely.  Excellent computation
efficiency, good larger scale problem solving
capability, and good quality solution, all suggest that
the findings in this study probably shorten the dis-
tance between a theoretical study and practical ap-
plication in dealing with real world problems.

The transportation industry, while considering
the vehicle scheduling problem, needs to combine the
arrangement needs of both vehicles and crew.  Crew
assignment is not discussed in this study at this time.
Exploring this issue in the future would be interesting.
Fortunately, compared to traditional problem definitions,
the proposed model formulation and problem-solv-
ing algorithm provide excellent computation capability.
The model also provides a better chance to solve this
type of problem.  Techniques for solving the MDVSP
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are still looking for a method that improves the gap
of deadhead trip cost between the heuristic algorithm
and the theoretical optimal solution in order to en-
hance solution quality.  Finally, we hope that the findings
in this study can be applied to develop a decision sup-
porting system to help solve real-world vehicle sched-
uling problems, not just for the local public transit
industry, but also for the global transportation indus-
try (including airline and maritime industries).

ACKNOWLEDGEMENTS

We thank Kinmen Bus Administration for pro-
viding the test data and their valuable opinions.

NOMENCLATURE

A arcs in graph
cij arc cost
ei arrival depot
G graph representation
i, j specific trip in known trip set
I feasible set of pairs of trips
li length of service time, or duration
n number of trips
N trip set
Oci cost of serving the trip
p specific depot in known depot set
P depot set
si departure depot
U temporary set of depot set
V vertexes in graph
x p

ij flow for type p through arc (i, j) ∈ A p

Greek Symbols

α cost for vehicle idle time (dollars/min)

β cost for half of the depreciation per vehicle
(dollars/vehicle)

γi specific route number
λ cost/penalty for every time changing route in

a block (dollars/per change)
τi departure time
ξij travel time from the end depot of trip i to the

start depot of trip j
ω cost of deadhead trips per minute (dollars/min)
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