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液晶顯示模組裝配廠生產排程問題之研究

學生：戴于婷 指導教授：鍾淑馨博士

國立交通大學工業工程與管理系

摘 要

在液晶面板廠中，如何充分利用產能及滿足顧客交期來增加競爭力及獲利，為一重

要之研究課題；在液晶面板製造的最終模組裝配製造階段中，印刷電路板焊接作業為生

產過程中的瓶頸，其排程結果將影響整個模組裝配廠的生產績效，因此，本論文先針對

此瓶頸作業所衍生的平行機台排程問題進行探討。而在經過印刷電路板焊接作業後，工

件在出貨前還須經過老化測試作業，這是模組裝配廠中的批次機台，老化測試的排程問

題是一個多維度的排程問題，其考量了不同的到臨時間、不同的工件大小、有限的機台

產能以及批次相依的加工時間，不當的老化測試排程將影響出貨時程，因此，發展老化

測試排程的求解程序在模組裝配廠也是一重要的課題。

本論文首先解決印刷電路板焊接排程問題 (printed circuit board bonding

scheduling problem；PCBSP)，其為順序相依設置時間的平行機台排程問題，工件在此

問題中分屬不同的產品族，由於模組裝配廠所製造的產品面臨契約與現貨並存的混合市

場，因此，工件在 PCBSP 中依據利潤及客戶重要性等因素被賦予不同的權重，在此問

題中，本文於滿足契約數量及不違反交期及機器產能的限制下，以求得最大化總加權產

出作為 PCBSP 的求解目標，這些工件一旦於瓶頸資源上完工，則需要加速出貨，因此，

在老化測試排程問題 (aging test scheduling problem；ATSP) 中則以最小化完工時間為

目標。

在本論文中，我們針對 PCBSP 與 ATSP 兩個排程問題分別建立其混合整數規劃模

式，亦將 PCBSP 的子問題轉換為考量時間窗限制下之車輛路線問題(vehicle routing

problem with time window；VRPTW)，並修改既有的網路演算法來發展新的啟發式解

法，同時也應用貪婪法則來解決其他的子問題；此外，針對 ATSP，我們也設計一個複

合啟發式法則來決定批次個數，並將此個數視為一已知的參數帶入混合整數規劃模式

中，以降低原先模式求解的複雜度，而針對大型的 ATSP，本文也提出三個啟發式解法

來求解；經由運算結果及績效比較中得知，本論文針對 PCBSP 及 ATSP 所提出的啟發

式法則有很好的求解效果。

關鍵詞：平行機台排程、批次、加權產出、順序相依設置時間、模組裝配
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The Study on the Production Scheduling Problems for
Liquid-Crystal-Display Module Assembly Factories

Student：Yu-Ting Tai Advisor：Dr. Shu-Hsing Chung

ABSTRACT

To be competitive, the thin film transistor liquid crystal display (TFT-LCD)

companies need to utilize their capacity and to satisfy customers’due dates in order to

increase their profitability. In the final stage of TFT-LCD, module assembly

manufacturing process, the printed circuit board (PCB) bonding usually causes

bottleneck in production; its schedule mainly affect the system performance of module

assembly factories. Therefore, an essential scheduling problem is tackled for the

bottleneck operation first; it is referred to as the printed circuit board bonding scheduling

problem (PCBSP). Furthermore, following the PCB bonding operation, there exists an

aging test operation, which is the only batch server in the whole process. The aging test

scheduling problem (ATSP) is complicated because it is a multi-dimensional problem,

which involves the constraints of unequal ready times, non-identical job sizes, limited

machine capacity, and batch dependent processing times. Therefore, the development of

efficient algorithms is also critical to form appropriate batches and to arrange a suitable

schedule for those jobs which have been processed by the PCB bonding operation.

For the PCBSP, the jobs are clustered by their product types, which must be

processed on identical parallel machines. They are also given various weights based on

their profits and customer importance due to hybrid contracted and spot markets being in

the module assembly industry. Furthermore, setup times for two consecutive jobs

between different product types on the same machines are sequence-dependent. Thus,

the objective for the PCBSP is to maximize the total weighted throughput subject to

fulfilling contracted quantities without violating the due dates and machine capacity

restrictions. Once those jobs are planned and processed in the bottleneck operation, they
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should be accelerated their speed to complete and delivery. Consequently, the ATSP with

a minimal makespan criterion is also considered.

In this dissertation, the PCBSP and ATSP are formulated as two mixed integer linear

programming models. For the PCBSP, it can be viewed as a multi-level optimization

problem, the sub-problem of PCBSP can be transformed into the vehicle routing problem

with time window (VRPTW), a well-known network routing problem which has been

investigated extensively. We present two new algorithms based on the network algorithms

with some modifications to accommodate the PCBSP. Furthermore, the greedy concept

is also applied to the other sub-problem of PCBSP. For the ATSP, an effective compound

algorithm is proposed to determine the number of batches and to apply this number as

one parameter in the MILP model in order to reduce the complexity of the problem.

Three efficient heuristic algorithms are also provided for the large-scaled ATSP.

Computational results and performance comparisons show that the proposed algorithms,

which are used to solve the PCBSP and ATSP, are efficient and near-optimal.

Keywords : parallel machines scheduling, batch, weighted throughput, sequence

dependent setup time, module assembly.



iv

誌 謝

這本論文能順利地完成，要感謝的人真的太多了，都是因為大家的幫忙，我才能一
步一步地走完這個旅程。首先，要感謝我的指導老師 鍾淑馨教授， 鍾老師治學嚴謹，
做研究及教學都相當認真，對學生生活上的關懷更是無微不至，每每在我學業、家庭、
身體與工作產生衝突時，鍾老師總是給我滿滿的鼓勵與建議，讓我能在這條路上，將自
己的角色扮演好，做好每一件事，能有幸認識老師，並在研究的方法與態度上獲得老師
的啟發與影響真是我的福氣，在此向恩師致上崇高的敬意與謝意。另外，也要感謝 彭
文理教授，彭老師總是不厭其煩地回答我的問題，有老師的鼓勵，也讓我有更多跌倒了
再爬起來的勇氣，此外，口試期間，承蒙口試委員 張百棧院長、吳泰熙教授、陳正芳
教授及彭文理教授給予的寶貴建議，使本論文更加完備，在此致上深深的謝意。

博士班修業期間，感謝 519 與 517 實驗室的學長姐與學弟妹的鼓勵與幫助，也感謝
建瑋同學，不僅在修業期間給我鼓勵，畢業後若有回新竹總是不忘看看老同學，為我加
油，也感謝春美學姊與俊穎，常提供給我寶貴的建議，讓我能學習更多，使我的論文更
完善，還有雅靜學妹，謝謝妳常常在我最無助的時候，給我一個親切的微笑，讓我能繼
續走下去，謝謝你們。

最後，要感謝我的爸爸及親愛的家人，爸爸從小總是對我有著深深的期許，真的很
高興自己做到了，沒有辜負他對我的期望，也感謝媽媽以及辛苦的公公婆婆，謝謝你們
在我唸書時幫我帶我兩個小孩，讓我能在新竹專心學業，無後顧之憂，當然，也要感謝
我的先生 建穎，還有我那兩個可愛的孩子，謝謝建穎總是幽默地在我身旁幫我加油打
氣，協助我渡過每一個困難，另外，也謝謝兩位小孩天真無邪的笑容常帶給我莫大的鼓
勵。在此向每位關心過我、鼓勵過我的人致上最深的謝意，也將這份成果獻給你們。

戴于婷 僅誌于國立交通大學
管理學院工業工程與管理學系
中華民國九十七年七月十一日



v

Table of Contents
Abstract (Chinese) ....................................................................................................... i

Abstract (English) ........................................................................................................ ii

Acknowledgements ......................................................................................................iv

Table of Contents .........................................................................................................v

List of Figures ............................................................................................................vii

List of Tables.............................................................................................................viii

Notation ...................................................................................................................... x

1. Introduction............................................................................................................. 1

1.1. Motivation...................................................................................................... 1

1.2. Research Scope and Objectives ........................................................................ 4

1.3. Organization of the Dissertation ..................................................................... 5

2. Literature Review..................................................................................................... 7

2.1. Existing Production Management Problems in TFT-LCD factories .................. 7

2.2. Scheduling Problems with a Maximal Throughput Criterion ...........................10

2.3. Network Problems .........................................................................................12

2.4. Batch Processing Machine Scheduling Problems.............................................14

3. Algorithms for the Printed Circuit Board Bonding Scheduling Problem ....................21

3.1. Introduction...................................................................................................21

3.2. Module Assembly Process and Problem Description .......................................22

3.2.1. Module Assembly Process.......................................................................22

3.2.2. Printed Circuit Board Bonding Scheduling Problem.................................24

3.2.3. An Illustrative Example...........................................................................25

3.3. An Integer Programming Formulation for the PCBSP.....................................26

3.4. Algorithms for the PCBSP..............................................................................29

3.4.1. Parallel Savings Algorithm ......................................................................29

3.4.2. Generalized Savings Algorithm ...............................................................30

3.4.3. New Algorithms .....................................................................................30

3.4.3.1. Three-phase Modified Parallel Savings Algorithm..........................31

3.4.3.2. Three-phase Modified Generalized Savings Algorithm...................36

3.5. Test Problems Design .....................................................................................39



vi

3.5.1. Workload Level of Contract Jobs ............................................................40

3.5.2. Tightness of Due Dates...........................................................................41

3.5.3. Setup Time Variation ..............................................................................42

3.5.4. Variation of (Contract/Spot) Weight Ratio ..............................................42

3.6. Computational Results ...................................................................................42

4. Solutions for the Aging Test Scheduling Problem .....................................................48

4.1. Introduction...................................................................................................48

4.2. An Integer Programming Formulation............................................................51

4.3. Compound MILP-based Algorithm ................................................................56

4.4. Heuristic Algorithms for Large-scale Problems................................................59

4.4.1. Heuristic Algorithm 1 (H1)......................................................................60

4.4.2. Heuristic Algorithm 2 (H2)......................................................................62

4.4.3. Mixed-strategy Heuristic Algorithm (MixedH).........................................63

4.5. Computational Results and Comparisons .......................................................64

4.5.1. Analysis of Results from Small and Moderate Size Problems ...................64

4.5.2. Analysis of the Result Based on the Large Scaled Problem.......................71

5. Conclusions and Future Research ............................................................................73

5.1. Conclusions ...................................................................................................73

5.2. Future Research .............................................................................................75

References..................................................................................................................76



vii

List of Figures

Figure 1-1 The TFT LCD process flow. ........................................................................ 1

Figure 3-1 The six steps in the module assembly process. .............................................23

Figure 3-2 PCB bonding illustration. ...........................................................................23

Figure 3-3 COG structure. ..........................................................................................24

Figure 3-4 TAB structure. ...........................................................................................24

Figure 3-5 Gantt chart for the example problem. .........................................................36

Figure 4-1 The six steps in the module assembly process. .............................................49

Figure 4-2 The multiple dimensions of the aging test scheduling problem. ...................50

Figure 4-3 An optimal solution for the 7-job example with two aging test machines......56

Figure 4-4 The flow chart of the compound MILP-based algorithm (CMA). .................57



viii

List of Tables

Table 2-1 The literature related to production management problems in TFT-LCD

factories. ......................................................................................................8

Table 2-2 The literature for the scheduling problems with a throughput maximization

criterion. ....................................................................................................11

Table 2-3 The literature related to the batch processing machine scheduling problem

with compatible product families. ...............................................................16

Table 3-1 The job information for the 7-job example. ...................................................26

Table 3-2 Setup times required for switching one product type to another for AH ,

BH , and CH . ............................................................................................26

Table 3-3 The savings values of each contract-jobs pair. ...............................................35

Table 3-4 The insertion cost of each job at every possible position................................38

Table 3-5 Summarized information of 24 problems. ....................................................41

Table 3-6 A comparison between the optimal solutions and two heuristic algorithms

(underlines indicate the optimal solutions). .................................................43

Table 3-7 The preliminary comparison with various parameter settings. .......................44

Table 3-8 The comparisons with different parameter values of 1
 when 1

0 5 . and

1
1 5 . (underlines indicate the best solutions for each problem instance). ..44

Table 3-9 Performance comparisons in the three algorithms. ........................................45

Table 3-10 Results in means with different problem characteristic groups. ....................46

Table 3-11 Performance comparisons of the three algorithms (24 problems). ................47

Table 4-1 Job sizes, ready times, and processing times of the seven independent jobs. ...55

Table 4-2 The composite jobs for each estimated batch. ...............................................59

Table 4-3 Experimental factors for small and moderate sized problems. .......................65

Table 4-4 Run times and makespan results for 7-job problem instances.........................68

Table 4-5 Run times and makespan results for 15-job problem instances. ......................69

Table 4-6 Run times and makespan results for 20-job problem instances. ......................70



ix

Table 4-7 Comparisons of the five algorithms. .............................................................71

Table A1 Setup times matrix for 26 product types in problem 6 (unit: minutes).............82

Table A2 The job information of the 120 jobs in PCBSP. .............................................83



x

Notation

Notations for the printed circuit board bonding scheduling problem:

Indices:

i : product type index,  0 1i , , ,I ;

j : index of job for product type index i ,  0,1, , ij J ;

k : machine index, 1,2,...,k K ;

km : the thk machine;

H : the set of jobs to be processed;

M : the set of machine containing identical parallel machines;

iH : job cluster containing iJ jobs of product type i to be processed;

ijh : index for jobs in cluster iH ;

Parameters:

K : the number of identical machines;

I : the number of job clusters in job set H ;

iJ : the number of jobs in job cluster iH ;

ijn : lot size of job ijh ;

ip : the unit processing time for job ijh ;

ijw : the nonnegative weight for job ijh ;

ijd : the due date for job ijh ;

iis : the sequence dependent setup time between any two consecutive jobs;

Cap : the predetermined machine capacity expressed in terms of time;

contract
iJ : the number of contract jobs in job cluster iH ;

ije : the latest starting time to process job ijh ;
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ijr : the ready time for job ijh ;

iiSA : the savings for the pairs of two jobs associated with product type iH and

iH ;

ij i jh hPSA : the savings applied in the parallel savings algorithm for pairs of jobs ijh

and i jh ;

ij i jh hGSA : the savings applied in the generalized savings algorithm for pairs of jobs

ijh and i jh ;

1 : the parameter represents weight of savings for calculating
ij i jh hPSA ;

1 : the parameter represents weight of weighted throughput ratio for

calculating
ij i jh hPSA ;

1r : the parameter represents weight of time windows restrictions for

calculating
ij i jh hPSA ;

2 : the parameter represents weight of savings for calculating
ij i jh hGSA ;

2 : the parameter represents weight of weighted throughput ratio for

calculating
ij i jh hGSA ;

2r : the parameter represents weight of time windows restrictions for

calculating
ij i jh hGSA ;

Decision variables:

ijkx : the variable indicating whether a specific job is scheduled on a machine,

with 1ijkx if job ijh is scheduled on machine km , and 0ijkx

otherwise;

iji j ky : the precedence variable defined on two jobs ijh and i jh scheduled on

machine km , with 1iji j ky if job ijh precede job i jh (not necessarily

directly), and 0iji j ky otherwise;

iji j kz : the direct-precedence variable defined on two jobs ijh and i jh

scheduled on machine , with  if job direct precede job
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scheduled on machine km , with 1iji j kz if job ijh direct precede job

i jh , and 0iji j kz otherwise.

ijkt : the starting time for job ijh processed on machine km ;

Notations for the aging test scheduling problem:

Indices:

j : job index,  0,1, ,j N ;

b : batch index,  1,2, ,b B ;

k : machine index, 1,2,...,k K ;

km : the thk machine;

Parameters:

N : the number of jobs;

B : the number of batches;

K : the number of machines;

jp : the processing time for job j ;

jr : the ready time for job j ;

js : the job size for job j ;

S : the maximum number of pieces can be processed simultaneously on a

machine;

 : a constant, which is chosen to be a sufficiently small value which cannot

affect the makespan in Model P;

1Q : a constant and is greater than the total number of jobs ( N ) in Model P;

2Q : a chosen constant as it is sufficiently large in value to satisfy 0bb ky or 1

in Model P;

 : the parameter is used to examine whether there exists a job might be

combined with the delayed batch to avoid delaying that job;
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 : the parameter represents to accommodate the postponement idea of the

DELAY heuristic algorithm ;

Decision variables:

jbkx : the variable indicating whether a specific job is assigned to batch b and

scheduled on a machine km , with 1jbkx if job j is assigned to batch

b and scheduled on machine km , and 0jbkx otherwise;

bb ky : the precedence variable defined on two batches b and b scheduled on

machine km , with 1bb ky if batch b precede job b (not necessarily

directly), and 0bb ky otherwise;

bkz : the variable indicating whether a specific batch b is scheduled on a

machine km , with 1bkz if batch b is scheduled on machine km , and

0bkz otherwise;

bkt : the starting time of batch b to be processed on machine;

maxC : the makespan;

bpt : the longest processing time of all the jobs processed simultaneously in the

bth batch;

maxC : the lower bound of makespan in Model N;

BN : the number of lower bound batches obtained from Model N;

Z : the solution obtained from Model P;

*Z : the solution of the compound MILP-based algorithm obtained within the

limited computational time;

t : the decision time point;

br : the batch ready times;

bT : the summation of the batch ready time and batch processing time.
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1. Introduction

1.1. Motivation

In recent years, applications of thin film transistor liquid crystal display

(TFT-LCD) products have been increasing rapidly, for example, cellular phones,

computer monitors, and LCD TVs. Not surprisingly, TFT-LCD manufacturing has

attracted much attention. The TFT-LCD manufacture process consists of four major

stages: TFT array fabrication, color filter (CF) fabrication, LCD assembly and module

assembly, as depicted in Figure 1-1.

Module
Assembly

CF

TFT

Color Filter Fabrication

LCD
Assembly

TFT Array Fabrication

Figure 1-1 The TFT LCD process flow.

TFT array and color filter fabrications are similar to the semiconductor wafer

fabrication, and their process steps are also characterized by re-entrant flow. The LCD

assembly simultaneously attaches the TFT and color filter and fills the gap between

them with liquid crystal. The final stage, module assembly, generally consists of two

main segments, front end and back end. It contains the following six processes steps in

which the customer-specified components are assembled into the cells: (1) the COG

(chip on glass) / TAB (tape automated bonding) process, (2) the attachment of the

flexible printed circuit (FPC) board, (3) the bonding of the printed circuit board

(PCB), (4) the assembly of the backlight, (5) the aging test, and (6) the inspection, as

shown in Figure 1-2.
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COG process
FPC

attachment

TAB process

PCB bonding Backlight
Assembly Aging test Inspection

Front end Back end

Figure 1-2 The six steps in the module assembly process.

In the module assembly stage, the printed circuit board (PCB) bonding operation

usually causes bottleneck in production because it involves the most expensive

equipment and its machine utilization is the highest in this stage. Setup times for two

consecutive jobs of different product types on the same PCB bonding machine are

long and sequentially dependent. Furthermore, in the module assembly

manufacturing industry, there exists a hybrid market involving contract and spot

markets. The contract jobs associated with contracted prices and due dates have been

placed and booked an amount of capacity. Moreover, the other remaining capacity is

to be sold into the spot market. The further spot prices are uncertain and high price

volatility due to today’s fierce competitive environment. In this dissertation, jobs in

module assembly factories are given different weights, which are determined by the

factors such as job’s profit and customer importance. According to the essential

concept of theory of constraints (TOC) [41], the performance of a system is

determined by the bottleneck in the system. Thus, in this dissertation, a printed circuit

board bonding scheduling problem (PCBSP) is first investigated and which selects a

appropriate subset of jobs to maximize weighted throughput by considering sequence

dependent setup times, job weights, and due dates.

After jobs are processed at the processing of the bottleneck operation (PCB

bonding), they should be passed through two main operations, backlight assembly and
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aging test (see Figure 1-2) in the module assembly process. In the backlight assembly

operation, jobs can be processed smoothly because the non-critical operation has

enough capacity and it is the serial server that is the same fashion as the PCB bonding

operation. However, how to schedule the jobs processed at the aging test operation is

much more complicated since this operation is a batch server which involvs parallel

batch machines. Batches at the aging test operation need to be formed by collecting

unequal ready-time jobs and non-identical size jobs with considerations of limited

machine capacity (a maximum number of pieces can be processed simultaneously on

a machine) and batch dependent ready times and processing times. Therefore, solving

such multi-dimensional batch processing machines scheduling problem may cause a

large makespan if an improper batch-formation strategy is applied. Moreover, Mönch

et al. [62] also pointed out“it is sometimes advantageous to process a non-full batch to avoid

excessive delays in waiting for jobs with later ready times”. Therefore, an elaborate solution

procedure for the aging testing scheduling problem (ATSP) located at the end of

module assembly process is necessary. In this dissertation, we not only focus on the

investigation for the bottleneck operation by solving the PCBSP, but also expedite the

jobs at the aging test operation to complete with a minimal makespan criterion in

order to subordinate the scheduling results of the bottleneck operation. Consequently,

it is essential that the development of efficient algorithms to solve the ATSP in

module assembly factories.

Since the PCBSP and ATSP involve many real-world constraints, they are more

difficult to solve than the classical parallel-machine scheduling problems considered

by So [78], Shin and Leon [77], and Jeong et al. [47] and parallel-batch-processing

machine scheduling problems considered by Lee and Uzsoy [51], and Chang et al. [14],
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respectively. We believe that the development of the scheduling methods for the two

scheduling problems can assist those involved in module assembly factories to make

judicious scheduling decisions.

1.2. Research Scope and Objectives

In the dissertation, we first focus on the scheduling problem on the bottleneck

resource in module assembly process factories; it is referred to as printed circuit board

bonding scheduling problem (PCBSP). The PCBSP determines an appropriate subset

of jobs to be processed and schedules jobs sequences with a weighted throughput

criterion. Subsequently, we consider the batch scheduling problem for the aging test

operation which locates at the end of module assembly processing steps. The

investigation on the aging test scheduling problem (ATSP) with a minimal makespan

criterion provides a schedule for those jobs, which have scheduled in the PCBSP.

The purposes of this dissertation are to develop exact solutions and efficient

algorithms for the practical module assembly scheduling problems based on the

existing network and batch formation technologies. Two research works will be

accomplished in this dissertation:

1. With consideration of the characteristics of different job weights, sequence

dependent setup times, due dates, product type dependent processing time,

and machine capacity, a mixed integer linear programming model for the

PCBSP is constructed to obtain the exact solution. Then, two three-phase

algorithms, which based on the existing network algorithms and the greedy

concept, are presented to solve the PCBSP efficiently.
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2. With the considerations of unequal ready times, non-identical job sizes,

limited machine capacity, and batch dependent processing times, a mixed

integer linear programming is presented. In addition, an effective compound

algorithm and three efficient heuristic algorithms are also provided.

1.3. Organization of the Dissertation

This dissertation focuses on developing the scheduling algorithms for module

assembly manufacturing industries is organized as follows.

Chapter 1 provides the motivation of the research and defines the research

domain and its objectives.

Chapter 2 presents a literature in the areas involving the existing production

management problems in TFT-LCD factories, the scheduling problems with a

weighted throughput criterion, network problems, and batch processing machine

scheduling problems.

Chapter 3 considers the printed circuit board bonding scheduling problem

(PCBSP) in the module assembly to maximize the weighted throughput subject to

fulfilling contracted quantities without violating the due date and machine capacity

restrictions. The PCBSP is formulated as a mixed integer linear programming model.

Two modified algorithms are also proposed to solve the PCBSP efficiently.

Chapter 4 considers the aging test scheduling problem (ATSP) in the module

assembly to minimize the makespan. The ATSP is formulated as a mixed integer

linear programming model. An effective compound algorithm is proposed to

determine the number of batches which is then used as one parameter in the MILP
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model in order to reduce the complexity of the problem. Three efficient heuristic

algorithms for solving the large-scale parallel batch processing machine scheduling

problem are also provided.

Chapter 5 provides the conclusions and several further extensions. Conclusions

will be drawn based on the results of the research.



7

2. Literature Review

The topic of the scheduling problems investigated in this dissertation for module

assembly factories bases on ideas from four different research areas. Therefore, this

literature review is divided into four areas which contribute to this dissertation

regarding related existing production management problems in TFT-LCD factories,

the scheduling problems with a weighted throughput criterion, essential network

problems, and batch processing machine scheduling problem.

2.1. Existing Production Management Problems in TFT-LCD factories

The amount of available literature which investigates related production

management problems in TFT-LCD factories is limited. As can be seen in Table 2-1,

those research papers can be classified into three categories according their research

scopes: supply chain planning problems [48][56][57][90], post-mapping yield

problems [18][80][81][92], and scheduling problems [45][47][50][53][77].

In first category, since four basic process stages are involved in the TFT-LCD

industry, the supply chain planning problems in TFT-LCD have been receiving

attention from academic researchers. Jeong et al. [48] have developed an

available-to-promise (ATP) system for TFT-LCD manufacturing in global supply

chain environment. The ATP system was used to estimate the promising delivery date

for new orders and calculate the unused production capacity with given production

schedules. They have also proposed a heuristic for scheduling TFT-LCD module

assembly process using the unused capacity at the shop floor level. Lin and Chen [56]

and Wang et al. [90] have provided a monolithic model of the multi-stage and
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Table 2-1 The literature related to production management problems in TFT-LCD
factories.

Year Authors and Refs. Research scope
Performance

criterion
Methodology

2001 Jeong et al. [47] Scheduling
problem

Minimize flow time
and to maximize the
fulfillment of
production demands

Linear
programming
and heuristics

2002 Jeong et al. [48] Available-to–
promise system

Generate the more
optimistic delivery
date promise

Heuristics

2003 Lee and Lee [53] Production
control policies
for re-entrant
process

Maximal throughput;
Minimize the
difference of current
and target WIP levels

Linear
programming

2003 Hu [45] Scheduling
problem

Minimize inventory
and backlog

Heuristics

2004 Shin and Leon
[77]

Scheduling
problem

Minimize total
tardiness and the
number of family
setups

Heuristics

2005 Lai [50] Scheduling
problem

Minimize total
tardiness

Heuristics

2005 Su et al. [80] Post-mapping
yield problem

Yield improvement Linear
programming
(Hungarian
method) and
heuristic

2005 Chao [18] Post-mapping
yield problem

Minimize total cost
of losses and
backorder

Linear
programming

2006 Su and Yang [81] Post-mapping
yield problem

Yield improvement Genetic
algorithm and
simulated
annealing

2006 Wang and Su [92] Yield mapping
problem

Maximize the yield
rate

Linear
programming
(Hungarian
method) and
heuristics
(random and
greedy)

2007 Lin and Chen [56] Supply network
planning
problem

Minimize total costs MILP

2007 Lin et al. [57] Product mix Maximize
contribution margin

Three-phase
mathematical
methodology

2007 Wang et al. [90] Product mix Maximize net profit MILP
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multi-site production planning problem and a MILP model to construct a product mix

in TFT-LCD factories, respectively. Lin et al. [57] considered a capacity and product

mix planning problem for TFT array multi-plant with a maximum contribution

margin. They proposed a three-phase methodology which involves capacity

configuration, capacity expansion, and capacity exploitation phases. However, in this

dissertation, we devote to solving the scheduling problem which the long and

middle-term production planning and product mix are given.

The second category, post-mapping yield problem has found by Su et al. [80][81],

and Wang and Su [92]. They have solved the problem using a series of tools which

involve linear programming, heuristics, and meta-heuristics (genetic algorithm and

simulated annealing). They revealed that proposed approaches which can solve

practical problems effectively and improve the yield rate in the LCD assembly process.

Moreover, Chao [18] also provided a liner programming model in order to solve the

mapping problem regarding the mapping between TFT and CF substrates.

Finally, the third category is the scheduling problems in TFT-LCD industries.

Jeong et al. [47] presented mathematical models and proposed two heuristic

algorithms to minimize flow time and to maximize the fulfillment of production

demands in LCD assembly processes. Lee and Lee [53] have suggested three kinds of

control policies: push, push-pull, and pull types. They have used the linear

programming models to evaluate performances of the three kinds of control policies.

It is also presented in their investigation that a pull type control policy gives stable

throughput and delivery satisfaction at a small cost and with less production. Shin and

Leon [77] discussed the liquid crystal display module stage scheduling problem. They
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provided two heuristics based on the MULTI-FIT method and tabu search to

minimize total tardiness and number of family setups. Hu [45] and Lai [50] proposed

heuristic algorithms for the lot sizing scheduling problem in color filter factories. Hu

[45] and Lai [50] solved their scheduling problems with criterion of minimizing the

cost of inventory and backlog and minimizing tardiness, respectively. However, none

of these investigations considered sequence dependent setup time and job weights

simultaneously. This dissertation investigates the weighted throughput criterion of a

module assembly factory which, till now, has been ignored.

2.2. Scheduling Problems with a Maximal Throughput Criterion

During the last decade, there have been many researchers who have investigated

the identical parallel machine scheduling problem which is dependent on the

completion time of all jobs. The objectives usually involve (see Cheng and Sin [19] for

a comprehensive survey) completion time-based [61], due-date based [6][76], and

flow-time based [24][43] performance measures, etc. However, So [78] points out that

determining the best schedule to process all the jobs currently on hand is not practical.

Instead, he suggests choosing one subset of jobs for which to construct daily work

schedules according to the existing capacity and demand. However, the PCBSP we

investigated in this dissertation select the appropriate job sets to maximize the

weighted throughput by considering setup times and job weights.

There are relatively few papers, as can be seen in Table 2-2, which addressed the

scheduling problem with a throughput criterion. Hwang and Chang [46] and Tovia et

al. [85] have focused on the semiconductor manufacturing process and assumed that

setup times are negligible. Hwang and Chang [46] have designed a lagrangian
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relaxation-based hierarchical production scheduling engines to maximize total

number of weighted moves in semiconductor manufacturing. Tovia et al. [85] have

presented a mathematical programming model and a rule-based heuristic approach to

Table 2-2 The literature for the scheduling problems with a throughput maximization
criterion.

Authors and Refs. Setup time Preemption
Performance

criterion (max.)
Shop type

Hwang and Chang
[46]

negligible non-preemptive total weighted
moves

Job shop

Tovia et al. [85] negligible non-preemptive throughput parallel
machines

Baptiste et al. [4] negligible preemptive total weighted
throughput

single
machine

Fung et al. [34] negligible preemptive total weight single
machine

So [78] sequence
independent
batch setup
time

non-preemptive total reward parallel
machines

Hiraishi et al. [44] sequence
independent
setup time

non-preemptive weighted
number of
just-in-time jobs

parallel
machines

Rojanasoonthon et
al. [74]

sequence
dependent
setup time

non-preemptive weighted
number of
scheduled jobs

parallel
machines

solve a throughput maximization problem in a semiconductor packaging factory.

Furthermore, Baptiste et al. [4] and Fung et al. [34] have considered the preemptive

scheduling problem with equal length processing and negligible setup time. However,

setup times and non-preemptive scheduling characteristics of the front-end module

assembly manufacturing process are essential and significant.

Allahverdi et al. [1] conducted an extensively survey for the scheduling problems

which involve setup times. They pointed out that So [78] is the only one who has

considered a total reward objective for parallel machine scheduling problems prior to
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1999. So [78] considered an analogous version of the PCBSP and presented three

heuristics to solve the problem approximately. He tackled a problem that existed in a

minor setup time between jobs of the same family and a major setup time between

jobs from different groups. According to the classification presented by Allahverdi et

al. [1], what So [78] considered classified to the sequence independent batch setup

times, which is the special case of sequence dependent setup time. Since 1999, with

respect to the total weight of completed jobs, Hiraishi et al. [44] and Rojanasoonthon

et al. [74] have maximized the weighted number of just-in-time jobs and the weighted

number of scheduled jobs, respectively, as solutions to the scheduling problems they

investigated. However, Hiraishi et al. [44] in their consideration of JIT job and

Rojanasoonthon et al. [74] in their examination of strict order of priority in the job

completion schedule, both limit and reduce the throughput of parallel machines.

2.3. Network Problems

Two classical network problems, the traveling salesman problem (TSP) [58] and

the vehicle routing problem (VRP) [7][79], are among the most widely investigations

combinatorial optimization problems. The TSP can be stated as follows: a salesman,

starting in one city, wishes to visit other cities once and exactly once and return to the

start with minimal total distance traveled. Furthermore, the VRP involves the design

of a set of minimum-cost vehicle routes without violating the limited vehicle capacity,

originating and terminating at a central depot, for a fleet of vehicles that serviced a set

of customers with known demand [7][79]. There are many generalizations of the

well-known TSP and VRP. Examples include the traveling salesman problem with

time windows (TSPTW) [28][35], the traveling salesman problem with profits [32],

the traveling salesman’s subtour problem [36], the prize-collecting traveling salesman
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problem [3], the prize-collecting traveling salesman problem with time windows

(TW-TSP) [5], the vehicle routing problem with time windows (VRPTW) [79], the

orienteering problem (OP) [11][16][39][40], the multiple tour maximum collection

problem (MTMCP) [10][11], and the team orienteering problem (TOP) [2][17][84].

It should be noted that jobs in PCBSP are taken the constraint of due dates into

consideration and are processed on parallel machines. To solve the scheduling

problem for PCBSP and arrange jobs’sequence, this dissertation adopts the basic

technologies of vehicle routing problem with time windows (VRPTW). Hence, we

further focus on the VRPTW in detail. The VRPTW is a well-known network routing

problem which has been investigated extensively [8][9][79]. Bräysy and Gendreau [8]

given a explicit definition regarding the VRPTW as follows: “The VRPTW can be

described as the problem of designing least cost routes from one depot to a set of geographically

scattered points. The routes must be designed in such a way that each point is visited only once

by exactly one vehicle within a given time interval, all routes start and end at the depot, and the

total demands of all points on one particular route must not exceed the capacity of the vehicle.”

The VRPTW is NP-complete which is demonstrated by Lenstra and Rinnooy Kan

[54]. A large amount of solution procedures, involving route-construction methods,

route-improvement methods, and meta-heuristics, have been applied to the VRPTW.

Bräysy and Gendreau [8][9] have provided complete surveys of research papers

regarding the VRPTW.

VRPTW can be used to solve the scheduling problems in semiconductor

manufacturing factories, such as the wafer probing factories [65][68] and IC final

testing factories [69]. Pearn et al. [65][68] have transformed the wafer probing
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scheduling problem (WPSP) into the vehicle routing problem with time windows

(VRPTW). They gave an illustrative example to demonstrate the proposed

transformation and used the existing VRPTW algorithms to solve the WPSP

near-optimally. They also developed three modified algorithms to solve the WPSP. In

the IC final testing factories, Pearn et al. [69] applied the network algorithms designed

for the VRPTW to solve the IC final testing problem with the characteristic of reentry

based on the stage-by-stage solution strategy and full-load policy applied to

batch-processing stages, so that the capacity of critical resources testers would be

efficiently utilized. In this dissertation, the author took the merits of the VRPTW and

applied the VRPTW algorithms to the scheduling problems with different job weights,

sequence dependence setup times, due dates in module assembly factories.

2.4. Batch Processing Machine Scheduling Problems

In this dissertation, the aging test scheduling problem (ATSP) considers a parallel

batch processing machine scheduling problem on the aging test operation in the

module assembly process. In recent years, much research has focused on providing

solutions to the batch processing machine (BPM) scheduling problems on a single or

parallel batch processing machines. A comprehensive literature and a classification

scheme on batch processing machine scheduling problems are presented by Potts and

Kovalyov [73]. For the batch processing machine scheduling problems in

semiconductor manufacturing, Mathirajan and Sivakumar [59] have provided a

complete survey.

There are two types of batch processing machine scheduling problem, which are

named as incompatible product family and compatible problem family. The former is
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that jobs with different product families are mutually incompatible for processing in

the same batch; the latter is assumed that jobs belonging to different product families

may be simultaneously processed. In this dissertation, the aging test scheduling

problem we investigated considers the batch processing of compatible product

families. In problems of this type, the batch processing time is computed by the

longest job processing time in that batch.

The literature regarding the BPM scheduling problems on a single or parallel

batch processing machines with compatible product families is shown in Table 2-3. As

presented in Table 2-3, the first researchers to address the batch processing scheduling

problem arising in a burn-in oven of the final test in the semiconductor industry are

Lee et al. [52]. They used dynamic programming-based algorithms and heuristics for a

number of performance measures, such as maximum tardiness (Tmax), the number of

tardy jobs ( iU ), and maximum lateness time (Lmax) on a single batch processing

machine. They have also presented heuristics for the parallel batch processing

machine scheduling problem with the minimum makespan (Cmax) and maximum

lateness time (Lmax) criteria. They have explored the area of scheduling batch

processing machines and offered a classification of complexity for the investigated

problems. Furthermore, Chandru et al. [12][13], DuPont and Ghazvini [30], Poon and

Yu [71], Mönch et al. [63] provided the solutions for the single/parallel batch

processing machine scheduling problems with identical job sizes. Although the single

batch processing machine scheduling problem (Uzsoy [86], Ghazvini and DuPont

[37], Zhang et al. [94], DuPont and Dhaenens- Flipo [29], Melouk et al. [60], Erramilli
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Table 2-3 The literature related to the batch processing machine scheduling problem
with compatible product families.

Year Authors and Refs. Shop type Ready
time

Job size Performance
criterion

1992 Lee et al. [52] single machine/
parallel machines

unequal/
equal

identical/
identical

Tmax, iU ,
Lmax

/ Cmax, Lmax

1993 Chandru et al. [12] single machine equal identical Cmax

1993 Chandru et al. [13] single machine/
parallel machines

equal identical Cmax

1997 DuPont and Ghazvini
[30]

single machine equal identical iF

2004 Poon and Yu [71] single machine equal identical  iC
2006 Mönch et al. [63] single machine equal identical  i id C
1994 Uzsoy [86] single machine equal non-identical Cmax,  iC
1998 Ghazvini and DuPont

[37]
single machine equal non-identical iF

2001 Zhang et al. [94] single machine equal non-identical Cmax

2002 DuPont, and Dhaenens-
Flipo [29]

single machine equal non-identical Cmax

2004 Melouk et al. [60] single machine equal non-identical Cmax

2004 Damodaran and Srihari
[25]

Two machines in a
flow shop

equal non-identical Cmax

2006 Erramilli and Mason
[31]

single machine equal non-identical  i iw T

2006 Kashan et al. [49] single machine equal non-identical Cmax

1999 Lee and Uzsoy [51] single machine unequal identical Cmax

2000 Sung and Choung [82] single machine equal/
unequal

identical Cmax

2002 Sung et al. [83] single machine unequal identical Cmax

2002 Wang and Uzsoy [89] single machine unequal identical Lmax

2004 Li and Lee [55] single machine unequal identical Tmax, iU
2004 Poon and Zhang [70] single machine unequal identical Cmax

2004 Deng et al. [26] single machine unequal identical  i iw C
2005 Deng et al. [27] single machine unequal identical  iC
2005 Poon and Yu [72] single machine unequal identical Cmax

2006 Gupta and Sivakumar
[42]

single machine unequal identical Tmax, iU ,

 iT n
2004 Van Der Zee [87] single machine dynamic

arrival
identical iF

2004 Chang and Wang [15] single machine unequal non-identical  iC
2006 Chou et al. [21] single machine unequal non-identical Cmax

2007 Chou [20] single machine unequal non-identical Cmax

2007 Wang et al. [91] single machine unequal non-identical Cmax

2007 Chou and Wang [22] single machine unequal non-identical  i iw T
2004 Chang et al. [14] parallel machines equal non-identical Cmax

2007 Mönch and Unbehaun
[64]

parallel machines equal identical  i id C

2007 Van Der Zee [88] parallel machines dynamic
arrival

non-identical iF

2008 ATSP (this dissertation) parallel machines unequal non-identical Cmax
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and Mason [31], Kashan et al. [49]) and the two batch processing machines in a flow

shop (Damodaran and Srihari [25]) took the non-identical job sizes into consideration

to reflect more practical situations, they have assumed that the ready times of jobs for

batch processing machines are equal. This assumption prevents the developed

procedures from being directly applied to the parallel batch processing machine

scheduling problem investigated in this dissertation because the ATSP involves

unequal ready times.

For the single batch processing machine scheduling problem with non-identical

job sizes and equal ready times, Uzsoy [86] investigated this type problem to

minimize the total completion times ( iC ) of the jobs and makespan. He has also

provided bin-packing-based heuristics for minimizing makespan and has used the

branch and bound approach to minimize the total completion times. He also

developed effective heuristics for the criteria of minimum makespan and minimum

total completion time. Erramilli and Mason [31] have investigated the multiple orders

per job (MOJ) problem on a single batch processing machine. They grouped different

customer orders into jobs and combined jobs into batches and scheduled them on a

single batch processing machine to minimize the total weighted tardiness ( i iw T ) of

orders. Damodaran and Srihari [25] have proposed two mathematical models with

the minimum makespan criterion to schedule batches of jobs on two machines in a

flow shop. Kashan et al. [49] has addressed the need to minimize makespan by

employing two different genetic algorithms (GAs) for scheduling jobs with

non-identical sizes on a single batch processing machine. Unfortunately, all the above
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models do not consider the unequal ready time that is a common phenomenon in

module assembly factories.

Although Lee and Uzsoy [51], Sung and Choung [82], Sung et al. [83], Wang and

Uzsoy [89], Li and Lee [55], Poon and Zhang [70], Deng et al. [26], [27], Poon and

Yu [72], Gupta and Sivakumar [42], and Van Der Zee [87] have considered the

characteristic of unequal ready times, they limited their applications to a single batch

processing machine and an identical job size. Lee and Uzsoy [51] have provided

efficient heuristics to solve the scheduling problem arising in the final test phase of

semiconductor manufacturing. To minimize the maximum completion time on a

single batch processing machine with dynamic job arrivals, they designed three

algorithms (GRLPT, DELAY, and UPDATE) to find the approximate solutions.

Sung and Choung [82] have presented a branch-and-bound algorithm and several

heuristics to solve the static and dynamic cases on a single batch processing machine.

Their objective was also to minimize the makespan of all jobs. Sung et al. [83] have

considered a single batch processing machine with job families and dynamic job

arrivals. The performance measure used to evaluate a schedule is the minimum

makespan. Van Der Zee [87] has also presented the dynamic control of a batch

processing machine; his objective was to find the minimum average flow time per

product in the presence of compatible product families.

Moreover, in recent years, a series of research papers regarding single batch

processing machine scheduling problem with unequal ready times and non-identical

job size are provided by Chang, Chou, and Wang [15][20][21][22][91]. First, Chang

and Wang [15] investigated the single machine problem of scheduling semiconductor
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burn-in operation with non-identical job sizes and unequal ready time. They provided

an efficient heuristic algorithm and examine the effect of arrival time and processing

time on minimizing the total completion time. Subsequently, Chou et al. [21] changed

the objective into minimal makespan and proposed a merge-split procedure to

improve the solution obtained by the longest processing time batch first fit

(LPT-BFF). Furthermore, two hybrid genetic algorithms (GA) were also provided.

Following that, Chou [20] presented a solution procedure to joint GA and DP

(dynamic programming). Wang et al. [91] provided a mix integer programming model

to describe problem complexity. Simultaneously, a hybrid forward/backward

algorithm is also presented and the computational results showed good performances

of this algorithm in term of solution quality within a modest computational time.

Moreover, Chou and Wang [22] took the distinct due date into consideration and

investigated the single machine scheduling problem with a minimal total weighted

tardiness criterion. They proposed one MIP model and two hybrid heuristics

involving a rule-based, GA, and DP algorithms. The computational results indicated

GA-based algorithm outperformed the rule-based algorithm in terms of solution

quality for small size problems.

More recently, the parallel batch processing machine scheduling problem with

compatible product family characteristic is considered by Mönch and Unbehaun [64],

Chang et al. [14], and Van Der Zee [88]. Mönch and Unbehaun [64] presented a

parallel batch processing machine scheduling problem in which jobs have identical job

sizes and equal ready times. The objective is to minimize the sum of the absolute

deviations of completion times from the due date of all jobs. They proposed three

heuristics based on exact algorithm, genetic algorithm, dynamic programming
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techniques. Chang et al. [14] have provided a mathematical model and developed an

algorithm based on simulated annealing (SA) approach to minimize makespan for the

scheduling problem with equal ready times and non-identical job size. They have not

included the unequal ready times in their model. Van Der Zee [88] extended the

scheduling problem [87] involved single machine to parallel machines. The objective

of the parallel batch scheduling problem is to minimize average flow time per product.

He developed a new look-ahead strategy to solve this problem. However, the

processing time in his model is assumed fixed. Their solution procedure cannot be

applied to ATSP directly.

At the time this dissertation was being written, the author was not aware of any

other studies of the parallel batch processing machine scheduling problem with

unequal ready time, non-identical job size, and compatible product family

characteristics. Therefore, this dissertation arises from the need in industry to consider

jobs with these practical situations, which are processed on identical parallel batch

processing machines.
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3. Algorithms for the Printed Circuit Board Bonding

Scheduling Problem

In this chapter, we address the first scheduling problem, the printed circuit board

bonding scheduling problem (PCBSP), which is a practical variant of the classical parallel

machine scheduling problem. The objective for the PCBSP is to maximize the total

weighted throughput subject to fulfilling contracted quantities without violating the due

dates and machine capacity restrictions. In this chapter, we present two heuristic

procedures to solve the PCBSP efficiently based on some basic technologies used for

developing algorithms for machine scheduling. Furthermore, computational results and

performance comparisons are also provided.

3.1. Introduction

Printed circuit board bonding is the bottleneck resource in the module assembly

process. The performance of the system is determined by this bottleneck operation

according to the essential concept of theory of constraints (TOC) [41]. In this chapter, we

consider the PCBSP in a module assembly factory with considerations of sequence

dependent setup times and multiple job weights. For the PCBSP we investigated, jobs are

clustered by their product types, which must be processed on any parallel machines and

be completed before the due dates. Setup times between two consecutive jobs of different

product types on the same machine are sequentially dependent. The job processing time

may vary, depending on the product type of the jobs processed on. Furthermore, the

hybrid market consists of contract and spot markets in the TFT-LCD industry. Therefore,

jobs are given different weights, which are determined by the factors such as job’s profit
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and customer importance. Since the PCBSP involved multiple job weights, with

constraints on sequence dependence setup times, product type dependent processing

times, due dates and machine capacity, it is more difficult to solve than the classical

parallel machine scheduling problems.

The PCBSP we investigated can be modeled as a multi-level optimization problem.

At the first level, we schedule the contract jobs to minimize the total setup time without

violating machine capacity and customer due dates restrictions, which can be solved

using algorithms for the vehicle routing problem with time windows (VRPTW)

[65][68][69]. At the second level, we apply a greedy concept to choose a subset of spot

jobs then insert into the schedules constructed in the first level. In this dissertation, we use

basic technologies for VRPTW algorithms including parallel, generalized savings

algorithms and provide two modifications to solve the PCBSP efficiently. To further

analyze the impact of the problem characteristics on the performance of those savings

algorithms, we provide a set of test problems, considering the workload level of contract

jobs, tightness of due dates, setup time variation, and variation of contract/spot weight

ratio. Exact solutions are used here as convenient reference points for evaluating the

accuracy and effectiveness of our heuristic algorithms. The computational experiments

and comparisons demonstrate the performance of the three phases of the modified

parallel savings algorithm outperform the other algorithms.

3.2. Module Assembly Process and Problem Description

3.2.1. Module Assembly Process

The TFT-LCD applications include monitors, notebook PCs, mobile phones,

portable DVDs, LCD TVs, and many others. Such applications are hundreds of product
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types of job processed with sizes ranging from 1.6 inches to 46 inches. The

manufacturing process of the module assembly generally consists of two main segments,

front end and back end. It contains the following six processes, (1) COG (chip on glass) /

TAB (tape automated bonding) process, (2) Flexible printed circuit board (FPC)

attachment, (3) Printed circuit board (PCB) bonding, (4) Back light assembly, (5) Aging

test, (6) Inspection, as presented in Figure 3-1. In the module assembly process, the

critical resource is PCB bonding, which has the longest setup time and using anisotropic

conductive film (ACF) to connects the PCB and FPC, as illustrated in Figure 3-2.

COG process
FPC

attachment

TAB process

PCB bonding Backlight
Assembly Aging test Inspection

Front end Back end

Figure 3-1 The six steps in the module assembly process.

Figure 3-2 PCB bonding illustration.

The processes of PCB bonding is determined by the types of mount technology of

LCD drive IC and controller IC, namely, the COG (chip on glass) and TAB (tape

automated bonding). The COG is a technology that mounts the LCD driver to the

contact edge of the LCD glass, which is depicted in Figure 3-3. The TAB is the LCD

driver or controller electronics are encapsulated in a thin film, like package, with metal

leads extension from the IC chips, which is depicted as Figure 3-4. The process is also
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called OLB (Outer Lead Bonding). In general, large size LCD applications (ranging from

15 inches to 46 inches) adopt the TAB structure and small size LCD applications

(ranging from 1.6 inches to 6 inches) adopt the COG structure.

Figure 3-3 COG structure.

Figure 3-4 TAB structure.

Setup time between different technologies in PCB bonding is complicated and

time-consuming. The longest setup time may consume six hours. The setup activities of

PCB bonding include the following: cool down temperature, replacement of the

appropriate mold, and the rising to a suitable temperature and voltage. Furthermore,

setup times between two consecutive jobs of different product types on the same PCB

bonding machine are sequentially dependent. In a similar product family, the setup

activity may adjust the temperature and voltage. Different LCD panel sizes must replace

the mold.

3.2.2. Printed Circuit Board Bonding Scheduling Problem

The scheduling problem in this chapter can be stated as follows. Let machine group

M = { km | k = 1, 2, ... , K}, contain K machines, and product types H = { iH | i = 1,

2, ... , I}, contain I clusters of jobs. Each job cluster iH = { ijh | j = 1, 2, ... , contract
iJ ,
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contract
iJ +1,… iJ }, representing the job set. Term contract

iJ and iJ are the total number of

contract jobs and total number of jobs of product type iH , respectively. Each job in their

associated product type is a candidate to be processed without preemption on a set of

parallel machines K.

Each job ijh carries with its processing time denoted by ip , and weight denoted by

ijw , where  1,2, ...,i I and  1,2, ..., ij J . For each job ijh , ijr represent the ready

time of the job to be processed on a machine and ije represent the latest starting time to

process job ijh , which relates to the due dates ijd and can be computed as  ij ij ije d p .

A setup time is incurred in the different product types. When job ijh immediately

succeeds job i jh on machine km , a setup time iis happens. The setup time is

sequentially dependent on the product types of the jobs processed on the machine. The

objective is to maximize the total weighted throughput without violating contracted due

date and machine capacity, Cap .

3.2.3. An Illustrative Example

Consider the following example with two machines and seven jobs clustered into

three product types. Table 3-1 displays the product type, processing time, job weight, due

date, and contracted status for each job. Furthermore, the setup times are incurred for

switching one product type to another for the three product types AH , BH , and CH .

Table 3-2 shows the required setup times and the term U denotes that the machine is in

idle status. The capacity is set to 95 for each machine in the illustrative example.

The objective in the illustrative example is to find a schedule for the subset of jobs,

which satisfies the due date restrictions without violating the constraints of machine

capacity, while maximizing the total weighted throughput.
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Table 3-1 The job information for the 7-job example.
Job
ID

Product
type

Processing
time Weight Due

date
Contract

/Spot

A1h AH 21 50 80 C*

A2h AH 21 40 100 S**

A3h AH 21 40 100 S

B1h BH 25 60 93 C

B2h BH 25 50 100 S

C1h CH 28 63 100 C

C2h CH 28 63 60 C
*Term C indicates the contract job. **Term S indicates the spot job.

Table 3-2 Setup times required for switching one product type to another for AH , BH ,
and CH .

To
From U AH BH CH

U - 15 15 15

AH 0 0 10 7

BH 0 8 0 5

CH 0 3 16 0

3.3. An Integer Programming Formulation for the PCBSP

In this section, a MILP model is formulated for the PCBSP. The applicability of the

MILP model with consideration of sequence dependent setup times for a parallel

machine scheduling problem has been demonstrated by Pearn et al. [66][67]. The

objective function and some constraints of MILP model are modified to accommodate

the PCBSP.

Let ijkx be the variable indicating whether job ijh is scheduled on machine km ,

with 1ijkx if job ijh is scheduled to be processed on machine km , and 0ijkx

otherwise. Let iji j ky be the precedence variable, where iji j ky should be set to 1 if job

i jh is scheduled following job ijh (not necessarily directly), and where 0iji j ky

otherwise. Let iji j kz be the direct-precedence variable, with 1iji j kz if job i jh is

scheduled immediately following job ijh on machine km , and 0iji j kz otherwise.
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Further, the starting processing time ijkt should be should not be less than the ready time,

and not be greater than the latest starting time ije . The exact formulation for the PCBSP

is as follows.

Maximize
  


1 1 1

iJK I

ijk ij
k i j

Z x w (3-1)

subject to



 
1

=1, for 1, 2, ... , , 1, 2, ... ,
K

contract
ijk i

k

x i I j J (3-2)



  
1

1, for 1, 2, ... , , +1, +2, ... ,
K

contract contract
ijk i i i

k

x i I j J J J (3-3)

Capacity constraints:

 
     

  
'

' '0 1 0 1 0 1

( ) , for all
i i i

JJ JI I I

ijk i iji j k ii
i j i j i j

x p z s Cap k (3-4)

Due date constraints:
 , for all , ,ijk ij ijkt r x i j k (3-5)

 , for all , ,ijk ij ijkt e x i j k (3-6)

Precedence constraints:
       ( 1) 0, for all , ,ijk i ii i j k iji j kt p s t Q y i j k (3-7)

         ( 2) 0, for all , ,ijk i ii i j k iji j k iji j kt p s t Q y z i j k (3-8)

      ( ) ( 2) 1, for all , ,iji j k i j ijk ijk i j ky y Q x x i j k (3-9)

      ( ) ( 2) 1, for all , ,iji j k i j ijk ijk i j ky y Q x x i j k (3-10)

     ( ) ( ) 0, for all , ,iji j k i j ijk ijk i j ky y Q x x i j k (3-11)

      ( ) ( 1) 0, for all , ,iji j k i j ijk i j k ijky y Q x x i j k (3-12)

      ( ) ( 1) 0, for all , ,iji j k i j ijk ijk i j ky y Q x x i j k (3-13)

  for all , ,iji j k iji j ky z i j k (3-14)
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
  

  
' '0 1

1, for all
i

ij i j

JI

ijk iji j k
i j r r

x z k (3-15)

        * * * * * * * *( 2) ( 1) 2, for all , ,iji j k iji j k iji j k iji j k iji j k iji j ky z Q y z Q y z i j k (3-16)

Binary variables:
{0, 1}, for all , ,ijkx i j k (3-17)

{0, 1}, for all , ,iji j ky i j k (3-18)

{0, 1}. for all , ,iji j kz i j k (3-19)

The objective function (3-1) states that the total weighted throughput is to be

maximized over all machines. Constraint (3-2) ensures that each contract job is scheduled

on one machine exactly. Constraint (3-3) ensures that each spot job is scheduled at most

one machine. Constraint (3-4) is the capacity constraint, which forces the sum of

processing time and setup time for each machine within available capacity. Constraints

(3-5) and (3-6) state that the starting time ijkt for each job ijh scheduled on machine

km should not be less than the earlier starting time ijr and not be greater than the latest

starting time ije . Constraints (3-7) and (3-8) are the starting time constraints. The time of

the following job starts after the proceeding job and related setup is complete. As usual, Q

is a ‘sufficiently large’positive number, so that constraints (3-9)-(3-13) are satisfied for

0iji j ky or 1. Constraints (3-9)-(3-13) are the precedence constraints and constraints

(3-14)-(3-16) are the direct constraints. These constraints state their sequence relation. In

constraint (3-16), variable * *iji j kz states that there is a job * *i jh existing after job ijh

when 1iji j ky and 0iji j kz . Constraints (3-17)-(3-19) indicate that ijkx , iji j ky and

iji j kz are binary integer variables. The total number of variables is 22 IN K , and the total

number of equations is    3 2(5 2) (3 2) 2I I I IN K N K N K N K , where


 1

I
I ii

N J .
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3.4. Algorithms for the PCBSP

In this section, two heuristic procedures are presented to solve the PCBSP efficiently.

Some basic technologies have been used for developing algorithms for machine

scheduling. The conventional savings algorithms are modified to minimize the total setup

time for the contract jobs and apply the greedy concept for the spot jobs to enhance the

total weighted throughput. We first review two savings algorithms, the parallel savings

algorithm proposed by Golden [38] and the generalized savings algorithm provided by

Christofides et al. [23]. We then present two modified algorithms, which are referred to as

the three-phase modified parallel savings algorithm (MPSA_TP) and the three-phase

modified generalized savings algorithm (MGSA_TP).

3.4.1. Parallel Savings Algorithm

Golden [38] proposed the parallel savings algorithm (PSA) to solve the TSP

approximately. The PSA, initially calculates the savings of all pairs of jobs and sorts those

savings in descending order. The PSA creates the multiple of K machines simultaneously

at the initial stage, where K is the number of machines. Note that a selected pair of jobs is

feasible if it does not violate the machine capacity constraints. The parallel savings

algorithm then searches downward from the savings list, for a job which could be merged

into one of current K schedules (at the first endpoint or last endpoint) with the most

savings. The algorithm terminates when no more jobs can be inserted. Algorithm details

are presented as follows.

Step 1. (Initialization) Calculate the savings iiSA , defined as the following, for all pairs

of two jobs associated with product type iH and iH , where U denotes the idle

status.
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    ii Ui i U iiSA s s s . (3-20)

Step 2. Sort the savings list in descending order of magnitude.

Step 3. (Schedule initial construction) Choose the first K pairs of jobs on the list

satisfying the machine capacity constraints, to start K new schedules

simultaneously.

Step 4. Starting from the top of the savings list. Find the first feasible pair on the list to

add to one of the two ends of a currently constructed schedule with the most

savings.

Step 5. The chosen jobs form a feasible machine schedule. Repeat Step 4 until all

schedules are full and cannot be expanded.

3.4.2. Generalized Savings Algorithm

In contrast to the PSA, which constructs a multiple of K machine schedules

simultaneously at the initial stage, the generalized savings algorithm (GSA) proposed by

Christofides et al. [23] creates one schedule at a time and considers not only the end

points but also positions between two consecutive jobs when inserting a new job into the

current partial schedule. Besides, the insertion costs are calculated for every unscheduled

job at every possible position. The chosen job, which maximizes savings while

minimizing insertion costs, is used to avoid the algorithm to create a new schedule on

another machine with a high setup time.

3.4.3. New Algorithms

To effectively apply these technologies, we modify them to develop fast and effective

algorithms. The two new algorithms essentially consist of three phases. Phase I applies
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network algorithms to schedule sub-problem of contract jobs with minimum total setup

time. Phase II inserts spot jobs near the same constructed product type so as no extra

setup time is needed. Phase III sorts the remaining spot jobs with weighted throughput

ratio (i.e. job weight is divided by job processing time) and chooses a subset of high

weighted throughput ratio jobs which are then inserted into the constructed schedules

sequentially until all machine capacities are full. It is noted, however, that the contract

jobs in the current constructed schedule should be pushed backward when a spot job is

inserted into this schedule in Phase II or Phase III. Thus, the contract jobs, following the

inserted spot job, should be re-checked according to their due dates to meet customer

deadlines. The new solution procedures can be described as follows.

3.4.3.1. Three-phase Modified Parallel Savings Algorithm

The three-phase modified parallel savings algorithm calculates savings by using the

original saving term and two additional terms, weighted throughput ratio and time

window restrictions. First, the saving term adopts the basic technology of the saving

calculation used for the traveling salesman problem. The term is used to reduce setup

times incurred by arranging two jobs which are consecutively processed but belong to

different job clusters. Second, the weighted throughput ratio term is added in the savings

calculation in order to choose the pair of jobs with higher weighted throughput ratio as

the first job pair than the pair of jobs with lower ones. By doing this, the jobs with higher

weighted throughput ratios are forced to be processed earlier than other jobs with lower

ones. Furthermore, the jobs with the same weighted throughput ratios are forced to be

processed closer to each other than the other jobs. Thirdly, the other added term, time

window restrictions, takes job ijh whose latest starting time ( ije ) is earlier than a job i jh
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with a later starting time ( i je ). The main purpose of the time window restrictions term is

that jobs with earlier latest starting times are forced to be processed earlier than the other

jobs with later ones.

In the saving calculation of MPSA_TP, three parameters, 1 , 1 , and 1 , and

three the ranges  10 1 ,  10 1 , and  10 2 , are added to the savings function

as the weight of the ‘savings term’, ‘weighted throughput ratio term’, and ‘time window

restrictions term’, respectively. Parameter 1 represents weight of setup time savings,

which results from consecutively processing two jobs ijh and i jh as a job pair. It can

help to avoid a long setup time being incurred. Parameter 1 is used to weight the sum

of the weighted throughput ratios of the two jobs ijh and i jh in a pair in order to

achieve higher weighted throughput. Finally, parameter 1 is used in the time windows

restrictions term to prevent the jobs being processed after their due dates in order to

enhance customer satisfaction. The time window restriction was designed by Pearn et al.

[68]; however, they only considered the value  10 1 and did not systematically

examine the parameter with the value 1 1. Therefore, the available range of 1 is

enlarged as  10 2 for investigation. In addition, term 10Cap is a scaled number

where Cap represents the machine capacity. The scaled number is used to make clear

distinction of each saving value because the three proposed terms in the saving

calculation have different measurement units. By incorporating the three parameters and

the scaled number, the effects of the three terms are enhanced so as to drive appropriate

sequencing.

Phase I (Modified savings algorithm)

Step 1. Calculate the savings,
ij i jh hPSA , for all pair of jobs ijh and i jh , where U
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denotes the idle status. iis is the required setup time for switching product

type iH to type iH . Terms ijw , ip , and ije represent job weight, job

processing time, and latest starting time, respectively, to process job ijh .

   
 



 
 

 

   
     

           

1 1
1 1

0 if 0 or , ,

(2 )
+10 otherwise.

ij i j

ij i j

h h

h h ij i j
Ui i U ii

i i ij i j

PSA i i j j

PSA w w
s s s Cap

p p e e

Step 2. Sort the savings and create a list in descending order of magnitude.

Step 3. Choose the first feasible K pairs of jobs on the list satisfying the machine

capacity and due date constraints and remove these pairs from the savings

list. Then, start the K new schedules simultaneously.

Step 4. Starting from the top of the remaining savings list, find the first feasible pair

on the list and check which job of the pair is able to be added to one of the

two ends of a currently constructed schedule.

Step 5. The chosen jobs form a feasible machine schedule. Repeat Step 4 of Phase I

until all the contract jobs are scheduled.

Phase II (spot jobs assigned without extra setup)

Step 1. Calculate the weighted throughput ratio for the spot jobs.

Step 2. Sort the weighted throughput ratio and create a weighted throughput ratio

list in descending order of magnitude.

Step 3. Choose the job with highest weighted throughput ratio as the job to be

inserted. Find the machine, which has scheduled the jobs with the same

product type as the job to be inserted. Whether the job is inserted or not, it



34

should be removed from the weighted throughput ratio list.

Step 4. If the machine for insertion is found, then insert the chosen job by the side

of the job with same product type without violating the machine capacity

and due date constraints.

Step 5. Repeat Steps 3 and 4 of Phase II until no more jobs can be found in the

weighted throughput ratio list.

Phase III (Remaining spot jobs assigned with extra setup)

Step 1. Calculate the weighted throughput ratio for the remaining spot jobs.

Step 2. Sort the weighted throughput ratio in descending order of magnitude.

Step 3. Choose the top job on the list as the job to be inserted.

Step 4. Schedule the job by applying the cheapest insertion algorithm (Rosenkrantz

et al. [75]) sequentially to construct a feasible schedule without violating

machine capacity and due date restrictions. Whether the job is inserted or

not, it should be removed from the weighted throughput ratio list.

Step 5. The algorithm will terminate with no job in the weighted throughput ratio

list. Otherwise return to Steps 3 and 4 of Phase III.

To illustrate how the MPSA_TP algorithm may be applied, we consider the PCBSP

example with two machines and three product types described in Section 3.2.3. In Phase

I, the savings value for each pair between two contract jobs is calculated by Step 1 and

shown in Table 3-3 while the values of 1 , 1 , and 1 , are set to 0.5, 0.05, and 1.5,

respectively. The savings are sorted in descending order of magnitude using Step 2, and
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the first two feasible pairs (12th pair and 4th pair) are chosen and scheduled in the two

machines initially in Step 3. After processing using the algorithm and by repeating Step 4

and Step 5 until no more contract jobs can be found, two schedules are constructed: job

C2h precedes job C1h directly on Machine 1 and job B1h precedes job A1h directly on

Machine 2.

Table 3-3 The savings values of each contract-jobs pair.

Pair ID Job pair Values of
savings Pair ID Job pair Values of

savings
1 ( A1h , B1h ) 14.75 7 ( C1h , A1h ) 19.14
2 ( A1h , C1h ) 18.29 8 ( C1h , B1h ) 10.89
3 ( A1h , C2h ) 13.57 9 ( C1h , C2h ) 16.21
4 ( B1h , A1h ) 22.76 10 ( C2h , A1h ) 33.28
5 ( B1h , C1h ) 24.54 11 ( C2h , B1h ) 25.02
6 ( B1h , C2h ) 19.83 12 ( C2h , C1h ) 35.06

In Phase II, the three spot jobs ( A2h , A3h , and B2h ) are inserted into the two

constructed schedules without violating machine capacity and due date constraints. In

Step 1 of this phase, the weighted throughput ratios of the three jobs are computed: 1.9,

1.9, and 2 for job A2h , job A3h , and job B2h , respectively. The weighted throughput

ratios are sorted using Step 2. It was found that B2h is the highest ratio and is, therefore,

chosen and removed from the weighted throughput ratio list in Step 3. Machine 2 has the

same product type as job B2h ; therefore, job B2h can be inserted into Machine 2 in Step

4. However, the insertion of job B2h into the two possible positions (preceding or

following job B1h immediately) will cause the job A1h to violate its due date. Hence, job

B2h is not inserted into this machine. Then, Step 3 of the algorithm is repeated and the

other spot job A2h is considered. In Step 4, Machine 2 is the inserted machine. Job A2h

is scheduled following job A1h without any extra setup time and without violating any

restrictions. Furthermore, by repeating Step 3, the third spot job A3h is chosen but is not
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suitable for insertion due to its violation of due date and machine capacity.

Finally, in Phase III, the remaining spot jobs ( B2h and A3h ) are considered and

scheduled although extra setup times are required. The weighted throughput ratios of the

two spot jobs are computed and sorted in descending order in Step 1 and Step 2 of Phase

III, respectively. In Step 3, job B2h is chosen and removed from the list, but it cannot be

inserted into the two machines. However, after processing is repeated in Step 3, the other

job, A3h , is inserted into Machine 1 using the cheapest insertion algorithm in Step 4. Due

to the absence of more jobs on the weighted throughput ratio list and fullness of the two

machines, the final solution from the PSA_TP algorithm is therefore 316 and is depicted

in Figure 3-5.

0

setup time

process time

15 95

m1

m2
Ah 1 Ah 2

3Ah

7040

Bh 1

Ch 2 Ch 1

Figure 3-5 Gantt chart for the example problem.

3.4.3.2. Three-phase Modified Generalized Savings Algorithm

The MGSA_TP constructs the schedules sequentially in contrast to the MPSA_TP

which creates a multiple of K machine schedules simultaneously. In addition, the

difference in Phase I with MPSA_TP is that MPSA_TP considers only two end points

when merging a new job into the current partial schedule, while MGSA_TP considers

not only the end points but also the positions between two consecutive jobs when

merging a new job into the current partial schedule. The savings function is expressed as

follows:
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Based on the new savings function, the initial partial schedule can be selected from

the top of the savings list. In addition, schedules can be expanded based on parameters

1 , 2 , and formulas (3-21)-(3-24) (designed by Christofides et al. [23]). Let PS be the

current schedule, PS=  1,..., , ,..., ,U g g G Uu u u u u , where Uu and Uu are virtual jobs

(machine idle status). The insertion costs are computed using formulas (3-21)-(3-22) for

every unscheduled job ijh at every possible position of PS. Let   1, ,g ij gu h u be the

additional set-up cost when job ijh is inserted between position (g-1) and g in schedule

PS. Let   
*

1, ,g ij gu h u be the minimal insertion cost value.

   
       

1 11 1 1, , , 1 2,
g g g gg ij g u i iu u uu h u s s s (3-21)

     


   
*

1 1
1,...,

, , min , ,g ij g g ij g
g G

u h u u h u . (3-22)

Job ijh is chosen, which maximizes the savings   
*

1, ,g ij gu h u while minimizing

the insertion cost   
*

1, ,g ij gu h u , and which avoids the algorithm to create a new

schedule on another machine with a high setup time 2 Uis . Furthermore, in addition to

taking into account machine capacity, the due date constraints of all jobs must also be

examined for violation before a job is inserted. The procedure is repeated until all

schedules are full and cannot be expanded. Phase II and Phase III are same as the

corresponding phases of the MPSA_TP algorithm.

           *
1 2 1 2, , , , , 1 2,g ij g Ui g ij gu h u s u h u (3-23)

        
*

1 1, , max , ,g ij g g ij gu h u u h u . (3-24)
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The same illustrative example described in Section 3.2.3 with two machines and

three product types is also used to illustrate Phase I of the MGSA_TP. First, the savings

are computed when the values of 1 , 1 , and 1 , are set to 0.5, 0.05, and 1.5,

respectively. The savings values for the MGSA_TP are the same as those obtained by the

MPSA_TP, as shown in Table 3-3. In contrast to the MPSA_TP algorithm, one job pair

( C2h , C1h ) with the largest savings is chosen and scheduled on Machine 1 initially. Second,

the other two contract jobs ( A1h and B1h ) should be considered with their insertion and

savings cost using formulas (3-21)-(3-24) in order to decide which one should be inserted

into the current partial schedule. For the insertion costs, there are three possible positions

for each candidate contract job on the current partial schedule, PS= C2 C1, , ,U Uu h h u .

Therefore, six insertion costs are computed while 1 2 and  2 1 and are presented

in Table 3-4. In Table 3-4, each minimal insertion cost is obtained for A1h and B1h are

-8 and -10, respectively. The following savings costs are then obtained,   1 A1, ,g gu h u

=   1 15 ( 8) 23 and   1 B1, ,g gu h u =   1 15 ( 10) 25 to A1h and B1h , respectively.

Therefore, the   1* , ,g ij gu h u   max 23,25 25 , then the job B1h is chosen.

Table 3-4 The insertion cost of each job at every possible position.

Job
ID

Possible insertion
positions

Insertion cost Values

A1h   U A1 C2, ,u h h   UA AC UC2s s s -8

A1h   C2 A1 C1, ,h h h   CA AC CC2s s s 10

A1h   C1 A1 U, ,h h u    CA AU CU2s s s 3

B1h   U B1 C2, ,u h h   UB BC UC2s s s -10

B1h   C2 B1 C1, ,h h h   CB BC CC2s s s 21

B1h   C1 B1 U, ,h h u    CB BU CU2s s s 16

Third, job B1h is the candidate job and will be inserted on Machine 1 preceding

C2h . However, this insertion would cause C2h and C1h to be out of their due dates.

Therefore, job B1h is not inserted in the machine. As in this example there is only one
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other possible contract job ( A1h ), the process needs to be repeated to determine if it is

suitable for insertion. However, it was found that job A1h also cannot be inserted in

Machine 1 because of due date and machine capacity constraints. Therefore, the

algorithm steps are repeated on Machine 2, jobs B1h and A1h are scheduled on

Machine 2 as they were found not to violate any restrictions. Phase I of MGSA_TP is

terminated when all contract jobs are scheduled.

3.5. Test Problems Design

For the purpose of testing and comparing the performance of the proposed two new

algorithms on various PCBSP with different data characteristics, we generate a set of

twenty-four problems, which are taken from a module assembly factory located on the

HsinChu Science-Based Industrial Park in Taiwan. For the test problems investigated,

jobs of twenty-six product types contain contract and spot jobs. The jobs are scheduled to

five identical parallel machines. The contract jobs must be completed on the parallel

machines before the given due dates. The machine capacity is set to 4320 minutes, which

is set to equal to the planning period (three days). ‘Minute’here is used as the time unit

for the job process time, setup time, due date, and machine capacity.

The structure and data of the generated test problems are generated covering most

real-world applications. These characteristics include: (1) workload level of contract jobs,

(2) tightness of due dates, (3) setup time variation, and (4) variation of (contract/spot)

weight ratio. These problem sizes range from low workload level of contract jobs, loose

due date tightness, small setup time variation, low variation of (contract/spot) weight

ratio, to high workload level of contract jobs, tight due date tightness, high setup time

variation, and high variation of (contract/spot) weight ratio.
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3.5.1. Workload Level of Contract Jobs

In the real production environment, different workload levels of contract jobs result

from different market demand or sale seasons, such as hot seasons in electronic industries.

Therefore, we need to evaluate the impact of different workload levels of contract jobs on

the performance of the solution algorithms. Owing to varied workload levels of contract

jobs, the number of contract jobs is different. Let ES be the estimated setup time required

in the problem.  i iiAVG s is the average setup time from product type iH to other

types. And finally,  iUAVG s is the average setup time to switch to idle status,

 UiAVG s be the average setup time from idle status to process. The estimated setup time

can be expressed as follows.

    


   ( 1)
( ) [ ].Ui iU i ii

all i

I
ES K AVG s AVG s AVG s

I
(3-25)

The workload calculation formula in our investigation can be expressed in Equation

(3-26). In the twenty-four testing problems, each problem contains 120 jobs carrying

specific contract jobs and spot jobs. Taking problem 4, 5, and 6 (see Table 3-5) for

example, when the number of contract jobs is 25, 50, and 75, the workload level of

contract jobs will be 42%, 64%, and 86%, respectively. Problem 6 is used to illustrate how

the calculation of workload level be applied, a setup time matrix is presented in Table A1

and detailed job information is shown in Table A2 (see Appendix). The average setup

times required for switching from a job with idle status to process (  UiAVG s ) is 120

minutes, while the reverse (  iUAVG s ) only requires 0 minutes. The average setup time

(  iiAVG s ) requires for switching from all contract jobs of product type iH to type iH

is equal to 3496.9 minutes. Therefore, the estimated setup time is 3962.4 minutes.

Furthermore, the total processing time of the contract jobs in Problem 6 is 14451 minutes.
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The workload level of Problem 6 is then obtained using Equation (3-26) when the

number of machines ( K ) is 5 and each machine capacity (Cap ) is 4320 minutes.



   



100% for 1,2,..., and 1,2,..., .

contract
iJI

i
i j contract

i

ES p

Workload level i I j J
K Cap

(3-26)

3.5.2. Tightness of Due Dates

To analyze the impact of the tightness of due dates on the performance of

scheduling algorithms, we include two levels of the tightness of due dates. Here, we apply

the tightness index formula proposed by Pearn et al. [68] and Equation (3-25) to estimate

the setup time. In the tight situation, the number of jobs during the due dates of day1 and

day2 are greater than day 3. In the loose situation, the number of jobs during the due date

of day 1 would be less than the number of jobs during the due dates of day 2 and day3.

Table 3-5 Summarized information of 24 problems.

Problem
Number

Tightness of
due date

Workload level of
contract jobs

Setup time
variation

Variation
(contract /spot)

weight ratio
parameter Tight Loose Low Middle High Small Large Small Large

1 • • • •
2 • • • •
3 • • • •
4 • • • •
5 • • • •
6 • • • •
7 • • • •
8 • • • •
9 • • • •

10 • • • •
11 • • • •
12 • • • •
13 • • • •
14 • • • •
15 • • • •
16 • • • •
17 • • • •
18 • • • •
19 • • • •
20 • • • •
21 • • • •
22 • • • •
23 • • • •
24 • • • •
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3.5.3. Setup Time Variation

In PCBSP, we reduce setup time by scheduling contract and spot jobs without

violating the contracted due dates. Thus, the setup time is one of the critical factors for

increasing the impact of results. However, the setup time could be varied because of

different considerations of setup operations. For instance, the cool down and the rapid

rising of temperature and voltage are good examples of differing conditions. In our test,

we include two levels of setup time variation. The high setup time variation is 10519.4

and the low setup time variation is 3990.3.

3.5.4. Variation of (Contract/Spot) Weight Ratio

The contract/spot weight ratio is the division of the contract job weight by the

corresponding spot job weight for each of the product types. The variation of the

contract/spot weight ratio is to analyze the variance among different product types. In the

real world application, the ratio among different product types should be varied owing to

the market competition. The high variation of contract/spot weight ratio is set to 0.01

and the low variation of contract/spot weight ratio is set to 0.001.

The problem sets of the four considered factors have 24 different problems. The

problem lists with the four different factors are listed as Table 3-5. Take problem 6 for

example, the setup time matrix is presented in Table A1 and the detailed job information

is shown in Table A2 (see Appendix).

3.6. Computational Results

To solve the PCBSP, two heuristic algorithms are coded in Virtual Basic 6.0

programming language, and run on a Pentium IV 3.2GHZ PC. We first experiment with

the two new algorithms on ten small size of the PCBSP, where the optimal solutions are
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available. The size of the problems range from 10 to 15 total jobs, 6 to 10 contract jobs,

and 950 to 1650 minutes machine capacity with various workload levels of contract jobs.

For these problems, we write a C++ programming code to generate the constraints and

variables of the models. In addition, we solve them using the IP software CPLEX 7.5 to

obtain optimal solutions. The computational results are displayed in Table 3-6.

Table 3-6 indicates that the heuristic solutions receive 8 optimal solutions (out of 10)

in term of total weight throughput. The average gap between the optimality and two

heuristic algorithms, MGSA_TP and MPSA_TP, are 1.4% and 0.5%, respectively. The

average run times (in CPU seconds) for the two heuristic algorithms are indeed

significantly faster than the run time of optimality.

Table 3-6 A comparison between the optimal solutions and two heuristic algorithms
(underlines indicate the optimal solutions).

MGSA_TP MPSA_TPProb.

No. J Jcontract Cap
Optimal

value

CPU

(sec) weighted
throughput

CPU
(sec)

weighted
throughput

CPU
(sec)

1 10 6 1000 444000 501.64 444000 0.031 444000 0.016

2 11 6 950 444000 405.09 444000 0.031 444000 0.016

3 12 5 1100 514000 451.89 514000 0.031 514000 0.016

4 12 8 1075 557000 129.75 557000 0.031 557000 0.016

5 13 6 1000 488000 574.39 452000 0.047 471000 0.031

6 13 6 1100 537000 224.61 537000 0.031 537000 0.016

7 14 8 1300 660000 5920.83 660000 0.047 660000 0.031

8 14 7 1200 597000 1219.03 555000 0.047 584000 0.031

9 15 9 1440 670000 13430.4 670000 0.048 670000 0.032

10 15 10 1650 760000 61640.1 760000 0.063 760000 0.031

For large size of the PCBSP, solving the optimal solutions using integer

programming model is computationally inefficiently. Therefore, in the following, we test

the performance of the two new algorithms on the twenty-four problems described in

Section 3.5. As the two parameters of the two algorithms, 1 and 1 , have been applied

by Pearn et al. [68], the preliminary comparison based on the two parameters analysis of

MPSA_TP is summaries in Table 3-7. We first examine the three values of 1 and five

values of 1 , which are initially set to 1 = 0, 0.5, 1 and 1 =0, 0.5, 1, 1.5, 2,
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respectively. Therefore, fifteen different combinations are obtained by various 1 and 1

values where 1 is set to 0. Table 3-7 displays that the average values of the solutions

obtained on 24 problems described previously. It appeared that the best parameter

combination (1 , 1 ) is (0.5, 1.5) in terms of average weighted throughput. Therefore,

we limit the two parameters and further analysis the settings of parameter 1 that is a

new-added parameter for PCBSP. In this dissertation, parameter 1 is examined to

check whether parameter 1 affects the solution for PCBSP (  10 1 ) or not (1 0 ).

We set 1 0,0.05,0.1,...,0.95, and 1 and display the computational results in Table 3-8.

Table 3-8 indicates that the parameter combination, (1 , 1 ,1 ) = (0.5, 0.05, 1.5),

outperforms than the other settings. We therefore set the choice of parameter values of

the MPSA_TP to (1 ,1 ,1 ) = (0.5, 0.05, 1.5).

Table 3-7 The preliminary comparison with various parameter settings.

1


1


1


Average
weighted

throughput 1


1


1


Average
weighted

throughput 1


1


1


Average
weighted

throughput

0 0 0 5284083 0.5 0 0 5568292 1 0 0 5627813

0 0 0.5 5326438 0.5 0 0.5 5656500 1 0 0.5 5670188

0 0 1 5341271 0.5 0 1 5657396 1 0 1 5670521

0 0 1.5 5341271 0.5 0 1.5 5699958 1 0 1.5 5688750

0 0 2 5336375 0.5 0 2 5674292 1 0 2 5677563

We obtained 72 computational results, which include 48 results for MPSA_TP with

two types of parameter combination (MPSA_TP denotes MPSA_TP with  1 0.5 ,

1 0.05 , and 1 1.5 ; MPSA_TP2 denotes MPSA_TP with  1 0.5 , 1 0 , and

1 1.5 ). MPSA_TP2 represents that the weighted throughput ratio adding item of the

savings calculation is not considered. Table 3-9 displays the detailed comparison within

the two types of algorithms. It denotes the number of better solutions comparing to the

two proposed heuristic procedures. In comparing the three algorithms, the test results

showed that:
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Table 3-8 The comparisons with different parameter values of 1
 when 1

0 5 . and
1

1 5 . (underlines indicate the best solutions for each problem instance).

1Prob.
No. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

1 493050 515050 505300 506050 506900 503900 502650 503050 499300 496500 497050 505300 505300 505300 505300 494300 503200 503200 503200 507300 507300

2 535100 547000 544400 543750 537400 544150 540350 538500 549200 548200 541500 540850 537350 533150 535500 535500 538500 538500 538450 527750 533950

3 603850 600950 584250 588600 582750 577300 573950 587000 576250 583750 572650 581050 577850 580750 585150 585150 581300 578050 578050 578050 578050

4 561450 591050 577500 579250 579100 576100 574850 580250 570500 566700 580450 578300 578300 578300 578300 565300 575400 575400 575400 581300 581300

5 577600 591400 589600 589700 597800 597900 587600 596600 585700 588700 588700 595600 592700 586050 586050 599150 580850 579900 579900 582050 582050

6 629850 625950 607250 609600 601750 600300 594950 610000 597250 604750 591650 603050 601850 601750 607150 607150 604300 600050 600050 600050 600050

7 501300 519300 523900 507800 507900 507900 511900 498750 499300 499300 507300 511200 499100 503200 503200 503200 495750 495750 495750 495750 495750

8 552700 558400 552700 545850 553000 557700 551100 545050 556400 557200 560400 557400 552150 545050 556050 553700 553700 553700 546300 545400 542200

9 574300 599700 595400 586150 589650 587800 583400 594100 581350 601950 578600 578600 580350 570450 575450 575450 584300 584300 584300 584300 575050

10 581500 590500 601100 581100 581100 581100 591100 570050 570500 570500 585500 585400 575400 575400 575400 575400 567750 567750 567750 567750 567750

11 599900 620900 580700 601150 599150 618000 613000 610000 604000 608000 593800 584600 587700 587150 587150 586550 589050 589050 589050 602900 577300

12 593300 622700 618400 608150 611650 609800 603400 616100 601350 625950 598600 598600 600350 589450 596450 596450 605300 605300 605300 605300 595050

13 497300 507350 513050 498350 506900 507900 511550 503050 512500 507300 505300 507100 507100 507050 507050 507100 511200 511200 511200 494300 494300

14 542800 556300 548400 548400 553000 549400 542600 551000 551000 547600 551200 551200 545700 544400 536050 536050 536950 536950 531450 536400 522750

15 592750 602850 587250 600050 582450 590700 588450 586750 585850 589850 587200 588650 584950 586100 586100 586100 581850 581650 581650 584550 583350

16 571700 585550 582250 574750 568800 581100 585750 580250 586700 580500 582500 580400 580400 585150 585150 580400 585400 585400 585400 565300 565300

17 586600 614700 610000 605900 596000 599800 595800 595800 601000 592950 595600 591400 605800 592700 592700 592050 587050 580850 580850 576850 576850

18 614750 627350 608250 625050 604450 614700 614450 606750 608850 615850 610200 613650 609250 607300 607300 607300 601850 604650 604650 608550 607350

19 506300 519200 510900 515900 511900 511900 506900 510950 507200 503200 507300 507000 507050 507050 511300 503200 503200 503200 503200 503200 503200

20 553700 564000 547050 563000 554100 557850 554200 553000 560400 554050 554050 552600 546950 550550 550550 549150 549150 549150 545200 546200 546200

21 601350 602700 594450 589450 595250 593650 594650 597950 601200 596850 596850 593050 587100 587100 582450 589050 583250 583250 583250 583250 583250

22 583500 595200 584100 591100 581100 581100 581100 580150 585500 581300 580500 585200 589050 589050 590800 579500 579500 579500 579500 579500 579500

23 599900 605200 597800 602700 605000 605800 606500 606900 598900 596050 602900 590050 586950 586950 591150 591150 597800 596150 597150 586050 586050

24 625350 626700 617450 613450 618250 615650 616650 620950 626200 620850 620850 615050 609100 609100 603450 611050 604250 604250 604250 604250 604250

* 2 12 3 0 0 0 0 1 2 2 1 0 0 0 0 1 0 0 0 0 0
The line labeled by symbol of * represents the number of best solutions for each problem instance selected from all of the parameter combinations.

Table 3-9 Performance comparisons in the three algorithms.
Weighted throughput

MGSA_TP MPSA_TP MPSA_TP2Parameter

Prob
No.

2

2

2

1

2

0 3
0 02
0 4
2
1

.

.
.













1

1

1

0 5
0 05
1 5

.

.
.









1

1

1

0 5
0
1 5

.

.









1 5056000 5150500 4930500
2 5385000 5470000 5351000
3 5796500 6009500 6038500
4 5776000 5910500 5614500
5 5791000 5914000 5776000
6 5986500 6259500 6298500
7 5099000 5193000 5013000
8 5440000 5584000 5527000
9 6020000 5997000 5743000

10 5826000 5905000 5815000
11 5915000 6209000 5999000
12 6236000 6227000 5933000
13 5102000 5073500 4973000
14 5499000 5563000 5428000
15 6037000 6028500 5927500
16 5786000 5855500 5717000
17 5959000 6147000 5866000
18 6277000 6273500 6147500
19 5016000 5192000 5063000
20 5577000 5640000 5537000
21 6006000 6027000 6013500
22 5726000 5952000 5835000
23 6014000 6052000 5999000
24 6224000 6267000 6253500

Result with bold is the best solution among the three algorithms.
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(1) The MPSA_TP received 19 better solutions (out of 24) than the MGSA_TP. The

average improvement between the 19 improved problems of the MPSA_TP comparing

with the MGSA_TP in terms of weighted throughput is 2.2%.

(2) In the MPSA_TP algorithm group, the MPSA_TP received 22 better solutions

(out of 24) than the MPSA_TP2. The weighted throughput ratio term, in the savings

calculation of the MPSA_TP, indeed improves the solutions.

By computing the mean of the solutions generated by each algorithm in total

weighted throughput for the twenty-four problems, we could compare the performances

among these algorithms. To further analyze the performance of those algorithms on

problems with different characteristics, we grouped the results with the four problem

factors and factor levels, which is shown in Table 3-10. Since the factors such as tightness

of due date, setup time variation, and variation of contract/spot weight ratio, contain two

levels of values, these groups each include 12 results. Because the factor of workload level

of contract jobs contains three levels of values, these groups include 8 results each.

In table 3-10, the MPSA_TP outperforms the MGSA_TP and the MPSA_TP2 on all

nine groups. Therefore, we can say the performance of the MPSA_TP is better than the

MGSA_TP and the MPSA_TP2 stably in varied situations.

Table 3-10 Results in means with different problem characteristic groups.
Algorithm MGSA_TP MPSA_TP MPSA_TP2

Parameter
  
 

  

 
2 2 2

1 2

0.3, 0.02, 0.4
2, 1     1 1 10.5, 0.05, 1.5     1 1 10.5, 0, 1.5

n Mean
Stdev

Mean
Stdev

Mean
StdevTotal 24 5731250 5829167* 5699958

Tightness DD= Tight 12 5704250 5804583* 5672333
Tightness DD= Loose 12 5758250 5853750* 5727583
Contracted workload= Low 8 5423375 5529000* 5370125
Contracted workload= Middle 8 5697500 5822375* 5685375
Contracted workload= High 8 6072875 6136125* 6044375
Setup time variation = Small 12 5768583 5839250* 5730000
Setup time variation = Large 12 5693917 5819083* 5669917
Variation of weight ratio= Small 12 5502792 5577333* 5462083
Variation of weight ratio= Large 12 5959708 6081000* 5937833
Result with * is best solution among the three algorithms.

12



47

Finally, we compared performances generated by the three algorithms, which is

presented in Table 3-11, with respect to (1) average rank among the three algorithms, (2)

number of problems receiving the best solutions, and (3) average run times in CPU

seconds on a Pentium IV 3.2GHZ PC.

Table 3-11 Performance comparisons of the three algorithms (24 problems).

MGSA_TP MPSA_TP MPSA_TP2

Average rank among the three algorithms 2.125 1.25 2.625

Number of problems receiving the best solutions 5 17 2

Average run times CPU seconds 5.11 11.9 8.08

The results, displayed in Table 3-11, indicate that the run times of the three

algorithms are quite fast for solving those problems containing five machines and 120

jobs with different problem characteristics. The results also reveal that the MPSA_TP

outperformed the other algorithms in terms of average rank among the three algorithms

and number of problems receiving the best solutions. It may be explained by that the

MPSA_TP creates a multiple of K machine schedules simultaneously at the first phase

which may cause that job pairs with the same product type are assigned to the same

machines easily. Therefore, the setup times incurred from different product types can be

reduced and then the values of weighted throughput will be increased. However, in Table

3-11, the run times of MPSA_TP are larger than the other two algorithms. The most

likely explanation for this is that the number of job candidates which need to be checked

their probable insertions and be determined the appropriate positions for insertions is

more than the others.

.
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4. Solutions for the Aging Test Scheduling Problem

In this chapter, the aging test scheduling problem (ATSP) with a minimum

makespan criterion, is presented and solved. First, a mixed integer linear programming

(MILP) model for the scheduling problem is provided. Secondly, a compound

MILP-based algorithm is proposed to determine the number of batches and to apply this

number as one parameter in the MILP model in order to reduce the complexity of the

problem. Then, three heuristic algorithms are given to solve the large-scale aging test

scheduling problem and computational comparisons are offered.

4.1. Introduction

The existing and growing importance of parallel batch processing machines

demands a solution to its scheduling problem in order to improve efficiency of

production. In this chapter, the aging test scheduling problem (ATSP) with a minimum

makespan criterion is presented, which is a parallel batch processing machine scheduling

problem. At the end of the module assembly process (see Figure 4-1), the aging test is

undertaken by the only batch server in the whole process to put the assembled modules

with different product families and unequal ready times into high temperature parallel

batch processing machines. This batch production type is referred to as compatible

product families. The batch processing times and batch ready times in the aging test

operation are dependent on the longest processing time and the latest ready time of all the

jobs in each batch, respectively. Since the jobs with unequal ready times and long batch

dependent processing times are processed at the end of the module assembly, it is
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essential that the development of scheduling algorithms for the aging test scheduling

problem with a minimum makespan criterion.

COG process
FPC

attachment

TAB process

PCB bonding Backlight
Assembly Aging test Inspection

Front end Back end

Figure 4-1 The six steps in the module assembly process.

The ATSP is a multi-dimensional parallel batch processing machine scheduling

problem; the relationships among these dimensions is depicted as Figure 4-2. The

constraints of unequal ready times and non-identical job sizes affect the determination of

the number of batches which is based on the limited machine capacity and which then

determines the batch processing times. Whenever batch formations are altered, the batch

processing times are consequently varied and the batch sequence needs to be rescheduled

in order to minimize the makespan and to delivery the jobs to customers. The ATSP

involves the constraints of unequal ready times, non-identical job sizes, limited machine

capacity, and batch dependent processing times which is a variation of the classical

parallel batch processing machine scheduling problem considered by Lee and Uzsoy [51]

and Chang et al. [14]. Since the aging test scheduling problem involves batch formation

and scheduling with real-world constraints, it is an intractable problem for industrial

planners and theoretical researchers. Therefore, the development of efficient algorithms

to form appropriate batches and to arrange a suitable schedule for the ATSP is difficult

but critical.
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unequal ready times

limited machine capacity

non-identical job sizes

number of batches

batch
sequence Cmax

batch dependent
processing times

Figure 4-2 The multiple dimensions of the aging test scheduling problem.

To our best knowledge, the aging test scheduling problem with unequal ready times

and non-identical job sizes has not been considered by the other researchers in this area.

This problem can be represented by maxbatch, , compatiblejP r C , and involves batch

formation and scheduling simultaneously. In this dissertation, it is assumed that the

ready times of jobs are known before the determination of the parallel batch processing

machines schedule. The scheduling problem is formulated as a mixed integer linear

programming (MILP) model to minimize the makespan. The programming model

considers machine capacity restrictions, unequal ready times, non-identical job sizes, and

batch-dependent processing times, in order to reflect real situations more accurately. A

compound MILP-based algorithm is developed to determine the number of batches and

to apply this number as one parameter in running the proposed MILP model.

Furthermore, three efficient heuristic algorithms are also proposed. The best solution

selected from the result of the MILP model and that of the compound algorithm is used

here as a convenient reference point to assess the accuracy of the heuristic solutions. To

demonstrate the effectiveness and efficiency of all the proposed algorithms, a set of

testing problems is explored and a real-world problem is taken from a module assembly
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shop floor in a TFT-LCD factory located in the Science-based Industrial Park in Hsinchu,

Taiwan.

4.2. An Integer Programming Formulation

The mixed integer linear programming (MILP) model for the ATSP with unequal

ready times and non-identical job sizes in order to minimize the makespan is formulated

in this section and is referred to as Model P. A set of jobs is given to be processed in

batches by identical parallel machines. Let the total number of jobs be denoted by N and

the number of batches be denoted by B. In this dissertation, however, an individual job

cannot be split into different batches due to the inconvenience to practical management

that might result. Let machine group M = { km | k = 1, 2, ..., K}, contain the K parallel

batch processing machines. Due to the fact that the unequal ready times and batch

dependent processing times are considered, they are associated with job j and have a

processing time denoted by jp and a ready time denoted by jr . The batch processing

time may vary, depending on the composite jobs. Term bpt is the longest processing

time of all the jobs processed simultaneously in the bth batch, and it represents the batch

processing time. The batch ready time is also the latest ready times of those composite

jobs. Each job has a non-identical job size ( js ). A batch can be processed on a machine

on the condition that the accumulated size of those jobs in that batch does not exceed the

machine’s capacity (a maximum number of pieces can be processed simultaneously on a

machine) ( S ). Each job in its associated batch is a candidate that is processed without

preemption on one machine. The aging test scheduling problem is to form batches

appropriately as well as to find a schedule for those batches that satisfies the ready time

restrictions without violating the machine capacity constraints, while also achieving the

objective of minimizing makespan. Initially, it is assumed that each job will be contained
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in an individual batch ( B N ). However, after the mathematical model is solved, it may

be that the better solution might require combining more than one job into one batch.

Hence, by using the proposed MILP model, the number of batches required will be

self-evident. Before the MILP model (Model P) is presented, the notations used in the

formulation are listed below.

Indices:

j: job index, j =1,2,…, N,

b: batch index, b =1,2,…, B,

k: machine index, k =1,2,…, K.

Decision variables:

jbkx :




1 if job is assigned to batch on machine ,
0 otherwise;

kj b m

bb ky :





1 if batch is scheduled following batch on machine ,
0 otherwise;

kb b m

bkz :




1 if batch is assigned to machine ,
0 otherwise;

kb m

bkt : the starting time of batch b to be processed on machine km ,

maxC : the maximum completion time (makespan).

Model P:


 

 max
1 1

Minimize
B K

bk
b k

C z (4-1)

subject to

 


1 1

= 1, for all ,
B K

jbk
b k

x j (4-2)




1

1, for all ,
K

bk
k

z b (4-3)



 1
1

, for all , ,
N

jbk bk
j

x Q z b k (4-4)
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 


1 1

, for all ,
N K

j jbk
j k

s x S b (4-5)

  , for all , , ,b j jbkpt p x j b k (4-6)

 max , for all , ,bk bC t pt b k (4-7)

 , for all , , ,bk j jbkt r x j b k (4-8)

       2 ( 1) 0, for all , , ,bk b b k bb kt pt t Q y b k b b (4-9)

        2( ) ( 2) 1, for all , , ,bb k b bk bk b ky y Q z z b k b b (4-10)

        2( ) ( 2) 1, for all , , ,bb k b bk bk b ky y Q z z b k b b (4-11)

       2( ) ( ) 0, for all , , ,bb k b bk bk b ky y Q z z b k b b (4-12)

        2( ) ( 1) 0, for all , , ,bb k b bk b k bky y Q z z b k b b (4-13)

        2( ) ( 1) 0, for all , , ,bb k b bk bk b ky y Q z z b k b b (4-14)

{0, 1}, for all , , ,jbkx j b k (4-15)

  {0, 1}, for all , , ,bb ky b k b b (4-16)

{0, 1}, for all , ,bkz b k (4-17)

max 0.C (4-18)

The bi-functional objective of equation (4-1) of Model P is to minimize the

maximum completion time and the number of batches. The former is the main objective

for the scheduling problem and the latter is the subsidiary one in order to reduce the

complexity of the batch sequence. Therefore, the term  is a constant, which is chosen

to be a sufficiently small value which cannot affect the makespan. Constraint (4-2)

guarantees that each job is assigned to one batch and processed on exactly one machine.

Constraint (4-3) ensures that each batch is either processed once by one machine or not at

all. Constraint (4-4) is a contingent constraint. That is, if some jobs are assigned to batch

b on machine km ( jbkx =1), then batch b should be assigned to machine km ( bkz =1).

Term 1Q is a constant and is greater than the total number of jobs ( N ). Constraint (4-5)

is the batch size constraint, which requires that the sum of all the pieces of each job
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contained in each batch on one machine be simultaneously processed and within the

maximum machine capacity. Constraint (4-6) ensures that the processing time of each

batch is the longest processing time of all the jobs simultaneously processed in a batch.

Constraint (4-7) is the maximum completion time (makespan) and is always greater than

or equal to the sum of the starting and processing times for each batch. Constraint (4-8)

indicates that the starting time of each batch is greater than or equal to the ready time of

that batch. The ready time of a batch is the latest ready time of all the jobs clustered in a

batch. Term 2Q is the chosen constant as it is sufficiently large in value to satisfy

0bb ky or 1 which is required for constraints (4-9)-(4-14). Constraint (4-9) ensures the

satisfaction of the inequality in  bk b b kt pt t , if batch b precedes batch b ( = 1bb ky ).

Constraints (4-10)-(4-14) are the precedence constraints provided by Pearn et al. [67].

Constraints (4-10) and (4-11) guarantee that one batch should precede another

(  + = 1bb k b bky y ) if two batches are scheduled on the same machine ( + 2= 0bk b kz z ). It

should be noted that the precedent relationships ( bb ky ) between batches b and b on

machine km may not be limited to direct ones. Constraint (4-12) ensures that the

precedence variables bb ky and b bky should be set to zero (   0bb k b bky y ) if any two

batches b and b are not scheduled on the machine km (  0bk b kz z ). Constraints

(4-13) indicates the situation in which batch b is scheduled on machine km and batch

b is scheduled on another machine (   1 0b k bkz z ) and constraint (4-14) indicates the

situation in which batch b is scheduled on machine km and batch b is scheduled on

another machine (   1 0bk b kz z ). Constraints (4-15)-(4-17) indicate that jbkx , bb ky ,

and bkz are binary integer variables. Finally, constraint (4-18) indicates that the

makespan is greater than or equal to zero. The total number of variables is
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  2 1NBK B K BK and the total number of constraint equations is

       29 /2 3 3/ 2 2 1B K NBK BK N B , where B is the number of batches.

To demonstrate the applicability of Model P, an illustrative example is considered.

The example involves two parallel batch processing machines ( 1m and 2m ) and seven

independent jobs with various sizes and processing times, which are ready for different

starting times, as shown in Table 4-1. The seven jobs should be clustered into an

appropriate number of batches. Those batches are scheduled on the two identical

machines. The batch processing time is not affected by the machine processing it, but is

dependent on the batch formation. The maximum number of pieces of one batch in a

machine is set at 450 pieces in this example.

Table 4-1 Job sizes, ready times, and processing times of the seven independent jobs.

Job ID size (pieces) ready time processing time
1 50 6 160
2 200 40 120
3 240 8 90
4 180 10 190
5 400 80 290
6 300 30 160
7 150 80 200

Model P is implemented using the software CPLEX OPL 3.5 to solve the seven-job

example. For the example investigated, the model contains 225 variables and 736

equations. The MILP model is run on a Pentium IV 3.2GHZ PC to obtain optimal

solutions. The four batches, 1b , 2b , 3b , and 4b , are actually formed and their batch

processing times are 90, 190, 200, and 290, respectively. Job 3 is grouped into 1b and

scheduled on Machine 1. Jobs 1, 2, and 4 are grouped into 2b and scheduled on

Machine 2. Moreover, jobs 6 and 7 are grouped into 3b which is scheduled on Machine

2 and processed after 2b . Job 5 is the only one in 4b and it is scheduled on Machine 1
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and processed after 1b . The makespan of the example is 430 as shown in Figure 4-3 and

the computational time is 1041.3 CPU seconds.

idle time

process time

0 32016080 240

m

m

400 480

4308 140

1

2

4b

2b

1b
98

40 430230

3b

1b : job 3 2b : job 1, job 2, job 4

3b : job 6, job 7 4b : job 5

Figure 4-3 An optimal solution for the 7-job example with two aging test machines.

4.3. Compound MILP-based Algorithm

A compound MILP-based algorithm (CMA) improves the efficiency of the MILP

model proposed in Section 4.2. For the aging test scheduling problem investigated in this

dissertation, the number of batches and the composite jobs for each batch determine the

solution quality and efficiency. It is obvious that the probable numbers of batches fall into

the range,  1 B N , in an N-job scheduling problem. The lower and upper bound values

of B are obtained when all the N jobs are combined with one batch and each job is

contained in an individual batch, respectively. However, exploring all the possible

numbers of batches would increase the run time to obtain the optimal solution.

Therefore, a relaxed MILP model (Model N) focuses on the batch formation and relaxes

all relative precedence constraints to obtain the lower bound of the number of batches.

Model N is then provided to reduce the search space for the aging test scheduling

problem and is applied in the CMA. In Model N, the precedence variable ( bb ky ) and

precedence constraints (constraint (4-9)–(4-14)) are removed. Model N uses
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  1 1

B K
bkb k

z as its objective function. Model N starts from a makespan lower bound

maxC , which is greater than the longest processing time of all the jobs.

In this section, the compound MILP-based algorithm (CMA) is developed. The

algorithm essentially consists of two phases. Phase I applies Model N to obtain the lower

bound of the number of batches, which can serve as a referenced batch number in Model

P. As mentioned earlier, it is sometimes advantageous to assign one more batch than the

referenced batch number obtained from Phase I of the CMA to avoid excessive delays in

waiting for the next scheduled late ready time job. Therefore, in Phase II, the solution of

the subsequent batch number is checked. The algorithm is stated as follows and the flow

chart is depicted in Figure 4-4.

Start

Set Z=0, Z*=0

Check if

BN=BN+1

Run Model P
based on BN

Set the solution
of Model P as Z

Check if Set Z=Z*

End

Set solution of
CMA as Z*

no

yes

yes

no
BN N

Solve Model N to
obtain the number

of batches BN.
Let BN be lower
bound of number

of batches.

Apply BN as a
parameter to

Model P

Set the final
solution of

Model P as Z*

Phase I Phase II

*Z Z

Figure 4-4 The flow chart of the compound MILP-based algorithm (CMA).

Phase I: The number of batches is determined and applied to Model P

Step 1. Solve the following relaxed MILP model (Model N) in order to allow
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the number of batches formed in the optimal solution to serve as lower

bound batch numbers.

Model N:

 


1 1

Minimize
B K

bk
b k

z (4-19)

subject to

constraints (4-2)–(4-8), and (4-15),

 max max{ }jC p . (4-20)

Step 2. Denote the number of lower-bound batches to be the candidate

number and denote it as BN . Apply BN as one parameter to Model P

developed in Section 4.2. Denote the solution obtained within the limited

computational time as Z*.

Phase II: The solution of subsequent batch number is checked

Step 1.  1BN BN .

Step 2. If BN N , then the batch number BN is applied as one parameter

to Model P. Let the solution obtained from Model P be denoted as Z and go

to Step 3. If the BN N , then let Z* be the final solution and stop the

algorithm.

Step 3. If  *Z Z , then let *Z be the final solution and stop the algorithm.

If  *Z Z , then set Z as the new *Z and go back to Step 1.

It should be noted that the computational complexity of the original MILP model

(Model P) developed in Section 4.2 is reduced when the number of lower-bound batches

is obtained by using the algorithm of Phase I of the CMA. The greater the difference

between the number of jobs and the number of batches, the greater is the reduction in

complexity. For the example with 7 jobs described in Section 4.2, the number of batches
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is four, and it is obtained by using the algorithm in Phase I of the CMA. The composite

jobs for these batches are presented in Table 4-2.

Table 4-2 The composite jobs for each estimated batch.

Batch name Job ID Batch size

2b 1, 3, 7 440
3b 5 400
6b 6 300
7b 2, 4 380

Using four batches as the parameter for Model P, 97 variables and 316 constraint

equations are obtained. The solution is a makespan of 430 and is obtained within 1.3

CPU seconds by using CPLEX OPL 3.5. Moreover, when the batch number is set to five

using Step 1 of Phase II of the CMA, the makespan is also 430 but the computational time

is 10 CPU seconds. Therefore, the final solution of the example with seven jobs using the

CMA is 430.

4.4. Heuristic Algorithms for Large-scale Problems

For small and moderate size aging test scheduling problems with unequal ready

times and non-identical job sizes, the mixed integer linear programming model can

provide optimal solutions within reasonable amounts of computational time. However,

for large size aging test scheduling problems, solving the mathematical model is

computationally inefficient. Therefore, three heuristic algorithms are proposed to

generate efficient solutions for large problems. The proposed algorithms incorporate the

merits of the DELAY heuristic solution procedure proposed by Lee and Uzsoy [51] with

some modifications in order to accommodate the parallel batch processing machine

environment. The DELAY heuristic algorithm allows for postponement in processing a

batch in order to accommodate a job that is due to arrive soon and which might be

combined with the delayed batch. This strategy can be used to avoid unacceptable delays
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in the completion of scheduled batches. At other times, however, if the expected job is

due to arrive much later, it is not advantageous to delay processing as this would cause

excessive delays to jobs already waiting to be processed.

The three new heuristic algorithms include the characteristics of unequal ready

times, non-identical job sizes, and parallel batch processing machines; they are referred to

as Heuristic Algorithm 1 (H1), Heuristic Algorithm 2 (H2), and Mixed-strategy Heuristic

Algorithm (MixedH). The first two heuristic algorithms essentially consist of two phases.

Phase I of each modifies the DELAY algorithm (proposed by Lee and Uzsoy [51]) to

form appropriate batches by adding a machine capacity checking step in order to

accommodate the constraint of non-identical job sizes to enable the processing of batches

of varied numbers of jobs. Furthermore, in Phase II of the two algorithms, the original

single-machine scheduling idea proposed by Lee and Uzsoy [51] is also extended to

accommodate a parallel batch processing machine environment. In this phase, the

formed batches are then assigned to parallel batch processing machines and sequenced

according to the batch ready times and batch processing times with a minimal makespan

criterion. Finally, a mixed-strategy approach is also proposed. Algorithm details are

presented as follows.

4.4.1. Heuristic Algorithm 1 (H1)

Phase I: Batch formation–the modified DELAY algorithm (Lee and Uzsoy [51])

Step 0. Let the available set be the set of jobs which are available to be selected as a

batch. Sort all jobs associated with ready times in ascending order of magnitude as an

unscheduled-job list. Index the ready times in the list as ir . Assign the first job on the
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unscheduled-job list into the available set. Set the decision time point (t) as the ready time

of the first job ( 1r ) in the available set and set 1i and 1b .

Step 1. Arrange the jobs associated with the processing times in the available set in

descending order of magnitude. Choose the required number of early jobs in the available

set which satisfy the constraint of machine capacity and place them in the candidate

batch (b). The longest processing time of all the jobs in batch b serves as the

corresponding batch processing time and is denoted as bpt .

Step 2. Check whether there is a job (j) on the unscheduled-job list which satisfies

constraints  j br t pt and j bp pt , where  0 1 . If a job (j) satisfies the

conditions, then put job (j) into the candidate batch ( b ) and go to Step 3. Otherwise go to

Step 4.

Step 3. If 


 q bq b
p pt or


 qq b

s S where  0 3 and




    1

N
jj

s S , then they do not form a part of the candidate batch ( b ); therefore, let

 1i i , decision time point (t) be ir , and then go to Step 5. Otherwise, go to Step4.

Step 4. Form candidate batch ( b ), let   bt t pt , then remove those jobs which are

formed in batch b from the unscheduled-job list, set 1i ,  1b b , and go to Step 6.

Step 5. Select the maximum time value between the current decision time point and

the smallest ready time in the unscheduled-job list as the new decision time point. Choose

the jobs which have ready times which are earlier than the new point in decision time (t)

to update the available set. Go back to Step 1 to reform the candidate batch.

Step 6. Repeat Step 5 until no more candidate jobs can be found on the

unscheduled-job list.
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Phase II: Batch scheduling

Step 1. Calculate the batch ready time and batch process time for each batch.

Step 2. Sort the batch ready times in ascending order of magnitude.

Step 3. If the ready times of some of the batches are equal, then sort the batch

processing times in descending order of magnitude.

Step 4. Schedule the first batch into the first available machine and then remove the

batch from the batch list.

Step 5. Repeat Step 4 of Phase II until all batches are scheduled.

In Step 2 of Phase I, Lee and Uzsoy [51] used parameter  to accommodate the

postponement idea of the DELAY heuristic algorithm. Parameter  can be used to

examine whether there exists a job with a ready time which is less than or equal to the

summation of the current decision time point and the  bpt time units. In addition, its

corresponding job processing time is greater than or equal to the  bpt . If such a job

exists, the job might be combined with the delayed batch to avoid delaying that job.

4.4.2. Heuristic Algorithm 2 (H2)

In Phase II of Heuristic Algorithm 1 (H1), the batches are mainly scheduled based

on their batch ready times. If the number of batches to be processed is slightly greater

than the number of machines available to process them and, furthermore, if the

processing times of some batches are relatively short, then the result may be that H1

performs poorly because the individual short-process-time batches have been assigned to

different machines resulting in a longer makespan. In attempting to improve the solution,
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an alternative approach which combines the ready and processing times is proposed. The

algorithm is described in following.

Phase I: Batch formation

Use the same process as for Phase I of Heuristic Algorithm 1 (H1).

Phase II: Batch scheduling

Step 1. Calculate the batch ready times ( br ) and the batch process times ( bpt ), which

are determined by the latest ready time and the longest processing time of all the jobs in

one batch, respectively.

Step 2. Calculate  b b bT r pt .

Step 3. Assign batches on K parallel batch processing machines using the longest

processing time (LPT) rule (here it is assumed that the value of bT represents the

processing time for the LPT rule).

Step 4. Sequence batches on each machine in ascending order based on batch ready

times.

4.4.3. Mixed-strategy Heuristic Algorithm (MixedH)

In attempting to obtain better solutions, a mixed-strategy approach, which has been

considered by Frederickson [33], is presented. The mixed-strategy approach first uses H1

and H2 algorithms to generate two complete aging test scheduling problem solutions,

then selects the best one. This approach is referred to as the Mixed-strategy Heuristic

Algorithm (MixedH). As MixedH consists of two efficient algorithms, each of which

performs some certain cases well, the solutions obtained from this algorithm are
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improved. MixedH also involves two phases. Phase I, as in Phase I of H1, determines the

batch formations. However, Phase II performs the solution procedures of the Phase II of

H1 and H2 simultaneously to determine the final sequence and to select the value with

the minimum makespan from the two solutions available.

4.5. Computational Results and Comparisons

For the purposes of testing the proposed algorithms and comparing them with the

MILP model, an experiment involving two computational tests was designed to generate

a series of problem instances. One computational test performed with small to moderate

size problems obtains the solution quality of the proposed heuristic algorithms by

comparing their solutions with the optimal solutions generated by the MILP model

(Model P). The other computational test involves the large size problem taken from a

module assembly process at a TFT-LCD factory in Hsinchu Science-based Industrial

Park, Taiwan. In the following, two computational results are provided.

4.5.1. Analysis of Results from Small and Moderate Size Problems

The experimental design involves two essential characteristics, ready time variation

and processing time variation. These two variations are characterized by two magnitudes,

large (L) and small (S). Accordingly, the ready times in a problem are generated from

uniform distributions in [0,300], [0,100] for large and small variations, respectively. The

processing times are generated from uniform distributions in [90,300], [100,200] for large

and small variations, respectively. The structure and data of the test problems are

generated covering a wide variety of scheduling problems encountered in industrial

practice. A number of machines and a number of jobs are alternated in order to get

twenty-four problem configurations. For each problem configuration, five problem
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instances are randomly generated. Thus, 120 different problem instances are generated

which are either small or moderate in size. The four different experimental factors are

listed in Table 4-3. The aging oven can process a batch in which the total number of

pieces from all the jobs in that batch does not exceed 450 pieces. Without loss of

generality, we assume that the size of each job is less than the machine capacity (i.e. 450

pieces of panel). Once the batch processing begins, it is non-preemptive until the batch is

completely processed. Processing and ready times are measured in minutes. All jobs

should be formed as batches and be processed completely by the minimum makespan.

Table 4-3 Experimental factors for small and moderate sized problems.

Factor Value considered Number of values
Number of jobs (N) 7, 15, 20 3
Ready time variation L, S 2
Processing time variation L, S 2
Number of machines (K) 2, 3 2
Total problem configurations 24
Instances per configuration 5
Total problem instances 120

Table 4-4 presents the solutions generated by the all the proposed algorithms on the

eight small problem configurations with seven jobs in each. The values of the optimal

solutions are obtained by solving the MILP model (Model P), which is formulated in

Section 4.2. In Table 4-4, the problem configuration “7LL2”represents the 7 jobs with

large ready time and large processing time variations, which are processed on two batch

machines. In this testing, the run times of Model P and the CMA may vary for problem

instances with different configurations. However, the run times of the CMA are

significantly faster than for the original MILP model (Model P). All the solutions of the

CMA are equal to the values obtained from Model P; hence the solutions are optimal. In

the three heuristic algorithms, their performances are sensitive to the values of the
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parameters  and  (as concluded also by Lee and Uzsoy [51]). This section provides

the experiments involving the three heuristic algorithms to the testing problem instances

using several values of , which are initially set to 0, 0.2, 0.4, 0.6, 0.8, and 1 (  0 1 )

and , which are initially set to 0, 0.2, 0.4, …, 2.6, 2.8, and 3 (  0 3 ). The best

solution, obtained using one of the parameter combinations, is selected as the final

solution to the heuristic algorithm. It is worthwhile to note that the MixedH obtains 34

(out of 40) optimal solutions within 0.8 CPU seconds for each problem instance.

Table 4-5 displays the results for the problem instances with fifteen jobs and different

configurations and their performance comparisons in terms of the makespan obtained

using mathematical and heuristic algorithmic solutions. In the MILP model (Model P)

and Model N of the CMA, the depth-first search strategy (Wolsey [93]) is implemented by

choosing the most recently created node. To avoid the CPLEX routine which requires a

tremendous amount of computation time, the maximum run time is set at 28800 CPU

seconds. Furthermore, the nodes created cannot be greater than 1E06 in Phase II of the

CMA in order to check the subsequent batch numbers repeatedly. CPLEX could stop at

the pre-determined time without guaranteeing optimality for problems with high

computational complexity. However, the depth-first search strategy can incorporate the

strong branching rule (Wolsey [93]) causing the variable selection based on partially

solving a number of sub-problems with tentative branches in order to find the most

promising branch. Table 4-5 shows that the performances of the CMA are reasonably

good; that is, with all the problem instances it achieved better solutions than the original

MILP model (Model P). Furthermore, the three heuristic algorithms perform well and
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efficiently. As seen in Table 4-5, due to its solution strategy, the MixedH provides the best

solutions of all three heuristic algorithms for all problem configurations.

Furthermore, table 4-6 displays the results for the problem instances with twenty jobs

and different configurations and their performance comparisons in terms of the makespan

obtained using mathematical and heuristic algorithmic solutions. In table 4-6, the run

times of MILP model (Model P) and Model N of the CMA almost approach to 28800

seconds, which is the maximum run times allowed. Therefore, these mathematical

methods, including MILP and CMA models, are both computationally inefficient.

Notably, the MixedH receives 15 better solutions (out of 40) than those of the two

mathematical based algorithms. Thus, as the number of job increases to exceed 20 jobs,

the MixedH not only runs fast but also obtains satisfactory solutions.

Table 4-7 displays the performance comparisons among the five algorithms in terms

of (1) average rank, (2) average run times, (3) number of problem instances receiving the

best solutions, and (4) number of optimal solutions. The results indicate that the CMA

can obtain 40 (out of 40) optimal solutions for the 7-job test problem instances and it can

perform remarkably well for the 15-job and 20-job problem instances. The CMA

significantly speeds up the original MILP model in test problem instances. However,

when the number of jobs is increased to 20 jobs, the computation times required by CMA

are also increased and inefficient. It should also be noted that all three heuristic

algorithms run very fast. With the 120 problem instances tested, it was found that none of

them required more than 2 CPU seconds on a Pentium IV 3.2GHZ PC. To access the

accuracy of the heuristic solutions, the best solution selected from the CMA and the
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Table 4-4 Run times and makespan results for 7-job problem instances.
MILP CMA H1 H2 MixedH

Prob.

Config. maxC Time

(sec)
maxC Time

(sec)
maxC Time

(sec)
maxC Time

(sec)
maxC Time

(sec)

1 7LL2 459 2496 459 11.2 459 0.672 486 0.641 459 0.688

7LL3 379 8742 379 71.9 379 0.625 379 0.625 379 0.656

7LS2 395 501.2 395 13.7 395 0.609 401 0.609 395 0.672

7LS3 345 1032 345 21.4 365 0.625 345 0.625 345 0.656

7SL2 430 1041.3 430 11.2 430 0.656 480 0.625 430 0.676

7SL3 370 648 370 1.7 370 0.625 370 0.688 370 0.719

7SS2 346 1268 346 12.1 346 0.625 393 0.625 346 0.656

7SS3 289 15475 289 66.3 289 0.609 306 0.625 289 0.672

2 7LL2 607 463 607 5.5 607 0.613 631 0.625 607 0.656

7LL3 540 15.8 540 6.2 568 0.609 540 0.609 540 0.656

7LS2 488 482 488 6.4 488 0.625 502 0.672 488 0.712

7LS3 418 2899.8 418 32.6 418 0.625 422 0.625 418 0.672

7SL2 561 450 561 18.3 570 0.641 575 0.609 570 0.719

7SL3 435 28052 435 150.3 435 0.609 435 0.609 435 0.656

7SS2 348 1376 348 25.2 348 0.641 367 0.703 348 0.756

7SS3 267 20714 267 115.9 267 0.625 267 0.609 267 0.688

3 7LL2 522 1.6 522 1.1 522 0.625 599 0.609 522 0.734

7LL3 522 7.5 522 5.3 522 0.641 522 0.594 522 0.672

7LS2 455 1.3 455 1.1 455 0.609 471 0.594 455 0.672

7LS3 455 10 455 3 455 0.641 455 0.609 455 0.672

7SL2 424 693.3 424 8.7 424 0.641 468 0.609 424 0.734

7SL3 332 7389.2 332 4.4 358 0.625 332 0.672 332 0.692

7SS2 330 461.8 330 11 345 0.625 343 0.594 343 0.656

7SS3 303 23341 303 85 318 0.625 303 0.609 303 0.813

4 7LL2 630 1606 630 13.1 656 0.609 656 0.609 656 0.672

7LL3 543 41721 543 64.8 619 0.625 543 0.625 543 0.672

7LS2 411 7.7 411 2.9 411 0.625 530 0.594 411 0.656

7LS3 411 12.4 411 6.8 411 0.672 411 0.609 411 0.734

7SL2 512 4209.9 512 7.7 512 0.625 534 0.672 512 0.756

7SL3 425 31346.8 425 117.8 465 0.625 425 0.703 425 0.741

7SS2 313 462.8 313 9.6 317 0.625 336 0.609 317 0.641

7SS3 258 22398 258 61.6 261 0.625 258 0.609 258 0.641

5 7LL2 574 1306.8 574 6.4 592 0.641 590 0.641 590 0.656

7LL3 555 7.6 555 5.3 555 0.625 555 0.609 555 0.655

7LS2 453 1.6 453 0.7 454 0.625 453 0.703 453 0.741

7LS3 453 10.9 453 4.8 453 0.609 453 0.719 453 0.741

7SL2 498 3310 498 15.6 498 0.625 534 0.609 498 0.766

7SL3 398 43339 398 134.2 398 0.719 398 0.609 398 0.752

7SS2 371 3748 371 23.1 393 0.609 373 0.672 373 0.741

7SS3 294 22360 294 96.1 298 0.625 294 0.609 294 0.719

The underlined values represent the best solutions for each problem instance from among all of the algorithms.
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Table 4-5 Run times and makespan results for 15-job problem instances.
MILP CMA H1 H2 MixedH

Prob.

Config. maxC Time

(sec)
maxC Time

(sec)
maxC Time

(sec)
maxC Time

(sec)
maxC Time

(sec)

1 15LL2 592 28800 579 786.8 610 0.844 612 0.797 610 0.947

15LL3 552 28800 552 15.3 552 0.781 552 0.781 552 0.931

15LS2 467 250.6 467 5.1 467 0.781 467 0.766 467 0.916

15LS3 467 7471.3 467 19.8 467 0.797 467 1.031 467 1.041

15SL2 532 28800 532 1096.2 532 0.813 575 0.766 532 0.994

15SL3 382 28800 382 2789.5 382 0.875 382 0.875 382 0.947

15SS2 372 28800 372 1252.5 409 0.828 392 0.766 392 0.931

15SS3 276 28800 275 2225 303 0.938 275 0.766 275 0.994

2 15LL2 614 28800 605 3756.1 629 0.813 713 0.766 629 0.978

15LL3 565 642 565 17.4 565 0.797 565 0.750 565 0.947

15LS2 498 28800 498 3063 516 0.797 551 0.797 516 0.931

15LS3 478 28800 478 31.6 478 0.813 478 0.750 478 0.931

15SL2 500 28800 475 1085.9 475 0.813 537 0.750 475 0.963

15SL3 380 28800 380 150.7 380 0.797 380 0.750 380 0.916

15SS2 380 28800 374 8478 380 0.781 403 0.766 380 0.947

15SS3 293 28800 293 183.9 293 0.797 293 0.750 293 0.931

3 15LL2 505 28800 505 902.3 505 0.797 596 0.750 505 0.963

15LL3 442 28800 442 48.2 442 0.781 442 0.750 442 0.916

15LS2 455 28800 455 872.4 467 0.781 498 0.750 467 0.931

15LS3 424 28800 424 18.8 426 0.875 426 0.813 426 0.963

15SL2 425 28800 425 999 428 0.797 466 0.750 428 0.931

15SL3 323 28800 314 1089 323 0.797 314 0.766 314 0.931

15SS2 375 28800 375 1290 393 0.781 420 0.750 393 0.916

15SS3 318 28800 306 3012.9 315 0.797 306 0.750 306 0.947

4 15LL2 495 28800 495 1185 516 0.797 546 0.750 516 0.931

15LL3 445 28800 445 16.9 445 0.859 469 0.813 445 0.978

15LS2 435 28800 422 997.7 435 0.781 456 0.828 435 0.947

15LS3 370 28800 370 1275.5 375 0.781 390 0.734 375 0.892

15SL2 459 28800 459 1323 473 0.797 473 0.750 473 0.910

15SL3 369 28800 369 219 369 0.781 369 0.766 369 0.947

15SS2 384 28800 383 1437 403 0.766 410 0.734 403 0.916

15SS3 327 28800 327 3684 331 0.781 331 0.750 331 0.916

5 15LL2 553 28800 553 1014.7 586 0.828 590 0.766 586 0.963

15LL3 538 813 538 13.1 538 0.797 538 0.781 538 0.916

15LS2 454 28800 454 472.2 464 0.875 488 0.828 464 0.994

15LS3 451 28800 451 22.7 451 0.859 451 0.828 451 0.993

15SL2 517 28800 477 1483.9 505 0.797 517 0.750 505 0.916

15SL3 363 28800 350 697.5 363 0.828 363 0.750 363 0.916

15SS2 374 28800 368 3138 390 0.797 390 0.750 390 0.900

15SS3 324 28800 321 4298 368 0.813 326 0.750 326 0.947

The underlined values represent the best solutions for each problem instance from among all of the algorithms.
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Table 4-6 Run times and makespan results for 20-job problem instances.
MILP CMA H1 H2 MixedH

Prob.

Config. maxC Time

(sec)
maxC Time

(sec)
maxC Time

(sec)
maxC Time

(sec)
maxC Time

(sec)

1 20LL2 821 28800 757 28800 790 1.094 875 1.094 790 1.109

20LL3 595 28800 573 774.2 601 1.125 625 1.078 601 1.250

20LS2 656 28800 592 28800 575 1.063 635 1.031 575 1.141

20LS3 498 28800 459 147.48 459 1.063 514 1.047 459 1.453

20SL2 790 28800 682 28800 677 1.109 745 1.094 677 1.766

20SL3 527 28800 489 28800 559 1.063 508 1.063 508 1.094

20SS2 573 28800 529 28800 527 1.063 548 1.063 527 1.094

20SS3 483 28800 380 28800 388 1.078 395 1.047 388 1.094

2 20LL2 939 28800 759 28800 792 1.078 918 1.109 792 1.188

20LL3 663 28800 588 28800 609 1.078 613 1.078 609 1.094

20LS2 613 28800 551 28800 566 1.078 618 1.063 566 1.109

20LS3 455 28800 455 76.16 455 1.094 455 1.094 455 1.125

20SL2 805 28800 744 28800 741 1.094 809 1.078 741 1.141

20SL3 631 28800 544 28800 575 1.094 558 1.094 558 1.125

20SS2 601 28800 519 28800 518 1.063 526 1.047 518 1.094

20SS3 461 28800 371 28800 382 1.063 393 1.063 382 1.203

3 20LL2 1000 28800 876 28800 903 1.078 894 1.094 894 1.188

20LL3 703 28800 622 28800 645 1.078 687 1.078 645 1.203

20LS2 641 28800 568 28800 555 1.078 690 1.078 555 1.109

20LS3 484 28800 471 28800 473 1.078 480 1.078 473 1.094

20SL2 887 28800 793 28800 770 1.094 886 1.078 770 1.172

20SL3 603 28800 579 28800 585 1.125 594 1.078 585 1.219

20SS2 664 28800 521 28800 545 1.094 569 1.125 545 1.172

20SS3 458 28800 383 28800 382 1.078 397 1.078 382 1.109

4 20LL2 925 28800 805 28800 776 1.109 948 1.109 776 1.141

20LL3 671 28800 639 28800 656 1.141 680 1.125 656 1.188

20LS2 604 28800 578 28800 598 1.094 670 1.078 598 1.141

20LS3 478 28800 455 28800 456 1.078 507 1.063 456 1.219

20SL2 826 28800 748 28800 765 1.094 822 1.094 765 1.109

20SL3 611 28800 531 28800 513 1.094 570 1.063 513 1.109

20SS2 632 28800 522 28800 514 1.078 580 1.047 514 1.109

20SS3 450 28800 395 28800 410 1.078 414 1.094 410 1.109

5 20LL2 950 28800 775 28800 769 1.094 830 1.094 769 1.109

20LL3 673 28800 578 28800 567 1.078 655 1.063 567 1.094

20LS2 638 28800 549 28800 552 1.078 714 1.078 552 1.094

20LS3 475 28800 443 967.66 443 1.078 475 1.109 443 1.156

20SL2 880 28800 748 28800 693 1.109 816 1.078 693 1.397

20SL3 643 28800 530 28800 490 1.094 559 1.063 490 1.344

20SS2 577 28800 478 28800 495 1.078 524 1.063 495 1.297

20SS3 432 28800 347 28800 354 1.078 374 1.109 354 1.266

The underlined values represent the best solutions for each problem instance from among all of the algorithms.
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original MILP model (Model P) is used for each problem instance as a convenient

reference point. The average percentage deviations between the MixedH and the selected

best solutions of the two mathematical based algorithms are 0.36%, 1.8%, and 0.64% for

7-job, 15-job, and 20-job problem instances, respectively. The percentage deviation is

defined as  MixedHV V V , where MixedHV and V are the values for each problem

instance which is obtained using the MixedH and the two mathematical based algorithms,

respectively. The CMA may perform inefficiently as the number of job increases to the

large scale usual in real-world factories. Thus, if the computational time is a primary

concern, MixedH can solve real-world problems well.

Table 4-7 Comparisons of the five algorithms.

Problem MILP CMA H1 H2 MixedH

7-job Average rank among the five algorithmsa 1 1 2.23 2.9 1.3

Average run times (in CPU seconds) 7335.3 31.5 0.629 0.630 0.696

Number of problem instances receiving the best solutions 40 40 25 19 34

Number of optimal solutions 40 40 25 19 34

15-job Average rank among the five algorithmsa 1.6 1 2.3 3.1 1.95

Average run times (in CPU seconds) 26149 1362 0.810 0.776 0.943

Number of problem instances receiving the best solutions 26 40 15 15 19

Number of optimal solutions 4 4 4 4 4

20-job Average rank among the five algorithmsa 4.55 1.7 1.75 4.025 1.575

Average run times (in CPU seconds) 28800 25969 1.086 1.079 1.181

Number of problem instances receiving the best solutions 1 25 18 1 18

Number of optimal solutions 1 4 3 1 3
a The smallest rank value indicates the best solutions among all algorithms.

4.5.2. Analysis of the Result Based on the Large Scaled Problem

To demonstrate the applicability of the MixedH heuristic algorithm in real world

problems, the following problem taken from a module assembly process of a TFT-LCD

factory in Hsinchu Science-based Industrial Park, Taiwan, is considered. For the parallel

batch processing machine scheduling problem in the aging test operation, there are 100

jobs (which can be categorized into 35 product families) to be processed on 6 identical
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aging test machines arranged in parallel. The maximum batch size in one machine is 450

pieces of panel. It is assumed that the job testing recipes require the same testing

temperature, which is normally set to a high temperature (55C).

In order to solve the real-world aging test problem with unequal ready times and

non-identical job sizes using the MixedH algorithm, the program codes of the three

heuristic algorithms are written in Visual Basic 6.0. As a result, the MixedH algorithm

runs quite efficiently. In fact, the MixedH algorithm takes 6.8 CPU seconds to obtain

makespan 1330 on six aging test machines.
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5. Conclusions and Future Research

5.1. Conclusions

The thin film transistor liquid crystal display (TFT-LCD) is a high competence

industry. To be competitive, how to utilize their capacity and to meet customers’due

dates to increase their profitability is essential. This dissertation tackles the production

scheduling problems for the module assembly manufacturing process. According to the

concept of theory of constraints (TOC), a printed circuit board bonding scheduling

problem (PCBSP) is first investigated because it is often the cause of bottlenecks in the

process and is mainly determined the performance of a system. To expedite the

completion of the jobs, which have passed the PCB bonding operation, a batch

processing machine scheduling problem, aging test scheduling problem (ATSP), is also

solved because improper batch formation and scheduling may cause a large makespan.

The main contributions of this dissertation are to provide solution procedures of

exact solutions and approximate solutions for the production scheduling problems

(PCBSP and ATSP) in the module assembly manufacturing process. To obtain the exact

solution of the PCBSP, we present a mixed integer linear programming model based on

the MILP model proposed by Pearn et al. [67] with some modifications to accommodate

the distinct objective function and constraints of the PCBSP. For the other essential

scheduling problem in module assembly factories (ATSP), at the time this dissertation

was being written, the proposed MILP model is the first one to obtain the exact solution

for the research topic of the parallel batch processing machine scheduling problem with

considerations of the compatible product families and unequal ready times. In the
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proposed MILP model, the bi-functional objective is adopted to seek the minimal

makespan and to incorporate the number of batches as the subsidiary in order to reduce

the complexity of batch sequencing. This model can help the other researchers to obtain

exact solutions for the similar batch scheduling problems successfully in their further

investigations. Furthermore, an effective compound MILP-based algorithm (CMA) is also

proposed to predetermine the number of batches in order to reduce the complexity

associated with a search of all probable numbers of batches. From the computational tests

conducted in this dissertation, the CMA significantly outperforms the original MILP

model (Model P) within the limited computational time.

However, solving the MILP models to obtain exact solutions requires a tremendous

computational time for large-scale problems. If the computational time is a primary

concern, efficient solution procedures for the module assembly scheduling problems are

also proposed based on the existing network algorithms and batch formation

technologies. For the PCBSP, two network algorithms are investigated and two

modifications are developed to solve this problem efficiently. To test the performances of

those algorithms, a set of test problems was designed. The design of test problems

involves four critical factors including the workload level of contract jobs, tightness of due

date, setup time variation, and variation of contract/spot weight ratio. The

computational test results reveal that the MPSA_TP perform stably in varied situations.

All proposed algorithms solve the large-scale PCBSP effectively.

For the ATSP, three efficient heuristic algorithms are also developed for solving

large-scale problems. The performances of the three heuristic algorithms are quite

satisfactory. In particular, the MixedH shows its superiority with respect to run time and
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solution quality, which are essential for real-world factories to schedule their batch

processing machines. A real-world problem taken from a module assembly shop floor at a

TFT-LCD factory is solved by using MixedH to obtain the near optimal solution within a

few CPU seconds. We believe that the effective algorithms investigated in this dissertation

may assist those involved in TFT-LCD factories to make judicious scheduling decisions.

5.2. Future Research

From this dissertation, three possible concerns might be useful in further research.

The first concern involves solving the two scheduling problems using metaheuristic

solution procedures, such as tabu search (TS), genetic algorithm (GA), and simulated

annealing (SA), since metaheuristics have been widely applied in the investigations of

scheduling problems. The metaheuristics can embed the solutions obtained in this

dissertation as the initial solutions and then apply more general solution procedures that

explore the solution space to identify good solutions. Moreover, the second concern is to

solve another type of scheduling problem in TFT-LCD factories, such as a batch

processing machine scheduling problem with the consideration of unequal ready times

and multiple-batch operations in cell assembly process. Finally, the third concern is the

need to minimize the maximum completion time involved in the consideration of setup

times for the parallel batch processing machine scheduling problem with the

characteristics of unequal ready times, setup times, and incompatible product families.
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Appendix

Table A1 Setup times matrix for 26 product types in problem 6 (unit: minutes).
To

From U 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

U 0 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
1 0 0 15 20 20 360 360 180 30 30 180 360 250 250 180 30 30 150 120 50 50 50 130 20 50 30 20
2 0 15 0 20 20 360 320 180 30 30 180 360 30 30 170 170 250 30 50 50 150 100 100 150 15 250 30
3 0 20 20 0 120 30 30 170 170 250 250 250 130 150 50 260 80 30 50 50 150 100 100 150 15 80 30
4 0 280 280 360 0 130 20 50 260 80 80 280 130 150 50 260 80 30 50 50 150 100 100 150 15 80 30
5 0 280 280 360 15 0 20 50 260 80 80 280 130 150 50 260 80 30 50 50 150 100 100 150 15 80 30
6 0 280 280 360 15 20 0 50 260 80 80 280 15 80 150 150 120 80 250 250 250 100 100 270 30 120 80
7 0 20 20 120 50 15 80 0 150 120 120 30 15 80 150 150 120 100 150 150 150 80 80 30 30 120 100
8 0 20 20 15 320 30 120 120 0 250 250 250 50 150 150 260 80 250 170 170 250 250 250 250 30 80 20
9 0 280 280 200 50 50 150 150 260 0 80 280 250 100 250 150 30 250 50 260 80 80 80 280 30 30 20
10 0 150 150 80 80 250 250 250 270 30 0 20 150 80 280 30 250 15 170 130 250 250 250 250 150 30 50
11 0 270 270 100 100 150 150 280 30 30 100 0 50 180 120 120 250 150 170 130 250 250 250 250 270 50 150
12 0 15 15 30 30 180 180 120 120 50 150 150 0 180 120 120 250 280 250 250 100 30 30 280 250 250 280
13 0 20 20 360 360 260 80 80 280 250 250 100 50 0 120 150 150 15 360 360 320 320 120 15 280 150 15
14 0 280 280 15 15 260 80 80 280 150 150 80 20 15 0 150 208 15 320 320 320 320 120 15 280 30 15
15 0 20 20 50 50 130 250 250 250 150 80 80 150 80 80 0 80 250 50 260 80 80 80 280 30 250 250
16 0 20 20 208 208 280 250 30 30 280 280 280 280 100 30 30 0 130 150 150 120 120 120 30 280 50 150
17 0 280 280 50 50 150 150 80 80 120 250 280 150 80 80 80 80 0 20 20 20 50 50 150 280 250 250
18 0 150 150 80 80 270 270 100 100 50 150 280 270 100 100 100 100 15 0 130 250 50 250 250 150 150 150
19 0 30 50 30 30 15 280 120 120 30 30 15 15 280 280 120 120 30 280 0 250 250 100 30 15 180 180
20 0 80 250 30 280 15 15 120 120 30 30 15 15 360 360 120 120 30 280 280 0 250 100 30 150 30 30
21 0 100 150 30 280 15 50 250 250 80 80 250 250 360 360 120 120 250 250 100 30 0 30 30 30 30 30
22 0 150 150 80 150 50 50 150 150 100 100 150 15 20 20 250 250 250 250 100 30 30 0 250 30 170 250
23 0 270 270 100 150 50 50 50 180 120 120 180 15 20 20 250 250 250 250 100 30 30 30 0 260 260 80
24 0 30 50 30 30 360 280 120 120 30 30 15 250 280 280 120 120 30 280 280 250 250 100 30 0 180 180
25 0 80 250 30 280 360 360 120 120 30 30 15 250 280 280 120 120 30 280 280 250 250 100 30 150 0 180
26 0 80 250 30 280 360 360 120 120 30 30 15 250 280 280 120 120 30 280 280 250 250 100 30 150 0 0
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Table A2 The job information of the 120 jobs in PCBSP.
Job
ID

Product
type

Processing
time (min) Weight Due

date
Contract/

Spot
Job
ID

Product
type

Processing
time (min) Weight Due

date
Contract/

Spot
1 1 213 50000 1440 C 61 12 213 75000 1440 C
2 1 213 50000 1440 C 62 12 213 75000 1440 C
3 1 213 50000 1440 C 63 12 213 65000 4320 S
4 1 213 40000 4320 S 64 12 213 65000 4320 S
5 1 213 40000 4320 S 65 13 183 72500 2880 C
6 2 192 60000 2880 C 66 13 183 72500 2880 C
7 2 192 60000 2880 C 67 13 183 72500 4320 C
8 3 213 63000 1440 C 68 13 183 62500 4320 S
9 3 213 63000 1440 C 69 13 183 62500 4320 S

10 3 213 63000 1440 C 70 14 213 65000 2880 C
11 3 213 53000 4320 S 71 15 183 60000 2880 C
12 3 213 53000 4320 S 72 15 183 60000 2880 C
13 4 175 50000 4320 C 73 15 183 60000 2880 C
14 5 183 59000 1440 C 74 15 183 60000 4320 C
15 5 183 59000 1440 C 75 15 183 50000 4320 S
16 5 183 59000 1440 C 76 15 183 50000 4320 S
17 5 183 49000 4320 S 77 15 183 50000 4320 S
18 5 183 49000 4320 S 78 16 175 78500 4320 C
19 5 183 49000 4320 S 79 16 175 78500 4320 C
20 5 183 49000 4320 S 80 16 175 78500 4320 C
21 6 213 76000 2880 C 81 16 175 78500 4320 C
22 6 213 76000 2880 C 82 16 175 68500 4320 S
23 6 213 76000 2880 C 83 17 213 60000 2880 C
24 6 213 76000 2880 C 84 17 213 60000 2880 C
25 6 213 76000 2880 C 85 18 183 54000 4320 C
26 6 213 66000 4320 S 86 18 183 54000 4320 C
27 6 213 66000 4320 S 87 18 183 44000 4320 S
28 6 213 66000 4320 S 88 18 183 44000 4320 S
29 6 213 66000 4320 S 89 19 200 70000 2880 C
30 6 213 66000 4320 S 90 19 200 70000 2880 C
31 7 183 70000 1440 C 91 20 200 60000 2880 C
32 7 183 70000 1440 C 92 20 200 60000 4320 C
33 7 183 70000 1440 C 93 20 200 60000 4320 C
34 7 183 60000 4320 S 94 20 200 60000 4320 C
35 7 183 60000 4320 S 95 20 200 50000 4320 S
36 7 183 60000 4320 S 96 21 192 50000 4320 C
37 7 183 60000 4320 S 97 21 192 50000 4320 C
38 8 167 66000 2880 C 98 21 192 50000 4320 C
39 8 167 66000 2880 C 99 21 192 50000 4320 C
40 8 167 66000 4320 C 100 21 192 50000 4320 C
41 8 167 66000 4320 C 101 21 192 50000 4320 C
42 8 167 66000 4320 C 102 22 213 62500 2880 C
43 9 192 75000 1440 C 103 22 213 62500 2880 C
44 9 192 75000 1440 C 104 23 213 58000 4320 S
45 9 192 75000 1440 C 105 23 213 58000 4320 S
46 9 192 65000 4320 S 106 23 213 58000 4320 S
47 9 192 65000 4320 S 107 24 200 71000 2880 C
48 9 192 65000 4320 S 108 24 200 71000 2880 C
49 9 192 65000 4320 S 109 24 200 71000 2880 C
50 10 183 60000 4320 C 110 24 200 71000 2880 C
51 10 183 60000 4320 C 111 25 183 61000 2880 C
52 10 183 50000 4320 S 112 25 183 61000 2880 C
53 10 183 50000 4320 S 113 25 183 61000 4320 C
54 11 167 50000 2880 C 114 25 183 61000 4320 C
55 11 167 50000 2880 C 115 25 183 51000 4320 S
56 11 167 40000 4320 S 116 25 183 51000 4320 S
57 11 167 40000 4320 S 117 26 192 65500 1440 C
58 11 167 40000 4320 S 118 26 192 55500 4320 S
59 12 213 75000 1440 C 119 26 192 55500 4320 S
60 12 213 75000 1440 C 120 26 192 55500 4320 S


