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Student: Yih-Shen Chen Advisor: Chung-Ju Chang

Institute of Communication Engineering

National Chiao Tung University
Abstract

To support bursty-transmission and heterogeneous quality of services (QoS) requirements
for multimedia services, a well-designed sophisticated radio resource allocation scheme is
required to effectively enhance the system utilization. Research has shown that the non-
stationarity of work-loads, together with heterogeneous traffic characteristics and QoS con-
straints of multimedia services, constitute the necessity for applying intelligent techniques
in future mobile multimedia networks. In this dissertation, the radio resource allocation
schemes by using neural/fuzzy techniques for mobile communication networks are studied.

Firstly, the radio resource allocation scheme for TDMA-based mobile communication
networks is investigated. The adaptive-network-based fuzzy inference system (ANFIS) is
applied to propose a fuzzy resource allocation controller (FRAC). The FRAC is designed in
a two-layer architecture and properly selects the capacity requirement of new call request, the
capacity reservation for future handoffs, and the air interface performance as input linguistic
variables. Therefore, the statistical multiplexing gain of mobile multimedia networks can
be maximized in FRAC. Simulation results indicate that FRAC can keep the handoff call
blocking rate low without jeopardizing the new call blocking rate. Also, compared to the

conventional schemes, FRAC can indeed guarantee QoS contracts and achieve higher system

i



performance.

And then, the multi-rate transmission control scheme for WCDMA communication sys-
tems is studied. The multi-rate transmission control problem is modelled as a Markov deci-
sion process (MDP), where the transmission cost is defined in terms of the QoS parameters
for enhancing spectrum utilization subject to QoS constraints. The ()-learning reinforcement
algorithm is adopted to accurately estimate the transmission cost and propose a Q-learning-
based multi-rate transmission control (Q-MRTC) scheme. In the meanwhile, The feature
extraction method and RBFN network are successfully employed for the @-function ap-
proximation. The state space and memory storage requirement are then reduced, and the
convergence property of ()-learning algorithm is improved. Simulation results show that, for
a multimedia WCDMA system, the Q-MRTC can achieve higher system throughput and
better users’ satisfaction while the QoS requirements are guaranteed.

Finally, the data access control scheme for multi-cell WCDMA systems is investigated.
By using fuzzy Q-learning technique, a novel situation-aware data access manager (FQ-
SDAM) is proposed. The FQ-SDAM contains a fuzzy Q-learning-based residual capacity
estimator (FQ-RCE) and a data rate scheduler (DRS). The FQ-RCE can accurately esti-
mate the situation-dependent residual system capacity; it appropriately chooses the received
interferences from home-cell and adjacent-cell as input linguistic variables and simplifies the
multi-cell environment into a single-cell one by applying a perceptual coordination mech-
anism. Also, the DRS can effectively allocate the resource for non-real-time terminals by
adopting a modified exponential rule which takes the interference influence on adjacent cells
into consideration. Simulation results show that the FQ-SDAM can effectively reduce the
packet error probability and improve aggregate throughput of the non-real-time services in

both the homogeneous and non-homogeneous multi-cell WCDMA environment.
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Chapter 1

Introduction

1.1 Motivation

Over the past decades, the development of wireless communication has been astonishing. So
is the evolution of the service provisioning in the field of wireless communication. We are now
witnessing the transition from the era of mobile telephone to the era of mobile multimedia.
With the breakthrough of advanced digital signal processing and antenna technologies, many
transmission problems associated with the error-prone and time-varying propagation con-
ditions in wireless communication have been solved. High-bursty and high-volume services
over mobile communication networks are no longer scientifically fictional, but real.

In the early '80s, the first generation mobile communication system such as AMPS and
NMT using analog transmission techniques were introduced, where FDMA (frequency di-
vision multiple access) technique was applied to support multiple access for common radio
bandwidth. For FDMA, all the available radio bandwidths are partitioned into a set of
channels, and a channel pair is assigned to a communication pair for carrying the voice-only
services. With the emergence of digital transmission, the second generation mobile com-
munication systems were introduced in the late 1980s, such as: Global System for Mobile

Communications (GSM), Personal Digital Cellular (PDC), IS-95, and [S-136. These sys-



tems adopted digital multiple access techniques, TDMA (time division multiple access) and
CDMA (code division multiple access), to increase the spectrum efficiency and the system
capacity is largely enhanced. The TDMA technique divides a frame into several slots, where
each specific time slot in a frame performs a channel similar to a FDMA channel; on the
other hand, the CDMA technology constructs all channels in a common frequency spectrum
where each channel has its own unique binary spreading code to identify itself instead of the
specific frequency and the time slot.

Circuit-switching and fixed-rate services are the mainstream of mobile services in the first
and second generation systems. It is believed that the vision of future telecommunication is
“information at any time, at any place, in any form”. The traffic characteristics of future
mobile services will be much different from those of the traditional mobile services, among
which are high-burstiness, variable-rate transmission, and high mobility. Therefore, in the
coming new era, advanced radio access techniques and sophisticated radio resource manage-
ment (RRM) strategies are necessary for future wireless communication systems to support
multimedia services.

Advanced TDMA systems, such as: GPRS, adopt packet-switching and multi-slot capa-
bility to support dynamic allocation of radio resources for wireless data services. Meanwhile,
the third generation WCDMA system introduces variable-length spreading code and other
digital processing techniques to provides four types of UMTS service classes [32]: service
class A (low-delay data), class B (low-delay data), class C (long-constrained-delay data),
and class D (unconstrained-delay data). These service classes have taken the characteristics
of multimedia services, such as delay requirement, error rate requirement, variable trans-
mission rate, asymmetry data rate, and so on, into consideration. New radio access tech-
niques, in either the GPRS or the WCDMA system, indeed free up some limitation of service

provisioning. However, to support bursty-transmission and heterogeneous QoS (Quality-of-



Service) requirements for multimedia services, a well-designed sophisticated RRM technique
is required to effectively enhance the system utilization.

Among many RRM techniques, the dissertation concentrates on the studies of radio re-
source allocation (RRA) schemes for TDMA and CDMA-based systems. Generally speaking,
the main goal of a radio resource allocation scheme is to adequately allocate system resource
to mobile terminals according to their service profiles and QoS requirements. For a TDMA
system, a RRA scheme performs the functionality of admission control to decide the accep-
tance or rejection of new/handoff calls. For a CDMA system, considering the time-scale of
traffic management and the characteristics of packet-switching mobile multimedia services,
the RRA schemes may be further categorized into two kinds: multi-rate transmission con-
trol (MRTC) scheme and data access control (DAC) scheme. The MRTC scheme for CDMA
systems is performed on longer time scale (ex: second or minute), which allocates power and
transmission rate to call/burst connection requests and ensures that the system will not be
overloaded, based on the long-term availability of radio resources. On the other hand, the
DAC scheme is performed on the shorter time scale (e.g.: frame time), which provides bursty
transmission permission for non-real-time services, based on the short-term availability of
radio resources.

The RRA problems can be mathematically modelled as credit assignment problems
(CAP). That is, maximizing system utilization (revenue) while meeting QoS constraints
suggests a constrained Markov decision process (MDP) or semi-Markov decision process
(SMDP). These methodologies have been successfully applied to solve many network con-
trol problems; however, a large state space is required for the modelling. Consequently, the
numerical computation is intractable due to the curse of dimensionality. For the TDMA
system, the overall system capacity is bounded by the maximum number of available chan-

nels (time slots); on the other hand, for the CDMA system, the overall system capacity is



interference-limited and there is no absolute number of available channels. A continuous
state space is necessary for the MDP or SMDP methodologies. Another obstacle to ap-
ply the mathematical methodologies is a priori knowledge of state transition probabilities,
which is hard to obtain in advance. Alternatively, some researchers turn to apply intelligent
techniques to deal with the RRA problems.

Intelligent techniques, such as neural networks and fuzzy logic systems, have been applied
to deal with some resource allocation related problems. Recent research results have proven
that these intelligent computations are capable of producing better results than parametric
models or other conventional algorithmic approaches when applied to dynamic, non-linear
complex systems. Researches have also shown that the non-stationarity of work-loads, to-
gether with heterogeneous traffic characteristics and QoS constraints of multimedia services,
constitute the necessity for applying intelligent techniques in future mobile multimedia net-
works. Henceforth, in this dissertation, it is motivated to exploit the merits of intelligent

techniques applying to radio resource allocation schemes for mobile communication networks.

1.2 Paper Survey

A mobile communication network, for the purpose of frequency reuse, is typically organized
in geographic regions, called cells. When a user moves from one cell to another, the base
station in the target cell must take the responsibility for communicating with the user.
The call will be forced to be terminated if no channel is available, which is called handoff
blocking. Usually, the handoff blocking rate should be kept at an acceptable level in the
mobile networks. Therefore, the RRA schemes in the TDMA systems must be sophisticated
enough to take the QoS (Quality of Service) requirements of service, such as handoff blocking
rate, into consideration, while keeping the new call blocking rate low.

Generally speaking, the RRA schemes performing the functionality of admission control



for TDMA systems can be categorized into two kinds: fixed guard channel scheme [1]-
[3] and dynamic resource allocation scheme [4]-[7]. In the fixed guard channel schemes,
some channels are reserved for handoff call requests, while remaining channels are shared
by the new and handoff calls. Whenever the channel occupancy exceeds the guard channel
threshold, new call requests will be rejected. With an appropriate setting of the threshold, the
fixed-threshold guard channel schemes can indeed reduce the handoft blocking probability
without jeopardizing the new call blocking probability. However, these schemes are not
able to adapt to nonstationary loading condition which is a more realistic environment for
future mobile services. Alternatively, dynamic resource allocation methods were proposed to
reserve an adequate number of channels for handoff call requests. Naghshineh and Schwartz
[4] developed a call admission control scheme that took into account the projected future
handoff call blocking probabilities in the originating and neighboring cells. The handoff
call blocking probabilities were kept at a target objective by blocking the new call requests
even if the capacity was currently available to serve these new call requests. For a more
realistic network model, Yu and Leung [5] developed another call admission control scheme
by estimating the instantaneous handoff call arrival rate and made the guard channel number
adaptation for handoff call requests. Unfortunately, only single traffic type is considered in
the above-mentioned dynamic schemes.

To deal with heterogeneous traffic types with diverse resource requirements, Ramanathan
et al. [7] proposed a novel dynamic scheme called FrpectedMaz strategy . In this scheme,
when a new call request occurs, the expected cell residence time of the new call and the
expected maximum additional resources reserved for all possible handoff calls during the
time interval are estimated firstly. If the estimated maximum additional resources plus
the new call requested resource are less than the available resources, the new call will be

accepted. The simulation result showed that FrpectedMaz strategy can achieve lower handoff



blocking probability than the fixed guard channel scheme and the scheme proposed in [5].
To calculate the resource requirement of a call request, the ErpectedMax strategy employed
the "effective bandwidth” method which had been widely applied to the resource allocation
and call admission control in the ATM network [9], [10]. However, under dynamic non-
stationary loading conditions, the effective bandwidth is difficult to exactly capture the
complete statistics of the multimedia traffic [10], [14]. The spectrum efficiency would be
low consequently. Therefore, in Chapter 2, a radio resource allocation scheme is proposed
by using adaptive-network-based fuzzy control technique (ANFIS) for the dynamic radio
resource allocation in mobile multimedia network.

As above-mentioned, the RRA schemes for the WCDMA systems supporting multimedia
services are more complicated and can be categorized into MRTC schemes for long time scale
and DAC schemes for short time scale. Choi and Shin [26] proposed an uplink CDMA system
architecture to provide diverse QoS guarantees for heterogeneous traffic. They theoretically
derived the admission region of real-time connections, transmission power allocation, and
the optimum target signal-to-interference ratio of non-real-time traffic so as to maximize the
system throughput and satisfy the predefined QoS of heterogeneous traffic.

The main difficulty for RRA schemes in WCDMA system is due to the nature of the
interference-limited capacity. Multiple access interference (MAI) largely affects the sys-
tem capacity, which is a function of the number of active users, users’ location, channel
impairments, and heterogeneous QoS requirements. Many researches for CDMA capacity
estimation are based on MATI and other considerations [27]-[30]. Haméalainen and Valkealahti
[29] proposed an MALI estimation method to facilitate load control, admission control, and
packet scheduling. Based on the MAT estimation methods, Many interference-based access
control schemes for the WCDMA systems were proposed to exploit the merit of soft capacity

[31]-[33]. Instead of a fixed system capacity, this interference-based scheme can adaptively



assign a channel according to the actual system capacity dependent of interference such that
the system utilization and the grade of service can be improved. Shin, Cho, and Sung [31]
proposed an interference-based channel assignment scheme for DS-CDMA cellular systems.
A channel is assigned if the interference is less than an allowed level which is determined
by the network, subject to the QoS constraints. In [32], Dimitriou and Tafazolli developed
a mathematical model to determine the outage limits of a multiple-service CDMA system
and to achieve the maximum aggregated capacity for different system parameters. Phan-
Van and Luong [33] proposed a soft-decision call admission control scheme (SCAC), where
the upper bound and the lower bound of the interference-limited WCDMA system capacity
are derived. In the SCAC, the new call request obtains an admission grant according to a
predefined probability function when the system operates between the upper bound and the
lower bound of the system capacity.

As noted, the RRA schemes considering QQoS constraints can be modelled as constrained
Markov decision processes (MDP) [38] or semi-Markov decision processes (SMDP) [34], [35].
However, the computation complexity and the curse of dimensionality are key bottlenecks
for applying this methodologies to more realistic network environments. Alternatively, many
researchers turned to apply the reinforcement learning (RL) algorithms to solve the problems
[36]-[39]. The most obvious advantage of RL algorithm is that, without a priori knowledge
of state transition probabilities, it could approach an optimal solution from the on-line op-
eration if the RL algorithm is converged. Therefore, in Chapter 4, the system interference
profile is chosen as the system state, the service profile of a new call as event, and the
multi-rate assignment as the action, to describe the MDP problem for the multi-rate con-
trol in the WCDMA system. A RL technique, called @-learning, is applied to propose a
Q-learning-based multi-rate transmission control (Q-MRTC) scheme. Also, the feature ex-

traction method and RBFN (radial basis function network) neural network are employed to



reduce the system state space and to improve the property of convergence.

Based on the research results in Chapter 4, a DAC scheme is further proposed to exploit
the nature of intermittent transmission of data services in the WCDMA systems. Mostly,
a DAC scheme is considered to operate in the multi-cell WCDMA environment. The main
purpose of the DAC scheme in WCDMA systems supporting integrated services is to maxi-
mize the throughput of non-real-time services while maintaining the transmission quality of
real-time services [48]-[51]. To achieve this goal, dynamic access probability schemes [48]-
[50] and a base station-controlled scheduling scheme [51] were proposed, where the residual
system capacity for non-real-time services was firstly estimated and then shared to non-
real-time terminals. A single-cell environment was considered in [48]-[50], while a multi-cell
environment was studied in [51]. In the multi-cell scheme [51], the interference generated
from other-cell terminals was treated as if from several home-cell ones, and consequently
the multi-cell environment was regarded as a single-cell one. However, the mutual-affected
behavior of radio resource allocation in the multi-cell environment was still not considered.
Without taking the interference influence from adjacent cells into account, the operation of
the WCDMA system then would trap into an overloading condition.

The over-loading phenomenon could be alleviated by an appropriate centralized coordi-
nation scheme among cells [52]. However, the data access control scheme operates in the
short-term time scale, e.¢g. frame time, which makes a distributed one preferable. Kumar
and Nanda [53] proposed a distributed scheme called load and interference-based demand
assignment (LIDA). The LIDA is a kind of resource reservation-based scheme in which some
portions of resource in each cell are reserved against the interference variation. Also, it em-
ploys the concept of burst admission threshold for high-rate transmission in a cell to avoid
excess interference to adjacent cells .

Additionally, a rate scheduling scheme is also embedded in the data access control scheme



to allocate the residual capacities for non-real-time terminals according to a service principle
[54] [55] [56]. To avoid the starvation phenomenon occurred in [54], Jalali, Padovani, and
Pankai proposed a proportional fairness criterion [55] for a down link scheduling scheme in
a CDMA-HDR (high data rate) system. In the scheme, a utility function was defined as a
ratio of the supported data rate and the average data rate, where the supported data rate
was determined by channel condition and the average data rate was the window average of
the transmitted throughput. Unfortunately,this algorithm may lead to large transmission
delay for some terminals. Alternatively, Shakkottai and Stolyar proposed an exponential
rule criterion [56] for the utility function of the scheme to make a good balance between
the system throughput and the transmission delay. However, applying the exponential rule
to the uplink transmission should have taken the location factor into consideration such
that the adjacent cell interference could be maintained to a sustained level. Therefore, in
Chapter 4, a novel situation-aware data access manager is proposed by using fuzzy Q-learning
technique (FQ-SDAM) for the multi-cell WCDMA systems. The FQ-SDAM contains a fuzzy
Q-learning-based residual capacity estimator (FQ-RCE) and a data rate scheduler(DRS): the
FQ-RCE can accurately estimate the situation-dependent residual system capacity and the
DRS can effectively allocate the resource for non-real-time terminals by adopting a modified
exponential rule.

In the past decade, intelligent techniques, such as fuzzy logic control systems and neural
networks, have replaced conventional technologies in many scientific applications and engi-
neering systems including the network control systems. They can provide decision-support
and expert systems with powerful reasoning capabilities bound by a minimum of rules. The
major feature of the fuzzy logic is its ability to express the amount of ambiguity in human
thinking and subjectivity in a comparatively undistorted manner. On the other hand, neu-

ral networks are a new generation of information processing systems that are constructed to



utilize some of the organizational principles which characterize the human brain. They are
able to learn arbitrary nonlinear input/output mapping directly from training data, sensi-
bly interpolate input patterns that are new to the network, and automatically adjust their
connection weights to optimize system behaviors [16]. Both fuzzy systems and neural net-
works are numerical model-free estimators and dynamical systems; they are the intelligent
techniques that can improve systems working in uncertain and nonstationary environments.
Among many intelligent techniques, the ANFIS, Q-leaning and fuzzy QQ-learning are adopted

in the works.

1.3 Dissertation Organization

In this dissertation, the radio resource allocation schemes for mobile communication networks
by neural/fuzzy techniques are studied. The mobile communication networks which employ
TDMA and CDMA in the common air interface are considered. Also, the RRA schemes for
long-term and short-term time scales are both studied.

In Chapter 2, the basic concepts of fuzzy systems, neural networks, and integrated neural
fuzzy systems are briefly reviewed. The various inference models of fuzzy systems, the
learning rules of neural networks, and the benefits of integrated neural fuzzy systems are
discussed. Also, their application to the mobile communication network are given.

In Chapter 3, the Sugeno fuzzy model is applied to design fuzzy resource allocation
controller (FRAC) for wireless communication systems. Among many fuzzy logic system
models, the Sugeno fuzzy model is the most widely applied one for its high interpretability
[17], [20], which provides a systematic approach to generating fuzzy rule from a given input-
output data set. The FRAC is designed in a two-layer architecture and properly selects the
capacity requirement of new call request, the capacity reservation for future handoffs, and

the air interface performance as input linguistic variables.
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In Chapter 4, a multi-rate transmission control scheme by Q-learning technique (Q-
MRTC) for the multimedia WCDMA systems is proposed to maximize the system utilization
and fulfill the users’ satisfaction, subject to QoS requirements of packet error probability
and packet transmission delay. An evaluation function is defined to appraise the cumulative
cost of the consecutive decisions for the Q-MRTC. Without knowing the state transition
behavior, the evaluation function is calculated by a real-time RL technique, Q-learning [40].
Also, for the Q-function approximation, a feature extraction method and a RBFN neural
network are employed in the Q-MRTC. The feature extraction method maps the state space
of the Q-function into a more compact set; the RBFN neural network performs the function
approximation for the () function.

In Chapter 5, a novel situation-aware data access manager using fuzzy QQ-learning tech-
nique (FQ-SDAM) is proposed for multi-cell WCDMA systems. The FQ-SDAM contains
a fuzzy Q-learning-based residual capacity estimator (FQ-RCE) and a data rate scheduler
(DRS). The fuzzy Q-learning (FQL) [60] is a reinforcement learning technique applying to
FIS. The FQL technique combines the benefits of FIS and reinforcement learning. By ap-
plying the FQL technique, the radio resource, therefore, can be managed under partial,
uncertain information, and the optimal resource management can be reached in an incre-
mental way. In the FQ-SDAM, the FQ-RCE can accurately estimate the situation-dependent
residual system capacity and the DRS can effectively allocate the resource for non-real-time
terminals by adopting a modified exponential rule.

Finally, concluding remarks and future research topics are addressed in Chapter 6.
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Chapter 2

An Overview of Neural /Fuzzy
Techniques

In this chapter, the basic concepts of fuzzy systems, neural networks, and
integrated neural fuzzy systems are briefly reviewed. Fuzzy systems and neural
networks are both numerical model-free estimators and dynamical systems,
which have the capability of modelling complex nonlinear processes to arbitrary
degrees of accuracy. Also, the integrated neural fuzzy systems are combining
fuzzy systems and neural networks into a functional system to overcome their
individual weaknesses; that is, neural networks provide fuzzy systems with
learning abilities and fuzzy systems provide neural networks with structural

reasoning.
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2.1 Introduction

In light of the recent developments of mobile communication networks, future telecommu-
nication networks will consists of heterogeneous access networks and comprise of content-rich
services with heterogeneous service characteristics and QoS requirements. Thus, the future
mobile communication networks will be highly dynamic communication environments, which
require comprehensive and real-time RRM techniques. Traditional modelling and computa-
tion techniques are not well-suited to fulfill the requirements of future mobile communication
networks. On the other hand, intelligent techniques, such as fuzzy logic systems and neural
networks, have attracted the numerous interests in various scientific and engineering areas.
These intelligent techniques have the capabilities of soft-computing and adaptation, which
are more flexible for network designers to cope with the network control problems. In this
chapter, the concept of fuzzy, neural network and integrated neural fuzzy techniques will be
briefly introduced.

Both fuzzy and neural network are mimicked the behaviors of human brain: fuzzy logic
operates on the way the brain deals with vague information and neural networks are modelled
according to the physical architecture of the brain [16]. There are a number of parallels that
point out their similarities. Fuzzy systems and neural networks are both numerical model-
free estimators and dynamical systems. Also, they have been shown to have the capability
of modelling complex nonlinear processes to arbitrary degrees of accuracy. Although the two
intelligent techniques are somewhat similar, some significant differences do exist. Fuzzy sys-
tems employ fuzzy if-then rules as a kind of expert knowledge to formalize insights about the
structure of categories founding the real world. Fuzzy systems combine fuzzy sets with fuzzy
rules to produce overall complex nonlinear behavior. On the other hand, neural networks
are dynamical systems and are adaptively fitting the behavior of the real-world through

various their connectionist structures and learning techniques. Neural networks have a large
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number of highly interconnected processing elements (nodes) which demonstrate the ability
to learn and generalize from training patterns or data; these simple processing elements also
collectively produce complex nonlinear behavior.

Alternatively, a recent surge of interests of intelligent techniques is to merge or combine
fuzzy systems and neural networks into a functional system to overcome their individual
weaknesses. This innovative concept of integration reaps the benefits of both fuzzy systems
and neural networks. That is, neural networks provide fuzzy systems with learning abilities,
and fuzzy systems provide neural networks with a structural framework with high-level fuzzy
if-then rule thinking and reasoning. Consequently, the two technologies can complement each
other.

The rest of this chapter is organized as follows. The concept of fuzzy inference system
(FIS) and three popular architectures of FIS are stated in section 2.2. The learning mecha-
nisms of neural networks are presented in section 2.3. In section 2.4, the concept of integrated

neural fuzzy system is described. Finally, the concluding remarks are given in section 2.5.

2.2 Fuzzy Inference System (FIS)

The fuzzy inference system (FIS) is a popular computing framework based on the concept
of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. As shown in Fig. 2.1, a fuzzy
inference system consists of four fundamental blocks: fuzzifier, fuzzy rule base, inference
engine, and defuzzifier. The fuzzifier performs a mapping function from observed input z;
to a fuzzy set T'(x;) with degree M(x;), © = 1,...,m. The fuzzy rule base is a knowledge
base characterized by a set of linguistic statements in a form of 7if-then” rules that describe
a fuzzy logic relationship between the m-dim input {x;} and the n-dim output {y;}. The
inference engine performs an implication function according to the pre-condition of the fuzzy

rule with the input linguistic terms. It is a decision-making logic that acquires the input
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Figure 2.1: The basic structure of fuzzy inference system

linguistic terms of T'(x;) from the fuzzifier and uses an inference method to obtain the output
linguistic terms of T'(y;). The defuzzifier adopts a defuzzification function to convert T'(y;)
into a non-fuzzy (crisp) value that represents the decision y;. Among literatures, there are
three popular fuzzy models: Mamdani fuzzy model, Tsukamoto fuzzy model, and Sugeno
fuzzy model [20]. The brief descriptions of the three fuzzy models are given in the following

subsections.

2.2.1 Mamdani fuzzy model

Mamdani fuzzy model was proposed as the first attempt to control a system by a set
of linguistic control rules obtained from experienced human knowledge. Fig. 2.2 shows an
example of Mamdani fuzzy model, where the overall output Z is derived from two linguistic
variables X and Y. Here, the fuzzy rule is expressed by

if X is A; and Y is B;, then output 7 is C; with u(C;).  i=1 and 2
In the Mamdani model, each input linguistic variable is firstly fuzzified by the membership
function p(-). Then, the inferred value of the output of each fuzzy rule is determined by a
pre-defined inference method. In this example, the min-max method is applied. That is, the
inferred value of each fuzzy rule is obtained by min operator and the inferred value of the
same fuzzy term is obtained by max operator. Finally, the overall crisp output is derived
by a pre-defined defuzzification method. There are five defuzzification methods: centroid

of area (COA), bisector of area (BOA), mean of maximum (MOM), smallest of maximum
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Figure 2.2: An example of Mamdani fuzzy model
(SOM), and largest of maximum (LOM), among which COA is the most popular one.

2.2.2 Tsukamoto fuzzy model

Tsukamoto fuzzy model is a special case of Mamdani model. In the Tsukamoto fuzzy
model, the consequence part of the if-then fuzzy rule is represented by a fuzzy set with
monotonic membership function, as shown in Fig. 2.3. Therefore, the inferred output of
each fuzzy rule is defined as a crisp value obtained by the rule’s firing strength. The overall
output is calculated by weighting average method. It can be seen from Fig. 2.3, the final value
of output Z is the weighting average of two fuzzy terms Z; and Z5. The most obvious benefit
of Tsukamoto fuzzy model is its simplicity of defuzzification. Since the output of each fuzzy
rule is a crisp value, the time-consuming defuzzification process can be avoided. However,
the Tsukamoto model lacks the transparency of the rule interpretation. The Tsukamoto

fuzzy model is a good candidate of FIS only when the monotonic membership function is
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applicable.

2.2.3 Sugeno fuzzy model

Sugeno fuzzy model was proposed by Takagi, Sugeno,and Kang [17]. The main idea of Sugeno
fuzzy model is to provide a transparent interpretation of the fuzzy rule and a systematic
approach to build up the fuzzy rule base. A typical fuzzy rule in Sugeno model is expressed
by
if V, is A; and V, is B;, then output 7 = f(V,,V,),

where V,, and V, are input linguistic variables, A and B are fuzzy terms, and the consequent
part Z is a function of V, and V,. Obviously, the output Z is a crisp function. Also,
the function f(V,,V,) is usually in a polynomial form. However, the function can be any
function as long as it can exactly represent the fuzzy relationship. The two most commonly

used Sugeno model are zero-order Sugeno fuzzy model and first-order Sugeno fuzzy model.
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Figure 2.4: The basic concept of Sugeno fuzzy model

For the zero-order Sugeno fuzzy model, the consequent part 7 is a fuzzy singleton, which
can be viewed as a special case of Mamdani fuzzy model or Tsukamoto fuzzy model. For
the first-order Sugeno fuzzy model, the consequent part Z is a linear combination of input
linguistic variables. Fig. 2.4 shows an example of Sugeno fuzzy model with single input
linguistic variable X. From the figure, it can be seen that the output Y is a linear function
of X. The defuzzification method of Sugeno fuzzy model is weighting sum method.

Among the three fuzzy models, the Sugeno fuzzy model is the most widely applied one
due to its transparency and high-interpretation. Therefore, in this dissertation, the Sugeno

fuzzy model is applied in the design of RRA schemes for the mobile communication networks.

2.3 Neural Network

The building blocks of neural network consists of connectionist structures and learning

rules [16]. The connectionist structures are applied to mimic how the human brain works

18



Connectionist Neurons

Traning Signal
Z
| Generator

Figure 2.5: The basic structure of neural network

while the learning rules are applied to adaptively modify the behavior of the neural networks
through past experience. Fig. 2.5 shows the basic concept of neural network. In the figure,
X is the input signal, Y is the actual output, Z is the reference signal, and M is the training
signal. The connectionist neurons block computes the output signal Y for input signal X
and then the training signal generator block will generate a training signal according to a
specified learning rules. The training signal is used to update the weighting of the nodes in
the neural networks.

Generally speaking, the learning rules can be classified into three kinds of categories:
supervised learning, reinforcement learning, and unsupervised learning. For different learning
rules, there are different sets of Z and M. In the following, the main concepts of three learning

rules are briefly described.

2.3.1 Supervised Learning

In supervised learning, each input signal X has its own desired output D. Here, the reference
signal Z is equal to desired output D. When the actual output Y is different from reference

signal Z, an error occurs. Then, the training signal will be generated to adjust the weighting
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of the nodes in the neural network such that the actual output will approach the reference
signal. Therefore, the supervised learning can be considered as a input/output mapping

machine or a function approximation tool.

2.3.2 Reinforcement Learning

In the reinforcement learning, there is no desired output, only a reinforcement signal R.
The reinforcement signal is an evaluation value of the actual output Y. For example, in
the control problems, the reinforcement signal may be "good” or “bad”. Here, the reference
signal Z is equal to reinforcement signal R. Using the reinforcement signal R, a training
signal is generated to update the weighting such that the actual output will achieve a better
evaluation value in the future. Therefore, the reinforcement learning is learning with «
teacher. Using the reinforcement learning, the neural network acts as a controller to make

the system work better according to a pre-defined evaluation function.

2.3.3 Unsupervised Learning

Unlike the previous two learning rules, there is no feedback information from the environment
in the unsupervised learning. Neither the desired output or reinforcement signal are available.
Instead, the training signal is generated from actual output Y and the internal weighting
of the neural network. The training signal here is used to increase the weighings of the
nodes that connect to the actual output. That is, the correlation between the chosen input
nodes and output data will be enhanced. In the unsupervised learning, the neural network
discovers its patterns and the correlation through experiments, which is called self-organizing.
Therefore, the unsupervised learning are usually applied to deal with the classification or

clustering problems.
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2.4 Integrated Neural Fuzzy Technique

In the field of intelligent techniques, the fuzzy system and neural network are comple-
mentary techniques. Fuzzy systems provide a high-interpretable reasoning for the collected
data, but the design of the fuzzy rules and the membership functions are not easy tasks
which require much domain knowledge. Neural networks, on the other hand, are effective
and efficient computing architectures or algorithms with self-learning capability, but the con-
nectivity of hidden nodes of the neural network are somewhat like grey boxes. Thus, it is
a promising approach to merge and integrate them into a single system. The integration of
the two techniques can be classified into two categories: neuro-fuzzy system and fuzzy neural
system.

The basic concept of a neuro-fuzzy system is to use the neural network as tool in a fuzzy
model. The neuro-fuzzy systems can provide the self-learning (automatic tuning) capability
for the fuzzy systems. In this approach, the system is firstly designed as a fuzzy inference
system based on designers’ domain knowledge. Then, via numerous experiments, the fuzzy
rules and membership functions are tuned by the neural network. The whole design process
would be simplified and the development time would be reduced consequently.

In Chapter 3, a kind of neuro-fuzzy technique, called adaptive-network-based fuzzy in-
ference system (ANFIS) [18], is applied to deal with the radio resource allocation (RRA)
problem in TDMA systems. Since the TDMA systems are the mainstreams of current mo-
bile communication networks, much domain knowledge and experience are available to build
up the basic structure of ANFIS-based controller. The values of the membership functions
are then adaptively tuned while the ANIFS-based controller is applied to the dynamic TDMA
environment. As to the detail of the ANFIS and its application, please refer Chapter 3.

The basic concept of a fuzzy neural system is to fuzzify the conventional neural network

models. In the fuzzy neural system, the basic properties and node connectivity of neural
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network are retained, but the operations and activation functions of the nodes are fuzzified.
In this approach, a network’s domain knowledge becomes formalized in terms of fuzzy sets,
later being applied to enhance the learning of the network in such a way that it learns the
mapping between input-output fuzzy sets. Generally speaking, the benefits of the fuzzy neu-
ral systems are three-folded: firstly, the input nodes are continuous-valued by fuzzification;
secondly, the domain knowledge is applied; and thirdly, some degree of uncertainty of the
collected data is allowed.

In Chapter 5, a kind of fuzzy neural technique, fuzzy Q-learning (FQL) [60] is applied to
deal with the RRA problems in multi-cell WCDMA systems. Since some of the input data
are obtained by observation in the multi-cell WCDMA environments, these collected data
are vague and partial. By applied the FQL technique, the input data are fuzzified into fuzzy
terms and then choose corresponding operation according to domain knowledge. Also, with
the capability of learning, the FQL-based RRA scheme can approach an optimal decision
policy through experiments. As to the detail of the FQL and its application, please refer to
Chapter 5.

2.5 Concluding Remarks

This chapter provides a fundamental overview of the neural /fuzzy techniques, including
fuzzy systems, neural networks, and integrated neural fuzzy systems. Both the fuzzy systems
and neural networks are mimicked the behaviors of human brains, where the neural network
processes the low-level data clustering, classification, and mapping and the fuzzy system
processes the high-level reasoning of the input data. The fuzzy systems and neural networks
are complementary techniques. It would be beneficial to integrate the two techniques, which
contributes to the rising of the integrated neural fuzzy systems.

In the mobile communication networks, the network operations and performance statistics
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are chronically collected and stored. These data provide insight and meaningful information
for the RRA schemes. However, with the emerging of future content-rich services, the op-
eration of the mobile communication networks tend to be more dynamic and some service
scenario may be far beyond imagination. It is almost impossible to design a comprehensive
RRA schemes in advance. Therefore, the integrated neural fuzzy systems are promising ap-
proaches for the radio resource allocation schemes because, by the integrated neural fuzzy
systems, the fuzzy system extracts the basic operation rules from the past records and the
neural network adaptively modifies the operation rules of RRA schemes according to the
network dynamics. In the following three chapters, the integrated neural fuzzy systems,
such as ANFIS and FQL, are applied to design sophisticated RRA schemes for TDMA and

WCDMA systems, respectively.
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Chapter 3

A Radio Resource Allocation Scheme
Using Adaptive-Network-Based Fuzzy
Control Technique for Mobile
Multimedia Networks

Sophisticated and robust resource management is an essential issue for fu-
ture mobile multimedia networks. In this chapter, an adaptive-network-based
fuzzy inference system (ANFIS) is applied to control the radio resource allo-
cation for mobile multimedia networks. ANFIS, possessing the advantages of
fuzzy logic system and neural networks, can provide a systematic approach to
find appropriate parameters for the Sugeno fuzzy model. The fuzzy resource
allocation controller (FRAC) is designed in a two-layer architecture and prop-
erly selects the capacity requirement of new call request, the capacity reserva-
tion for future handoffs, and the air interface performance as input linguistic
variables. Therefore, the statistical multiplexing gain of mobile multimedia
networks can be mazimized in FRAC. Simulation results indicate that FRAC
can keep the handoff call blocking rate low without jeopardizing the new call
blocking rate. Also, compared to the guard channel scheme and FrpectedMazx
strategy [7], FRAC can indeed guarantee QoS contracts and achieve higher

system performance.
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3.1 Introduction

Future mobile multimedia networks have to support integrated services, which are with
diverse traffic characteristics, in the common air interface. Since the wireless bandwidth
is scarce, the design goal of a radio resource allocation (RRA) scheme is to achieve high
spectrum efficiency. Therefore, future mobile multimedia networks will employ microcells to
support a higher capacity, which will increase the frequency of call handoff and dramatize
the effects of nonstationary traffic conditions due to fluctuations in new call arrivals and
mobility pattern. The achieved handoff call blocking probability may be far away from the
targeted objective [5]. Usually, the handoff blocking rate should be kept at an acceptable
level in the mobile networks. Therefore, the RRA scheme must be sophisticated enough to
take the QoS (Quality of Service) requirements of service, such as handoff blocking rate, into
consideration, while keeping the new call blocking rate low.

In general, the RRA schemes can be categorized into two kinds: fixed guard channel
scheme and dynamic resource allocation scheme. In the fixed guard channel schemes [1],
[2], [3], some channels are reserved for handoff call requests, while remaining channels are
shared by the new and handoff calls. Whenever the channel occupancy exceeds the guard
channel threshold, new call requests will be rejected. This scheme is simple, and the sim-
ulation result shows that, with an appropriate threshold, it can indeed reduce the handoff
blocking probability without jeopardizing the new call blocking probability. Unfortunately,
the adequate guard channel threshold is hard to decide. The guard channel schemes were
developed traditionally under the assumption of stationary loading condition, and it might
not be able to adapt to nonstationary loading condition which is a more realistic environment
for integrated services.

Instead of the fixed-threshold guard channel schemes, many dynamic resource allocation

methods were proposed to reserve adequate number of channels for handoff call requests
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[4]-[7]. That is, the resource allocation partition for the new call and handoff call requests
is adaptively assigned. Naghshineh and Schwartz [4] developed a call admission control that
took into account the projected future handoff call blocking probabilities in the originating
and neighboring cells. The handoff call blocking probabilities were kept at a target objective
by blocking the new call requests even if the capacity was currently available to serve these
new call requests. Theoretical analysis was carried out for a simple three-cell configuration
under stationary loading. In [5], Yu and Leung developed another call admission control
scheme for a more realistic network model. They estimated the instantaneous handoff call
arrival rate and made the guard channel number adaptation for handoff call requests. To
calculate the future handoff blocking probability in a cell, the exponential channel holding
time was assumed. Note that the channel holding time depends on the unencumbered cell
residence time and the remaining connection duration. Since the unencumbered cell resi-
dence time may not be exponentially distributed [8], Yu and Leung’s scheme may not be
theoretically valid. In [6], Kim et al. proposed another dynamic scheme called ”dynamic
channel reservation scheme”(DCRS). Channels are divided into normal channels and guard
channels in the DCRS scheme. Unlike other dynamic schemes, the new call requests are al-
lowed to access the guard channels with a "request probability”, which is a heuristic function
of channels, reservation threshold, and user mobility. The higher the user mobility is, the
smaller the request probability will be. That is, the guard channels are less likely to allocate
to new calls with high mobility. All these dynamic schemes have similar results; however,
only single traffic type is considered.

To deal with heterogeneous traffic types with diverse resource requirements, Ramanathan
et al. proposed a dynamic scheme called ErpectedMaz strategy [7]. In this scheme, when a
new call request occurred at time g, the expected cell residence time of the new call, 7, and

the expected maximum additional resources reserved for all possible handoff calls during the
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time interval [to, to+7) are estimated firstly. If the estimated maximum additional resources
plus the new call requested resource are less than the available resources, the new call will
be accepted. The simulation result showed that FzpectedMax strategy can achieve lower
handoff blocking probability than the fixed guard channel scheme and the scheme proposed
in [5]. To calculate the resource requirement of a call request, the FrpectedMax strategy
employed the "effective bandwidth” method which had been widely applied to the radio
resource allocation and call admission control in the ATM network [9], [10]. However, under
dynamic non-stationary loading conditions, the effective bandwidth is difficult to exactly
capture the complete statistics of the multimedia traffic [10], [14]. The spectrum efficiency
would be low in turn.

Also as noted, in the future mobile multimedia network supporting packet-switching
services, a good resource allocation scheme should consider not only the resource require-
ment of a call request and the resource reserved for handoff calls, but also the air interface
performance parameter which can reflect the gain of the statistical multiplexing.

On the other hand, intelligent techniques, such as neural networks and fuzzy logic sys-
tems, have been applied to deal with such resource allocation related problems [11]-[14].
Therefore, in this chapter, a fuzzy control scheme is proposed for radio resource allocation
in mobile multimedia networks. The fuzzy resource allocation scheme considers the capacity
required by the call request, the capacity reservation for handoff requests from neighboring
cells, and the performance in the air interface as input variables. Accordingly, a fuzzy re-
source allocation controller (FRAC) is designed, which is in a two-layer architecture. There
are a fuzzy capacity request estimator, a fuzzy capacity reservation estimator, and a fuzzy air
interface performance estimator in the first layer. Outputs from these three fuzzy estimators
are fed into a fuzzy call processor in the second layer to determine whether to accept the

call request or not. The fuzzy call processor consists of two sets of fuzzy rule base for new
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call and handoff call requests. The FRAC adopts an adaptive-network-based fuzzy inference
system (ANFIS) to construct the fuzzy estimators and call processor. ANFIS can provide
a systematic way to find appropriate parameters for the wildly-applied Sugeno fuzzy model.
Since the architecture and the input linguistic variables of FRAC are properly designed,
simulation results show that, compared with the guard channel and FzxpectedMax schemes,
the FRAC indeed can guarantee heterogeneous QoS contracts and achieve higher system
performance. Also, for a heuristic cost function which is a linear function of new call and
handoff call blocking rate, the FRAC has the smallest cost value. Henceforth, the FRAC
can make the best balance for resource allocation between new call and handoff call.

The rest of the chapter is organized as follows. The system model is presented in section
2.2. In section 2.3, the concept of FIS and ANFIS are briefly described. The design of the
fuzzy resource allocation controller is presented in section 2.4. In section 2.5, the performance
comparison under homogeneous and non-homogeneous cases are simulated and discussed.

Finally, the concluding remarks are given in section 2.6.

3.2 System Model

3.2.1 Mobile Multimedia Network Using PRMA

A mobile multimedia network consists of a cellular network and many nomadic mobile
terminals. In each cell, a base station takes responsibility for communicating with the mobile
terminals. It keeps the continuity of the call connection when the mobile terminal moves from
cell to cell. It will also share its loading information with other neighboring cells for capacity
reservation estimation. In the mobile multimedia network, there are N classes of service.
Each class of call service has its own traffic parameters and QoS service requirements.

For high spectrum utilization, many future mobile multimedia networks will operate in

the packet-switching mode, such as: GPRS. Here, it is assumed that the contention-based
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access protocol, such as: packet reservation multiple access (PRMA) protocol, is employed
to support multimedia services with heterogeneous traffic characteristics. When a mobile
terminal wants to make a call connection, it must gain an access acknowledge through
the access contention procedure. Also, it will commit its traffic characteristics and desired
QoS requirements (delay bound, delay jitter, loss bound and etc.) during the connection

establishment phase.

3.2.2  Fuzzy Resource Allocation Controller

The proposed fuzzy resource allocation controller (FRAC) adopts a two-layer architecture.
As shown in Fig. 3.1, the first layer contains a fuzzy capacity requirement estimator, a fuzzy
air interface performance estimator, and a fuzzy capacity reservation estimator; the second
layer contains a fuzzy call processor.

The fuzzy capacity requirement estimator predicts the equivalent capacity C, of a connec-
tion request from its traffic parameters, peak rate R,, mean rate R,,, and peak rate duration
T,. A set of fuzzy rules, resulting from knowledge about the equivalent capacity for a con-
nection request in [9], is constructed here to give an appropriate estimation of the required
capacity C.. The fuzzy capacity reservation estimator adaptively predicts the capacity reser-
vation Cg for future handoffs so as to keep the handoff blocking rate guaranteed. Choosing
the number of possible handoff mobile terminals for i-th service type, 1< ¢ < N, in the
home cell, SAOZ', and the number of possible handoff mobile terminals from the neighboring
cells, SA[Z', as input linguistic variables, this fuzzy estimator generates an overall capacity
reservation index Cpr from a set of fuzzy inference rules. The larger the Cg is, the more
the capacity reservation is allocated for the future handoff requests will be. The fuzzy air
interface performance estimator, which adopts a fuzzy logic to reflect the status of the air
interface, generates a performance criterion P, from real-time packet dropping ratio, Py,

and non-real-time packet delay time, Dge,,. The more positive the P, is, the less congested
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Figure 3.1: The fuzzy resource allocation controller

the air interface will be.

The fuzzy call processor has two sets of fuzzy rule base for new call and handoff call
requests separately. For a new-call request, the three estimated parameters (C., Cr, and
P.) are chosen as the input linguistic variables and a fuzzy new-call rule base is employed.
Clearly, the larger (', the larger Cr, and the smaller P. are, the less possible the new call
request would be accepted. On the other hand, for the handoff-call request, the two estimated
parameters (C. and P.) are chosen as input linguistic variables and a fuzzy handoff-call rule
base is employed. The smaller C. and the larger P. are, the more possible the handoff call

would be accepted.

3.3 Fuzzy Inference System and ANFIS

3.3.1 Fuzzy Inference System

The fuzzy inference system (FIS) is a popular computing framework based on the concept

of fuzzy set theory, fuzzy if-then rules and fuzzy reasoning. Among many fuzzy inference

30



system models, the Sugeno fuzzy model is the most widely applied one for its high inter-
pretability [17], [20]. The Sugeno fuzzy model provides a systematic approach to generate
fuzzy rule from a given input-output data set. The first-order Sugeno fuzzy model is applied
to design the proposed fuzzy estimators in which the crisp output is a polynomial of the in-
put linguistic variables. In the first-order Sugeno fuzzy model, the fuzzy rule may be stated
as

if XisAand Yis B,thenz= f(X,Y)=px X +¢xY +r, (3.1)

where A and B are terms of the fuzzy sets in the antecedent, z = f(X,Y) is a crisp output in
the consequent, and p, ¢, r are the parameters of the polynomial. Since each rule has a crisp
output, in the defuzzification process, the overall output is simply obtained by a weighted

average as
2w X &

> Wi 7

where w; and z; represent the weight and output of the &th fuzzy rule, respectively. In the

z

(3.2)

application of Sugeno fuzzy model, the main task is to appropriately select the membership

functions and parameters of the polynomial functions.

3.3.2 ANFIS: Adaptive-Network-based Fuzzy Inference System

The adaptive network based FIS (ANFIS) system employs the adaptive network archi-
tecture to represent the fuzzy inference system. Combined with the hybrid learning scheme,
ANFIS can provide a systematic way to find appropriate membership functions and polyno-
mial parameters for the Sugeno fuzzy model [18]. ANFIS can be applied to a wide range of
areas, such as nonlinear function modelling, time series prediction, and fuzzy controller de-
sign [19], [20]. To describe the structure and node functions of the ANFIS, take the following
case as an example.

Consider a fuzzy system with 2 linguistic variables (X and Y') and each variable is divided
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into two fuzzy terms. Fig. 3.2 illustrates how the ANFIS represents the first-order Sugeno
fuzzy model. The node function of each layer is described as below:

Layer 1. Every node ¢ in this layer is a square node and its node function, denoted by

Q1 is given by

) opa (X)), for =1, 2
QLZ - { UB;_, (Y), for 1237 47 (33)

where X (or Y') is the input to the node i, A; (or B;_2) is a linguistic term associated with
the node, and g4, (pm,_,) is the membership function for the term A; (B;—2). In other
words, each node function specifies the degree to which the given input X (or B) satisfies
the qualifier A; (or B;_2).

Layer 2. Every node 7 in this layer is a circle node labelled II, which represents the firing
strength of i-th rule and performs the fuzzy AND operation, 1< ¢ <4. The output of node

1, denoted by ()2, is the product of all the incoming signals for the ¢-th rule is given by

o A (X)) xpp (Y),  fori=1, 2
Qzﬂ - { HAy (X) X /“LBi—2(Y)7 for i:37 4. (34)

Layer 3. Every node ¢ in this layer is a circle node labelled N. The ith node calculates
the ratio of the i-th rule’s firing strength to the sum of all rules’ firing strength. That is, the

output of node 1, denoted by (s, is the normalized firing strength and calculated as

Qs = b = ——, 1< i <4. (3.5)

b
7 Wi

Layer 4: Every node 7 in this layer is a square node with a node function
Qui=w; X fi=w; x(pi x X +¢; xY +r), 1< <4, (3.6)

where ()4, is the output and p;, ¢;, r; are the consequent parameter sets of node .
Later 5: The single node in this layer is a circle node labelled ¥ that computes the overall

output ()5 as the summation of all incoming signals.

Q5:;Q4,¢=Zi:wi><f¢=zi;+y (3.7)
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Figure 3.2: The example of ANFIS system

3.3.3 Hybrid Learning Rule for ANFIS

For short training epochs, ANFIS adopts a hybrid learning rule, combining the ”gradient
decent method” and the ”least square estimate” (LSE) method, as the learning rule for
ANFIS. In the hybrid learning rule, each training epoch is composed of a forward pass and
a backward pass. In the forward pass, after the input data is presented, the node output
()4 can be calculated with current node parameters. The node output is compared with
the desired output, and the measure error is derived. Then, the LSE method is employed
to adjust the parameter sets (p;, ¢;, and r;). On the other hand, in the backward pass,
the error signals, the derivative of the measured error with respect to each node output,
propagate from the output end to the input end. Henceforth, the gradient decent method is
employed to adjust the parameters of the membership functions. Since the training errors
are de-coupled and separately treated, the hybrid learning rule can dramatically reduce the

required training epochs. The details of the hybrid learning rule can be found in [20].

33



3.4 Fuzzy Resource Allocation Controller

3.4.1 Fuzzy Capacity Request Estimator

The fuzzy capacity request estimator is a fuzzy implementation of the effective bandwidth
method proposed in [9]. It has three input linguistic variables R,, R,, T, and a crisp
output C,. In order to accommodate a wide variety of different traffic sources, a logarithmic
function is employed for input linguistic variables R, and T, based on the analytic results
of the equivalent capacity method. The membership functions for the variable R,, are
divided by R, so as to use as an indicator of burstiness. Via extensive experiments, it is
good enough to fuzzify the linguistic variables into three terms for R, and two terms for
both R,, and T,. Hence, the fuzzy term sets are T'(R,)={Small, Medium, Large}={S5m, Me,
La}, T(R,,)={Low, High}={Lo,Hi}, and T'(T,)={Short, Long}={Sh, Lg}. The membership
functions for T'(R,), T(R,,), and T(T},) are defined as M(R,) = {ttsm, firses pira }y M(Rp) =
{ro, peri}, and M(T,) = {psn,pry}- For being differentiable in the training phase, the

bell-shape function is adopted as the membership function, which are given by

b(xym,o)=¢" o | (3.8)

Therefore, the membership functions are expressed as

/“LSW(RP) = b(log(Rp);msmvasm)v (39)
pre(Ry) = b(log(Ry);m™Me, oMe), (3.10)
MLQ(RP) = b(log(Rp);ng,aLg), (3.11)
R,
pro(Rn) = b(—==;m" o), (3.12)
R,
Ry i mi
R,
psn(T,) = bllog(T,);m™", "), (3.14)
MLg(Tp) = b(log(Tp);ng,aLg). (3-15)



The crisp output C. is expressed in the first-order polynomial form as Eq. (3.1). The
implementation of the estimator utilizes the MATLAB fuzzy tool box and the procedure is
described in Fig. 3.3. In the beginning, the numerical data are divided into two data sets:
In_data for training the fuzzy estimator and Test_data for verifying the function parameters.
Two fuzzy commands, genfis1 and anfis, are applied to construct the ANFIS model: the gen-
fis1 command constructs the initial parameters (membership functions and the output crisp
function) for fuzzy inference system, and the anfis command adopts the hybrid learning rule
to find the appropriate parameters. After the system is fine-tuned, a consequent verification
is done by feeding the testing data into the estimator. If the verifying performance is not
good, the estimator would enlarge the training epochs to minimize the error.

After training phase, the membership functions of the input linguistic variables and the
polynomial parameters of the output crisp are derived. Note that, the following fuzzy esti-
mators still take the same MATLAB design procedure to obtain the settings of membership

functions and polynomial parameters in the ANFIS.

3.4.2 Fuzzy Capacity Reservation Estimator

The fuzzy capacity reservation estimator adaptively predicts the capacity reservation for
the possible handoff calls from neighboring cells during the time interval [to, to+7). Dealing
with heterogeneous traffic characteristics, the estimator takes a two-step approach for the
capacity reservation. In the first step, the estimator calculates the possible net terminal
change for i-th service type, HC;, by fuzzy operation. In the second step, based on the
equivalent capacity C, from the fuzzy capacity requirement estimator, the estimator computes
the overall capacity reservation index, Cp.

In the ErpectedMaz strategy, the estimated maximum additional resource is an expecta-
tion value of the change of possible incoming and outgoing calls at the target cell, not just the

difference between these calls. Here, the fuzzy capacity reservation estimator takes advantage
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% training data
In data=1.. ]
Test data=...]

% calculate the data size
Data_size = length( In_data(:,1));
trn_data = In_data(1:1:Data_size,);
trn_data = In_data(2:2:Data_size,);

% number of fuzzy term sets
NumMfs = 3;

% Membership function
MfType = "gbellmf’;

% training epoch
NumEpochs = 100; StepSize = 0.1;

% generate the Sugeno FIS
InputFismat = genfis1(In_data, NumMfs, MfType);

% Utilize the ANFIS
OutputFismat = anfis(In_data, InputFismat, [NumEpochs NaN StepSize));

% Test result
Result = evalfis(Test_data, OutputFismat);

Figure 3.3: The procedure of fuzzy capacity requirement estimator

of soft computing capability of fuzzy system to reduce the time-consuming computation in
ExpectedMax strategy. In accordance with knowledge of calculating the possible terminal
change from the FrpectedMax strategy [7], for the estimator, SO; in the home cell and ST;
in the neighboring cells are chosen as the 2 input linguistic variables, while HC; is the crisp
output. SO, is the number of terminals of i-th service type that residue in the target cell at
time tg and will handoff to neighboring cells during the time interval [to, to+7); SA[Z' 1s the
average number of terminals of i-th service type that residue in neighboring cells at time ¢,
and will handoff to the target cell during the time interval [to, to+7). For explanation, it is

assumed that a new call request in cell 0 at time ¢y and the surrounding cells, cell 1 ~ cell
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6, are considered. The SO; and S1; can be generally obtained by

SAOZ = Noﬂ' X Ph (316)
and
. 168
S[Z = 62Nj7i X Phys (317)
J

where Ny ; is the number of terminals of i-th service type in the target cell, V;; is the current
number of terminals of i-th service type in the neighboring cell j, and py, ; is the probability
that a terminal of i-th service type will handoff to the adjacent cells during the time interval
[to, to+7). Here it is assumed that the terminal moves to each of the neighboring cells with
equal probability.

To extract the exact knowledge of the FrpectedMax strategy, large numerical data were
acquired by extensively calculating the capacity reservation in [7] for the various combination
of system parameters. From conclusion of the numerical results, each of the input linguistic
variable is divided into 3 fuzzy terms. Accordingly, the estimator has 9 fuzzy rules. The term
sets of the variables are T(SAOZ') = {Small, Medium, Large} ={Sm,, Me,, Lg,}, and T(SA[Z')
= {Small, Medium, Large} ={Sm;, Me;, Lg;}. The corresponding membership functions
are defined as M(SAOZ) = {tsm,, UMe,s PLg, } and M(SA]Z') = {lsm;, Ure;s Prg t- Therefore,

the membership functions for the input linguistic variables are expressed as:

fsm (SO = b(SO;m ™, o5m), (3.18)
e, (SO:) = b(SOzmMee, oMe), (3.19)
(05, (S0)) = b(SO;;m™e, oh99), (3.20)
fsm (ST = b(ST;mS™ o™, (3.21)
pare (ST) = b(STymMe, oMei), (3.22)
g (ST) = b(STi;m", ot (3.23)
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By the fuzzy operation, the possible net terminals change for each service type HC;, is
calculated individually in the estimator. Then, the overall capacity reservation index Cg is

calculated by summing the capacity reservation for each service type; that is,

N
Cr=> HCixC., (3.24)

=1

where (., is the capacity request for i-th service type and is calculated at the fuzzy capacity

requirement estimator.

3.4.3 Fuzzy Air Interface Performance Estimator

In the mobile multimedia networks, the resource usage of a call request is affected by not
only the source traffic parameters but also the noisy transmission channel conditions and
access procedure. The fuzzy air interface performance estimator is designed to reflect the
real resource usage in the air interface.

In order to reflect the status of the air interface and keep the QoS contract, a performance
criterion P. is heuristically defined, which is a function of the real-time packet dropping ratio,

Pirop, and the non-real-time packet delay time, Dyjqy, in the air interface, as

P* D ela *
P. = rlnﬂ—l—(l —r)ln M, (3.25)
drop Ddelay
where Pd*mp and Dc*lelay are the QoS requirements of Py, and Dgq, for the real-time and

non-real-time services in the air interface, respectively, and r is a weighting parameter,
0 < r < 1[21]. In this chapter, the value of r is chosen to be 0.7. Here it is assumed
that the lost non-real-time packets will be re-transmitted while the lost real-time ones will
not. Therefore, Py, for real-time services and D,y for non-real-time services are the two
performance measurements in the air interface.

The fuzzy air interface performance estimator is a fuzzy computation of the performance
criterion P., which takes Py, and Dy, as two input linguistic variables. After many sim-

ulation experiments, the term set of Py, is defined as T'(Py.op)=1{Low, Medium, High}=
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{Lo, Me, Hi} and the term set of Dy as T(Dgeay)={Short, Long}={Sh, Lg}. The mem-

bership functions for T'(Pyrop) and T'(Dgejay) are defined as M(Pyrop) = {ftro, fiase, pmri } and

M(Ddelal/) = {/“LShv MLg}, where

to(Pirop) = b(Papop; m™, o), (3.26)
iare(Parop) = b(Papop; m™Me 0™, (3.27)
i Parop) = b(Parop;m™, o™, (3.28)
tish(Dactay) = b(Daetay; m™", o), (3.29)
(ig(Dactay) = b(Dgeray; m™?, ™). (3.30)

3.4.4 Fuzzy Call Processor

The fuzzy call processor is responsible for deciding the acceptance of the call request.
For a new call request, the call processor takes the (., Cr, and P. as three input linguistic
variables, which reflect capacity requirement of the call request, capacity reservation for
future handoffs, and the degree of congestioness in the air interface. The synergy of C, and
P. can reflect the shaping effect of the contention procedure and in turn takes the advantage
of the multiplexing gain of serving different QoS requirement services. For a handoff call
request, the call processor just takes C. and P. as two input linguistic variables. It is not
necessary to take the C'p as the input variable since the handoff call is a priority call that
must be served first. Accordingly, two sets of rule base are designed for the two different call
requests.

The term set of C. is defined as T(C.)={Small, Medium, Large}={Sm, Md, Lg}, Cr
as T(Cr)={ Low, Medium, High}={Lo, Me, Hi}, and P. as T(P.)={Good, Common,
Bad}={Gd, Cm, Bd}. The membership functions for T'(C.), T(Cr),and T'(FP.) are defined as

M(C) = {psm, tinds pirg b» M(Cr) = {tro, inte, pori by and M(P.) = {pGa, rom paa b, where
tsm(Ce) = b(Ce; msm,asm), (3.31)
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pmd(Ce) = b(Ce;de,aMd), (3.32)

prg(Ce) = b(Coym™, o), (3.33)
pro(Cr) = b(Crym"™, o), (3.34)
pne(Cr) = b(Crym™e, ™), (3.35)
pii(Cr) = b(Crym™, o), (3.36)
paa(P.) = b(Pym™, o), (3.37)
pem(P) = b(Pymt™, o), (3.38)
ppa(P.) = b(P;mP obh). (3.39)

3.5 Simulation Results and Discussion

The performance of the FRAC is compared with those of FxpectedMaz [7] and guard
channel schemes under stationary and non-stationary traffic loading environments. The
simulated mobile network contains 49 concatenated cells, and all the cells are wrapped
around at the edges so as to avoid the edge effects. The mobile multimedia network provides
voice and data services. The air interface adopts the PRMA protocol for media access
control. The frame structure is the same as the one used in [22], where each frame time T is
16msec., the number of time slots per frame is 20, and each time slot has 576 bits, including
64 bits header and 512 bits information. For the PRMA access protocol, the permission
probability of voice (p,) and data (pg) are set to be 0.65 and 0.03, respectively, to give the
voice service with priority much higher than the data service.

The voice service is modelled as an ON-OFF traffic source, and the mean talkspurt time
(1/a) is 1 sec. and the mean silence time (1/3) is 1.35 sec. On the other hand, the data
service is modelled as a batch Poisson traffic source, and the interarrival time of two successive

data messages is exponentially distributed with mean message arrival rate 1/A; = 0.4. The
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length of data message is assumed to be a geometric distribution function with mean length
L,, = 3 and maximum length L, = 10 . The QoS requirement of voice-packet dropping rate
Pj.,, is set to 1 x 1072 and the QoS requirement of the data transmission delay Dj.,, is
Isec. The input linguistic variables, Py, and Dygeqy, are measured per 1250 frames and the
estimation period 7 is 10sec.

Conventionally, the guard channel scheme is considered in the circuit-switching network.
To apply this scheme in the QoS-guaranteed, packet-switching mobile network, the activity

factor (expected busy period) for voice (L,) and data (Lg) services are defined as:

1
L, =+ (3.40)
R
Ld = )\d X Tf X Lm (341)

The activity factor represents the channel capacity that the specified service may occupy.
The activity factor is 0.43 for voice service and 0.12 for data service. In the simulations, the
guard channel schemes Gy, Gy, and G3 with 1, 2, and 3 reserved channels are considered.
Also, for fair comparison, the fuzzy capacity requirement estimator is adopted as the effective

bandwidth calculation block for the ErpectedMaz strategy.

3.5.1 Stationary Load Case

This case is meant to capture the behavior of a uniform network where all cells are
identical in terms of new call arrival rate and cell dwell time. The probabilities of moving to
neighboring cells are also uniform. Here, it is assumed that the service time and cell dwell
are both 100 sec., and four different new call arrival rates: 1/4.0, 1/3.75, 1/3.5, and 1/3.25
are simulated. The simulation results are shown in Fig. 3.4 - Fig. 3.6.

Fig. 3.4(a) and Fig. 3.4(b) show the new call blocking rate and handoff call blocking rate

of the voice service (B, ,, By, ) and data service (B,, 4, Bya), respectively. In Fig. 3.4(a), for
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voice service, the new call blocking rate of FRAC is the smallest, and the handoff blocking
rate of FRAC is almost the same as that of (G5 scheme except when the new call arrival rate
is 1/3.25. The new and handoff call blocking rates of the FxpectedMaz strategy are between
those of Gy and (5 schemes, but larger than those of the FRAC. The FRAC outperforms
the FrpectedMax strategy. It is because FRAC takes not only the capacity requirements (C,
and CR) as the factors for the radio resource allocation but also the air interface performance
criterion P.. FRAC can still accept a voice handoff call request when Cr and C, are large
but P. is still good or common. That is, FRAC can take advantage of the multiplexing gain
of packet-switching from the input linguistic variable P.. In Fig. 3.4(b), for data service,
the new call blocking rate and the handoff blocking rate of FRAC are the smallest among
all the compared schemes. This is because the data service is non-real-time and can be
buffered when the resource is temporarily unavailable. Therefore, the multiplexing gain of
data service would turn out to be larger than that of voice service.

To make an overall performance evaluation, the cost functions are heuristically defined

by

CF, = (xBu,+ (1 —=()xBp,, for voice service, (3.42)

CF; = (XBua+ (1 —={)xByg, for data service,

where ( is a weighting parameter and ( = 0.25. Fig. 3.5 shows the cost function versus the
new call arrival rate. The cost values of the FRAC are the smallest under all load conditions.
It is because the proposed FRAC adaptively utilizes the gain of the statistical multiplexing
in the mobile multimedia networks and makes the proper capacity reservation for future
handoffs according to the network loading, while keeping QoS contracts.

Fig. 3.6 shows the voice packet dropping rate and data packet delay versus the new call
arrival rate. All the schemes can meet the QoS requirements, but the FRAC has higher

packet dropping rate and larger data delay than the other schemes. It is because the FRAC

42



takes the advantage of the multiplexing gain and accommodates more terminals consequently.

3.5.2 Non-stationary Load Case

This case is meant to capture the behavior of a non-stationary loading network where
each cell has its unique new call arrival rate and each service type has its cell dwell time.
The network simulates the work-hour traffic pattern which is similar to the one described in
[7]. For each cell, the new call arrival rate increases in the first half of the simulation and
then decreases in the second half. In the first half, the new call arrival rate starts at 0.15
and increase every 30 minutes. The increase ratio is uniformly distributed between 1.0 and
1.3, and differs from cell to cell. Similarly, in the second half, the call arrival rate decreases
every 30 minutes and the decrease ratio is also uniformly distributed between 1.3 and 1.0. It
is assumed that the service time of voice terminal is 200 seconds and that of data terminal is
150 seconds. The cell dwell time of voice terminal is 125 seconds and that of data terminal is
100 seconds. The QoS requirement of handoff blocking rate of voice (B} ) and data (B; ;)
both are 0.02. The simulation results are measured every 20 minutes, and shown in Fig. 3.7
- Fig. 3.10.

Fig. 3.7 and Fig. 3.8 show the new call blocking rate and the handoff call blocking rate
of the voice service (B,,, Bp,) and data service (B, 4, Bha), respectively. Evidently, the
blocking rate increases in the first half as the new call arrival rate increases, and it decreases
in the second half as the new call arrival rate decreases. The FRAC has the smallest new
call blocking rates of voice and data services while keeping the handoff blocking rate lower
than QoS thresholds (Bj , and Bj ;). For the FrpectedMax strategy, the handoff blocking
rate of voice and data service are lower than QoS threshold in the non-congested period, but
are higher than the QoS threshold at higher traffic loading. As to the fixed guard channel
schemes, the (5 and (3 schemes can keep the handoff blocking rate lower than the QoS

thresholds but G scheme can’t. Fig. 3.9 shows the overall utilization versus simulation
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time. The system utilization is defined as the percentage of the number of slots that are
occupied by active terminals. The system utilization of FRAC is the highest and that of the
guard channels schemes (G5 and (i3) are the lowest. At the beginning period (simulation time
1), the system utilization of FRAC, FxpectedMax, G, Gy and G5 are 0.72, 0.69, 0.7, 0.66,
0.62, respectively. At the most congested period (simulation time 6), the system utilization
of FRAC, EzpectedMaz, Gy, G5 and G5 are 0.83, 0.77, 0.78, 0.74, 0.7, respectively. Therefore,
the system utilization of FRAC is the highest and that of the guard channels schemes (G5
and (i3) are the lowest.

During the entire simulation, only the (5, GG3 and FRAC can exactly meet the QoS
requirement of the handoff blocking rate. FRAC has the highest system utilization; however,
the G2 and (5 schemes have lower and guaranteed handoff blocking rate at the expense of
the low system utilization. Since the new call arrival rate is different in every cell, the number
of handoff call request is also different in every cell. While the fixed guard channel schemes
are applied in the non-stationary network, the system performance may be suffered from the
network dynamics. In the non-stationary load case, the handoff blocking rate in the hot-spot
cell may be higher than the QoS threshold, but that in the neighboring cells may be much
lower than the QoS threshold. The fixed resource allocation schemes would be inadequate
as a consequence. However, FRAC and FzpectedMazx strategy can make capacity reservation
according to the network dynamics. Also, FRAC measures the air interface performance
to get real traffic usage of heterogeneous traffic services. Therefore, in the heavier loading
condition, FRAC can still meet the QoS requirement while FrpectedMax scheme violates.

Fig. 3.10 shows the voice packet dropping rate and data packet delay time versus sim-
ulation time. It can be found that all the schemes can meet the QoS requirement of voice

and data service.
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3.6 Concluding Remarks

In this chapter, a fuzzy resource allocation controller (FRAC) is proposed. The FRAC
adopts an active-network-based fuzzy inference system, which takes the advantage of expert
knowledge of fuzzy logic system and learning capability of neural network. And the FRAC
considers the gain of statistical multiplexing via choosing the air-interface performance as
input linguistic variables, together with the capacity requirement of a call request and the
capacity reservation for future handoff calls. The air-interface performance criterion, which
is a fuzzy logic function of voice-packet dropping rate and data packet delay, can reflect
the effect of multiplexing gain. That is, it makes the FRAC act as a closed-loop system,
which would result in a stable operation. Simulation results show that FRAC performs
the best, compared with the FzpectedMax strategy and guard schemes. Also, it has the
lowest new call blocking rate and handoff blocking rate while keeping the QoS contracts of
different services according to the network dynamics. Moreover, data services can achieve
more multiplexing gain than voice services because data services are non-realtime and data
packets can be buffered. No matter in the stationary loading or non-stationary loading case,

FRAC is sophisticated and robust.
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Chapter 4

A Multi-Rate Transmission Control
Scheme Using Q-learning Technique

for RRM in Multimedia WCDM A
Systems

In this chapter, a Q-learning-based multi-rate transmission control (Q-
MRTC) scheme for RRM in multimedia WCDMA communication systems
is proposed. The multi-rate transmission control problem is modelled as a
Markov decision process, where the transmission cost is defined in terms of
the QoS parameters for enhancing spectrum utilization subject to QoS con-
straint. The Q-learning reinforcement algorithm is adopted to accurately es-
timate the transmission cost. In the meanwhile, the feature extraction method
and RBEN network are successfully employed for the Q)-function approzrima-
tion. The state space and memory storage requirement are then reduced, and
the convergence property of Q-learning algorithm is improved. Simulation re-
sults show that, for a multimedia WCDMA system, the Q-MRTC can achieve
higher system throughput by an amount of 80% and better users’ satisfaction
than the interference-based multi-rate transmission control scheme, while the
QoS requirements are guaranteed. Also, compared to the table lookup method,

the storage requirement is reduced by an amount of /1%.
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4.1 Introduction

Wideband CDMA (WCDMA) is one of the promising radio access technologies for IMT-
2000. The objective of a multimedia WCDMA system is to provide users a radio link
access to services comparable to those currently offered by fixed networks, resulting in a
seamless convergence of both fixed and mobile services. Different types of services, such
as voice, data, image, and compressed video, are integrated in the multimedia WCDMA
system. Therefore, an adequate radio resource management (RRM), such as: admission
control, is required to enhance the spectrum utilization while meeting the QoS requirements
of heterogeneous services. In this chapter, the multi-rate transmission control scheme for
RRM in the WCDMA systems is studied.

The multi-rate transmission control in the multimedia WCDMA system is to assign
power and processing gain to service requests for maximizing the spectrum utilization and
fulfilling QoS requirements and users’ satisfaction. In [26], Choi and Shin proposed an uplink
CDMA system architecture to provide diverse QoS guarantees for heterogeneous traffic:
real-time traffic and non-real-time traffic. They theoretically derived the admission region
of real-time connections, transmission power allocation, and the optimum target signal-to-
interference ratio of non-real-time traffic so as to maximize the system throughput and satisfy
the predefined QoS of heterogeneous traffic.

There is no absolute number of maximum available channels in the WCDMA system
because WCDMA system is interference-limited. Its capacity is affected by multiple access
interference (MAI), which is a function of the number of active users, users’ location, channel
impairments, and heterogeneous QoS requirements. Many researches for CDMA capacity
estimation are based on MAI and other considerations [27]-[30]. In [27], a single-service
CDMA network with respect to MAI caused by users in the same and adjacent cells was

studied. In [28], Huang and Bhargava investigated the uplink performance of a slotted
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direct sequence-CDMA (DS-CDMA) system providing voice and data services. A lognormal-
distributed MAT model was proposed to estimate the remaining capacity in the CDMA
system, where its mean and variance were given by a function of the number of users, and
the mean and variance of each service type. However, in multimedia WCDMA systems, the
measured MAI value may not be stationary, and it may also be affected by user locations and
service profiles. Hamalainen and Valkealahti [29] proposed an MAI estimation method to
facilitate load control, admission control, and packet scheduling. Kim and Honig [30] studied
the resource allocation for multiple classes of traffic in a single cell DS-CDMA system. A
joint optimization was investigated over the power and the processing gain of the multiple
classes to determine flexible resource allocation for each user subject to QoS constraints.

Shin, Cho, and Sung proposed an interference-based channel assignment scheme for DS-
CDMA cellular systems [31]. A channel is assigned if the interference is less than an allowed
level which is determined by the network, subject to the QoS constraints. Instead of a fixed
system capacity, this interference-based scheme can adaptively assign a channel according
to the actual system capacity dependent of interference such that the system utilization and
the grade of service can be improved. The interference-based scheme was further extended
to call admission control in multimedia CDMA cellular systems [32], [33]. Dimitriou and
Tafazolli [32] developed a mathematical model to determine the outage limits of a multiple-
service CDMA system and to achieve the maximum aggregated capacity for different system
parameters. Phan-Van and Luong [33] proposed a soft-decision call admission control scheme
(SCAC), where the upper bound and the lower bound of the interference-limited WCDMA
system capacity are derived. In the SCAC, the new call request obtains an admission grant
according to a predefined probability function when the system operates between the upper
bound and the lower bound of the system capacity.

Maximizing spectrum utilization (revenue) while meeting QoS constraints suggests a
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constrained Markov decision process (MDP) [38] or semi-Markov decision process (SMDP)
[34], [35]. These methodologies have been successfully applied to solve many network control
problems; however, they require extremely large state space to model these problems exactly.
Consequently, the numerical computation is intractable due to the curse of dimensionality.
Also, a priort knowledge of state transition probabilities is required. Alternatively, many
researchers turned to use the reinforcement learning (RL) algorithms to solve the large state
space problems [36]-[39]. The most obvious advantage of RL algorithm is that it could
approach an optimal solution from the on-line operation if the RL algorithm is converged.

In this chapter, a @-learning-based multi-rate transmission control (Q-MRTC) scheme
for RRM in the multimedia WCDMA systems is proposed to maximize the system utilization
and fulfill the users’ satisfaction, subject to QoS requirements of packet error probability and
packet transmission delay. For the interference-limited system, system interference profile
is chosen as system state, and the multi-rate transmission control is modelled as a total
expected discounted problem. Also, an evaluation function is defined to appraise the cu-
mulative cost of the consecutive decisions for the Q-MRTC. Without knowing the state
transition behavior, the evaluation function is calculated by a real-time RL technique known
as ()-learning [40]. After a decision is made, the consequent cost is used as an error signal
feedback to the Q-MRTC to adjust the state-action pairs. Thus the learning procedure is
performed in a closed-loop iteration manner which will help the value of evaluation function
converge to optimal radio resource control point.

Noticeably, the Q-function approximation is the key design issue in the implementation of
Q-learning algorithm [41], [42]. Here, a feature extraction method and a radial basis function
network (RBFN) are employed in the Q-MRTC. With the feature extraction method, the
state space of the Q-function is mapped into a more compact set which represents resultant

interference profile. The resultant interference profile aggregates the states and improves the
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convergence property consequently. With the RBFN neural network, the storage requirement
of the Q-function can be significantly reduced. Simulation results show that, while keeping
the QoS constraints of the packet error probability and packet transmission delay guaranteed,
the Q-MRTC scheme can have higher system throughput by an amount of 80% and better
users’ satisfaction than the interference-based scheme [32] . Also, compared to the table
lookup method, the storage requirement is reduced by the amount of 41%.

The rest of the chapter is organized as follows. The system architecture and RRM are
described in section 3.2. The design of Q-MRTC is proposed in section 3.3. The simulation
results are presented in Section 3.4 and the performance comparison between the Q-MRTC
scheme and the interference-based scheme is also made. Finally, concluding remarks are

given in Section 3.5.

4.2 System Model

The physical layer and the MAC specifications for WCDMA are defined by 3GPP [43]-
[44]. The WCDMA has two types of uplink dedicated physical channels (DPCHs): the
uplink dedicated physical data channel (DPDCH) and the uplink dedicated physical control
channel (DPCCH). A DPDCH is used to carry data generated by layer 2 and above, and a
DPCCH is used to carry layer 1 control information. Each connection is allocated a DPCH
including one DPCCH and zero or several DPDCHs. The channel is defined in a frame-
based structure, where the frame length 7y = 10 ms is divided into 15 slots with length
Taot = 2560 chips, each slot corresponding to one power control period. Hence, the power
control frequency is 1500 Hz. The spreading factor (SF) for DPDCH can vary between
4 ~ 256 by SF = 256/2F k = 0,1,---,6, carrying 10 x 2* bits per slot, and the SF for
DPCCH is fixed at 256, carrying 10 bits per slot. In addition, a common physical channel,

named physical random access channel (PRACH), is defined to carry uplink random access
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burst(s).

Two types of services are considered in this chapter: real-time service as type-1 and
non-real-time service as type-2. The system provides connection-oriented transmission for
real-time traffic and best-effort transmission rate allocation for non-real-time traffic. To
guarantee the timely constraint of real-time service, a UE always holds a DPCH while it
transmits real-time packets regardless the variation of the required transmission rate. The
real-time UE may generate variable rate information whose characteristics are indicated in
its request profile. On the other hand, a UE should contend for the reservation of a DPCH
to transmit a burst of non-real-time packets and will release the DPCH immediately while
the burst of data is completely transmitted. The non-real-time data are transmitted burst
by burst.

When a UE has traffic to transmit, it first sends its service request embedded in a random
access burst via PRACH. The UE may generate a call-level request or a burst-level request.
The service request is a call-level request if real-time continuous transmission is required;
the service request is a burst-level request if non-real-time data transmission is required. A
new call-level request will be initiated only after the UE terminates its current real-time
call connection. However, a new burst-level request will be initiated at any time instant
according to the data source model. For the service request profile, a real-time request
provides the mean rate and rate variance to indicate its transmission rate requirement, while
a non-real-time request provides the maximum and minimum rate requirements. As the base
station receives the new request, the admissible transmission rate will be evaluated. Due
to the service requirements, RRM performs two different kinds of decision. For a real-time
request, the request will be accepted or rejected. On the other hand, for a non-real-time
request, an appropriate transmission rate will be allocated. A non-real-time request specifies

the range of the required transmission rates for itself, and would be blocked if the WCDMA

38



system cannot provide a suitable transmission rate to satisfy its required transmission rate.
In this chapter, it is assumed that all packets have the same length. Also, a data packet
is assumed to be transmitted in a DPDCH frame by a basic rate channel, and therefore a
multi-rate channel can transmit multiple data packets in a DPDCH frame.

The transmission power of a physical channel should be adjusted dependent of its spread-
ing factor, coding scheme, rate matching attributes, and BER requirement. Here, it is as-
sumed that all physical channels adopt the same coding scheme and have the same rate
matching attributes and BER requirement. Therefore, the power allocation for a physical
channel is simply dependent of its spreading factor, and it is in inverse proportion [45]. Since
each UE determines its up-link transmission power in a distributed manner, the total received
interference power at base station is time-varying. For operational stability, the transmission
power is determined under the consideration of maximal allowed interference power. In this
way, for WCDMA systems, the SIR-based power control scheme which is specified by 3GPP
is equivalent to the strength-based power control scheme. Consequently, the complexity of
the multi-rate transmission control is reduced and the operation can disregard the variation
of the received interference.

To maximize the spectrum utilization, the radio resource management is designed to
accommodate the access requests as many as possible and to allocate the transmission rate
of each request as large as possible, while the QoS requirements are fulfilled. An erroneous
real-time packet will be dropped since there is no re-transmission for real-time packets, while
the erroneous non-real-time packets will be recovered via ARQ (automatic repeat request)
scheme. The packet error probability, denoted by P., and packet transmission delay, denoted
by Dy, are considered as the system performance measures. Also, the maximum tolerable
packet error probability, denoted by P, and maximum tolerable packet transmission delay

time, denoted by D}, are defined as the system QoS requirements.
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4.3 The Design of Q-MRTC

4.3.1 State, Action, and Transmission Cost Function

The radio resource management of a multimedia WCDMA system is regarded as a discrete-
time MDP problem, where major events are arrivals of service requests in a cell. The service
request arrivals would trigger the transition of the system state such that the radio resource
control is executed. For the arrival of the k-th request, the system state is assumed at axy,
defined as

T = ([m,[U,i,Ri), (41)

where [, and I, denote the mean and the variance of the interference from existing connec-
tions, ¢ indicates that x; is an arrival of type-i, and R; is transmission rate requirement of
the type-i request, i = 1,2. The ([, 1,) is the interference profile. Since the capacity of
the WCDMA system is interference-limited, the interference profile is employed to indicate
the system load [28]. The Ry = (r,,,r,), where r,, and r, denote the mean rate and the
rate variance of a real-time request, respectively; the Ry = ("max, "min), Where rpay and rmin
denote the maximum rate and the minimum rate requirements of a non-real-time request,
respectively.

Based on the system state xp, the multi-rate transmission controller will determine an

action, denoted by Ay, for the k-th request arrival. The action Ay is defined as:

o Real-time request:

1 if accepted,
A = { 0 if rejected, (4.2)
e Non-real-time request:
7, Tmin <7 < rmax  if accepted,
Ak = { 0 if rejected. (4.3)
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If the state-action pair (g, Ax) has been determined, an immediate transmission cost is

defined as
Pe(l’k,Ak) — Pe*
P

Dd(l'k, Ak) — DZ;

(zr,Ar) = af D

F+(l—a) I (4.4)

where P.(xy, Ax) is the packet error probability, Dy(xy, Ag) is the packet transmission delay,
and « is the weighting factor. The ¢(xy, Ax) is a random variable because channel fading and
imperfect power control are not included in the state-action pair yet. An evaluation function,
denoted by Q(x, A), is further defined as the expected total discounted cost counting from
the initial state-action pair (x, A) over an infinite time. It is given by
Qz,A)=F {Z vre(ag, Ap)|zo =z, Ao = A} , (4.5)
k=0
where 0 < v < 1 is a discounted factor. The multi-rate transmission control is to determine
an optimal action, denoted by A*, which minimizes the ()-function with respective to the
current state. The minimization of ()-function represents the maximization of the system
capacity and the fulfillment of QQoS requirements.
Let P.,(A) be the transition probability from state @ with action A to the next state y.

Then Q(x, A) can be expressed as

Qx, A) = FE{c(xo, Ao)|ro =2, A0 = A} +
1) {Z l/kc(:zjk,Ak)|:1;0 =, A = A}
k=1

= E{c(x,A)}+v>_ Puy(A) x

E {Z I/k_lc(wk,Ak)|$1 =y, A = B}

k=1

= Cle, )+ Y P(AQU. B). (1.6)

where C(x, A) = E{c(x,A)}. Eq. (4.6) indicates that the () function of the current state-
action pair can be represented in terms of the expected immediate cost of the current state-

action pair and the () function of the next state-action pairs.
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Figure 4.1: Structure of the Q-learning-based multi-rate transmission control (Q-MRTC)
scheme

Based on the principle of Bellman’s optimality [46], the optimal action A* can be obtained
by a two-step optimality operation. The first step is to find an intermediate minimal of
Q(x, A), denoted by Q*(x, A), where the intermediate evaluation function for every possible
next state-action pair (y, B) is minimized and the optimal action is performed with respective

to each next state y. Q*(x, A) is given by

@'(r.4) = Ce. A) £ v Y Poy(4) ] Min [Q"(v. B)

for all (x, A). (4.7)

Then the optimal action A* can be determined with respective to the current state x such

that Q*(x, A) is minimal, which can be expressed as

Q(w, A7) = Min_ [Q%(z, A)]. (4.8)

However, it is difficult to find the C'(x, A) and P,,(A) to solve Eq. (4.7). In this chapter, a

real-time reinforcement learning algorithm, named Q-learning algorithm [40], [41], is adopted
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to find the optimal resource allocation without a priori knowledge of C(xz, A) and Py, (A).
To find the optimal Q*(x, A), the Q-learning algorithm computes the Q value in a recursive
method using available information (z, A, y, ¢(x, A)), where @ and y are the current and the
next states, respectively; and A and ¢(x, A) are the action for current state and its immediate

cost of the state action pair, respectively.

4.3.2 Q-MRTC

Fig. 4.1 shows the structure of Q-learning-based multi-rate transmission control (Q-MRTC)
scheme. When a service request arrives at system state x, the Q)-function computation block
computes the value of Q(x, A) for every possible action A. The rate allocation block then
determines the optimal rate allocation A* or call rejection with respect to all the current Q
values of all possible actions. In the Q-learning rule block, the immediate cost ¢(x, A*) can
be observed and the Q-learning rule is used to adjust the value of Q(x, A). The Q-learning

rule is formulated by

@, 4) = { Q(x, A) otherwise. (4.9)
where 7 is the learning rate, 0 < n <1, and
AQ(w, A7) = { el A7) + v Min [Qly, B)]{ — Qa, 4. (1.10)
B

Since only one action-pair is chosen for evaluation in each learning epoch, for the Q-learning

rule, only the () value of the chosen action-pair is updated while others are kept unchanged.
Also, in Eq. (4.10), the operation of Min [Q(y, B)] is executed by comparing the @) values
B

of all the possible action candidates for state y and then choosing the desired action B with
minimal () value.
In [40], Watkins and Dayan had proved the convergence theorem of Q-learning. Here,

the theorem is re-stated as following: if the value of each admissible pair is visited infinitely
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often and the learning rate is decreased to zero in a suitable way, then the value of Q(x, A)
in (4.9) will converge to Q*(x, A) with probability 1.

Usually, if the state space is too large, it would require a huge amount of memory to
store the values of ()-function and take a long time for the Q-learning algorithm to converge.
To tackle the above problems, in the @)-function computation block, the feature extraction
method and radial basis function network (RBFN) are employed for the Q-function approx-
imation in the proposed Q-MRTC. Here, the state-action pair is firstly transformed into a
dimension-reduced feature vector, and then the feature vector is used as input parameters
to compute the corresponding () value that is stored in the RBFN network.

Feature extraction method maps the original state-action pair into a feature vector, which
must be properly chosen to reflect the important behavior characteristics of the state-action
pair [42]. In the WCDMA system, after the state-action is performed, the change of interfer-
ence is the most significant corresponding response. Therefore, the feature vector of (z, A)
is selected to be the resultant interference profile, denoted by (I, + Al,, I, + AlL), where
(Al,,Al,) indicates the change of interference profile (1, [,) due to action A at state x.
In other words, the state-action pair (z, A) can be converted to resultant interference profile
(L + AL, I, + AL). It is noted that the dimension of the resultant interference profile
is smaller than that of the original state-action pairs. While a strength-based closed-loop
power control is assumed, the received power for a unit of transmission rate is set to 1.

Consequently, (Al,,, Al,) is obtained by

(rm,ry) if accepts a real-time request,
(r,0) if accepts a non-real-time

(AL, AL) = (4.11)

request with rate r,
(0,0) if rejects a request.

Radial basis function network (RBFN) is a three-layer, self-growing neural network, in-
cluding an input layer, an output layer, and a hidden layer [41]. The hidden layer consists

of a sequence of nodes whose activation functions are normalized Gaussian. The RBFN
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neural network performs a function approximation for the ) function. When the RBFN is
well-trained, the ) values of all the state-action pairs are stored in the RBFN. With the
input parameters of the resultant interference profile, the RBFN calculate the corresponding
Q value.

The key concept of RBFN is local-tuning and separated storage. Fach node in the hidden
layer represents a part of the characteristics of the input vectors and stores these charac-
teristics locally. Thus, it breaks a large-dimensional mapping function into multiple small-
dimensional functions. Due to the separated storage property, only some hidden nodes in the
RBFN would be adjusted with respect to the new input error signal, which can reduce the
training epoch significantly. Fig. 4.2 shows the ()-function computation performed by the
RBFN. The state-action pair (z, A) is mapped into its corresponding resultant interference
profile (I, + Al,, I, + Al,), and the RBFN neural network then calculates Q(x, A) as a
function of (1, + AL, I, + Al). The well-known back-propagation learning rule is applied
in the training process.

The @ value for state-action pair (x, A) is updated by Eq. (4.9) when the next request
arrives and nAQ(x, A) is served as an error signal which is backpropagated in the neural
network. With the feature extraction method and RBFN neural network, the Q-MRTC can
obtain Q(x, A) efficiently through the online operation. As noted, Q(x, A) will approach to

Q*(x, A) through the training procedure while the convergence theorem of Q-learning holds.

4.3.3 Parameter Initialization

Before the Q-MRTC is performed for the online operation, it is necessary to assign a proper
set of initial values. An appropriate initialization can provide a good relationship of the
input parameters and the decision output for an event at the beginning of system operation
such that the transient period of ()-learning procedure would be short. To obtain the initial

() values, the composite interference received at base station is assumed to be log-normally
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Figure 4.2: The @)-function computation by RBFN neural network

distributed. Although the assumption of log-normal distribution may not hold in some cases,
it indeed provides a meaningful initial guess rather than a random initialization.

For a given state-action pair (x, A), the initial value of Q(x, A) is set according to QoS
measurements. Since the packet transmission delay cannot be calculated in advance, the

normalized expected packet error probability is preferred as the initial value of Q(x, A) and

ﬁe(va)_Pe*)2

is expressed as ( e ), where P_(x, A) is the expected packet error probability if the

state-action pair (x, A) is performed. The P_(z, A) is given by
. L
Pz, A)=1— (1 —/Pb(f)z(f)df) , (4.12)

where L is the packet length, P,() is the bit error probability at the interference level I, and
L(1) is the log-normal function for interference level [ with mean ([, + Al,,) and variance
(I, + Al,). The Py(I) is given by [30]

Py(l)=rexp—P*G/I (4.13)
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with parameters of k and J which are adjustable for matching with a particular coding
scheme, and (& is the spreading factor of a basic rate channel.

In summary, the procedure of Q-MRTC is described in the following.

e Step 1: [State-Action Construction]
Construct the current state @ = ([,,, [,, 4, R;) and find a set of all possible actions for

state x, denoted by A(x), when a new request arrives.

e Step 2: [Q-Value Computation]
For the set of state-action pairs {(z, A) | A € A(x)}, compute the respective Q(x, A)

values by the RBFN neural network.

e Step 3: [Rate Allocation]

Determine the optimal action A* such that the value of Q(x, A*) is minimum, i.e.,

Q(z,A*) = Min [Q(z,A)].

A€A(x)
e Step 4: [Q-Value Update]
Update the @) values by Eq. (4.9) as the next event arrives with state y and the online
cost ¢(x, A*) is obtained. Since the @ value is stored in a neural network, nAQ(x, A*)
is used as an error signal backpropagated into the neural network, instead of the error

between the desired and the actual outputs. Goto Step 1.

4.4 Simulation Results and Discussion

In this simulation, two kinds of traffic are transmitted via the real-time service: one is 2-level
transmission rate traffic and the other is M-level transmission rate traffic. They are modelled
by 2-level and M-level MMDP (Markov modulated deterministic process), respectively. The
2-level MMDP is generally used to formulate ON-OFF voice traffic stream, and the M-level

MMDP is to formulate the advanced speech or other real-time traffic streams, e.g., video.
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Table 4.1: TRAFFIC PARAMETERS IN THE MULTIMEDIA WCDMA SYSTEM
Traffic Type Traffic Parameters

2-level real-time | Call holding time: 30 seconds
Mean talkspurt duration: 1.00 seconds

Mean silence duration: 1.35 seconds
M-level real-time | Call holding time: 30 seconds
Peak rate (M): 4-fold of basic rate

Mean rate: 2-fold of basic rate

Non-real-time Mean data burst size: 200 packets
Tmin: 1-Told of basic rate
rmax: 3-Told of basic rate

On the other hand, the non-real-time service is considered to transmit variable-length data
bursts. The arrival process of the data burst is Poisson and the data length is assumed to be
with a geometric distribution. A data burst can carry any type of wireless data, e.g., e-mail,
WML (wireless markup language) pages, and etc. The detailed traffic parameters are listed
in Table. 4.1. A basic rate in the WCDMA system is assumed to be a physical channel with
SF=256. For each connection, DPCCH is always active to maintain the connection reliability.
To reduce the overhead cost of interference produced by DPCCHs, the transmitting power of
a DPCCH is smaller than its respective DPDCH by an amount of 3 dB. The other simulation
parameters are given as P* = 0.01, D} = 0.5s, and o = 0.3.

A conventional interference-based scheme proposed in [32] is used as a benchmark for
comparison with Q-MRTC. The interference-based scheme would admit the connection for
a real-time request or allocate a transmission rate for a non-real-time request if the expected
packet error probability in terms of the resultant SIR is smaller than the QoS requirement.

Fig. 4.3 illustrates the throughput of the Q-MRTC and the interference-based scheme
versus the request arrival rate. The Q-MRTC has throughput higher than the interference-
based scheme, and the throughput improvement becomes greater as the request arrival rate

becomes larger. Generally speaking, Q-MRTC can improve the maximum throughput by an
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Figure 4.3: Throughput versus the request arrival rate

amount of 80% over the interference-based scheme. The reason is that, in the Q-MRTC, the
transmission cost comprises the cost of immediate and consecutive decision, and the behavior
of interference variation is taken into the consideration for multi-rate transmission control.
Also, the Q-MRTC performs an on-line reinforcement learning algorithm to estimate the
transmission cost. The estimation error is backpropagated to the Q-MRTC and reduced
through the closed-loop learning procedure. Therefore, the Q-MRTC could provide more
accurate estimation for multi-rate transmission cost and greater throughput improvement
when traffic load becomes large. On the other hand, the interference-based scheme generally
estimates the multi-rate transmission cost of packet error probability at the instant of a
request arrival. Actually, some existing connections may terminate (or handoff) between two
consecutive arrivals and the received interference level decreases subsequently. Therefore, the

interference-based scheme would over-estimate the multi-rate transmission cost.
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Fig. 4.4 illustrates the blocking probability versus the request arrival rate. It can
be found that the blocking probability of the Q-MRTC is much smaller than that of the
interference-based scheme for real-time and non-real-time requests, and the blocking prob-
abilities of the real-time requests are higher than those of the non-real-time requests. The
reason is that the admitted transmission rate of the non-real-time requests are negotiable.
It can also be seen that Q-MRTC has a larger difference between the real-time and non-real-
time blocking probabilities than the interference-based scheme. It is because the interference-
based scheme generally accommodates fewer connections and operates in a lower interference
condition so that the interference variation due to the variable-rate transmission behavior of
the real-time requests is smaller. By contrast, Q-MRTC accommodates more requests and
operates in a higher interference situation so that the interference variation produced by the

real-time requests becomes more critical. That is, the variable-rate transmission behavior
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Figure 4.5: The users’ satisfaction index versus the request arrival rate

contributes a higher admission cost for the Q-MRTC.

An overall users’ satisfaction index (USI) is further defined, which is a linear combination

Aa2
Agz

of ﬁ—zi (type-1) and (type-2), where the A,q (Aq2) is the admitted transmission rate for
type-1 (type-2) and the Ag; (Agz) is the desired transmission rate for type-1 (type-2); Ay =1
and Ay = rmax. That is, USI is expressed as

Aal Aa2
+(1— ,
A PR,

UST =~ (4.14)

where v is the weighting factor.

Fig. 4.5 depicts USI versus the request arrival rate for different traffic patterns, where
Prr, denoting the percentage of the real-time traffic arrival requests in the traffic load, varies
from 0.1 to 0.3. It can be found that Q-MRTC has higher USI than the interference-based
scheme, and the improvement is more significant as the traffic load becomes heavier. This

is because Q-MRTC can accurately estimate the multi-rate transmission cost. Also, USI
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Figure 4.6: The users’ satisfaction index versus the request arrival rate

decreases as the request arrival rate increases. Since the high traffic load may decrease the
admitted transmission rate for new requests, the USI value decreases consequently. Another
observation is that under the fixed weighting factor (v = 0.3), the USI decreases as Ppr
increases. This is because that the real-time requests produce interference variation higher
than non-real-time ones do, which leads to larger real-time blocking probability and less
non-real-time admitted transmission rate.

Fig. 4.6 depicts USI versus the request arrival rate for different weighting factors v =
0.3, 0.5, and 0.7. It can be found that the USI of Q-MRTC is lower when ~ is larger (more
weighting on type-1 service) because Q-MRTC accommodates more requests and operates
under higher interference condition. Thus, the interference variation produced by real-time
requests becomes critical. From Fig. 4.5 and Fig. 4.6, it can be concluded that the

variable-rate transmission characteristic of real-time requests plays an important role for the
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multi-rate transmission control in the multimedia WCDMA systems.

Fig. 4.7 shows the QoS measures: (a) the packet error probability and (b) the packet
transmission delay versus the request arrival rate. It can be seen that Q-MRTC can always
keep the QoS requirements of packet error probability and packet transmission delay. By
contrast, only the QoS requirement of packet error probability is kept in the interference-
based scheme. It is because Q-MRTC dynamically evaluates the transmission cost which is
in terms of packet error probability and packet transmission delay. The Q-MRTC is more
suitable for multimedia WCDMA systems than the interference-based scheme is. Also, it
can be seen that the average packet error probability of the Q-MRTC is larger than that
of the interference-based scheme; however, the Q-MRTC can still hold the packet error
probability within the QoS constraint. This is because the interference-based scheme is too
conservative in the multi-rate transmission control, and it admits less requests and allocates
lower transmission rates. On the other hand, the Q-MRTC obtains the transmission cost
from the on-line operation of the WCDMA system. Consequently, it can accommodate more
requests and appropriately allocate transmission rates as much as possible, under the QoS
constraints.

To evaluate the performance of storage requirement reduction, it is assumed that a table
lookup method in which the continuous-valued parameters of the resultant interference profile
are partitioned into several discrete levels. Generally, different number of discrete levels
leads to different system throughput and different storage requirement. Take an example for
comparison, the interference mean (7, +Al,,) of the resultant interference profile are divided
into 40 levels and the interference variance (1, +Al,) into 10 levels, which has similar system
performance as RBFN neural network. Table 4.2 shows the number of required storage units.
There are 400 storage units required in the table lookup method. On the contrary, only 118

hidden neuron nodes are required in the RBFN neural network. While there are 2 parameters
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Table 4.2: THE NUMBER OF REQUIRED STORAGE UNITS: AN EXAMPLE

Method Storage Units
Table lookup | 400
RBFN 236 (118 hidden nodes)

in each hidden node, there are 236 storage units required for RBFN. Therefore, RBFN can
achieve storage requirement reduction by the amount of 41%. Furthermore, the table lookup
method is static-partioned and is hard to find a proper partition level especially for bursty
traffic. However, in the RBFN neural network, the value of each meaningful state-action
pair is stored and adjusted separately in a corresponding hidden node. That is, the storage
space is non-linearly partitioned in the RBFN neural network. While the traffic load and
pattern change with time, the hidden nodes of the RBFN neural network can self-organize

dynamically and the storage space be re-partitioned accordingly.

4.5 Concluding Remarks

In this chapter, a ()-learning-based multi-rate transmission control scheme for radio resource
management in multimedia WCDMA systems is proposed. The ()-learning algorithm is ap-
plied to accurately estimate the transmission cost for the multi-rate transmission control, and
the feature extraction method and radial basis function network are employed for )-function
approximation that maps the original state-action pairs into the resultant interference profile.
Simulation results show that Q-MRTC can improve the throughput of multimedia WCDMA
system by an amount of 80% over the conventional interference-based scheme proposed in
[32], under the constraint of the QoS requirements of packet error probability and packet
transmission delay. Also, the Q-MRTC provides better users’ satisfaction. It is because
the @)-learning algorithm performs closed-loop control by applying the system performance

measures as a feedback to adjust the multi-rate transmission cost, and correspondingly the
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Q-MRTC can have self-tuning capability to adaptively estimate the transmission cost. More-
over, the storage requirement of RBFN neural network is less than that of the conventional

table-lookup method by the amount of 41%.
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Chapter 5

A Situation-Aware Data Access
Manager Using Fuzzy Q-learning
Technique for Multi-cell WCDMA

Systems

In this chapter, a novel situation-aware data access manager using fuzzy Q-
learning technique (FQ-SDAM) is proposed for multi-cell WCDMA systems.
The FQ-SDAM contains a fuzzy Q-learning-based residual capacity estimator
(FQ-RCE) and a data rate scheduler (DRS). The FQ-RCE can accurately
estimate the situation-dependent residual system capacity; it appropriately
chooses the received interferences from home-cell and adjacent-cell as input
linguistic variables and simplifies the multi-cell environment into a single-
cell one by applying a perceptual coordination mechanism. Also, the DRS
can effectively allocate the resource for non-real-time terminals by adopting a
modified exponential rule which takes the interference influence on adjacent
cells into consideration. Simulation results show that the FQ-SDAM can ef-
fectively reduce the packet error probability and improve aggregate throughput
of the non-real-time services in both the homogeneous and non-homogeneous

multi-cell WCDMA environment.
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5.1 Introduction

The WCDMA cellular system will support integrated services with mixed QoS (quality of
services) requirements: real-time services require continuous transmission and intolerance to
time delay, while non-real-time services require bursty transmission and tolerate moderate
time delay. For maximizing the system capacity and fulfilling the complementary QoS re-
quirements, an adequate radio resource management (RRM) is required. The RRM adopts
a call admission control scheme to ensure that the system will not be overloaded, based on
the long-term availability of radio resources. On the other hand, it employs a data access
control scheme to provide bursty transmission permission for non-real-time services, based
on the short-term availability of radio resources.

The main purpose of the data access control scheme in WCDMA systems supporting in-
tegrated services is to maximize the throughput of non-real-time services while maintaining
the transmission quality of real-time services [47]-[51]. To achieve this goal, dynamic access
probability schemes [48]-[50] and a base station-controlled scheduling scheme [51] were pro-
posed, where the residual system capacity for non-real-time services was firstly estimated
and then shared to non-real-time terminals. A single-cell environment was considered in
[48]-[50], while a multi-cell environment was studied in [51]. In the multi-cell scheme [51],
the interference generated from other-cell terminals was treated as if from several home-cell
ones, and consequently the multi-cell environment was regarded as a single-cell one. How-
ever, the mutual-affected behavior of radio resource allocation in the multi-cell environment
was still not considered. Note that, in the multi-cell WCDMA system, the increment of data
transmission power in one cell would cause the rising of interference level in the adjacent
cells. If each cell allocates the whole possible residual capacity for bursty transmission with-
out taking the interference influence from adjacent cells into account, the system would trap

into an overloading condition.
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The over-loading phenomenon could be alleviated by an appropriate coordination scheme
among cells [52]. Knowing the information of radio resource of all cells, a centralized data
access scheme for the multi-cell WCDMA system can maximize the system throughput by
applying a global optimization method. Unfortunately, the coordination procedure takes long
time to transact the resource information between cells so that it is infeasible for practical
implementation. Usually, the data access control scheme operates in the short-term time
scale, e.g. frame time, and thus distributed schemes are preferable. Kumar and Nanda
[53] proposed a distributed scheme called load and interference-based demand assignment
(LIDA). The LIDA is a kind of resource reservation-based scheme in which some portions
of resource in each cell are reserved against the interference variation. Also, it employs the
concept of burst admission threshold for high-rate transmission in a cell to avoid excess
interference to adjacent cells . In this scheme, only when the strength difference between
the received pilot signals from home cell and adjacent cell is larger than the threshold, the
bursty transmission is permitted. The effectiveness of this scheme relies on the selection of
the reservation threshold, which should be dynamically performed according to the system
loading and the received interference power level.

Additionally, a rate scheduling scheme is also embedded in the data access control scheme
to allocate the residual capacities for non-real-time terminals according to a service principle.
Ramakrishna and Holtzman adopted a mazimization throughput criterion for the scheduling
scheme [54]. Indeed, this criterion can maximize the system throughput, but the low-class
users may suffer from starvation. Alternatively, Jalali, Padovani, and Pankai proposed a
proportional fairness criterion [55] for a down link scheduling scheme in a CDMA-HDR (high
data rate) system. In the scheme, a utility function was defined as a ratio of the supported
data rate and the average data rate. The supported data rate was determined by channel

condition, while the average data rate was the window average of the transmitted throughput.
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The terminal with the highest utility value would transmit in the next frame time. This
algorithm may lead to large transmission delay for some terminals. Also, Shakkottai and
Stolyar proposed an exponential rule criterion [56] for the utility function of the scheme to
make a good balance between the system throughput and the transmission delay. However,
applying the exponential rule to the uplink transmission should have taken the terminal’s
location factor into consideration such that the adjacent-cell interference could be maintained
within a sustained level.

This chapter proposes a situation-aware data access manager using fuzzy (Q-learning
technique (FQ-SDAM) for multi-cell WCDMA systems. The FQ-SDAM scheme consists
of two parts: fuzzy Q-learning-based residual capacity estimator (FQ-RCE) and data rate
scheduler (DRS). The FQ-RCE, by fuzzy @Q-learning technique, estimates the appropriate
situation-dependent residual system capacity, in term of interference power, for non-real-
time services; the DRS assigns transmission rates for non-real-time terminals by a modified
exponential rule.

The fuzzy inference system (FIS) and the reinforcement learning technique have been sep-
arately applied to solve network resource management problems [57]-[59]. A fuzzy resource
allocation controller was proposed in [58], where the FIS technique was adopted to estimate
the resource availability. A reinforcement learning technique, Q-learning, was applied re-
spectively to deal with the dynamic channel assignment in [36] and multi-rate transmission
control problems in [59] for wireless communication systems. By means of learning from the
system environment, the QQ-learning technique can converge to a pre-defined optimal control
target. In [60], Jouffle proposed a reinforcement learning technique for FIS, called fuzzy Q-
learning (FQL). The FQL technique combines the benefits of FIS and reinforcement learning.
The FIS provides a good function approximation for the FQL and a priori knowledge can be

easily applied to the system design; also, the reinforcement learning provides a model-free

80



approach to obtain a control target. By applying the FQL technique, the radio resource can
be managed under partial, uncertain information, and the optimal resource management can
be reached in an incremental way.

The FQ-RCE chooses three essential measures of interferences: the received real-time
interference from home cell, the received non-real-time interference from home cell, and
the received interference from adjacent cells, as input linguistic variables to estimate the
situation-dependent residual capacity in the multi-cell environment. Note that the received
interference from adjacent cells is regarded as a different variable from the received inter-
ference from home cell in order to distinguish their according variations. Therefore, via the
linguistic variable of the adjacent-cell interference, the FQ-RCE at home cell can perceive the
situation of the radio resource allocation by those FQ-SDAMs in adjacent cells, or say, be
aware of the loading situation of adjacent cells, and precisely estimate the residual resource
in a distributed fashion; thus, an explicit action coordination scheme is negligible in the
multi-cell WCDMA environment.

On the other hand, the DRS adopts a modified exponential rule to assign the transmis-
sion rates for non-real-time terminals, based on the residual capacity estimated by FQ-RCE.
The modified exponential rule is a utility function-based scheduling algorithm which con-
siders factors of transmission delay, average transmission rate, and link capacity. Its main
difference from the original exponential rule [56] is on the definition of the link capacity. For
the modified exponential rule, the link capacity is defined as the maximum available rate
under the current link condition of that the interference influence on adjacent cells by the
transmission power is below a threshold. With the feature of location awareness, the modi-
fied exponential rule is more suitable for applications in the uplink transmission of multi-cell
WCDMA systems. Simulation results show that the proposed FQ-SDAM outperforms the

LIDA scheme; it can effectively reduce the packet error probability and improve the aggregate
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throughput in both homogeneous and non-homogeneous multi-cell WCDMA environments.
Also, the modified exponential rule can achieve better system performance than the orig-
inal exponential rule. In the homogeneous case, the FQ-SDAM achieves higher aggregate
throughput by 75.3% (53.3%) than the LIDA scheme with 8=10%, under high-bursty (low-
bursty) real-time traffic. As to the nonhomogeneous case, the FQ-SDAM achieves greater
aggregate throughput by 31.53%, 35.5%, and 34.2% for the cells in the central, first-tier, and
second-tier, respectively, than the LIDA scheme with 5=10%.

The rest of the chapter is organized as follows. The system model is described in Sec-
tion 4.2. The concept of fuzzy Q-learning is briefly stated and the design of FQ-SDAM
is proposed in Section 4.3. Simulation results are presented in Section 4.4, where the per-
formance comparison between the FQ-SDAM and a conventional LIDA scheme is made.

Finally, concluding remarks are given in Section 4.5.

5.2 System Model

A multi-cell WCDMA system containing N cells is considered, where each cell has a
base station with an omni-directional antenna to take charge of communicating with real-
time and non-real-time terminals within its coverage area. The reverse link that supports
slotted transmission is adopted. Each terminal transmits at the same frequency band and
is distinguished by its own spreading code. As to the detail description of the WCDMA
system, please refer to section 4.2.

Two types of traffic are considered: real-time (type-1) traffic and non-real-time (type-
2) traffic. The system provides continuous transmission for real-time traffic and bursty
transmission for non-real-time traffic. The real-time terminals may transmit at any possible
data rate while necessary; on the other hand, the transmission of non-real-time terminals

is controlled by the data access manager at the base station. Considering terminal’s link
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gain and the received interference strength from both home and adjacent cells, the data
access manager assigns an appropriate data rate for each non-real-time terminal. For the
bursty transmission, the available data transmission rates are 1X, 2X, 4x, and 8X , and 1X
transmission rate is called the basic rate. A strength-based power control scheme is assumed
such that the required transmission power is directly proportional to the transmission rate.
Also, the overall capacity is determined by the upper bound of the total received interference
power, and the residual capacity is defined as the allowable received interference power from
the non-real-time terminals.

The link gain between terminal ¢ to base station j, denoted by h;;, is usually determined

by the long-term fading F'L;; and the short-term fading F'S;; [62], which is given by
hi; = FLij x FS;;. (5.1)
The long-term fading F'L;;, combining the path loss and shadowing, is modelled as
FLij=Fkxr™x 10", (5.2)

where k is constant, r is distance from mobile ¢ to base station j, « is path loss exponent
whose value usually lies between two and five for mobile environment (o = 4 in this chapter),
and 1 is normal-distributed random variable with zero mean and variance o7. The parameter
oy, is affected by the configuration of the terrain and ranges from 5 to 12 (¢7=10 in this
chapter). The short-term fading F'S;; is mainly caused by multi-path reflections, and it is
modelled by Rayleigh distribution.

The real-time service is modelled as an ON-OFF Markov process with a transition rate p
from ON to OFF and A from OFF to ON state. The non-real-time service is modelled as a
batch Poisson process; that is, the arrival process of the data burst is in Poisson distribution
and the data length is assumed to be with a geometric distribution. An erroneous real-

time packet will be dropped since there is no re-transmission for real-time packets, while
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the erroneous non-real-time packets will be recovered via automatic repeat request (ARQ)
scheme. The measure of the packet error probability, denoted by P., and packet transmission
delay, denoted by Dy, are regarded as the system performance indices. Also, the maximum

tolerable packet error probability, denoted by P7, is defined as the system QoS requirement.

5.3 Design of FQ-SDAM

The FQ-SDAM contains two functional blocks of a fuzzy Q-learning-based residual ca-
pacity estimator (FQ-RCE) and a data rate scheduler (DRS). The FQ-RCE estimates the
residual interference power budget, and then the DRS allocates the resource for the non-
real-time terminals. In the following, the fuzzy Q-learning and the detailed design of the

two function blocks are described.

5.3.1 The Fuzzy Q-Learning (FQL)

Denote S the set of state vectors for the system, S={5;, ¢ = 1,2,---, M }; each state vector
S; 1s constituted by L fuzzy linguistic variables selected to describe the system. Denote A
the set of actions that are possibly chosen by system states, A={A;, j =1,2,---,N}. For
an input state vector x containing the L linguistic variables, the rule representation of FQL
for state S; is in the form by

if x is 5;, then A; with ¢[5;, Aj], | <:< M and 1 <7 <N,

where A; is the j-th action candidate that is possibly chosen by state S;, and ¢[S;, A;] is
the Q-value for the state-action pair (5;, A;). The number of state-action pairs for each
state 9; is equal to the number of the elements in the action set; i.e., there are N possible
consequence parts for the same antecedent. Every fuzzy rule has to choose an action A;
out of the action candidates set A by an action selection policy. In the FQL, the action
selection policy for each fuzzy rule may be select-maz or other exploration strategy. As to

the defuzzification of the M fuzzy rules, the inferred action a(x) for the input vector x is
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expressed as
M
2zt @ X A,
M 9
Di=1 QU

where «; is the truth value of the rule representation of FQL for state S;. Also, the Q-value

(5.3)

a(x) =

for the state-action pair (x,a(x)) is

M ar x g[S, A
L [ ]. (5.4)

QUx,alx)) = ==L

For the current system state x, after applying the chosen action a(x), the next-stage
system state is assumed at y and the system reinforcement signal is ¢(x, a(x)). To update

the Q-value, the next-stage optimal Q-value, Q*(y, a(y)), is defined as

M
= 7 Siv :
Zz_la]; QI: a2]7 (55)
Zi:l 871

Q" (y,a(y)) =

where ¢[S;, a¥] is the Q-value of state-action pair (5;, af) and aF = argmax {q[5;, A;]}.

Aj

According to the Q-learning rule [40], the Q-value update in the FQL can be expressed as
q[Si, ai] = q[Si, ai] + nAq[S;, all, (5.6)

where 7 is the learning rate, 0 < n <1, and

QY

1Y .
Zk:l O

Aq[Si, ai] = {e(x, a(x)) + 7Q" (v, aly)) — Q(x, a(x))} x

(5.7)
e(x,a(x)) in (5.7) is the reinforcement signal.

5.3.2 Fuzzy Q-learning-based Residual Capacity Estimator (FQ-
RCE)

The FQ-RCE chooses three interference measures: the received real-time interference

from home cell (/1,1), the received non-real-time interference from home cell (/;3), and the

received interference from adjacent cells (/,), as input linguistic variables. Note that the

received interference in the WCDMA system is a good indicator of system loading; also, the
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Figure 5.1: Structure of FQ-RCE

interference generated from home cell can be identified by PN codes and the interference
from adjacent cells can be distinguished by long scrambling codes [63]. Accordingly, the
system state vector x containing the three linguistic variables input to FQ-RCE is defined

as

X = ([h17[h27[o)- (58)

After comprehensive simulation experiments, it is found that five terms for both [,; and
I,, and three terms for [,2 are proper. Hence, their fuzzy term sets are T([,;)={Largely
High, HiGh, MeDium, LoW, Largely Low}={LH, HG, MD, LW, LL}, T([;2)={HiGh,
MeDium, LoW }={HG, MD, LW}, and T(/,)={Largely High, HiGh, MeDium, LoW, Largely
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Low}={LH, HG, MD, LW, LL}. From the fuzzy set theory, the fuzzy rule base forms with
dimensions |T(1p1)|x|T({n2)|xT|(1,)|. Accordingly, M=75. On the other hand, the step-
wise incremental /decremental action of the interference power budget for the non-real-time
services, denoted by P;,., is selected as the output linguistic variable. Here, seven levels of
increment actions (N=7) are decided, and the corresponding fuzzy term set is T( Pi,.)={ P11,
Pl,, Pl3, Ply, Pls, Plg, PI;}. After the interference increment is estimated by the FQ-
RCE, the residual system capacity (RC') being allocated for the non-real-time services is

defined as
RC = Ijy + P, (59)

where [ is the capacity assigned to the non-real-time services last time. Also, the rein-

forcement learning signal ¢(x, a(x)) is defined as

P.(x, Pyne) — P*
P

(xa(x)) = | P, (5.10)

where P.(x, P;,.) is the packet error probability of real-time services for the state-action pair
(X, Pinc), which is a performance measure of the system, and P is the QoS requirement of
real-time packet error probability.

Fig. 5.1 shows the structure of FQ-RCE; it is a five-layer adaptive-network-based imple-
mentation of fuzzy inference system. In the FQ-RCE, layer I to layer 3 are the antecedent
part of the FIS while layer 4 and layer 5 represent the consequence part. The node function
in each layer is described as follows.

Layer 1: Every node k, 1 < k < 13, in this layer is a term node which represents a fuzzy
term of an input linguistic variable, where k=1, ---, 5 (6, 7, 8) (9, - - -, 13) denotes node k
being the k-th ((k — 5)-th) ((k — 8)-th) term in T'(Ip1) (T'(112)) (T'(1,)). The node function

is defined to be the membership function with bell shape for the term. Thus, for an input
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linguistic variable x, the output O,y is given by
Oy = b(z;m", o"), (5.11)

where b(-) is the bell-shaped function, and m* and o* is the mean and the variance of the
node k.

Layer 2: Fvery node k, 1 < k < 75, in this layer is a rule node which represents the
truth value of k-th fuzzy rule; it is a fuzzy-AND operator. Here, the product operation is
employed as the node function. Since each fuzzy rule has three input linguistic variables,
the node output Oy is the product sum of three fuzzy membership values corresponding to

the inputs. Therefore, Oy is given by

O2,k = H{OL[},\V/Z - Pk, (5.12)

where P,={{| all [s that are the pre-condition nodes of the k-th fuzzy rule}.
Layer 3: Every node k, 1 < k < 75, in this layer is a normalization node which performs
a normalization operation; it makes the summation of the all truth values be unity. After

the normalization, the output of this node Os is given by

O
Os i 2k

k= m (5.13)

Layer 4: Every node k, 1 < k < 75, in this layer is an action-select node which represents
the consequence part of k-th fuzzy rule. Based on the action selection policy and Q-values
of the possible action candidates (P[;, j = 1,2,---7), the node is to choose an appropriate
action. Since improper initial setting of fuzzy parameters would lead to a bad learning result,
the Boltzmann-distributed exploration strategy in [41] is employed to explore the set of all
the possible action candidates. In the Boltzmann-distributed exploration, the node chooses

the state-action pair (Sk,ax), ax € T(P;.), for the k-th rule, with the probability (S, ax)

given by
eq[skvak]/T

ST ek PLIT
]:

§(Sk, ax) = (5.14)

88



where T is the temperature which reflects the randomness of action selection. After the
action is chosen, the node sends two outputs Oy ;1 and Oy 2 to the action node and Q-value

node in layer 5, respectively. Oy 1 and Oy 2 are represented by

Oy = Oz X ag, (5.15)

and

0471“2 = OS,k X q[Sk,ak]. (516)

Layer 5: There are two output nodes in this layer: action node Os; and Q-value node
Os 2, which represent the fuzzy defuzzification of FQ-RCE. Here, the center of the area
defuzzification method is applied. Since the truth value of the antecedent part of the i-th
fuzzy rule is normalized in layer 3, the node functions in this layer are summation of the

inputs from layer 4. Hence, Os1 and Os 5 are given by

M=75
Os1 = P = Z Os 1, (5.17)
k=1
and
M=75
Os2 = Q(X, Pipe) = Z Ou k2 (5.18)
k=1

After the action is performed, the FQ-RCE computes the reinforcement signal ¢(x, a(x)) by
(5.10) and updates the Q-value of each state-action pair according to (5.6).

It is noted that the convergence property of Q-learning is held for the single-agent
(learner) case and may not be held for multiple-agent cases; also, the convergence of Q-
learning in multi-cell WCDMA systems would be a difficult task because decision policies
of all cells concurrently change during the learning phase. To deal with this problem, the
perceptual coordination mechanism [61] is applied in FQ-RCE by designing the input lin-
guistic variables, which includes two parts: [p; and [y represent the current state of the

radio resource usage in home cell and [, represents the radio resource allocations performed
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in adjacent cells. Therefore, by measuring the adjacent-cell interference, the FQ-RCE at
home cell can implicitly perceive the situation of radio resource allocation (action) in adja-
cent cells. The multi-cell learning environment can then be simplified as a single-cell one,

and the convergence property for the FQ-RCE can be held henceforth.

5.3.3 The Data Rate Scheduler (DRS)

A modified exponential rule scheduling algorithm is proposed for DRS. The formula of

the modified exponential rule is given by

. T W W
Jj = argmax {— X e+VW }, (5.19)
i L

K3

where r;, 7;, and W; are the link capacity, the average transmission rate, and the waiting
time, of the i-th data terminal, respectively, and W is the average waiting time of all the
data terminals. The main difference between the modified and the original exponential
rules is the definition of the link capacity. The original exponential rule was proposed for
downlink transmission in the CDMA HDR system [56], where the link capacity was defined
as the maximum transmission rate under the current link condition. However, in the multi-
cell WCDMA environment, the uplink transmission power would interfere adjacent cells.
The closer the terminal near the cell boundary is, the larger the interference power will be.
Therefore, the modified exponential rule algorithm sets a guard threshold of adjacent-cell
interference for the uplink transmission power such that its incurred adjacent-cell interference
is lower than a pre-defined level. Then, the location-dependent link capacity r; is defined as

the maximum available transmission rate that satisfies the following condition:
P(TZ) X h;l S Pd, (520)

where P(r;) is the transmission power of terminal ¢ with rate r;, h? is the maximum link gain

between the terminal ¢ and adjacent cells, and P; is the guard threshold of the adjacent-cell
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interference. In the strength-based power control scheme, the transmission power P(r;) is

given by
r; X (Eb/No)* X [m(w
PG % hZ ’

P(ry) = (5.21)

where (E,/Ng)* is the signal-to-noise requirement, I,,,, is the maximum received interference
power, PG is the processing gain, and h; is the home-cell link gain of the terminal. Also,
h; and h{ can be measured by monitoring the received pilot strength from the home and
adjacent cells. Hence, the modified exponential rule has the property that the terminal with
higher mazximum available transmission rate, lower average transmitted rate, and longer
delay will get higher transmission priority. As the terminal moves toward the cell boundary,
the emission power to the adjacent cells will go high, the transmission priority will be low,
and the waiting time will accumulate. However, as the terminal’s waiting time is long, the
transmission priority will be high. Therefore, the modified exponential rule can make a
balance among the link gain, the location, and the waiting time of terminals.

The DRS performs the rate allocation according to the terminal’s priority. The terminal
with the highest priority gets the rate allocation first, and other terminals get the allocation
in order. The operation of the DRS will stop until all the data power budget is used out.

Its procedure is described in the following:

[The DRS Algorithm]

Step 1 Obtain the residual system capacity (RC') for non-real-time services from

FQ-RCE.

Step 2 Choose highest-priority terminal, 7, out of data terminals that are not allo-
cated yet, by (5.19).

Step 3 Compute the remaining RC by
RC = RC — P(r;)/ PG.

If the remaining RC' is larger than 0, go back to Step 2. Otherwise, go to
Step 4.
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Table 5.1: TRAFFIC PARAMETERS IN THE MULTI-CELL WCDMA SYSTEM
Traffic Type Traffic Parameters

2-level real-time voice Mean talkspurt duration: 1.00 seconds

Mean silence duration: 1.35 seconds

Peak rate (R, ): 4-fold of basic rate
High-bursty Mean rate: 1-fold of basic rate

real-time data traffic pr: 0.25

Peak rate (R,;): 2-fold of basic rate

Low-bursty Mean rate: 1-fold of basic rate

real-time data traffic pi: 0.5

Mean data burst size: 200 packets
Non-real-time data traffic | 7y 1-fold of basic rate

Tmax. 3-fold of basic rate

Step 4 Inform terminals the assigned data rate via signaling channel. End

5.4 Simulation Results and Discussion

In the simulations, a concatenated 19-cell (N=19) environment is configured as the multi-
cell WCDMA system. The central cell is labelled as cell 1, the cells in the first tier are cell
2 ~ cell 7, and the cells in the second tier are cell 8 ~ cell 19. Three kinds of real-time
traffic are considered: voice traffic, high-bursty real-time data traffic and low-bursty real-
time data traffic. The voice traffic assumes 2-level transmission rate traffic which is modelled
by a 2-level MMDP (Markov modulated deterministic process). The real-time data traffic
is modelled by an ON/OFF traffic stream with specific burstiness 1/pp, (1/p;) and peak rate
R, 1 (R,;) for high-bursty (low-bursty) real-time traffic. The two real-time data traffics have
the same mean rate but different burstiness. On the other hand, the non-real-time data
traffic is considered to have a Poisson arrival process with data burst length in geometric
distribution. All the detailed traffic parameters are listed in Table 5.1. A basic rate in the
WCDMA system is assumed to be a physical channel with SF=256. For each connection,

DPCCH is always active to maintain the connection reliability. To reduce the overhead cost
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of interference produced by DPCCHs, the transmitting power of a DPCCH is smaller than
its respective DPDCH by an amount of 3 dB. The QoS requirement of the packet error
parameter, P’ is set to be 0.01.

The conventional resource reservation scheme proposed in [53], LIDA (load and interfer-
ence demand assignment), is used as a benchmark for performance comparison. The basic
concept of the LIDA scheme is two-folded: firstly, a portion of interference power budget, 3,
is reserved to avoid the over-loading situation; secondly, a burst-mode admission is applied

for the high-rate traffic. Also, the allocation of the incremental of transmission power, Pj,..

to the non-real-time data traffic in the LIDA scheme is given by
Pinc = (1 - 6)Ima1’ - [hl - [h2 - [o- (522)

The performance of the LIDA scheme highly relies on the choice of reservation threshold, 5.
In the simulations, three different degrees of reservation threshold, 8 = 0%, 5%, and 10%, are
considered and the modified exponential rule with P;=2dB is applied for the LIDA scheme .
Moreover, a scheme which combines the FQ-RCE with the original exponential rule, called
FQ-RCE/EXP; is considered to further evaluate the effectiveness of the modified exponential
rule. Noted that all the considered schemes are applied to non-real-time terminals only, and

all the real-time terminals initiate data transmission whenever they have packets in queues.

5.4.1 Homogeneous Case

In the homogeneous case, all cells are assumed to contain 22 voice terminals, 40 real-
time data terminals and 20 non-real-time data terminals. The forty real-time data terminals
consist of Np; high-bursty and Np; low-bursty data users; obviously, Np +Np ;=40.

Fig. 5.2 shows the packet error probabilities versus the number of high-bursty real-time
data users. It can be found that the packet error probability of the LIDA scheme will violate
the QoS requirement and the LIDA scheme without reservation (5=0%) has the largest
packet error probability. The results justify the necessity of a precise residual capacity

estimation to avoid the overloading condition in the multi-cell WCDMA environment. As to
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the FQ-SDAM and FQ-RCE/EXP schemes, their packet error probabilities always satisfy the
QoS requirement. The reason is as follows: the FQ-RCE adopts the FQL which inherently
possesses the capability of reinforcement learning. Thus the FQ-RCE can precisely determine
the residual system capacity by monitoring the loading status of the home cell and the
interference variation of adjacent cells. Also, whatever the number of Np , is, the FQ-SDAM
scheme always achieves lower packet error probabilities than the FQ-RCE/EXP scheme does.
This is because the up-link transmission powers emitted from terminals would interfere users
at home cell and adjacent cells in the multi-cell environment. With the awareness of location
of users, the modified exponential rule in FQ-SDAM will effectively curb the interference
influence on adjacent cells within a sustainable level and consequently would reduce the

packet error probabilities more.
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Figure 5.2: Packet error probabilities: homogeneous case

Fig. 5.3 shows the aggregate throughputs of non-real-time data traffic versus three num-
bers of high-bursty real-time users: Np =10, 20 and 30. The three cases of different real-time

data users are used to simulate the low-bursty, medium-bursty and high-bursty scenarios.
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Here, the performance of the LIDA scheme with 8=0% is not considered due to its QoS
violation. It can be found that the FQ-SDAM achieves the highest data throughout for
non-real-time services and the LIDA scheme with #=10% the lowest. Compared with the
LIDA scheme with f=10%, the FQ-SDAM, FQ-RCE/EXP, and LIDA with 8=5% schemes
improve the throughput by an amount of 75.3%, 73.3% and 52.9% (53.3%, 51.1% and 49.2%),
respectively, in the low-bursty (medium-bursty) case. In the high-bursty case, under QoS
constraint, the FQ-SDAM and FQ-RCE/EXP schemes improve the throughput over the
LIDA scheme with =10% by an amount of 16.8% and 10.7%, respectively. The reason is
that the FQ-SDAM scheme approaches the desired transmission target (P*=0.01) by the
fuzzy Q-learning. According to the definition of reinforcement signal ¢(x,a(x)), the FQ-
SDAM would try to allocate the resource as much as possible under the QoS requirement.
On the contrary, the LIDA scheme with f=10% is a conservative scheme, which has the low-
est packet error probability at the expense of capacity waste. It can also be found that, for
the three cases, the FQ-SDAM achieves aggregate throughput higher than the FQ-RCE/EXP
by 1.4%, 1.43% and 5.5%, respectively. As the number of high-bursty real-time users goes
up, the performance gain increases. This is because the modified exponential rule consid-
ers the terminal’s location factor and reduces the packet error probability in the multi-cell
WCDMA environment; with a reinforcement signal containing a lower packet error prob-
ability, the FQ-RCE will tend to allocate more capacity in the next-turn decision during
the fuzzy Q-leaning period; as a result, the data throughput increases as more packets are

successfully transmitted.

5.4.2 Non-homogeneous Case

In the non-homogeneous case, the real-time data terminals for the first-tier cells (cell 2 to
cell 8) are: Npp =25 —2% (1 —1) and Np; = 40 — Npy, 1=2, ---, 8, while for the central
and second-tier cells, the real-time data terminals are: Npj = Np; = 20.

Fig. 5.4 shows the packet error probabilities of the three tiers in the multi-cell WCDMA
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Figure 5.3: Aggregate throughput of non-real-time data traffic: homogeneous case

system. It can be seen that only FQ-SDAM, FQ-RCE/EXP, and LIDA with 8=10% can
meet the QoS requirement. It is because, in the FQ-SDAM and FQ-RCE/EXP schemes, the
received adjacent-cell interference is considered as an input parameter for resource estima-
tion. The resource allocation in the adjacent-cells is perceived by observing the fluctuation
of interference. Consequently, the action of resource allocation between cells can be concep-
tually coordinated in the implicit way. Also, compared to Fig. 5.2 at Npj = 20, it can be
found that the packet error probability in the non-homogeneous case is larger than that in
the homogeneous case. The reason is that, in the non-homogeneous case, the fluctuation
of received adjacent-cell interference differs from cell to cell when the cells compete for the
residual capacity in the multi-cell environment. Without coordination, each cell allocates in
the myopic fashion so that the system will tend to operate in the over-loading situation.
Fig. 5.5 shows the aggregate throughputs of non-real-time data traffic in the three tiers of
the multi-cell WCDMA system. Here, the aggregate throughputs of the LIDA with 8=0%
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and f=5% are not considered due to their QoS violation. The aggregate throughput in
the non-homogeneous case is smaller than that in the homogeneous case due to the higher
interference fluctuation. Also, the FQ-SDAM and FQ-RCE/EXP schemes still achieves
higher aggregate throughput by an amount of 31.53% and 28.346% (35.5% and 33.63%)
(34.2% and 32%) for the cells in the central (first-tier) (second-tier) than the LIDA with
B = 10% scheme does.

5.5 Concluding Remarks

A novel situation-aware data access manager using fuzzy Q-learning technique (FQ-
SDAM) is proposed for multi-cell WCDMA systems. It is designed to contain a fuzzy
Q-learning-based residual capacity estimator (FQ-RCE) and a data rate scheduler (DRS).
By applying the perceptual coordination method, the FQ-RCE treats the received home-

cell interference and adjacent-cell interference as two separate linguistic variables such that
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it can adaptively determine the residual capacity according to the current loadings in the
home and adjacent cells. Simulation results show that, compared to the LIDA scheme [53],
the proposed FQ-SDAM can effectively reduce the packet error probability and enhance
the aggregate throughput of the non-real-time services in both the homogeneous and non-
homogeneous multi-cell WCDMA environment. It is because, by applying the FQL tech-
nique, the FQ-RCE monitors the radio resource allocation in the adjacent cells, perceives
the partial and uncertain information, and enhances the estimation of the residual system
capacity in an incremental way. Also, the DRS effectively allocates the resource for the non-
real-time terminals by adopting a modified exponential rule which takes the information of

the location-dependent link capacity into consideration.
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Chapter 6

Conclusions and Future Works

In this dissertation, the radio resource allocation schemes for mobile communication net-
works are studied by using neural/fuzzy techniques, including an adaptive-network-based
fuzzy radio resource controller for TDMA systems, a Q-learning-based multi-rate transmis-
sion control scheme for WCDMA systems, and a fuzzy Q-learning-based data access manager
for WCDMA systems.

In Chapter 3, the radio resource allocation problem in TDMA system is investigated and
a fuzzy resource allocation controller (FRAC) is proposed. The FRAC adopts an active-
network-based fuzzy inference system, which takes the advantage of expert knowledge of
fuzzy logic system and learning capability of neural network. And the FRAC considers the
gain of statistical multiplexing via choosing the air-interface performance as input linguistic
variables, together with the capacity requirement of a call request and the capacity reserva-
tion for future handoff calls. The air-interface performance criterion, which is a fuzzy logic
function of voice-packet dropping rate and data packet delay, can reflect the effect of multi-
plexing gain. That is, it makes the FRAC act as a closed-loop system, which would result in
a stable operation. Simulation results show that FRAC performs the best, compared with
the FapectedMaz strategy [7] and guard schemes. Also, it has the lowest new call blocking
rate and handoff blocking rate while keeping the QoS contracts of different services according
to the network dynamics. Moreover, data services can achieve more multiplexing gain than

voice services because data services are non-real-time and data packets can be buffered. No
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matter in the stationary loading or non-stationary loading case, FRAC is sophisticated and
robust.

Many hardware implementations of fuzzy VLSI chip have been proposed recently [24],
[25]. In [25], a VLSI fuzzy controller is designed for Sugeno fuzzy inference system. Also,
the VLSI fuzzy controller takes the weighting sum method in the defuzzification procedure,
which can avoid the limited accuracy and stability problems. Therefore, the hardware imple-
mentation of FRAC is feasible and the cost can be reduced. Moreover, the complexity and
computation time of FRAC can be reduced by suitably delete or merge some fuzzy rules,
which is an interesting topic deserved for further investigation.

In Chapter 4, the radio resource allocation problem in long-term time scale is investigated
and a multi-rate transmission control scheme by using Q-learning technique (Q-MRTC) for
WCDMA systems is proposed. The ()-learning algorithm is applied to accurately estimate
the transmission cost for the multi-rate transmission control, and the feature extraction
method and radial basis function network are employed for ()-function approximation that
maps the original state-action pairs into the resultant interference profile. Simulation results
show that Q-MRTC can improve the throughput of multimedia WCDMA system by an
amount of 80% over the conventional interference-based scheme proposed in [32], under
the constraint of the QoS requirements of packet error probability and packet transmission
delay. Also, the Q-MRTC provides better users’ satisfaction. It is because the )-learning
algorithm performs closed-loop control by applying the system performance measures as
a feedback to adjust the multi-rate transmission cost, and correspondingly the Q-MRTC
can have self-tuning capability to adaptively estimate the transmission cost. Moreover, the
storage requirement of RBFN neural network is less than that of the conventional table-
lookup method by the amount of 41%.

Actually, the Q-MRTC can be viewed as a "dynamic CAC” scheme while the interference-
based scheme as a "static CAC” scheme. The Q-MRTC makes a decision according to current

control policy and evaluates it by a delayed reward, which can take the behavior of network
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dynamics into consideration. However, the interference-based scheme makes a decision only
based on current information, which may suffer from temporary resource deficiency. That is
why the Q-MRCT largely outperforms the interference-based scheme. It is noticeable that
the control policy is determined by the evaluation function. It will be an interesting topic to
further study the performance of Q-MRCT under different definition of evaluation functions.
Another interesting topic is to investigate the convergency property of Q-MRCT. Since the
traffic characteristics of future multimedia services vary vastly and dramatically, Q-MRTC
scheme may require longer time to converge. It is possible to apply the batch learning
technique for the Q-learning rule in Q-MRTC such that the learning time will be largely
reduced and the system stability can be maintained regardless of short-term fluctuation.

In Chapter 5, the radio resource allocation problem in short-term time scale is investigated
and a situation-aware data access manager using fuzzy Q-learning technique (FQ-SDAM)
for multi-cell WCDMA systems is proposed. It is designed to contain a fuzzy Q-learning-
based residual capacity estimator (FQ-RCE) and a data rate scheduler (DRS). By applying
the perceptual coordination method, the FQ-RCE treats the received home-cell interference
and adjacent-cell interference as two separate linguistic variables such that it can adaptively
determine the residual capacity according to the current loadings in the home and adja-
cent cells. Simulation results show that, compared to the LIDA scheme [53], the proposed
FQ-SDAM can effectively reduce the packet error probability and enhance the aggregate
throughput of the non-real-time services in both the homogeneous and non-homogeneous
multi-cell WCDMA environments. It is because, by applying the FQL technique, the FQ-
RCE monitors the radio resource allocation in the adjacent cells, perceives the partial and
uncertain information, and enhances the estimation of the residual system capacity in an
incremental way. Also, the DRS effectively allocates the resource for the non-real-time termi-
nals by adopting a modified exponential rule which takes the information of the interference
influence on adjacent cells into consideration. Also, with the awareness of location of users,

the modified exponential rule improves the system performance compared to the original
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exponential rule. The perfect channel information and code orthogonality are assumed in
Chapter 4. However, some measurement errors and imprecise clock synchronization occur
in practical mobile communication environment. It requires further study to investigate the
performance of FQ-SDAM operating under imperfect environment.

The high-speed data transmission in the uplink emerges as one the new issues in the
WCDMA systems, and the work item on high speed uplink packet access (HSUPA) was
created [64]-[66]. The goal of the HSUPA is to improve coverage and user throughput of
the current 3GPP uplink dedicated transport channels in UTRA FDD Rel6. The HSUPA
will include advanced features, such as: adaptive modulation and coding (AMC), hybrid
ARQ (HARQ), shorter frame time, as well as Node-B controlled scheduling. For the packet
scheduling in HSUPA | two fundamental methods exist: (1) Node-B controlled rate scheduling,
where all uplink transmissions randomly occur with time overlap and with the selected rate
restricted to keep the total noise rise at the Node-B at an acceptable level and (2) Node-B
controlled time and rate scheduling, where only a subset of terminals that have traffic to
send are selected to transmit over a given time interval also with selected rate restricted to
meet noise rise requirement. During the preliminary study item phase, it has shown that
these advanced techniques can enhance the uplink packet transfer performance significantly
compared to Rel99/Reld4/Rel5 [65]. However, some open issues remain. It would be an

interesting and essential research topic to study the scheduling algorithm and the cross-layer

MAC design for the future HSUPA system.
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