
Chapter 4 
 

One-sided Process Capability Assessment in the Presence 
of Gauge Measurement Errors 

In the manufacturing industry, many product characteristics are of one-sided 
specifications. The process capability indices PUC  and PLC  are often used to 
measure process performance (see equation (1.2)). The index PUC  measures the 
capability of a smaller-the-better process with an upper specification limit USL, 
whereas the index PLC

I

 measures the capability of a larger-the-better process with 
a lower specification limit LSL. If the quality characteristic of manufacturing 
process is normally distributed, the process yield can be expressed by  

%yeild = (3 )CΦ , (4.1) 

where  is the cumulative distribution function of the standard normal 
distribution, and  = 

Φ

IC PUC  or PLC . It is clear that the relationship between the 
index  and process yield is one-to-one. Thus, the index  provides an exact 
measure of process yield. Table 8 displays some commonly used capability values 
of , the corresponding process yield, and nonconformity units in parts per 
million (NCPPM). 

IC IC

IC

Montgomery [31] recommended some minimum quality requirements on . 
For existing processes, the capability must be no less than 1.25, and for new 
processes, the capability must be no less than 1.45. For existing processes on safety, 
strength, or critical parameters, the capability must be no less than 1.45, and for 
new processes on safety, strength, or critical parameters, the capability must be no 
less than 1.60. Using the index , the practitioners can evaluate their process 
capability and make decisions. 

IC

IC

Table 8. The corresponding process yield and NCPPM for . IC

IC  Process yield (%) NCPPM 
1.00 0.9986501020 1350 
1.33 0.9999669634 33 
1.50 0.9999966023 3.4 
1.67 0.9999997278 0.272 
2.00 0.9999999990 0.001 

In section 4.1, we discuss the relationship between the empirical process 
capability Y

IC  and the true process capability IC . In section 4.2, we obtain the 
pdf, the expected value, the variance and the MSE of . And, we compare the 
MSE of  with that of . In section 4.3, we use the confidence interval bounds 

Y

Y
IC

IC IC
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in Pearn & Shu [40] to estimate the minimum process capability by , we show 
that a large measurement error results in significantly underestimating the true 
process capability. In section 4.4, we use the critical values in Pearn & Chen [35] to 
test whether the process capability meets the requirement, and we show that the 

Y
IC

α -risk and the power both become decrease with measurement error. In section 
4.5, we present our modified confidence interval bounds and critical values for the 
cases that measurement errors are unavoidable. Finally in section 4.6, an example 
is presented.  

4.1 Empirical Process Capability  Y
IC

Suppose that X  ~ Normal ( μ , 2σ ) represents the relevant quality 
characteristic of a manufacturing process, Mittag [27] introduced the degree of 
error contamination, /Mτ σ σ= . The relationship between the empirical process 
capability index Y

IC  and the true process capability index  is IC

2

1
1

Y
I

I

C
C τ

=
+

, (4.2) 

where  or  is denoted here as Y
PUC Y

PLC Y
IC . Since the variation of the empirical 

data we observe is greater than the variation of the original data, the denominator 
of the index  becomes larger, and we would understate the true capability of 
the process if we calculate the process capability based on the empirical data. 

IC

In Table 9, we tabulate some empirical process capabilities with τ  = 
0(0.1)1.0 for various true process capability  = 0.50, 1.00, 1.33, 1.50, 1.67, 2.00, 
and 2.50. If 

IC
1.0τ = , then for Y

IC  = 0.35 the true process capability is  = 0.50, 
and for 

IC
Y
IC  = 1.77 the true process capability  = 2.50. The empirical process 

capability diverges from the true one more when the measurement error increases. 
It is obvious that the gauge accuracy is less important if the required process 
capability is only marginally capable, and becomes more critical as the true 
capability requirement gets more stringent. 

IC

Table 9. Process capability with 0(0.1)1.0τ =  for various . IC

 τ  

IC  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.50 0.50 0.49 0.48 0.46 0.45 0.43 0.41 0.39 0.37 0.35 
1.00 1.00 0.98 0.96 0.93 0.89 0.86 0.82 0.78 0.74 0.71 
1.33 1.32 1.30 1.27 1.23 1.19 1.14 1.09 1.04 0.99 0.94 
1.50 1.49 1.47 1.44 1.39 1.34 1.29 1.23 1.17 1.11 1.06 
1.67 1.66 1.64 1.60 1.55 1.49 1.43 1.37 1.30 1.24 1.18 
2.00 1.99 1.96 1.92 1.86 1.79 1.71 1.64 1.56 1.49 1.41 
2.50 2.49 2.45 2.39 2.32 2.24 2.14 2.05 1.95 1.86 1.77 
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4.2 Sampling Distribution of  Y
IC

Since the process parameters μ  and σ  are unknown, we therefore cannot 
evaluate the actual process capability. But, given sample data taken from the 
process, we could estimate process capability. Denoting { }, 1,...,iX i = n  the 
random sample of size n from the quality characteristics X , the natural 
estimators of PUC  and PLC  are 

ˆ
3PU

USL XC
S
−

= , ˆ
3PL

X LSLC
S

−
= , (4.3) 

where X  =  and  = 1 /n
i iX n=∑ S 1/ 2

1[ ( ) /( 1)]n
i iX X n=∑ − − are conventional 

estimators of μ  and σ . Assume that X  and M  are stochastically 
independent,  ~ Normal (Y μ , 2

Yσ  = 2σ + 2
Mσ ). With a given sample 

{ }, 1,...,iY i n= , the estimators of PUC  and PLC  are 

1 3
Y
PU n

Y

USL YC b
S−
−

= , 1 3
Y
PL n

Y

Y LSLC b
S−
−

= , (4.4) 

Based on the same argument used in Chou & Owen [6] and Pearn & Chen [35], 
the estimator  (Y

IC Y
PUC  or Y

PLC ) is distributed as 1( Y
ndt )δ− , where d = 

1
1 (3 )nb n −
−  and 1 ( )Y

nt δ−  is a non-central t  distribution with -1 degrees of 
freedom and non-centrality parameter 

n
Yδ  = 23 / 1InC τ+ . The mean, the 

variance, and the mean squared error of the estimator  are  Y
IC

2
E( )

1
Y I
I

CC
τ

=
+

 
(4.5) 

2

2 2
( )(( 1) / 2) (( 3) / 2) (( 1) / 2) (( 3) / 2)Var( ) 1

[ (( 2) / 2)] 1 9 [ (( 2) / 2)]
Y I
I

Cn n n nC
n nτ
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 (4.6) 

2
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+
Γ −

 (4.7) 

 
For τ  > 0,  is a biased estimator of Y

IC IC , and the bias 2(1/ 1 1) ICτ+ −  
decreases in τ . Since  is positive, 
then  < . To compare MSE (  with MSE ( , we consider 
the function 

2(( 1) / 2) (( 3) / 2) /[ (( 2) / 2)] 1n n nΓ − Γ − Γ − −
Var( )Y

IC Var( )IC )Y
IC )IC

( , , )If C n τ  = MSE / MSE ( . By some reduction, we have ( Y
IC ) )IC

( , , )If C n τ  = 1 if and only if  

2

2
2 (( 2) / 2) (( 1) / 2) (( 3) / 2) [ (( 2) / 2)]

2[ (( 2) / 2)] (( 1) / 2) (( 3) / 2)
n n n n

n n n
τ

Γ − Γ − Γ − − Γ −
=

Γ − −Γ − Γ −
 (4.8) 

or τ  = 0. Denote the right side of the equal sign in the above formula as 0τ , we 
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have ( , , )If C n τ  > 1 if τ  > 0τ  and ( , , )If C n τ  < 1 if τ  < 0τ  exclusive of 0. 
It represents that MSE  > MSE (  if ( Y

IC ) )IC τ  > 0τ , MSE  < MSE ( )  
if 

( Y
IC ) IC

τ  < 0τ  exclusive of 0, and MSE (  = MSE (  if )Y
IC )IC τ  = 0τ  or 0.  

Table 10. 0τ  values for  = 5(5)100. n

n   0τ   n   0τ   n   0τ   n   0τ   
5  1.439  30  0.279  55  0.199  80  0.163  

10  0.587  35  0.255  60  0.189  85  0.157  

15  0.431  40  0.237  65  0.181  90  0.153  

20  0.356  45  0.222  70  0.174  95  0.149  

25  0.310  50  0.209  75  0.168  100  0.145  
 

Table 10 lists the 0τ  values for  = 5(5)100. Figures 16(a)-16(b) display 
the surface plots of the ratios 

n
4γ  = ( , , )If C n τ  with  = 5(1)100 and n τ  in [0, 

1] for  = 1.00, and 1.33. The value IC 0τ  is greater than 0.5 for small  ( n  
 10), and greater than 0.2 for  

n
≤ n ≤  50. When 50 <   100, n ≤ 0τ  is 
between 1.00 and 2.00. For large , n 4γ  is greater than 1 for almost every value 
of τ , and 4γ  increases if τ  increases. The maximum values of 4γ  are 14.239, 
and 15.347, respectively, and the minimum values of 4γ  are 0.806 (1/1.241), 
and 0.797 (1/1.255), respectively. The maximum values of 4γ  occur at  = 
100 and 

n
τ  = 1, and the minimum values of γ  occur at  = 5 and n τ  = 

0.788. The difference between MSE( ) and MSE( ) with Y
IC IC 4γ  > 1 is more 

significant than that with 4γ  < 1. 
 

 
Figure 16(a). Surface plot of 4γ  with  
= 5(1)100 and 

n
τ  in [0, 1] for IC = 1.00. 

 
Figure 16(b). Surface plot of 4γ  with  
= 5(1)100 and 

n
τ  in [0, 1] for IC  = 1.33.

4.3 Confidence Bounds Based on  Y
IC

The lower confidence bounds present a measure on the minimum capability 
of the process based on the sample data. Let 1k  = 3  and 1/PU nC b − 2k  = 
3 1/PL nC b − , and we have US  = L X +  and  = 1k S LSL X - . A 1002k S θ % 
lower confidence bound  for UC PUC  satisfies ( )PU UP C C θ≥ = . It can be 
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written as 

( )
3PU U U

USLP C C P Cμ
σ
−⎛ ⎞≥ = ≥⎜ ⎟

⎝ ⎠
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3 /
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σ σ

⎛ ⎞⎛ ⎞ −+ −
= ≥ = ≥⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

k n− ⎟⎟   

( )1
1

3 3
( 3 )

/
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n U U
n

Z nC C
P n P t nC

S b 1tδ θ
σ −

−

⎛ ⎞−
= ≥ − = = − ≥⎜ ⎟⎜ ⎟

⎝ ⎠
= . (4.9) 

Similarly, a 100 θ % lower confidence bound  for IC PLC  satisfies 
( )PL LP C C θ≥ = . It can be shown as 1( ( 3 ) )n L LP t nC t2δ θ− = ≤ = , where Z is 

distributed as Normal(0, 1),  = -1t 1k n , and  =2t  2k n . To find the exact 
100θ % lower confidence bounds, Pearn & Shu [40] provided an algorithm and a 
Matlab program to solve the above equations. With measurement errors, we use 

 to estimate  but not . Thus, = -Y
IC IC IC 1

Yt 1(3 / )Y
PU nC b − n  and = 2

Yt
1(3 / )Y

PL nC b n−  instead of  and , are substituted into the equations to 
obtain the confidence bounds. Denote the bounds originated from  and  
as  and . The confidence coefficient by the confidence bound  
(denoted by 

1t 2t
1
Yt 2

Yt
Y
UC Y

LC Y
UC

Yθ ) we obtained is 

( ) 21
3
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δ
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Y Y
Y YU PU U

n U
Y Y n

Z nC C n nC
P P t

S b
) ≥ t , (4.10) 

where  = 31
Yk 1/Y

PU nC b − 1. And, Yθ  can be also obtained by the confidence 
bound , which can be expressed as   Y

LC

1 22

3
( )

1
−

⎛ ⎞
⎜ ⎟= = ≤
⎜ ⎟+⎝ ⎠

θ δ
τ

Y
Y Y L

n L
nC

P t tY . (4.11) 

Figures 17(a)-17(b) plot Yθ  versus τ  with  = 25(25)100 and  = 
1.00, and 1.33, for 95% confidence intervals (because 

n IC
( Y )IE C  = 2( / 1IE C )τ+ , 

we consider the cases that  = Y
IC 2/ 1IC τ+ ). Since  is smaller than  

in the presence of measurement errors, and  (or ) is smaller than  (or 
), it is necessary that 

Y
IC IC

Y
UC Y

LC UC
LC Yθ  is always greater than θ . Thus, Figures 17(a)-17(b) 

show that the confidence coefficients become increase because the estimated 
lower confidence interval bounds become decrease by measurement errors.  
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Figure 17(a). Plots of Yθ  versus τ  
with IC  = 1.00 and  = 25(25)100 
(from top to bottom) for 95% confidence 
intervals. 

n

 
Figure 17(b). Plots of Yθ  versus τ  
with IC  = 1.33 and  = 25(25)100 
(from top to bottom) for 95% confidence 
intervals. 

n

4.4 Capability Testing Based on  Y
IC

We usually use statistical testing to determine if our processes meet the 
capability requirement. The null hypothesis is : 0H IC  ≤   (process is not 
capable), and the alternative hypothesis is : 

c
0H IC  >  (process is capable) of 

testing, where  is our required process capability. The critical value is used to 
determine whether the null hypothesis should be rejected. If the point estimator 
of the process capability is greater than the critical value, we reject the null 
hypothesis and conclude that the process is capable. Otherwise, we would 
believe that the process is incapable. Suppose that the nominal size of our 
statistical testing is 

c
c

α  (type I error), the critical value  can be determined 
by 

0c

( )0 |I IP C c C cα = ≥ = . (4.12) 

Since  is distributed as IC 1 ( 3n Idt nCδ− = ) , where  = d 1
1 (3 )nb n −
− , we can 

obtain that  is  0c
1

0 1, ( 3
3

n
n

b
c t

n α δ−
−= = )nc , (4.13) 

where 1, ( )nt α δ−  is the upper α th quantile of 1 ( )nt δ−  distribution. And the 
power of the test can be calculated as   

( )0( ) |I I IC P C c Cπ = > ( )03 3 |I IP nC nc C= >   

0
1 1

3 3 |I I
n n

n nP C c C
b b− −

⎛ ⎞
= >⎜ ⎟⎜ ⎟

⎝ ⎠
1 0

1

3( 3 )n I
n

nP t nC c
b

δ−
−

⎛ ⎞
= = >⎜ ⎟⎜ ⎟

⎝ ⎠
  

( )1 1,( 3 ) ( 3 )n I nP t nC t ncαδ δ− −= = > = . (4.14) 

However, in the presence of measurement errors, the α -risk (denoted by Yα ) 
and the power (denoted by Yπ ) are  
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( )0 |Y Y
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( ) ( )0 0( ) | 3 3 |Y Y Y
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Y I
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Figure 18(a). Surface plot of Yα  with 

 = 5(1)100, n τ  in [0, 1] for  = 1.00, c
α  = 0.05. 

 
Figure 18(b). Surface plot of Yα  with 

 = 5(1)100, n τ  in [0, 1] for  = 1.33, c
α  = 0.05.

 

Figure 19(a). Plots of Yπ  versus τ , 
with  = 50, n α = 0.05, for  = 1.00, 

I

c
C  = 1.00(0.20)2.00 (from bottom to 
top). 

 
Figure 19(b). Plots of Yπ  versus τ , 
with  = 50, n α = 0.05, for  = 1.33, 

I

c
C  = 1.33(0.20)2.33 (from bottom to 
top).

Earlier discussions indicate that we underestimate the true process 
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capability using  instead of . The probability that  is greater than 
 would be less than that of using . Thus, the 

Y Y
IC IC IC

0c IC α -risk using  to 
estimate  is less than the 

Y
IC

IC α -risk if using  to estimate . The power, if 
using  to estimate , is also less than the power using . That is, we 
have 

IC IC
Y

Y
IC IC IC

α   ≤ α  and Yπ   ≤ π . Figures 18(a)-18(b) are the surface plots of Yα  
with  = 5(1)100 and n τ  in [0, 1] for  = 1.00, 1.33 and IC α  = 0.05. Figures 
19(a)-19(b) are the plots of Yπ  versus τ  with  = 50 and n α  = 0.05 for  
= 1.00, 1.33 and  = (0.20) +1. Note that for 

c
IC c c τ  = 0, Yα  = α  and Yπ  

= π  in those figures. In Figures 18(a)-18(b), Yα  decreases as τ  or  
increases, and the decreasing rate is more significant with large  values. We 
find that for large 

n
c

τ  values Yα  is smaller than 51 10−× . In Figures 19(a)-19(b), 
Yπ  decreases as τ  increases, but increases as  increases. Decrement of n Yπ  

by τ  is more significant for large  values. Because of measurement errors, c
Yπ  may decrease significantly. For instance, in Figure 19(a) the Yπ  values ( c  

= 1.00,  = 50) for  = 1.40 is n IC Yπ = 0.920 if there is no measurement error 
(τ  = 0). But, when τ  = 1.0, Yπ  decreases to 0.042, the decrement of the 
power is 0.878. 

4.5 Modified Confidence Bounds and Critical Values 

We showed earlier that the coefficients increase owing to the 
underestimating the lower confidence bounds. We also showed that both the 
α -risk and the power of the test decrease in measurement error. The probability 
of passing non-conforming product units decreases, but the probability of 
correctly judging a capable process as incapable also decreases. Since the lower 
confidence bound of the process capability is severely underestimated, and the 
power becomes much weak, the producers cannot firmly state that their 
processes meet the capability requirement even if their processes are sufficiently 
capable. Good product units would be incorrectly rejected in this case (rejected 
products are either scrapped or requiring rework). Unnecessary cost may 
accompany those incorrect decisions to the producers. Improving the gauge 
capability and training the operators by proper education are some advice for 
reducing the measurement errors. Nevertheless, measurement errors may be 
unavoidable in most manufacturing processes. Thus in this section, we adjust 
the confidence bounds to give a more precise estimation of process capability, 
and revise critical values to improve the power for testing hypothesis.  

Suppose that the desired confidence coefficient is θ , the adjusted 
confidence interval of PUC  with confidence interval bound , can be 
established as 

UC∗

( ) 21
3

Y
PU U U

Y

USL
P C C P C

μ
θ τ

σ
∗ ∗⎛ ⎞−

= ≥ = + ≥⎜ ⎟
⎝ ⎠

.  
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Similarly, the adjusted confidence interval of PLC  with confidence interval 
bound , can be established as LC∗

1 22

3
( )

1
YL

n L
nC

P t tθ δ
τ

∗
∗

−

⎛ ⎞
⎜ ⎟= = ≤
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. (4.18) 

To find the exact 100θ % lower confidence bounds, an S-plus program is 
developed to solve the equations. Figures 20(a)-20(b) are comparisons among 

, , and UC Y
UC UC∗  for PUC  = 1.00, 1.33 with  = 50, where  is the 95% 

lower confidence bound of ,  is the 95% lower confidence bound of , 
and  is the adjusted 95% lower confidence bound for 

n UC
PUC Y

UC Y
PUC

UC∗ Y
PUC . Note that in this 

case, the probability that the interval with the bound  contains the actual Y
UC

PUC  value is greater than that of the interval with the bound  or  does, 
while the probability that the interval with the bound  or  contains the 
actual 

UC UC∗

UC UC∗

PUC  value is just 0.95. From Figures 20(a)-20(b), we see that the lower 
confidence bounds remained underestimated, even if we adjust the formula to 
calculate the bounds. But, the magnitude of underestimation using adjusted 
confidence bounds is significantly reduced. 
 

 
Figure 20(a). Plots of UC , U , and 

 (from top to bottom) versus 
C∗

Y
UC τ  

with  = 50 and for  = 1.00. n PUC

 
Figure 20(b). Plots of U , U , and 

 (from top to bottom) versus 
C C∗

Y
UC τ  

with  = 50 and for  = 1.33. n PUC

 40



In order to improve the power of the test, we consider the revised critical 
values  satisfied  < . Thus, the probability that  is greater than 0c∗ c∗ c YC c0 0 I 0

∗  
is greater than the probability that  is greater than . Both the YC cI 0 α -risk and 
the power increase when we use 0c∗  as a new critical value in the testing. Suppose 
that the α -risk using the revised critical value 0

∗  is c α∗ , the revised critical 0c∗  
must satisfy 

( )0 |Y
I IP C c C cα∗ ∗= ≥ = ( )03 3 |Y

I IP nC nc C c∗= ≥ =   
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b b
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⎝ ⎠
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. (4.19) 

To ensure that the α -risk is within the preset magnitude, we let α∗  = α , thus 
 can be obtained as  0c∗

1
0 1, 2

( 3
3 1

Yn
n

b cc t n
n α δ )

τ
∗ −
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and the power π ∗  is 
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Figures 21(a)-21(b) plot π ∗  versus τ  with  = 50 and n α  = 0.05 for  
= 1.00, 1.33, and  = (0.20)c +1. From those figures, we see that the powers 
corresponding to the adjusted critical values 

c
IC c

0c∗  remain decreasing in 
measurement error, but the decrements originated from the new critical values 0c∗  
are very small. We have improved a certain degree of power. For instance, if we 
compare the Yπ  values in Figure 19(a) (  = 1.00,  = 50) for  = 1.40 with 
the 

c n IC
π ∗  values in Figure 21(a) (  = 1.00,  = 50) for  = 1.40, we see that c n IC

Yπ = 0.042 and π ∗= 0.885 with τ  = 1.0. In this case, using the adjusted critical 
values  the power is improved by 0.843. Tables 20-23 in Appendix provide the 
revised critical values for some commonly used capability requirements. Using 
those tables, the practitioner may select the proper critical values for capability 
testing. 

0c∗
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Figure 21(a). Plots of π ∗  versus τ , with 
 = 50, n α = 0.05, for  = 1.00, c IC  = 

1.00(0.20)2.00 (from bottom to top). 

 

Figure 21(b). Plots of π ∗  versus τ , with 
 = 50, n α = 0.05, for  = 1.33, c IC  = 

1.33(0.20)2.33 (from bottom to top). 

4.6 Application Example 

TFT-LCDs (thin-film-transistor liquid crystal display) consist of a lower glass 
plate on which the TFT is formed, an upper glass plate on which the color filter is 
formed, and the injected liquid crystal between both glass plates (see Figure 
22(a)). The TFT plays a critical role in transmitting and controlling electric 
signals, which determines the amount of voltage applied to the liquid crystal. The 
liquid crystal controls light permeability using different molecular structures that 
vary in accordance with the voltage. In this way, the desired color and image is 
displayed as it passes through the color filter (see figure 22(b)). The TFT-LCD 
consumes less energy compared to a CRT (cathode-ray tube), is slimmer and 
weighs less. The TFT-LCD emerges as the most widely used display solution, 
because of its high reliability, viewing quality and performance, compact size and 
environment- friendly features. Because of the heat resistance, non-conductance, 
and simple processing steps. Non-alkali thin film glass is the major material of 
manufacturing TFT-LCD. While manufacturing non-alkali thin film glass, flatness 
is one of the critical quality characteristics. If the flatness of glass is not in control, 
the TFT-LCD products may result in a certain degree of chromatic aberration. 

Table 11. 60 observations for flatness (unit: um) 

14.40 4.47 11.18 8.29 9.38 8.73 11.64 6.59 12.55 12.83 14.40 

12.18 14.73 12.22 10.42 11.56 14.37 11.76 8.06 10.03 5.45 12.18 

14.40 15.28 9.60 15.01 12.36 14.69 10.71 6.96 8.88 16.30 14.40 

15.53 15.22 12.02 12.95 10.50 15.09 11.23 8.33 13.76 12.19 15.53 

9.93 9.14 10.41 15.34 12.94 10.24 14.44 12.54 10.40 13.47 9.93 

13.22 16.93 18.41 11.19 15.09 9.40 12.22 12.17 13.80 12.60 13.22 
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Figure 22(a). Structure of TFT-LCD (a). 

 
Figure 22(b). Structure of TFT-LCD (b). 

Consider a supplier in manufacturing TFT-LCD products in Taiwan, the 
production specifications of flatness for a particular model of non-alkali thin film 
glass are:  = 25 um (0.0025 mm),  = 0 um. A total of 60 observations were 
collected which are displayed in Table 11. To determine whether the process is 
“Satisfactory” (  > 1.33) with unavoidable measurement errors 

USL T

PUC τ  = 0.4, we 
propose the following procedure, STEP 1: Determine the capability requirement 

 (normally chosen to 1.00, 1.33, 1.50) and the c α -risk (normally set to 0.01, 
0.025, or 0.05), STEP 2: Calculate the value of the point estimator  from the 
sample, STEP 3: Check the appropriate table listed in Tables 20-23 and finding 
the corresponding critical value 

IC

0c∗  based on α , τ , and , STEP 4: Conclude 
that the process meets the capability requirement if  is greater than 

n
C 0cI

∗ . 
Otherwise, we do not have enough information to conclude that the process is 
capable.  

With the proposed procedure, we first determine that  = 1.33 and c α  = 
0.05. Based on the sample data of 60 observations, we obtain the sample mean Y  
= 11.93, the sample standard deviation  = 2.85, and the point estimator YS Y

PUC  
= 1.511. From Table 22, we find the critical value 0c∗  = 1.452 based on α , τ  
and . Since n Y

PUC  > , we conclude that the process is “Satisfactory”. 
Moreover, by inputting 

0c∗
Y
PUC , τ , , and the desired confidence coefficient n θ  = 

0.95 into the computer program we can obtain the 95% lower confidence bound of 
this process capability as 1.385. 
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