
Chapter 2 

Frequency Approach for Measuring Process Capability 

2.1. The Index Cp

2.1.1. Process Quality and the Index Cp

Several authors have promoted the use of various process capability indices and 
examined with differing degrees of completeness their associated properties. The first 
process capability index appearing in the literature was the precision index pC  and 
defined as (see Juran (1974), Sullivan (1984, 1985) and Kane (1986)): 
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where  is the upper specification limit,  is the lower specification limit, and USL LSL
σ  is the process standard deviation. The numerator of pC  gives the range over which 
the process measurements are acceptable. The denominator gives the width of the 
range over which the process is actually varying. The index pC  was designed to 
measure the magnitude of the overall process variation relative to the manufacturing 
tolerance, which is to be used for processes with data that are normal, independent, 
and in statistical control. Obviously, it is desirable to have a pC  as large as possible, 
small values of pC  (particularly less than 1.00) would not be acceptable because this 
indicates that the natural range of variation of the process does not fit within the 
tolerance band. Finley (1992) refers to this index as CPI, which he says stands for 
Capability Potential or Capability Potential Index; Montgomery (1996) refers to pC  
as PCR, for Process Capability Ratio. Clearly, the index only measures the potential of 
a process to reproduce acceptable product and does not take into account whether the 
process is centered. 

For processes with two-sided specification limits, the percentage of 
non-conforming items ( %NC ) can be calculated as 1 ( ) (F USL F LSL)− + , where 

 is the cumulative distribution function of the process characteristic . On the 
assumption of normality, 

( )F ⋅ X
%NC  can be expressed as: 
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where  is the cumulative distribution function of the standard normal 
distribution. If the process is perfectly centered at the specification range (

( )Φ ⋅
Mµ = ), 

then the %NC  can be expressed as 2 ( 3 )pCΦ − . For example, pC  = 1.00 
corresponds to %NC  = 2700 PPM, and pC  = 1.33 corresponds to %NC = 63 PPM. 
However, pC  does not refer to the mean of the process, it will not give an exact 
measure of percentage NC  in the general case, i.e. Mµ ≠ . Therefore, it provides a 
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lower bound on %NC  with 2 ( 3 )pCΦ − . 

2.1.2. Estimation of Cp

The index pC  contains only one parameter, σ , to be estimated. If one single 
sample is given as , we may consider the following estimator 1 2{ , , , }nx x x⋅ ⋅⋅ ˆ

pC  of pC  
defined as: 

ˆ
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where 2
1

[ ( ) /( 1)]
n

ii
s x x n

=
= − −∑ 1/2  is the sample standard deviation, which can be 

obtained from a stable process. 

2.1.3. Distributional and Inferential Properties of the Estimated Cp  

Under the assumption of normality, Chou and Owen (1989) obtained the 
probability density function (PDF) of the natural estimator ˆ

pC , which can be 
expressed as: 
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The r-th moment of ˆ
pC , therefore can be calculated as the following: 
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where  is a gamma function. The first two moments as well as the 
variance may be obtained (see also Chou and Owen (1989), Pearn et al. (1992), and 
Kotz and Johnson (1993)). It can be shown that the coefficient of 

1
0

( ) ek tk t − −Γ = ∫ dt
∞

)ˆ( pE C , is larger than 
1 for all . For , this coefficient can be accurately approximated by 

. Therefore, the natural estimator 
n 15n ≥

(4 7)/(4 4)n n− − ˆ
pC  is biased, which overestimates 

the actual value of pC . For the percentage bias to be less than one percent, i.e. 
, it requires the sample size .  Pearn et al. (1998) 

obtained an unbiased estimator by adding a correction factor to 

ˆ ˆ| ( ) |/ 0.01p p pE C C C− ≤ 80n >
ˆ

pC  as pC = , 1
ˆ

n pb C−

( ) (12
1 1 2 2/n n

n nb −
− −= Γ Γ )2− . Pearn et al. (1998) also showed that the unbiased estimator 

pC  is indeed the uniformly minimum variance unbiased estimator (UMVUE) of pC , 
which is consistent, asymptotically efficient, and that 1/2 ( )p pn C C−  converges to 

 in distribution. 2(0, /2)pN C

Due to sampling variation maybe introduced by estimation, it is critical to 
construct a confidence interval to provide a range which includes the true pC  with 
high probability. Thus, the 100(1 )%α−  (equal tails) confidence interval of pC  may 
be derived as (see, e.g., Chou et al. (1990) and Pearn et al. (1998)), 

 6



2 2
1,1 2 1, 2ˆ ˆ

1 1
n / n /

p pC , C
n n

α αχ χ− − −⎡ ⎤
⎢ ⎥

− −⎢ ⎥⎣ ⎦
 or 

2 2
1,1 2 1, 2

1 1

,
1 1

n / n /
p p

n n
C C

n b n b
α αχ χ− − −

− −

⎡ ⎤
⎢ ⎥

− −⎢ ⎥⎣ ⎦
, 

where  and  are the upper 2
1, 2n /αχ −

2
1,1 2n /αχ − − /2α  and 1 /2α−  quantiles of 

chi-squared distribution with 1n −  degrees of freedom. And the 100(1 )%α−  lower 
confidence limit ( L

pC ) of pC  can be obtained by using only the lower limit. 

2.1.4. Hypothesis Testing with CP

In the study of process capability testing, to judge if the process satisfies the preset 
capability requirement (capable), we can consider the following testing hypothesis, 
with null hypothesis 0 : pH C C≤  (the process is not capable), versus the alternative 

1 : pH C C>  (the process is capable), where C  is the predetermine capability 
requirement. For cases with one single sample, Pearn et al. (1998) considered the test 

( ) 1xφ =  if , and 0pC c> ( ) 0xφ = , otherwise. The test φ  rejects the null hypothesis if 
, with type I error 0pC c> 0( )cα α= , the chance of incorrectly judging an incapable 

process as capable, and the critical value  can be obtained below. Pearn et al. (1998) 
showed that the test 

0c
φ  is the uniformly most powerful  (UMP) test of α  level, 

which has minimal type II error among all unbiased tests. 
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Therefore, if   then 0pC c> ( ) 1xφ =  and we reject the null hypothesis 0H  and 
conclude that the process meets the capability requirement ( ). pC C>

 

2.2. The Index Cpk

2.2.1. Process Quality and the Index Cpk

Most companies are no longer solely relying on pC  to quantify process 
capability because of perceived weakness in the index. The major weakness of this 
index lies in the fact that it measures potential capability as defined by the actual 
process spread and does not consider the mean of the process. Therefore, pC  gives 
no indication of actual process performance. It does not reflect the impact that 
shifting the process mean has on a process’s ability to produce product within 
specification (Kane (1986) and Chan et al. (1988)). For this reason, the pkC  was 
developed by taking the magnitude of process variation as well as process location 
into consideration. It is defined as (Kane (1986)): 

{ }min ,
3 3pk

USL LSL
C

µ µ
σ σ
− −

= ,                   (2.1) 

where  is the upper specification limit,  is the lower specification limit, USL LSL µ  
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is the process mean and σ  is the process standard deviation. The index pkC  has 
been regarded as a yield-based index since it provides bounds on the process yield for 
a normally distributed process given a fixed value of  pkC . That is, 
2 (3 ) 1 (3 )pkC p CΦ − ≤ ≤ Φ pk (see Boyles (1991)). The upper and lower bounds of  
nonconforming units in parts per million (NCPPM) are plotted in Figure 2.1 as a 
function of  pkC . Table 2.1 displays some index values with the upper and lower 
bounds of  NCPPM for a normally distributed process. 

 

Figure 2.1 The bounds on NCPPM versus pkC  

Table 2.1 Index values and the corresponding bounds 
on NCPPM for a normally distributed process 

Index Lower bound  Upper bound Index Lower bound  Upper bound 

0.60 35930 71861 1.33 33 66 

0.70 17864 35729 1.40 13 27 

0.80 8198 16395 1.45 6.807 13.614 

0.90 3467 6934 1.50 3.398 6.795 

1.00 1350 2700 1.60 0.793 1.587 

1.10 483 967 1.67 0.272 0.544 

1.20 159 318 1.70 0.170 0.340 

1.24 100 200 1.80 0.033 0.067 

1.25 88 177 1.90 0.006 0.012 

1.30 48 96 2.00 0.001 0.002 

In a purchasing contract, a minimum pkC  value is usually specified. If  the 
prescribed minimum pkC  fails to be met, the process is determined to be incapable. 
Otherwise, the process is considered capable. For a pkC  level of  1, statistically, one 
would expect that the product’s fractions of  defectives, is no more than 2700 parts per 
million (PPM) fall outside the specification limits. At a pkC  level of  1.33, the defect 
rate drops to 66 PPM. To achieve less than 0.544 PPM defect rate, a pkC  level of  
1.67 is needed. At a pkC  level of  2.0, the likelihood of  a defective part drops to 2 
parts per billion (PPB).  

This bound may be established by noting that for a process with fixed pkC  the 
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number of  nonconformities (product items fallout the specification interval 
) but the exact number of  nonconformities will vary depending upon the 

location of  the process mean and the magnitude of  the process variation. Thus, for 
, the exact expected fraction nonconforming measure formula can be 

expressed in terms of  

[ ,LSL USL ]

0pkC >

pC  and pkC  together, as follows (see, e.g., Kotz and Lovelace 
(1998) and Kotz and Johnson (2002)): 

[ ] [ ]% 3 3(2pk p pkNC C C C= Φ − + Φ − − ) . 

Montgomery (2001) recommended some minimum capability requirements for 
processes runs under some designated quality conditions (see Table 2.2). In particular, 

 for existing processes, and  for new processes;  
also for existing processes on safety, strength, or critical parameter, and  
for new processes on safety, strength, or critical parameter.  Finley (1992) also found 
that required 

1.33pkC ≥ 1.50pkC ≥ 1.50pkC ≥
1.67pkC ≥

pkC  values on all critical supplier processes are 1.33 or higher and pkC  
values of  1.67 or higher are preferred. Many companies have recently adopted criteria 
for evaluating their processes that include process capability objectives more stringent 
than before. Motorola’s “Six Sigma” program essentially requires the process 
capability at least 2.0 to accommodate the possible 1.5σ  process shift (see Harry 
(1988)), and no more than 3.4 PPM of  nonconformities. 

 Table 2.2 Some minimum capability requirements  
of pkC  for existing, new, special processes. 

Production Process Types pkC  Value 

Existing Processes 1.33 

New Processes, or 
Existing Processes on Safety, 
Strength, or Critical Parameters 

1.50 

New Processes on Safety, 
Strength, or Critical Parameters 1.67 

On the other hand, in current practice, a process is called "Inadequate" if  
; it indicates that the process is not adequate with respect to the production 

tolerances (specifications), either process variation (
1.00pkC <

2σ ) needs to be reduced or 
process mean ( µ ) needs to be shifted closer to the target value. A process is called 
“Capable” if  1.00 1.33pkC≤ <

1.50

50 2.00pkC

; it indicates that caution needs to be taken regarding 
to process distribution, some process control is required. A process is called 
“Satisfactory” if  1. ; it indicates that process quality is satisfactory, 
material substitution may be allowed, and no stringent quality control is required. A 
process is called “Excellent” if  1.

33 pkC≤ <

≤ <
2.00pkC ≥

; it indicates that process quality 
exceeds “Satisfactory”. Finally, a process is called “Super” if  . Table 2.3 
summarizes the five process conditions and the corresponding capability 
requirements with the fraction of  nonconformities (in PPM). 
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Table 2.3 Five commonly used capability requirements with  
nonconformities and the corresponding process conditions. 

pkC  value Nonconformities Process conditions 

pkC  < 1.00 > 2700 PPM Inadequate 

1.00 ≤ pkC  < 1.33 < 2700 PPM Capable 

1.33 ≤ pkC  < 1.50 < 66   PPM Satisfactory 

1.50 ≤ pkC  < 2.00 < 6.795 PPM Excellent 

2.00 ≤ pkC  < 0.002 PPM Super 

2.2.2. Estimation of Cpk

Utilizing the identity min{ , } ( )/2 | |/2a b a b a b= + − − , the definition of  index 

pkC  in (2.1) can be alternatively written as: 

| |
3pk

d M
C

µ
σ

− −
= , 

where  is half  length of  the specification interval, 
 is the mid-point between the lower and the upper specification 

limits. The natural estimator 

(d USL LSL= − )/2

)/2(M USL LSL= +
ˆ

pkC  defined below can be obtained by replacing the 
process mean µ  and the process standard deviation σ  by their sample estimators 

1
/

n
ii

x x
=

= ∑ n  and 2
1

[ ( ) /( 1)]
n

ii
s x x n

=
= − −∑ 1/2 . We note that the process must be 

demonstrably stable (under statistical control) in order to produce a reliable estimate 
of  process capability. 

{ } { }| | | | | |ˆ ˆ1 1
3 3pk p

d x M x M d x M
C C

s d s d
− − − −⎛ ⎞= = − = −⎜ ⎟

⎝ ⎠
.       (2.2) 

2.2.3. Distributional and Inferential Properties of the Estimated Cpk

Under normality assumption, Kotz et al. (1993) obtained the r-th moment of  
ˆ

pkC . Numerous methods for constructing approximate confidence intervals of  pkC  
have been proposed in the literature. Examples include Chou et al. (1990), Zhang et al. 
(1990), Franklin and Wasserman (1992a, 1992b), Kushler and Hurley (1992), Nagata 
and Nagahata (1994), Tang et al. (1997), Hoffman (2001), Pearn and Shu (2003a) and 
many others. Further, from the estimated ˆ

pkC  expressed in (2.2), since ˆ
pC  is 

distributed as , and 1/2 1
1( 1) (p nn C χ −
−− ) 1/2 /n x M σ−  is distributed as the folded 

normal distribution with parameter 1/2 /n Mµ σ−  (see Leone et al. (1961) for 
details about this distribution). Thus, ˆ

pkC  is a mixture of  1
1nχ −
−  and the folded 

normal distribution (Pearn et al. (1992)). The probability density function (PDF) of  
ˆ

pkC  can be obtained as (Pearn et al. (1999)), where 1/2( 1) /D n d σ′ = − , 
, 1/2[( 1)/ ]a n n′ = − 2 2( ) /n Mλ µ σ= − . 
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Using the integration technique similar to that presented in Vännman (1997), an 
exact and explicit form of  the cumulative distribution function (CDF) of  the natural 
estimator ˆ

pkC  can be obtained, under the assumption of  normality.  The CDF of  
ˆ

pkC  is expressed in terms of  a mixture of  the chi-square distribution and the normal 
distribution (see Pearn and Lin (2003)): 

2

ˆ 20
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for , where 0y > /b d σ= , ( )/Mξ µ σ= − , ( )G ⋅  is the CDF of  the chi-square 
distribution with degree of  freedom 1n − , 2

1nχ − , and ( )φ ⋅  is the PDF of  the 
standard normal distribution . It is noted that we would obtain an identical 
equation if  we substitute 

( 0,1)N
ξ  by ξ−  into equation (2.3) for fixed values of   and 

. 
y

n

2.2.4. Hypothesis Testing with Cpk 

Statistical hypothesis testing used for examining whether the process capability 
meet the customers’ demands, can be stated as follows: 

 0H :  (process is not capable), pkC ≤ C

1H :  (process is capable). pkC > C

We define the test ( )xφ , the decision making rule, as the following: ( ) 1xφ =  if  
, and 0

ˆ
pkC c> ( ) 0xφ =  otherwise. Thus, the test φ  rejects the null hypothesis 0H  

( ) if  , with type I error pkC ≤ C 0
ˆ

pkC c> 0( )cα α= , the chance of  incorrectly 
concluding an incapable process ( pkC C≤ ) as capable ( ). Based on the CDF 
of  

pkC > C
ˆ

pkC  expressed in (2.3), given values of  capability requirement , parameter C ξ , 
sample size , and risk n α , the critical value  can be obtained by solving the 
equation 

0c

0
ˆ( | )pk pkP C c C C α> = =  using available numerical methods. 

2

20
0
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9

b n n b n t
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n dtφ ξ φ ξ⎛ ⎞− − α+ + − =⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
∫ .        (2.4) 
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For processes with symmetric tolerances (T M= ), the index may be rewritten as 
( / | |)/3pkC d σ ξ= − . Given pkC C= , /b d σ=  can be expressed as 3 |b C |ξ= + , the 

p-value corresponding to , a specific value of  *c ˆ
pkC  calculated from the sample 

data, is: 

*ˆPr( | )pk pkp value C c C C− = ≥ =  

2

* 20

( 1)( )
( ) ( )

9 ( )

b n n b n t
G t n t

n c
φ ξ φ ξ⎛ ⎞− −

= + + n dt−⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

∫ .     (2.5) 

Furthermore, based on the CDF of  ˆ
pkC  expressed in (2.3), the lower 

confidence limit which conveying critical information regarding the true process 
capability is also developed as below. In fact, given the sample of  size , the 
confidence level 

n
γ , the estimated value ˆ

pkC , and ξ , the lower confidence bounds 
L
pkC  can be obtained using numerical integration technique with iterations, to solve 

the following equation (2.6) with 3 |L
L pkb C |ξ= +  (see Pearn and Shu (2003a) for 

more details). 
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2.3. The Index Cpm

2.3.1. Process Quality and the Index Cpm

The pC  and pkC  indices are appropriate measures of  progress for quality 
improvement paradigms in which reduction of  variability is the guiding principle and 
process yield is the primary measure of  success. However, they are not related to the 
cost of  failing to meet customers’ requirement. Taguchi, on the other hand, 
emphasizes the loss in a product’s worth when one of  its characteristics departs from 
the customers’ ideal value . To help account for this, Hsiang and Taguchi (1985) 
introduced the index 

T

pmC , which was also proposed independently by Chan et al. 
(1988). The index is related to the idea of  squared error loss and this loss-based 
process capability index pmC , sometimes called the Taguchi index. The index 
emphasizes on measuring the ability of  the process to cluster around the target, 
which therefore reflects the degrees of  process targeting (centering). The index pmC  
incorporates with the variation of  production items with respect to the target value 
and the specification limits preset in the factory. The index pmC  is defined as: 

2 2 6 36 ( )
pm

USL LSL USL LSL d
C

T τ τσ µ
− −

= =
+ −

=                  (2.7) 

where  is the allowable tolerance range of  the process, USL LSL−
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(d USL LSL= − )/2  is the half  length of  the specification interval, and τ  is the 
measure of  the average product deviation from the target value T . The term 

2 2 2[( ) ] ( )2E X T Tτ σ= − = + −µ  incorporates two variation components: (i) 
variation to the process mean and (ii) deviation of  the process mean from the target. 

By observing the definition of  pmC , it is easy to see that if  the process variance 
increases (decreases) then the denominator will increase (decrease) and pmC  will 
decrease (increase). Also, if  the process mean moves away from (closer to) the target 
value, then the denominator will increase (decrease) and pmC  will decrease 
(increase). Obviously, pmC  adds an additional penalty for being off-target. It is most 
often assumed that the target lies at the mid-point of  the tolerance range (symmetric 
tolerances, ). When this is not the case, there are serious disadvantages in the 
casual use of  

T M=

pmC  (the situation, T M≠ , sometimes called as asymmetric 
tolerances). 

Note that pmC  differs from pC , the first-generation index, only in the measure 
of  the process variation. It follows that 

2 26 ( )
1

p
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T Tσ µ µ
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= =
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For the case with , Parlar and Wesolowsky (1999) have noted that T M= pC , pkC  
and pmC  are related by the formula 

2
1 1

1
3 3

p
pk p p

pm

C M
C C C

C
µ
σ
−⎛ ⎞= − − = −⎜ ⎟

⎝ ⎠
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or, equivalently, 

21 9( )

p
pm

p pk

C
C

C C
=

+ −
. 

And note that max( , )p pk pmC C C≥  will hold obviously from the definition. 

Boyles (1991) has provided a definitive analysis of  pmC  and its usefulness in 
measuring process centering. He notes that both pkC  and pmC  coincide with pC  
when Tµ =  and decrease as µ  moves away from T . However,  
for

0pkC <
USLµ >  or LSLµ < , whereas pmC  of  process with Tµ − > 0  is strictly 

bounded above by the pC  value of  a process with Tσ µ= − . That is,  
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6pm
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C
Tµ

−
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−
.                         (2.8) 

The index pmC  approaches to zero asymptotically as Tµ −  tends to infinity. 
On the other hand, while ( | |)/(3 )pkC d Mµ σ= − −  increases without bound for 
fixed µ  as σ  tends to zero, pmC  is bounded above /(3 )pmC d Tµ< − . The 
right-hand side of  above equation is the limiting value of  pmC  as σ  tends to zero, 
and is equal to pC  value of  a process with Tσ µ= − . It follows from (2.8) that a 
necessary condition for  is 1pmC ≥ /3T dµ − < . 

As mentioned earlier, for a normally distributed process, the pkC  index provides 
a lower bound on the process yield, , or 2 (3 ) 1pkYield C≥ Φ − % 2 ( 3 )pkNC C≤ Φ −  for 
LSL USLµ≤ ≤ . Furthermore, based on the pmC  index, Ruczinski (1996) obtained a 
lower bound on the process yield as , or equivalently ≥ Φ −2 (3 ) 1pmYield C
% 2 ( 3 )pmNC C≤ Φ −  for 3/3pmC > . 

2.3.2. Estimation of Cpm  

Due to the index pmC  involves the unknown parameters µ  and σ , which 
must be estimated from sample. Chan et al. (1988) and Boyles (1991) proposed the 
following two estimators of  pmC , respectively. 
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= −∑ 21n
n s−= .  

2.3.3. Distributional and Inferential Properties of the Estimated Cpm

Assuming that the process measurement are normally distributed and , 
Chan et al. (1988) derived the PDF of  

T M=

pmY C=  

2
2

1

/2 1 3 2 2
0 2

( )1
( ) exp

22 ! ( )2

n jj a
y

Y n jn
j

a a
f y

y y j j

λ
λ

+ −∞

−
=

⎡ ⎛ ⎞ ⎤= − +⎜ ⎟⎢ ⎥ Γ +⎣ ⎝ ⎠ ⎦
∑ 0y >, . 

where  and 2 (1 / )( 1)pma C n nλ= + − 2 2( ) /n Tλ µ= − σ . An alternative equivalent 
formula was provided by Pearn et al. (1992). When the case of  , T M= pmC  is a 
biased estimator of  pmC , but is asymptotically unbiased. Detailed descriptions and 
proofs of  the properties of  pmC  are given in Chan et al. (1988). On the other hand, 
Boyles (1991) considered that it would be more appropriate to replace the factor 

 by n  in the denominator since the term 1n − 2 2 2ˆ ( )B ns x Tτ = + − 2
1
( ) /

n
ii

x T n
=

−∑=  
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and  in the denominator of  2ˆ[ ]BE τ = 2 ( Tσ µ+ − 2) ˆ
pmC  is the uniformly minimum 

variance unbiased estimator (UMVUE) of  the term . In fact, the two 
estimators, 

2 ( Tσ µ+ − 2)

pmC  and ˆ
pmC , are asymptotical equivalent. We note that x  and  

are the maximum likelihood estimators (MLEs) of  

2
ns

µ  and 2σ , respectively. Hence, 
the estimated ˆ

pmC  is also the MLE of  pmC .  Therefore, it is reasonable, for 
reliability purpose, that we use the estimator ( )

ˆ ˆ
pm pm BC C=  to evaluate process 

performance. 

Under the assumption of  normality, Kotz and Johnson (1993) derived formulas 
for the r-th moment of  ˆ

pmC , note that if  , r n≥ ˆ( r )pmE C  is infinite. Note that the 
quantity 2ˆ /Bn 2τ σ  has a non-central chi-square 2

,n λχ  distribution with n  degrees of  
freedom and non-centrality parameter 2nλ ξ= , ( )Tξ µ σ= − . Boyles (1991) and 
Pearn et al. (1992) showed that ˆ

pmC  is distributed as 2
,/p nC n λχ , which can be 

alternatively expressed as 

2
,

ˆ 1pm pm
n

n
C C

n λ

λ
χ

+∼ . 

Vännman and Kotz (1995) derived the CDF of  a generalized process capability 
index . The special case with * ( , )pC u v 0u =  and 1v =  reduces their estimator to 
Boyles’ (1991) estimator ˆ

pmC . Furthermore, by rewriting ( )
ˆ /(3 )pm BC D K= + H , 

where 1/2 /D n d σ= , 2 2 2
1/n nK ns σ χ −= ∼ , 2( ) /H n x T 2σ= − , an exactly explicit 

form of  the CDF of  ˆ
pmC  can be derived as: 

2/(3 ) 2
ˆ 20

( ) 1 ( ) ( ) ,
9pm

b n y

C
b n

F y G t t n t n dt
y

φ ξ φ ξ⎛ ⎞
= − − + + −⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
∫  for .  (2.9) 0y >

2.3.4. Capability Testing with Cpm

To test whether a given process is capable based on pmC  index, we may 
consider the statistical testing hypothesis as 0H : pmC C≤  (process is not capable), 
versus 1H :  (process is capable). Based on a given pmC > C 0( )cα α= , the decision 
rule is to reject 0H  if   and fails to reject 0

ˆ
pmC > c 0H  otherwise.  For processes 

with target value setting on the middle of  the specification limits, the index may be 
rewritten as . Given 2 1/2/[3(1 ) ]pmC b ξ= + pmC C= , . The 
p-value corresponding to , a specific value of  

2 1/2/ 3 (1 )b d Cσ ξ= = +
*c ˆ

pmC  calculated from the sample 
data, is: 

*ˆ( |pm pmp value P C c C C− = ≥ = )  
* 2/(3 ) 2

* 20
( ) ( )

9( )

b n c b n
G t t n t n

c
φ ξ φ ξ⎛ ⎞

= − + + − dt⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

∫ .       (2.10) 

Given values of  , C ξ , , and n α , the critical value  can be obtained by 
solving the equation 

0c

0
ˆPr( | )pm pmC c C C α≥ = =  as 
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0
2/(3 ) 2

20
0

( ) ( )
9

b n c b n
G t t n t n dt

c
φ ξ φ ξ⎛ ⎞

− + + −⎡⎜ ⎟ ⎣
⎝ ⎠

∫ α=⎤⎦ .        (2.11) 

Moreover, given the sample of  size , the confidence level n γ , the estimated value 
ˆ

pmC , and the parameter ξ , the lower confidence bounds (denoted as L
pmC ) can be 

obtained by solving the following equation (2.12) with  (Pearn 
and Shu (2003b)). 

2 1/23 (1 )L
L pmb C ξ= +

( ) 2ˆ/ 3 2
20

( ) ( ) 1
ˆ9

L pmb n C

pm

b n
G t t n t n dt

C
φ ξ φ ξ

⎛ ⎞
− + + − =⎡⎜ ⎟ ⎣⎜ ⎟

⎝ ⎠
∫ γ−⎤⎦ .    (2.12) 

 

2.4. The Index Cpmk

2.4.1. Process Quality and the Index Cpmk

Pearn et al. (1992) proposed the process capability index pmkC , which combines 
the merits of  the three earlier indices pC , pkC  and pmC . The index pmkC  alerts the 
user if  the process variance increases and/or the process mean deviates from its target 
value. The index pmkC , referred to as the third-generation capability index, has been 
defined as the following. 

2 2 2 2)
min ,

3 ( ) 3 (
pmk

USL LSL
C

T T

µ µ
σ µ σ µ

⎧ ⎫− −⎪ ⎪= ⎨ ⎬
⎪ ⎪+ − + −⎩ ⎭ 2 2

| |

3 (

d M

T

µ
σ µ
− −

=
+ − )

)

.    (2.13) 

By comparing the pair of  indices ( ,pmk pmC C , similar to ( , )pk pC C , we have the 
relation (1 | |/ )pmk pm pm aC C M d C Cµ= × − − = ×  and hence ( )/pmk pm pk pC C C C= × . 
The index pmkC  is constructed by combining the yield-based index pkC  and the 
loss-based index pmC , taking into account the process yield (meeting the 
manufacturing specifications) as well as the process loss (variation from the target).  
Note that a process meeting the capability requirement “ ” may not be 
meeting the capability requirement “ ”. On the other hand, a process meets 
the capability requirement “ ” may not be meeting the capability requirement 
“ ” either. The discrepancy between the two indices may be contributed to the 
fact that the 

pkC ≥ C
C

C
C

pmC ≥

pmC ≥

pkC ≥

pkC  index primarily measures the process yield, but the index pmC  
focuses mainly on the process loss. But, if  the process meets the capability 
requirement “ ”, then the process must meet both capability requirements 
“ ” and “ ” since 

pmkC ≥ C
C CpkC ≥ pmC ≥ pmk pkC C≤  and pmk pmC C≤ . According to today's 

modern quality improvement theory, reduction of  the process loss is as important as 
increasing the process yield. While the pkC  remains the more popular and widely 
used index, the index pmkC  is considered to be an advanced and useful index for 
processes with two-sided specification limits. The four indices pC , pkC , pmC , and 

pmkC , ranked in terms of  sensitivity to differences between the process mean and the 
target, are (1) pmkC , (2) pmC , (3) pkC  and (4) pC  (Pearn and Kotz (1994)). 
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2.4.2. Estimation of Cpmk

For a normally distributed process that is demonstrably stable (under statistical 
control), Pearn et al. (1992) suggested using the following estimator, which defined as: 

2 2 2 2
ˆ min ,

3 ( ) 3 ( )
pmk

n n

USL x x LSL
C

s x T s x T

⎧ ⎫− −⎪ ⎪= ⎨ ⎬
⎪ ⎪+ − + −⎩ ⎭ 2 2

| |

3 (n

d x T

s x T

− −
=

+ − )
, 

where 
1

/
n

ii
x x

=
= ∑ n  and 2

1
( ) /

n
n ii

s x x
=

= −∑ 2 n  are the MLEs of  µ  and 2σ  
respectively. We note again that 2 2( )ns x T+ − 2

1
( ) /

n
ii

x T n
=

= −∑  which is in the 
denominator of  ˆ

pmkC  is the UMVUE of   in the 
denominator of  

2 2( ) [( )T E X Tσ µ+ − = − 2 ]

pmkC .  

2.4.3. Distributional and Inferential Properties of the Estimated Cpmk  

In fact, the estimator of  pmkC  can be expressed as ˆ ( )/(3pmkC D H K= − + )H , 
where 1/2 /D n d σ= , 2 2/nK ns σ= , 2( ) /H n x T 2σ= − , and 1/2 /n Tη µ σ= − . 
Under the assumption of  normality, K  is distributed as  a chi-square 
distribution with  degrees of  freedom, 

2
1,nχ −

1n − H  is distributed as 2
1, λχ ′  a non-central 

chi-square distribution with one degree of  freedom and non-centrality parameter 
2( ) /n T 2λ µ= − σ , and H  is distributed as the normal distribution ( ,1)N η  with 

mean η  and variance 1.  That is, the estimator ˆ
pmkC  is a mixture of  the chi-square 

distribution and the non-central chi-square distribution, as expressed in the following 
(Pearn et al. (1992)): 

1,

2 2
1 1,

ˆ
3

pmk
n

d n

C
λ

λ

χ
σ
χ χ−

′−

′+
∼ . 

Chen and Hsu (1995) investigated the asymptotic sampling distribution of  the 
estimated pmkC  and showed that the estimator ˆ

pmkC  is consistent, asymptotically 
unbiased estimator of  pmkC , and if  the fourth moment of  the distribution of   is 
finite, then 

X
ˆ

pmkC  is asymptotically normal. Vännman and Kotz (1995) obtained the 
distribution of  the estimated  for cases with ( , )pC u v T M= . By taking  and 

, the distribution of  
1u =

1v = (1,1)p pmkC C=  can be obtained. Wright (1998) derived an 
explicit but rather complicated expression for the PDF of  the estimated pmkC . Using 
variable transformation and the integration technique similar to that presented in 
Vännman (1997), the CDF and the PDF of  the estimated index ˆ

pmkC  may be 
expressed alternatively in terms of  a mixture of  the chi-square distribution and the 
normal distribution. The explicit form of  the CDF considerably simplify the 
complexity for analyzing the statistical properties of  the estimated index, which can 
be expressed below (see Pearn and Lin (2002)): 

2/(1 3 ) 2
ˆ 20

( )
( ) 1 ( ) ( )

9pmk

b n y

C
b n t

F y G t t n t n d
y

φ ξ φ ξ
+ ⎛ ⎞−

= − − + + − t⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

∫ ,   (2.14) 
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for , where 0y > /b d σ= , ( )/Tξ µ σ= − , ( )G ⋅  is the CDF of  the 2
1nχ −  

distribution, ( )φ ⋅  is the PDF of  , and it is noted that for (0,1)N USLµ >  or 
LSLµ < , the capability , and for 0pmkC < USLµ =  or LSLµ = , the capability 

pmkC = 0.0. The requirement with LSL USLµ< <  has been a minimum capability 
requirement applies to most start-up engineering applications or new processes. 

2.4.4. Capability Testing with Cpmk  

Using the index pmkC , the engineers can access the process performance and 
monitor the manufacturing processes on a routine basis.  To test whether a given 
process is capable, we can consider the following statistical testing hypothesis: 

 0H :  (process is not capable), pmkC ≤ C

1H :  (process is capable). pmkC > C

CFor cases with T , we let M= pmkC =  then the /b d σ=  can be rewritten as 
23 1 |b C |ξ ξ= + + . Hence, given values of  capability requirement , parameter C ξ , 

sample size , and risk n α , the critical value  can be obtained by solving the 
equation 

0c

0
ˆ( | )pmk pmkP C c C C α≥ = =  using available numerical methods. That is,  

0
2(1 3 ) 2

20
0

( )
( ) ( )

9

b n c b n t
G t t n t n

c
dtφ ξ φ ξ

+ ⎛ ⎞− α− + + − =⎡ ⎤⎜ ⎟ ⎣ ⎦
⎝ ⎠

∫ .       (2.15) 

In addition, given a value of  C , the p-value corresponding to , a specific 
value of  

*c
ˆ

pmkC  calculated from the sample data, is: 

*ˆ( |pmk pmkp value P C c C C− = ≥ = )   

   =
2(1 3 *) 2

* 20

( )
( ) ( )

9( )

b n c b n t
G t t n t

c
φ ξ φ ξ

+ ⎛ ⎞−
− + + − .n dt⎡ ⎤⎜ ⎟ ⎣ ⎦

⎝ ⎠
∫   (2.16) 

If  the estimated value ˆ
pmkC  is greater than the critical value  ( ) or 

the calculated p-value is smaller than 
0c 0

ˆ
pmkC > c

α  (p-value <α ), then we conclude that the 
process meets the capability requirement ( ).  Otherwise, we do not have 
sufficient information to conclude that the process meets the present capability 
requirement.  In this case, we would believe that 

pmkC > C

CpmkC ≤ . On the other hand, 
given the sample of  size , the confidence level n γ , the estimated values ˆ

pmkC  and 
ξ , the lower confidence bounds L

pmkC  can be obtained by solving the following 
equation with 23 1 |L

L pmkb C |ξ ξ= + +  (see Pearn and Shu (2004)). 

2 2ˆ(1 3 ) 2
20

( )
( ) ( ) 1

ˆ9

L pmkb n C

pmk

b n t
G t t n t n dt

C
φ ξ φ ξ

+ ⎛ ⎞− γ− + + − = −⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟
⎝ ⎠

∫ .    (2.17) 
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2.5. The Indices CPU and CPL

2.5.1. Process Quality and the Indices CPU and CPL

Several process capability indices including pC , pkC , pmC  and pmkC  have 
been commonly used in the manufacturing industry to measure whether a process is 
capable of  reproducing product items within the specified manufacturing tolerance. 
However, those indices are appropriate measures only for processes with two-sided 
specifications (which require both USL  and ). For the unilateral tolerance 
situation where only a single specification limit is given, Kane (1986) considered the 
following indices as  

LSL

3PU
USL

C
µ

σ
−

= , 
3PL

LSL
C

µ
σ

−
= , 

The index  measures the capability of  a smaller-the-better process with an upper 
specification limit USL , whereas the index  measures the capability of  a 
larger-the-better process with a lower specification limit . 

PUC

PLC
LSL

For normally distributed processes with one-sided specification limit , the 
process yield is: 

USL

( )P X USL<  = 
3 3

X USL
P

µ µ
σ σ
− −⎛ ⎞

⎟<⎜
⎝ ⎠

= ( )3 PUP Z C< = ( )3 PUCΦ , 

where Z follows the standard normal distribution  with the cumulative 
distribution function . Similarly, for normally distributed processes with 
one-sided specification limit , the process yield is: 

( 0,1)N
( )Φ ⋅

LSL

( )P X LSL>  = 
3 3

X LS
P

µ µ
σ σ
− −⎛ ⎞<⎜ ⎟

⎝ ⎠
L

=
1
3 PLP Z C⎛ ⎞− <⎜ ⎟

⎝ ⎠
= ( )3 PLCΦ . 

For convenience of  presentation, we let  denote either  or . Thus, 
process capability index  provides an exact measure on the potential process yield 
for processes with one-sided manufacturing specifications and the corresponding 
fraction of  the nonconformities 

IC PUC PLC

IC

%NC  for a well controlled normally distributed 
process may be calculated as % 1 (3 I )NC C= − Φ . 

2.5.2. Estimations of CPU and CPL 

In practice, sample data must be collected in order to calculate those indices 
since the process mean µ  and standard deviation σ  are usually unknown. To 
estimate the indices  and , Chou and Owen (1989) considered  and 

, the natural estimators of   and , which are defined as the following: 
PUC PLC ˆ

PUC
ˆ

PLC PUC PLC

ˆ
3PU

USL x
C

s
−

= , ˆ
3PL

x LSL
C

s
−

= , 
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where 
1

/
n

ii
x x

=
= ∑ n  is the sample mean, and 2 1

1
( 1) ( )

n
ii

s n x x−
=

= − −∑ 2  is the 
sample variance, which may be obtained from a process that is demonstrably stable 
(under statistical control). Under the assumption of  normality, the estimator  is 
distributed as 

ˆ
PUC

1(3 )n −
1( )nt δ− , where 1( )nt δ−  is a non-central t distribution with 

 degrees of  freedom and non-centrality parameter 1n − 3 PUn Cδ = . The estimator 
 has the same sampling distribution as  but with ˆ

PLC ˆ
PUC 3 PLn Cδ = . However, 

both estimators  and  are biased. Pearn and Chen (2002) showed that by 
adding the correction factor 

ˆ
PUC ˆ

PLC

1nb −  = 1/2[2/( 1)]n − [( 1)/2]nΓ − / [( 2)/2]nΓ −  to  
and , we could obtain unbiased estimators 

ˆ
PUC

ˆ
PLC 1nb −

ˆ
PUC  and 1nb −

ˆ
PLC  which have 

been denoted as  and .  That is,  =  and  = . 
Since  < 1, then  <  and  < . And due 
to the estimators  and  only based on the complete and sufficient statistics 

PUC PLC ( PUE C ) )

) ) ) )
PUC ( PLE C PLC

1nb − ( PUVar C ˆ( PUVar C ( PLVar C ˆ( PLVar C

PUC PLC
2( , )x s , we can conclude that  and  are the uniformly minimum variance 

unbiased estimators (UMVUEs) of  and , respectively. 
PUC PLC

PUC PLC

2.5.3. Distributional and Inferential Properties of the Estimated CPU and CPL

The r-th moment (about zero) and the variance of   can be obtained as in 
the following, where 

PUC
( )Z n USL x /σ= −  is distributed as (3 ,1)PUN nC .  It is 

easy to verify that  = .  The results of  the r-th moment, the expected 
value, and the variance of  the other estimator  are the same. 

( PUE C ) PUC

PLC

( ) ( )[ ]( ) ( )[ ]
( ) ( )[ ]( )

( )
11 /2 1 /2

3 2 /2

r
r r

PU r r

n n r
E C E

n n

−Γ − Γ − −
=

Γ −
Z , 

( ) ( )[ ] ( )[ ]
( )[ ]( )

( ) ( )[ ] ( )[ ]
( )[ ]( )

2
2 2

1 /2  3 /2 1 /2  3 /21
1

92 /2 2 /2
PU PU

n n n n
Var C C

nn n

⎧ ⎫Γ − Γ − Γ − Γ −⎪ ⎪= − +⎨ ⎬
Γ − Γ −⎪ ⎪⎩ ⎭

. 

By changing the variables with the non-central t distribution with  degrees 
of  freedom and non-centrality parameter 

1n −
3 In Cδ = , we let  IY C=

1
1(3 ) ( )n nb n t 1 δ−
− −= , the CDF of   can be derived directly as: IC

[ ]

2

13 / 12 22
( 3)/2 0 0

1 1 1
( ) exp ( )

222 ( 1)/2
n

t nyt b nn
n

F y t e u dudt
n

δ
π

−
−∞ −−

−
⎡ ⎤= −⎢ ⎥Γ − ⎣ ⎦∫ ∫ − .(2.18) 

Differentiating the equation of  the CDF in (2.18) with respect to  gives the 
probability density function (PDF) of   as: 

y

IC

2/2
( 2)/2

0
1 1

3 /( 1)2 1 3
( ) exp

2[( 1)/2] 1

n
n

n n

n n y nt
f y t t

b n b n
δ

π

− ∞ −

− −
dt

⎧ ⎡ ⎤− ⎛ ⎞ ⎫⎪ ⎪= × − + −⎢ ⎥⎨ ⎬⎜ ⎟Γ − −⎝ ⎠⎢ ⎥⎪ ⎪⎩ ⎣ ⎦ ⎭
∫ ,  (2.19)

 

where . 1/2
1 [2/( 1)] [( 1)/2]/ [( 2)/2]nb n n n− = − Γ − Γ −
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2.5.4. Testing Hypothesis with CPU and CPL

 For processes with one-sided manufacturing specifications (which require only 
 or , but not both), the index  can be used to measure the capability 

of  a smaller-the-better process with upper specification limit , whereas the index 
 can be used to measure the capability of  a larger-the-better process with a lower 

specification limit . To test whether a given process meets the capability 
requirement, we consider the following statistical testing hypothesis with 

USL LSL PUC
USL

PLC
LSL

0 : IH C C≤  

(the process is incapable), versus the alternative 1 : IH C C>  (the process is capable).  
Thus, one can consider the test ( ) 1xϕ =  if  , and 0IC c> ( ) 0xϕ = , otherwise.  The 
test ϕ  rejects the null hypothesis if  , with type I error 0IC c> 0( )cα α= , the chance 
of  incorrectly judging an incapable process as a capable one. 

 Furthermore, the calculations of  p-value (rejection probability) and critical 
value are provided in the following.  Suppose the observed value of  the statistic 

, then we can calculate those values as the following, where *
IC c= 3 n Cδ = .

{ }*  |I Ip value P C c C C− = ≥ ≤  

*

1
1

3
( )  |n

n

nc
P t C C

b
δ−

−
I

⎧ ⎫
= ≥ ≤⎨ ⎬

⎩ ⎭
.               (2.20)

The critical value, , is determined by 0c

{ }0 |I IP C c C Cα = ≥ =  

0
1

1

3
( )  |n I

n

nc
P t C C

b
δ−

−

⎧ ⎫
= ≥ =⎨ ⎬

⎩ ⎭
.

Hence, we have  

0
1,

1

3
( )n

n

nc
t

b α δ−
−

=  , or 0 1 -1, ( )/(3 )n nc b t nα δ−= .        (2.21) 

where 1, ( )nt α δ−  is the upper α  quantile of  non-central t distribution with  
degrees of  freedom satisfies 

1n −

1 1,( ( ) ( ))n nP t t αδ δ α− −≥ = . 
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