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核心函數為基礎的支持向量分類器：理論與應用  

 

研究生：楊健炘 指導教授：蘇朝墩

陳文智

 

國立交通大學 

工業工程與管理學系 

 

在兩種類別的分類作業上，支持向量分類器（support vector machine, SVM）

是一個好的資料探勘工具，使用者可以透過簡單的計算，以超平面（hyperplane）

和邊界（boundary）完成資料分類。為了要解決許多非線性的問題，數學家們建

議使用 SVM 結合核心函數（kernel function）的方式來分析。這樣的做法雖有利

於分類，但是在處理大量和複雜資料上，SVM 仍受到限制。實際上，不同領域

的龐大資料庫中往往隱含許多資訊和知識，而特徵選取是擷取資訊和知識的其中

一種程序。因此如何能夠快速地刪減不重要的屬性，進而獲得正確的特徵屬性，

是一重要的議題。 

本研究首先提出一個新的以 SVM 為基礎的分類方法，透過常用的核心函數 

(Polynomial 和 RBF) 建構分類器，並提出參數設定與核心函數選擇的指引。接

著，將所提出的 SVM 分類器與 Hermes 和 Buhmman (2000)所提的屬性選擇方法

作結合，構建一特徵選取程序。最後，本研究以高血壓檢測為例，透過所提出之

程序進行一個案研究：包含模型建構與刪減不重要的屬性，並與倒傳遞類神經網

路、決策樹、粗略集合等方法比較。結果顯示，無論是正確率和精確度的評估上，

所提出方法的績效優於其他方法。 

 

關鍵詞: 特徵選取、支持向量分類器、核心函數、倒傳遞類神經網路、決策樹、

粗略集合、高血壓。
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SVM is a good data mining tool for the two class classification. The 

classification task is worked by the hyperplane and boundary. In order to solve 

nonlinear classification problems, mathematicians provided related kernel functions to 

deal with them. Although the approach of the SVM with kernel function is useful for 

classification, its performance must be improved especially for some data, such as 

large and complex data. In practice, large data sets often connote information and 

knowledge in many fields. Feature selection is one of the procedures to gather the 

information. Thus, it is an important issue that how to reduce attributes and select 

correct features in this field. 

In this dissertation, we attempt to investigate the theory and application of 

classifier support vector machine. We hope to increase the performance of 

classification through the new classifier. Two popular kernel functions, polynomial 

kernel and Gaussian Radius Base Function kernel are used. The relevant strategies, 

including the setting of parameters and selecting of kernels will be provided. Next, we 

apply Hermes and Buhmann’s (2000) idea to our proposed new classifier. Also, we 

construct a procedure of feature selection based on it.  

Finally, we demonstrate a case study of feature selection for hypertension 

detection. This study will construct prediction model by the developed approaches. 
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Implementation results show that the performance of the developed approach is better 

than those of backpropagation neural network, decision tree (DT) and rough sets (RS) 

methods based on accuracy and specificity. In addition, this paper provides some 

medical discussions of the position of anthropometric factors after feature selection.  

 

Keywords: Feature selection, support vector machine, kernel function, 

backpropagation neural network, decision tree, rough sets, hypertension. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Nowadays, Knowledge Discovery in Databases (KDD) is concerned with 

extracting useful information from databases (Fayyad et al., 1996). Data mining is a 

set of techniques used in an automated approach to exhaustively explore and bring to 

the surface complex relationships in very large datasets (Liu and Motoda, 1998). Two 

objectives in the data mining areas are gathering the model accuracy and important 

information. Recently, many algorithms or tools were developed to construct a more 

precise model to explain the relationship between input and output variables in the 

data mining areas. Support Vector Machine (SVM) is one of the tools spring up 

among the classification applications.  

The SVM is a promising classification technique proposed by Vapnik and his 

group at AT&T Bell Laboratories (Cortes and Vapnik, 1995). It is a universal 

approximator that can be used to learn a variety of representations from training 

samples and regression tasks. It has also been successfully applied to a number of 

real-world problems such as handwritten characters and digit recognition (Schoelkopf, 

1997; Cortes and Vapnik, 1995; LeCun et al., 1995; Vapnik, 1995), face detection 

(Osuna, 1997) and speaker identification (Schmidt, 1996). SVM is a good tool for the 

two class classification. It can separate the classes with a particular hyperplane, which 

maximizes a quantity called the margin. The margin is the distance from a hyperplane 

separating the classes to the nearest point in the dataset. This maximum margin 

criterion has the advantage of being robust against noise in data and making a solution 

unique for linearly separable problems. In addition, it is important that the SVM with 

a theoretically strong support is based on the statistical learning theory framework. An 
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important finding of the statistical learning theory is that the generalization error can 

be bound by the sum of the empirical error and term, which depends on the Vapnik 

Chervonenkis (VC) dimension, which characterizes the complexity of the 

approximating function class (Vapnik, 1998; Pardo and Sberveglieri, 2005). 

However, not all of the cases are linear and separable for classification. In fact 

data that is both vague and overlapping is common in many cases. Thus, many 

interactions occur, particularly at the input spaces. Based on available studies (Oyang 

et al., 2005; Scholkopf et al., 1995), it seems that the original SVM did not perform 

well for these cases. In order to solve this problem, mathematicians provided related 

kernel functions to deal with nonlinear classification problems on the basis of the 

above limitations (Muller et al., 2001). There are several types of kernels being used 

for all kinds of problems. Each kernel may be suitable for some of the problems. For 

instance, some well-known special problems, such as text classification (Joachims, 

2000) and DNA problems (Yeang et al., 2001) are reported to be classified more 

correctly using the linear kernel.  

 

1.2 Motivations 

Although the approach of the SVM with kernel function is useful for 

classification, its performance must be improved, especially for complex data. This is 

particularly important for people who want to obtain a high level of accuracy in 

advanced areas such as precision engineering and medical diagnosis. Owing to the 

available kernel function own the advantages by themselves, it seems that users can 

get a better accuracy on classification tasks using a combination of different kernel 

functions. Therefore, further study is highly desired. 

In addition to accuracy, feature selection is another substantial issue for 

classification. Feature selection can avoid any unnecessary computation for 
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classification process. Limiting the number of feature can sometime be helpful 

because it cuts down the model capacity and thus reduces the risk of over-fitting. 

However, we should note that reducing the features always bears the danger of 

reducing the expected classification performance. Thus, how to achieve/keep the 

expected classification performance and to avoid decreasing the accuracy after feature 

selection is an important problem. In the disease diagnosis, diagnosticians or 

physicians need to discovery some information or knowledge from the data set based 

on fewer features or subsets. Owing to most of the data sets with a large number of 

variables. They need a good tool/algorithm to implement feature selection quickly and 

precisely. 

 

1.3 Objectives 

In this study, we attempt to investigate the theory and application of classifier 

SVM. First, a kernel-based SVM will be developed. We hope to increase the 

performance of classification through the new classifier. Two popular kernel functions, 

polynomial kernel and Gaussian Radius Base Function kernel (so-called RBF kernel) 

transform the row data from low dimension to high dimension. SVM with single and 

combined kernels are experimented in this study respectively. Furthermore, the 

relevant strategies, including the setting of parameters and selecting of kernels will be 

tested by using the data sets collected from the UCI data bank and the hospital. Next, 

feature selection for SVM will be discussed. We investigate the feature selection 

problem of our proposed new classifier. We apply Hermes and Buhmann’s (2000) idea 

to our method. Finally, we demonstrate a case study of feature selection for 

hypertension detection. This study constructs a prediction model for hypertension 

using anthropometrical body surface scanning data. In addition to our proposed 

approaches, some feature selection methods: backpropagation neural network, 
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decision tree and rough sets are in the benchmark and used to predict hypertension. 

The relevant indices on epidemiology such as sensitivity and specificity are used to 

evaluate the position of anthropometric factors after feature selection. Finally, 

technical and medical discussions are provided. In summary, the framework of the 

kernel-based SVM discussed in this dissertation is showed in figure 1.1. 

 

Data Collection 
and 

Data Preparing 

 
Figure 1.1 Research framework 

 

1.4 Organization  

 this dissertation is organized as follows. Chapter 2 describes 

related research, including a brief introducti

This remainder of

on to SVM, relevant kernel functions, and 

feature selection approaches. In addition, an indicator to evaluate the kernel selection 

criterion, mess level, is briefly introduced in this chapter. Our proposed approaches 

including combined kernel method and feature selection method are described in 

Chapter 3. In the Chapter 4, we illustrate proposed approach’s effectiveness using 

A Combined Kernel 

Application 

Function is Proposed 

A Kernel-Based SVM by 

Kernel Selection 

Feature Selection Using the L-J Method 

A Case Study of 
pertension Detecti  Hy on

 4



various real-world datasets. A case-study (hypertension detection) is described in 

Chapter 5. Finally, the conclusions and the direction of further research are given in 

Chapter 6. 
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CHAPTER 2 

RELATED WORKS 

2.1 Support Vector Machine 

SVM recently gained popularity in the learning community. In its simplest linear 

form, an SVM is a hyperplane that separates a set of positive elements from a set of 

negative elements with maximum interclass distance, so-call the margin. Figure 2.1 

shows such a hyperplane with the associated margin. 

 

Class 2 

Class 1 

margin 

Figure 2.1 Hyperplane with the maximal margin by a linear SVM. 

The formula for output of linear SVM is  

                 bu i
T +⋅= xw (2.1)

where  is normal vector (weight coefficient vector),  is input vector and  is 

bias term. Based on that, we can get the class  which is 1 or -1. The distance 

between a training vector  and the boundary, called margin, is expressed as 

follows:  

w ix b

u

ix

                
w

xw bi
T +⋅

 
 

According to original theory by Vapnik (1995), we want to find the margin  that 

 and  to separate the elements which are in positive or 

m

1>+⋅ bi
T xw 1<+⋅ bi

T xw
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negative class. In order to compute the boundary, we need to maximize , i.e. 

minimize 

m

2

2
1 w . Consequently, we can draw the optimization formulation as 

                 
tosubject

imizemin
   1≥+⋅ )x(w

ww

by i
T

i

T

(2.2)

where  is the iix th training element and { }11,yi −∈  is the correct output of the 

SVM for the thi  training element. Note that the hyperplane is determined by the 

training elements  on the margin, so-called support vectors. As seen in figure 1, 

they are “physically supporting” the final hyperplane . 

ix

0=+ bT xw

However, practically some of the problems are with the nonseparable patterns. 

Hence Cortes and Vapnik (1995) introduced a penalty term  in the objective 

function and allowed training errors: 

i
l
iC ξΣ =1

                 
tosubject

imizemin

   
l,...,i,

by

C

i

ii
T

i

l

i
i

T

10
1

2
1

1

=≥ξ
ξ−≥+⋅

ξ+ ∑
=

 
)x(w

ww

 (2.3)

That is, constraints equation 2.3 allow that training data may not be on the 

correct side of the separating hyperplane  while we minimize the training 

error  in the objective function. Hence if the penalty parameter  is large 

enough and the data is linear separable, problem equation 2.3 goes back to equation 

2.2 as all  will be zero (Lin, 2001). In addition to linear cases, most of the 

problems are with nonlinear patterns. In order to solve the nonlinear cases, the kernel 

function was often used in these cases. As for nonlinear cases, the plane is found by 

solving the following constrained quadratic programming problem: 

0=+ bT xw

i
l
iC ξΣ =1 C

iξ

                maxmize ∑∑∑
= ==

αα−α=α
n

i

n

j
jiji

n

i
i kyy

1 11

)',(
2
1)( xxW  (2.4)

under the constraints  and ∑ =
=α

n

i ii y
1

0 Ci ≤α≤0  for ni ,...,2,1=  where  

are the training sample vectors, and 

Rxi ∈

{ }1,1 +−∈iy  the corresponding class labels 
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(Cortes and Vapnik, 1995). The kernel function  will be detailed in the next 

section.  

)',( xxk

 

2.2 Kernel Function 

Kernel function from kernel methods (Aronszajn, 1950) have become in the last 

few years on of the most popular approaches to learning from examples with many 

potential applications in science and engineering (Cristianini and Taylor, 2000; Vapnik, 

1998; Scholkopf, 1997; Scholkopf et al., 1998; Roth and Steinhage, 2000). Kernel 

functions of the form )()(),( 2121 xxxx ϕ⋅ϕ=k , ⋅  is an inner product and  is in 

general a nonlinear mapping from input space 

ϕ

X  onto feature space Z . In fact, the 

kernel function k  is directly defined. ϕ  and the feature space Z  are simply 

derived from its definition. Kernel substitution of the inner product can be applied for 

generating SVM for classification based on margin maximization (Sanchez, 2003). In 

other words, SVM find a hyperplane in a space different from that of the input data . 

It is a hyperplane in a feature space induced by a kernel  (the kernel defines a inner 

product in that space). Through the kernel  the hypothesis space is defined as a set 

of “hyperplanes” in the feature space induced by . We also can say that the 

fundamental concept of the kernel method is deformation of the vector (lower) space 

itself to higher dimensional space. Often the higher dimension is clearer to classify 

than low dimension. See a linearly non-separable example presented in the follows. A 

total of six points , , , ,  and  are vector  showed in figure 2.2. 

Significantly, six points are nonlinearly separable in two dimensions. Therefore, we 

need a kernel function  to transform to a higher dimensional space to solve it. 

,  i.e. 

x

k

k

k

1x 2x 3x 4x 5x 6x x

Φ

32 RR →Φ :
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=Φ
2
2

21

2
1

2
x

xx
x

x)( . After kernel function transformation, we can get 

 8



vector , , which is a linearly separable case showed in figure 2.3.  t 3R∈t

 

Figure 2.2 Original space (input space). 

 

 

Figure 2.3 Transformed space (feature space). 

 

In order to solve more complex problems, the kernel function was used to 

generate SVM for classification is a popular approach described as above. The kernel 

function is usually presented as  and introduced for satisfying the distance is 

defined in transformed space and it has a relationship to the distance in the original 

space. Several examples of such kernel functions are known, as follows: 

)',( xxk

(1) Polynomial kernel 

                d
ii bak )'()',( xxxx ⋅+=  (2.5)
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where a and b are constants. Its degree is d. For this kernel there are  

distinct feature, being all the monomials up to and including degree  and the 

number of attributes  in an instance of the data set. A special case of this kernel 

 and  forms a linear kernel. Some simple cases using linear kernel are 

good enough for SVM-based classification (Zien et al., 2000). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
d
dn 1

d

n

0=a 1== db

(2) RBF kernel  

               )1(),(
2'' xxexpxx −

γ
−= iik  (2.6)

where γ  is kernel width and it is . The kernel width common to all the kernels, 

is specified a priori by the user. 

22σ

(3) Signomid kernel 

               )',(),( ' ϑ+κ= xxtanhxx ik  (2.7)

where 0>κ  and 0<ϑ . However, Mercer’s theorem is satisfied only for some value 

of   and ϑ . κ

 

Summary of the statement concerning with kernels, we need to make a 

mathematical definition of kernel function in proposition 2.2.1 (Scholkopf and Smola, 

2002). 

 

Proposition 2.2.1 Definition positive definite kernel 

Let X be a nonempty set. A function k on X×X which for all  and all Nm∈

χ∈mxx ...,1  gives rise to a positive definite Gram matrix is called a positive definite 

(pd) kernel. Often, we shall refer to it simply as a kernel. 

 

The selection of the kernel function is very important for the performance of the 

classifier (Papadopoulos et al., 2005). Wahba (2000) has suggested using the kernel 

 10



function to increase the dimensionality, and then it is easier to classify the data in the 

higher dimensional space by hyperplane. Although it is well known that the choice of 

kernel affects SVM’s performance, only a few kernels have been used in practice, 

because it is difficult to choose proper turning of parameters (Dudoit et al., 2002). As 

for the parameters selection for SVM, it is an other important issue to SVM’s 

performance. Scholkopf and Smola (2002) indicated that it is suitable of smaller C for 

SVM classification. They also present that both the kernel parameters and the SVM 

parameter (value of C) are often chosen using cross validation. Zhu and Zhang (2004) 

considered that too larger parameters will bring very time consuming. Still, the 

parameters selection lacks the consistency for researchers. 

 

2.3 Properties of the Kernel Function 

The use of a kernel function is an attractive computational short-cut. If we wish 

to use this approach, there appears to be a need to first create a complicated feature 

space, and then work out what the inner product in that space would be, and finally 

find a direct method of computing that value in terms of the original inputs. In 

practice, the approach taken is to define a kernel function directly, hence implicitly 

defining the feature space. In this way, we avoid the feature space not only in the 

computation of inner products, but also in the design of the learning machine itself 

(Cristianini and Taylor, 2000). We will argue that defining a kernel function for in 

input space is frequently more natural than creating a complicated feature space. 

Before we can follow this route, however, we must first determine what properties of 

a function  are necessary to ensure that it is a kernel for some feature space 

(Cristianini and Taylor, 2000). Clearly, the function must be symmetric,  

)',( xxk

               ),()()()'()()',( xx'xx'xxxx kk =φ⋅φ=φ⋅φ=  (2.8)

and satisfy the inequalities that follow from the Cauchy-Schwarz inequality, 
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)',')(,()'()'()()(

)'()()'()()',( 2222

xxxxxxxx              

xxxxxx

k

k

=φ⋅φφ⋅φ=

φφ≤φ⋅φ=
 (2.9)

However, these conditions are not sufficient to guarantee the existence of a 

feature space. In practice, it should provide a characterization of Mercer’s theorem of 

when a function  is a kernel (Cristianini and Taylor, 2000). The Mercer’s 

theorem can be formally stated as (Mercer, 1908; Courant and Hilbert, 1970):  

)',( xxk

 

Proposition 2.3.1 Let  be a continuous symmetric kernel that is defined in 

the closed interval  and likewise for . The kernel  can be 

expanded in the series 

)',( xxK

bxa ≤≤ 'x )',( xxK

)()()( '

1

' xxxx, i
i

iiK φφλ=∑
∞

=

 

With positive coefficients,  for all i . For this expansion to be valid and for it 

to converge absolutely and uniformly, it is necessary and sufficient that the condition  

0>λ i

0)()(),( ''' ≥ψψ∫ ∫
a

b

a

b
ddK xxxxxx  

holds for all  for which )(⋅ψ

∫ ∞<ψ
a

b
dxx)(2 . 

The functions  are called eigenfunctions and the )(xiφ iλ  are called eigenvalues. 

The fact the all of the eigenvalues are positive means that the kernel  is 

positive definite (Haykin, 1999). 

)',( xxK

 

2.4 Feature Selection 

Features are called attributes, properties, variables, or characteristics. Feature 

selection is a process by which a sample in the measurement space is described by a 

finite and usually smaller set of numbers classed features, say . The 

features become components of the pattern space. The feature selection is regarded as 

nxxx ,......,, 21
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a procedure to determine that which variables (attributes) are to be measured first or 

last. Liu and Montoda (1998) defined that feature selection is a process that chooses 

an optimal subset of features according to certain criterion. Feature selection may be 

multistage process to enhance the accuracy or performance of classification (Chiang, 

2002). 

Feature selection (so-called variable selection) has become the focus of much 

research in area of application for which datasets with tens or hundred of thousands of 

variables are available. Feature selection problems are found in many machine 

learning tasks including classification, regression, time series prediction, etc. An 

appropriate feature selection can enhance the effectiveness and domain interpretability 

of an inference model.  

Liu and Motoda (1998) indicated that the effect of feature selection are (1) to 

improve performance (speed of learning, predictive accuracy, or simplicity of rules); 

(2) to visualize the data for model selection; and (3) to reduce dimensionality and 

remove noise. Guyon and Elisseeff (2003) indicated that there are many potential 

benefits of feature selection: facilitating data visualization and data understanding, 

reducing the measurement and storage requirements, reducing training and utilization 

times, defying the curse of dimensionality to improve prediction performance. 

Liu and Motoda (1998) provided a detailed survey and overview of the existing 

methods for feature selection. They suggest a feature selection process that includes 

four parts: feature generation, feature evaluation, stopping criteria and testing. In 

addition to the classic evaluation measures (accuracy, information, distance, and 

dependence) used for removing irrelevant features, they provided consistency 

measures (inconsistency rate) to determine a minimum set of relevant features. 

Two methods, feature selection and feature extraction were usually used to do 

the work of dimensionality reduction of data sets (Jain et al., 2000). As described as 
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above, feature selection is the way of selecting the sub-features in the measurement 

space. But, feature extraction method determines an appropriate subspace of 

dimensionality  (either in a linear or a nonlinear way) in the original feature space 

of dimensionality . It should be noted that the features or attributes are not changed 

in the feature selection process; however, new attributes were established after feature 

extraction. It is obvious to find that the feature selection is superior to feature 

extraction in the interdisciplinary applications cause of the consistency of attribute. 

m

d

The universal algorithms of feature selection are often divided along three lines: 

wrappers, filters and embedded (Kohavi and John,, 1997; Guyon and Elisseeff, 2003). 

Both wrappers and filters do this work by select subsets of variables. Wrappers 

approach is one of the subset selection methods. It assesses subsets of variables 

according to their usefulness to a given predictor. The filters approach is a 

preprocessing step, independent of the choice of the predictor. Still, under certain 

dependence or orthogonality assumptions, it may be optimal with respect to a give 

predictor. Obviously, an exhaustive search can conceivably be performed, if the 

number of variables is not too large. But, the problem is known to be NP-hard 

(Amaldi and Kann, 1998) and the search becomes quickly computationally intractable. 

They may suffer from a block of wasting computational cost when variables are too 

large. As for embedded method, the disadvantages are as similar as theirs. In addition 

to these algorithms of feature selection, variable ranking is as a principal or auxiliary 

selection mechanism because of its simplicity, scalability, and good empirical success. 

Several papers (Bekkerman et al., 2003; Caruana and de Sa, 2003; Weston et al., 2003) 

in this issue use variable ranking as a baseline method. Furthermore, the information 

theoretic ranking criterion is also a common approach for variable classification 

(Bekkerman et al., 2003; Dhillon et al., 2003; Torkkola, 2003).  
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2.4.1 Wrappers Approach 

Regardless of any approach what used in the feature selection tasks, people 

always want to provide the classifier with the data of better quality and to improve the 

classification performance. If they can select the relevant features and remove noise, 

they can achieve their objective possibly. However, the essence of the wrappers 

approach owns the function to do that.  

A wrappers model (see figure 2.4) consists of two phases (Liu and Motoda, 

1998): 

Phase 1 – feature subset selection, which selects the best subset using a classifier’s 

accuracy (on the training data) as a criterion. 

Phase 2 – learning and testing, a classifier is learned from the training data with the 

best feature subset and tested on the test data. 

 
Figure 2.4 A wrappers model of feature selection (Liu and Motoda, 1998). 

The wrappers approach consists in using the prediction performance of given 

learning machine to assess the relative usefulness of subsets of variable. When feature 

subsets are generated, for each subset of feature, a classifier is generated from the data 

with chosen features. If the number of variables is not too large, an exhaustive search 

can conceivably be performed. However, the problem is to be NP-hard (Amaldi and 

Kann, 1998). 

Although wrappers approach often criticized that it seems to be a “brute force” 
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method cause of required massive amount of computation, some of the researchers 

own different opinions. Such as Reunanen (2003) indicated that coarse search 

strategies may alleviate the problem of overfitting. In addition, Greedy search 

strategies are good at for against overfitting. Forward selection and backward 

elimination are two usages in these strategies. In forward selection, variables are 

progressively incorporated into larger and larger subsets, whereas in backward 

elimination one starts with the set of all variables and progressively eliminates the 

least promising ones. However, either forward selection or backward elimination, it 

seems that they do not avoid the time-consuming computation when the number of 

variables is very large. To solve this limitation, researchers often use heuristic learning 

method like Naïve Basesian Classifiers or Decision Tree Induction (Kohavi and John, 

1997). 

 

2.4.2 Filters Approach 

Filters approach built on the intrinsic properties of the data, not on a bias of 

particular classifier. The essence of filters is to seek the relevant features and to 

eliminate the irrelevant ones. According Kohavi and John (1997) classification 

guideline, the preprocessing step of filters approach is to determine the independence 

of the choice of the predictor. Still under certain independence of orthogonality 

assumption, it may be optimal with respect to a given predictor. 

A filters model of feature selection (see figure 2.5) also consists of two phases 

(Liu and Motoda, 1998): 

Phase 1 – feature selection using measures such as information, distance, dependence, 

or consistency, and no classifier is engaged in this phase. 

Phase 2 is the same as in the wrappers model, a classifier is learned on the training 

data with the selected features and tested on the test data. 
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Figure 2.5 A filters model of feature selection (Liu and Motoda, 1998). 

In addition to the characteristic that built on the intrinsic properties of the data, the 

filters approach has the other characteristics as follows. 

1. Measuring information gains, distance, dependence, or consistency is usually 

cheaper than measuring accuracy of a classifier, so a filters method can produce a 

subset faster, other things being equal. 

2. Because of the simplicity of the measures and low time complexity, a filters 

method can handle larger sized data than a classifier can. Therefore in the case 

where a classifier cannot directly be learned from the large data, it can be used to 

reduce data dimensionality so that the classifier can be learned from the data with 

reduced dimensionality. However, there is a danger that the features selected by a 

filters model cannot allow a learning algorithm to fully exploit its bias.  

Compared with wrappers, filters are faster. Still, recently proposed efficient 

embedded methods are competitive. In addition, some filters provide a generic 

selection of variables, not tuned for a given learning machine. It is an advantage to 

note that the filters approach can be used as a preprocessing step to reduce space 

dimensionality and overfitting.  

 

2.4.3 Information Theoretic Ranking Criterion 

Information Theoretic Ranking Criteria is to gather the empirical estimates of the 
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mutual information between each variable and the target: 
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where  and  are the probability densities of  and , and  is 

the joint density. The criterion  is a measure of dependency between the density 

of variable  and the density of the target . Supposed that the variable is discrete 

or nominal, the  has to describe as follows. 
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It is mentioned to note that the estimation obviously becomes harder with larger 

numbers of classes and variable values. 

 

2.4.4 Embedded Approach 

Guyon and Elisseeff (2003) gave the definition of Embedded approach is to 

perform variable selection in the process of training and this approach is usually 

specific to given learning machines. In other words, embedded approach is based on 

the built-in mechanism to perform variable selection, such as Classification and 

Regression Tree (CART) (Breiman et al., 1984).  

 
2.5 L-J Method 

The L-J method is a feature selection approach that defines scores for the 

available feature at training. It was developed for two authors, Lothar Hermes and 

Joachim M. Buhmann in 2000. They use the influence to determine the important 

features. The influence means that the ability of affecting the decision of hyperplane 

in SVM structure. Compared with wrappers and filters approaches, L-J methods is a 

feature selection strategy which defines scores for available features on the basis of a 

single training run (Hermes and Buhmann, 2000) and is easy to compute for users. 

Next, the brief introduction of L-J method is described as follows. 
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The initial tasks of the L-J method should construct a SVM structure with a 

given training sets by using complete data components. After constructing the 

classifier  (equation 2.12), they estimated the importance of separate feature 

components to ,  is the Lagrange multipliers. To rank the components of a 

given vector  according to their influence on the classification, users then should 

compute the gradient of  at position  (equation 2.13).  

)(xf

)(xf iλ

x

)(xf x

( ) ∑
=

+λ=
l

i

T
iii byf

1

xxx  (2.12)

∑
∈

∇λ=∇
SVi

iii Kyf )()( x,xx x    (2.13)

where  is the gradient of , and it is perpendicular to the optimal 

hyperplane. Next, user should implement the task of project of the unit vector  on 

. If the projection of the unit vector  on 

)(xf∇ )(xf

je

)(xf∇ je )(xf∇  is small, it represent that the 

feature j  is not important at position . In other word, the x )(xf∇  should be 

roughly orthogonal to , the feature  should not influence the distance to the 

decision hyperplane. Summary of above, we can compute the angle  between 

 and , 

je j

)( ij xα

)(xf∇ je nj ,......,2,1= , representing the indices of the individual feature, to 

measure what are the important factors as follows: 
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Values  represent that the feature  has only weak influence on the 

assignment  of . Small values (is closed to 0) indicate important features. 

Finally, we must compute the 

π≈α )( ij x j

)(xf x

jα~  to rank the features. The index jα~  is defined as 

follows: 
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jα~  is an index for ranking features. The features with smaller jα~  can be 

dropped. 

 
甲、 Data Complexity 

In order to show the effectiveness of our proposed approach, the data complexity 

was utilized to evaluate its corresponding performance. As for the complexity of the 

data, many indicators were measured in different fields. For instance, entropy can 

help us to see the complexity of the input data. In this study we explain the data 

complexity by using mess level (Wang, 2003). Before calculating the mess level, 

related symbols are defined as follows. 

 

ijA  is the value of the  attribute in an instance.  thj

+
jA  is the mean of the attribute while 1=iy  for the instance. 

−
jA  is the mean of the attribute while 1−=iy  for the instance. 

maxjA  is the maximum value of the  attribute. thj

minjA  is the minimum value of the  attribute. thj

k  is the number of attributes in an instance, and . 2≥k

+
ix  is the instance with . 1=iy

−
ix  is the instance with . 1−=iy

n  is the number of instances in the data set, and . 2≥n

 

Now, we define  and ( )•aM ( )•bM  in the following: 
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If all the elements belong to the positive class, ( )−ia xM  approaches to 0. On the 

contrary, ( )+ia xM  approaches to 0 if all the elements belong to the negative class. 

Therefore, most of the elements approach to the positive class if  is larger. The 

elements are also concentrated in their space. 

( )SM a

( )+ib xM  approaches to 0 if all the 

elements belong to the negative class; else, if all the elements belong to the positive 

class, ( )−ib xM  approaches to 0. According to the definition, we know that if  

is larger then positive and negative elements are further. Dividing equation 2.18 by 

equation 2.21, we get equation 2.22 called mess level (ML) which is shown as: 

( )SM b

              Mess level = ( )
( )SM
SM

a

b  (2.22)

When the ML is close to 1, the data set is complex and is not easy to classify. 
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CHAPTER 3 

PROPOSED APPROACHES 

3.1 SVM with Combined Kernel Functions 

Several investigations (Yao et al., 2005; Wang et al., 2004) indicated that the 

kernel functions are useful for classification. For examples, some researches show 

that SVM with polynomial kernel provide a good performance for prediction and 

classification (Wang et al., 2004); some researches indicate that SVM with RBF 

kernel has stronger ability for classification (Hammer and Gersmann, 2003; Dong et 

al., 2005; Lukas et al., 2004; Yao et al., 2005). The polynomial and RBF kernels own 

the advantages by themselves and this encourages us to propose a combined approach 

to pursue a much better classification accuracy. 

Suppose given a training set of M  samples or input vectors 

 with known class labels { Mi x,...x,...,x,x 21 } { }Mi yyyy ,...,,...,, 21 , , a 

new data point  is a assigned a label by the SVM according to the decision function 

{ 11−+∈ ,yi }

x

              ( ) ⎟
⎟
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⎞
⎜
⎜
⎝

⎛
+α= ∑

=

sM

i
iii bkysignf

1

),( xxx (3.1)

where 

       )(),(),( xxxx ΦΦ= iik            (3.2)

is the kernel function that defines feature space, )(xΦ  is a nonlinear mapping 

function from input space to feature space,     ⋅⋅ ,  denotes an inner product,  is a 

bias value, and 

b

iα  are positive real numbers obtained by solving a Quadratic 

Programming (QP) problem that yield the maximal margin hyperplane (Vapnik, 

1998).  

Owing to the polynomial kernel function owns the advantage of changing the 

degree  in the feature space (see equation 2.5) and Gaussian RBF kernel is itself a d
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normalized kernel (see equation 2.6), the kernel  and  are employed in this 

study to develop new kernels,  and . 

Pk Gk

GPk + GPk ⋅

First, to simplify the tasks of the classification process, parameter  was 

ignored and parameter  was set at 1. We can rewrite the equations 2.5 and 2.6 as 

follows: 

a

b

d
iiPk )(),( xxxx ⋅=  (3.3)

where  is its degree and is adjustable. d

)
2
1(),( 2xxexpxx −
γ

−= iiGk        (3.4)

where  is kernel width;  is adjustable. γ γ

Consequently, the kernel function  is defined as follows. GPk +
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The kernel function  is defined as follows. GPk ⋅
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As a result, the SVM decision functions using new kernels,  and , can be 

rewritten in the following: 
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Next, we need to provide the relevant proof of our new kernels, i.e. they should 

be symmetric and satisfied with the characterization of Mercer’s Theorem. Here, 

kernel  is a representative case to proof. GPk +

 

Lemma. Let  and  be kernels over Pk Gk XX × , , then the kernel  in nRX ⊆ GPk +
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equation 3.5 is symmetric and satisfied with the characterization of Mercer’s theorem.  

 

Proof  

Let d
PPk )( zx ⋅=φ= , )

2
1( 2zxexp −
γ

−=φ= GGk . 

Then 

),( zxGPk +  
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22 )(),()(),( zxzx φφ+φφ= GP  
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Hence, kernel  is symmetric. GPk +

From the Cauchy-Schwarz inequality it follows that:  
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Next, let  be defined in the closed interval GPk + bxa ≤≤  and likewise for .  z

The kernel  can be expanded in the series ),( zxGPk +
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i
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with positive coefficients,  for all i . According to the following condition,  0>λ i
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The kernel  is satisfied with the characterization of Mercer’s theorem. It is 

existence in the feature space. Thus,  is a kernel. 

GPk +

Gpk +

 

3.2 Feature Selection for the SVM by Using the L-J Method 

The L-J method enlighten us a good idea for feature selection by using the 

influence of jth feature. First, the L-J method needs to compute the angle  

between  and . Next, the feature is ranked by the index 

)( ij xα

)(xf∇ je jα~ . This process 

can be constructed by the SVM classifier. We hope that applying the L-J method to 

our combined kernels (developed in the section 3.1) may obtain a good performance 

for classification. Similar algorithm can be illustrated as follows:  

Step 1: Construct a SVM structure  with a given training sets by using 

complete data components. 

)(xg

Step 2: Select the combined kernel function into the SVM classification for 

classification. The combined kernel functions are  and  defined in (3.7) 

and (3.8). 

GPk + GPk ⋅

Step 3: Compute the gradient of  at position , so-called . )(xg x )(xg∇

Step 4: Implement the task of project of the unit vector jε  on . )(xg∇
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Step 5: Estimate the importance of separate feature components to  by the 

influence . 

)(xg

)( ij xα

Step 6: Rank the features by 
ε

∈∑
ε
α

⋅
π

−=α
I

Ii ij

j
21~ , ]1,0[~ ∈α j  

Drop several unimportant features with smaller jα~  values. 
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CHAPTER 4 

ILLUSTRATION 

In order to illustrate the proposed approaches’ effectiveness, we use twelve 

datasets to implement the classification tasks. In addition, the relevant strategies of 

kernel selection and parameter setting are investigated. 

4.1 Data Sets 

A total of three data sets, hyperlipidemia, liver disease and renal disease were 

collected from the Department of Health Examination from those seeking an annual 

physical health check-up at Chang Gung Memorial Hospital in Tao-Yuan, Taiwan. 

Thirty-one anthropometrical data were measured by the whole body scanner 

employing the independent variables. The dependent variable was that subjects suffer 

or do not suffer from the disease in each set of disease data. In addition to the medical 

data, nine data sets from the UCI repository (Blake and Merz, 1998) were used. These 

data sets were census income, shuttle, mushroom, letter, ionosphere, vehicle 

silhouettes, spambase, vowel, and sonar. 

Among the twelve data sets, seven were considered as the larger ones, as each 

contained more than 5,000 samples (Oyang et al., 2005). The remaining five data sets 

were considered as the smaller ones. Before our experiment, we had worked some 

data preprocess. Due to the fact that some anthropometrical data tend to be incomplete, 

we deleted these data. In order to reduce the differences among the features, we 

normalized the data prior to implementing the SVM classifier. All the normalized data 

transferred to  were scaled to the [-1, 1] interval via equation 4.1. The meta-data 

including the number of features, classes, cases and feature style, are represented in 

Table 4.1. In addition, the data complexity computed by ML and the ratio of positive 

to negative were also appended.  

newx
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4.2 Implementation Results 

Five approaches including linear kernel, two popular kernels (polynomial and 

RBF), and two proposed kernels (polynomial plus RBF, ; polynomial multiplies 

RBF, ) were implemented for the classification tasks. We use the one-against-one 

procedure to calculate the accuracy of classification in the multi-class SVM model, 

else the general procedure is employed to acquire that. Furthermore, a popular 

classifier, K nearest neighbor (KNN) was employed as the benchmark in our 

experiment. In order to simplify the process of classification, the parameter  was 

set at 0,  was set at 1 in the polynomial kernel. We only changed the degree . As 

for the RBF kernel, it remained in its original form, i.e. kernel width  could be 

changed. In our experiment, parameter  was set between 2 to 10. Parameter 

GPk +

GPk ⋅

a

b d

γ

d γ  

was set at , , , , , , respectively. 310− 210− 110− 010 110 210

A total of twelve data sets were separated into large (more than 5000 samples) 

and small ones (less than 5000 samples) as mentioned before. The imbalanced data 

sets is shuttle. Table 4.2 compares the accuracy of the classification with the larger 

and smaller data sets respectively. In the larger data sets, in general the accuracy of 

the classification of the SVM based approaches is better than that of the KNN 

approach. Among them, the proposed kernel  (polynomial multiplies RBF kernel) 

has the best performance, and the next one is another proposed kernel . As for 

smaller data sets, the results are as similar as the larger data sets. In general, the 

performance of the SVM based approaches is better than that of the KNN approach. 

Among them, the combined kernel  also has the best performance. In addition 

we found that the performance of the proposed kernels is not so good for the 

GPk ⋅

GPk +

GPk ⋅
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GPk ⋅

GPk ⋅

GPk +

GPk ⋅

GPk ⋅

The average accuracies of the classification for the seven larger data sets and five 

smaller data sets are shown in Tables 4.3 and 4.4. Their standard deviations are listed 

in the brackets. The two tables indicated that the combined kernel  has better 

performance than the other approaches. After feature selection (from 75% to 25%), 

the kernel  also showed a better performance both in larger and smaller data. In 

the larger data, the combined kernel  showed a better performance than the 

polynomial and RBF kernel. The result in the smaller data was the same as that in the 

larger one. Furthermore, the kernel  almost had the lowest standard deviation 

among the four approaches in the larger data. In the smaller data set, the kernel  

performed well. 

The implementation result of feature selection is showed in Tables 4.3 and 4.4. In 

this procedure, the kernels were applied to L-J method for feature selection. The 

optimal parameter settings were employed in SVM model for L-J feature selection. As 

same as above, we use the original SVM technique if the data were of two classes. 

Else the SVM model is worked by one-against-one process if the data are more than 

two classes.  

classification of imbalanced data. Based on the ML, our proposed combined kernels 

have a better performance when the ML is small. 

 



Table 4.1 Data sets used in this study. 

No Data set # of samples # of features # of classes Data Style Data complexity
(ML) 

Ratio of positive 
to negative 

1        Hyperlipidemia 6000 33 2 c 1.00 1:2.08
2        

        

        
        
        
        
        

        
        
        

Liver disease 6000 33 2 c 1.46 1:2.81
3 Renal disease 6000 33 2 c 1.06 1:3.60
4 Census income 32561 14 2 c, d 1.41 1:3.15 
5 Shuttle* 14500 9 7 c 3.63 1:14.20
6 Mushroom 8124 22 2 d 1.01 1:1.07
7 Letter 15000 16 26 c 1.00 1:1.13
8 Sonar 208 60 2 c 1.01 1:1.14
9 Ionosphere 351 34 2 c 1.08 1:1.79
10 Vehicle silhouettes 846 18 4 c 1.09 1:1.40
11 Spambase 4601 57 2 c 1.04 1:1.54
12 Vowel 990 13 11 c, d 1.05 1:1.00
c: continuous; d: discrete. 
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Table 4.2 

Comparison of classification accuracy with the larger and smaller data sets. 

    Data classification algorithms
No. Data sets SVM 

linear 
SVM 

Polynomial 
SVM 
RBF 

SVM 
Poly + RBF 

SVM 
Poly ×  RBF

KNN 
1=k  

KNN 
3=k  

1 Hyperlipidemia        68.06 51.92 68.06 69 69 59 68
2 Liver disease        

        
        

        
        

        
  

73.75 73.5 73.5 77 77 60 68
3 Renal disease 78.5 78.58 78.5 82 82 67 81
4 Census income 70.5 75 71.5 74 75.8 74 73
5 Shuttle* 95.5 98.2 95.5 96.8 95.5 100 100
6 Mushroom 97.33 100 99.73 99.73 100 91.33 94
7 Letter 82.25 86.75 90.75 87.5 90.75 81 78.65

AVERAGE-large 80.84(11.65) 80.56(16.49) 82.51(12.65) 83.72(11.55) 84.29(11.39) 76.05(15.63) 80.38(12.48) 
8 Sonar        85.33 88.1 88.1 92.86 95.23 83.33 85.71
9 Ionosphere        

        
        

        
        

81.43 84.29 84.29 91.43 91.43 81.43 78.57
10 Vehicle silhouettes 75 79.3 82.84 79.3 85.8 75 83
11 Spambase 94.5 94.5 94.5 94.5 95 88 87.5
12 Vowel 98.89 90.91 98.89 99.49 99.49 97.22 99.72

AVERAGE-smaller 87.03(9.69) 87.42(5.88) 89.72(6.83) 91.52(7.48) 93.39(5.11) 85(8.27) 86.9(7.92)
*: imbalanced data set 

 ( ): standard deviation 

No1-7: larger data sets. 
No8-12: smaller data sets. 
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Table 4.3 The accuracy of feature selection for the SVM using the L-J method (larger data sets) 
Full (100%) Reduced (75%)  Kernel

Dataset Pk  Gk  GPk +  GPk ⋅  Pk  Gk  GPk +  GPk ⋅  

HyperLipidemia         51.92 68.06 69 69 50.83 67.83 70 69.5
Liver disease         

         
         

         
         

         

73.5 73.5 77 77 71.13 71.13 75.5 76.5
Renal disease 78.58 78.5 82 82 76.25 72.13 81.75 80.38
Census_income 75 71.5 74 75.8 69.6 71.6 71.6 76
Shuttle* 98.2 95.5 96.8 95.5 98.4 98.2 99.8 98.8
Mushroom 100 99.73 99.73 100 96.8 98.2 98 98.8
Letter 86.75 90.75 87.5 90.75 81.25 81 83 83

AVERAGE 
(Std. dev.) 

80.56 
(16.49) 

82.51 
(12.65) 

83.72 
(11.55) 

84.29 
(11.39) 

77.75 
(16.53) 

80.01 
(13.06) 

82.81 
(12) 

83.28 
(11.4) 

Reduced (50%) Reduced (25%)  Kernel
Dataset Pk  Gk  GPk +  GPk ⋅  Pk  Gk  GPk +  GPk ⋅  

HyperLipidemia         50.25 67 68.5 68.86 48.5 62.5 61.83 62.38
Liver disease         

         
         

         
         

         

72 72 73 75 62.5 71.25 60.25 71.75
Renal disease 75 70 78 78.5 69.4 63.94 74.75 72.88
Census_income 68.5 69.5 78 72.5 72 73.6 72 74
Shuttle* 91.5 91.41 91.5 95.5 81.4 82.6 81.4 82.8
Mushroom 98.82 99.73 99.73 99.73 100 99.89 100 99.92
Letter 67.5 73 73.5 79 46.5 52.5 52 57.5

AVERAGE 
(Std. dev.) 

74.8 
(16.12) 

77.52 
(12.71) 

80.32 
(11.2) 

81.3 
(11.74) 

68.61 
(18.67) 

72.33 
(15.43) 

71.75 
(15.92) 

74.46 
(13.91) 

*: imbalanced data set 
( ): standard deviation 
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Table 4.4 The accuracy of feature selection for the SVM using the L-J method (smaller data sets) 
Full Reduced (75%)  Kernel

Dataset Pk  Gk  GPk +  GPk ⋅  Pk  Gk  GPk +  GPk ⋅  

Sonar 88.1 88.1 92.86 95.23 85.71 88.1 88.1 95.23 

Ionosphere 
         
         

         

84.29 84.29 91.43 91.43 74.28 75.71 88.57 91.43 

Vehicle 79.3 82.84 79.3 85.8 78.85 77.51 78.25 83.25
Spambase 94.5 94.5 94.5 95 92.5 94 91.5 94

Vowel 90.91 98.98 99.49 99.49 88.43 94.47 92.13 95

AVERAGE
(Std. dev.) 

87.42 
(5.88) 

89.74 
(6.86) 

91.52 
(7.48) 

93.39 
(5.11) 

83.95 
(7.34) 

85.96 
(8.92) 

87.71 
(5.57) 

91.78 
(5) 

Reduced (50%) Reduced (25%) Kernel
Dataset Pk  Gk  GPk +  GPk ⋅  Pk  Gk  GPk +  GPk ⋅  

Sonar 76.19 78.57 85.71 88.1 78.57 76.2 85.71 85.71 

Ionosphere 
         
         

         

71.42 78.57 85.71 90 72.86 77.14 82.56 88.57 

Vehicle 78.1 72.19 78.1 80.47 69.29 69.41 72.92 79.51
Spambase 90.8 93.4 92 94.4 87.5 86.8 88 89.75

Vowel 84.48 93.93 89.39 94.94 44.44 39.71 44.95 45.51

AVERAGE
(Std. dev.) 

80.2 
(7.55) 

83.33 
(9.79) 

86.18 
(5.24) 

89.58 
(5.86) 

70.53 
(16.13) 

69.85 
(17.95) 

74.83 
(17.66) 

77.81 
(18.49) 
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4.3 Discussions 

In the experiment, we found that parameters  and  heavily influenced the 

classification accuracy. These two parameters have a different impact on larger and 

smaller data sets. In larger data sets, degree  should be higher, and  should be 

lower. On the other hand, degree  should be lower and  should be higher in the 

smaller data sets. Figures 4.1 and 4.2 show the relationship between parameters and 

accuracy for a large data set (Renal disease) and a smaller data set (Vowel), 

respectively. 
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Figure 4.1 The relationship between parameters and accuracy for the larger data set. 
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Figure 4.2 The relationship between parameters and accuracy for the smaller data set. 

 

Some research indicated that the SVM with the kernel method provided a better 

performance for classification than the linear methods (Tefas et al., 2001). In the 

present study, our experiment showed similar results (see Table 4.2). Although the 

linear kernel is not the best of the kernel based approaches for large data sets, it is 

acceptable compared with the KNN approach. The other two popular kernels, 

polynomial and RBF, also provided an acceptable performance in both larger and 
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smaller data sets. We found that the performance of the RBF is better than that of the 

polynomial, both in the larger and smaller data sets. 

In the setting of the parameters for the polynomial and RBF kernels, Pardo and 

Sberveglieri (2005) consider that larger values for the polynomial kernel parameter 

 mean more complex classification functions (higher order polynomials). These 

functions are useful for solving classification problems. At the same time however, a 

smaller value for the RBF kernel parameter  is also good at solving classification 

problems. In this study, the results of our experiment are similar to those of Pardo and 

Sberveglieri (2005) (see Figures 6 and 7). It is evident that larger  is good at 

complex data because it can obtain a greater probability of classification. Hence, we 

feel that the input space, with a lower dimension transformation to the feature space 

with a higher dimension, seems to make it easier to classify a separable bound. 

d

γ

d

In the following we discuss the effect of parameters  and  on classification 

accuracy. First, for the polynomial kernel, we set 

d γ

1== ba , if  is adjusted from 3 

to 5, and the terms of the polynomial will be expanded from 4 to 6. As a result of the 

terms being expanded, the number of boundaries is also increased. Although the larger 

the  value, the poorer the performance of the classification, we can slightly adjust 

the  value based on the complexity of the data. 

d

d

d

Next, suppose the width  of the RBF kernel is adjusted from  to , 

then  the increment of the RBF kernel is positive. On the contrary, the increment of 

the RBF kernel is negative when the kernel width is decreased. Thus the user can 

change the kernel width until the kernel is satisfied with his need. From the 

mathematical viewpoint, when the smaller data sets are in the lower space, a larger 

width is useful to easily and quickly achieve the optimal solution. However, when the 

larger data sets are in the higher space and when there are many local optimal 

solutions, then it is easy to fall into the trap of larger kernel width. Thus, the small 

γ 010 110
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width is best for larger data sets. Our experiment only shows the classification 

accuracy difference for larger and smaller data sets using different kernel widths; 

however, we could not find a significant difference in the classification accuracy for 

the data sets with a different data complexity.  

Based on the above discussion, some useful strategies for determining 

parameters  and  are summarized in Table 4.5. In the polynomial kernel, a 

larger parameter  is suitable for larger data sets; and a smaller  is suitable for 

smaller data sets. In the RBF kernel, a smaller parameter  is suitable for larger data 

sets; and a larger  is suitable for smaller data sets. 

d γ

d d

γ

γ

 

Table 4.5 The strategies of parameter setting of polynomial and RBF kernels. 

Kernel type
Data set size 

Polynomial 
(d) 

RBF 
(γ) 

Larger data set larger smaller 
Small data set smaller larger 

 

In our experiment, it seems that the multiplication kernel ( ) is superior to the 

summation one ( ). The reason for this may be that the multiplication kernel has 

some functions by changing degree and adjusting width at the same time, which 

seems to increase the classification performance. However, the influences of these 

functions are not significant in the summation kernels. 

GPk ⋅

GPk +

In addition, ML was used to evaluate the data complexity. As expected, the 

combined kernel,  provides a better performance for classification when the ML 

approaches to 1. However, it seems that the combined kernels are not superior to the 

other approaches when the ML is greater than approximately 1.5. A possible 

explanation may be that, for simple problems using the SVM with the original kernel 

is good enough for classification. The combined kernels are not recommended for 

GPk ⋅
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addressing simple problems because they will complicate the data space. 

Next, we show the results with 100%, 75%, 50%, and 25% features after feature 

selection by twelve data sets. Obviously, the performance of classification decrease 

follows the number of features reduced. It is interesting to note that the more the 

number of classes there was, the larger the decreasing percentage of classification was 

noted. 

As for feature selection process, many investigators consider that the most 

straightforward idea is to use a leave-one-out procedure or a cross-validation set to 

assess the generalization error with regard to the number of features and choose the 

number of attributes which minimizes the test error. It was deemed to be unfavorable 

for the computation. Compared with this process, L-J method just selects variables by 

index influence ( jα ) and avoids this predicament. However, kernel selection in L-J 

method plays an important role and greatly affects the performance of classification. 
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CHAPTER 5 

A CASE STUDY: HYPERTENSION DETECTION 

In this chapter, a real-case from medical diagnosis is presented. We will show 

that the L-J method using SVM with the selected kernel function can be applied to 

reduce the attributes by a hypertension detection via anthropometrical data. Further 

explanation and discussion will likewise be provided. 

5.1 Problem Description 

Hypertension is a major disease and is a significant cause of death all over the 

world. The relevant researches show that the cardiovascular disease is an important 

risk causing hypertension (Mykkanen et al., 1997; Jeppesen et al., 2000). As defined 

by the National High Blood Pressure Education Program (NHPEP), hypertension can 

be summarized as shown in Table 5.1. 

 
Table 5.1 Classification of blood pressure for adults aged 18 and older (NHPEP, 2002) 
Category Systolic (mm Hg)  Diastolic (mm Hg) 
Optimal <120 and <80 
Normal <130 and <85 
High-normal 130-139 or 85-89 
Hypertension  

Stage 1 140-159 or 90-99 
Stage 2 160-179 or 100-109 
Stage 3 ≥ 180 or ≥ 110 

 

Recently, syndrome X has been investigated more and more (Chen et al., 2000a). 

In fact, there is a significant relationship between body size and syndrome X (Lin et 

al., 2002). Hence, it is feasible to explore the relation between hypertension and body 

size via syndrome X indirectly. 

In the past, the human body size is measured by the worker with his experience. 

The drawback of this approach is that it is not accurate and time consuming. Hence, 
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3D anthropometrical measure prevails in this area. There are many advantages related 

to this measure, such as convenience and time saving. In addition, this technique can 

be employed to medical diagnosis.  

A memorial hospital in Taiwan has dealt with disease diagnosis for several years. 

Recently, they provide a whole body 3D scanning technique for patients in their 

Department of Health Examination. The purpose of the techniques is to explore the 

relationship between the body size and some chronic disease by some 3D body 

surface anthropometrical scanning data. In fact, too many anthropometrical data 

collected from this equipment and as listed on the diagnosis make the more difficulty 

of explanation for the physicians. Hence, how to reduce the unimportant or noisy 

features is necessary. Here, we implement a hypertension detection using the 

proposed approach for feature selection. 

 

5.2 Implementation 

A total of thirty-one anthropometrical items were collected from the hospital’s 

3D whole body data bank. These data included: height, weight, head circumference, 

breast circumference, waist circumference, hip circumference, left upper arm 

circumference, right upper arm circumference, left forearm circumference, right 

forearm circumference, right thigh circumference, left thigh circumference, right leg 

circumference, left leg circumference, breast width, waist width, hip width, breast 

profile area, hip profile area, volume of head, surface area of head, volume of trunk, 

surface area of trunk, volume of left arm, surface area of left arm, volume of right arm, 

surface area of right arm, volume of left leg, surface of left leg, volume of right leg, 

and surface area of right leg. In addition to these measurements, the subjects’ age and 

gender were collected as well. Furthermore, the patients who suffered from 

hypertension were noted.  
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A total of 6,000 data sets were selected randomly from the original database via 

data pre-processing. Four kernel functions including , , , and  were 

employed to construct the SVM models. The relevant parameter of polynomial kernel 

 was set between 2 to 10 and the parameter of RBF kernel  was set at , 

, , , , , respectively. The result shows that the combined kernel, 

 has a better performance than the other approaches. Next, these kernels were 

applied to L-J method for feature selection. In addition to accuracy, the important 

features were selected.  

Pk Gk GPk + GPk ⋅

d γ 310−

210− 110− 010 110 210

GPk ⋅

By using the kernel function to L-J method, we selected the important features 

using the influence index . For instance, when the  was employed, a total of 

thirteen anthropometrical attributes were selected, including age, weight, waist 

circumference, right thigh circumference, left thigh circumference, right leg 

circumference, left leg circumference, breast width, volume of trunk, surface area of 

trunk, volume of left arm, volume of right arm and volume of right leg. 

jα GPk ⋅

 

5.3 Comparisons 

In order to explain the effectiveness of the proposed approach, the collected data 

were also analyzed by the three approaches. They are backpropagation neural network 

(BPNN), rough sets and decision tree. In this study, Professional II Plus software was 

used to perform BPNN computation. The result showed that the structure 33-12-1 

provided a better performance when the learning rate was 0.15 and the momentum 

was 0.75. After that, we pruned the network based on index .  is the priority 

index of the input nodes in the trained backpropagation neural network structure. It 

can be defined as follows (Su et al., 2002): 

iP iP

∑∑∑
= = =

×=
n

1i

m

1j

s

1k
jkiji VWP (5.1)
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Where: 

ijW  is the weight between the  input node and the  hidden node; thi thj

jkV  is the weight between the  hidden node and the  output node; thj thk

iP  is the sum of absolute multiplication values of the weights  and . ijW jkV

Based on the definition, the input nodes with  < 1.65 from the trained network 

33-12-1 were removed. Finally, fourteen anthropometrical factors were determined, 

including weight, waist circumference, left forearm circumference, right forearm 

circumference, right thigh circumference, left thigh circumference, right leg 

circumference, breast width, hip profile area, volume of trunk, surface area of trunk, 

volume of left arm, volume of right arm and volume of left leg. 

iP

The Rough Sets theory proposed by Pawlak (1982) provides a mathematical tool 

for representing and reasoning about vagueness and uncertainty. It can be approached 

as an extension of the Classical Set Theory and can be considered sets with fuzzy 

boundaries – sets that cannot be precisely characterized using the available of 

attributes. The basic concept of the rough sets is the notion of approximation space, 

which is an ordered pair , where  is nonempty set of subjects, called 

universe; 

),( RUA = U

R  is equivalence relation on U , called indiscernibility relation. If 

 and  then Uyx ∈, xRy x  and  are indistinguishable in A. Each equivalence 

class induced by 

y

R , i.e. each element of the quotient set 
R
UR =

~ , is called an 

elementary set in A. An approximation space can be alternatively note by . 

It is assumed that the empty set is also elementary for every approximation space . 

A definable set in  is any finite union of elementary sets in A. For  let  

denote the equivalence class of 

)~,( RUA =

A

A Ux∈ Rx][

R , containing x . For each , UX ⊆ X  is 

characterized in  by pair of sets – its lower and upper approximation in , A A
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defined respectively as:  

}][|{)(
}][|{)(
φ≠∩∈=

⊆∈=
XxUxXA
XxUxXA

Rupp

Rlow . 

A rough sets in  is the family of all subsets of  having the same lower and 

upper approximations. After the lower and the upper approximation have been found, 

the rough sets theory can be used to derive both certain and uncertain information, 

and induce certain and possible rules from them. In this case study, the important 

anthropometric factors selected from the rough sets are as similar as BPNN approach 

except for the breast width. 

A U

A decision tree is another feature selection approach. It is a popular classifier in 

machine learning applications and is also used as a diagnostic model in medicine. 

Decision tree is connected via nodes and branches. The tree construction process is 

heuristically guided by choosing the ‘most informative’ attribute at each step, aimed 

at minimizing the expected number of tests needed for classification. Let E be the 

entire initial set of training examples, and ,……,  be the decision classes. A 

decision tree is constructed by repeatedly calling a tree construction algorithm in each 

generated node of the tree. Tree construction stops when all examples in a node are of 

the same class, or if some other stopping criteria are satisfied. In brief, a decision tree 

is a flow-chart-like tree structure, in which each internal node denotes a test on an 

attribute, each branch represents an outcome of the test, and leaf nodes represent 

classes or a class distribution. 

1c Nc

C4.5 and CART are two typical decision trees. C4.5 is an entropy-based 

algorithm; however, CART is a binary tree based on the Gini Index (GI) to determine 

the condition for constructing the tree. In this study, the entropy-based tree (Quinlan, 

1986) has been chosen to analyze and induct this diagnostic tree owing to it has the a 

flow-chart-like structure and makes more user-friendly. In our hypertension detection 

 43



case, by running the C4.5, we select thirteen anthropometric factors. They are age, 

waist circumference, right thigh circumference, left thigh circumference, right leg 

circumference, left leg circumference, breast width, hip width, volume of trunk, 

surface area of trunk, volume of left arm, volume of right arm and volume of right 

leg. 

For medical applications, two measures, sensitivity and specificity, are frequently 

used to discuss the performance. The four elements of them are defined as True 

positives (TP): True positive answers of a classifier denoting correct classifications of 

positive cases; True negatives (TN): True negative answers denoting correct 

classifications of negative cases; False positives (FP): False positive answers denoting 

incorrect classifications of negative cases into class positive; False negatives (FN): 

False negative answers denoting incorrect classifications of positive cases into class 

negative. Sensitivity measures the fraction of positive cases that are classified as 

positive. Specificity measures the fraction of negative cases classified as negative. 

The two epidemiological measures can be described as follows. In addition, accuracy 

was also described. 

 

FNTP
TPySensitivit
+

=    (5.2)

 

FPTN
TNySepcificit
+

=    (5.3)

 

FPTNFNTP
FNTPAccuracy

+++
+

=    (5.4)

 

All of the feature selection approaches are assessed by the epidemiology based 

indices, namely, sensitivity and specificity. In addition, accuracy was employed to 
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evaluate their performance. There are 13 and 14 features selected by the implemented 

approaches. As shown in table 5.2, we found that the neural network based model is 

the worst in terms of the three indices among the various approaches. We also found 

that the sensitivity was decreased and the specificity was increased in SVM based 

approaches. This means that the ability of testing TN improved but it deteriorated on 

test TP. Indeed, this is not favorable for diagnosing. Fortunately, the decreased range 

observed was small. Also as the specificity increases, it would be beneficial in 

minimizing the cost of developing new medicines for hypertension. Furthermore, the 

accuracy of SVM based model is better than those of the neural network based, 

decision tree and rough sets approaches. In addition, although the results showed that 

the decision tree and rough sets is better on sensitivity, the SVM based methods have 

the fewer decreased range after feature selection. In other word, SVM based methods 

are still better than the other approaches. Hence, we consider that the SVM based 

method has the advantage of optimization computation and prevails over all other 

methods. 

 
Table 5.2 A comparison of performance of feature selection 

Features* Sensitivity Specificity  Accuracy 
Methods 

Full Reduced Full Reduced Full Reduced  Full Reduced

Neural network 33 14 0.4478 0.3963 0.7186 0.7289  0.6883 0.6233 

Pk  33 13 0.4689 0.4655 0.7356 0.7639  0.7033 0.6700 

Gk  33 13 0.4929 0.4805 0.7368 0.7693  0.7083 0.6767 

GPk +  33 13 0.5143 0.4830 0.7396 0.7699  0.7133 0.6783 

SVM  

(L-J based) 

GPk ⋅  33 13 0.5373 0.4987 0.743 0.7790  0.7200 0.6900 
DT  33 13 0.5970 0.5300 0.7178 0.7082  0.7040 0.6785 

Rough Sets  33 14 0.5996 0.5538 0.7189 0.7160  0.6876 0.6593 

*: number of features 

 

5.4 Discussion 

The aim of this study is to investigate the relationship between anthropometrical 
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factors and hypertension. In addition, some significant anthropometrical factors are 

selected by our approaches. After the feature selection, the common anthropometric 

factors including waist circumference, right thigh circumference, left thigh 

circumference, volume of trunk, surface area of trunk and volume of right arm were 

collected by these methods.  

A number of researches are concerned about X syndrome or cardiovascular 

disease, and the indices BMI and WHR are often employed in their investigations 

(Kim et al., 2001; Chen et al., 2000b). However, some researches indicate that BMI 

and WHR without the significant position could be disapproving (McNeely et al., 

2001). For instance, it makes the BMI imprecise because the pure height and/or 

weight measure varies significantly across ethnic groups. In other words, two people 

have different body sizes (ex. one is apple type but another is pear type), yet their 

WHR is the same. Hence, it is not suitable using these indices. In clinical research, 

most of the syndromes and cardiovascular diseases such as hypertension are derived 

from abnormal diet behavior aside from environmental and psychological factors. The 

behaviors, in particular, preferring greasy food, have been found to bring many 

changes to the human body size. The findings of this study also specify that larger 

trunk and weight are significant factors that cause hypertension. In general, the people 

have the larger trunk, the function of their heart-lung have the heavy loading naturally.  

In addition, similar to other studies previously conducted, our study considered 

waist circumference as a predictor of hypertension (Lin et al., 2002). Moreover, as for 

thigh circumference, the accumulation of fat, especially viscera fat was noted to result 

in a wider thigh circumference. For adults, the fat usually disperses uniformly to 

viscera and subcutaneous tissue. Erwin et al. (2000) consider that the subcutaneous 

adipose tissue in people with syndrome X, especially in the lower trunk is greater than 

healthy people. Furthermore, they indicate that the visceral fat is a risk factor for 
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syndrome X and infer to hypertension. However, we obtained a crude index when we 

based on indices BMI and WHR. It is relatively easy to do, even though advanced 

medical techniques such as computer topography (CT) and magnetic resonance 

imaging (MRI) are available to evaluate visceral fat. These techniques however are 

much too expensive for screening all patients, and it could reduce the wish to be 

examined for hypertension for some patients. Thus, hypertension detection via a 

simple and accurate approach is worthy of performing. Summary of the case study, 

3D whole body scanner is useful for anthropometrics collection; our proposed 

combined kernel is good at the performance of hypertension detection. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Summary 

In this study, we discuss the theory and application of the kernel-based SVM. 

First, we used four kernels including polynomial kernel, RBF kernel, multiplication 

kernel ( ) and summation kernel ( ) to construct the SVM model. Our 

experiments show that the multiplication kernel has the best performance both in 

larger and smaller data sets; summation kernel is next and RBF kernel is last. Next, 

these kernels were applied to L-J method for feature selection. The result shows that 

the L-J with multiplication kernel generally has a better performance than other 

approaches. Finally, a case study on hypertension detection was investigated in this 

study. We selected thirteen anthropometrical factors that need to be considered by 

people suffering from hypertension. Except for the indices BMI and WHR, we also 

found that some anthropometrical factors like wider thigh circumference will bring 

the risk of hypertension. The result provides a new guide in preventive medicine for 

hypertension detection; such as more sport and/or nutrition intervention/control may 

decrease the risk of hypertension. In addition to our proposed approaches, the 

backpropagation neural network, decision tree and rough sets were employed for 

feature selection and compared with our approach. Three indices, such as sensitivity, 

specificity and accuracy were used to evaluate the performance of these two methods.  

GPk ⋅ GPk +

Implementation results show that our method is better than the neural network 

based, decision tree and rough sets approaches. After feature selection, sensitivity and 

accuracy are reduced and specificity is increased in our approaches. Although a 

decreased sensitivity is not good at diagnosing, fortunately, the decreased range is 

small. Naturally, the ability of explanation is decreased due to fewer features noted in 
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the prediction model. Next, the ability of testing TN is good at saving the cost of 

developing new medicines for hypertension. In summary of the above, SVM with 

combined kernel functions by using L-J method seems to be a feasible approach for 

feature selection. 

 

6.2 Further Research 

As compared with neural network based method, L-J approach with combined 

kernel functions was observed to have a better performance. In addition, L-J method 

has the advantage on the basis of a single training run and is easier to compute for 

feature selection as compared with other SVM based methods. However, the 

computation speed is relatively slow when the kernel functions are complicated. 

Hence, this subject is worth investigating in the future. 

In addition to computation speed problems, the rules generalization is another 

important issue. Obviously, SVM based methods do not provide the ability of rule 

generalization although they have the strong foundation in statistical learning theory. 

Most of the engineering or medical problems with regard to the rule generalization are 

still more exigent than feature selection for operators or non-experts. Hence, how to 

provide a function of rule generalization extend the SVM based method deemed an 

important issue in the interdisciplinary applications.  
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