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This paper presents a microphone array technique aimed at enhancing speech quality in a
reverberant environment. This technique is based on the central idea of single-input-multiple-output
equivalent source inverse filtering �SIMO-ESIF�. The inverse filters required by the time-domain
processing in the technique serve two purposes: de-reverberation and noise reduction. The proposed
approach could be useful in telecommunication applications such as automotive hands-free systems,
where noise-corrupted speech signal generally needs to be enhanced. SIMO-ESIF can be further
enhanced against uncertainties and perturbations by including an adaptive generalized side-lobe
canceller. The system is implemented and validated experimentally in a car. As indicated by
numerous performance measures, the proposed system proved effective in reducing noise in human
speech without significantly compromising the speech quality. In addition, listening tests were
conducted to assess the subjective performance of the proposed system, with results processed by
using the analysis of variance and a post hoc Fisher’s least significant difference �LSD� test to assess
the pairwise difference between the noise reduction �NR� algorithms. © 2010 Acoustical Society of
America. �DOI: 10.1121/1.3291684�
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I. INTRODUCTION

Signal processing using microphone arrays has found
applications in teleconferencing, telecommunication, speech
recognition, speech enhancement, hearing aids, and so forth.1

In these applications, how to effectively communicate in
noisy or reverberant environments has been one of the press-
ing issues. Array techniques such as the well known delay-
and-sum �DAS� beamformer do not function well in such
environments due to multiple reflections.2 To enhance inter-
ference rejection, a superdirective beamformer was sug-
gested for its excellent spatial filtering capability.3 Adaptive
arrays provided useful alternatives for interference
rejection.1–13 The generalized side-lobe canceller �GSC� is an
elegant approach in beamformer design in which a con-
strained optimization problem is converted into an uncon-
strained one from a linear algebraic perspective.4 Its idea
originated from linearly constrained minimum variance
�LCMV� beamformer5 and was first utilized by Owsley.6

Griffiths and Jim7 analyzed them and coined the term GSC.
Their GSC corresponds to what we called in the present pa-
per the Griffiths–Jim beamformer �GJBF�. The key notion of
GSC hinges at the use of the blocking matrix that further
enhances the performance achievable by the fixed beam-
former regardless of how it is implemented. However, often-
times, adaptive implementation of GSC is preferred for two
practical reasons. First, a fixed GSC requires the knowledge
of covariance matrix, which is computationally prohibitive in
real-time applications. Second, adaptive GSC is more robust
in the presence of background noises, pointing errors, and
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other system uncertainties. There are various forms of adap-
tive implementation. Among them, GJBF is perhaps the most
well known, which eliminates the need for on-line calcula-
tion of the signal correlation matrix and is robust against
uncertainties and perturbations of the system. However, the
GJBF still could fail in a reverberant environment in which
multiple reflections cause problems of beamforming.8 One
example of such environment is the interior of a car cabin
that is notoriously known to be a noisy and reverberant en-
vironment for speech communication. The speech signals
tend to be corrupted by noises from the engine, tire, wind,
etc., and reflections from the window, dashboard, seats, ceil-
ing, etc.

In this paper, a microphone array technique is proposed
for processing speech signals in noisy and reverberant envi-
ronments. The idea of the technique originated from an
equivalent source inverse filtering �ESIF� technique9 devel-
oped for noise source identification purposes. However, the
model in this paper is based on a single-input multiple-output
�SIMO� structure, while the previous paper is based on a
multiple-input multiple-output �MIMO� structure. This seem-
ingly minor difference leads to many distinctive features in
the implementation. First, unlike MIMO approach, the
SIMO-ESIF formulation results in only one single focus,
which simplifies tremendously the filter design that requires
only simple phase conjugation and scaling, without having to
design explicitly complicated inverse filters. The propagation
matrices are basically represented by a vector h, which ren-
ders the term hHh in the inverse filter a nonzero scalar and
regularization is literarily unnecessary. Second, by posing the
problem within a SIMO framework, inverse filters are de-
signed based on measured acoustical plants, or systems to be

14
controlled, that include the effects of not only direct propa-
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gation from the source but also the reflections from the
boundaries, which is different from the previous MIMO
nearfield equivalence source imaging �NESI� that employs
only free-field point source model. It follows that, with in-
verse filtering, both noise reduction and de-reverberation are
fulfilled at the same time. Finally, the present work and the
previous approach have totally different purposes in applica-
tion. The ESIF algorithm aims at speech enhancement for
telecommunication, whereas the previous NESI algorithm is
intended for noise source identification �NSI� and sound field
visualization. Another unique feature of the proposed tech-
nique is the use of the GSC to further enhance the perfor-
mance of the proposed technique. An exact blocking matrix
�BM� differing from those used in traditional beamformers is
derived in this paper by solving a LCMV problem with two
mutually orthogonal subspaces.5 The leaky least-mean-
squares �LMS� algorithms is exploited for adaptive filtering
in the multiple-input canceller �MC�.15,16

The proposed algorithms were implemented for enhanc-
ing speech communication quality in a car by using a multi-
channel data acquisition system. Objective tests were carried
out to evaluate the algorithms.1 In addition, listening tests
were conducted to assess the subjective performance of the
algorithms with data processed by the multivariate analysis
of variance �MANOVA� �Ref. 17� and the least significant
difference �Fisher’s LSD� post hoc test.

II. EQUIVALENT SOURCE INVERSE FILTERING

The central idea of the proposed SIMO-ESIF algorithm
is introduced in this section. In Fig. 1, M microphones are
employed to pick up the sound emitting from a source posi-
tioned in the farfield. In the frequency domain, the sound
pressure received at the microphones and the source signal
can be related by a M �1 transfer matrix H as follows:

P = Hq��� , �1�

where q��� is the Fourier transform of a scalar source
strength, P= �p1���¯pM����T is the pressure vector with T
denoting matrix transpose, and H= �h1���¯hM����T is the
M �1 propagation matrix. The aim here is to estimate the
source signal q��� based on the pressure measurement P by
using a set of inverse filters

C = �c1��� ¯ cM����T, �2�
T

( )q  ˆ( )q 2 ( )h 

( )Mh 

1( )c 

2 ( )c 

( )Mc 

2 ( )p 

( )Mp 

1( )p 
1( )h 

FIG. 1. The block diagram of the SIMO-ESIF algorithm. The parameter
qm��� is the input source, hm��� is the propagation matrix, and cm��� is the
inverse filters.
such that C H�I and therefore
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q̂ = CTP = CTHq � q . �3�

On the other hand, this problem can also be written in the
context of the following least-squares optimization problem:

min
q

�P − Hq�2
2, �4�

where � �2 denotes vector 2-norm. This is an overdetermined
problem whose least-squares solution is given by

q̂ = �HHH�−1HHP =
HHP

�H�2
2 , �5�

where the superscript H denotes Hermitian transpose. Com-
parison of Eqs. �3� and �5� yields the following optimal in-
verse filters:

CT =
HH

�H�2
2 . �6�

If the scalar �H�2
2 is omitted, the inverse filters above reduce

to the “phase-conjugated” filters, or the “time-reversed” fil-
ters in the free-field context. Specifically, for a point source
in the free field, it is straightforward to show that

�H�2
2 = �

m=1

M
1

rm
2 , �7�

where rm is the distance between source and the mth micro-
phone. Since �H�2

2 is a frequency-independent constant, the
inverse filters and the time-reversed filters differ only by a
constant. In a reverberant environment, these filters are dif-
ferent in general. Being able to incorporate the reverberant
characteristics in the measured acoustical plant model repre-
sents an advantage of the proposed approach over conven-
tional methods such as the DAS beamformer.

In real-time implementation, the inverse filters are con-
verted to the time-domain finite-impulse-response �FIR� fil-
ters with the aid of inverse fast Fourier transform �IFFT� and
circular shift. Thus, the source signal can be recovered by
filtering the pressure signals with the inverse filters c�k� as
follows:

q̂�k� = cT�k� � p�k� , �8�

where k is discrete-time index, c�k� is the impulse response
of the inverse filter, and “ �” denotes convolution.

III. ADAPTIVE GSC-ENHANCED SIMO-ESIF
ALGORITHM

The SIMO-ESIF algorithm can be further enhanced by
introducing an adaptive GSC to the system. The benefit is
twofold. The directivity of the array is increased by suppress-
ing the interferences due to side-lobe leakage. Robustness of
the array is improved in the face of uncertainties and pertur-
bations. The block diagram of the GSC with M microphones
is shown in Fig. 2. The system comprises a fixed beamformer
�FBF�, a MC, and a BM.11 The FBF aims at forming a beam
in the look direction so that the target signal is passed and
signals at other directions are rejected. The pm�k� is the sig-
nal received at the mth microphones and q̂�k� is the output

signal of the FBF at the time instant k. The MC consists of
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multiple adaptive filters that generate replicas of components
correlated with the interferences. The components correlated
with the output signals ym�k� of the BM are subtracted from
the delayed output signal q̂�k−Q� of the FBF, where Q is the
number of modeling delay. Contrary to the FBF that pro-
duces a main-lobe, the BM forms a null in the look direction
so that the target signal is suppressed and all other signals are
passed though, hence the name “blocking matrix.” The GSC
subtracts the interferences that “leak” to the side-lobes in the
subtractor output z�k� and effectively improves spatial filter-
ing.

A. Formulation of the blocking matrix

The purpose of the GSC depicted in Fig. 3 lies in mini-
mizing the array output power, while maintaining the unity
gain at the look direction �0-deg broadside is assumed here�,
which can be posed in the following constrained optimiza-
tion formalism:5

min
w

E�	z	2
 = min
w

wHRppw �9�

subject to

HHw = 1, �10�

where z is the array output signal, Rpp=E�ppH
 is the data
correlation matrix, E� 
 symbolizes the expected value, H is
the frequency response vector corresponding to the propaga-
tion paths from the source to each microphone, and w is
coefficient vector of the array filters. This constrained opti-
mization problem can be converted into an unconstrained
one by decomposing the optimal filter w into two linearly
independent components belonging to two mutually orthogo-

 M Ry k

Microphones

 1p k

 2p k

 Mp k

θ  q̂ k  q̂ k Q

 1y k

 2y k

 z k
Output

FBF

BM

MC

Qz

FIG. 2. The block diagram of the GSC, comprised of the FBF, the BM, and
the MC.

-
( )z k( )kp

0
Hw

HB H
aw

+

FIG. 3. The block diagram of the SIMO-ESIF-GSC algorithm. The param-
H H
eter p�k� is the microphone signal, B is the BM, and w0 is the FBF.
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nal subspaces: the constraint range space R�H� and the or-
thogonal null space N�HH�.

w = w0 − v , �11�

where w0�R�H� is a fixed filter and v=Bwa�N�HH� with
wa being an adaptive filter. It follows that

HHw = HH�w − Bwa� = HHw0 − HHBwa � 1. �12�

The fixed filter w0 represents the quiescent component that
guarantees the essential performance of beamforming. The
filter design is off-line since it is independent of the data
correlation matrix. It turns out that the minimization can then
be carried out in the orthogonal subspace �v� without impact-
ing the constraint.

Traditionally, various ad hoc blocking matrices have
been suggested. These matrices are based on the simple idea
that, for free-field plane waves incident from the farfield
broadside direction, H= �1 1¯1�H. Since HHB=0, blocking
is ensured if the columns of B sum up to zero; e.g., subtrac-
tion of signals of adjacent channels is a widely used ap-
proach. However, for a complex propagation matrix in a re-
verberant field, these ad hoc blocking matrices are
inadequate. As a major distinction between the present ap-
proach and the conventional approaches, we shall derive an
exact blocking matrix for a more general acoustical environ-
ment.

To fulfill the condition that Bwa�N�HH�⇔HHBwa=0,
the columns of B must be constructed from the basis vectors
of N�HH� such that HHB=0.

Let H = �a1,a2, . . . ,an�H, x = �x1,x2, . . . ,xn� � N�HH�

HHx = 0 ⇒ a1x1 + a2x2 + . . . + anxn = 0

If a1 � 0, x1 = −
a2

a1
x2 −

a3

a1
x3 − ¯ −

an

a1
xn

Let x2 = �2, x3 = �3, . . . ,xn = �n

⇒x1 = −
a2

a1
�2 −

a3

a1
�3 − ¯ −

an

a1
�n

�
x1

x2

]

]

xn

� = �2�
−

a2

a1

1

0

]

0

�
v2

+ �3�
−

a3

a1

0

1

]

0

�
v3

+ ¯ + �n�
−

an

a1

0

]

0

1

�
vn

.

It is not difficult to see that v2, v3 , . . . ,vn are linearly inde-
pendent and form the basis of the null space N�HH�. Thus,
the matrix B= �v2 ,v3 , . . . ,vn� comprised of v2, v3 , . . . ,vn as

its columns can be used as the blocking matrix; i.e.,
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B = �
−

a2

a1
−

a3

a1
¯ −

an

a1

1 0 0

0 1 ¯ ]

] ] 0

0 0 ¯ 1

� . �13�

Physical insights can be gained by observing the beam
patterns of the FBF and the BM shown in Fig. 4. Three sine
wave signals at 500 Hz, 1 kHz, and 2 kHz are used to com-
pare the performance of the BM between FBF, respectively.
In the look direction, the FBF forms a main-lobe, whereas
the BM forms a null so that the signal in the look direction is
“blocked.” The blocked path will attempt to further reduce
the noise or interference outside the principal look direction
�side-lobes�. Note that the formulation above is in the fre-
quency domain. For real-time implementation, the blocking
matrix B needs to be converted to impulse responses using
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FIG. 4. The directivity pattern of the SIMO-ESIF-GSC algorithm at differ-
ence frequencies. �a� FBF with a main-lobe at the look direction. �b� BM
with a null at the look direction.
IFFT and circular shift.
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B. Multiple-input canceller

In practice, the GSC is implemented using adaptive fil-
ters that are generally more robust than fixed filters. The
need to compute the data correlation matrix Rpp is eliminated
using such approach. For example, the leaky adaptive filters
�LAFs� �Ref. 16� can be used in the MC block. LAFs sub-
tract the components correlated with yn�k�, �n=0, . . . ,N�
from q̂�k−Q�, where Q is the modeling delay for causality.
Let M2 be the number of taps in each LAF and wn�k� and
yn�k� be the coefficient vector and the signal vector of the nth
LAF, respectively. The output of the MC module can be
written as

z�k� = q̂�k − Q� − �
n=0

N−1

wn
T�k�yn�k� , �14�

wn�k� � �wn,0�k�,wn,l�k�, . . . ,wn,M2−1�k��T, �15�

yn�k� � �yn�k�,yn�k − 1�, . . . ,yn�k − M2 + 1��T. �16�

The filter coefficients can be updated using the LMS algo-
rithm

wn�k + 1� = wn�k� + �z�k�yn�k� , �17�

where � is the step size.
In Fig. 5, the beam pattern at 500 Hz of the proposed

adaptive GSC algorithm is compared with two other conven-
tional algorithms: GJB �Ref. 7� and LAF-LAF.16 The GJBF
algorithm adopts subtracted signals of adjacent channels as
its BM block, whereas LAF-LAF algorithm uses adaptive
filters to block the target signals. Both algorithms use adap-
tive algorithm identical to the MC block in Eq. �17�. Clearly
seen in Fig. 5, the proposed adaptive GSC algorithm attains
the sharpest beam in the look direction with minimum side-
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FIG. 5. The comparison of the beam patterns at 500 Hz obtained using the
GJBF, LAF-LAF, and SIMO-ESIF-GSC algorithms.
lobes.

Bai et al.: Speech enhancement microphone array

ontent/terms. Download to IP:  140.113.38.11 On: Wed, 30 Apr 2014 06:44:21



 Redistrib
IV. ARRAY PERFORMANCE MEASURES

In the section, objective performance measures are de-
fined for evaluating the array performance.1 With the first
microphone as the reference, the input signal to noise ratio
�SNR� is defined as

SNR1�dB� = 10 log
E�x1�k�2

E�v1�k�2


, �18�

where k is the discrete-time index, and x1�k� and v1�k� are
the speech signal and the noise, respectively, received at mi-
crophone 1. The output SNR can also be defined for the array
output

SNRA�dB� = 10 log
E�	c�k�T � x�k�2	

E�	c�k�T � v�k�2	


, �19�

where c�k� is the impulse response of the inverse filter and
“ �” denotes convolution. Hence, the SNR gain is obtained
by subtracting the output SNR from the input SNR.

SNR�dB� = SNRA − SNR1. �20�

The SNRG quantifies the noise reduction performance due to
array processing. However, noise reduction comes at the
price of speech distortion in general. To assess speech distor-
tion, a speech-distortion index �SDI� is defined as

SDI�dB� = 10 log
E�x1�k�2


E�	x1�k� − c�k�T � x�k�	2

. �21�

It is impractical to maximize both indices at the same time.
The aim of array processing is then to reach the best com-
promise between the two indices.

V. OBJECTIVE AND SUBJECTIVE PERFORMANCE
EVALUATIONS

The proposed algorithms have been examined experi-
mentally in the vehicle compartment of a 2-l sedan. Figure 6
shows the experimental arrangement inside the car. Array
signal processing algorithms are all implemented on National
Instruments LABVIEW 8.6 and NI-PXI 8105 data acquisition
system.18 The sampling rate is 8 kHz. The sound pressure
data were picked up by using a four-microphone �PCB
130D20� linear uniform array with inter-element spacing of
0.08 m. A loudspeaker positioned at �0.4 m, 0-deg� with
respect to the array center was used to broadcast a clip of
male speech in English, while another loudspeaker posi-
tioned at �0.3 m, 53-deg� was used to generate white noise as
the interference.

Objective and subjective experiments were undertaken
to evaluate the proposed methods. The SIMO-ESIF algo-
rithm is used as the FBF and 512-tapped adaptive filters with
step size �=0.001 are used in the MC and LAF. There are
variations of the SIMO-ESIF algorithm, depending on the
plant model used and the filtering method in the FBF, as
summarized in Table I. Two kinds of plant models, the free-
field point source model and the measured plant in the car,
are employed for designing the inverse filters. Two filtering

methods, the inverse filtering and the time-reversed filtering,

J. Acoust. Soc. Am., Vol. 127, No. 3, March 2010

ution subject to ASA license or copyright; see http://acousticalsociety.org/c
are employed in the FBF design. In addition, three variations
of the processing methods with GSC are also included in
Table I.

A. Objective evaluation

The objective measures SNR1, SNRA, SNRG, and SDI
are employed to assess the performance of six proposed al-
gorithms. The experimental results are summarized in Table
II. By comparing the SIMO-ESIF and the SIMO-ESIF-GSC
algorithms, the algorithms with GSC have attained signifi-

Target source
Noise source

Microphone array

(b)

(a)

FIG. 6. The experimental arrangement for validating the SIMO-ESIF algo-
rithms. �a� The test car. �b� The experimental arrangement inside the car.

TABLE I. The acronyms and descriptions of six SIMO-ESIF algorithms.

Algorithm Acronym Description

SIMO-ESIF PIF Point source model-based inverse filtering
MIF Measured plant-based inverse filtering

MTR
Measured plant-based time-reversed
filtering

GSC-PIF
Point source model-based inverse
filtering

SIMO-ESIF-GSC GSC-MIF Measured plant-based inverse filtering

GSC-MTR
Measured plant-based time-reversed
filtering
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cantly higher noise reduction �SNRG� and lower speech dis-
tortion �SDI� than the algorithms without GSC. The time-
reversed filters in general yield inferior performance than the
inverse filters. The inverse filtering with the measured plant
model considerably outperforms the point source model, e.g.,
SNRG of GSC-MIF=15.41 dB vs SNRG of GSC-PIF
=11.49 dB. The implication of this result is that the inverse
filters based on measured plant models have provided “de-
reverberation” effect in addition to noise reduction. Although
the point source model-based inverse filtering �PIF� method
tends to yield the least distortion, its noise reduction perfor-
mance is also the worst. Figure 7 compares the time-domain
wave forms obtained using SIMO-ESIF algorithm with and
without GSC. Evidently, introduction of GSC has positive
impact on noise reduction performance of the array.

Table III compares the proposed adaptive GSC algo-
rithm and two other conventional algorithms, GJBF �Ref. 7�
and CCAF.11 The GJBF algorithm subtracts signals of adja-
cent channels as its BM block, whereas coefficient-
constrained adaptive filtering �CCAF� algorithm uses con-
strained adaptive filters to block the target signals. Both
algorithms use the adaptive algorithm identical to the MC
block. The result revealed that the SIMO-ESIF algorithm
augmented with the GSC outperformed the SIMO-ESIF al-
gorithm without GSC. Among the GSC-based algorithms,
the proposed GSC had attained the highest SNRG perfor-
mance. The proposed GSC algorithm performed the best in
noise reduction.

B. Subjective evaluation

Apart from the preceding objective tests, listening tests
were conducted according to the ITU-R BS1116 �Ref. 19� to
validate the algorithms. Subjective perception of the pro-
posed algorithms was evaluated in terms of noise reduction
and speech distortion. Specifically, three subjective attributes
including signal distortion �SIG�, background intrusiveness
�BAK�, and overall quality �OVL� were employed in the test.
Fourteen participants in the listening tests were instructed
with definitions of the subjective attributes and the proce-
dures prior to the test. The subjective attributes are measured
on an integer scale from 1 to 5. The participants were asked
to respond in a questionnaire after listening. The six pro-
posed algorithms previously used in the objective test are
compared in the listening test. The test signals and conditions
remain the same as in the preceding objective tests. A refer-
ence signal and an anchor signal are required in the ITU-R
BS1116. In the test, the unprocessed signal received at the

TABLE II. The objective performance summary of t

PIF

SIMO-ESIF
GSC Without With

SNR1�dB� 3.79 3.79
SNRA�dB� 12.96 15.28
SNRG�dB� 9.16 11.49
SDI�dB� 2.87 2.60
first microphone was used as the reference, while the
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lowpass-filtered reference was used as the hidden anchor.
The mean and spread of the results of listening test are illus-
trated in Fig. 8. In order to access statistical significance of
the results, the test data were processed using MANOVA
�Ref. 17� with significance levels summarized in Table IV.
Cases with significance levels below 0.05 indicate that sta-
tistically significant difference exists among the algorithms.
In particular, the difference of the indices SIG and BAK

algorithms.

MIF MTR

hout With Without With

.79 3.79 3.79 3.79

.56 19.19 13.58 13.66

.77 15.41 9.78 9.87

.72 1.59 0.86 1.56

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time(Sample)

A
m

pl
itu

de
(V

)

unprocessed

MIF
GSC-MIF

0 0.5 1 1.5 2 2.5 3 3.5 4
-110

-100

-90

-80

-70

-60

-50

-40

-30

Frequency (kHz)

P
ow

er
/f

re
qu

en
cy

(d
B

/H
z)

Power Spectral Density Estimate via Welch

unprocesed

MIF

GSC-MIF

(b)

(a)

FIG. 7. The comparison of SIMO-ESIF-MIF algorithm and SIMO-ESIF-
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among the six proposed methods was found to be statistically
significant. Multiple regression analysis was applied to ana-
lyze the linear dependence of the OVL on the SIG and BAK.
The regression model was found to be OVL=1.71+0.2
�SIG+0.28�BAK. It revealed that the SIG has comparable
but only slightly higher influence on the OVL than the BAK,
whereas the indices SIG and the BAK are normally trade-
offs. This explains why no significant difference can be
found among methods in the OVL.

After the MANOVA, a post hoc Fisher’s LSD test was
employed to perform multiple paired comparisons. In Fig. 8,
as opposed to the results of objective evaluation, the GSC-
MIF algorithm performed not quite as expected in SIG. The
price paid for the high noise reduction seems to be the signal
distortion, which was noticed by many subjects. For the SIG
index, the results of the post hoc test reveal that the GSC-PIF
method outperforms the other methods. For the BAK index,
the GSC-MIF method received the highest grade among all
methods, which means that the inverse filtering approach has
achieved both de-reverberation and noise reduction success-
fully. Despite the excellent performance in SIG, the PIF al-
gorithm received low scores in BAK, which is consistent
with the observation in the objective test. On the other hand,
the GSC-PIF algorithm received higher SIG grade than plain
PIF algorithm, indicating the GSC algorithm enhanced the
SIMO-ESIF algorithm. However, the grades in the SIG and
BAK indices showed no significant difference between the
measured plant-based time-reversed filtering �MTR� and

FIG. 8. The MANOVA output of the subjective listening test for the six
SIMO-ESIF algorithms. Three subjective attributes including signal distor-
tion �SIG�, background intrusiveness �BAK�, and overall quality �OVL�

TABLE III. The objective performance summary of the four beamforming
algorithms including the ESIF, ESIF-GSC, GJBF, and CCAF algorithms.

Objective index

MIF

ESIF ESIF-GSC GJBF CCAF

SNR1�dB� �1.04 �1.04 �1.04 �1.04
SNRA�dB� 6.20 12.72 10.27 9.92
SNRG�dB� 7.24 13.76 11.31 10.96
SDI�dB� 1.86 1.42 2.49 1.90
were evaluated in the test.
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GSC-MTR algorithms. By comparing the BAK grade, all the
proposed methods performed better than the reference signal.

Figure 9 compares the proposed GSC algorithm, GJBF,6

and CCAF �Ref. 11� algorithms. The proposed GSC algo-
rithm attained the highest BAK grades, while it also yielded
lower SIG grades than the other algorithms. Apparently, the
proposed GSC had attained the best performance in noise
reduction at the expense of signal distortion. This is a typical
trade-off for speech enhancement algorithms in general one
has to face between signal distortion and noise reduction
performance.

VI. CONCLUSIONS

A SIMO-ESIF microphone array technique has been de-
veloped for noisy automotive environments. Speech commu-
nication quality has been improved owing to the noise reduc-
tion and de-reverberation functions provided by the proposed
system. With the use of specially derived BM of the GSC,
the performance of SIMO-ESIF has been further enhanced.

The proposed algorithms have been validated via exten-
sive objective and subjective tests. Overall, the results reveal
that both de-reverberation and noise reduction can be
achieved by using the SIMO-ESIF techniques. The methods
exhibit different degrees in trading off noise reduction per-
formance and speech-distortion quality. The MIF and GSC-
MIF algorithms seem to have achieved a satisfactory com-
promise between these two attributes. All this leads to the
conclusion that SIMO-ESIF-GSC-MIF proves effective in
reducing noise and interference without markedly compro-
mising speech quality.

TABLE IV. The MANOVA output of the listening test of the six algorithms.
Cases with significance value p below 0.05 indicate that statistically signifi-
cant difference exists among all methods.

Noise type

Significance value p

SIG BAK OVL

White noise 0.000 0.000 0.847

FIG. 9. The MANOVA output of the subjective listening test for the differ-
ent GSC algorithms. Three subjective attributes including signal distortion
�SIG�, background intrusiveness �BAK�, and overall quality �OVL� were

evaluated in the test.
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