
Chapter 3 
 

Measuring Process Capability Based on  PKC
with Gauge Measurement Errors 

PKC  was created in Japan to offset some of the weaknesses in PC , primarily 
the fact that PC  measured capability in terms of process variation only and did 
not take process location into consideration. From observing the definition of PKC  
( PKC  = min { PUC , PLC }, see equation (1.3)), it is apparent that PKC  quantifies 
capability for the worst half of the data, i.e. PKC  is quantified only by the 
worst-tail to specification limit relationship, thus, the individual effects of process 
location and variation on process capability are confounded in this index. 

Under the normal assumption, process yield is given by  

  %yield = 100 USL LSLμ μ
σ σ
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. (3.1) 

Boyles [2] gave the upper and lower bounds on %yield associated with PKC  as 

  [ ]100 2 (3 ) 1PKCΦ − ≤  %yield [ ]100 (3 )PKC≤ Φ . (3.2) 

And, Finley [9] developed a table of approximate proportion NC associated with 
given PKC  values (see Table 6). 

Table 6. Approximate proportion NC associated with given PKC  values. 

PKC  Parts outside tolerance limits 

0.25 16 out of 100 

0.5 7 out of 100 

1.0 13 out of 10 000 

1.33 3 out of 100 000 

1.67 1 out of 1000 000 

2.0 1 out of 1000 000 000 

In section 3.1, we discuss the ratio  between the empirical process 
capability  and the true process capability . In section 3.2, we obtain the 
pdf, the expected value, the variance and the MSE of 

r
Y

ˆ Y
PKC PKC

PKC . And, we compare the 
MSE of  with that of . In section 3.3, we use the confidence interval 
bounds in Pearn & Shu [39] to estimate the minimum process capability by 

ˆ Y ˆ
ˆ Y

PKC PKC
PKC , 

we show that a large measurement error results in significantly underestimating 
the true process capability. In section 3.4, we use the critical values in Pearn & Lin 
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[37] to test whether the process capability meets the requirement, and we show 
that the α -risk and the power both become decrease with measurement error. In 
section 3.5, we present our modified confidence interval bounds and critical values 
for the cases that measurement errors are unavoidable. Finally in section 3.6, an 
example is presented.  

3.1 Empirical Process Capability  Y
PKC

Suppose that X  ~ Normal ( μ , 2σ ) represents the relevant quality 
characteristic of a manufacturing process, and PKC  measures the true process 
capability. However in practice, the observed variable  is measured rather than 
the true variable 

Y
X . Assume that X  and M  are stochastically independent, 

we have  ~ Normal (Y μ , 2
Yσ  = 2σ + 2

Mσ ), and the empirical process capability 
index  is obtained after substituting Y

PKC Yσ  for σ . The relationship between 
the true process capability PKC  and the empirical process capability  can be 
expressed as  

Y
PKC

2 2

1

1

Y
PK

PK P

C
C Cλ

=
+

. 
(3.3) 

Since the variation of data we observed is larger than the variation of the original 
data, the denominator of the index PKC  becomes larger, and the true capability 
of the process is understated if calculation of process capability index is based on 
empirical data . Y

 
Figure 7(a). Surface plot of  with r

PC   [1, 2] for ∈ λ   [0, 0.5]. ∈

 
Figure 7(b). Plots of  versus r λ   
[0, 0.5] for 

∈
PC  = 1.0(0.2)2.0.

Figure 7(a) displays the surface plot of the ratio  =  for r /PK PKC CY λ  ∈ 
[0, 0.5] with PC  ∈ [1, 2]. Figure 7(b) plots the ratio  versus r λ  for PC  = 
1.0(0.2)2.0. Those figures show that the measurement errors result in a decrease 
in the estimate. Small process variation has the same effect as the presence of 
measurement error does. Since r  would be small if λ  becomes large, the 
gauge becomes more important as the true capability improves. For instance, If 
λ  = 0.5 and PC  = 2 (the ratio  = 0.71),  = 0.36 with  = 0.50, and r Y

PKC PKC
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Y
PKC  = 1.78 with  = 2.50. The empirical process capability diverges from 

the true process capability more with large measurement errors. 
PKC

3.2  Sampling Distribution of ˆ Y
PKC  

In practice, sample data must be collected in order to estimate the empirical 
process capability. Suppose that the empirical data (observed measurement 
contaminated with errors) { , iY 1,2,...,i n= } is collected, then the natural 
estimator  defined as the following, ˆ Y

PKC

ˆ Y
PKC | |

3
− −

=
Y

d Y m
S

, (3.4) 

which is obtained by replacing the process mean μ  and the process standard 
deviation σ  by their conventional estimators Y  =  and  = 1 /=∑n

i iY n YS
1/ 2

1[ ( ) /( 1)]n
i iY Y n=∑ − − , from a demonstrably stable process. 

Applying the same technique used in Pearn & Lin [37], and Kotz & Johnson 
[18], we obtain the cdf of ˆ Y

PKC  as  

23
ˆ 20

( 1)(3 )
( ) 1 ( )

9
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Y
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YC n YP
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n C n t
F x G f

nx

⎛ ⎞− −
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⎝ ⎠
∫ t dt , (3.5) 

where ( ) [ 3( ) ] [ 3( ) ]Y Y Y Y Y
T P PK P PKf t t C C n t C C n= Φ + − +Φ − − , 2 2/ 1Y

P P PC C Cλ= + , 
and  = Y

PKC 2 2/ 1PKC λ+ PC . The mean and the variance of the estimator ˆ Y
PKC  

are  

2
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1 2ˆE( ) exp( ( ) ) | | 1 2 ( | |)
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nC b n
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, (3.6) 
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9( 3) 2

Y Y Y Y Y
PK

n nC b b n
n n

ξ ξ ξ
π
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Y  

 

2 21 ˆ( ) ( ( ))Y Y
PKE C

n
ξ ⎫+ + −⎬

⎭
, (3.7) 

where  = 3  and Yb Y
PC Yξ  = 3( . The mean and the variance of  

are very lengthy, and cannot be further simplified. To investigate how 
measurement errors may affect the sample distribution, we conduct some bias 
and the MSE analysis. Noting that from the expression 

)Y Y
P PKC C− ˆ Y

PKC

PKC  = PC  - |ξ|/3 (or 
PC  = PKC  + |ξ|/3), Pearn & Lin [37] and Pearn & Shu [39] showed that the 

lower confidence bounds and critical values for PKC  can be obtained by setting 
ξ  = 1.00.  Therefore, here we set PC  = PKC + 1/3 and consider cases of ( PC , 

PKC ) = (1.33, 1.00) and (1.83, 1.50) for illustrations. 

Figures 8(a)-8(b) plot the bias of ˆ Y
PKC  versus  = 5(1)100 with n λ  = 

0(0.1)0.5 for ( PC , PKC ) = (1.33, 1.00) and (1.83, 1.50). Figures 9(a)-9(b) are the 
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surface plots of the ratio 2γ  = MSE( ˆ Y
PKC )/ MSE( ˆ

PKC ) with  = 5(1)100 and n
λ   in [0, 0.5] for (∈ PC , PKC ) = (1.33, 1.00) and (1.83, 1.50). It is noted that 
when λ  = 0, the bias of  equals to the bias of , but the bias of  
decreases as 

ˆ Y
PKC ˆ

PKC ˆ Y
PKC

λ  increases. In some cases, ˆ Y
PKC  may be unbiased while ˆ

PKC  will 
never be, but the absolute bias of ˆ Y

PKC  may be much greater than that of ˆ
PKC  

for large λ . It is observed from Figures 9(a)-9(b) that 2γ  varies in  or n λ , 
particularly for large PKC . For large , the value n 2γ  is greater than 1 
(MSE( ˆ Y

PKC ) > MSE( ˆ
PKC )) for most λ , and 2γ  increases in λ . The maximum 

values of 2γ  in Figures 9(a)-9(b) are 10.055 and 15.785 respectively, and the 
minimum values of 2γ  in Figures 9(a)-9(b) are 0.756 (1/1.323) and 0.584 
(1/1.712) respectively. All the maximum values of 2γ  occur at ( , n λ ) = (100, 
0.5), and all the minimum values of 2γ  occur at ( , n λ ) = (5, 0.5). The 
difference between MSE( ˆ Y

PKC ) and MSE( ˆ
PKC ) with 2γ  > 1 is more significant 

than that with 2γ  < 1. 
 

 
Figure 8(a). Plots of the bias of ˆ Y

PKC  
for  = 5(1)100, n λ  = 0(0.1)0.5 (top 
to bottom), PC = 1.33 and PKC = 1.00. 

 
Figure 8(b). Plots of the bias of ˆ Y

PKC  
for  = 5(1)100, n λ  = 0(0.1)0.5 (top 
to bottom), PC = 1.83 and PKC = 1.50.

 
Figure 9(a). Surface plot of 2γ  with 

 = 5(1)100 and n λ   [0, 0.5] for ∈
PC  = 1.33 and PKC  = 1.00. 

 
Figure 9(b). Surface plot of 2γ  with 

 = 5(1)100 and n λ   [0, 0.5] for ∈
PC  = 1.83 and PKC  = 1.50. 

3.3  Lower Confidence Bound Based on ˆ Y
PKC  

The lower confidence bounds estimate the minimum process capability 
based on sample data. To find reliable 100θ % lower confidence bound KL  for 
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PKC  (θ  represents the probability that the confidence interval contains the 
actual PKC ), Pearn & Shu [39] solved the following equation, 

2

20

( 1)( )
ˆ9 ( )

b n

PK

n b n tG
n C

⎛ ⎞− −
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ( )⎡Φ +⎣ t nξ ( )⎤+Φ − ⎦t nξ 1dt θ= − . (3.8) 

Noting that  = b 3 PC  can be expressed as  = b 3 |KL |ξ+ . Since the process 
parameters μ  and σ  are unknown, then the distribution characteristic 
parameter ξ  = ( ) /mμ σ−  is also unknown. To eliminate the need for further 
estimating the distribution characteristic parameter ξ , Pearn & Shu [39] 
examined the behavior of the lower confidence bound KL  against the parameter 
ξ . They performed extensive calculations to obtain the lower confidence bound 
values KL  for ξ  = 0(0.05)3.00, = 0.7(0.1)3.0,  = 10(5)200 with 
confidence coefficient 

ˆ
PKC n

θ  = 0.95. They found that the lower confidence bound 
KL  obtains its minimum at ξ  = 1.00 in all cases. Thus for practical purpose 

they recommended to solve equation (3.8) with ξ  = ξ̂  = 1.00 to obtain the 
required lower confidence bounds, without having to further estimate the 
parameter ξ .  

But,  is substituted into equation (3.8) to obtain the confidence 
bounds, which can be written as (we denote the bound originated from 

ˆ Y
PKC

ˆ Y
PKC  as 

Y
KL ),   

2(3 1)

20

( 1)[(3 1) ]
ˆ9 ( )

Y
K

YL n K
Y
PK

n L n tG
n C

+ ⎛ ⎞− + −
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ( )t n⎡Φ +⎣ ( )t n ⎤+Φ − ⎦ 1dt θ= − . (3.9) 

The confidence coefficient by the confidence bound Y
KL  (denoted by Yθ ) is 

2(3 )

20

( 1)[(3 ) ]1 ˆ9 ( )

Y Y
K

Y YL nY K
Y
PK

n L n tG
n C

ξ ξθ
+ ⎛ ⎞− + −

= − ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ˆ( )Yt nξ⎡Φ +⎣
ˆ( )Yt nξ ⎤+Φ − ⎦ dt , 

 (3.10) 

where Yξ  = 3( )P PKC C− , and Yξ  = 3( ). Since  is smaller than ˆY
PC ˆ Y

PKC− ˆ Y
PKC

ˆ
PKC , and Y

KL  is smaller than KL , then Yθ  is always greater than θ . Figures 
10(a)-10(b) plot Y

KL  versus λ  ∈ [0, 0.5] with  = 50, n ˆ
PKC  = 1.00, 1.50, and 

 = + ˆ
PC ˆ

PKC 3γ , 3γ  = 0.33, 0.50, 0.67, and 1.00 for 95% confidence intervals 
(for sufficiently large sample size , we have n ˆ Y

PKC  = ˆ
PKC / 2 2ˆ1 PCλ+ . 

Therefore, we set ˆ Y
PKC  = ˆ

PKC / 2 2ˆ1 PCλ+  to obtain ˆ Y
PKC  in Figures 

10(a)-10(b)). We see that in Figures 10(a)-10(b), Y
KL  decreases in λ , especially 

for large ˆ
PC  values, and the decrement of Y

KL  is more significant for large ˆ
PKC . 

A large measurement error results in significantly underestimating the true 
process capability. 

In current practice, a process is called “inadequate” if PKC  < 1.00, 
“marginally capable” if 1.00 < PKC  < 1.33, “satisfactory” if 1.33 < PKC  < 
1.50, “excellent” if 1.50 < PKC  < 2.00, and “super” if 2.00 < PKC . If capability 
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measures do not include the measurement errors, significant underestimation of 
the true process capability may result in high production cost, losing the power 
of competition. For instance, suppose that a process has a 95% lower confidence 
bound, 1.236 ( ˆ

PKC  = 1.50) with  = 50, which meets the threshold of an 
“excellent” process. But the bound may be calculated as 0.983 with 
measurement errors 

n

λ  = 0.30 and the process is determined as “inadequate”. 

 
Figure 10(a). Plots of Y

KL  versus λ  
with  = 50 for n ˆPC = 1.33, 1.50, 1.67, 
2.00 (top to bottom) and ˆPKC = 1.00. 

 
Figure 10(b). Plots of Y

KL  versus λ  
with  = 50 for n ˆPC = 1.83, 2.00, 2.17, 
2.50 (top to bottom) and ˆPKC = 1.50.  

3.4  Capability Testing Based on ˆ Y
PKC  

To determine if a given process meets the preset capability requirement, we 
could consider the statistical testing with null hypothesis :    
(process is not capable) and alternative hypothesis :  > c  (process is 
capable), where  is the required process capability. If the calculated process 
capability is greater than the corresponding critical value, we reject the null 
hypothesis and conclude that the process is capable. Suppose that the nominal 
size of the statistical testing is 

0H PKC ≤ c
0H PKC

c

α , the critical value  can be determined by 
solving the following equation, 

0c

23

20

( 1)(3 )
[ 3( ) ] [ 3( ) ]

9
PC n P

P P
o

n C n t
G t C c n t C c

nc
n dt α

⎛ ⎞− − ⎡ ⎤Φ + − + Φ − − =⎜ ⎟ ⎣ ⎦⎜ ⎟
⎝ ⎠

∫  

 
(3.11) 

with test power 

( )0
ˆ( ) | ,PK PK PK PC P C c C Cπ = ≥   

23

20

( 1)(3 )
[ 3( ) ] [ 3( ) ]

9
PC n P

P PK P PK
o

n C n t
G t C C n t C

nc

⎛ ⎞− −
C n dt⎡ ⎤= Φ + − + Φ −⎜ ⎟ −⎣ ⎦⎜ ⎟

⎝ ⎠
∫ . 

 
(3.12) 
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To eliminate the need for estimating the characteristic parameter PC , 
Pearn & Lin [37] examined the behavior of the critical values  against the 
parameter 

0c
PC . They performed extensive calculations to obtain the critical 

values  for 0c PC  = (0.01)( c +1),  = 1.00, 1.33, 1.50, 1.67, and 2.00,  = 
10 (50) 300, and 

c c n
α  = 0.05. They found that the critical values  obtains its 

maximum at 
0c

PC  = + 1/3 in all cases. For practice purpose, they 
recommended to solve equation (3.11) with 

c
PC  = + 1/3 to obtain the 

required critical values, without having to further estimate the parameter 
c

PC . 

Thus, the α -risk corresponding to the test using the sample estimate 
ˆ Y

PKC (denoted by Yα ) will become  

( )0
ˆ | , 1= ≥ = = +Y Y

PK PK PP C c C c C cα / 3   

23

20

( 1)(3 )
[ 3( ) ] [ 3( ) ]

9

Y
P

YC n Y Y Y YP
P PK P PK

o

n C n t
G t C C n t C

nc

⎛ ⎞− −
C n dt⎡ ⎤= Φ + − + Φ −⎜ ⎟ −⎣ ⎦⎜ ⎟

⎝ ⎠
∫ , 

 
(3.13) 

where  = Y
PC 2( 1/3) / 1 ( 1/3)+ + +c cλ 2 , and  = Y

PKC 2/ 1 ( 1/ 3)+ +c cλ 2 . The 
test power (denoted by Yπ ) is 

( )0
ˆ | , 1/ 3Y Y

PK PK PP C c C C cπ = ≥ = +   

23

20

( 1)(3 )
[ 3( ) ] [ 3( ) ]

9

Y
P

YC n Y Y Y YP
P PK P PK

o

n C n t
G t C C n t C

nc

⎛ ⎞− −
C n dt⎡ ⎤= Φ + − + Φ −⎜ ⎟ −⎣ ⎦⎜ ⎟

⎝ ⎠
∫ , 

 
(3.14) 

where  = Y
PC 2 2( 1/3)/ 1 ( 1/3+ + +PK PKC Cλ ) , and  = Y

PKC 2 2/ 1 ( 1/3)+ +PK PKC Cλ . 

Earlier discussions indicate that the true process capability would be 
severely underestimated if ˆ Y

PKC  is used. The probability that ˆ Y
PKC  is greater 

than  would be less than that of using 0c ˆ
PKC . Thus, the α -risk using ˆ Y

PKC  is 
less than the α -risk if using  when estimating ˆ

PKC PKC . The test power if 
using ˆ

PKC  is also less than the test power of using ˆ
PKC . That is, Yα   ≤ α  and 

Yπ   ≤ π . Figures 11(a)-11(b) are the surface plots of Yα  with  = 5(1)100, n
λ  ∈ [0, 0.5] for  = 1.00, 1.50, and c α  = 0.05. Figures 12(a)-12(b) plot Yπ  
versus λ  with  = 50, n α  = 0.05, for  = 1.00, 1.50, and c PKC  = 

(0.20)( +1). Note that for c c λ  = 0, Yα  = α  and Yπ  = π . In Figures 
11(a)-11(b), Yα  decreases as λ  or  increases, and the decreasing rate is 
more significant with large . In fact, for large 

n
c λ , Yα  is smaller than 51 10−× . 

In Figures 12(a)-12(b), Yπ  decreases as λ  increases, but increases as n  
increases. Decrement of Yπ  in λ  is more significant for large . In the 
presence of measurement errors, 

c
Yπ  may decrease substantially. For instance, 

in Figure 12(b), the Yπ  value (  = 1.50,  = 50) for c n PKC  = 2.30 is Yπ  = 
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0.994 if there is no measurement error (λ  = 0). But, when λ  = 0.5, Yπ  
decreases to 0.012, the decrement of the power is 0.982. 
 

 
Figure 11(a). Surface plot of Yα  with 

 = 5(1)100 and n λ   [0, 0.5] for  
= 1.00 and 

∈ c
α  = 0.05. 

 
Figure 11(b). Surface plot of Yα  with 

 = 5(1)100 and n λ   [0, 0.5] for  
= 1.50 and 

∈ c
α  = 0.05. 

 

 
Figure 12(a). Plots of Yπ  versus λ  
with  = 50, n α = 0.05 for  = 1.00, c

PKC = 1.00(0.20)2.00 (bottom to top).  

 
Figure 12(b). Plots of Yπ  versus λ  
with  = 50, n α = 0.05 for  = 1.50, c

PKC = 1.50(0.20)2.50 (bottom to top). 

3.5  Modified Confidence Bounds and Critical Values 

We showed earlier that the coefficients increase due to underestimating the 
lower confidence bounds. We also showed that the α -risk and the test power 
decrease with measurement error. The probability of passing non-conforming 
product units decreases, but the probability of correctly judging a capable 
process as incapable also decreases. Since the lower confidence bound is severely 
underestimated and the power becomes small, the producers cannot firmly state 
that their processes meet the capability requirement even if their processes are 
sufficiently capable. Good product units would be incorrectly rejected in this 
case. Unnecessary cost may accompany those incorrect decisions to the 
producers. Improving the gauge capability and training the operators by proper 
education are essential to measurement error reduction. Nevertheless, 
measurement errors are unavoidable in most industry applications. In this 
section, we consider the adjustment of confidence bounds and critical values to 
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provide better capability assessment. 

Suppose that the desired confidence coefficient is θ , the adjusted 
confidence interval of PKC  with lower confidence bound KL∗ , can be established 
as  

( )PK KP C Lθ ∗= >   

2

20

( 1)( )1 ˆ9 ( )

b n

Y
PK

n b n tG
n C

∗ ∗⎛ ⎞− −
= − ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ˆ( )⎡Φ +⎣

Yt nξ ˆ( )⎤+Φ − ⎦
Yt nξ dt , (3.15) 

where  = b∗ 2 23 / 1 | Y
K PL C |λ ξ∗ + + . To eliminate the need for estimating the 

characteristic parameter Yξ , we follow the method of Pearn and Shu [39] by 
setting Yξ  = 1.00 to find the adjusted lower confidence bound KL∗ , where PC  
can be obtained by equation 2 23( ) / 1P KC L Cλ∗− + P  = 1.00, as 

2 2 2

12

18 324 4(9 )(9 1)
2(9 )

K K K
P P

L L L
C C

λ
λ

∗ ∗ ∗+ − − −
= =

−
 (3.16) 

Figures 13(a)-13(b) are comparisons among KL , Y
KL , and KL∗  for ˆ

PKC  = 
1.00, 1.50 with  = 50, where n KL  is the 95% lower confidence bound using 

, ˆ
PKC Y

KL  is the 95% lower confidence bound using , and ˆ Y
PKC KL∗  is the 

adjusted 95% lower confidence bound using ˆ Y
PKC  ( ˆ Y

PKC  = ˆ
PKC / 2 2ˆ1 PCλ+  is 

also used to obtain ˆ Y
PKC ). In this case, the probability that the lower confidence 

interval with bound Y
KL  contains the actual PKC  value is greater than that of 

the interval with the bound KL  or KL∗ , while the probability that the lower 
confidence interval with bound KL  or KL∗  contains the actual PKC  value is 
0.95. From Figures 13(a)-13(b), we see that the lower confidence bounds 
remained underestimated, even if it is adjusted. But, the magnitude of 
underestimation using the adjusted confidence bound is significantly reduced.

 
Figure 13(a). Plots of KL , KL∗ , and 

Y
KL  (top to bottom) versus λ  with 
 = 50 and for n ˆ

PKC  = 1.00. 

 
Figure 13(b). Plots of KL , KL∗ , and 

Y
KL  (top to bottom) versus λ  with 
 = 50 and for n ˆ

PKC  = 1.50.  
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In order to improve the test power, we revise the critical values  to 
satisfy  < . Thus, the probability {

0c∗

0c∗ 0c P ˆ Y
PKC > 0c∗ } is greater than 

{ > }. Both the P ˆ Y
PKC 0c α -risk and the test power increase when we use  as a 

new critical value in the testing. Suppose that the 
0c∗

α -risk using the revised 
critical value  is 0c∗ α ∗ , the revised critical values 0c∗  can be determined by 

( )0
ˆ |Y

PK PKP C c C cα∗ ∗= ≥ =   

23

20

( 1)(3 )
[ 3( ) ] [ 3( ) ]

9 ( )

Y
P

YC n Y Y Y YP
P PK P PK

o

n C n t
G t C C n t C

n c∗
⎛ ⎞− −

= Φ + − + Φ −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ C n dt− , 

 
(3.17) 

where 2 2/ 1Y
P P PC C Cλ= + , and  = Y

PKC 2 2/ 1 Pc λ+ C . To eliminate the need for 
further estimating the characteristic parameter PC , we follow the method 
described in Pearn and Lin [37] by setting  = + 1/3 to find the adjusted 
critical values , where 

Y
PC Y

PKC
0c∗ PC  can be obtained by the equation 2 2/ 1P PC Cλ+  = 

2 2/ 1 Pc λ+ C + 1/3, as 

2 2 2

22

18 324 4(9 )(9 1)
2(9 )P P

c c c
C C

λ
λ

+ − − −
= =

−
. (3.18) 

To ensure that the α -risk is within the preset magnitude, we let α∗  = α  and 
solve the equation to obtain 0c∗ . The power (denoted by π ∗ ) can be calculated 
as  

( )0 2
ˆ( ) | ,Y

PK PK PK P PC P C c C C Cπ ∗ = ≥ =   

23

20

( 1)(3 )
( ) ( )

9 ( )

Y
P

YC n P

o

n C n t
G t n

n c∗
⎛ ⎞− −

t n dt⎡ ⎤= Φ +⎜ ⎟ + Φ −⎣ ⎦⎜ ⎟
⎝ ⎠

∫ , (3.19) 

where  = + 1/3, and  = Y
PC Y

PKC Y
PKC 2 2

2/ 1PK PC Cλ+ . 

Figures 14(a)-14(b) are plots of π ∗  versus λ  with  = 50, n α  = 0.05, 
for  = 1.00, 1.50 and c PKC  = (0.20)(c +1). From those figures, we see that 
the powers corresponding to the adjusted critical values 

c
0c∗  remain decreasing 

in measurement error, but the decrements are much smaller. We improve the 
test power to a certain degree. For instance, when we compare the Yπ  values in 
Figure 12(b) (  = 1.50,  = 50) to the c n π ∗  values in Figure 14(b) (  = 1.50, 

 = 50), we obtain that 
c

n Yπ  = 0.012 and π ∗  = 0.992 with λ  = 0.5. In this 
case, using the adjusted critical values 0c∗ , we improve the test power by 0.980 
(which is rather significant). For our results to be practical, we tabulate the 
revised critical values for some commonly used capability requirements in Tables 
16-19 in the Appendix. Using those tables, the practitioner may omit the 
complex calculation and simply select the proper critical values for capability 
testing. 
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Figure 14(a). Plots of π ∗  versus λ  
with  = 50, n α = 0.05 for  = 1.00, c

PKC = 1.00(0.20)2.00 (bottom to top).  

 
Figure 14(b). Plots of π ∗  versus λ  
with  = 50, n α = 0.05 for  = 1.50, c

PKC = 1.50(0.20)2.50 (bottom to top). 

3.6 Application Example 

The LM 2576 series of regulators, as depicted in Figures 15(a)-15(b), are 
monolithic integrated circuits, which provide the active functions for a 
step-down (buck) switching regulator, capable of driving 3A load with excellent 
line and load regulation. Those devices are available in fixed output voltages of 
3.3V, 5V, 12V, 15V, and an adjustable output version. Requiring a minimum 
number of external components, those regulators are simple to use and include 
internal frequency compensation and a fixed-frequency oscillator. The LM 2576 
series offers a high-efficiency replacement for popular three-terminal linear 
regulators. It substantially reduces the size of the heat sink, and in some cases no 
heat sink is required. A standard series of inductors optimized for use with the 
LM 2576 are available from several different manufacturers. This feature greatly 
simplifies the design of switch-mode power supplies. Other features include a 
guaranteed ±4% tolerance on output voltage within specified input voltages and 
output load conditions, and ±10% on the oscillator frequency. External 
shutdown is included, featuring 50 μ A (typical) standby current. The output 
switch includes cycle-by-cycle current limiting, as well as thermal shutdown for 
full protection under fault conditions. 

 
Figure 15(a).  series step-down 
voltage regulator product (top view). 

2576LM

 

 

Figure 15(b).  series step-down 
voltage regulator product (side view). 

2576LM
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Table 7. 70 observations for output voltage (unit: V) 

3.292 3.289 3.293 3.323 3.279 3.304 3.306 3.288 3.287 3.319 

3.299 3.269 3.300 3.294 3.308 3.285 3.292 3.278 3.285 3.282 

3.297 3.278 3.311 3.295 3.319 3.303 3.305 3.326 3.315 3.298 

3.321 3.315 3.284 3.319 3.302 3.314 3.308 3.303 3.294 3.312 

3.297 3.305 3.306 3.295 3.286 3.293 3.288 3.314 3.318 3.295 

3.309 3.296 3.296 3.305 3.293 3.298 3.305 3.289 3.288 3.315 

3.308 3.279 3.292 3.293 3.265 3.283 3.307 3.314 3.303 3.305 

 
Consider a supplier manufacturing step-down voltage regulator products in 

Taiwan, making LM 2576-3.3 type with specifications of output voltage:  = 
3.3V,  = 3.366V,  = 3.234V for conditions of  = 12V (input 
voltage),  = 0.5A (load current), and 

T
USL LSL INV

LOADI JT  = 25  (temperature). A total 
of 70 observations are collected and displayed in Table 7. Histogram and normal 
probability plot show that the collected data follows the normal distribution. 
Shapiro-Wilk test is applied to further justify the assumption. To determine 
whether the process is “excellent” (  > 1.50) with unavoidable measurement 
errors 

0 C

PKC
λ  = 0.25, we first determine that  = 1.50 and c α  = 0.05. Then, based 

on the sample data of 70 observations, we obtain the sample mean Y  = 3.299, 
the sample standard deviation  = 0.013, and the point estimator YS ˆ Y

PKC  = 
1.632. From Table A7, we obtain the critical value 0c∗  = 1.595 based on α , λ  
and . Since n ˆ Y

PKC  > , we therefore conclude that the process is “excellent”. 
Moreover, by inputting 

0c∗
ˆ Y

PKC , λ , , and the desired confidence coefficient n θ  
= 0.95 into the computer program we obtain the 95% lower confidence bound of 
the true process capability as 1.542. We can see that if we ignore the 
measurement errors and evaluate the critical value without any correction, the 
critical value may be calculated as  = 1.758. In this case would reject that 
the process is “excellent” since 

0c
ˆ Y

PKC  is no greater than the uncorrected critical 
value 1.758. 
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