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Abstract

This paper studies the operating characteristics of an M/G/1 queuing system with a randomized
control policy and at most J vacations. After all the customers are served in the queue exhaustively,
the server immediately takes at most J vacations repeatedly until at least N customers are waiting
for service in the queue upon returning from a vacation. If the number of arrivals does not reach N
by the end of the J " vacation, the server remains idle in the system until the number of arrivals in
the queue reaches N . If the number of customers in the queue is exactly accumulated N since the
server remains idle or returns from vacation, the server is activated for services with probability p and
deactivated with probability (1—p). For such variant vacation model, other important system
characteristics are derived, such as the expected number of customers, the expected length of the busy
and idle period, and etc. Following the construction of the expected cost function per unit time, an
efficient and fast procedure is developed for searching the joint optimum thresholds (N*,J") that
minimize the cost function. Some numerical examples are also presented.

Keywords: Cost, < p, N > -policy, supplementary variable technique, vacation

1. Introduction

We consider an M/G/1 queuing system in
which the server operates a randomized N
policy with at most J vacations. The server
leaves for a vacation when the system becomes
empty. When the server returns from the
vacation, he/she follows a < p, N > operating
policy and decides to take another vacation, to

remain dormant in the system or to provide

service for the waiting customers. An operating
policy is a < p, N > -policy if it prescribes the
following four conditions: (i) the server is
deactivated when the system becomes empty, (ii)
the server is activated (turned on) if there are
more than N (N =1) customers present in the
system, (iii) the number of customers in the
system reaches N after the server is deactivated,

the server is activated with probability p and
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deactivated with probability 1— p, and (iv) the
server is not activated/deactivated at other
epochs. In such policy, the server is activated
and keeps serving customers until the system
becomes empty. (see Feinberg & Kim 1996)

The modeling analysis for the vacation
queuing models has been done by a considerable
amount of work in the past and successfully
used in various applied problems such as
production/inventory systems, communication
systems, computer networks and etc. (see survey
paper by Doshi, 1986). A comprehensive and
excellent study on the vacation models can be
found in Levy & Yechiali (1975) and Takagi
(1991). Baba (1986) study the M™/G/1 queuing
model with vacation time. The first study of
vacation models with N policy was done by
Kella (1989). The variations and extensions of
these vacation models with N policy can be
referred to Lee et al. (1994, 1995), Ke (2001),
Arumuganathan & Jeyakumar (2005), Moreno
(2008), and others. The developments and
applications on the optimal control of queuing
systems are rich and varied (see Tadj &
Choudhury 2005). Moreover, Takagi (1991) first
proposed the concept of a variant vacation (a
generalization of the multiple and single
vacation) for the single arrival M/G/1 regular
system. Zhang & Tian (2001) treated the discrete
time Geo/G/1 system with variant vacations,
where the server will take a random maximum
number of vacations after serving all customers
in the system. Ke & Chu (2006) examined the
variant policy for an M™/G/1 queuing system by
stochastic decomposition property. Ke (2007)
used supplementary variable technique to study
an M™/G/1 queuing system with balking under a
variant vacation. Recently, Wang & Huang

(2009) used a maximum entropy approach to

examine the steady-state results for the
< p,N > -policy M/G/1 queue with a unreliable
server.

So far very few authors have studied the
comparable work on the variant vacation policy
for queuing models with N policy, in which
the server may take a sequence of finite
vacations in the idle time and apply a
randomized control policy. This motivates us to
develop the variant vacation policy for an M/G/1
queuing system, where the server operates a
randomized N policy and takes at most J
vacations when the system is empty.
Conveniently, we represent this variant vacation
system as M/G/1/VAC (J) -randomized N
policy queuing model.

The objectives of this paper are as follows:
Firstly, we develop the probability generating
function of the number of customers present in
the system. Secondly, we also derive the busy
and idle distributions of the classical N policy
with at most J wvacations. Through these
results and convex property, the expected busy
and idle period of our model presented in this
paper are obtained. Thirdly, we develop a
long-run expected cost function per unit time
and then to research the joint optimal threshold
(N, J7)

extensive numerical illustration. Finally, some

values and we also present a

conclusions are drawn.

2. The System

Consider an M/G/1 system in which the
server operates a randomized N policy and
takes at most J vacations when he finishes
serving all customers in the system. The detailed

description of the model is given as follows:
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Customers arrive according to a Poisson
process with rate A . The service time provided
by a single server is an independent and
identically distributed random variable (S)
function S() and
transform  (LST) S*(8)

Arriving customers who join the system form a

with distribution

Laplace-Stieltjes

single waiting line based on the order of their
arrivals; that is, they are queued according to the
first-come, first-served (FCFS) discipline. The
server can serve only one customer at a time,
and that the service is independent of the arrival
of the customers. If the server is busy or on
vacation, arrivals in the queue must wait until
the server is available. Whenever the system
becomes empty, the server deactivates and
leaves for a vacation with random length V.
Once returning from the vacation, the server
inspects the system and decides whether to take
another vacation, to stay dormant in the system
or to resume serving the customers exhaustively.
If the number of customers waiting in the queue
is less than N when the server returns from the
vacation, the server leaves for another vacation
with the same length. This pattern continues
until at least N customers are found in the
queue upon returning from a vacation. However,
if the number of customers does not exceed N
by the end of the J th vacation, the server stays
in the system until N customers are
accumulated in the queue. If there are N
customers exactly present in the waiting line for
service when the server returns from a vacation
or the server stays dormant in the system, the
server immediately applies a < p, N > -policy
listed above. If more than N customers present
in the queue upon returning from vacation, the

server immediately starts serving the waiting

customers until the system becomes empty. The
vacation time F has distribution function
V(x) and Laplace-Stieltjes transform (LST)
V().

processes

Furthermore, various  stochastic

involved in the system are
independent of each other.

Our model can be applied to many real world
systems. In particular, some stochastic
production and inventory control systems with a
multi-purpose  production facility can be
effectively studied using such a vacation
queuing model. In such systems, the demand for
the product is random and can be modeled as a
Poisson process. The production time of each
unit of the product is a random variable with a
general distribution. The production facility
performs other tasks utilizing the time between
review. An example of Production-To-Stock is
considered for illustrative purpose based on Kuo
et al. (2009), which it is a production policy in
production planning and management. The
advantage of Production-To-Stock in comparison
with Production-To-Order is that we can
improve the service of customers by reducing
the waiting times, however, this leads to increase
extra costs (keeping stock). Thus it is a
important topic how to decide the important
parameters to achieve the minimum expected
cost. In such an example, it assumed that
customer orders for this product arrive according
to a Poisson process with rate 4. The system
creates an empty slot in the warehouse when an
order presents (i.e., an arriving order can be
viewed as a slot). When the inventory level is
above the reorder point (safe stock) or the
number of empty slots is less than N , the
production facility stops major production and is
available to

perform optional jobs
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(j=12,...,J). The optional jobs can be referred
to other second tasks or a sequence of finite
maintenance policy. On the other hand, if the
number of slots reaches N at a vacation
completion instant, the production facility may
be either set up to replenish the inventory level
(to the Order-Up-to-Level) or forced to wait the
next orders. Noted that the maximum inventory
level (denoted by S ) is greater than the
threshold N. Such inventory system (p,s,S)
policy is more flexible and efficient than
ordinary (s,S) inventory policy, where s
represents the reorder point and S is the
Order-Up-To-Level. One is easy to see that
s =S— N . Because the demand is random, we
can assume that the unmet demand is completely
backordered and is supplied after refilling the
warehouse. The vacation queuing model
presented in this paper is a good approximation

of the inventory control system.

3. The Analysis
In this
steady-state differential-difference equations for

section, we first develop the

the variant vacation system by treating the
elapsed service time and the elapsed vacation
time as supplementary variables. Then we solve
these system equations and derive the
probability generating functions of various

server states at a random epoch.

3.1 System Size Distribution at a Random
Epoch
In steady-state, let us assume that S(x)=0,
for x<07, S(e0)=1, V(x)=0, for x<07,
V(eo)=1 and these two distribution functions

are  continuous  at x=0, so that

_ dV(x)
TG

p(x)dx =52 and - o(x)dx where

MU(x)dx can be interpreted as the conditional

probability function of time for completing the
service, given that the elapsed time is x and
w(x)dx can be referred to the corresponding
vacation density.

We define the state of the system at time ¢
as follows:

O(t) = number of customers in the system,

S7(t) = the elapsed service time,
and

Vi (1) = the elapsed time of the i
vacation.

The following random variables we define
are used for further development of the variant

vacation queuing model:

0, ifthe server is idle in the
system at time ¢,
1,  ifthe server is busy at time ¢,
2, ifthe server is on the 1”
vacation at time ¢,
A(r) = :
Jj+1, if the server is on the ;"

vacation at time 7,

J +1, if the server is on the J
vacation at time ¢.

Thus the supplementary variables S~ (¢) and
V,(t) are introduced in order to obtain a
bi-variate Markov process {Q(¢),0(¢)} , where
ot)=0 if A@®)=0, 6()=S" (@) if A@®)=1,
and oW =V, (@ if Alt)=j+1
(j=L2,..,J).

Furthermore, let us define the following
probabilities:
R,(t)=PA{0(®)=n,0()=0},n=0,1,2,...,N,
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P, (x,t)dx
=P{0()=n,0()=S"(t);x<S™(t) < x+dx},
x>0,n2>1,
Q;, (x,t)dx
=FA00) =n,6(t) =V (1);x <V} (1) S x+dx},
x>0,n=20,1< ;< J.
In steady-state, we can set
R, =lim,_ R () for 0<n<N-1, and
limiting densities P, (x) = lim,_,,P,(x,t) for
nzl, and Q,; (x)=lim_Q;, (x,r) for
x>0 and n=>0, 1< j>J. According to Cox
(1955), the steady-state Kolmogorov forward

equations that govern the system can be written

as
ARy = f: Q o(x)a(x)dx, (1)
AR, =["Q ,()o(x)dx+ AR,
n=1,...,N=2, (2
J
AR = > I: Q;, Waxydx+iR ., (3)
Jj=1
ARy = A(1=p)Ry_4, @)
d
el (x)+[A+u(x)]R(x) =0, 5)
X

B O HIA+ UV, () = 2By (),
x>0,n>22, (6)
d
0, (0 + 1+ 00 (1) =0,
x>0,1<;<J, (7)
d
L0, (0 A+ I, (1) = 42,0,
x>0,1<j<J,n=12,..(8)

We solve the above equations by means of
the following boundary conditions at x =0

P,(0)= j: P (O)u(x)dx,n=1,2...,N -1,

©))
P (0)=ApR, Jé‘; j: Q; (N)o(x)dx
+j: P I(x) 1(x)dx, (10)
P _(0)=AR + i j : Q, (Ma(x)dx
=
+| 0°° P (x)u(x)dsx, (11)

J oo
B(0)= [ Q;,(Da(x)dx
Jj=1
+fy Banu(xden >N+, (12)

Q,,0)= I:Pl(x)/l(X)dx, n=0

09 i’l=1,2,...

(13)

JLT gszIJz(x)‘U(XJCix:
I’l=0,1,2,...,N—1, (14)
and j=2,3,...,J,

0, n=N,j=273.,J.

gsz1(O)::

and the normalization condition

SR, +i_[:Pn(x)dx
n=l1

n=0

=)

J (<)
> jo Q,,(d]=1. (15
j=l n

=0

Let us define the probability generating
functions for {F,(-)} and {Q;, ()} as follows:

P(x;z)= i Z"P(x), |zI£], (16)

n=l1
Q;(r2)= 2"Q;,(x), | zIS1, 1</ <.

n=0
17)
In (5)-(6), multiplying (5) by z and (6) by
z"(n>2) and then adding the equations up

term by term, we obtain
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anx;z) A= 2)+ p()]P(:2) = 0. (18) (14)  through (23) over the range
x

Similarly, in (7)-(8), (7) is multiplied by z° and
8) by z" (n=12,..) and then adding the
equations up term by term, we get

0 (x;z)
—LE A=)+ 00, (6:2)=0.(19)

Now proceeding in the usual manner with
(9)-(12), it finally yields

P(0;2) = % & PO 2)u(x)dx

+X 70 J Q; (x;2)(x)dx

S,Q,(0:2)+ ARy (2)(z=1), x>0 (20)

where Ry, (z) = Zio "R, .
Solving the partial differential equations (18)
and (19), we obtain
P(x;2) = P(0;2)[1-S(x)]e *79*. (21)
and
Q;(x:2) = Q; ()1 ()]e 7,
j=12,..,J.(22)
Also, solving the differential equation (7) yields
Q;(x)=Q,,(O-V ()™, j=12,..J
(23)
Now, (23) is multiplied by @(x) on both sides

for j=J and integrating with over x from 0
to oo, we then have

j: Q (Me(x)dr=Q,, (0)[(;” e av(x)
=Q, ,(0)a, (24)
where o, =V"(1).
From (1) and (24), it finally yields
y)
Q, 0= "5, @5)
0

Starting with (25) and then solving recursively

j=J-1J-2,..,

AR,
Q;(0)= J+l,j_12 J-1. (26

o

1 we get on simplification

Integrating (23) with over x from 0 to oo

we have
Q;0=Q;, (O)I: [1- V(x)]e*’b‘dx

~La j0a-a). @7)

Using (25)-(27) yields
Ry(1-a)

J—j+1 7
%

Qo= j=L2,..J. (28)

Note that Q;, represents the steady-state
probability that there are no customers in the
system when the server is on the ;” vacation.
Let us define €, the probability that no
customers appear in the system when the server

is on vacation. Then we have

J R (1—¢
Q=9 M
Jj=1 050

29

Substituting (21)-(22) into (20) yields
P(0;2) = lP(O; 2)S*[A(l-2)]

z

+27,Q,(0;2)[V (A1 -2))~1]

+ARy (z)(z—1). (30)
It follows from APPENDIX A that € ,(0;z) in

(30) can be expressed as

AR,
2o ,j_l
0’0
AR _
Q;(0;2)= 0 ZN_OIZ"O(H
: J—j+2 n=
%
=23 Jn=0,12,..,N—1.

(€2))
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where a, = I: %e_)”dV(t) = %V*(") A,

is the probability that »n customers arrive
during a vacation.

Solving P(0;z) from (30), we get
AzR,

PO;z)=—F—X
%2) z-S"[A(1-z2)]

V*(A(l-2)) - Lis 1-a !

Nl l’l )
% 1-o

n =0Z @,

HENE 2+ (1 )z )(z—l)} . ®

From (21) and (32) yields

AzR,

P(x;z)=— "0
(x32) z—S*[/l(l—z)]X

V*(m;z))—l 0+ 11_%J—1
o — 0
H(EIE " 1= Pz )|
X1—8(x)Je =%, (33)
which leads to
P(z) = j: P(x;2)dx
AzR,

z—-S[A(- z)]

J-1
1-oy N g

Vi(A(l-z))-1
o (i 1-a

,)

+HE 50 2" + (1= p)zV¥ )z —1)}

ST A-2)-1

A(z-1) 4

Using (22) and (31) yields

ARy 1y pe-itas, )

0

Q(x;2) =

and

X
J = Z Znan [l _ V(x)]e—l(l—z)x ,
0 n=0

j=2,3,..J. (36)

Q;(x;z)=

Integrating with over x from 0 to oo in (35)
and (36) respectively, it finally yields

[1-V"(A0-2)] ,
(1-2)ag

Q(z2)= (37

and
[1-V" (A1-2)IE)5 2",
( )aJ j+2
j=23,.J. (38)

Q,(z)= % Ry,

The unknown constant R, can be

determined by using the normalization condition

(15), which is
J

Ry()+P(1)+ ZFI Q;(1)=1. Thus we have

equivalent to

Ry = I=p
o AE) 1—e S
(N+1-p)+=——=|1+ > a,
[0

0 | -

(39)
where p=AE(S).
Remark 1: In (39), if we let p=1 and N =1,
our model becomes the ordinary M/G/1 queuing
system with at most J vacations. R, can be
reduced to
_ 1-p
=
/IE[JV] -0 +1
which agrees with Ke & Chu (2006)
J
Let ®(z)=Ry(2)+P(z)+) Q,(z) be the
j=1
probability generating function of the system
size distribution at stationary point of time, we

then have
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J 1 N=1
(z=DS"[A=2)] |V [A1-2)]-1 o |
zZ- —z —Z)1- % w0 n N
D(z) = X + E +(1- R, . 40
O s a-n ( z-1 J ag{ = rlmpeif )

It should be noted that the probability generating function given by equation (40) decomposes into
two independent random variables: one (the first term) is the system size of the ordinary M/G/1 queue,
another (the second term) is the number of customers that arrive during the residual vacation time.
Equation (40) can be expressed as following

J-1 N-1

1-¢
. 1+ 0 2"05,, 3
VAG-a1-1) | - z WS o e
z-1 0!6] n=0

(1-p)z-DS[A1-2)]

(41
=S [A(-2)] @)

D(z2)= JoT N1
(N+1—p)+’1E(JV)[1+1_“° o,

o 1- % a0

Remark 2: Suppose that we have p=1 and N =1; then if we put J =1, our model can be
simplified to the M /G /1 queuing system with single vacation. Equation (40) can be rewritten as

Oz )_(1 p1-2)S" [/1(1 2], -V A=)+ V" (A1 - 2)]
S TA1-2)]- (1=2)[AEV 14V (D)

which confirms the result in Section 6 of Choudhury’s system (2002).

3.2 The Expected Number of Customers in the System and the Expected Waiting Time
In (40), we evaluate did)(z) |,.-; by using L’hopital rule twice which leads to the expected
y4

number of customers, L, y , in the system, given by

ARy EO) -0 AEWV?) . 1-of
Lp,N _p+ {l_p[ 1—0(() anonan]-l_z(l_p) [1+ —0( Z an]
2 2 J-1 2 2
(AEWNES?)  1-04 gy NV 41— 2 )]+ A2E(S )(N+1—p)RO‘
2(1- p)? 1-e 2(1 p) 2(1- p)?

(42)
By using Little’s formula, we can obtain the expected waiting time in the queue, W, , given by

J— J

[1+11‘_"’° Sne, 1+ BT % z nat]

o {(N+l—p)+ﬂEgV)[l+l_a° YNy ]}
o,

o 1-«,

AE(V?)
2

Won =
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AE(S? 1-o”
gil—)pE)(V)[H 1_020 P YA N(N +1- 2p)+(1 )E(S YN +1-p)
A 1- - 1— J-1 !
o |(N+1-p)+ qun+ e znoa]} 21%ﬂu&—p)+ﬂigqu+ =~ znoa]}

N=1,and J=1,
our model can be reduced to the ordinary M/G/1

Remark 3: Letting p=1,

queuing system with single vacation. Eq. (43)
can be reexpressed as:

AE(V?) +/1E(Sz)
AREW)+V* (] 20-p)’

PN =

which is in accordance with Takagi’s system
(1991, Section 2.2, p.126).

4. Other System Characteristics

First, we derive the expected length of the
busy period, the idle period and the busy cycle
for the N -policy M/G/1 queue with at most J
vacations. Using the fact that the system
characteristics fora < p, N > -policy is a convex

combination of the system characteristics for an

(43)

N -policy and the system characteristics for an
( N+1 )-policy, one can obtain the expected
length of the busy period, the idle period and the
busy cycle for the < p,N > -policy M/G/I

queue with at most J vacations.

4.1 The Expected Length of the Busy

Period
Let QSJ

queue at a‘lvbusy period initiation point (or idle

be the number of customers in the

period termination point) for the M/G/1 queuing
systems, in which the server operates a
N -policy and takes at most J vacations at the
end of each service period.

By conditioning on the number of customers

that arrive during a vacation, we have

0, X PAON -t vy ik 1y = k= +hey 404k )), (k2 N)  (44)

N- N-1
0 _ 7\ _
B(Oyy=k)=o+ Z o Oy oot Z oG O O o,
1 1 1 2 J-1 1 2 J-1
k=0 ity +
‘..+k‘/71=0
N-1
+ 5 g,
fey+ky +
etk =0

where ¢, is the probability that £ customers arrive during a vacation.

In (44), multiplying both sides by z* and then summing over k£ from N to oo, we obtain the

probability generating function of Qg ,

QNJ(Z)_ZakZ+Z Z%%H +ZZ

k=N

o N1
k
+y 2y o, o
k=N k+k,+
Ao

given by

-1

Z aklakZ akj lak kl k27 7kjl
fy+hy +
R -

o, XF, (Q]?/—(k1+k2+...+kj g =k =k +ky+--+kj))
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5 5 S ke +k k
—az) + (Yt Y et Y g g 2R () - )
k1=0 kl+kz=0 k1+k2+'“+kj,1=0
5 Ktk k 0
+hey 4
+ Z O, 0 0y 2T I X(ON— (g 44, )0 (2) = 1)
ky+hey+-+k ;=0

=(l+ay+af +-+a Nouz)-ey)

N-l N-l N-l
k ky+k Fey eyt
+(Zak Y o s Y ooy ey 2T a(2) - 1)
k=1 ky+ky=1 otk etk =1
N-1
ky+ky+ -tk 0 J 10
+ z O, 0 27 I X (DNt 4hy 4tk )0 (D) =D + 05 Q5 (2). (45)

ky+hy+ -tk =1

After some algebraic manipulation of (45), Q,?,, ;(2) can be rewritten as

0 a(z)— o
Oy,(2)= ——
1-o,
o(z)—1 = =
S ) )X(Z "+ Y o s Y g e 2T
1- k=l k=1 eyt =1 ‘
1 RS ky+tky 0 1
—x( Oy, Oy, O Z X (DN (ky +hy +---+4,),0 () =)
1- @ oy +tk =1
_ a(z)-o 4 Ay y(2)-[a(z)-1]+ By ;(2)-[X(2)-1] (46)
= . ,
1-a, 1-o
where
1)
N-1 N-1
Ay ()= o 2" + z o v Y gy ey 2R
k=1 ey +ky=1 ky+hey+- 4k, =1
E & K+k S Kty +k3
+ +hy+
= Alzaklzl"f‘Az Z aklakzzl 2+A3 Z 0{k10{k20(k321 2 +--
k=1 ky+hky=2 ky+hy +ky=3
kiky #0 kykky #0
S Kty otk
thy etk
+AJ_1 Z aklakz'“akj,lzl 2 J-1
kythey otk =J -1
kikyky ke, 70
with

) _ 1= %~ (J-Doy™
(l—ao) 1-¢,

4 =1+Claoy +Cioq +Cog +---+Cheq)

sl (V- (J-D(J -y
TU-ay) (- 2(1-a)

Ay =Co+Cloy+Clag + G0 +-+Cl 304~
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1 ko1 o
Ay =———— A1 )= =R)N k1) (J =k + =D —0) 1oy ™}
(1-a) p=w
4, =1
2)
& Kythy -tk 0
+hy
o 0 0z (O iy eetk )0 (2) 1)
etk -tk =1
N-1
=Clo Z a, 20N 4 (D) -D+Cay 7 Y o o Z(OF (s (D) D+
ki +k,=2
K20
& ky+hy etk o A0
D o o 2RO g ()= 1)
ky+ky+-ky=J
kyooky #
=B2(03_1./(2) =D+ B> (O s () =D+ By 21O, (2) 1)
1N_1 4B, 22 lN_z i B N-1 11 i
Az 214 B, 22 [(z=D) ), w2 14+ By 2 (2= 72 ]
i=0 i=0 i=0
N-1
=(Bizy mz +B,z° Zm +--+ By z lZﬂ'z)(z =By ,(2)-(z-1)
i=0 i=0 i=0
with
J  J-1
=Cloy o
B, =C/ oy’ o, + C o] 2o
o, + C) ol 220404 + Cl o) o

By = Clj%

P SRy |
By, =Ce

where

vacation.

Remark 4: Using (1)-(3), the following relation of R,, 7, and «,

R
R, =—°(p,

J J 2
oy +C o

k+k,=N-1

0<n<N-1, where ¢, =" 7ma,

Remark S: Letting J =1, we have A4y ,(z)=0 and

N-1
By,(2)= 0{1227[2 +a,z
i=0

-2
Zﬂ'z +--

i=0

In this case, Q,OV, ;(2) can be simplified into

Z aklak2+...

+

Ky +hey -

Oy lZN 1Zﬂ'z

i=0

+k,=N-1

7, is the probability that the system state visits n customers during an idle period without

is given by

Z 9z —aOZﬁz
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o(z)— o 1 _o(2)

QNl( z) = + (Z_l)BNl(Z)_

Then we have

N-1 )
Oni(2) =a(2)+(z-D)Y. 9,2/
j=0

_a0+ )251)/

-, I-a, ’ I-a,

0]0

where @, =0y, @, = Z, o Ti%,;» 7y =1, which agrees with Lee et al. (1995).

Remark 6: Letting J — oo, we have lim; By ;(z)=0 and

Ay () 1 - (J 1) o™
lim = lim i
o l—ay I 1-a (l—ao)

N-1

Zaz

+(1 % (J-a” (J—l)(J—Z)aO ey
(-0 1(1-ep)? 21(1-g) hy+h, =2
fky 20
b fythey otk
+ Z aklakz ...aleZ 1+t N ]
ky+ky+-ky_ =N-1
ke -y %0
1 1 N-1 1 N-1
= (— OIkl Zkl —2 Z aklak22k1+k2 +.-
l—0y 1-0p ;5 (1=0)” 1 4ty=2
ki, #0
N-1
X Z akl akz e akAH Zkl+kz +othy )
kg +ey ey =N-1
Kk -y #0
PN E
= ﬂizl’
1-0y i5

where ﬂ Zz 1( ﬂn —i ﬂ(] =1

In this case, QN, ;(2) can be simplified as

Nl
(@)=Y B

+

etk
)X D ooy 2T e

1

(1-o)™!

N-1
N (a(2)-D(D. B2 -1
+

lim QON,J (z)= o(z) & N i=l _a(@)-o i=0
J oo -« 1-¢ 1-¢o -,
a(z) Z
Bz
I-a 5

which agrees with Lee et al. (1994).

From (46), the first moment of Qf ; can be
easily obtained by differentiations, given by
ﬂ,E[V] AE[V] NJ(1)+BNJ(1))
1- o 1— ao

E[Oy ,1=(

(47)

—1].

It is well known that the LST of the busy
period started with one customer in the ordinary

M/G/1 queuing system queue can be expressed

by

B'(6)=S"[0+1-AB"(8)]
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Following the results by Takagi (1991), the
LST of the busy period in the N-policy M/G/1
model with J vacations, denoted by By ;(6), is

given by By ,(8)=0},(B"(9), which
implies the expected length of the busy period
given by
E[X]E[S
EBy 1= S
1-p
AEV]- Ay ;(D+ By (1
XflE[ ] [V]-Ay )+ By ; (1) C@8)
1_0(0 1- 0{0

Remark 7: Letting J — oo, it follows from
Remark 6 that we have

/IE[S]E[V][ 1

E[B =
e

N-1
1+ 8D
i=0

N-1

a;m1%xﬂm

which agrees with Lee ef al. (1994).

4.2 The Expected Length of the Idle

Period and the Busy Cycle

In this section, we will derive the idle period
distribution of the M/G/1 queuing systems, in
which the server applies a N -policy and takes
at most J vacations at the end of each service
period.

Conditioning on the length of the first
vacation and size of arrivals during the first

vacation, we then have the recursive equation:

I"y 6]V =x,N(x)=k)

_ ey 4 (0), if k<N
efr, if k>N.

After unconditioning on % , we get

Iy 6]V =x)

- il*N,j(6|N(X) =k V= x)x
k=0
BN =KV =x)
N-1
—e“l+2%@ﬁﬁme4@
k=0

ko ,—Ax Ax) @
where ¢, (x)= Z#

Now unconditioning on x , we then have

Iy (0= jo“’ Iy 6]V =x)dV (x)

=V O+ d (O j1(8)~11e ™ "V (x)
+§§?“@mwmw4m4www

=V(O)+V O+ D"y ;1(6)-1]
+§Kﬁ@mmdwrwmn (49)

Taking the first differentiation of 1;,,_/ @)
with respect to @, it yields

4
de
= 0@+ e+

Iy ;(6)
L(O)-1]

+ @+ (0)]
N-1

+Y. 60O ©)-1]
k=1 N

N-1
+Y GOy 1 (O)] (50)
k=1

From (50), we can obtain the expected length
of the idle period

1
Elly ;] :E[V]+ZBNJ(1)+LZOJE[1N’J]

+E[V (0ot +++ 0+ Ay, (1)
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B
_1 N,J(l)+ E[V] +
Al-of

EV]dy , (1)

l-o

-«

_ 1 AE[V] N AE[V]A4y ;(D+ By ; (1)

A l-a, - G

1-of

Finally, the expected length of the busy cycle
isE[ly ;]+ E[By ], so from (47) and (50), we
can obtain the expected length of the busy cycle

E[Cy ,1=Elly 1+ E[By ]

1 AE[V] + AE[V 14y ;(D+ By, (1))

CAM-p) 1-g 1-of

(52)

E[B, y]1= PE[By]+ (1= p)E[By.]

_E®)

4.3 The Expected Length of the Busy
Period, the Idle Period and the Busy
Cycle for M/G/1/VAC(J) -
Randomized N Policy Queuing Model
We denote by (Iy,,,By,;) and

(I, -8B, y) theidle and busy periods for the

(N +1) -policy and < p,N >-policy M /G /1

queue respectively. Also, we let (Cy,;,C,, v)

be a busy cycle for the (N +1) -policy and the

< p, N > -policy M/G/1 queue, respectively.

From Feinberg & Kim (1996), using the

property of convex combination and the above

formulas (48), (51)-(52) we have

I-a,

{zE[V][
1-p

El, y1= pEUy ]+ (1= p)E[y ]

1

l + pAN,J (1) +1(1 - f)AN+1’J (1)]+ pBN’J (1) + (1 - p)BN+1,J (1)}, (53)
_ao

1-of

—I{AE[V][I_

E[C, x]1= pE[Cy]+ (1= Pp)E[Cy ]

1

1 +pAN’J(l)"‘(l_f)AN+1,J(1)]+pBN»J(1)+(l_p)BNH’J(D}, (54)
a, -4

1-o

~ 1
CAl-p) {ZE[V][I—%

5. Optimal Policy

In this section, we construct the total
expected cost function per customer per unit
time for the < p, N >-policy M/G/1 queue with
J vacations, in which N and J are decision
variables. Our objective is to determine the
optimum joint values of the decision variables
N and J,say N* and J", so as to minimize
the cost function. Let

. pAy (D +1(1 - f)ANJrl,J (1)]+ pBy ;) +(=p)Byy, (1)} (55)

1-of

C, = holding cost per unit time per customer
present in the system;
C, = cost per unit time for keeping the server
off;
C, = cost per unit time for keeping the server
on and in operation;
C, = setup cost per busy cycle.

Utilizing the definition of each cost element

listed above and its corresponding system
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performances, the total expected cost function +C, E(C—N) (56)

can be formulated as P

E(l, )

E(B, ) Substituting (41), (53), (54) and (55) into
Fy (N = Gyl +C e +C

C,n) " EC,y) (56), we obtain

Fy(N.J) =M, +C,[My  + M, ]

- p

+C s 57

! T oAy, O+ (-p) Ay, pBy, O+ A-pBy,D )
EV] + ¥ 1+ 5
I-a - -

where M, =(C, +Cy)p+C,(1-p),

AR, E(V) 1-a ™ _\_ AEW?) . 1—af™
M,y =2 0 N ne, 1+ 1+ 0 N ne,
(e e e A Ty e e
2 2 I
L AEDESY) | 1= SNl
2(1-p)? 1-a, !
and
R A2E(S*)(N +1-p)
M,y ==—"—[N(N+1-2p)]+ R,.
p.N 2(1_,0)[ ( p)] 2(1_,0)2 0

It is easy to see that A, in (57) is not a function of the decision variables N and J . Hence, for

the determination of the joint optimal thresholds, minimizing (57) is equivalent to minimize

F(N,J)=Cy[M, y+M, \]

1-p
C . 58
o A Lo PO DA, O BT P B O 9

% 1-of 1-of

To find the joint optimum values of (N,J), we should show the existence of convexity or
unimodality of F(N,J). However this is an arduous task to implement because the cost function F
is highly nonlinear. Instead, we will present a procedure that makes it possible to search the joint

optimum values (N*,J").

Let H(N,J)=F(N+1,J)-F(N,J). From (58), we then have

H(N,J)=C,[(M; yy _MJ,N)+(Mp,N+1 _Mp,N)]
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1

E[V] + EV)(pAyy, D)+ = p)Ayn ;D) +(pByyy, D +A=p)Byi,y (D)

-

R VA D+ (1= p) Ay )+ By (D +(=P)Byrs () [

(59)

1-o

1-of

From the definition of the three function M, ., M,, and Ay ,(I) we have the following

corollaries

Corollary 1 M; ., —M, 20, for N =1,2,...

Corollary 2 Mp,NJr1 —ijN >0, forpe[0,1], N=1,2,...

Corollary 3

G (1-pX Z

V] + EV(pAys, D +A=p)Ay.p D)+ (pByyy (D) + (1= p)By,, (1)

1-a,

1-o

1

)=<0,

- E[V] + EVI(pAy D+ A=p)Ay,, D)+ (pBy ;D) +A=p)By,, , (1)

-,

for pe[0,1], N=12,... and J=12,3,...

For a given value of J , the sign of H(N,J)
F(N,J)
decreases with N . We can conclude that for a

determines whether increases or
given value of J, the optimal value N*(J) of
N is given by the first N such that

H(N,J)>0 (see Appendix B). That is

N*(J)=min{N 21| H(N,J)>0}.  (60)
Therefore, we can conclude that for each J ,
F(N,J) has
(N“(J),J").
above, we can locate the minimum value in
F(N*(J),J") to determine the joint optimal
thresholds (N*(J),J7).

A numerical experiment based on (60) can

a local minimum value at
From the concept mentioned

convince us that the expected cost function is
convex. We summarize the procedure to find the
joint optimum values of F(N,J).

1-of

Step 1

Set J=1. Determine N'(J) using (60)
and compute F(N"(J),J) using(58).
Step 2

Compute N (J+1) using (60) and compute
F(N"(J+1),J +1) using (58).

Step 3
If F(N*(J+1),J+1)>F(N*(J),J), STOP.
The joint optimal thresholds

(N*,J")=(N"(J),J). Otherwise, GOTO Step
2.

6. Numerical Computations

We present extensive numerical
computations to study the effect of various
parameters on the optimum joint thresholds of

(N,J). An example (such as the Production-
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To-Stock problem mentioned in Section 2) is
provided to perform the numerical experiments.
It is assumed that production time S of
customer orders and process time V of the
second optional jobs follow 2-stage Erlang
distribution  and

respectively. The

exponential  distribution,

following six parameter
settings are considered below: Case 1. 4=0.6,
E[S] =02, E¥) =10, C,=125 , and
C; =1000, for different values of p. Case 2.
p=05, E(S)=0.1, E(V)=1.0, C, =125, and
C, =500, for different values of 4. Case 3.
p=05, 4=06, E(V)=1.0, C,=125, and
C; =1000, for different service rates (1/ E(S) ).
Case 4. p=0.5, 1=0.6, E(S)=0.2, C, =125,
and C; =1000 , for different vacation rates
(l/E(V)).Case 5. p=0.5, A1=0.6, E(S)=0.2,
E(W)=1, and C,=1000, for different holding
costs. Case 6. p=0.5, A4 =06, E(S)=0.2,
E() =1, and C, =150, for different setup
costs.

The joint optimum thresholds and the
minimum expected cost for the above six
parameter cases are summarized in Tables 1-6,
respectively. From Table 1 we observe that (i)
the minimum expected cost increases as p
increases; and (ii) the optimum N* decreases
as p decreases. As expected, for a larger N,
with a higher probability the production facility
replenishes the inventory level to the
Order-Up-Level. It means that the facility often
replenishes the inventory level due to lower
safe-stock/production-point s=S— N . That is,
the increase of empty slots frequently causes to
replenish the inventory level. In addition, the
optimal value of J is always 5 for various
values of p, this reveals that the value of p
may not affect the optimum J”. This implies

the optimal number of performing optional jobs

is not affected by p .

Table 1 Optimum values of the joint thresholds
(N,J) fordifferent values of p (A4 =0.6,
E(S)=02, E(V)=1.0, C, =125,and

C, =1000)

p N J Fmin
0.00 3 5 190.0871
0.01 3 5 191.2090
0.10 3 5 192.1834
0.20 3 5 193.3425
0.30 3 5 194.5875
0.40 4 5 195.7557
0.50 4 5 195.8685
0.60 4 5 196.0252
0.70 4 5 196.2283
0.80 4 5 196.4808
0.90 4 5 196.7855
1.00 4 5 197.1458

Table 2 shows that (i) the optimum N*
increases with increasing the values of A ; and
(i) the optimum J* increases with decreasing
the values of A. It is seen from Table 3 that (i)
the minimum expected cost increases as service
rate (1/ E(S)) increases; and (ii) the optimum
N*  decreases as service/production rate
decreases. It reveals that a larger production rate
raises empty slots (i.e., reduces safe-stock).
Moreover, J* rarely changes when service rate
changes from 1.0 to 10. Intuitively, J* seems

too insensitive to changes in service rate.

We observe from Table 4 that when vacation
rate (1/E(V)) increases from 1.0 to 6.0, N
increases from 4 to 5, and then decreases from 5

*

to 4 when the vacation rate increases from 6.0 to
10.0. The optimum J* increases with vacation
rate decrease. We can also see that for smaller
vacation rate, it tends to have the smaller
optimum expected cost. It is reasonable that a
larger vacation rate drops the number of

performing optional jobs.
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Table 2 Optimum values of the joint thresholds
(N,J) for different arrival rates ( p=0.5, E(S)=0.1,
EV)=1.0, C, =125and C, =500)

A N J F..
0.01 1 5 45.1405
0.10 1 5 67.9647

1.0 4 5 148.2695
2.0 3 5 164.2802

3.0 4 1 162.0764
4.0 4 1 141.3536

5.0 5 1 123.5126

6.0 5 1 105.8488

Table 3 Optimum values of the joint thresholds
(N,J) for different service rates ( p=0.5, 1=0.6,
E¥)=10, C, =125,and C, =1000)

1

E(S) N J min
1.0 2 5 123.6220
2.0 3 5 169.9983
3.0 3 5 184.9671
4.0 4 5 192.0016
5.0 4 5 195.8685
6.0 4 5 198.4720
7.0 4 5 200.3432
8.0 4 5 201.7526
9.0 4 5 202.8523
10.0 4 5 203.7342

Table 4 Optimum values of the joint thresholds
(N,J) for different vacation rates (p=0.5, 4 =0.6,
E(S)=0.2, C, =125,and C, =1000)

1

E(V) N J min
1.0 4 5 195.8685
2.0 4 5 280.8490
3.0 5 5 330.4531
4.0 5 5 364.5354
5.0 5 5 389.5741
6.0 5 5 408.7918
7.0 4 1 423.3651
8.0 4 1 426.4974
9.0 4 1 428.9745
10.0 4 1 430.9825

Tables 5-6 shows that (i) the minimum
expected cost increases as holding cost (C),) or
setup cost (C;) increases; and (i) N°
increases as C, decreases or C; increases.
This reveals that when the holding cost of
production faculty increases, the empty slots ( N )
created by the customers decreases, which is
equivalent to raise safe-stock. On the other hand,
when the setup cost increases, it presents that the
empty slots (N) created by the customers

increases.

Table 5 Optimum values of the joint thresholds
(N,J) for different holding costs ( p=0.5, 1 =0.6,
E(S)=0.2, E(V)=1.0,and C, =1000)

Holding

N J F..
cost
15 11 5 92.1219
20 10 5 101.9221
25 9 5 110.1240
30 8 5 117.2279
35 7 5 123.8267
60 6 5 150.1092
70 5 5 158.3801
100 4 5 180.4089
150 3 5 208.5086
200 2 5 230.8111

Table 6 Optimum values of the joint thresholds
(N,J) for different setup costs (p=0.5, 1 =0.6,
E(S)=0.2, E(V)=1.0,and C, =150)

Setup

N J Fmin

cost

400 1 5 107.1984
500 2 5 128.2253
800 3 5 180.1987
1000 3 5 208.5086
1500 4 5 270.5865
1800 5 5 304.0408
2200 5 5 345.2048
2600 6 5 384.3374
3600 7 5 473.9419
4600 8 5 555.8513
6000 9 5 660.5020
8000 10 5 796.1423
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It should be noted that J* does not change
at all when C, changes from 15 to 200 or C,
changes from 400 to 10000. The optimum value
J* almost does not change in C, or C,. Our
numerical investigations indicate that (i) A
significantly affects the optimum value N
than p, 1/E(S),and 1/E(V), and (ii) 4 and
1/ E(V) have a much significant effect on the
optimum value J* than p and 1/E(S) do. It
is interesting to mention that C, and C; may
have a much more significant effect on N” than

the other system parameters.

7. Conclusions

In this paper, we analyzed the system size of
the < p,N > -policy M/G/1 queuing system
with at most J wvacations. A cost model is
developed based on some system characteristics
derived. Although the convexity or unimodality
of the cost function cannot be proved
analytically, we present an efficient algorithm to
We also

perform the extensive numerical computations

find the joint optimal thresholds.

to study the effect of system parameters on the
(N",J%) .

presents an extension of the vacation model

optimal thresholds This research
theory and the analysis of the model will provide
a useful performance evaluation tool for more
general  situations

arising in  practical

applications, such as production systems,
flexible manufacturing systems, computer and
communication systems, transportation systems,
inventory problems, and many other related

systems.
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Appendix A

Proof of Equation (31)

Proof. From (13) and (26)-(27) we obtain
AR

Q,(0;2) =—". (A1)

o

Solving the differential equation (8) for j=1

and n=1, if finally yields

fo mlo(x)l V( )d

e/lx
1-V(x)

Q(x)=

/12R0 x(1-V (x)
ao eﬂx
It then follows from (14) that we obtain

Q,,(0)= [ " Qi (@)

2

- [ e av )
0

_ AR, dV (/1)

PR 4 :

0
Using the same manner in the rest cases of
j=23,.,J and n=12,..,N-1
finally summarize that

AR, (A" d"e

weE can

Q. (0)=—=

JJI() %1—]+2 n g

AR
=——=a,,j=23..,/,n=123_,N-1.
a—j+2

0
(A2)

From (A1)-(A2) and (26), it finally yields
AR,

_J’ J:L
Q.(0:2) =
AN A
Bo oMt ng j=230.
J—jy2 e=in=0
%
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Remark A: In proof process of Appendix A,
Q;(x)
formula:
If < y(x)+ p(x)y(x) = g(x), then
Jaeel " ac

O

is solved by using the following

y(x)=

Appendix B
Proof of Equation (60)

Before we come to prove equation (60), we
must assume the following inequalities hold:
M,q-M, 2M, —M,, >0,

for pe[0,1]. (B1)
My =My 2M;, —M;; ;>0 (B2)

Pl ) =4, ;)] +(A=p)[4; , (D=4, D))

Remark B: The definition of M,,, M, and
4, ;(1) convinces us that the assumptions of
(B1)-(B3) are reasonable. One can easily see
that M,,, M,, and 4 ,() are increasing
functions.

Proof. Let H(N,J)=F(N+1J)-F(N,J) ,

then we have

Hk,J)=C\[(M ) jy =My )+ (M, oy =M, )]

G(d1-p)
EW)

1
([ 1, PAg D+ A= p)A, , (1)
l-p 1-of

]

1
P00V,

-

1
i,

For a fixed value of J, the sign of H(k,J)

+p[Bi_ (V=B ;D] +(A=p)[By ;1) =By, (D]

S pldy ;D)= Ay, DA =)A= 4 n, (D]
+p[By (D)= By y D]+ A= pI[Biyy , (D)= By, (D]
<0, for pe[0,1], J =1,2,... (B3)

determines whether F(N,J) is the increasing

or decreasing function of k. Let m be the first
k suchthat H(k,J)>0.Then

H(m,J)= Ch[(MJ,mH _Mj,m)+ (Mp,mﬂ _MP,W!)]

c - 1
G- NPy 0+ (0= Py, O+ (PBy, 0+ (= By )
1-o 1-of
_ 1
BV, B NpA,, (0 (0= P) Ay, () (pB, (0 (- DBy, 1))
l-a 1-of
= CyIM e~ M 1+~ LP) Ly A, ()= Ay O]+ (U= D) Ay (D= Ay (D))
p.m+ p.m AB(l—a({) m, m+1, m+1, m+2,
+p[B,.; (D)= B,y , D]+ = P)[B, 11, ()= B,n, (DI} >0, (B4)
where

A

1- ¢, 1-oq

_E] +(E[V]<pAmH,J W +A=P) A2y ) (Bt D+ 1= P)Bisy (1»]
-
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B_

E[V] EV1(pA, D)+ (1= p)A,. 1) N (pB,;()+(1-p)B, 1)

1o 1-of

l-o

From (B1)-(B4), we recognize that F(n,J)> F(m,J) for n>m. It finally yields
N™(J) = the first k such that H(k,J) > 0=min{N >1| H(N,J) > 0}.
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