
Chapter 1 
 

Introduction 

1.1 Motivation 

Process capability indices, which establish the relationships between the 
actual process performance and the manufacturing specifications, have been the 
focus of recent research in quality assurance and process capability analysis. Those 
capability indices, quantifying process potential and performance, are important 
for any successful quality improvement activities and quality program 
implementation. Montgomery & Runger [29] noted that quality of the collected 
data relies very much on the gauge accuracy. Any variation in the measurement 
process has a direct impact on the ability to make sound judgment about the 
manufacturing process. However, most capability research works have assumed no 
measurement errors, such assumption is not realistic even the measurement is 
conducted using highly sophisticated advanced measuring instruments, 
conclusions drawn regarding process capability are not reliable. Since literatures 
([1], [22], [23], [27]) of analyzing the effects of measurement errors on process 
capability indices are few, the problem to consider process capability analysis with 
measurement errors is needful.  

1.2 Research Objective 

Process Capability Indices 

Process capability indices, PC , PLC , PUC , PKC , PMC , and PMKC  (see Juran 
et al. [15], Kane [16], Chan et al. [4, 5], Pearn et al. [38]) have been defined as: 
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where  is the upper specification limit,  is the lower specification limit, USL LSL
μ  is the process mean, σ  is the process standard deviation,  is the target 
value,  = (US - )/2, and  = (USL + )/2.  

T
d L LSL m LSL

PC , PKC , PMC , PMKC  are indices that measure the capability of processes 
with two specification limits, while PLC  and  PUC  are indices that measure the 
capability of processes with only one specification limit. The index PC  measures 
only distribution spread (process consistency or process precision), and does not 
consider process mean. The indices PKC , PMC  and PMKC  consider process 
location and common cause variability, which offset some of the weaknesses in PC . 
The principal distinction between PKC  and PMC  indices is in the relative 
importance attached to the specification limits  and  as opposed to the 
target . A high 

USL LSL
T PKC  ( PLC , PUC ) value implies high process yield, a high PMC  

value implies low process expected loss, and PMKC  is a combination of PKC  and 
PMC , which is more restrictive with regard to process means deviation from the 

target value than other indices. 

Several authors have promoted the use of various process capability indices 
and examined with differing degrees of completeness. Examples include Chou & 
Owen [6], Chou et al. [7], Franklin & Wasserman [11, 12], Kushler & Hurley [21], 
Kotz et al. [20], Vännman & Kotz [45], Vännman [46], Kotz & Lovelace [19], 
Hoffman [14], and references therein. Kotz & Johnson [18] presented a thorough 
review for the development of process capability indices in the past ten years and 
Spiring et al. [42] consolidated the research papers in process capability analysis 
for the period 1990-2002.  

The Estimators of PC  

Kane [16], Chou et al. [7], Chou & Owen [6] and Li et al. [24] have investigated 
the distribution of the natural estimator, ˆ

PC , of . Kotz & Johnson [18] have 
derived the various moments of 

PC
ˆ

PC . Kane [16] derived the confidence interval 
bounds and critical values for testing hypothesis. Since  is a biased estimator 
of , by adding the correction factor 

ˆ
PC

PC 1nb − , such as PC  = , Chou & Owen 
[6] derived the pdf of 

1
ˆ

nb C− P

PC , and Pearn et al. [36] showed that PC  is the UMVUE. 
Moreover, Pearn et al. [36] presented the confidence interval bounds and critical 
values by the estimator PC . 

The Estimators of PKC  

Under the assumption of normality, Kotz & Johnson [18] obtained the r-th 
moment, and the first two moments as well as the mean and the variance of ˆ

PKC . 
In addition, numerous methods for constructing approximate confidence intervals 
of  have been proposed in the literature. Examples include Chou et al. [7], 
Zhang et al. [50], Franklin & Wasserman [11], Kushler & Hurley [21], Nagata & 
Nagahata [32], Tang et al. [43], Hoffman [14], and many others. 

PKC
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Since the distribution of  is the joint distribution of folded-normal and 
chi-square random variables (see Pearn et al. [38]), the probability density 
function of 

ˆ
PKC

ˆ
PKC  can be obtained as Pearn et al. [34]. Using the integration 

technique similar to that presented in Vännman [46], Pearn & Lin [37] first obtain 
an exact and explicit form of the cumulative distribution function of the natural 
estimator. Based on the cumulative distribution function of ˆ

PKC , Pearn & Lin [37] 
implemented the statistical theory of the hypotheses testing, and developed a 
simple but practical procedure accompanied with convenient tabulated critical 
values, for practitioners to use for decisions making in their factory applications. 
Pearn & Shu [39] further developed an efficient algorithm with Matlab computer 
program to find the exact lower confidence bounds conveying critical information 
regarding the true process capability. 

The Estimators of  IC

Chou & Owen [6] showed that under normality assumption, the estimators 
ˆ

PUC  and ˆ
PLC  are distributed as 1 ( )nct δ− , where  = c 1(3 )n − , and 1 ( )nt δ−  is a 

non-central  distribution with -1 degrees of freedom and non-centrality 
parameter 

t n
δ  = 3 PUnC  and δ  = 3 PLnC  respectively. By adding the 

well-known correction factor, 1nb − , to ˆ
PUC  and ˆ

PLC , such as PUC  =  and 1
ˆ

n PUb C−

PLC  = , Pearn & Chen [35] showed that  and  are uniformly 
minimum variance unbiased estimators (UMVUEs) of 

1
ˆ

n Pb C− L PUC PLC
PUC  and PLC . Based on 

the two UMVUEs, PUC  and PLC , Pearn & Chen [35] implemented the statistical 
theory of the hypotheses testing, and developed a simple but practical procedure 
accompanied with convenient tabulated critical values. Lin & Pearn [25] developed 
effieient SAS computer programs to calculate the critical values and p-values 
needed based on the cumulative distribution function for the capability testing. 
Pearn & Shu [40] further developed an efficient algorithm with Matlab computer 
program to find the lower confidence bounds conveying critical information 
regarding the minimal true process capability. A summary of literatures about the 
estimators of PC , PKC , and , is listed in Table 1.  IC

Table 1. Literatures about the estimators of PC , PKC  and . IC

Index Estimator Moments or 
pdf or cdf 

Confidence 
intervals 

Hypothesis 
testing 

ˆ
PC  [6], [7], [16], [18], 

[24] [16] [16] 
CP  

PC  [6], [36] [36] [36] 

PKC  ˆ
PKC  [18], [34], [37], [38] [7], [11], [14], [21], 

[32], [39], [43], [50] [37] 

ˆ
IC  [6] [6] [6] 

IC  
IC  [35] [40] [25], [35] 
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Measurement Errors 

Gauge repeatability and reproducibility (GR&R) studies focus on quantifying 
the measurement errors. Common approaches to GR&R studies, such as the 
Range method [29] and the ANOVA method [26, 29] assume that the distribution 
of the measurement errors is normally distributed with a mean error of zero. 
Suppose that the measurement errors are described by a random variable M  ~ 
Normal (0, ), Montgomery & Runger [29] presents the gauge capability by  2

Mσ

6 100%M

USL LSL
σλ = ×
−

. (1.6) 

For the measurement system to be deemed acceptable, the variability in the 
measurements due to the measurement system must be less than a predetermined 
percentage of the engineering tolerance. The Automotive Industry Action Group 
recommends the guidelines in Table 2 for gauge acceptance.  

Burdick & Larson [3], Floyd & Laurent [10], Hamada & Weerahandi [13], 
Rocke & Lorenzato [41], Vardeman & Vanvalkenburg [47], Wang & Iyer [48], and 
Wilson et al. [49] have further studies of conducting the confidence bounds of 
measurement errors. 

Table 2. Guidelines for gauge capabilities. 

Gauge Capability Result 
λ<10% Gauge system O.K. 

10%<λ<30% 
May be acceptable based on importance of 
application, cost of gauge, cost of repair, and so 
on. 

30%<λ  
Gauge system needs improvement; make every 
effort to identify the problems and have them 
corrected. 

Process Capability Analysis with Measurement Errors 

Suppose that X  ~ Normal ( μ , 2σ ) represents the relevant quality 
characteristic of a manufacturing process, Mittag [27] provided some very 
definitive techniques for quantifying the percentage error in process capability 
estimation. With stochastic measurement errors, the measurement system adds 
additional variability to the process measurement, so that a variable Y  = 
X + M , which is distributed as Normal ( μ , 2

Yσ  = 2σ + 2
Mσ ) results. Mittag [27] 

found that the presence of stochastic measurement error always results in a 
decrease in the estimates of PC , PKC , PMC , PMKC . He compared the ratio of the 
true and empirical process capability indices by introducing the degree of error 
contamination, 

Mσ
τ

σ
= . (1.7) 
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And he showed how the proportionate ratio for PC  and PKC  decreases as τ  
increases. 

Levinson [22, 23] discussed the behavior of theoretical process capability 
indices in the presence of measurement errors. He provides formulae to evaluate 
the chance of shipping a bad piece to the customer. Bordignon & Scagliarini [1] 
performed some statistical analysis in estimating PC  and PKC . He discussed the 
performance of the bias and the MSE (mean square error) of the estimates  
and 

ˆ
PC

ˆ
PKC , which are evaluated by the empirical data.   

Mittag [27] and Levinson [22, 23] had paid attention to the effects of 
measurement errors in process capability analysis, but they did not take sampling 
errors into account. Many efforts dedicated in the literature to the statistical 
properties of the estimators of process capability indices (examples as those in 
Table 2), but except for Bordignon & Scagliarini [1], they assumed that there is no 
measurement error.  

In our research, we assume that measurement errors exist, and we consider 
sampling errors in process capability analysis. We notate the estimates, which 
evaluated by the empirical data, of the estimators, PC , ˆ

PKC  and  as IC Y
PC , 

ˆ Y
PKC  and . We will compare the bias and MSE of Y

IC Y
PC , ˆ Y

PKC ,  with those of 
, , . With no modification of the confidence interval bounds and critical 

values which are presented by Pearn et al. [36], Pearn & Shu [39], Pearn & Lin [37], 
Pearn & Chen [35], and Pearn & Shu [40], and use 

Y
IC

PC ˆ
PKC IC

Y
PC , ˆ Y

PKC ,  to estimate the 
true process capability or to do a statistical testing, we will show the behavior of 
the confidence coefficient, the 

Y
IC

α -risk and the power. Since measurement error is 
unavoidable in most cases, the major objective in our research is to derive revised 
confidence bounds and critical values for practitioners. 

1.3 Organization 

In Chapter 1, we review some important literatures about process capability 
analysis and some about the discussion of measurement errors on process 
capability indices. And, we point out our research objectives. In Chapter 2, we 
first consider the sensitivity of PC  with measurement errors, and compare the 
MSE of  with that of . Second, we show the behavior of confidence 
coefficient, 

Y
PC PC
α -risk and power by using the confidence bounds and critical values, 

which are presented by Pearn et al. [36], with empirical data. Third, we derive 
revised confidence bounds and critical values while we use  to estimate Y

PC PC . In 
Chapter 3, we first consider the sensitivity of PKC  with measurement errors, and 
compare the MSE of ˆ Y

PKC  with that of ˆ
PKC . Second, we show the behavior of 

confidence coefficient, α -risk and power by using the confidence bounds and 
critical values, which are presented by Pearn & Shu [39], Pearn & Lin [37], with 
empirical data. Third, we derive revised confidence bounds and critical values 
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while we use  to estimate ˆ Y
PKC PKC . An example is in the final section. In Chapter 

4, we first consider the sensitivity of  with measurement errors, and compare 
the MSE of  with that of . Second, we show the behavior of confidence 
coefficient, 

IC
Y
IC IC

α -risk and power by using the confidence bounds and critical values, 
which are presented by Pearn & Chen [35], and Pearn & Shu [40], with empirical 
data. Third, we derive revised confidence bounds and critical values while we use 

 to estimate ˆ
PKCY

PKC . An example is in the final section. Finally, in Chapter 5, we 
have some conclusions. 
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