### Chapter 3

## Measuring Process Capability Based on $C_{PK}$ with Gauge Measurement Errors

 $C_{PK}$  was created in Japan to offset some of the weaknesses in  $C_P$ , primarily the fact that  $C_P$  measured capability in terms of process variation only and did not take process location into consideration. From observing the definition of  $C_{PK}$  $(C_{PK} = \min \{C_{PU}, C_{PL}\}$ , see equation (1.3)), it is apparent that  $C_{PK}$  quantifies capability for the worst half of the data, i.e.  $C_{PK}$  is quantified only by the worst-tail to specification limit relationship, thus, the individual effects of process location and variation on process capability are confounded in this index.

Under the normal assumption, process yield is given by

%yield = 100 
$$\left[ \Phi\left(\frac{USL - \mu}{\sigma}\right) - \Phi\left(\frac{LSL - \mu}{\sigma}\right) \right].$$
 (3.1)

Boyles [2] gave the upper and lower bounds on % yield associated with  $C_{\scriptscriptstyle P\!K}$  as

$$100[2\Phi(3C_{PK}) - 1] \le \% \text{yield} \le 100[\Phi(3C_{PK})].$$
(3.2)

And, Finley [9] developed a table of approximate proportion NC associated with given  $C_{PK}$  values (see Table 6).

| $C_{_{PK}}$ | Parts outside tolerance limits |  |  |  |  |  |
|-------------|--------------------------------|--|--|--|--|--|
| 0.25        | 16 out of 100                  |  |  |  |  |  |
| 0.5         | 7 out of 100                   |  |  |  |  |  |
| 1.0         | 13 out of 10 000               |  |  |  |  |  |
| 1.33        | 3 out of 100 000               |  |  |  |  |  |
| 1.67        | 1 out of 1000 000              |  |  |  |  |  |
| 2.0         | 1 out of 1000 000 000          |  |  |  |  |  |

Table 6. Approximate proportion NC associated with given  $C_{PK}$  values.

In section 3.1, we discuss the ratio r between the empirical process capability  $C_{PK}^{\gamma}$  and the true process capability  $C_{PK}$ . In section 3.2, we obtain the pdf, the expected value, the variance and the MSE of  $\hat{C}_{PK}^{\gamma}$ . And, we compare the MSE of  $\hat{C}_{PK}^{\gamma}$  with that of  $\hat{C}_{PK}$ . In section 3.3, we use the confidence interval bounds in Pearn & Shu [39] to estimate the minimum process capability by  $\hat{C}_{PK}^{\gamma}$ , we show that a large measurement error results in significantly underestimating the true process capability. In section 3.4, we use the critical values in Pearn & Lin [37] to test whether the process capability meets the requirement, and we show that the  $\alpha$ -risk and the power both become decrease with measurement error. In section 3.5, we present our modified confidence interval bounds and critical values for the cases that measurement errors are unavoidable. Finally in section 3.6, an example is presented.

### **3.1** Empirical Process Capability $C_{PK}^{Y}$

 $C_P \in [1, 2]$  for  $\lambda \in [0, 0.5]$ .

Suppose that  $X \sim \text{Normal}(\mu, \sigma^2)$  represents the relevant quality characteristic of a manufacturing process, and  $C_{PK}$  measures the true process capability. However in practice, the observed variable Y is measured rather than the true variable X. Assume that X and M are stochastically independent, we have  $Y \sim \text{Normal}(\mu, \sigma_Y^2 = \sigma^2 + \sigma_M^2)$ , and the empirical process capability index  $C_{PK}^{Y}$  is obtained after substituting  $\sigma_Y$  for  $\sigma$ . The relationship between the true process capability  $C_{PK}$  and the empirical process capability  $C_{PK}^{Y}$  can be expressed as

$$\frac{C_{PK}^{Y}}{C_{PK}} = \frac{1}{\sqrt{1 + \lambda^{2} C_{P}^{2}}} \,. \tag{3.3}$$

[0, 0.5] for  $C_P = 1.0(0.2)2.0$ .

Since the variation of data we observed is larger than the variation of the original data, the denominator of the index  $C_{PK}$  becomes larger, and the true capability of the process is understated if calculation of process capability index is based on empirical data Y.



Figure 7(a) displays the surface plot of the ratio  $r = C_{PK}^{\gamma}/C_{PK}$  for  $\lambda \in [0, 0.5]$  with  $C_P \in [1, 2]$ . Figure 7(b) plots the ratio r versus  $\lambda$  for  $C_P = 1.0(0.2)2.0$ . Those figures show that the measurement errors result in a decrease in the estimate. Small process variation has the same effect as the presence of measurement error does. Since r would be small if  $\lambda$  becomes large, the gauge becomes more important as the true capability improves. For instance, If  $\lambda = 0.5$  and  $C_P = 2$  (the ratio r = 0.71),  $C_{PK}^{\gamma} = 0.36$  with  $C_{PK} = 0.50$ , and

 $C_{PK}^{Y} = 1.78$  with  $C_{PK} = 2.50$ . The empirical process capability diverges from the true process capability more with large measurement errors.

# 3.2 Sampling Distribution of $\hat{C}_{PK}^{Y}$

In practice, sample data must be collected in order to estimate the empirical process capability. Suppose that the empirical data (observed measurement contaminated with errors) { $Y_i$ , i = 1, 2, ..., n} is collected, then the natural estimator  $\hat{C}_{PK}^{\gamma}$  defined as the following,

$$\hat{C}_{PK}^{Y} = \frac{d - |\overline{Y} - m|}{3S_{Y}}, \qquad (3.4)$$

which is obtained by replacing the process mean  $\mu$  and the process standard deviation  $\sigma$  by their conventional estimators  $\overline{Y} = \sum_{i=1}^{n} Y_i / n$  and  $S_Y = [\sum_{i=1}^{n} (Y_i - \overline{Y}) / (n-1)]^{1/2}$ , from a demonstrably stable process.

Applying the same technique used in Pearn & Lin [37], and Kotz & Johnson [18], we obtain the cdf of  $\hat{C}^{\gamma}_{PK}$  as

$$F_{\hat{C}_{PK}^{Y}}(x) = 1 - \int_{0}^{3C_{P}^{Y}\sqrt{n}} G\left(\frac{(n-1)(3C_{P}^{Y}\sqrt{n}-t)^{2}}{9nx^{2}}\right) f_{T}^{Y}(t)dt , \qquad (3.5)$$

where  $f_T^Y(t) = \Phi[t + 3(C_p^Y - C_{PK}^Y)\sqrt{n}] + \Phi[t - 3(C_p^Y - C_{PK}^Y)\sqrt{n}]$ ,  $C_P^Y = C_p / \sqrt{1 + \lambda^2 C_p^2}$ , and  $C_{PK}^Y = C_{PK} / \sqrt{1 + \lambda^2 C_p^2}$ . The mean and the variance of the estimator  $\hat{C}_{PK}^Y$ , are

$$E(\hat{C}_{PK}^{Y}) = \frac{1}{3b_{n-1}} \left\{ b^{Y} - \sqrt{\frac{2}{n\pi}} \exp(-\frac{n}{2}(\xi^{Y})^{2}) - |\xi^{Y}| \left[ 1 - 2\Phi(-\sqrt{n} |\xi^{Y}|) \right] \right\},$$
(3.6)

$$\operatorname{Var}(\hat{C}_{PK}^{Y}) = \frac{n-1}{9(n-3)} \left\{ (b^{Y})^{2} - 2b^{Y} \left[ \sqrt{\frac{2}{n\pi}} \exp(-\frac{n}{2} (\xi^{Y})^{2}) + |\xi^{Y}| (1 - 2\Phi(-\sqrt{n} |\xi^{Y}|)) \right] + (\xi^{Y})^{2} + \frac{1}{n} \right\} - (E(\hat{C}_{PK}^{Y}))^{2}, \qquad (3.7)$$

where  $b^{\gamma} = 3C_p^{\gamma}$  and  $\xi^{\gamma} = 3(C_p^{\gamma} - C_{PK}^{\gamma})$ . The mean and the variance of  $\hat{C}_{PK}^{\gamma}$ are very lengthy, and cannot be further simplified. To investigate how measurement errors may affect the sample distribution, we conduct some bias and the MSE analysis. Noting that from the expression  $C_{PK} = C_p - |\xi|/3$  (or  $C_p = C_{PK} + |\xi|/3$ ), Pearn & Lin [37] and Pearn & Shu [39] showed that the lower confidence bounds and critical values for  $C_{PK}$  can be obtained by setting  $\xi = 1.00$ . Therefore, here we set  $C_p = C_{PK} + 1/3$  and consider cases of  $(C_p, C_{PK}) = (1.33, 1.00)$  and (1.83, 1.50) for illustrations.

Figures 8(a)-8(b) plot the bias of  $\hat{C}_{PK}^{\gamma}$  versus n = 5(1)100 with  $\lambda = 0(0.1)0.5$  for  $(C_P, C_{PK}) = (1.33, 1.00)$  and (1.83, 1.50). Figures 9(a)-9(b) are the

surface plots of the ratio  $\gamma_2 = \text{MSE}(\hat{C}_{PK}^{\gamma})/\text{MSE}(\hat{C}_{PK})$  with n = 5(1)100 and  $\lambda \in \text{in } [0, 0.5]$  for  $(C_P, C_{PK}) = (1.33, 1.00)$  and (1.83, 1.50). It is noted that when  $\lambda = 0$ , the bias of  $\hat{C}_{PK}^{\gamma}$  equals to the bias of  $\hat{C}_{PK}$ , but the bias of  $\hat{C}_{PK}^{\gamma}$  will never be, but the absolute bias of  $\hat{C}_{PK}^{\gamma}$  may be unbiased while  $\hat{C}_{PK}$  will never be, but the absolute bias of  $\hat{C}_{PK}^{\gamma}$  may be much greater than that of  $\hat{C}_{PK}$  for large  $\lambda$ . It is observed from Figures 9(a)-9(b) that  $\gamma_2$  varies in n or  $\lambda$ , particularly for large  $C_{PK}$ . For large n, the value  $\gamma_2$  is greater than 1 (MSE $(\hat{C}_{PK}^{\gamma}) > \text{MSE}(\hat{C}_{PK})$ ) for most  $\lambda$ , and  $\gamma_2$  increases in  $\lambda$ . The maximum values of  $\gamma_2$  in Figures 9(a)-9(b) are 0.756 (1/1.323) and 0.584 (1/1.712) respectively. All the maximum values of  $\gamma_2$  occur at  $(n, \lambda) = (5, 0.5)$ . The difference between MSE $(\hat{C}_{PK}^{\gamma})$  and MSE $(\hat{C}_{PK})$  with  $\gamma_2 > 1$  is more significant than that with  $\gamma_2 < 1$ .



Figure 8(a). Plots of the bias of  $\hat{C}_{P_K}^{\gamma}$  for n = 5(1)100,  $\lambda = 0(0.1)0.5$  (top to bottom),  $C_P = 1.33$  and  $C_{P_K} = 1.00$ .



Figure 9(a). Surface plot of  $\gamma_2$  with n = 5(1)100 and  $\lambda \in [0, 0.5]$  for  $C_p = 1.33$  and  $C_{PK} = 1.00$ .

Figure 8(b). Plots of the bias of  $\hat{C}_{PK}^{\gamma}$ for n = 5(1)100,  $\lambda = 0(0.1)0.5$  (top to bottom),  $C_P = 1.83$  and  $C_{PK} = 1.50$ .



Figure 9(b). Surface plot of  $\gamma_2$  with n = 5(1)100 and  $\lambda \in [0, 0.5]$  for  $C_p = 1.83$  and  $C_{p_K} = 1.50$ .

#### **3.3** Lower Confidence Bound Based on $\hat{C}_{PK}^{Y}$

The lower confidence bounds estimate the minimum process capability based on sample data. To find reliable  $100\theta\%$  lower confidence bound  $L_{\kappa}$  for

 $C_{PK}$  ( $\theta$  represents the probability that the confidence interval contains the actual  $C_{PK}$ ), Pearn & Shu [39] solved the following equation,

$$\int_{0}^{b\sqrt{n}} G\left(\frac{(n-1)(b\sqrt{n}-t)^{2}}{9n(\hat{C}_{PK})^{2}}\right) \left[\Phi(t+\xi\sqrt{n}) + \Phi(t-\xi\sqrt{n})\right] dt = 1-\theta.$$
(3.8)

Noting that  $b = 3C_p$  can be expressed as  $b = 3L_{\kappa} + |\xi|$ . Since the process parameters  $\mu$  and  $\sigma$  are unknown, then the distribution characteristic parameter  $\xi = (\mu - m)/\sigma$  is also unknown. To eliminate the need for further estimating the distribution characteristic parameter  $\xi$ , Pearn & Shu [39] examined the behavior of the lower confidence bound  $L_{\kappa}$  against the parameter  $\xi$ . They performed extensive calculations to obtain the lower confidence bound values  $L_{\kappa}$  for  $\xi = 0(0.05)3.00$ ,  $\hat{C}_{P\kappa} = 0.7(0.1)3.0$ , n = 10(5)200 with confidence coefficient  $\theta = 0.95$ . They found that the lower confidence bound  $L_{\kappa}$  obtains its minimum at  $\xi = 1.00$  in all cases. Thus for practical purpose they recommended to solve equation (3.8) with  $\xi = \hat{\xi} = 1.00$  to obtain the required lower confidence bounds, without having to further estimate the parameter  $\xi$ .

But,  $\hat{C}_{PK}^{Y}$  is substituted into equation (3.8) to obtain the confidence bounds, which can be written as (we denote the bound originated from  $\hat{C}_{PK}^{Y}$  as  $L_{K}^{Y}$ ),

$$\int_{0}^{(3L_{K}^{Y}+1)\sqrt{n}} G\left(\frac{(n-1)[(3L_{K}^{Y}+1)\sqrt{n}-t]^{2}}{9n(\hat{C}_{PK}^{Y})^{2}}\right) \left[\Phi(t+\sqrt{n}) + \Phi(t-\sqrt{n})\right] dt = 1-\theta.$$
(3.9)

The confidence coefficient by the confidence bound  $L_{K}^{Y}$  (denoted by  $\theta^{Y}$ ) is

$$\theta^{Y} = 1 - \int_{0}^{(3L_{K}^{Y} + \xi^{Y})\sqrt{n}} G\left(\frac{(n-1)[(3L_{K}^{Y} + \xi^{Y})\sqrt{n} - t]^{2}}{9n(\hat{C}_{PK}^{Y})^{2}}\right) \left[\Phi(t + \hat{\xi}^{Y}\sqrt{n}) + \Phi(t - \hat{\xi}^{Y}\sqrt{n})\right] dt ,$$
(3.10)

where  $\xi^{Y} = 3(C_{p} - C_{p_{K}})$ , and  $\hat{\xi}^{Y} = 3(\hat{C}_{p}^{Y} - \hat{C}_{p_{K}}^{Y})$ . Since  $\hat{C}_{p_{K}}^{Y}$  is smaller than  $\hat{C}_{p_{K}}$ , and  $L_{K}^{Y}$  is smaller than  $L_{K}$ , then  $\theta^{Y}$  is always greater than  $\theta$ . Figures 10(a)-10(b) plot  $L_{K}^{Y}$  versus  $\lambda \in [0, 0.5]$  with n = 50,  $\hat{C}_{p_{K}} = 1.00, 1.50$ , and  $\hat{C}_{p} = \hat{C}_{p_{K}} + \gamma_{3}$ ,  $\gamma_{3} = 0.33, 0.50, 0.67$ , and 1.00 for 95% confidence intervals (for sufficiently large sample size n, we have  $\hat{C}_{p_{K}}^{Y} = \hat{C}_{p_{K}} / \sqrt{1 + \lambda^{2} \hat{C}_{p}^{2}}$ . Therefore, we set  $\hat{C}_{p_{K}}^{Y} = \hat{C}_{p_{K}} / \sqrt{1 + \lambda^{2} \hat{C}_{p}^{2}}$  to obtain  $\hat{C}_{p_{K}}^{Y}$  in Figures 10(a)-10(b)). We see that in Figures 10(a)-10(b),  $L_{K}^{Y}$  decreases in  $\lambda$ , especially for large  $\hat{C}_{p}$  values, and the decrement of  $L_{K}^{Y}$  is more significant for large  $\hat{C}_{p_{K}}$ . A large measurement error results in significantly underestimating the true process capability.

In current practice, a process is called "inadequate" if  $C_{PK} < 1.00$ , "marginally capable" if  $1.00 \leq C_{PK} < 1.33$ , "satisfactory" if  $1.33 \leq C_{PK} < 1.50$ , "excellent" if  $1.50 \leq C_{PK} < 2.00$ , and "super" if  $2.00 \leq C_{PK}$ . If capability measures do not include the measurement errors, significant underestimation of the true process capability may result in high production cost, losing the power of competition. For instance, suppose that a process has a 95% lower confidence bound, 1.236 ( $\hat{C}_{PK} = 1.50$ ) with n = 50, which meets the threshold of an "excellent" process. But the bound may be calculated as 0.983 with measurement errors  $\lambda = 0.30$  and the process is determined as "inadequate".





(3.11)

Figure 10(a). Plots of  $L_K^{\gamma}$  versus  $\lambda$ with n = 50 for  $\hat{C}_P = 1.33, 1.50, 1.67$ , 2.00 (top to bottom) and  $\hat{C}_{PK} = 1.00$ . Figure 10(b). Plots of  $L_K^{\gamma}$  versus  $\lambda$ with n = 50 for  $\hat{C}_P = 1.83, 2.00, 2.17$ , 2.50 (top to bottom) and  $\hat{C}_{PK} = 1.50$ .

# 3.4 Capability Testing Based on $\hat{C}_{PK}^{Y}$

To determine if a given process meets the preset capability requirement, we could consider the statistical testing with null hypothesis  $H_0: C_{PK} \leq c$  (process is not capable) and alternative hypothesis  $H_0: C_{PK} > c$  (process is capable), where c is the required process capability. If the calculated process capability is greater than the corresponding critical value, we reject the null hypothesis and conclude that the process is capable. Suppose that the nominal size of the statistical testing is  $\alpha$ , the critical value  $c_0$  can be determined by solving the following equation,

$$\int_{0}^{3C_{P}\sqrt{n}} G\left(\frac{(n-1)(3C_{P}\sqrt{n}-t)^{2}}{9nc_{o}^{2}}\right) \left[\Phi[t+3(C_{P}-c)\sqrt{n}] + \Phi[t-3(C_{P}-c)\sqrt{n}]\right] dt = \alpha$$

with test power

$$\pi(C_{PK}) = P\left(\hat{C}_{PK} \ge c_0 \mid C_{PK}, C_P\right)$$
  
=  $\int_0^{3C_P \sqrt{n}} G\left(\frac{(n-1)(3C_P \sqrt{n} - t)^2}{9nc_o^2}\right) \left[\Phi[t + 3(C_P - C_{PK})\sqrt{n}] + \Phi[t - 3(C_P - C_{PK})\sqrt{n}]\right] dt$ .  
(3.12)

To eliminate the need for estimating the characteristic parameter  $C_p$ , Pearn & Lin [37] examined the behavior of the critical values  $c_0$  against the parameter  $C_p$ . They performed extensive calculations to obtain the critical values  $c_0$  for  $C_p = c (0.01)(c+1)$ , c = 1.00, 1.33, 1.50, 1.67, and 2.00, n =10 (50) 300, and  $\alpha = 0.05$ . They found that the critical values  $c_0$  obtains its maximum at  $C_p = c + 1/3$  in all cases. For practice purpose, they recommended to solve equation (3.11) with  $C_p = c + 1/3$  to obtain the required critical values, without having to further estimate the parameter  $C_p$ .

Thus, the  $\alpha$ -risk corresponding to the test using the sample estimate  $\hat{C}^{\gamma}_{PK}$  (denoted by  $\alpha^{\gamma}$ ) will become

$$\alpha^{Y} = P\left(\hat{C}_{PK}^{Y} \ge c_{0} \mid C_{PK} = c, C_{P} = c + 1/3\right)$$

$$= \int_{0}^{3C_{P}^{Y}\sqrt{n}} G\left(\frac{(n-1)(3C_{P}^{Y}\sqrt{n}-t)^{2}}{9nc_{o}^{2}}\right) \left[\Phi[t+3(C_{P}^{Y}-C_{PK}^{Y})\sqrt{n}] + \Phi[t-3(C_{P}^{Y}-C_{PK}^{Y})\sqrt{n}]\right] dt,$$
(3.13)

where  $C_p^{\gamma} = (c+1/3)/\sqrt{1+\lambda^2(c+1/3)^2}$ , and  $C_{PK}^{\gamma} = c/\sqrt{1+\lambda^2(c+1/3)^2}$ . The test power (denoted by  $\pi^{\gamma}$ ) is

$$\pi^{Y} = P\left(\hat{C}_{PK}^{Y} \ge c_{0} \mid C_{PK}, C_{P} = c + 1/3\right)$$

$$= \int_{0}^{3C_{P}^{Y}\sqrt{n}} G\left(\frac{(n-1)(3C_{P}^{Y}\sqrt{n}-t)^{2}}{9nc_{o}^{2}}\right) \left[\Phi[t+3(C_{P}^{Y}-C_{PK}^{Y})\sqrt{n}] + \Phi[t-3(C_{P}^{Y}-C_{PK}^{Y})\sqrt{n}]\right] dt,$$
(3.14)

where  $C_P^Y = (C_{PK} + 1/3)/\sqrt{1 + \lambda^2 (C_{PK} + 1/3)^2}$ , and  $C_{PK}^Y = C_{PK}/\sqrt{1 + \lambda^2 (C_{PK} + 1/3)^2}$ .

Earlier discussions indicate that the true process capability would be severely underestimated if  $\hat{C}_{PK}^{\gamma}$  is used. The probability that  $\hat{C}_{PK}^{\gamma}$  is greater than  $c_0$  would be less than that of using  $\hat{C}_{PK}$ . Thus, the  $\alpha$ -risk using  $\hat{C}_{PK}^{\gamma}$  is less than the  $\alpha$ -risk if using  $\hat{C}_{PK}$  when estimating  $C_{PK}$ . The test power if using  $\hat{C}_{PK}$  is also less than the test power of using  $\hat{C}_{PK}$ . That is,  $\alpha^{\gamma} \leq \alpha$  and  $\pi^{\gamma} \leq \pi$ . Figures 11(a)-11(b) are the surface plots of  $\alpha^{\gamma}$  with n = 5(1)100,  $\lambda \in [0, 0.5]$  for c = 1.00, 1.50, and  $\alpha = 0.05$ . Figures 12(a)-12(b) plot  $\pi^{\gamma}$ versus  $\lambda$  with n = 50,  $\alpha = 0.05$ , for c = 1.00, 1.50, and  $C_{PK} = c (0.20)(c+1)$ . Note that for  $\lambda = 0$ ,  $\alpha^{\gamma} = \alpha$  and  $\pi^{\gamma} = \pi$ . In Figures 11(a)-11(b),  $\alpha^{\gamma}$  decreases as  $\lambda$  or n increases, and the decreasing rate is more significant with large c. In fact, for large  $\lambda$ ,  $\alpha^{\gamma}$  is smaller than  $1 \times 10^{-5}$ . In Figures 12(a)-12(b),  $\pi^{\gamma}$  in  $\lambda$  is more significant for large c. In the presence of measurement errors,  $\pi^{\gamma}$  may decrease substantially. For instance, in Figure 12(b), the  $\pi^{\gamma}$  value (c = 1.50, n = 50) for  $C_{PK} = 2.30$  is  $\pi^{\gamma} =$ 

0.994 if there is no measurement error ( $\lambda = 0$ ). But, when  $\lambda = 0.5$ ,  $\pi^{\gamma}$  decreases to 0.012, the decrement of the power is 0.982.



Figure 11(a). Surface plot of  $\alpha^{\gamma}$  with n = 5(1)100 and  $\lambda \in [0, 0.5]$  for c = 1.00 and  $\alpha = 0.05$ .



Figure 11(b). Surface plot of  $\alpha^{\gamma}$  with n = 5(1)100 and  $\lambda \in [0, 0.5]$  for c = 1.50 and  $\alpha = 0.05$ .



Figure 12(a). Plots of  $\pi^{\gamma}$  versus  $\lambda$ with n = 50,  $\alpha = 0.05$  for c = 1.00,  $C_{PK} = 1.00(0.20)2.00$  (bottom to top).

Figure 12(b). Plots of  $\pi^{Y}$  versus  $\lambda$ with n = 50,  $\alpha = 0.05$  for c = 1.50,  $C_{PK} = 1.50(0.20)2.50$  (bottom to top).

#### 3.5 Modified Confidence Bounds and Critical Values

We showed earlier that the coefficients increase due to underestimating the lower confidence bounds. We also showed that the  $\alpha$ -risk and the test power decrease with measurement error. The probability of passing non-conforming product units decreases, but the probability of correctly judging a capable process as incapable also decreases. Since the lower confidence bound is severely underestimated and the power becomes small, the producers cannot firmly state that their processes meet the capability requirement even if their processes are sufficiently capable. Good product units would be incorrectly rejected in this case. Unnecessary cost may accompany those incorrect decisions to the producers. Improving the gauge capability and training the operators by proper education are essential to measurement error reduction. Nevertheless, measurement errors are unavoidable in most industry applications. In this section, we consider the adjustment of confidence bounds and critical values to provide better capability assessment.

Suppose that the desired confidence coefficient is  $\theta$ , the adjusted confidence interval of  $C_{PK}$  with lower confidence bound  $L_K^*$ , can be established as

$$\theta = P\left(C_{PK} > L_{K}^{*}\right)$$
  
=  $1 - \int_{0}^{b^{*}\sqrt{n}} G\left(\frac{(n-1)(b^{*}\sqrt{n}-t)^{2}}{9n(\hat{C}_{PK}^{Y})^{2}}\right) \left[\Phi(t + \hat{\xi}^{Y}\sqrt{n}) + \Phi(t - \hat{\xi}^{Y}\sqrt{n})\right] dt$ , (3.15)

where  $b^* = 3L_K^*/\sqrt{1+\lambda^2 C_p^2} + |\xi^Y|$ . To eliminate the need for estimating the characteristic parameter  $\xi^Y$ , we follow the method of Pearn and Shu [39] by setting  $\xi^Y = 1.00$  to find the adjusted lower confidence bound  $L_K^*$ , where  $C_p$  can be obtained by equation  $3(C_p - L_K^*)/\sqrt{1+\lambda^2 C_p^2} = 1.00$ , as

$$C_{P} = \frac{18L_{K}^{*} + \sqrt{324L_{K}^{*2} - 4(9 - \lambda^{2})(9L_{K}^{*2} - 1)}}{2(9 - \lambda^{2})} = C_{P1}$$
(3.16)

Figures 13(a)-13(b) are comparisons among  $L_{\kappa}$ ,  $L_{\kappa}^{\gamma}$ , and  $L_{\kappa}^{*}$  for  $\hat{C}_{P\kappa} = 1.00, 1.50$  with n = 50, where  $L_{\kappa}$  is the 95% lower confidence bound using  $\hat{C}_{P\kappa}^{\gamma}$ ,  $L_{\kappa}^{\gamma}$  is the 95% lower confidence bound using  $\hat{C}_{P\kappa}^{\gamma}$ , and  $L_{\kappa}^{*}$  is the adjusted 95% lower confidence bound using  $\hat{C}_{P\kappa}^{\gamma}$  ( $\hat{C}_{P\kappa}^{\gamma} = \hat{C}_{P\kappa}/\sqrt{1+\lambda^{2}\hat{C}_{P}^{2}}$  is also used to obtain  $\hat{C}_{P\kappa}^{\gamma}$ ). In this case, the probability that the lower confidence interval with bound  $L_{\kappa}^{\gamma}$  contains the actual  $C_{P\kappa}$  value is greater than that of the interval with the bound  $L_{\kappa}$  or  $L_{\kappa}^{*}$ , while the probability that the lower confidence bound  $L_{\kappa}$  or  $L_{\kappa}^{*}$  contains the actual  $C_{P\kappa}$  value is 0.95. From Figures 13(a)-13(b), we see that the lower confidence bounds remained underestimated, even if it is adjusted. But, the magnitude of underestimation using the adjusted confidence bound is significantly reduced.



Figure 13(a). Plots of  $L_{\kappa}$ ,  $L_{\kappa}^{*}$ , and  $L_{\kappa}^{*}$  (top to bottom) versus  $\lambda$  with n = 50 and for  $\hat{C}_{PK} = 1.00$ .



Figure 13(b). Plots of  $L_{\kappa}$ ,  $L_{\kappa}^{*}$ , and  $L_{\kappa}^{r}$  (top to bottom) versus  $\lambda$  with n = 50 and for  $\hat{C}_{PK} = 1.50$ .

In order to improve the test power, we revise the critical values  $c_0^*$  to satisfy  $c_0^* < c_0$ . Thus, the probability  $P \{ \hat{C}_{PK}^{\gamma} > c_0^* \}$  is greater than  $P\{ \hat{C}_{PK}^{\gamma} > c_0^* \}$ . Both the  $\alpha$ -risk and the test power increase when we use  $c_0^*$  as a new critical value in the testing. Suppose that the  $\alpha$ -risk using the revised critical value  $c_0^*$  is  $\alpha^*$ , the revised critical values  $c_0^*$  can be determined by

$$\begin{aligned} \alpha^* &= P\left(\hat{C}_{PK}^Y \ge c_0^* \mid C_{PK} = c\right) \\ &= \int_0^{3C_P^Y \sqrt{n}} G\left(\frac{(n-1)(3C_P^Y \sqrt{n} - t)^2}{9n(c_o^*)^2}\right) \Phi[t + 3(C_P^Y - C_{PK}^Y)\sqrt{n}] + \Phi[t - 3(C_P^Y - C_{PK}^Y)\sqrt{n}] dt , \end{aligned}$$

$$(3.17)$$

where  $C_p^{\gamma} = C_p / \sqrt{1 + \lambda^2 C_p^2}$ , and  $C_{PK}^{\gamma} = c / \sqrt{1 + \lambda^2 C_p^2}$ . To eliminate the need for further estimating the characteristic parameter  $C_p$ , we follow the method described in Pearn and Lin [37] by setting  $C_p^{\gamma} = C_{PK}^{\gamma} + 1/3$  to find the adjusted critical values  $c_0^*$ , where  $C_p$  can be obtained by the equation  $C_p / \sqrt{1 + \lambda^2 C_p^2} = c / \sqrt{1 + \lambda^2 C_p^2} + 1/3$ , as

$$C_{P} = \frac{18c + \sqrt{324c^{2} - 4(9 - \lambda^{2})(9c^{2} - 1)}}{2(9 - \lambda^{2})} = C_{P2}.$$
(3.18)

To ensure that the  $\alpha$ -risk is within the preset magnitude, we let  $\alpha^* = \alpha$  and solve the equation to obtain  $c_0^*$ . The power (denoted by  $\pi^*$ ) can be calculated as

$$\pi^{*}(C_{PK}) = P(\hat{C}_{PK}^{Y} \ge c_{0} \mid C_{PK}, C_{P} = C_{P2})$$

$$= \int_{0}^{3C_{P}^{Y}\sqrt{n}} G\left(\frac{(n-1)(3C_{P}^{Y}\sqrt{n}-t)^{2}}{9n(c_{o}^{*})^{2}}\right) \left[\Phi(t+\sqrt{n}) + \Phi(t-\sqrt{n})\right] dt, \qquad (3.19)$$

where  $C_P^Y = C_{PK}^Y + 1/3$ , and  $C_{PK}^Y = C_{PK} / \sqrt{1 + \lambda^2 C_{P2}^2}$ .

Figures 14(a)-14(b) are plots of  $\pi^*$  versus  $\lambda$  with n = 50,  $\alpha = 0.05$ , for c = 1.00, 1.50 and  $C_{PK} = c (0.20)(c+1)$ . From those figures, we see that the powers corresponding to the adjusted critical values  $c_0^*$  remain decreasing in measurement error, but the decrements are much smaller. We improve the test power to a certain degree. For instance, when we compare the  $\pi^Y$  values in Figure 12(b) (c = 1.50, n = 50) to the  $\pi^*$  values in Figure 14(b) (c = 1.50, n = 50), we obtain that  $\pi^Y = 0.012$  and  $\pi^* = 0.992$  with  $\lambda = 0.5$ . In this case, using the adjusted critical values  $c_0^*$ , we improve the test power by 0.980 (which is rather significant). For our results to be practical, we tabulate the revised critical values for some commonly used capability requirements in Tables 16-19 in the Appendix. Using those tables, the practitioner may omit the complex calculation and simply select the proper critical values for capability testing.



Figure 14(a). Plots of  $\pi^*$  versus  $\lambda$ with n = 50,  $\alpha = 0.05$  for c = 1.00,  $C_{PK} = 1.00(0.20)2.00$  (bottom to top).



Figure 14(b). Plots of  $\pi^*$  versus  $\lambda$ with n = 50,  $\alpha = 0.05$  for c = 1.50,  $C_{PK} = 1.50(0.20)2.50$  (bottom to top).

#### **3.6** Application Example

The LM 2576 series of regulators, as depicted in Figures 15(a)-15(b), are monolithic integrated circuits, which provide the active functions for a step-down (buck) switching regulator, capable of driving 3A load with excellent line and load regulation. Those devices are available in fixed output voltages of 3.3V, 5V, 12V, 15V, and an adjustable output version. Requiring a minimum number of external components, those regulators are simple to use and include internal frequency compensation and a fixed-frequency oscillator. The LM 2576 series offers a high-efficiency replacement for popular three-terminal linear regulators. It substantially reduces the size of the heat sink, and in some cases no heat sink is required. A standard series of inductors optimized for use with the LM 2576 are available from several different manufacturers. This feature greatly simplifies the design of switch-mode power supplies. Other features include a guaranteed  $\pm 4\%$  tolerance on output voltage within specified input voltages and output load conditions, and  $\pm 10\%$  on the oscillator frequency. External shutdown is included, featuring 50  $\mu$  A (typical) standby current. The output switch includes cycle-by-cycle current limiting, as well as thermal shutdown for full protection under fault conditions.



Figure 15(a). LM2576 series step-down voltage regulator product (top view).



Figure 15(b). *LM*2576 series step-down voltage regulator product (side view).

| 3.292 | 3.289 | 3.293 | 3.323 | 3.279 | 3.304 | 3.306 | 3.288 | 3.287 | 3.319 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 3.299 | 3.269 | 3.300 | 3.294 | 3.308 | 3.285 | 3.292 | 3.278 | 3.285 | 3.282 |
| 3.297 | 3.278 | 3.311 | 3.295 | 3.319 | 3.303 | 3.305 | 3.326 | 3.315 | 3.298 |
| 3.321 | 3.315 | 3.284 | 3.319 | 3.302 | 3.314 | 3.308 | 3.303 | 3.294 | 3.312 |
| 3.297 | 3.305 | 3.306 | 3.295 | 3.286 | 3.293 | 3.288 | 3.314 | 3.318 | 3.295 |
| 3.309 | 3.296 | 3.296 | 3.305 | 3.293 | 3.298 | 3.305 | 3.289 | 3.288 | 3.315 |
| 3.308 | 3.279 | 3.292 | 3.293 | 3.265 | 3.283 | 3.307 | 3.314 | 3.303 | 3.305 |

Table 7. 70 observations for output voltage (unit: V)

Consider a supplier manufacturing step-down voltage regulator products in Taiwan, making LM 2576-3.3 type with specifications of output voltage: T =3.3V, USL = 3.366V, LSL = 3.234V for conditions of  $V_{\rm \tiny IN}$  = 12V (input voltage),  $I_{LOAD} = 0.5$ A (load current), and  $T_J = 25^{0}$ C (temperature). A total of 70 observations are collected and displayed in Table 7. Histogram and normal probability plot show that the collected data follows the normal distribution. Shapiro-Wilk test is applied to further justify the assumption. To determine whether the process is "excellent" ( $C_{PK} > 1.50$ ) with unavoidable measurement errors  $\lambda = 0.25$ , we first determine that c = 1.50 and  $\alpha = 0.05$ . Then, based on the sample data of 70 observations, we obtain the sample mean  $\overline{Y} = 3.299$ , the sample standard deviation  $S_{\gamma} = 0.013$ , and the point estimator  $\hat{C}_{PK}^{\gamma} =$ 1.632. From Table A7, we obtain the critical value  $c_0^* = 1.595$  based on  $\alpha$ ,  $\lambda$ and *n*. Since  $\hat{C}_{PK}^{Y} > c_{0}^{*}$ , we therefore conclude that the process is "excellent". Moreover, by inputting  $\hat{C}_{PK}^{\gamma}$ ,  $\lambda$ , n, and the desired confidence coefficient  $\theta$ = 0.95 into the computer program we obtain the 95% lower confidence bound of the true process capability as 1.542. We can see that if we ignore the measurement errors and evaluate the critical value without any correction, the critical value may be calculated as  $c_0 = 1.758$ . In this case would reject that the process is "excellent" since  $\hat{C}^{Y}_{PK}$  is no greater than the uncorrected critical value 1.758.