
Chapter 2 
 

Estimating and Testing Process Precision 
with Presence of Gauge Measurement Errors 

The first, and the original, process capability index was , which was 
introduced outside of Japan by Juran et al. [15], but did not gain considerable 
acceptance until the early 1980s. The numerator of  gives the size of the range 
over which the process measurements can vary, and the denominator gives the size 
of the range over which the process is actually varying. Obviously, it is desirable to 
have a  as large as possible. Small values of  would not be acceptable, 
since this indicates that the natural range of variation of the process does not fit 
within the tolerance band.  

PC

PC

PC PC

Table 3. Minimum proportion NC associated with various values of . PC

Amount of process data 
within specification range PC  Minimum % NC 

6σ  1.00 0.27× 210−  

8σ  1.33 0.6334× 410−  

10σ  1.67 0.5733× 610−  

12σ  2.00 0.1973× 810−  

Table 4. Appropriate responses to  values. PC

Process 
Capability 

Assessment Response 

1.33  ≤ PC Pass 
Sufficient to inspect at start of 
operations. Can consider speeding up 
process or otherwise increasing load. 

1 1.33≤ PC ≤  Needs watching Danger of producing defects.  
Needs watching. 

PC <1 Fail 
Need to consider changing procedures, 
changing equipment and changing 
tolerance. Inspect total output. 

Under the assumption of that process data are normal, independent, and in 
control, Kocherlakota [17] developed a general guideline for the percentage NC 
(non-conforming units) associated with , assuming that the process is perfectly 
centered at the midpoint of the specification range (see Table 3). Mizuno [28] 
presented detailed criteria for , which had been widely used in U.S. industries. 
These criteria provide guidelines for management response to specific ranges of 

 values (see Table 4). 

PC

PC

PC

 7



In section 2.1, we discuss the relationship between the empirical process 
capability  and the true process capability . In section 2.2, we obtain the 
pdf, the expected value, the variance and the MSE of 

Y
PC PC

Y
PC . And, we compare the 

MSE of Y
PC  with that of PC . In section 2.3, we use the confidence interval 

bounds in Pearn et al. [36] to estimate the true capability  by PC Y
PC , and we 

show that the confidence coefficient becomes decrease with measurement errors. 
In section 2.4, we use the critical values in Pearn et al. [36] to test whether the 
process capability meets the requirement, and we show that the α -risk and the 
power both become decrease with measurement error. In section 2.5, we present 
our modified confidence interval bounds and critical values for the cases that 
measurement errors are unavoidable.  

2.1 Empirical Process Capability Y
PC  

Suppose that X  ~ Normal ( μ , 2σ ) represents the relevant quality 
characteristic of a manufacturing process. Because of measurement errors, the 
observed variable Y  ~ Normal ( μ , 2

Yσ  = 2σ + 2
Mσ ) is measured by the 

assumption that  and X M  are stochastically independent, instead of 
measuring the true variable . The empirical process capability index  is 
obtained after substituting 

X Y
PC

Yσ  for σ , and we have the relationship between the 
true process capability  and the empirical process capability  as PC Y

PC

2 21
Y P
P

P

C
C

Cλ
=

+
. 

(2.1) 

Since the variation of data we observed is larger than the variation of the 
original data, the denominator of the index  becomes larger, and we will 
understate the true capability of the process if we calculate process capability 
index with variable .  

PC

Y

Table 5. Process capability with λ  = 0.05(0.05)0.50 for various . PC

 λ  

PC  0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49 

1.00 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.93 0.91 0.89 

1.33 1.33 1.32 1.30 1.29 1.26 1.24 1.21 1.17 1.14 1.11 

1.50 1.50 1.48 1.46 1.44 1.40 1.37 1.33 1.29 1.24 1.20 

1.67 1.66 1.65 1.62 1.58 1.54 1.49 1.44 1.39 1.34 1.28 

2.00 1.99 1.96 1.92 1.86 1.79 1.71 1.64 1.56 1.49 1.41 

2.50 2.48 2.43 2.34 2.24 2.12 2.00 1.88 1.77 1.66 1.56 

In Table 5, we list some process capabilities with λ  = 0.05(0.05)0.50 for 
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various true process capability index P  = 0.50, 1.00, 1.33, 1.50, 1.67, 2.00, and 
2.50. It is obviously that the gauge becomes more important as the true capability 
improves (Levinson [22]). If 

C

λ  = 0.50 (50%), P  = 0.49 with the true process 
capability P

YC
C C C = 0.50, and  = 1.56 with the true process capability P

Y
P  = 2.50. 

Substituting a perfect measuring instrument will help much for processes with 
higher capability. 

Y
P2.2 Sampling Distribution of C  

Suppose that { ,  = 1, 2, …, } denote the random sample of size  
from the quality characteristics . To estimate the precision index , we 
consider the natural estimator 

X i n n
X PC

ˆ
PC  defined below, where  = S

1/ 2
1[ ( ) /( 1)]n

i iX X n=∑ − −  is the conventional estimator of σ , which may be 
obtained from a stable process, 

6
USL LSL

S
−

=

2

ˆ
PC . (2.2) 

On the assumption of normality, the statistic 2( 1) /K n S σ= −  is distributed as 
2

1nχ − , a chi-square with n -1 degrees of freedom. The pdf (probability density 
function) of ˆ

PC  can be expressed as (Chou & Owen [6]) 

[ ]
1

2 12( 1) / 2
( ) 2 exp ( 1)x C 2

( )
( ) ( )

( 1) / 2

n
p n

p

n C
f x n x

n

−
− −−

= − −
Γ

⎡ ⎤ . (2.3) ⎣ ⎦−

By adding the well-known correction factor  

1
1

2
( ) ( )

1
1 2

2 2nb
n

n n −
− = Γ Γ

−

− − . (2.4) 

to ˆ
PC , such as PC = , Pearn et al. [36] showed that 1

ˆ
nb C− P PC  is the UMVUE of 

. The expected value and the variance of the estimator PC PC  are 

E( )P PC C= , (2.5) 

2 2
1

1Var( ) ( 1)
3P n P

nC b
n − C−

= −
−

. (2.6) 

However, the sample observations are not  but . The estimator of 
estimating  is  

X Y
PC

1 6
( )Y

P
Y

n
USL LSL

C b
S−

−
= , (2.7) 

while we use PC  to estimate , where PC 1/ 2
1[ ( ) /( 1)]n

Y i iS Y Y n== ∑ − − . Based on the 
same arguments used in Chou & Owen [6] and Pearn et al. [36], we obtain the pdf 
of Y

PC  as 
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[ ]

2 2 1 2 2 1

2 2

( 1) / 2 / 1
( ) 2 exp

( 1) / 2

( ) ( 1) (2 )
( )

1

n
p p n p

p

n C C
f y

n

n C y
y

C
λ

λ

−

−
−− +

=
Γ −

⎡ ⎤− −
⎢ ⎥

+⎢ ⎥⎣ ⎦
, (2.8) 

 The expected value and the variance of the estimator Y
PC  are 

2 2
E( )

1
Y P
P

P

C
C

Cλ
=

+
, 

(2.9) 

 
2

2
1 2 2

1Var( ) ( 1)
3 1

Y P
P n

P

CnC b
n Cλ−

−
= −

− +
. (2.10) 

For λ  > 0, it is obviously that Y
PC  is a biased estimator of , and the bias is PC

2 2(1/ 1 1)P PC Cλ+ −  which decreases in λ . Since n  is a finite positive integer, 
 is positive, so we have 2

1[( 1) /( 3)]( ) 1nn n b −− − − Var( )Y
PC  < Var( )PC . Taking into 

account both the bias and the variance, we consider the MSEs of the two 
estimators PC  and Y

PC . The MSEs of PC  and Y
PC , which we denote as 

MSE( )PC  and MSE( )Y
PC  respectively, are 

2 2
1

1MSE( ) ( 1)
3P n P

nC b
n − C−

= −
−

, (2.11) 

 
2

21
2 2 2 2

1 2MSE( ) [ ( ) 1]
3 1 1

Y n
P P

P P

bnC C
n C Cλ λ

−−
= −

− + +
+ . (2.12) 

Compare MSE( )Y
PC  with MSE( )PC , we consider the function ( , ,P )f C n λ = 

MSE( )Y
PC  / MSE( )PC . By some reduction, we have ( , ,P )f C n λ  = 1 if and only if  

2
1 1
2

1

2 ( 1) /( 3) 1
2 ( 1) /( 3)

n
P

n

n b n
C

n b n
λ − −

−

− − −
=

− − −
, (2.13) 

or λ  = 0. 

 
Figure 1(a). Surface plot of 0λ  for various 

 = 5 (1) 100 and n PC = [1.00, 2.00]. 

 
Figure 1(b). Plots of 0λ  versus n  = 5 (1) 
100 for PC  = 1.00, 1.33, 1.50, 2.00 (from top 
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to bottom). 
As we denote the right side of the equal sign in the above formula as 0λ , we 

have ( , ,P )f C n λ  > 1 if λ  > 0λ  and ( , , )Pf C n λ  < 1 if λ  < 0λ  exclusive of 
0. It represents that MSE( )Y

PC  > MSE( )PC  if λ  > 0λ , MSE( )Y
PC  < 

MSE( )PC  if λ  < 0λ  exclusive of 0, and MSE( )Y
PC  = MSE( )PC  if λ  = 0λ  

or 0. Figure 1(a) shows the surface plot of 0λ  values for  = 5(1)100 and  
in [1.00, 2.00]. Figure 1(b) plots 

n PC
0λ  versus  = 5(1)100 for  = 1.00, 1.33, 

1.50, 2.00. By those figures, we see that 
n PC

0λ  value decreases if  or  
increases. The maximum value of 

n PC
0λ  is 1.439 which occurs at (n , ) = (5, 

1.00), and the minimum value of 
PC

0λ  is 0.072 which occurs at ( , ) = (100, 
2.00). 

n PC

 
Figure 2(a). Surface plot of 1γ  with = 
5(1)100 and 

n
λ  in [0, 0.5] for PC  = 1.00. 

 
Figure 2(b). Surface plot of 1γ  with  = 
5(1)100 and 

n
λ  in [0, 0.5] for PC  = 1.33. 

 
Figure 2(c). Surface plot of 1γ  with  = 
5(1)100 and 

n
λ  in [0, 0.5] for PC  = 1.50. 

 
Figure 2(d). Surface plot of 1γ  with  = 
5(1)100 and 

n
λ  in [0, 0.5] for PC  = 2.00. 

Figures 2(a)-2(d) display the surface plots of the ratios 1γ  = ( , , )Pf C n λ  
with  = 5(1)100 and n λ  in [0, 0.5] for  = 1.00, 1.33, 1.50, and 2.00. PC 1γ  
varies with  or n λ , the variation is more noticeable in higher capability case. 
For large , n 1γ  is greater than 1 for almost every value of λ , and 1γ  increases 
in λ . The maximum values of 1γ  in Figures 2(a)-2(d) are 2.957, 6.110, 8.380, 
and 17.100, which occur at ( , n λ ) = (100, 0.50), (100, 0.50), (100, 0.50), and 
(100, 0.50) respectively, and the minimum values of 1γ  in Figures 2(a)-(d) are 
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0.841 (1/1.189), 0.796 (1/1.256), 0.786 (1/1.272), and 0.785 (1/1.274), which 
occur at ( , n λ ) = (5, 0.50), (5, 0.50), (5, 0.50), and (5, 0.39) respectively. The 
difference between MSE( )Y

PC  and MSE( )PC  with 1γ  > 1 is more significant 
than that with 1γ  < 1. 

Y
PC  2.3 Confidence Bounds Based on 

   Under normality assumption, the (1-α )% confidence interval of  with 
confidence bounds  and U , can be established as 

PC
L

( ) 1/ 2

1
P

1
P

P
n

CP L C U L K U
b n−

⎛ ⎞
≤ ≤ = ≤ ≤⎜ ⎟⎜ ⎟−⎝ ⎠

,  

2 2 2 21 11 1= P [ ] [ ] 1n n

P P

b n b nL K U
C C

α− −⎛ ⎞− −
≤ ≤ =⎜ ⎟⎜ ⎟

⎝ ⎠
− . (2.14) 

2
2 21

1,1 / 2
1n

n
P

b n
L

C αχ−
− −

⎡ ⎤−
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⎢ ⎥⎣ ⎦
, 

2
2 21

1, / 2
1n

n
P

b n
U

C αχ−
−

⎡ ⎤−
=⎢ ⎥

⎢ ⎥⎣ ⎦
, (2.15) 

 
where 2

1,n αχ −  is the upper α th quantile of the 2
1nχ −  distribution, and we can 

obtain the confidence bounds  and U  of  as L PC

2
1,1 / 2

11
n P

n

C
L

n b
αχ − −

−

=
−

, 
2

1, / 2

11
n P

n

C
U

n b
αχ −

−

=
−

. (2.16) 

However, as a result of the measurement errors, we take Y
PC  as an estimator of 

, thus the confidence bounds we calculated are PC

2
1,1 / 2

11

Y
n PY

n

C
L

n b
αχ − −

−

=
−

, 
2

1, / 2

11

Y
n PY

n

C
U

n b
αχ −

−

=
−

, (2.17) 

and the confidence coefficient θ  (the probability that the confidence interval 
contains the actual  value) is   PC

2 2
1,1 / 2 1, / 2

1 11 1

Y Y
n P n

p
n n

C C
P C

n b n b
α αχ χ

θ − − −

− −

⎛ ⎞
⎜ ⎟= ≤ ≤
⎜ ⎟− −⎜ ⎟
⎝ ⎠

P   

2 2 2
1,1 / 2 1, / 22

2 2

( ) (
= P

( 1)36 ( 1)36
n n

P
Y Y

USL LSL USL LSL
C

n S n S
α αχ χ− − −⎛ ⎞− −

⎜ ⎟≤ ≤
⎜ ⎟− −⎝ ⎠

2)
  

2 2 2
n-1, 1- / 2 1 n-1, / 22 2 2 2

1 1= P
1 1n

P PC Cα αχ χ χ
λ λ−

⎛ ⎞
≤ ≤⎜ ⎟⎜ ⎟+ +⎝ ⎠

, (2.18) 
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where  = YK 2( 1) /Yn S 2
Yσ−  is distributed as 2

1nχ − . 

 
Figure 3(a). Plots of θ  versus λ  with PC  

= 1.00 and  = 25(25)100 (from top to 
bottom) for 95% confidence intervals. 

n

 
Figure 3(b). Plots of θ  versus λ  with PC  

= 1.33 and n  = 25(25)100 (from top to 
bottom) for 95% confidence intervals.

 
Figure 3(c). Plots of θ  versus λ  with PC  

= 1.50 and  = 25(25)100 (from top to 
bottom) for 95% confidence intervals. 

n

 
Figure 3(d). Plots of θ  versus λ  with PC  

= 2.00 and n  = 25(25)100 (from top to 
bottom) for 95% confidence intervals

Figures 3(a)-3(d) present plots of θ  versus λ  with PC  = 1.00, 1.33, 1.50, 
2.00 and  = 25(25)100 (from top to bottom) for 95% confidence intervals. 
Obviously, those intervals do not maintain the stated confidence coefficient. The 

n

θ  value decreases in measurement errors, and larger sample size or higher 
capability has more significant decrements. Because of the measurement errors, 
the confidence coefficients may become very small. For instance, when  = 
2.00,  = 100, and 

PC
n λ  = 0.50 (see Figure 3(d)), the confidence coefficient is 

only 0.26%, which is much smaller than the stated confidence coefficient 95%. 

2.4 Capability Testing Based on Y
PC  

To determine whether a given process meets the present capability 
requirement and runs under the desired quality condition. We can consider the 
following statistical testing hypothesis, :  0H PC ≤   versus :  > . 
Process fails to meet the capability requirement if  

c 1H PC c
PC ≤  , and meets the c
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capability requirement if  > . The critical value  can be determined by 
the following with 

PC c 0c
α -risk 0( )cα α=  (the chance of incorrectly judging an 

incapable process as capable),  

( )0 |P PP C c C c α≥ = = , (2.19) 

and we can obtain  is 0c

1
0 2

1,1

1n

n

b nc
αχ

−

− −

−
=

c
. 

(2.20) 

Meanwhile, the power of the test (the chance of correctly judging a capable 
process as capable) can be computed as 

( )
2

2 2
0 1 02

( )( ) | |
36P P P n

USL LSLC P C c C P b c C
S

π −
⎛ ⎞−

= > = >⎜ ⎟⎜ ⎟
⎝ ⎠

P   

2 2 2
2 21

1 1,12 2
0

( 1)n P P
n n

b n C CP K P
c c αχ χ−

− −
⎛ ⎞ ⎛ ⎞−

= < = <⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

− . (2.21) 

In the presence of measurement errors, however, the α -risk (denoted by 
Yα ) 

and the power of the test (denoted by Yπ ) are  

( )0 |Y Y
P PP C c C cα = ≥ =   

2
1,11

0 2 2

1 |
1

Y
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P
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⎛ ⎞⎛ ⎞− ⎜ ⎟= ≥ = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠

K≥   

2 2 2
1,1 1 1,12 2 2 2

1 1
1 1

Y
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2 2
1,1

2 2 2(1 )
P n Y

P

C
P K

c C
αχ
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⎜ ⎟= >
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2
2 2
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P

n
P

CP
c C 1,1n αχ χ

λ−
⎛ ⎞

= <⎜ ⎟⎜ ⎟+⎝ ⎠
− − . (2.23) 

Since we underestimate the true capability of the process when we calculate 
process capability index using Y

PC  instead of PC , the probability that Y
PC  is 

greater than  will be less than the probability of that using 0c PC . Thus, the 
-risk using α Y

PC  to estimate  is less than the PC α -risk using PC  to estimate 
 (PC Yα α≤ ), and the power using Y

PC  to estimate  is also less than the PC
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power using PC  to estimate  (PC Yπ π≤ ). 

 
Figure 4(a). Surface plot of Yα  with  = 
5(1)100 and 

n
λ  in [0, 0.5] for  = 1.00 and c

α  = 0.05. 

 
Figure 4(b). Surface plot of Yα  with  = 
5(1)100 and 

n
λ  in [0, 0.5] for  = 1.33 and c

α  = 0.05. 

 
Figure 4(c). Surface plot of Yα  with  = 
5(1)100 and 

n
λ  in [0, 0.5] for  = 1.50 and c

α  = 0.05. 

 
Figure 4(d). Surface plot of Yα  with  = 
5(1)100 and 

n
λ  in [0, 0.5] for  = 2.00 and c

α  = 0.05

Figures 4(a)-4(d) are the surface plots of Yα  with  = 5(1)100 and n λ  in 
[0, 0.5] for  = 1.00, 1.33, 1.50, 2.00, and c α  = 0.05. Figures 5(a)-5(d) are plots 
of Yπ  versus λ  with  = 50 and n α  = 0.05 for  = 1.00, 1.33, 1.50, 2.00 
and 

c
PC  = c(0.20)c+1. Note that we have Yα Yα=  and π π=  when λ  = 0 in 

those figures. In Figures 4(a)-4(d), Yα  decreases if λ  or  increases, and the 
decrements are significant with large  values. In addition, we find that large 

n
c

λ  values may result Yα  smaller than 41 10−×  (such as λ  = 0.50, c  = 2.00, 
and   50), an n ≥ α -risk may be very imperceptible because of measurement 
errors. In Figures 5(a)-5(d), Yπ  decreases with λ , but increases with . The 
decrements of power by 

n
λ  are more significant with higher capability. Because 

of measurement errors, Yπ  may decrease with significant decrements. For 
instance, we consider the Yπ  values in Figure 5(b) (c  = 1.33,  = 50) for  
= 1.93, 

n PC
Yπ  = 0.980 if there is no measurement error (λ  = 0), but when λ  = 

0.50, Yπ  decreases to 0.104, the decrement of power is about 0.88. 
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Figure 5(a). Plots of Yπ  versus λ  with n  
= 50 and α  = 0.05 for  = 1.00 and c PC  = 
1.00(0.20)2.00 (from bottom to top). 

 

Figure 5(b). Plots of Yπ  versus λ  with  
= 50 and 

n
α  = 0.05 for  = 1.33 and c PC  

= 1.33(0.20)2.33 (from bottom to top). 

 

 
Figure 5(c). Plots of Yπ  versus λ  with n  
= 50 and α  = 0.05 for  = 1.50 and c PC  = 
1.50(0.20)2.50 (from bottom to top).  

 
Figure 5(d). Plots of Yπ  versus λ  with  
= 50 and 

n
α  = 0.05 for  = 2.00 and c PC  = 

2.00(0.20)3.00 (from bottom to top). 

2.5 Modified Confidence Bounds and Critical Values 

We showed earlier that the confidence intervals do not maintain the stated 
confidence coefficients. We also showed that both the α -risk and the power of 
the test decrease when the gauge measurement error increases. If the producers 
do not take account of the effects of the gauge capability in process capability 
estimation and testing, it may result in serious loss. In that case, the producers 
cannot anymore affirm that their processes to be meet the capability 
requirement even if their processes are sufficiently capable. The producers may 
pay for a lot of cost because quantities of qualified product units are incorrectly 
rejected. Improving the gauge measurement accuracy and training the operators 
by proper education are essential for reducing the measurement errors. 
Nevertheless, measurement errors may be unavoidable in most manufacturing 
processes. In the following, we adjust the confidence intervals and critical values 
in order to ensure the intervals have the desired confidence coefficients and 
improve the power of the test with appropriate α -risk. Suppose that the desired 
confidence coefficient is 1-α , the adjusted confidence interval of PC  with 
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∗ , can be established as confidence interval bounds  and UL∗
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. (2.25) 

By some simplification, the adjusted (1-α )% confidence interval bound can be 
written as 

2
1,1 / 2

2 2 2
1 1,1( 1) ( )

Y
n P

Y
n P n

C
L

n b C

α

α

χ

λ χ

− −∗

− −

=
− − / 2−

, 
2

1, / 2

2 2 2
1 1, / 2( 1) ( )

Y
n P

Y
n P n

C
U

n b C

α
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λ χ

−∗

− −

=
− −

. (2.26) 

With our revised confidence interval bounds, we can ensure the interval 
would have the desired confidence coefficient. Moreover, in order to improve the 
power of the test, we let the critical values (denoted by 0c∗ ) we proposed to be 
satisfied  < . Since  < , the probability that 0c∗

0c 0c∗
0c Y

PC  is greater than 0c∗  
will be more than the probability of that Y

PC  is greater than . And, both the 0c
α -risk and the power increase when we take 0c∗  to be critical value for testing 
hypothesis. Suppose that the α -risk by our revised critical values  is 0c∗ α∗ , 
the revised critical  can be introduced by  0c∗
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2 2
1

2 2 2
0

( 1)
(1 )

Ynb n cP
cc λ

−
∗

⎛ ⎞−
= ≥⎜ ⎟⎜ ⎟+⎝ ⎠
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2 2
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1 2 2 2
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n
n

b n cP
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χ
λ

−
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. (2.27) 

To ensure that the α -risk is within the preset magnitude, we let α α∗ = , thus 
 and the power (denoted by 0c∗ π ∗ ) can be obtained as  

1
0 2 2 2

1,1

1

(1 )
n

n

b n c
c

c αλ χ
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−
=

+
 

(2.28) 
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− . (2.29) 

 
Figure 6(a). Plots of π ∗  versus λ  with n  
= 50 and α  = 0.05 for  = 1.00 and c PC  = 
1.00(0.20)2.00 (from bottom to top). 

 
Figure 6(b). Plots of π ∗  versus λ  with  
= 50 and 

n
α  = 0.05 for  = 1.33 and c PC  = 

1.33(0.20)2.33 (from bottom to top). 

 
Figure 6(c). Plots of π ∗  versus λ  with n  
= 50 and α  = 0.05 for  = 1.50 and c PC  = 
1.50(0.20)2.50 (from bottom to top). 

 
Figure 6(d). Plots of π ∗  versus λ  with  
= 50 and 

n
α  = 0.05 for  = 2.00 and c PC  = 

2.00(0.20)3.00 (from bottom to top). 

Figures 6(a)-6(d) are plots of π ∗  versus λ  with  = 50 and n α  = 0.05 
for  = 1.00, 1.33, 1.50, 2.00 and c PC  = (0.20)c+1. From those figures, we 
see that the powers corresponding to our adjusted critical values  remain 
decreasing in measurement error, but the decrements originated in our adjusted 
critical values  is smaller than those originated in the critical values with no 
correction. For instance, when we compare the 

c
0c

0c
Yπ  values in Figure 5(b) (c  = 

1.33,  = 50) for n PC  = 1.93 to the π ∗  values in Figure 6(b) (c  = 1.33, n  = 
50) for PC  = 1.93, we obtain that Yπ  = 0.104 and π ∗  = 0.690 with λ  = 
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0.50. In this case, by our adjusted critical values , the power we improved is 
about 0.60. With our revised critical values, we ensure the 

0c
α -risk within the 

preset magnitude and we have improved a certain degree of power. For our 
results to be practical, we provide the tables of our revised critical values for 
some commonly used capability requirements in Tables 12-15 in the Appendix. 
Using those tables, the practitioner may skip the complex calculation and 
directly select the proper critical values for capability testing. 
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