
Chapter 3 

Bayesian Approach for Assessing Process Capability 
Based on Single Sample 

3.1. Introduction 

The usual practice of  judging process capability by simply looking at the point 
estimates of  capability indices, have a flaw since there is no assessment of  the error of  
these estimates. Therefore, a simple point estimate of  the index is highly unreliable in 
making decision in assessing process capability since the estimate does not represent the 
true index value. When the estimate is greater than a pre-specified value , say 1.00, or 
1.33, it does not guarantee that the index is greater than  and vice versa. It is 
therefore preferable to obtain an interval estimate for which we can assert, with a 
reasonable degree of  certainty, that it contains the true index value. Existing methods for 
testing the capability indices have focused on using the traditional but long time been 
widely used distribution frequency approaches. However, the sampling distributions of  
those PCI estimators are usually complicated that it is very difficult to obtain exact 
interval estimates. Examples include Chou and Owen (1989), Chou et al. (1990), Li et al. 
(1990), Boyles (1991), Kushler and Hurley (1992), Kotz et al. (1993), Subbaiah and Taam 
(1993), Nagata and Nagahata (1994), Tang et al. (1997), Zimmer and Hubele (1997), 
Pearn et al. (1998), Hoffman (2001), Zimmer et al. (2001), Pearn and Lin (2002), Pearn 
and Shu (2003a, 2003b) and many others. Kotz and Johnson (2002) provided a compact 
survey with interpretations and comments on some 170 publications on process 
capability indices, which appeared during 1992-2000. Spiring et al. (2003) consolidated 
the research findings of  process capability analysis for the period 1990–2002. 

w
w

Bayesian statistical techniques are an alternative to the frequency approach. These 
techniques specify a prior distribution for the parameter of  interest, in order to obtain the 
posterior distribution for the parameter. We then could make inferences about the 
parameter by using its posterior distribution given the sample data. It is not difficult to 
obtain the posterior distribution when a prior distribution is given, even when the form 
of  the posterior distribution is complicated, as one can always use numerical methods or 
Monte Carlo methods (Berger (1985), Kalos and Whitlock (1986)) to obtain an 
approximate but quite accurate interval estimate. This is the advantage of  the Bayesian 
approach over the traditional distribution frequency approach. 

Assuming that the measures 1 2{ , , , }nx x x ′= ⋅ ⋅⋅x  are random sample taken from 
independent and identically distributed from 2( , )N µ σ , a normal distribution with 
mean µ  and variance 2σ .  Then, the likelihood function for µ  and σ  is 
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The most important problem in Bayesian inference is how to specify an appropriate 
prior distribution. If  prior information about the parameters is available, it should be 
incorporated in the prior density. If  we have no prior information, we want a prior with 
minimal influence on the inference. There are mainly two types of  priors: informative 
and non-informative. Ideally, a Bayesian should subjectively elicit a prior on the basis of  
available information, expert opinion or past experience. Informative prior distributions 
summarize the evidence about the parameters concerned from many sources and often 
have a considerable impact on the results.  For an example of  informative priors, 
conjugate priors, although being widely used, can only be justified if  enough information 
is available to believe that the true prior distribution belongs to the specified family; 
otherwise, the main justification for using conjugate prior is their mathematical 
tractability. 

On the other hand, non-informative prior, Bayesian analysis often leads to the 
procedures with approximate frequency validity while retaining the Bayesian flavor, thus 
allowing certain amount of  reconciliation between the two conflicting paradigms of  
statistics and providing with mutual justification. Box and Tiao (1992) defined a 
non-informative prior as prior, which provides little information relative to the 
experiment. Bernardo and Smith (1993) use a similar definition, they say that 
non-informative prior have minimal effect relative to the idea, on the final inference. And 
Kass and Wasserman (1996) stated two interpretations of  non-informative priors.  

Therefore, the first step for the Bayesian approach is to find an appropriate prior.  
Usually, when there is only a little or no prior information is available, or only one 
parameter of  interest, one of  the most widely used non-informative priors is the so-called 
reference prior, which is a non-informative prior that maximizes the difference between 
information on the parameter provided by the prior and by the posterior. In other words, 
the reference prior allows the prior to provide information as little as possible about the 
parameter (see Bernardo and Smith (1993) for more details). For this reason, in our 
investigation we adopt the following non-informative reference prior chosen by Cheng 
and Spiring (1989) and Shiau et al. (1999a), 

( , ) 1/π µ σ σ= , µ−∞ < < ∞ , 0 σ< < ∞ .                (3.2) 

We note that the parameter space of  the prior is infinite, hence the reference prior is 
improper, which means that it does not integrate to one. However, it is not always a 
serious problem, since the prior incorporated with ordinary likelihood will lead to proper 
posterior. Furthermore, the credible interval obtained from a non-informative prior has a 
more precise coverage probability than that obtained from any other priors. The 
posterior probability density function (PDF), ( , | )f µ σ x  of  ( , )µ σ  may be expressed as 
the following: 
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is the Euler gamma function of  . Further, in order to satisfy the integration property 
that the probability over PDF is 1, a coefficient of  

1
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( , | )f µ σ x  can be obtained through 

some algebraic manipulations. Consequently, the posterior PDF of  ( , )µ σ  can be 
expressed as: 
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(3.3) 

3.2. Bayesian Approach for Cpk

3.2.1. The Posterior Probability p with Cpk

Cheng and Spiring (1989) proposed a Bayesian procedure for assessing process 
capability index pC . Chan et al. (1988) applied a similar Bayesian approach to index 

pmC  under the assumption that the process mean µ  is equal to the target value . 
Shiau et al. (1999b) derived the posterior distributions for 

T
2
pC , 2

pmC  under the 
restriction that process mean µ  equals to the target value , and T 2

pkC  under the 
restriction that the process mean µ  equals to the midpoint of the two specification 
limits, , with respect to the two priors (a non-informative and a Gamma prior). 
However, the restriction of  6

M
Tµ =  or Mµ =  is not a practical assumption for many 

industrial applications. A nice Bayesian procedure for assessing process capability index 

pmC  relaxing the restriction on the process mean was proposed by Shiau et al. (1999a). 
They also applied a similar Bayesian approach for testing the index pkC  but under the 
restriction Mµ = . We note that in this case pkC  reduces to pC . 

In the following, we consider a Bayesian procedure for the most popular capability 
index pkC  for general situation – no restriction on the process mean. Thus, the results 
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obtained are more general and practical for real applications. We consider the quantity 
Pr{process is capable|x} in the Bayesian approach.  Since the index pkC  is our focus 
in this case, so we are interested in finding the posterior probability  
for some fixed positive number . 

Pr{ | }pkp C w= > x

w

Given a pre-specified capability level , the posterior probability based on 
index 

0w >

pkC  that a process is capable can be derived in the following way.  
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Next, we consider the two cases for derivation of  posterior probability p  as 
follows: 
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/x M sδ = − . Thus, the expression (3.4) can be rewritten as 

Pr{ | }pkp C w= > x  
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From both cases expressed in (3.5) and (3.6), we obtain that  

Pr{ | }pkp C w= > x  

20

2 1 2ˆ ˆexp 3 3 3 3 1  
3( )

n

pk pk
s s

nC nw n C nw dα
σ δ σ

σ σα β βσ

−∞ ⎛ ⎞ ⎡ ⎛ ⎞ ⎛ ⎛ ⎞ ⎞ ⎤= − × Φ × − + Φ + × − −⎜ ⎟ ⎜ ⎜ ⎟⎜ ⎟ ⎢ ⎥Γ ⎣ ⎝ ⎠ ⎝ ⎝ ⎠ ⎠ ⎦⎝ ⎠∫ ⎟ . (3.7) 

Consequently, by changing the variable, let 2y βσ= , then 2  dy dβσ σ= , and 

/ 2/( 1s nσ = − )y . Therefore, the posterior probability p  in (3.7) can be calculated as: 

p = Pr{the process is capable| x}=  Pr{ | }pkC w> x
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and  is the CDF of  the standard normal distribution.  Note that the posterior 
probability 

( )Φ ⋅
p  depends on , , n w δ  and ˆ

pkC .  

3.2.2. Bayesian Procedure for Testing Cpk

As we can see it is rather complicated to compute posterior probability p  in 
(3.8). However, there is a one-to-one correspondence between p  and  when 

 and w  are given, and by the fact that 

* ( )C p

n ˆ
pkC  and δ  can be calculated from the 

process data. While  is the minimum value of * ( )C p ˆ
pkC  required to ensure the 

posterior probability p  reaching a certain desirable level . Thus, we can find the 
value of   satisfies equation (3.8) for various 

w
* ( )C p p . Suppose for this particular 

process under consideration to be capable, the process index must reach at least a certain 
level w, say, 1.00 or 1.33.  From expression (3.8) we have the probability 

 based on the observed process data. Moreover, to see if a process is Pr{ | }pkp C w= > x
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capable (with capability level  and confidence level w p ), we only need to check if 
. Thus, if , then we say that the process is capable in a Bayesian 

sense. Otherwise, we do not have sufficient information to conclude that the process 
meets the preset capability requirement, and then we tend to believe that the process is 
incapable in this case. 

*ˆ ( )pkC C p> *ˆ ( )pkC C p>

To make this Bayesian procedure practical for in-plant applications, we calculate the 
values of   for various values of  = 10(5)160 and * ( )C p n δ = 0(0.5)2.0 with posterior 
probability p = 0.90, 0.95, 0.99 and w  = 1.00, 1.33, 1.50, 2.00.  Tables 3.1(a)-(c) 
summarize the values of   with w = 1.00, for * ( )C p p = 0.90, 0.95 and 0.99, respectively. 
Tables 3.2(a)-(c) summarize the values of   with = 1.33, for * ( )C p w p = 0.90, 0.95, 
and 0.99, respectively. Tables 3.3(a)-(c) summarize the values of   with = 1.50, 
for 

* ( )C p w
p = 0.90, 0.95 and 0.99, respectively.  And the values of   with w = 2.00, for * ( )C p

p = 0.90, 0.95 and 0.99 are displayed in Tables 3.4(a)-(c), respectively.  For example, if  
= 1.33 is the minimum capability requirement, then for w p = 0.95, = 100, n δ = 0.5, 

= 1.5173 by checking Table 3.2(b). Thus, the value * ( )C p ˆ
pkC  calculated from sample 

data must satisfy ˆ
pkC  ≥ 1.5173 to conclude that pkC  ≥ 1.33 (process is capable). From 

these tables we observe that the value of  decreases as * ( )C p δ  increases for each fixed 
p  and .  Figures 3.1-3.4 display the value of  versus n * ( )C p | x M |/ sδ = −  for 
sample size = 10(10)50 from top to bottom in plots, with n p = 0.95 and = 1.00, 1.33, 
1.50 and 2.00, respectively. This phenomenon can be explained by the following 
argument. For a fixed 

w

ˆ
pkC , since 

| | /ˆ
3 3pk

d x M d s
C

s
δ− − −

= = ,                      (3.10) 

then  becomes smaller when s δ  becomes larger, and a smaller s means that it is 
plausible that the underlying process is tighter (i.e. with smaller σ ). Since the 
estimation is usually more accurate for data drawn from a tighter process, it is then 
plausible that the estimate ˆ

pkC  is more accurate with a smaller .  In this case the 
required minimum value is smaller, so we need only a smaller  to account for the 
smaller uncertainty in the estimation.  Intuitively, if the estimation error in our estimate 
is potentially large, then it is reasonable that we need a large  to be able to claim 
that the process is capable, and this means that the corresponding minimum value 

 should be large as well. Thus, the value of  decreases as 

s
* ( )C p

* ( )C p

* ( )C p * ( )C p δ  increases. 
Another observation from the tables is that the value of  decreases as  
increases for fixed 

* ( )C p n
δ  and p .  This can also be explained by the same reasoning as 

above, since a larger  implies that n ˆ
pkC  is more accurate. 
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Figure 3.1 Plots of   versus * ( )C p δ  for 
w = 1.00, = 0.95, and = 10, 20, 30, p n
40, and 50 (top to bottom in plot). 
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Figure 3.2 Plots of   versus * ( )C p δ  for 
w = 1.33, = 0.95, and = 10, 20, 30, p n
40, and 50 (top to bottom in plot). 
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Figure 3.3 Plots of   versus * ( )C p δ  for 
w = 1.50, = 0.95, and = 10, 20, 30, p n
40, and 50 (top to bottom in plot). 
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Figure 3.4 Plots of   versus * ( )C p δ  for 
w = 2.00, = 0.95, and = 10, 20, 30, p n
40, and 50 (top to bottom in plot). 

 

3.3. Bayesian Approach for CPU and CPL

3.3.1. Posterior Probability p with CPU and CPL

As mentioned before,  and  have been designed particularly for processes 
with one-sided manufacturing specifications (which require only  or , but not 
both). The index  measures the capability of  a smaller-the-better process with an 
upper specification limit, whereas the index  measures the capability of  a 
larger-the-better process with a lower specification limit.  

PUC PLC
USL LSL

PUC

PLC

In the following we derive a Bayesian approach using the indices PUC  and PLC , for 
measuring the process capability in which the specifications are one sided rather than 
two sided. Since the index PUC  and PLC  is our major concern in this case, so we are 
interested in finding the posterior probability Pr{ | }PUp C w= > x  or  
for some fixed positive number w . Therefore, given a pre-specified capability level 

, the posterior probability based on index 

Pr{ | }PLp C w= > x

0w > PUC  that a process is capable is given as 
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By changing variable, let 2y βσ= . Then, 2  dy dβσ σ=  and / 2/( 1s nσ = − )y . 
Therefore, the posterior probability p  may be rewritten as: 
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normal distribution. 
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3.3.2. Bayesian Procedures for Testing CPU and CPL

For convenience of  presentation, we let  be either IC PUC  or  and  
denote as either  or , then from the equations (3.11) and (3.12), the posterior 
probability based on the one-sided indices  and  can be rewritten as 

PLC IC

PUC PLC

PUC PLC

p = Pr{the process is capable |x} Pr{ | }IC w= > x  

10 1
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exp 3 ( )
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I
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∞

+
−

⎛ ⎞⎛ ⎞= − ×Φ × −⎜ ⎟ ⎜ ⎟−Γ ⎝ ⎠ ⎝ ⎠
∫  w dy ,            (3.13) 

where ( 1)/2nα = − ,  and  is the 
CDF of  the standard normal distribution. Note that the posterior probability p depends 
on ,  and . From expression (3.13), by noticing that there is a one-to-one 
correspondence between 

1/2
1 [2/( 1)] [( 1)/2]/ [( 2)/2]nb n n n− = − Γ − Γ − ( )Φ ⋅

n w IC
p  and  when  and w  are given, and by the fact 

that  can be calculated from the process data. While  is the minimum value 
of  required to ensure the posterior probability 

* ( )C p n

IC * ( )C p

IC p  reaching a certain desirable level 
. Thus, we can find the value of   for various w * ( )C p p , which can be useful in 

assessing process capability. Figures 3.5-3.7 plot the probability p  versus  from 
(3.13) for = 10(30)100 with = 1.25, 1.45, 1.60, respectively. From these figures, we 
can see that the larger is the sample size, the steeper the curve. That is, the larger is the 
sample size, the smaller the critical value . To make this Bayesian procedure 
practical for in-plant applications, we tabulated the minimum values  of   for 
reaching desirable confidence levels 

* ( )C p

n w

* ( )C p
* ( )C p IC

p  with various capability requirements . Tables 
3.5-3.7 display the values of   with = 1.25, 1.45, 1.60, = 10(10)300 for p = 
0.95, 0.975 and 0.99, respectively.  For example, if  = 1.25 is the minimum capability 
requirement, then for 

w
* ( )C p w n

w
p = 0.95, = 50, = 1.493. Thus, the value  calculated 

from sample data must satisfy  ≥ 1.493 to conclude that  (or ) ≥ 1.25 
(process is capable). 

n * ( )C p IC

IC PUC PLC

 

Figure 3.5 Probability p  versus  for = 10(30)100, = 1.25.* ( )C p n w
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Figure 3.6 Probability p  versus  for = 10(30)100, = 1.45. * ( )C p n w

 

Figure 3.7 Probability p  versus  for = 10(30)100, = 1.60. * ( )C p n w

As a result, to judge if  a given process meets the capability requirement, we first 
determine the pre-specified value , the capability requirement, and the confidence 
level 

w

p  (or the α -risk) for the interval.  Check the appropriate table or solve the 
equation (3.13), the critical value  based on given values of  * ( )C p p ,  and n  can 
be obtained and next to calculate  from sample data.  If  the estimated value  is 
greater than the critical value , then we may conclude that the process meets the 
capability requirement ( ).  Otherwise, we do not have sufficient information to 
conclude that the process meets the present capability requirement.  In this case, we 
would believe that . 

w

IC
*

IC

( )C p

IC w>

IC w≤

 

3.4. Application Examples 

3.4.1. Example 1: Assessing Oil-hydraulic Cylinder Process Capability  

To illustrate how we apply the proposed procedure to actual data collected from the 
factory. We consider the following example taken from a company engaged mainly in 
making oil-hydraulic cylinder components and oil-hydraulic cylinder (oil-hydraulic 
propeller) assembly. Oil-hydraulic equipment is required for automation and oil-hydraulic 
cylinders are the main component of  such equipment. The pistons are one of  the most 
critical parts of  oil-hydraulic cylinders. The manufacturing specifications for the grooves 
of  the piston are set to USL = 13.25 mm and = 13.15 mm.  The capability 
requirement for this particular model of  oil-hydraulic cylinder was defined as 
“Satisfactory” if  

LSL

pkC > 1.33. i.e., the requirement for the process yield is no more than 
66 NCPPM. 
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Table 3.8 A total of  150 observations for the grooves of  the piston. 

13.207 13.194 13.186 13.204 13.202 13.222 13.172 13.200 13.197 13.192 

13.178 13.190 13.215 13.199 13.196 13.205 13.203 13.195 13.194 13.206 

13.184 13.215 13.199 13.182 13.207 13.203 13.206 13.184 13.184 13.194 

13.208 13.212 13.207 13.200 13.191 13.206 13.195 13.203 13.194 13.200 

13.215 13.211 13.187 13.211 13.207 13.189 13.215 13.203 13.198 13.206 

13.184 13.218 13.201 13.198 13.207 13.214 13.199 13.197 13.206 13.208 

13.192 13.203 13.207 13.193 13.209 13.201 13.196 13.213 13.198 13.211 

13.194 13.207 13.190 13.207 13.202 13.209 13.206 13.192 13.209 13.208 

13.204 13.218 13.191 13.209 13.191 13.187 13.200 13.190 13.209 13.212 

13.198 13.186 13.197 13.187 13.205 13.193 13.196 13.210 13.199 13.199 

13.207 13.184 13.208 13.202 13.199 13.203 13.190 13.195 13.189 13.199 

13.206 13.212 13.207 13.210 13.205 13.208 13.222 13.203 13.196 13.203 

13.205 13.218 13.208 13.196 13.208 13.199 13.190 13.189 13.218 13.193 

13.181 13.194 13.197 13.213 13.187 13.212 13.212 13.189 13.206 13.198 

13.205 13.190 13.211 13.217 13.190 13.196 13.214 13.207 13.200 13.190 

Historical data based on routine process monitoring shows that the process is under 
statistical control and the process distribution is justified and is shown to be fairly close 
to the normal distribution. The sample data collected from the stable process (a total of  
150 observations) are displayed in Table 3.8. The sample mean and sample standard 
deviation are calculated as x s= 13.201 and = 0.00969.  And we then calculate the 
value of  the estimator ˆ ( | |) )pk x M s= − − /(3C d = 1.6925, and /x M sδ = −

ˆ
= 0.103. 

By solving the posterior probability in (3.9), the minimum value of  pkC  required to 
ensure the probability p = 0.95 with = 1.33 and = 150, is found to be = 
1.4869.  Since 

w n * ( )C p
ˆ

pk
* (C pC  = 1.6925 is greater than the critical value = 1.4869 in this 

case, it is therefore concluded with 95% confidence (
)

α = 0.05) that the grooves of  the 
piston manufacturing process satisfies the requirement “ pkC > 1.33”.  That is, at least 
99.9934% of  the produced oil-hydraulic cylinders are conformed to the manufacturing 
specifications. 

3.4.2. Example 2: Assessing EEPROM Chip Process Capability 

Electrically Erasable Programmable Read-Only Memory (EEPROM) chip is a 
user-modifiable read-only memory chip that can be erased and reprogrammed (written 
onto) repeatedly through the application of  higher electrical voltage. It is usually used in 
portable phones, PHS phones, compact portable terminals, consumer products (such as 
cordless phones and audio systems); industrial equipment including measuring 
instruments and PLCs; OA products such as printers and scanners, in-house telephone 
switches, and other communication equipment. The output leakage current (OLC) is an 
essential product quality characteristic, which has significant impact to product quality. 
For the output leakage current of a particular model of EEPROM, the upper 
specification limit, , is set to 5USL Aµ . We consider the following example taken from 
a company located on the Science-Based Industrial Park in Taiwan, which 
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manufacturing and designing standard Flash Memory EEPROM and Mixed-Signal 
products, such as, PLL, ADC DAC, and many others.  The manufacturing 
specifications for a 128-bit EEPROM chip, has an upper specification limit 5 A=USL µ  
for the output leakage current. If  the OLC is greater than 5 Aµ , then the EEPROM chip 
is considered to be nonconforming product, and will not be used to make the EEPROM 
chip of  that particular model. The capability requirement for this particular model of  
EEPROM chip was defined as “Capable” if  . 1.45>PUC

A total of  100 observations were collected from a stable process in the factory are 
displayed in Table 3.9. From the Shapiro-Wilk test for normality confirms this with 
p-value > 0.1, it is evident to consider the data collected from the factory are normal 
distributed. The calculated sample mean x = 2.987, the sample standard deviation = 
0.382, the value of  

s
ˆ ( )= −PUC USL x /3s = 1.757 and 1−nb = 0.992 based on the 100 

sample data. The critical value = 1.640 by checking Table 3.6 based on = 1.45, * ( )C p w
p = 0.95, and = 100. Since  is larger than the critical value 

= 1.640 in this case, we therefore conclude that with 95% confidence the 128-bit 
EEPROM chip manufacturing process satisfies the requirement “ ”. 
Furthermore, we have the probability  from the equation 
(3.13). That is, we have a 99.16% confidence to conclude that the produced EEPROM 
chips are conformed to the manufacturing specifications with fraction of  
nonconformities 13.614 PPM. 

n 1
ˆ 1.743−= × =PU n PUC b C

* ( )C p

1.45>PUC
Pr{ 1.45| } 0.9916PUC > =x

Table 3.9 A total of  100 observations of  EEPROM chips. 

2.74 2.25 2.98 3.14 3.08 2.85 3.21 2.51 3.19 2.75 
3.68 3.23 2.90 3.05 2.58 3.31 2.52 3.16 2.62 2.95 
2.85 2.80 3.03 3.05 2.54 2.44 2.82 3.01 2.93 3.39 
2.47 3.08 2.40 3.22 2.77 3.05 4.15 2.59 3.28 3.56 
2.75 3.38 3.49 2.54 2.28 2.93 3.54 3.49 3.09 3.17 
3.17 2.66 3.35 2.77 2.68 3.15 3.23 2.77 2.30 2.17 
3.35 2.76 2.20 2.75 3.58 2.70 2.78 2.99 3.63 3.44 
2.91 2.67 3.56 2.73 2.90 2.41 3.20 3.86 3.02 3.39 
3.26 3.60 2.89 3.18 3.03 2.60 2.70 3.25 3.32 2.67 
2.61 3.09 3.07 2.89 3.49 3.14 2.96 2.87 2.97 3.26 
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