
Chapter 4 

Bayesian Approach for Assessing Process Capability 
Based on Multiple Samples 

4.1. Introduction 

Most of  the results obtained so far regarding the statistical properties of  estimated 
capability indices are based on the assumption of  a single sample. However, in practice 
and in much of  the quality control literature, the process performance is monitored and 
controlled by periodically collecting subsamples of  data (i.e. based on the concepts of  
rational subgrouping). To use estimators based on multiple samples and then interpret 
the results as if  they were based on a single sample may result in incorrect conclusions 
(Vännman and Hubele (2003)). In order to use past in-control data from multiple 
samples to make correct decisions regarding process capability, the distribution of  the 
estimated capability index based on multiple samples should be taken into account. 
Therefore, it is more practical to develop a procedure for assessing process capability for 
cases with multiple samples. Kirmani et al. (1991) considered the estimation of  σ  and 

pC  based on the sample standard deviations of  the subsamples. Li et al. (1990) have 
investigated the distribution of  estimators of  pC  and pkC  based on the ranges of  the 
subsamples. Under the assumption of  normality, Vännman and Hubele (2003) 
considered the indices in the class defined by  and derived the distribution of  
the estimators of  , when the process mean is estimated using the grand average 
and the process variance is estimated using the pooled variance from subsamples 
collected over time for an in-control process. Further, Hubele and Vännman (2004) 
considered the pooled and un-pooled estimators of  the variance from subsamples, and 
gave the sampling distributions of  the corresponding estimators of  

( , )pC u v
( , )pC u v

pmC . Those methods 
assume that the estimation occurs after numerous subsamples have been collected, 
plotted on a control chart, and the process has been deemed to be in control. The 
un-pooled variance estimator is equivalent to the traditional “overall” or “long-term” 
variance estimator, whereas the pooled variance estimator is based on the control chart 
related “within” and “short-term” variance estimator. That is, when the process has 
undergone a change in variation, the un-pooled estimator captures all of  the variation, 
whereas the pooled estimator captures the component of  within subsamples variation 
(see, e.g., Cryer and Ryan (1990) and Hubele and Vännman (2004)). 

However, those studies on PCIs are all based on the traditional frequentist point of  
view. In the following we consider the problem of  estimating and testing process 
capability indices with multiple samples based on Bayesian approach, and propose 
accordingly a Bayesian procedure for testing process capability. We will assume that the 
process is in statistical control during the time period that the subsamples are taken. 
Assuming that the  samples are randomly taken from independent and identically 
distributed (i.i.d.) 

m
2( , )N µ σ , a normal distribution with mean µ  and variance 2σ . 
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Denote the measures of  the i-th sample as 1 2{ , , ..., }
ii i i inx x x=x  with sample size , 

and . Then, the likelihood function for 
in

{ , 1,2, ..., , 1, 2, ..., }ij ix i m j n= = =X µ  and σ  
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In practical situation, the choice of  prior information is hard to justify. Therefore, in our 
investigation we adopt the following non-informative reference prior chosen by Cheng 
and Spiring (1989) and Shiau et al. (1999), 

( , ) 1/h µ σ σ= , µ−∞ < < ∞ , 0 σ< < ∞ . 

The posterior probability density function (PDF), ( , | )f µ σ X  of  ( , )µ σ  may be 
expressed as the following: 
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 In order to satisfy the integration property that the probability over PDF is 1, the 
posterior PDF of  ( , )µ σ  becomes 
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4.2. Bayesian Approach for Cp Based on Multiple Samples 

4.2.1. Estimation of Cp Based on Multiple Samples 

For cases where data are collected as multiple samples, Kirmani et al. (1991) 
considered  samples each of size n  and suggested the following estimator of m pC , 
where ix  is the i-th sample mean, and  is the i-th sample standard deviation: is

( )ˆ
6

p*
p

USL LSL d
C

−
= ,  where 

( 1) 1( 1) 1
( 1)

m n
p

p

m n
d

m n s
ε − −− −

=
−

, 

1

( 1) 1
2 ( 1) ( 1) 1

( 1) 1 2 2m n
m n m n

m n
ε

−

− −
− − −⎛ ⎞ ⎡ ⎛ ⎞= Γ Γ⎜ ⎟ ⎜ ⎟

⎤
⎢ ⎥− − ⎝ ⎠ ⎣ ⎝ ⎠ ⎦

, 

2 2

1 1

1 1
( 1)

( 1)

m m
2

p i i
i i

s n s
m n m= =

= − =
−

s∑ ∑ , 

noting that under normality assumption the statistic /ps σ  is distributed as 
. Therefore, the estimator ( )

1/2
1 1 /[ ( 1) 1]m n m nχ − − − − *ˆ

pC  is distributed as: 
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The estimator *ˆ
pC  is unbiased, and its probability density function can be obtained 

as the following, for , where , which can be expressed 
as a function of 

0y > 2
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The variance of *ˆ
pC  has been obtained as (see Kirmani et al. (1991)): 
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In addition to being unbiased, Pearn and Yang (2003) investigated some statistical 
properties of *ˆ

pC  and showed that *ˆ
pC  is asymptotically efficient, consistent for pC  

and 1/2 *ˆ( ) ( )p pmn C C−  converges to  in distribution. 2(0, /2)pN C

For cases where data are collected as subsamples with unequal sample size, we can 
consider the generalized estimator of pC  as below. In fact, the estimator *ˆ

pC  obtained 
from  samples each of size  remains unbiased. m in
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4.2.2. Posterior Probability p with Cp Based on Multiple Samples 

As mentioned earlier, it is natural to consider the quantity Pr {process is capable |X} 
in the Bayesian approach. That is, we want to obtain the posterior probability 

 given the multiple samples collected over time for an in-control 
process, for some fixed positive number . Therefore, given a pre-specified precision 
level  and denote , the posterior probability for index 

Pr{ | }pp C w= > X

w
0w > ( )/a USL LSL w= − pC  

based on multiple samples that a process is capable is given as 
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By changing the variable, let 2 1( )y βσ −= , then 3 -12( )  dy dβσ= − σ , the above 
posterior probability p  expression may be rewritten as: 
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or equivalently, 

       1 (1/ ,p Gamma t ,1)α= − ,                         (4.4) 

where ( , 1/ )tαΓ  is the value of  the incomplete gamma function of  1/  with 
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For the single sample, that is, 1m = , 1r = , and ps s= , the results obtained in (4.3) 
and (4.4) can be reduced to those obtained in Cheng and Spiring (1989). Denoted 

. In fact, practitioners would be expected to find a bound which the true 
value of  the process capability no less than the bound value with a certain level of  
confidence. When this happens, we have . Note that the posterior 
probability 

* *ˆ /pC C w=

Pr{ | }> >XpC w p
p  depends on m , , ,  and in r w ˆ

pC  only through , ,  and 
. There is a one-to-one correspondence between 

m in r
*ˆ /pC w p  and  when  and *C m in , 

are given, and by the fact that  and r *ˆ
pC  can be calculated from the process data, we 

can find that the minimum value of  required to ensure the posterior probability *C p  
reaching a certain desirable level. Denote this minimum value as . Then, the value 
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Therefore, a 100 %p  credible interval for pC  is * *ˆ[ / ( ), )pC C p ∞ , where p  is a 
number between 0 and 1, say 0.95, for 95% confidence interval, which means that the 
posterior probability that the credible interval contains pC  is p . The credible interval 
(or called credible set) is a Bayesian analogue of  the classical lower confidence interval. 
We say that the process is capable in a Bayesian sense if all the points in this credible 
interval are greater than a pre-specified value of , say 1.00 or 1.33. In other words, to 
see if a process is capable (with capability level  and confidence level 

w
w p ), we only 

need to check if . If  the estimated value * *ˆ ( )pC C p w> × *ˆ
pC  is greater than the critical 

value , then we may conclude that the process meets the capability 
requirement ( ).  Otherwise, we do not have sufficient information to conclude 
that the process meets the present capability requirement.  In this case, we would 
believe that . 

* ( )C p w×

pC > w

pC w≤

For users’ convenience in applying our Bayesian procedure, we tabulate the 
minimum values  of  , for various  with * ( )C p *ˆ /pC w r 2(2)10,15m = ,  
in Tables 4.1-4.3 to ensure 

10(5)30in n= =
p = 0.99, 0.975, and 0.95, respectively. For example, if  

 is the minimum capability requirement, then for 1.33w = p = 0.95, with = 10 of  
each sample size  and 

m
10in n= = 0.90r = , we can find = 1.1297 by checking 

Table 4.3. Thus, the minimum value of  

* ( )C p
*ˆ
pC  required for a capable process is * ( )C p w×  

= 1.1297×1.33 = 1.5026. That is, if  *ˆ
pC  is greater than 1.5026, we say that the process is 

capable in Bayesian sense. 
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4.3. Bayesian Approach for Cpk Based on Multiple Samples 

4.3.1. Estimation of Cpk Based on Multiple Samples 

For the case when the studied characteristic of the process is normally distributed 
and we have  subsamples, where the sample size of the i-th subsample is . For 
each , , let , 

m in
i 1, 2,...,i m= ijx 1, 2,..., ij n= , be a random sample from a normal 

distribution with mean µ  and variance 2σ  measuring the studied characteristic. We 
will assume that the process is in statistical control during the time period that the 
subsamples are taken. Consider the process is monitored using a X -chart together with 
a -chart. Then, for each subsample, let S ix  and  denote the sample mean and 
sample variance, respectively, of the i-th sample and let 

is
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For the commonly used pkC  index, the estimator based on multiple samples can be 
considered as follows, 

*ˆ min ,
3 3pk

p p

USL x x LSL
C

s s
− −⎧ ⎫= ⎨ ⎬

⎩ ⎭

|
3 p

d x M
s

− −
=

|
.              (4.5) 

 

4.3.2. Posterior Probability p with Cpk Based on Multiple Samples 

Subsequently, we consider the quantity Pr{the process is capable| }p = X  in the 
Bayesian approach.  Since the index pkC  is our main concern in this case, so we are 
interested in finding the posterior probability Pr{ | }pkp C w= > X  for some fixed 
positive number . Therefore, given a pre-specified capability level , the 
posterior probability for index 

w 0w >

pkC  based on multiple samples that a process is capable 
is given as the following, 
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Detailed derivations of  the posterior probability Pr{ | }pkp C w= > X  in (4.6) are 
presented in Appendix I. When m ,  and  are given, in w ˆ

pkC , δ  and  are 
calculated from the observed data, we can find the minimum value of 

r
ˆ

pkC , , 
required to ensure the posterior probability 

* ( )C p
p  reaching a certain desirable level w  

using the similar technique as single sample. Therefore, suppose for this particular 
process under consideration to be capable, the process index must reach at least a certain 
level w, say, 1.00 or 1.33. Based on the observed process data, we have 

. Further, to see if a process is capable (with capability level  and 
confidence level 

Pr{ | }pkp C w= > x w
p ), we only need to check if . Thus, if , then 

we say that the process is capable in a Bayesian sense. Otherwise, we do not have 
sufficient information to conclude that the process meets the preset capability 
requirement, and then we tend to believe that the process is incapable in this case. To 
make this Bayesian procedure practical for in-plant applications, we calculate the values 
of   for various values of  = 0.7(0.1)1.0 and 

* *ˆ ( )>pkC C p * *ˆ ( )>pkC C p

* ( )C p r δ = 0(0.5)2.0 with = 2(2)10, 
= = 10, = 1.00 in Tables 4.4(a)-4.4(b) for 

m

in n w p = 0.95, 0.99, respectively.  And the 
values of   for = 0.7(0.1)1.0, * ( )C p r δ = 0(0.5)2.0, = 2(2)10, = = 15, = 1.00 
are displayed in Tables 4.5(a)-4.5(b) for 

m in n w
p = 0.95, 0.99, respectively. Tables 4.6(a)-4.6(b) 

and 4.7(a)-4.7(b) summarized the values of   for r = 0.7(0.1)1.0,* ( )C p δ = 0(0.5)2.0, 
= 1.33 with = 2(2)10, = = 10 and 15, respectively. For example, if  = 1.00 is 

the minimum capability requirement, then for 
w m in n w

p  = 0.95, with = 10 of  each sample 
size = 15 and 

m
n 0.8=r , 0.5=δ  we can find = 1.2480 by checking Table 4.5(b). 

Thus, the value of  

* ( )C p
*ˆ
pkC  calculated from sample data must satisfy *ˆ

pkC  ≥ 1.2480 to 
conclude that pkC  ≥ 1.00 (process is capable). 

 

4.4. Bayesian Approach for Cpm Based on Multiple Samples 

4.4.1. Estimation of Cpm Based on Multiple Samples 

For single sample, Boyles (1991) showed that 2 2ˆ (ns x Tτ = + − 2)
2)

 is the unbiased 
estimator of  . Therefore, for cases where the data are collected as multiple 
samples, we consider  samples each of  size  and suggest the following estimator 
of  

2 ( Tσ µ+ −
m in

pmC , where ix  is the i-th sample mean, and  is the i-th sample standard is
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Thus, the estimator 2τ̂ ′ , such that 2 2ˆ( ) ( )2E Tτ σ µ′ = + − , is the unbiased estimator 
of  . However, for cases with multiple samples, we need to consider the 
variation between and within multiple samples. Thus, we define the ratio of  total within 
sample variation (SSW) and total sum of  square variation (SST) as 
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where  is the pooled variance of these samples. 
Moreover, the total sample variation about target value  can be decomposed as: 
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Thus, the generalization of  the estimator of  pmC  for multiple samples defined in 
(4.7) can be rewritten as: 
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For the single sample, that is, = 1, m 1r = , and ps s= , the estimator of  pmC , 
*ˆ /(3 ( 1)/ )pmC d s n n 2δ= − + , which can be reduced to the estimator ˆ

pmC  defined in 
Boyles (1991). Therefore, we may view the estimator *ˆ

pmC  as a direct extension of  ˆ
pmC . 

4.4.2. Posterior Probability p with Cpm Based on Multiple Samples 
Shiau et al. (1999) proposed a Bayesian procedure for the index pmC  on cases with 

one single sample. As we mentioned earlier, it is practical to develop a procedure for 
assessing process capability for cases with multiple samples. Therefore, we now are 
interested in finding the posterior probability Pr{ | }pmp C w= > X  based on multiple 
samples collected from a in-control process. Given a pre-specified precision level , 
the posterior probability based on index 

0w >

pmC  that a process is capable is given as follows, 
where  is the CDF of  the standard normal distribution, and  and ( )Φ ⋅ r δ  are 
defined as in (4.8) and (4.9). 

Pr{ | }pmp C w= > X  

( ) ([ ]
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b y b y b y b y dy
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All the derivations of  (4.10) are given in Appendix II. The results obtained in our 
investigation, is a generalization of  those obtained in Shiau et al. (1999) from one single 
sample case to multiple samples case based on control chart data. Note that the posterior 
probability p  depends on , , ,  and m in r w *ˆ

pmC  only through m , , , in r δ  and 
. If  is denoted by  in (4.10), we can see that there is a 

one-to-one correspondence between 

*ˆ /pmC w w*C * *ˆ /pmC C=
p  and  when m  and *C in  are given, and , r

δ  and *ˆ
pmC  are calculated from the process data. The minimum value of  can be 

found to ensure the posterior probability 

*C
p  reaching a certain desirable level.  This 

minimum value is denoted by . Thus, the value of   satisfies * ( )C p * ( )C p

*

*

ˆ
Pr{ | } Pr{ | }

( )
pm

pm pm
C

p C w C
C p

= > = >X X . 

A 100p% credible interval for pmC  is * *ˆ[ / ( ),pmC C p )∞ , where p  is a number between 0 
and 1, say 0.95, for a 95% confidence interval. This means that the posterior probability 
that the credible interval contains pmC  is p . Therefore, for practitioners’ convenience 
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in applying our Bayesian procedure, we tabulate the minimum values  of   
for various values of  = 0.7(0.1)1.0 and 

* ( )C p *ˆ /pmC w
r δ = 0(0.5)2.0 with = 5(5)20, = 2(2)10 in 

Tables 4.8(a)-4.8(d) and Tables 4.9(a)-4.9(d) for 
n m

p = 0.95, 0.99, respectively.  For 
example, if  = 1.33 is the minimum capability requirement, then for w p  = 0.95, with 

= 10 of  each sample size = = 10 and m in n 0.9r = , 0.5δ =  we can find = 
1.1569 from Table 4.8(b). Thus, the minimum value of  

* ( )C p
*ˆ
pmC  required for the process is 

capable is  = 1.1569×1.33 = 1.5387. That is, if  * ( )C p w× *ˆ
pmC  is greater than 1.5387, 

we say that the process is capable in a Bayesian sense.  

From these tables we observe that for each fixed p , ,  and r  the value of 
 decreases as 

m n
* ( )C p δ  increases. This phenomenon can be explained by the 

relationship of *ˆ
pmC  in (4.9). For a fixed *ˆ

pmC , ps  becomes smaller when δ  becomes 
larger, and a smaller ps  means that it is plausible that the underlying process is tighter 
(i.e. with smaller σ ). Since the estimation is usually more accurate with the data drawn 
from a tighter process, it is then plausible that the estimate *ˆ

pmC  is more accurate with a 
smaller ps  and the required minimum value  is smaller, since we need only a 
smaller  to account for the smaller uncertainty in the estimation. Intuitively, if 
the estimation error in our estimate is potentially large, then it is reasonable that we need 
a large 

* ( )C p
* ( )C p

*ˆ
pmC  to be able to claim that the process is capable, and this means that the 

corresponding minimum value  should be large as well. Thus, the value of 
 decreases as 

* ( )C p
* ( )C p δ  increases, and this pattern is consistent with Shiau et al. (1999) 

for single sample. On the other hand, according to the definition of  as (4.8) becomes 
larger, the variation between these multiple samples will become smaller when the other 
conditions are fixed. And the smaller the variation is between these multiple samples, the 
more stable the process. Thus, we need only a smaller  to assess the process 
capability. Another observation from the tables is that the value of  decreases as 

 and/or  increases for fixed 

r

* ( )C p
* ( )pC

n m δ ,  and r p . This can also be explained by the same 
reasoning as above, since the estimation will be more accurate with a larger sample size. 

 

4.5. Bayesian Approach for CPU and CPL Based on Multiple Samples 

4.5.1. Estimations of CPU and CPL Based on Multiple Samples  

For cases where the data are collected as multiple control samples, we considered 
 samples each of size  and suggested the following unbiased estimators of  

and , where 
m in PUC

PLC ix  is the i-th sample mean, and  is the i-th sample standard 
deviation, 

is
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m
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= − −∑
µ  and 2σ  respectively. 
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4.5.2. Posterior Probability p for CPU and CPL Based on Multiple Samples 

For cases with multiple samples, the extension of  posterior probability p  for  
may be derived using the similar technique for cases with one single sample as: 

IC

*

10

1 1 2
exp 3

( )( )
I

N m

C r
p N w

y b N m yyαα
∞

+
−

dy
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⎤
⎢ ⎥−Γ ⎝ ⎠ ⎣ ⎝ ⎠

∫
⎦

2

,      (4.12) 

where ( 1)/Nα = − , 
1

m
ii

N n
=

= ∑  and r  is defined as (4.8),  denotes either  
or . A brief  derivation of  the posterior probability 

*
IC *

PUC
*
PLC p  for  is given in the 

Appendix III. We note that for cases with one single sample, the ratio 
IC

1r = , 
, 1N m n− = − ( 1)/2nα = − , then the estimator of  , , and the posterior 

probability 
IC *

IC
p  for  can be reduced to the results obtained before.  IC

As noted earlier, the posterior probability p  depends on ,  and . When 
 and  are given, and by the fact that  and  can be calculated from the 

process data. Therefore, we can find that the minimum value of  required to 
ensure the posterior probability 

n w *
IC

n w *
IC r

* ( )C p
p  reaching a certain desirable level. Thus, to see if a 

process is capable (with capability level  and confidence level w p ), we only need to 
check if . For users’ convenience in applying this Bayesian procedure with 
multiple samples, we provide tables of the minimum values of ,  for 
confidence levels 

* * ( )IC C p>
*
IC * ( )C p

p = 0.95 and 0.99, with commonly used capability requirements = 
1.00, 1.25, 1.45, 1.60 in Tables 4.10(a)-4.13(b) respectively for various values of  = 
0.7(0.1)1.0 and 

IC
r

δ = 0(0.5)2.0 with = 2(2)10, = 5(5)15. m n

4.6. Application Examples 

4.6.1. Example 1: Assessing the Resistor Process Capability 

To illustrate the application of  assessing process capability for multiple samples 
collected over time from a in-control process, we consider a real example on an 
electronic component manufacturer, which developing passive and active components 
for the personal computers, telecommunications, industrial controls, automotive parts, 
and avionics. The factory manufactures various types of  the resistors. For a particular 
model of  the resistors investigated, the target value is set to T = 10.0 mil, and the 
tolerance of  thickness is 2.0 mil, that is, the lower and upper specification limit are set to 

= 8.0 mil and USL = 12.0 mil. If  the characteristic data does not fall within the 
tolerance , the lifetime or reliability of  the resistors will be discounted. The 
collected sample data (10 samples of  size 15 each) are displayed in Table 4.14. 

LSL
[ , ]LSL USL

In order to make the estimation of these capability indices meaningful, we would 
check if the manufacturing process is under statistical control and the distribution is 
normal. For those 10 samples of size 15 each, the Shapiro-Wilk test for normality 
confirms this with p-value > 0.1. That is, it is reasonable to assume that the process data 
collected from the factory is normally distributed. We then construct the −X S  charts 
to check if the process is in control.  The −X S  charts based on the collected samples 
are displayed in Figures 4.1-4.2. The −X S  control charts show that the process seems 
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to be in-control since all the sample points are within the control limits without any 
special pattern. Therefore, the basic assumptions are justified so we could proceed with 
the capability calculations.  

Table 4.14 The 10 subsamples of  15 observations for the thickness of  resistor (unit: mil). 

Samples 
1 2 3 4 5 6 7 8 9 10 

10.21 9.66 9.80 9.48 10.74 10.71 10.00 10.09 10.58 10.23 
10.19 10.36 9.96 9.91 9.72 10.36 10.12 10.12 10.42 10.44 

9.88 10.55 10.04 9.94 10.34 10.17 10.29 9.99 9.58 9.86 

10.73 10.31 9.99 9.93 10.88 10.53 9.62 10.57 10.44 10.16 

10.59 9.72 10.35 10.08 10.48 10.15 9.98 10.50 10.39 10.14 

10.21 10.00 9.94 9.59 10.01 10.09 10.00 9.43 10.87 9.99 

10.61 10.34 10.96 10.01 10.71 10.14 10.12 10.60 9.56 11.12 

10.68 9.77 10.33 9.85 10.15 9.76 9.97 9.86 10.26 10.10 

9.86 10.12 10.39 10.50 10.46 10.15 10.56 9.90 10.16 10.00 

10.69 10.40 10.63 9.77 10.38 10.36 10.60 9.84 10.46 9.97 

10.12 11.11 9.13 9.97 10.39 10.28 9.76 10.31 9.83 10.50 

10.62 10.25 10.57 10.03 10.33 10.05 9.78 10.03 10.09 10.47 

9.73 11.03 10.24 10.02 10.33 9.50 9.74 9.53 10.43 10.30 

10.35 10.23 10.65 10.37 10.15 10.29 10.48 9.72 10.38 10.17 

10.51 9.98 10.70 9.81 10.26 10.29 9.79 10.56 10.27 10.04 
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Figure 4.1 X  control chart of  the process. 
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Figure 4.2  control chart of  the process. S
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The calculated sample mean ix  and the sample variance  for the ten samples 
of  size 15 are summarized in Table 4.15. Thus, 

2
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= 1.6489. 

Suppose for this particular process under consideration to be capable, the process 
index must reach at least a certain level , say, 1.33. Thus, by solving the equation 
(4.10) the critical value of  

w
*ˆ
pmC  can be obtained as *ˆ ( ) ×C p w 1.1069 1.33 1.4722= × =  

based on p = 0.95, = 10, =15. Since the calculated m n *ˆ
pmC  from the samples, 1.6489, 

is greater than the critical value * ( )C p w× = 1.4722, we may conclude, with 95 % 
confidence level, that the process meets the capability requirement “ ” in this 
case. In addition to know that the process is capable, we also have the probability 

 and the 95% lower confidence bound of 

1.33>pmC

Pr{ | } 0.99976> =XpmC w pmC  is 
 based on collected samples. * *ˆ / ( ) 1.6489/1.1069 1.4897pmC C p = =

Table 4.15 The calculated sample mean and the sample variance for the 10 subsamples. 

Sample i 1 2 3 4 5 6 7 8 9 10 

ix  10.332 10.255 10.245 9.951 10.354 10.188 10.053 10.070 10.247 10.233 
2
is  0.110 0.178 0.207 0.066 0.085 0.083 0.096 0.141 0.129 0.097 

4.6.2. Example 2: Assessing the Single Coupler Process Capability 

The rapid development of  optical and photonic technologies for a variety of  
applications has resulted in a similarly rapid need for all-optical systems, and thus the 
need for passive optical components. The number of  stations or nodes on an all-optical 
fiber data bus is limited by the total allowable system loss. Consider a company devoted 
to the optical fiber component module manufacturing, such as Collimator, Isolator, 
Coupler, DWDM, CWDM, and EDFA, etc. The insertion loss (IL) is the most critical 
quality characteristic the company focuses on, which has significant impact to product 
quality. For the insertion loss of  a model of  single coupler with coupling ratio 50/50 (%), 
the upper specification limit, , is set to 3.5 dB.  The capability requirement for this 
particular model of  single mode couplers was defined as “Satisfactory” if  . 

USL

1.25>PUC

We note that to make the estimation of the capability indices meaningful, it is 
essential to check whether the manufacturing process is under statistical control and the 
normally distributed. The process has been justified to be well in-control and near 
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normally distributed. A sample data collection procedure is implemented in the factory 
on a daily basis to monitor/control process quality. The collected data of  15 samples 
each of  size 10 are taken from a stable process (under statistical control), and displayed 
in Table 4.16. 

Table 4.16 The 15 subsamples of  10 observations with calculated sample statistics. 

Sample i Observations ix  2
is  

1 3.37 3.28 3.30 3.38 3.37 3.34 3.26 3.29 3.34 3.35 3.328 0.001796 
2 3.37 3.38 3.37 3.40 3.35 3.32 3.34 3.31 3.30 3.25 3.339 0.002010 
3 3.37 3.30 3.35 3.33 3.36 3.34 3.36 3.36 3.30 3.32 3.339 0.000654 
4 3.35 3.31 3.29 3.32 3.31 3.32 3.34 3.27 3.34 3.35 3.320 0.000689 
5 3.35 3.32 3.31 3.29 3.40 3.29 3.36 3.32 3.32 3.33 3.329 0.001121 
6 3.39 3.33 3.35 3.35 3.34 3.33 3.44 3.33 3.38 3.40 3.364 0.001382 
7 3.36 3.32 3.37 3.35 3.33 3.37 3.29 3.32 3.36 3.30 3.337 0.000846 
8 3.35 3.30 3.31 3.26 3.31 3.34 3.32 3.32 3.35 3.33 3.319 0.000721 
9 3.30 3.34 3.31 3.36 3.29 3.34 3.32 3.36 3.35 3.34 3.331 0.000610 

10 3.37 3.32 3.35 3.33 3.30 3.31 3.34 3.41 3.29 3.29 3.331 0.001454 
11 3.29 3.38 3.27 3.36 3.33 3.34 3.38 3.34 3.34 3.32 3.335 0.001250 
12 3.40 3.31 3.40 3.31 3.30 3.25 3.30 3.36 3.33 3.35 3.331 0.002232 
13 3.38 3.33 3.29 3.40 3.32 3.29 3.32 3.31 3.35 3.34 3.333 0.001290 
14 3.29 3.29 3.29 3.30 3.28 3.29 3.32 3.35 3.34 3.30 3.305 0.000561 
15 3.33 3.34 3.41 3.28 3.34 3.35 3.35 3.29 3.33 3.26 3.328 0.001818 

The individual observation plot of  each sample with respect to the upper 
specification limit is displayed in Figure 4.3. The calculated sample mean ix

2s
2 2 / 0.001229= =∑m

s s m

 and the 
sample variance  for the fifteen samples are summarized in the last two columns of  
Table 4.16. Thus, we have ,

i

1=p ii
3.3313=x 13=r , and 0.88

* ( )/(3 )C b USL x s= × −( 1)PU m n p− = 1.5931 based on these samples.   

By solving the posterior probability in (4.12), the minimum value of   is found 
to be = 1.4025 based on 

*
PUC

* ( )C p p = 0.95 with 15=m , 10=n  and = 1.25. Since 
 = 1.5931 is larger than the critical value = 1.4025 in this case, we therefore 

conclude that with 95% confidence the single coupler manufacturing process satisfies the 
requirement “ ”. i.e., the produced single couplers are conformed to the 
manufacturing specifications with fraction of  nonconformities 88 PPM. 

w
*
PUC * ( )C p

1.25>PUC
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Figure 4.3 Individual observations plot of  each sample. 
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