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ALGORITHM

Jin-Yuan Wang* and Chih-Ming Lin

ABSTRACT

The mass transit route network design (MTRND) problem is a bi-level NP-hard
problem and difficult to solve for a global optimum solution. This paper proposes a
genetic algorithm for solving the MTRND problem. In the proposed algorithm, two
smart generating methodologies are formulated to achieve a better searching space
for theinitial feasible solution. An efficient network model, a gene repairing strategy
and a redundancy checking mechanism were applied to minimize the computation
time. Improved fitness function was embedded with the passenger assignment model
and utilized to improve the quality of the solution. The proper combination of cross-
over operators and mutation operators was found for the MTRND. The proposed
algorithm was tested with the current MRT network in Taipei as a specimen. Results
indicate that the proposed algorithm is effective in solving real-world problems.

Key Words: mass transit systems, passenger assignment, network design, genetic
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algorithm.

[.INTRODUCTION

The route network design problem for mass rapid
transit (MTRND) involves determining a set of ser-
vice routes and the associated headway, minimizing
system operating costs and passenger travel costs subject
to relevant operational constraints. Conventionally,
this task is done manually in two stages. The de-
signer in the first stage transfers the given demand
matrix into network link flows based on rules of thumb.
Then an initial solution is obtained by accommodat-
ing certain system requirements (such as policy ser-
vice level). Actual link flows are estimated in the
second stage by simulating passengers’ route choice
behavior. If the flow exceeds the capacity on some
links, the designer must make some modifications,
affecting each link cost. After adjusting the solution,
passengers may have different route choices and link
flows may change again. The process repeats until
all constraints are satisfied.

*Corresponding author. (Tel: 886-3-5725804; Fax: 886-3-
5725804; Email: jinyuan@faculty.nctu.edu.tw)

The authors are with the Department of Transportation Technology
and Management, National Chiao Tung University, Hsinchu 300,
Taiwan, R.O.C.

The abovementioned process relies heavily on
intuitive principles based on the designer’s own
experiences. The process is designer-dependent and
lacks consistency and reliability. Therefore, more
efficient MTRND methods are desired.

MTRND is a special type of transit network de-
sign and frequencies setting problem (TNDFSP).
There are various modeling and solution techniques
for TNDFSP. Readers may refer to recent works by
Wirasinghe (2003), Ceder (2003), Fan and
Machemehl (2004) and Guihaire and Hao (2008) for
comprehensive reviews. However, most of these past
works focus on urban bus systems (Guan et al., 2006)
with little emphasis on MTRND. Zhao and Zeng
(2006) treated MRT as a express bus system, and
solved for it together with other transit systems. Guan
et al. (2006) developed an integrated model for si-
multaneous optimization of transit line configuration
and passenger line assignment in a general network
to balance transit line operating cost, passenger trans-
fer times, and total travel distance. The model isfor-
mulated as a binary integer programming problem,
illustrated with a couple of minimum spanning tree
networks and solved by the standard branch and bound
method. The model was tested with a simplified ver-
sion of the general Hong Kong mass transit railway
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network with only 9 nodes and 10 links.

In addition to most of the TNDFSP models, the
MTRND needs more MRT-specialized characteristics
such as platform capacity, congestion penalties for
overloaded trains, no missed trips, all stations and
segments must be served, and an exact fleet size. Thus
an MTRND model which can reflect real world con-
siderations and an efficient and robust solution algo-
rithm is needed.

Because the genetic algorithm has the ability to
do global searching, construct objective functions
easily, add many constraints, and access variable net-
work problems, this paper applies a genetic algorithm
to resolve our proposed MTRND model.

We discuss the applications of GA on TNDFSP
here since few studies before now have been directly
related to MRTND. Guihaire and Hao (2008) pre-
sented a comprehensive review of the crucial strate-
gic and tactical steps of transit planning, including
GA-based models for TNDFSP. Tom and Mohan
(2003) proposed an SRFC model which incorporates
line frequency as a variable, and simultaneously de-
termines transit line routes and frequencies, with the
objective of minimizing both operating costs and pas-
sengers' total travel time. A sample network defined
by 75 nodes and 125 links (Chennai, India) has been
established to demonstrate the performance of the
model. Agrawal and Tom (2004) proposed two
SRFC-based parallel GA models. The models were
tested by alarge urban (New Delhi, India) route net-
work with 1,332 nodes and 4,076 links for computa-
tion time, speed, and efficiency. Fan and Machemehl
(2004, 2006a) proposed a genetic algorithm tested by
a 160 node, 418 link example network to systemati-
cally examine the underlying characteristics of the
optimal bus TNDFSP with variable transit demand.
Finally, the application of Genetic algorithms to the
TNDFSP was studied by Zhao and Zeng (2006a). A
stochastic search scheme based on a simulated an-
nealing and GA search method has been developed
to obtain results for large-scale practical problems.

This paper is organized as follows. First, a bi-
level programming model of MTRND is presented
together with a network representation. Then the pro-
posed genetic algorithm is described, followed by a
case study based on the current TRTC mass transit
network to illustrate real-world application of the pro-
posed model and algorithm. Conclusions are given
in the last section.

Il. PROBLEM STATEMENT OF MTRND

The MTRND can be represented as the follow-
ing bi-level mathematical model:

Min, F(u, v(u)) (1)

s.t.

G(u, v(u)) <0, (2)
where v(u) isimplicitly defined by

Min, f(u, v) ©)
s.t.

g(u, v) < 0. (4)

F is the objective function of the upper-level
problem, which minimizes operating costs and pas-
senger traveling costs. u represents a decision vec-
tor of the upper-level problem (targeting designer),
which is a set of routes and the associated headway;
G isthe constraint set of the upper-level problem, such
aslevel of service, link capacity, network connectivity,
fleet size, and limits of headway. f is the objective
function of the lower level problem (targeting
passenger), which minimizes travel costs. visade-
cision vector of the lower-level problem, represent-
ing a set of link flows. g is the flow conservation
constraint for the lower-level problem.

This work assumes that for any given u, thereis
a unique equilibrium solution v(u) obtained from the
lower-level problem. The v(u) is called the reaction
function. It isin effect a nonlinear equity constraint
of the upper-level problem and a congestion penalty
of the objective function F; thus MTRND isintrinsi-
cally non-convex, which is an NP-hard problem and
difficult to solve optimally (Ben-Ayed et al., 1988;
Yang et al., 1994; Constantin and Florian, 1995; Yin,
2000; Gao et al., 2005; Chiou, 2005).

Thelower-level problem represents the passenge’s
route choice behavior in response to costs decided
by the upper-level decision maker. The current work
assumes that passengers make their route choices in
a user-optimal manner; hence the lower-level prob-
lem can be formulated as a standard user equilibrium
passenger assignment problem, or a stochastic user
equilibrium problem (Sheffi, 1985).

I11. NETWORK REPRESENTATION

Figure 1(a) represents a nine-station, eight-seg-
ment mass transit network. Fig. 1(b) shows five avail-
able routes in the candidate set. For example, route
1 represents the 1-4-7-8-7-4-1 travel path. Trains stop
at each station and reverse at terminal stations (1 and
8). Round trip time and round trip distance of route
1isRT; and RL;. If route 1 is chosen and its associ-
ated frequency is Fq, then s; is set to 1 and the num-
ber of trains required by route 1 TS, is calculated by

Eq. (5).
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Fig. 1 A 9-station mass transit network example

TS, = [s1 X RT; x Fj| (5)

Traditionally, a mathematical programming
model must consider all possible routes and use bi-
nary variable s; to decide whether to choose the ith
route or not. Then constraint (6) ensures that the to-
tal number of trains used does not exceed the fleet
size TRC.

2i-1-,TS<TRC (6)

Figure 1(c) represents the network model for this
example, with five link types based on various pas-
senger activities described in Table 1. Nodes corre-
spond to exits, entrances, boarding, alighting, and
platform. No costs are associated with nodes. Also,

the exit/entrance node (i.e. stations 1~9) will be the
sink/source of trips in the passenger assignment
problem.

For example, the bold solid line of Fig. 1(c) de-
picts passenger movements from station 1 to station
6. A passenger enters station 1, walks to the platform,
waits, boards the train of route 1, and alights at the
platform of interchange station 4. If route 4 and 5
are chosen simultaneously, he may take route 4 to
reach station 6 directly, or alternatively, he may take
route 5 to station 5, alight at the platform, and then
transfer to route 4 to station 6. Making transfers takes
time and isinconvenient. Passenger assignment prob-
lems should therefore take into account in-vehicle
travel time as well as transfer time. Transfer time
from one route to another in the example mentioned
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Table1 Fivelink types of passengers' movement

Link type Movement of passengers Free travel cost Capacity

a Enter the origin station and Walking time when the Design capacity of walk lane
walk to the platform walk lane is not congested

b Wait on the platform and Waiting time Design capacity of platform
board the train

c In the train In-vehicle time Crresponding route capacity

d Alighting Alighting time when the Design capacity of platform

platform is not congested
e Walk out on the platform and Walking time when the walk ~ Design capacity of walk lane

exit the destination station

lane is not congested

above can be estimated exactly by additional links of
alighting, waiting, and boarding. Therefore, these
five link types can represent passenger movements
adequately and reasonably, thus simplifying the math-
ematical programming problem.

The free travel cost of a-type and e-type links
in Table 1 represents the time walking on the un-con-
gested walk lane. The free travel cost of the b-type
link is the waiting time at the platform. Suppose the
arrival rate of passengers is a normal distribution.
Then the free travel cost of a b-typelink is half the
headway of the associated route (Turmquist, 1978).
The free travel cost of the c-type link is in-vehicle
time between two adjacent stations. Depending on
the associated route timetable, free travel cost is usu-
ally constant. Capacities of the a-type and e-type link
are the design capacities of walk lanes. The capaci-
ties are calculated adequately in the construction
phase of mass transit system stations and can be col-
lected easily from the associated design documents.
Capacities of the b-type and d-type link are design
capacity parts of the associated platform. The ca-
pacity of the c-type link is the capacity sum of trains
of the associated route passing through the origin
node, which is decided by the associated route
headway.

Some links may be overloaded and become
crowded after the passenger assignment phase. Such
a condition causes passenger inconvenience on the
links. Passenger total cost should therefore take into
account free travel cost as well as congestion penalty.
The link travel time function suggested by the U.S.
Bureau of Public Roads is used (Lee and Hsieh, 2002).

TCH) =tox |1+015x ). (7)

where TC = passenger travel cost with congestion pen-
alty on the link; ty = free travel cost when thelink is
not congested; x = passenger volume on the link; v, =
link capacity described in Table 1.

The following notable assumptions are made in
the formulation:

1. The MTRND is along-term plan. The O-D matrix
of the mass transit system is not affected by the
plan result.

2. The fare depends on the shortest distances from
origin stations to destination stations. Passenger
cost affected by routes and associated headway is
travel time and congestion penalty.

3. The MTRND focuses on a peak hour plan. Route
headway of non-peak hoursis set to policy headways
to perform at arequired level of services.

4. Trains stop at every associated route station, and
dwelling time and turnover time are constant. Thus
the round distance and time of routes RL; and RT;
are constant.

. Train capacities are the same and constant.

6. Peak hour passengers are commuters with the same
time values. They act rationally and know all rel-
evant travel cost information, and travel the short-
est paths from original stations to destination
stations.

o1

V. FORMULATION OF MTRND

The MTRND problem stated in the previous sec-
tion can be formulated as a nonlinear mixed-integer
bi-leveling programming model shown below:

Min o:xi‘,lRLix F Xs; +,B><i1RTi><Fi><3+/l
1= i=
Na X,y Nb Xy
xyx (23, f TCx+2.%, J TC(X)dx
=1Jo =41Jo
N¢ X Ng Xq
+ c;JO TCXdx+2 3, fo TC(X)dx

+ 2§1 fo “TeM)dx) | @)

s.t.
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n
2. |RTx Fixs|<TRC, (9)
1=
.Zn)l 6;;xs =1, for all line segment j, (10)
=

A 1 >Q0OT, for all line segment j,
ig,l 6;; x Fixs, (1)

A 1 <PT, for all line segment j,
izl 9” X Fi XS (12)
Fi >0, (13)

Na X, Db Xy

Min 23 f TCR)dx +2 3 j TC()dx
a=1Jo b=1Jo
Nc¢ Xc Ng Xq
+ 3| To0odk+ 2.3, | Tomx
Ne X
+2Y J TC(X)dx, (14)
e=1Jo
S.t.

2 fis= T, for all O-D pairs(r, s), (15)
Xa = 2 fiSx 815, a=1~n,, (16)
Xp = 2 fiSx 8ff, b=1~ny, (17)
Xe = 2kfiSx 8%, c=1~ng (18)
Xg = 2 fiSx 8%, d=1~ng, (19)
Xe = 2y fiSx 0%, e=1~n, (20)
fis >0, (21)
Xal Xbl XC! Xdl Xe 2 Ol (22)

where o = unit operating cost per train-km; 8 = de-
preciation per train-hour; y = passenger’s in-vehicle
time cost per hour; A = weight which is decided by
designer; the other symbols are described in the no-
tation section.

The objective function (8) isthe generalized cost
of the mass transit system and passengers, measured
in monetary cost. It contains three items. The first
item reflects the energy cost, which is the product of
total trip distance of all routes and the conversion
parameter o.. The second item reflects the deprecia-
tion cost, which is the product of total trip time of all
routes and the conversion parameter . The third item
reflects the travel cost, which is the product of total
time value of all passengers and the conversion pa-
rameter A.

Constraint (9) limits the sum of trains used by
routes within the fleet size. Constraint (10) is used
to ensure that all stations and line segments are served.
Constrains (11)-(12) are used to ensure that all line
segment frequencies between every two adjacent sta-
tions are in the minimum to maximum headway range.

Constraints (14)-(22) denote the lower-level
MTRND problem, a passenger assignment problem.
Both the objective function (14) and the third item of
Eq. (8) sum up travel cost of all link types. Based on
the study of Chang and Guo (2007), the value of out-
of-vehicle time (i.e. a, b, d and e-type links) is as-
sumed as two times that of in-vehicle time (i.e. c-type
links). Constraints (15)-(22) are traditional flow con-
servation constraints.

The aforementioned problem is NP-hard because
its upper-level problem is an NP-hard set-covering
problem and the reaction function TC(x) is a non-lin-
ear function.

V. PROPOSED SOLUTION ALGORITHM

Genetic algorithms prove to be very effective
for solving bi-level problems (Yin, 2000). The com-
plicated network structure and large number of con-
straints and variables make it very difficult to obtain
optimal MTRND solutions. Thus, heuristics, such as
genetic methods (Guan et al., 2006), are often adopted
to solve the problem approximately and efficiently.
This work develops a genetic algorithm based on
MTRND characteristics, and applies several improve-
ment strategies to enhance solution quality and save
computational time.

Figure 2 depicts the flowchart of the proposed
MTRND genetic algorithm. Descriptions of impor-
tant steps of the proposed algorithm follow.

1. Genetic Encoding

This coding scheme represents a chromosome
(i.e., asolution) by a positive integer vector. Each
individual chromosome gene represents the number
of trains used by the corresponding route in the or-
dered candidate route set. Hence, chromosome length
is equal to the number of candidate routes. Although
the proposed model requires pre-set candidate routes
as input, these routes can be obtained easily from the
operation manual. Thereis no need to determine these
routes manually. A route is neglected if the associ-
ated gene is assigned the value of 0. Theith routeis
chosen with the non-zero value f; of the associated
gene, and the associated frequency f; can be calcu-
lated easily by Eqg. (23).

_TS
=gy (23)
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[Load original network and candidate]

| Initialize feasible solutions |

|

] Encoding chromosomes |

| Construct network models |

l

[ Passenger assignment |

[ Repair chromosomes |

l

[ Evaluate fitness |

Test of termination
Y

NO
[ Selection operation |

l

[ Crossover operation |

Report the final sol utiorﬂ

[ M utation operation |

L Redundancy checking |

Fig. 2 Flowchart of genetic algorithm

Figure 3 represents an n-gene chromosome.
There are n routes in the chromosome. The number
of trains used by the first route is 10, by the second
routeis 3, by the third route is O (hence the third route
is not chosen), and so on. The sum of the gene val-
ues is the number of trains used, which must not ex-
ceed the pre-determined fleet size.

2. Initialize Feasible Solutions

Theinitial solutions are generated randomly based
on the coding scheme described in section V.1 and
should satisfy the hard constraints (9)-(12). A solu-
tion violating any of them becomes an infeasible solution.
A number of infeasible solutions may appear before
finding enough feasible solutions because of MTRND
characteristics; and it takes some time to get enough
feasible solutions. The current study develops two
faster methods to generate enough feasible solutions
according to operational experience: the 1-car method
and the minimum-car method. The basic concept con-
sidersall candidate set routes and cal cul ates their maxi-
mum and minimum trains. The 1-car method sets the
minimum number of train routes to 1. The number
of trains used by the chosen route is determined ran-
domly between the maximum and the minimum. Af-
ter all chromosome genes are generated this way,

Route 1 2 3 | n-1| n

Chromosome | 10 3 0 | . 4 2

Fig. 3 An example of chromosome encoding

constraints (9)-(12) are re-checked for feasibility. A
feasible solution resultsif all constraints are satisfied.

The steps of these two methods are described
below:

(i) Set each route frequency in the candidate route
set to 15. Compute the maximum number of
trains used by each route TR using the formu-
lation given in Eq. (24).

Tanax = RTl X fi (24)

(ii) Compute the minimum number of trains used by
each route TR™" as follows:

a. If the method is the 1-car method, let the mini-
mum number of trains of each route be 1.

b. If the method is the minimum-car method,
solve the passenger assignment problem by
taking all candidate set routes into consider-
ation and relax the constraints (9)-(12). After
getting the maximum flow of each route F™,
compute each TR™" using Eq. (25).

min _ Fimax

TR™ = TR, -

where TR, = capacity of each train.

(iii) Implement the following steps for each chromo-
some, repeating these steps until there are enough
feasible solutions.

a. For each gene in the chromosome, decide ran-
domly whether each route is chosen or not.
That is, decide whether each s is 1 or O.

b. For each gene, if s is 1, decide TR; randomly
in the range between TR™" and TR, Other-
wise, let TR; = 0.

c. After all chromosome genes are generated,
examine the chromosome by checking con-
straints (9)-(12). The chromosome is a fea-
sible solution if the constraints are satisfied.
Otherwise abandon this chromosome and cre-
ate another.

Based on operational experiences, because of the
computation of TR™* by a frequency of 15/hr (i.e.
four minutes headway) and using TR™" as well, we
can decide the trains used by each route reasonably,
thus getting a good initial solution search space.
When each route is chosen and the number of needed
trains is known, we can compute energy cost and de-
preciation cost using the formulation given in Eq.

(8).

(25)
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3. Construct Network Model

The algorithm takes the routes with non-zero
number of trains into consideration and constructs a
network model for each feasible solution, according
to the previous section description. The passenger
assignment model is utilized for the network model
to get link flows. Then the travel cost using Eq. (8)
formulation is computed. The constructed network
model scale is not the same as the network model built
by traditional mathematical programming methods.
The latter considers all candidate set routes and takes
more computation time. The former only considers
part of the whole set, thus saving considerable com-
putational time. This is one advantage of using a
genetic algorithm to solve the MTRND problem.

4. Passenger Assignment

The passenger assignment model utilized by the
algorithm is a standard deterministic Frank-Wolfe
user equilibrium assignment model, based on Floyd's
shortest path method and all-or-nothing assignment
method. The travel cost of each link is updated after
each iteration assignment, using Eq. (7). Passenger
travel cost is computed when the assignment is
finished, using the Eq. (8) formulation to calculate
solution fitness.

5. Repairing Strategy

A route in some feasible solutions may get very
few trains, and hence have large headway and higher
waiting cost. If alternative routes with higher capaci-
ties can serve the same O-D pairs, the route with
higher waiting cost may get zero flow after the pas-
senger assignment step. The associated gene becomes
useless. If a useless gene can be rejected and con-
straints (9)-(12) satisfied simultaneously, we can im-
prove fitness by reducing operation cost, and hence
find a better solution. The method is a deep-search
strategy.

This paper develops a repairing mechanism, to
thisend. All chosen route links are checked after the
passenger assignment step. The associated gene value
will be set to 0 and constraints (9)-(12) checked if a
route has no flow. New solution fitness will be re-
computed and compared with other solutionsif these
constraints are satisfied. Otherwise, the original so-
lution is kept in the population.

6. Improved Fitness Function
The masstransit company usually buysjust enough

trains to operate because trains are expensive, so there
might be many overloaded links. Many feasible but

bad solutions occur in the searching process. These
unwanted solutions, and their influence on solution
quality and speed, cannot be neutralized using the penalty
cost formulation given in Eq. (7).

The algorithm adds a penalty cost to the fitness
function to solve such problems, as described in Eq.
(26). The number of overloaded links following pas-
senger assignment are counted and multiplied by M.
The product is added to the fitness function. Bad so-
lutions are excluded from the population because of
higher fitness solutions, even though they appear fre-
guently in the searching process, thus improving so-
lution-searching quality and speed.

F = total costs + M
x (number of overloaded links)

Na Np Ne
=EQ.(8) + M x (X Z,+ X Z,+ X Z,
a=1 b=1 c=1
Ng Ne
; 26
+dz::1 Z4 +e;1 Ze) (26)
where F = fitness value; M = a big positive
number;

Z,= [1, 0f X>V,; 7, = [1, if %>V;
\0, otherwise. ' |0, otherwise. '

z, = [1,0f %> Ve; Zy= [1, 0 xg>vgs
\O, otherwise. \0, otherwise.

7 = 1, 0f %>V,
€ |0, otherwise. '

7. Termination Criteria

The maximum number of iterations is used as
the stopping rule. When the number of iterations
reaches or exceeds this number, the algorithm stops
and outputs the best found solution.

8. Three Crossover Operators

Since a complex crossover operator makes
many infeasible offspring, we develop three simple
Crossover operators: one-point crossover, one-point
mutation crossover, and two-point crossover. These
operators are compared to see which one fits the
MTRND problem in the case study section.

The operator steps are described below:

(i) Select two separated parents using a traditional
wheel method (Goldberg, 1989).
(i1) Select a cut-point, and create offspring using the
following methods:
(a) If the one-point crossover operator is utilized,
as denoted in Fig. 4, the cut-point position is
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Parent1 |A|B|C|DIE|F|G|H

(I) 1

Parent2|{1 |J (K |L M [N|O| P

Offspring2 |A |B|C|DJM |N|O|P

Cut-point
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T

Offspring 1

Cut-point

Fig. 4 One-point crossover
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Fig. 5 One-point mutation crossover

Parent1 |A|BJC|D|E|JF|[G|H

(I) 1

1
1
Paent2| | | J|K|L [M]

N[{O| P

Cut-point 1 Cut-;)oi nt2

Offspringl | A|B|{K|L |[M{F|[G|H

Offspring2 | | [JJC|{D|EIN|O| P

Cut-point 1 Cut-point 2

Fig. 6 Two-point crossover

between two adjacent genes. Offspring are ob-
tained by exchanging the left parts of the two
parents after the cut-point.

(b) If the one-point mutation crossover operator
is utilized, as denoted in Fig. 5, the cut-point
position is on a gene. The method is similar
to the one-point crossover, the left parts of the
two parents are exchanged, and the X gene of
offspring 1 is a random number between 0 and
(TRC — . 1§i ﬂTRi), the Y gene of offspring
2 is arandom number between 0 and (TRC —
J_:1~ZM_¢ZTRJ-). Utilizing these equalizations
makes the offspring satisfy constraint (9).

(c) If the two-point crossover operator is utilized,
as denoted in Fig. 6, two cut-points are
selected, and the cut-point positions are be-
tween two adjacent genes. Offspring are ob-
tained by exchanging the middle parts of the
two parents between the two cut-points.

(d) Examine the offspring by checking constraints
(10)-(12). If an offspring satisfiesal constraints,
it is added to the population; otherwise, it is
rejected.

(e) Repeat above-mentioned steps until the num-
ber of offspring is sufficient.

9. Mutation Operator

Similarly, a complex mutation operator makes

many infeasible solutions, taking more computation
time. Hence we use a simple mutation operator here,
and develop a checking mechanism to avoid an in-
feasible solution. The mutation operator steps are
described below:

(l) Let A = [/’Ll, /’Lz, /13, ey )],i, ey An_l, ),n] be the
chromosome to be mutated at the encoded genes
of the ith intersection point. Decide a constant
number T as the maximum number of mutating
trials for the selected chromosome.

(ii) Select a random integer i between 1 and n.

(iii) Compute A{ using the formulation given in Eq.
(27). Using Eq. (27) makes sure the new chro-
mosome satisfies constraint (9).

2! = random(0, TRC jgl A+ 2) (27)

(iv) Examine the new chromosome by checking con-
straints (10)-(12). The new chromosomeis afea-
sible solution if all constraints are satisfied.
Otherwise, if the number of mutation trialsis not
greater than T, go to Step (ii). If the number of
mutation trials is greater than T, then the chro-
mosome’ s mutation is rejected.

10. Redundancy Checking

The complexity of Floyd’s shortest path method
is O(N?), therefore passenger assignment computation
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Table 2 The Candidate route set of case study TRTC HCM main line network

Route Number of stations Origin-destination Round trip time (min) Round trip distance (km)
1 30 R33-G1 121.75 63.66
2 24 R26-G1 92.15 43.52
3 21 R23-G1 81.17 37.83
4 23 R33-G7 94.82 48.59
5 17 R26-G7 65.22 28.45
6 14 R23-G7 54.23 22.76
7 20 BL37-BL16 84.78 44.44
8 17 BL37-BL13 73.9 38.11
9 14 BL37-BL10 64.65 33.63
10 17 BL40-BL16 65.6 35.99
11 14 BL40-BL13 54.72 29.65
12 11 BL40-BL10 45.47 25.18
13 26 R33-019 110.18 57.36
14 20 R26-019 80.58 37.22
15 17 R23-019 69.6 31.53
16 22 BL16-G1 87.22 40.85
17 19 BL13-G1 76.33 34.51
18 16 BL10-G1 67.08 30.04
19 15 BL16-G7 60.28 25.78
20 12 BL13-G7 49.4 19.45
21 9 BL10-G7 40.15 14.97
22 3 R11/G11-BL6/G13 9.33 3.18
time increases substantially as network size increases. R33
We may speed up the algorithm by eliminating redun-
dant passenger assignment computation. R26
This investigation specifically devel ops a check- R23

ing mechanism to eliminate redundancies. After the
crossover and mutation stage, the children are checked
to see whether they are duplicated or not. If achild
is duplicated, then the passenger assignment of that
child will not be executed, thus saving computational
time.

VI. CASE STUDY: TRTC MASS TRANSIT
NETWORK

This work applies the proposed model and al-
gorithm to the Taipei Rapid Transit Corporation
(TRTC) network as a case study. The TRTC isamass
transit system in Taipei city serving more then one
million passengers daily and about one hundred thirty-
five thousand passengers during weekday peak hours.
TRTC operates two types of mass transit systems, the
Heavy-Capacity Metro (HCM), and the Medium-Ca-
pacity Metro (MCM). We focus on the HCM main
lines, excluding the MCM and HCM branch lines.
The TRTC provided network structure, travel time be-
tween adjacent stations, O-D matrix, routes and as-
sociated headway as of Feb, 2007.

Figure 7 shows the simplified TRTC HCM main
line network configuration. The number of stations
totals fifty-four, with twenty-two candidate set routes

BL37 BL40 BL6/G13 \BL7/R13 BL10 BL13 BL16

Gl
Fig. 7 The HCM main line network structure of TRTC

as shown in Table 2. Table 3 shows five routes and
associated headways. Fifty-three trains serve pas-
sengersin the timetable. Fig. 8 depicts the headways
between end stations. Three segments are very
crowded, due to heavy passenger demand during week-
day peak hours, in addition to the interchange station
BL7/R13 platform. Fig. 8 shows the segments by a
solid bold line. Thusthe TRTC uses five additional
spare trains as shuttle trains to reduce congestion.
Nevertheless, if more trains cannot join the opera-
tion (because of budget constraints), the crowding
problem may worsen, due to growing passenger
demand. Moreover, temporarily running shuttle trains
is not a good idea from the perspective of auto traffic
control. Our network design model provides an al-
ternative to solve the problem.

o, B, v,and A, in (8), as obtained from operational
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Table 3 The peak-hour route design of TRTC HCM main line network

Route Origin-destination Trains used Headway (min) Train-km Train-hour
1 R33-G1 18 6.76 564.70 18
7 BL37-BL16 12 7.07 377.41 12

10 BL40-BL16 11 5.96 362.09 11

14 R26-019 11 7.33 304.85 11

22 R11/G11-BL6/G13 1 9.33 20.45 1

Total 53 1629.5 53

Fitness (thousand) 10620.3 Total traveling time  86097.6 hours

Table 4 Comparison of performance measures for initial solution generation methods

Method 1-car Minimum-car
Statistic measures Mean Standr_:\rd Coeffl_ mgnt of Mean Stapdgrd Coeffl_C| Qnt of
deviation variation deviation variation
Time of generating 109.2 68.6 62.8% 255.7 30.0 11.7%
initial solutions (sec)
Coefficient of variation 61.0 2.0 3.3% 61.1 1.2 1.9%
on relationships (%)
Computation time (sec) 13099.7 8103.4 61.9% 12287.5 8178.6 66.6%
Maximum fitness 4568.4 2125.3 46.5% 3036.4 1416.1 46.6%
Fitness of the first 652.5 15.9 2.4% 656.1 11.2 1.7%
non-inferior solution
(thousand)
Generation of the first 19 18.8 99.5% 14 14.1 101.5%
appearing non-inferior
solution
Fitness of the final solution 623.6 8.7 1.4% 624.8 8.5 1.4%
(thousand)
Generation of the first
appearing final solution 71 46.8 66.3% 60 51.2 84.9%
experience, are 378.8, 1522, 73.8, and 0.00027. The R33
maximum and minimum headways are 7 and 2 minutes, 6.76 min
respectively. The population size, number of generations, R26
crossover rate, and mutation rate, as also obtained from 3.52 min
experimental tests, are 50, 200, 0.95, and 0.2.
BL73 BL40  BL6/G13 \\ BL7/R13 BL16
1. Performance Measures Comparison of Initial 7.07min -~ R1UGLL  >23min
Solution Generation Methods G10/015
. . . . . 6.76 min
This study examines six combinations of two
aforementioned initial solution generation methods G01
and th.ree crossover operator; (i.e. one-point, one-point Fig. 8 The peak-hour headway configuration of TRTC MRT net-
mutation, and two-point), in order to compare the work

performance of initial solution generation methods.
Each combination has ten replications and Table 4
describes the results.

The third row of Table 4 illustrates that initial
solutions can be generated within a reasonable amount
of time. The 4" row provides the centralization of

initial solutions generated by the 1-car method and
the minimum-car method. Egq. (28) described below
is utilized to compute the variation coefficient on re-
| ationships between every two initial solutions (X, y)
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of areplication. Each replication is examined to ob-
tain its variation coefficient on relationships. The
higher the coefficient, the greater the decentraliza-
tion of replicated initial solutions. Because the coef-
ficient means of the 1-car method and minimum-car
method are 61.0 and 61.1 separately, the distribution
of initial solutions generated by these two methods
decentralizes. The best solution is obtained through
the genetic algorithm searching strategy.

Rely y = 2= 1 - o(TR = TRY)? (28)

The other rows of Table 4 compare solution per-
formance for these two generation methods. The com-
parison result is described below:

(i) The 5" row identifies that the minimum-car
method uses less lower computation time.

(i) The 6" row describes first generation maximum
fitness to understand the convergence speed of
these two methods. The result shows that the mini-
mum-car method is faster then the 1-car method.

(iii) The 7" and 8" rows describe the fitness and
apparent generation of the first non-inferior so-
lutions to identify which method obtains an ac-
ceptable solution in a reasonable number of
generations. Although the 1-car method gets the
lower mean fitness of 652.5 thousands, the gap
between the fitness of these two methods is small
(656.1 —652.5)/656.1 = 0.6%. The variation co-
efficients are 2.4% and 1.7% separately. That
is, the values of the first-appearing non-inferior
solutions are very close and stable. Besides, the
average first-appearing generation of non-infe-
rior solutions for the minimum-car method islower
then that of the 1-car method. This result means
that the minimum-car method obtains an accept-
able solution in fewer generations then the 1-car
method.

(iv) The 9t and 10" rows describe the fitness and
apparent generation of the first final solutions to
identify which method obtains the final solution
in areasonable number of generations. The com-
parison result is the same as the non-inferior
solution comparison. The values of the first-ap-
pearing final solutions are very close and stable.
The average first-appearing generation of final
solutions of the minimum-car method is lower
than that of the 1-car method. This means the
minimum-car method obtains a best solution in
fewer generations than the 1-car method.

(v) To sum up, the values of fitness obtained by the
1-car method and minimum-car method are very
close. However, the minimum-car method gets
faster convergence speed, uses |ess computation
time, and requires fewer generations to obtain
final solutions. It obtains solutions with quality

as well as efficiency, and is suitable for the
MTRND problem.

2. Comparison of Performance Measures for
Crossover Operators

The current work examines the case of the same
initial solution generated by minimum-car method by
these three crossover operators in order to compare
crossover operator performance. Each operator has
ten replications, described by Table 5. The result of
comparison is described below:

(i) The 3" row identifies that the one-point muta-
tion operator uses the most computation time.
Computation times of the one-point operator and
the two-point operator are very close and com-
prise one third of the computation time spent by
the one-point mutation operator.

(ii) The 4™ row identifies that the one-point opera-
tor has the lowest maximum fitness of each run.
Convergence speed of this operator is faster than
the others.

(iii) The 5" row describes that the two-point opera-
tor has the lowest fitness of the first non-infe-
rior solutions. The coefficient of variation 1.6%
means the quality is stable.

(iv) The 6" row identifies that the one-point muta-
tion operator has the lowest first-appearing gen-
eration of the first non-inferior solutions. But,
computation time for this operator is three times
that of the others. The one-point operator and
the two-point operator obtain an acceptable so-
lution in less time than the one-point mutation
operator.

(v) The 71" and 8™ row identify that the two-point
operator has the lowest fithess and the first-ap-
pearing generation of the first final solutions.
This means that this operator obtains the best so-
lution in fewer generations than the others.

(vi) In summary, the values of fitness obtained by the
three crossover operators are very close. Because
of less computation time and fewer generations
to obtain final solutions, the two-point operator
obtains solutions with quality and efficiency, and
is suitable for the MTRND problem.

3. Results for Minimum-car Method Plus Two-
point Crossover Operator

The aforementioned analysis results identify that
the combination of the minimum-car method and the
two-point crossover operator is suitable for the
MTRND problem. This work examines thirty repli-
cations in order to understand the hybrid algorithm
performance. The result is summarized by Table 6
and described below:
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Table5 Comparison of performance measures for crossover operators

Operator One-point

One-point mutation

Two point

Standard Coefficient

Statistic measures Mean L .
deviation of variation

Standard Coefficient
deviation of variation

Standard Coefficient
deviation of variation

Computation 8760.9 1153.2 13.2% 30199.3

time (sec)

Maximum fitness  2440.0 621.6 25.5% 2444.3

of each run

Fitness of the first 665.4 8.8 1.3% 669.7
non-inferior
solution (thousand)

Generation of the 8 4.8 57.7% 5
first appearing

non-inferior

solution

Fitness of the 645.1 18.7 2.9% 648.3
final solution
(thousand)

Generation of the 109 72.2 66.3% 105
first appearing
final solution

3593.7 11.9%  8892.7 1769.0 19.9%
623.0 25.5%  2634.9 55 0.2%
4.0 0.6% 663.9 10.9 1.6%
4.5 88.9% 9 6.8 72.2%
14.1 2.2% 641.9 18.4 2.9%
59.6 56.6% 95 68.7 72.7%

(i) The averaged first appearing generation of the
first non-inferior solutionsis4. This means that
the big-M application described in Eq. (26) is
helpful for algorithm convergence.

(i) The mass transit system will not be crowded
by implementation of these thirty final solutions
because their fitness is less than the M. There-
fore there is no need for shuttle train manual
operation, thus solving the dispatching and
crowding problem.

(iii) The averaged first appearing generation of the
final solutionsissixty. A designer emphasizing
computation time can set the maximum genera-
tion to 100 to obtain an acceptable best solution.

(iv) The maximum, average, and minimum operat-
ing trains used by the final solutions are 56, 54,
and 53 separately. This verifies that the pro-
posed algorithm saves operating trains subject
to operational constraints. Reducing operating
trains is helpful for saving operation cost and
providing residual trainsfor maintenance purpose.

(v) The final solutions are centralized and stable
because their coefficient of variation is 2.1%.
Eighteen replications get the best solution (fitness
=611.0), which is 60% of the thirty replications.

(vi) Six replications get the second best solution
(fitness = 613.5), which is 20% of the thirty
replications.

(vii) Thefirst two best solutions of the final solutions
(fitness = 611.0 and 613.5) are 80% of the thirty
replications. This verifies that the proposed

algorithm obtains good solutions robustly.

(viii) To sum up, the hybrid algorithm with minimum-
car method and the two-point crossover operator
obtains solutions with quality aswell as efficiency,
and is suitable for the MTRND problem.

4. Discussion of the Best Solution and the Second
Best Solution

Table 7 and Fig. 9 describe the route design and
headway configuration of the best solution (fitness =
611.0 thousands) of the thirty replications. Solution
characteristics are described below:

(i) The mass transit system will not be crowded and
there is no need for the shuttle train. Thus we can
dispatch trains automatically and save driver costs.

(i1) The number of operating trains is 53, the same
asthe TRTC. This means that we can leave five
spare trains.

(iii) The solution contains three routes. The route
configuration is easy for passengers to remember.
The minimum headway appears at the CBD. The
situation is common for real cases.

(iv) Because the minimum headway of these three routes
is 4.31 minutes, when trains arrive at terminal
stations, the drivers have sufficient time to walk
from the fronts of trains to the rears to continue
on to the next trip without the requirement of an
extradriver. Thus the driver cost is saved.

(v) As per passenger transfer penalty, passengers
from G1 to R33 can change trains to route 13
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Table 6 Resultsfor the minimum train method plus two-point crossover operator

First non-inferior solution

Final solution

Replication Fitness Generation Fitness Generation Trains
(thousand) first appeared (thousand) first appeared
1 654.9 2 611.0 8 53
2 625.4 3 613.5 36 53
3 667.9 7 611.0 23 53
4 622.9 8 611.0 11 53
5 670.8 3 613.5 110 53
6 661.3 4 613.5 33 53
7 635.2 7 633.6 145 55
8 662.5 3 611.0 78 53
9 662.5 2 650.6 106 56
10 657.6 3 613.5 45 53
11 622.9 1 611.0 7 53
12 622.9 1 611.0 22 53
13 674.5 8 611.0 38 53
14 650.6 2 611.0 91 53
15 625.4 1 613.5 20 53
16 654.2 2 611.0 52 53
17 613.5 1 613.5 1 53
18 664.4 9 611.0 31 53
19 646.6 14 611.0 31 53
20 671.2 1 613.5 96 53
21 671.9 2 644.4 77 56
22 650.3 2 611.0 18 53
23 646.6 10 611.0 28 53
24 654.9 27 611.0 90 53
25 642.5 1 618.8 36 54
26 633.6 2 633.6 2 55
27 645.4 17 611.0 70 53
28 630.6 2 611.0 41 53
29 644.2 1 611.0 154 53
30 621.7 4 611.0 52 53
Maximum 674.5 27 650.6 154 56
Minimum 613.5 1 611.0 1 53
Mean 652.09 4 618.2 60 54
Standard deviation 17.61 2.25 13.3 47.34 1.08
Coefficient of variation 2.7% 53.6% 2.1% 79.6% 2.0%
Table 7 Route design of the best solution
Route Origin-destination Trains used Headway (min) Train-km Train-hour
9 BL37-BL10 15 431 468.17 15
13 R33-019 22 5.01 687.20 22
16 BL16-G1 16 5.45 449.62 16
Total 53 1604.99 53
Fitness (thousand) 611.0 Total traveling time 84418.7 hours

easily at the G10 or G11 station. The average
waiting time is 2.5 minutes (half of the headway
of route 13). They needn’t spend too much time
transferring in the system.

(vi) As per link capacity, the links between BL6/G13
and BL 10 own maximum capacity. The headway

is 2.41 minutes and still exceeds the minimum

constraint of 2 minutes. Additional trains can ex-

pand the capacity if needed.

Table 8 and Fig. 10 describe the route design
and headway configuration of the second best solu-
tion (fithess = 613.5 thousands) of the thirty replications.
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Table 8 Route design of the second best solution

Route Origin-destination Trains used Headway (min) Train-km Train-hour
7 BL37-BL16 19 4.46 597.57 19
13 R33-019 23 4.79 718.43 23
18 BL10-G1 11 6.10 295.56 11
Total 53 1611.56 53
Fitness(thousand) 613.5 Total traveling time 83008.2 hours
R33 R33
501 min 4.79 min
BL37 BL6/G13 \ 241 min BL10 BL16 BL3 BL6/G3 \ 258 min BLIO BL16
P > 4.46 min i
431 min \__\RIUGLL 545min M eaimin NSt 446 min
5.45min 2-811&15115 P GlO/Ol.5
5.01 min 5.45 min ' 6.1 min
019 GO01 019 GO01

Fig. 9 Headway configuration of the best solution

Because of good cost, transfer convenience, and route
configuration combination, the second best solution
isworth considering. The designer can decide which
solution is suitable to fit his objectives.

VIlI. CONCLUSIONS

This paper presents a genetic algorithm to solve
the MTRND problem on real mass transit networks.
In order to overcome special MTRND problem
characteristics, the effects of special genetic coding,
an initial feasible solution creating method, network
representation, repair strategy, improved fitness function,
crossover operators, mutation operator, and redundancy
checking areillustrated and applied to avoid infeasible
initial solutions, save computation time, and improve
solution quality. A detailed analysis is carried out
examing real the TRTC network in Taipei. Compari-
sons between two initial solution-creating methods and
three operators find out whether combining the mini-
mum-car method and the two-point crossover operator
are suitable for this use. Case study results indicate
that the model and the proposed algorithm could be
useful for the MTRND problem in the real world.
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NOMENCLATURE

s trips on the kth path of the alternate

Fig. 10 Headway configuration of the second best solution
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paths from the rth station to the sth
station

frequency of theith route in traing/
hour

the ith route

number of routes in network
number of links of type a, b, ¢, d,
and e accordingly

minimum allowable headway of
segments in hours

maximum allowable headway of
segments in hours

the rth origin station

round trip distance of the ith route
in kilometers

round trip time of the ith route in
hours

the sth destination station

binary variable that is 1 if the ith
route is chosen; O otherwise

trips from the rth station to the sth
station

train capacity in riderships/train
fleet sizein trains

trains used by theith routein trains
integer variables that are flow of
link type a, b, c, d, and e accord-
ingly in trips

operating cost per train-km
depreciation funds per train-hour
passenger’s in-vehicle time cost
per hour

weight which is decided by designer
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6; binary variables that are 1 if seg-
ment j is served by the ith route ;
0 otherwise
% Obk Otk OGk, Ok binary variables that are 1 if
links of type a, b, ¢, d, and e
are included in the kth route
for the rsth O-D; 0 otherwise
Va, Vb, Ve, Vg, Ve Capacity of links of type a, b, c, d,
and ein trips
Zay Zy, Zg, Zy4, Ze binary variablesthat are 1 if the flow
of links of type a, b, c, d, and e ex-
ceed their capacity; 0 otherwise; and
(r,s) trips from the rth station to the sth
station.
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