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a b s t r a c t

The multiclass classification problem is considered and resolved through coding and regression. There

are various coding schemes for transforming class labels into response scores. An equivalence notion of

coding schemes is developed, and the regression approach is adopted for extracting a low-dimensional

discriminant feature subspace. This feature subspace can be a linear subspace of the column span of

out in this feature subspace using a linear classifier, which lead to a simple and computationally light

but yet powerful toolkit for classification. Experimental results, including prediction ability and CPU

time comparison with LIBSVM, show that the regression-based approach is a competent alternative for

the multiclass problem.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Over the last decade, there have been a great interest and
successful development of support vector machines (SVMs) for
classification [7,5,11]. SVMs are originally designed for binary
classification. There are two commonly seen multiclass exten-
sions for SVMs. One is the composition type methods built upon a
series of binary classifiers, e.g., the one-against-one, one-against-
rest and error correcting output codes [12,1,8,10,18], and the
other is the single machine type methods, often huge and solved
in one optimization formulation [37,4,9,24,28]. Comparison
studies and discussions on compositions of binary classifiers
and single machine approaches can be found in [22,33]. Based on
their findings, there is no universally dominant classification rule
for the multiclass problems, and different methods have their
own merits and advantages. Thus, it allows the room for
exploration of alternative approaches.

In this article, we propose an alternative approach based on
regression concept. The time-honored Fisher linear discriminant
analysis (FLDA) separates data classes by projecting input
ll rights reserved.
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attributes to the eigen-space of the between-class covariance
(scaled by the within-class covariance). In the binary classification
case, FLDA can be solved via a multiresponse regression [14,30,2]
by encoding the binary class labels into numeric responses
fn1=n;�n2=ng, where n1 and n2 are class sizes and n¼ n1þn2.
Hastie et al. [20] have further extended the FLDA to the nonlinear
and multiclass classification via a penalized regression setting,
and they named it the ‘‘flexible discriminant analysis (FDA)’’. The
FDA is based on encoding the class labels into response scores and
then a nonparametric regression technique, such as MARS
(multivariate additive regression splines), neural networks, or
else, is used to fit the response scores. A particular encoding
scheme ‘‘optimal scoring’’ is proposed in FDA. Later [31,34] have
adopted the same FDA approach, but have replaced the conven-
tional nonparametric regression technique with a kernel trick,
and their approach is named kernel discriminant analysis (KDA).
The KDA [34] is solved by an EM algorithm.

Inspired by the above-mentioned regression approaches and
the successful development of SVMs, we take both ideas and
adopt the multiresponse support vector regression (mSVR) for the
multiclass classification problem. Some preceding works on
support vector classification can also be interpreted as ridge
regression applied to classification problems, e.g., the proximal
SVM [16,17] and the regularized least squares SVM [36]. Our
mSVR for classification consists of three major steps. The first is to
encode the class labels into multiresponse scores. Next, the
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regression fit of scores on kernel-transformed feature inputs is
carried out to extract a low-dimensional discriminant feature
subspace. The final step is a classification rule to transform (i.e., to
decode) the mapped values in this low-dimensional discriminant
subspace back to class labels. The standard kernel Fisher
discriminant analysis and also SVM solve the classification
problems on a high-dimensional feature space. Through the
mSVR, we can extract the information of the attributes into a
ðJ�1Þ�dimensional feature subspace (J is the number of classes),
which can accelerate the speed of classification training and
decrease the influence due to noise. We will give a unified view of
different coding schemes. The low-dimensional discriminant
feature subspace generated by different coding schemes with
long enough code length will be identical, which introduces the
notion of equivalence of codes. We will prove this equivalence
theoretically and also confirm it by our numerical experiments.
The regression step can be viewed as a feature extraction to make
the final classification (decoding) step computationally light and
easy. The nonlinear structure between different classes of data
patterns will be embedded in the extracted features because of
the kernel transformation. Thus, we can apply any feasible linear
learning algorithm to the data images in this low-dimensional
discriminant feature subspace. Numerical tests and comparisons
show that our framework, regression setup combined with a
linear discriminant algorithm, is an easy and yet competent
alternative to the multiclass classification problem.

The rest of the article is organized as follows. In Section 2, we
introduce the framework of mSVR for classification. We describe
the major steps of our regression approach including kerneliza-
tion, encoding the class labels, a regularized least-square-based
mSVR algorithm and the principle for decoding. In Section 3, we
develop some notions and properties of equivalent codes and
scores in the discriminant analysis context. In Section 4,
implementation issues including model selection and the choice
of base classifiers are discussed. Experimental results are provided
to demonstrate the efficiency of our proposal and to illustrate
numerical properties of different coding schemes. Concluding
remarks are in Section 5. All proofs are in the Appendix.
2. Classification by multiresponse regression

Consider the problem of multiclass classification with J

classes based on d measurements of input attributes xARd�1.
Denote the membership set by J ¼ f1;2; . . . ; Jg and each indivi-
dual membership by gAJ . Suppose we have training data
fðxi; giÞARd�1

� J gni ¼ 1. Our goal is to construct a classification
rule which, given a new input, can correctly predict the associated
class label of this new input. Aside from various support vector
approaches mentioned in Section 1 originating from the machine
learning community, regression-based methods for classification
have some long history in statistical literature [14,30,20,2]. The
two articles [20,19] have an in-depth discussion of using multi-
response regression for discriminant purpose. In general, the
regression approach for classification consists of three major
steps: encoding, linear regression and decoding. Nonlinear
extension can be done by conventional adaptive nonparametric
regression strategies, for instance, MARS [15], or by the kernel
trick [34]. Hastie et al. [20] have used a particular scoring scheme,
namely the optimal scoring, for encoding class labels. For
regression-based classification, it is natural to ask if different
coding schemes for transforming class labels into response scores
lead to different classification results. To answer this question, we
use general output codes to encode the class labels and give an
equivalence criterion on coding and scoring schemes. Also, we
adopt the kernel trick for nonlinear extension and employ mSVR
algorithm for solving the regression problem. The mSVR is
computationally more feasible than traditional nonparametric
regression techniques. The regression step aims to extract low-
dimensional discriminant features. Then, the classification train-
ing and prediction can be done in this low-dimensional feature
subspace spanned by the regression coefficients variates. The
classification prediction is a decoding step by pulling the fitted
response at a test point back to a class label. Any reasonable linear
algorithm can be used as a base classifier for decoding. We have
tested the hybrid of mSVR with FLDA, linear smooth support
vector machine (SSVM) [26] and linear Lagrangian SVM [29]. Our
regression-based classification is invariant to encoding. More
details on the equivalence and invariance of coding schemes will
be given in Section 3.

Below we start with a summary of our regression setup,
followed by encoding schemes, the extraction of a low-dimen-
sional discriminant subspace and the criterion of decoding for
classification prediction.

2.1. Regression framework: linear and kernel generalization

For the i th input observation xi with membership giAJ ¼
f1;2; . . . ; Jg, an indicator multiresponse score row vector, yiAR1�J ,
is formed as follows:

yi ¼ ½yi1; . . . ; yiJ �; where yij ¼
1; j¼ gi;

0; jagi:

(
ð1Þ

Combine these n indicator multiresponses into an n� J score
matrix

Y ¼

y1

^

yn

2
64

3
75¼

y11 � � � y1J

^ ^

yn1 � � � ynJ

2
64

3
75:

Also gather the input attributes, x1; . . . ; xn, into an n� d matrix
A¼ ½x1; . . . ; xn�

0. The j th column of Y, denoted by Y:j, partitions the
training data into class j and the rest. A multivariate linear
regression, of multiresponses Y on input data matrix A with
additive intercept, is considered. That is, y¼ ½y1; . . . ; yJ � is modeled
by regression function ZðxÞ ¼ ½Z1ðxÞ; . . . ;ZJðxÞ� with the j th res-
ponse given by

ZjðxÞ ¼ x0wjþbj; j¼ 1; . . . ; J; ð2Þ

where wjARd�1 is the normal vector of the j th regression plane
and bj is a scalar offset. Let W ¼ ½w1; . . . ;wJ �ARd�J and let CðWÞ
denote the column space spanned by fw1; . . . ;wJg. We name
columns of W the regression coefficients variates. By fitting the
multiresponse linear regression, we get an estimate of the column
space CðŴ Þ, named the fitted discriminant subspace. Training
inputs (rows of A) are mapped to this fitted subspace for
discriminant purpose. Generating the classification rules in this
fitted discriminant subspace is the decoding step.

In many real applications, data are complicated and cannot be
well separated by hyperplanes, and nonlinear methods are called
for. Inspired by the idea of support vector methods, the input
measurements can be transformed into a high dimensional
feature Hilbert space via a certain positive definite kernel. By
the kernel trick, kernel values can be seen as inner products of the
training input images in the high dimensional feature space. The
most popular kernel function is the Gaussian kernel given by
kðx; xiÞ ¼ expð�gJx�xiJ

2
2Þ, where g is the width parameter, which

controls the similarity measure of xi and x. (We do not care to
normalize k here to make the kernel integrate to one, as the
normalization has no effect on support vector classification.) The
selection of g should be carefully done to avoid the phenomenon
of overfitting or underfitting. The response surfaces in the feature
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ill-condition problem, leads to an inferior result due to the phenomenon that full

kernel matrix has much lower effective rank than its size. Thus, our suggestion is

to preprocess the kernel data by a principal component analysis for dimension

reduction before entering the regression step. In this case, ~K in (5) is a reduced

kernel by PCA instead of by random subset.
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space become

ZjðxÞ ¼ kðx;AÞwjþbj; j¼ 1; . . . ; J; ð3Þ

where wj ¼ ½w1j;w2j; . . . ;wnj�
0 and kðx;AÞwj :¼

Pn
i ¼ 1 kðx; xiÞwij.

In large data problems there are two major computational
difficulties. One is the huge memory space required to store the
large kernel data. The other is the complicated mathematical
programming problem encountered in solving the regression
problem. For large data problems, the reduced kernel technique
[26,25] is adopted by replacing the full kernel matrix by a reduced
kernel approximation. In the reduced kernel framework the
response surfaces are given by

ZjðxÞ ¼ kðx; ~AÞwjþbj; j¼ 1; . . . ; J; ð4Þ

where ~A is a reduced set consisting of partial observations, say ~n
many, from A to form a reduced regression model: that is, for the j

th response surface

ZjðxÞ ¼
X
~xi A ~A

kðx; ~xiÞwijþbj; wj ¼ ½w1j;w2j; . . . ;w ~nj�
0:

The reduced kernel approximation is to adopt a compressed
model, while it still uses the entire data for model fitting. From
now on and throughout the rest of the article, we use, for notation
simplicity, a unified notation ~K to represent either the reduced
kernel data matrix

kðA; ~AÞ ¼ ½kðxi; ~xjÞ�xi AA; ~xj A ~A of size n� ~n;

or the raw data matrix A of size n� d (with ~n ¼ d), or the full
kernel matrix

kðA;AÞ ¼ ½kðxi; xjÞ�xi ;xj AA of size n� n ðwith ~n ¼ nÞ:

Likewise, we can write a unified program for implementing linear
and nonlinear, as well as full and reduced kernel, regression
models. All we need to do is to change the input data matrix ~K .

We have used the indicator output variables for class labels
(1). The indicator responses are of dimensionality J. In Section 3
we will further introduce other alternative scoring schemes to
encode the class labels into multiresponses of dimensionality, say,
k. The response surface model (4) is still valid, but with a different
dimensionality k instead of J, i.e., ZðxÞ ¼ ½Z1ðxÞ; . . . ;ZkðxÞ�. Model (4)
is a special case with k¼ J.

2.2. Regularized least-squares support vector regression

In this subsection we introduce the regularized least-squares
(RLS) approach [16,35] for mSVR. Let k be the code length of a
scoring schemes to encode the class labels. In the classical
regression approach, we often estimate the regression coefficients
by least-squares for simple linear systems or by regularized least-
squares for complex linear systems. The RLS for mSVR in this
article is similar to the multicategory proximal SVM [16], but
without the modification for unbalancedness of class sizes. Later,
in the discussion of equivalence of codes, centering for code
columns is done by subtracting from each column a weighted
average of code rows, where the weights have taken class sizes
into account, and thus there is no need for further modification of
unbalancedness. The classification rule in proximal SVM is a
softmax-like rule, i.e., a test input is assigned to the class so that
the point lies deepest (i.e., lies farthest away from the separating
hyperplanes, or has the largest fitted value). Our classification rule
can be flexible choices among many possible candidate discrimi-
nant algorithms. Here we specifically have experimented with the
FLDA and SSVM in a later numerical study.

The main idea of least-squares approach is to minimize the
squared errors of regression. The sum-of-squared residuals for
multiresponse regression is given by

SSRðW ;bÞ ¼
Xk

j ¼ 1

JY�j� ~K wj�bj1nJ
2
2;

where 1n denotes the column vector of ones with length n and
JY�j� ~K wj�bj1nJ

2
2 ¼

Pn
i ¼ 1ðyij�kðxi; ~AÞwj�bjÞ

2. The unique solution
to the optimization

min
W AR

~n�k ;bAR1�k
SSRðW ; bÞ

is usually good enough. However, if columns of the matrix ~K are
highly correlated, then W will be poorly determined and exhibit
high variation. It is due to that the information matrix
½ ~K 1n�

0½ ~K 1n� is ill-conditioned. This situation often happens in
kernel data. The ridge regression is a method to resolve this kind
of problem. It shrinks the regression coefficients by imposing a
penalty on their norm. The regression coefficients are derived
from the following regularized least-squares problem1

min
W AR

~n�k ;bAR1�k

Xk

j ¼ 1

C

2
JY�j� ~K wj�bj1nJ

2
2þ

1

2
JwjJ

2
2

� �
: ð5Þ

Notice that each pair of wj and bj can be determined indepen-
dently from the rest. The problem (5) can be decomposed into k

regularized least-squares subproblems, and each one solves for
one individual wj and bj. These k subproblems share a common
information matrix on the left hand side of the normal equations
and only differ on the right hand side of the equations. Thus, we
only need to do one time of any direct method for solving the
linear systems of equations. In contrast to the multicategory
proximal SVM [16], which requires to run k times of the direct
method for solving the linear systems, our version of RLS-mSVR in
Eq. (5) needs only one run time of a same-sized linear system.

2.3. Decoding and classification rules

We have introduced the indicator coding scheme (1) for
encoding the class labels into multivariate scores. In our
regression setting, the scores Y are then rendered to a regression
fit on input data ~K . The regression coefficients Ŵ ¼ ½ŵ1; ŵ2; . . . ;

ŵJ�AR
~n�J solved by RLS-mSVR provide a way of mapping input

data ~K of dimensionality ~n to a low-dimensional discriminant
feature subspace of dimensionality Rank ðŴ Þr J. The decoding
step is to map the fitted scores back to class labels, which can be
done via incorporating a classifier, such as FLDA or SSVM. For
indicator scores, the classification of a new test input x by the
column with the largest fitted value is the so called ‘‘softmax’’. In
an equal-sized binary classification, softmax is exactly the same
as FLDA. However, when the class number is larger than two,
softmax does not work as well as FLDA due to the unbalanced
class sizes and the nonspherical data distribution. Also softmax
does not apply to nonindicator scores. Therefore, we need a more
general and accurate classification rule to convert images in the
discriminant feature subspace back to class labels. Below we
describe a general principle for choice of discriminant rules.
After extracting the regression coefficient variates Ŵ , kernel data
~K are then projected onto the subspace CðŴ Þ. Denote the kernel
data projection by PCðŴ Þð

~K Þ. A general principle for classification
is to pick a linear discriminant algorithm to act on the kernel
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data projection:

Any reasonable linear discriminant algorithm on PCðŴ Þð
~K Þ will do;

ð6Þ

where PCðŴ Þð
~K Þ ¼ ~K Ŵ on with Ŵ on the orthonormalized columns

of Ŵ . In this article we choose FLDA and linear SSVM as our base
algorithms for numerical experimental demonstration. FLDA
assigns a test instance to the class of closest centroid. Distance
measure used in FLDA is the Mahalanobis distance. The FLDA is
also the Bayes rule with the uniform prior on class probabilities.
The FLDA can further extend to a general Bayes rule, which
incorporates prior class probabilities pj to produce posterior
probability outputs given by

probðgjjxÞ ¼
pjZjðxÞ

p1Z1ðxÞþ � � � þpJZJðxÞ
; j¼ 1; . . . ; J: ð7Þ

As for SSVM, it is one of many SVM variants, which focuses on the
primal problems and solves them directly by smoothing techni-
ques. A Newton–Armijo algorithm is developed to solve the
smooth optimization problem. SSVM implementation code takes
the advantage of sparsity of the Hessian matrix and has used the
limit values of the sigmoid function for smooth approximation in
computing the gradient vector and the Hessian matrix. We refer
the reader to the original SSVM article [27] for details. Note that
the choice of linear discriminant algorithms is not limited to FLDA
and SSVM. We have also tried the Lagrangian SVM [29] on
benchmark data sets used in Section 4, which has the same
formulation as SSVM but solved in the dual space instead of in the
primal. The resulting prediction accuracies of Lagrangian SVM are
same as those of SSVM but with a bit longer CPU run time, and
thus are omitted from the numerical report.
3. Encoding and equivalence class of codes

In this section we introduce several existing coding schemes to
encode the class labels. We also unify them under the notions of
equivalence of codes and scores in the context of discriminant
analysis. We refer the reader to [21] for general theory of discrete
codes and to [8,10] for continuous codes.

3.1. Coding and scoring schemes

For an arbitrary matrix YARJ�k, it can be used as a code
matrix, where each row corresponds to a class in J ¼ f1; . . . ; Jg and
each column defines an one-dimensional discriminant subspace
for partitioning the class membership set J . Below we introduce
several coding and scoring schemes commonly seen in the
literature of statistics and/or coding theory.

3.1.1. Discrete codes

Indicator code. We have introduced the encoding of each class
label in f1; . . . ; Jg by a J-dimensional indicator score (1). This
coding scheme has been commonly used in literature and is
probably the simplest and the most convenient way of encoding
the class labels into multivariate indicator output variables. The
corresponding code matrix is simply the J � J identity matrix,
denoted by YIS ¼ IJ , whose j th row is used to represent the j th
class and whose j th column is used to separate class j from the
rest. We use the notation YIS, of size n� J, for corresponding
indicator scores (IS) of observational class labels. Notice that rows
of YIS are copies of rows from the code matrix YIS.

One-vs-baseline code. This coding scheme picks a baseline class
and the rest are contrasted with this baseline class. Without loss
of generality, take J as the baseline class. For each j¼ 1; . . . ; J�1,
we encode the class label j by a row vector given by
½0; . . . ;0;1;0; . . . ;0�AR1�ðJ�1Þ, where the nonzero entry is in the j

th place; for j¼ J we encode the class label J by a row vector of all
‘‘�1’’ as ½�1; . . . ;�1�AR1�ðJ�1Þ. Denote this code matrix by Y1B,
which is of size J � ðJ�1Þ. The j th column of Y1B contrasts the j th
class with the baseline class J. The corresponding response scores
are given by Y1B ¼ YISY1B, which are copies of rows from the code
matrix Y1B.

3-Way code. Consider a code matrix of size J � k with
k¼ JðJ�1Þ=2, whose columns are constructed as follows. For any
pair of j; j0AJ with jo j0, a J-column-vector is formed with 1 in the
j th place, �1 in the j0 th place and 0’s elsewhere. Denote this code
matrix by Y3W and the corresponding scores by Y3W , i.e.,
Y3W ¼ YISY3W .

Exhaustive code. It looks for a matrix of size J � k with entries 0
or 1 to encode the class membership set J . There are 2J different
ways of constructing J-column-vector using 0 and 1. However,
complements, e.g., ‘‘0001’’ and ‘‘1110’’, are considered the same,
and the column of all zeros or all ones is considered useless. Then,
dividing 2J by 2 and subtracting 1, there are k¼ ð2J�1

�1Þ many
ways of constructing useful and different columns. Denote the
code matrix by YEX and the corresponding scores by YEX .

Random code. For a random code with a given length k, it
is a J � k matrix with each entry uniformly sampled from f�1;0;1g
(or, more generally, from a finite field).

3.1.2. Continuous codes

Codes considered above are discrete codes defined over the
finite field f�1;0;1g. Below we will introduce continuous codes
over R.

Balanced code. This coding scheme takes the class sizes into
account for its name. For a binary problem, this scoring scheme is
well-known and can be used in a regression setup for classifica-
tion [14,2]. Here we give an extension for this scoring scheme to
the multiclass setting. For each j¼ 1; . . . ; J�1, we encode the class
label j by a row vector given by ½0; . . . ;0;n=nj;0; . . . ;0�AR1�ðJ�1Þ,
where the nonzero entry is in the j th place; for j¼ J we encode
the class label J by a row vector of all ‘‘�n=nJ ’’ as shown below

½�n=nJ ; . . . ;�n=nJ ; . . . ;�n=nJ �AR1�ðJ�1Þ:

Denote the code matrix by YBS, which is of size J � ðJ�1Þ. We call
the J th class the baseline. However, it does not matter in terms of
the equivalence notion given later in Definition 1 what class has
been chosen as the baseline. The j th column of YBS contrasts class
j with class J and balances their sizes. Likewise, the j th row is used
to encode the j th class. The corresponding balanced scores (BS) of
observational class labels are given by YBS ¼ YISYBS. Again, rows of
YBS are copies of rows from YBS.

Optimal scoring. For a given dimensionality k, consider
the collection of all k-dimensional linear scores given by
Sk :¼ fYISY : YARJ�k

g �Rn�k, ko J. The optimal scoring [20] is
to search for linear scoring scheme in Sk that minimizes the
average squared residuals (ASR) by regression of scores on input
attributes subject to zero mean, unitary variance and being
uncorrelated. That is, the scheme is to find YASk with constraints
1n
0 Y ¼ 0k

0 (zero mean) and Y 0Y=n¼ Ik (unitary variance and being
uncorrelated), that solves the following minimization problem:

min
Y ASk ;1n

0 Y ¼ 0k
0 ;Y 0Y=n ¼ Ik

ASR:

In the mSVR context, the ASR translates to

ASR :¼ min
wj AR

~n ;bj AR

1

n

Xk

j ¼ 1

JY�j� ~K wj�bj1nJ
2
2; ð8Þ

where Y�j ¼ ½y1j; y2j; . . . ; ynj�
0 is the j th column of scores Y. Let 1k

and 0k denote, respectively, a column vector of ones and a column
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vector of zeros with length k. Let D¼ diagðn1;n2; . . . ;nJÞ be a
diagonal matrix and eJ ¼D1J ¼ ½n1;n2; . . . ;nJ �

0. Notice that for any
score matrix YASk, we have

1n
0 Y ¼ 1n

0 YISY¼ ðn1;n2; . . . ;nJÞY¼ eJ
0Y¼ 1J

0 DY: ð9Þ

The minimal ASR in (8) occurs at the least squares fit, then the
optimal scoring problem converts to

min
YARJ�k

1

n
trfY0YIS

0 ðIn�P ~K ÞYISYg s:t: eJ
0Y¼ 0k and Y0DY=n¼ Ik;

ð10Þ

where P ~K ¼
~K ð ~K 0 ~K Þ� ~K 0 with ð ~K 0 ~K Þ� a generalized inverse. We

denote the resulting Y by YOS, which is a J � k code matrix, and
denote the corresponding optimal scores (OS) of observational
class labels by YOS, i.e., YOS ¼ YISYOS of size n� k. Again, rows of YOS

are copies of rows from YOS. The first column of YOS leads to the
optimal one-dimensional discriminant feature subspace, where
classes of data projections have the best separation, i.e., the least
overlap. The second column leads to the second optimal one-
dimensional discriminant feature subspace, and so on. This nice
property of column ranking provides a further dimension
reduction by using only leading columns. In particular, when
there is a limitation placed on the code length, the optimal scoring
will be superior to other coding schemes.

3.2. Equivalence class of codes

In this subsection, we give a unified view of the above-
mentioned codes and scores by developing some notions of
equivalence. We will show that all the coding and scoring
schemes introduced in Section 3.1 are equivalent in the context
of discriminant analysis. We will also show that, fixing a linear
discriminant algorithm for decoding, equivalent codes and scores
will lead to exactly the same classification results for class
membership assignment. The choice of underlying linear dis-
criminant algorithms can be general, such as FLDA, Bayes rules,
linear SVMs, etc. First, we define the equivalency of two code or
score matrices.

Definition 1. Two code matrices Y1ARJ�k1 and Y2ARJ�k2 are
said to be equivalent if and only if CðQY1Þ ¼ CðQY2Þ, where Cð�Þ
denotes the linear space spanned by columns of the underlying
matrix, and where Q ¼ IJ�ð1=nÞ1JeJ

0 . Similarly, two score matrices
Y1ARn�k1 and Y2ARn�k2 are said to be equivalent if and only if
CðRY1Þ ¼ CðRY2Þ, where R¼ In�ð1=nÞ1n1n

0 .

In other words, if two centered code (or score) matrices span
the same column space, these two coding (or scoring) schemes are
equivalent, and vice versa. Note that ð1=nÞ1n1n

0 , Q and R are all
projection matrices. Also note that the centering of code columns
is a weighted centering using weights ðn1=n; . . . ;nJ=nÞ. Define
the inner products of the column space of codes and scores,
respectively, by

/y1; y2Sc :¼ y1
0 Dy2; y1;y2ARJ ; /y1; y2Ss :¼ y1

0 y2; y1; y2ARn;

ð11Þ

where D¼ diagðn1; . . . ;nJÞ. Let YARJ�k be an arbitrary code
matrix and Y ¼ YISY be the corresponding scores of observational
class labels. Let Y�j and Y�j be the j th columns of Y and Y,
respectively. Then, /Y�j;Y�j0Sc ¼Y�j0 DY�j0 ¼Y�j0 YIS

0 YISY�j0 ¼
/Y�j;Y�j0Ss. That is, the transformation between codes and scores
will preserve their inner products. Moreover, since that
1n
0 Y�j ¼ 1n

0 YISY�j ¼ eJ
0Y�j ¼ 1J

0 DY�j, the orthogonality of 1n to Y�j
is equivalent to the orthogonality of 1J to Y�j under the inner
products given by (11).These properties are summarized in the
following Proposition.
Proposition 1. For an arbitrary code matrix YARJ�k and its

corresponding scores of observational class labels Y ¼ YISY, columns

of Y and Y are inner product preserving, and Y�j and Y�j0 are

orthogonal if and only if Y�j and Y�j0 are orthogonal. Furthermore, 1n is

orthogonal to Y�j if and only if 1J is orthogonal to Y�j. The

orthogonality here is with respect to the inner products given by (11).

By Proposition 1, the centering of the code matrix Y and the
centering of the score matrix Y are equivalent. Therefore, the
optimal scoring problem (10) is equivalent to the following
generalized eigenvalue problem:

max
YARJ�k

trfY0YIS;c
0 P ~K YIS;cYg subject to Y0DY=n¼ Ik; ð12Þ

where YIS;c are the centered indicator scores. This simplifies the
optimization problem (10) by removing the constraint eJ

0Y¼ 0k.
Notice that both the score matrices YBS and YOS and their

associated code matrices YBS and YOS are already centered to 1n

and 1J , respectively. By Definition 1, it is obvious that Proposition
2 below holds.

Proposition 2. Given two code matrices Y1ARJ�k1 and Y2ARJ�k2

such that CðY1Þ ¼ CðY2Þ, then Y1 and Y2 are equivalent. Similarly, if

CðY1Þ ¼ CðY2Þ, then Y1 and Y2 are equivalent.

From Proposition 2, any two code matrices (or score matrices)
spanning the same column space are equivalent. Definition 1
gives a more general equivalence class (in terms of central column
span) than Proposition 2. Notice that the column centerization for
codes, i.e., making its column space orthogonal to 1J , depends on
the class sizes ðn1; . . . ;nJÞ and so does the equivalence class of
codes, i.e., the definition and propositions of equivalence are
sample properties taking class sizes into account for balanced-
ness. Also notice that, by letting Y ¼ YISY, we have D�1YIS

0 Y ¼Y.
This gives the interplay of codes and scores.

Proposition 3. Let Y1ARJ�k1 and Y2ARJ�k2 be two code matrices

and let Y1 ¼ YISY1 and Y2 ¼ YISY2 be the corresponding scores,
respectively. If Y1 and Y2 are equivalent, then CðRY1Þ ¼ CðRY2Þ, i.e.,
Y1 and Y2 are equivalent. Conversely, if Y1 and Y2 are equivalent, then

Y1 and Y2 are equivalent as well.

Theorem 4. Let Y1ARJ�k1 and Y2ARJ�k2 be two equivalent code

matrices and let Y1 ¼ YISY1 and Y2 ¼ YISY2 be the corresponding

scores, respectively. By ridge regression (5) of Y1 and Y2, respectively,
on ~K , we get that CðŴ 1Þ ¼ CðŴ 2Þ. That is, equivalent codes will lead

to the same linear discriminant feature subspace. Thus, given a choice

of base linear discriminant algorithm, equivalent codes Y1 and Y2

(or equivalent scores Y1 and Y2) will lead to the same classification

results of class membership assignment.

Theorem 4 says that, fixing a choice of linear algorithm, the
resulting classifier is the same regardless of coding schemes as
long as they span the same central column space CðQYÞ.

Theorem 5. The indicator, one-vs-baseline, 3-way, exhaustive,
optimal, and balanced codes in their respective full lengths are all

equivalent in the sense of Definition 1, and hence Theorem 4 applies

to them. In other words, given a linear discriminant rule, all the

above-mentioned coding schemes lead to the same multiclass

classifier.

Remark 1. An all-ones code column, 1J , or an all-ones score
column, 1n, is considered useless in classification. Thus, the act of
centering will not change the classification result. By Definition 1,
the code matrix centering is a weighted average over rows and
the weights depend on sample data class sizes. By Proposition 1,
the centered linear scores are orthogonal to 1n and the centered
codes are orthogonal to 1J . For centered scores, the common grand
mean is subtracted from the scores. A noncentered score matrix
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Table 2
Parameter settings.
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Ync can be transformed to a centered one by Yc ¼ ðIn�1n1n
0 =nÞYnc.

To augment a centered score matrix Yc to a noncentered one, it
can be done by Ync ¼ ½Yc 1n�. Similarly, a noncentered code matrix
Ync can be transformed to a centered one by Yc ¼ ðIn�1JeJ

0 =nÞYnc.
To augment a centered code matrix Yc to a noncentered one, it
can be done by Ync ¼ ½Yc 1J �.

Remark 2. Though all the scoring schemes in their full lengths
discussed above are equivalent, the optimal scoring provides an
extra feature of easy dimension reduction. As the optimal scoring
is obtained by solving a generalized eigenvalues problem, its
columns are ranked according to descending eigenvalues and are
uncorrelated. Dropping one or a few the right most columns from
the score matrix YOS will not dramatically change the classifica-
tion accuracy. On the contrary, dropping one column from YBS, or
two columns from YIS (IS has one redundant column from the
equivalence point of view), will fail to classify a particular pair of
classes. Some pictorial illustrations can be found in Section 4.
However, if we are allowed to use long enough code length, the IS
and BS codes are the simplest to implement and to interpret, and
they have the same prediction ability as that of OS code.
Moreover, longer codes, such as 3-way code, exhaustive code
and random codes with code length k4 J, have the extra ability of
error correcting.

4. Experimental study

Data sets and experimental setting. The following data sets are
used for experimental study: ionosphere, Iris, wine, glass,
segment, image, dna, satimage and pendigits, where ionosphere,
Iris, wine, glass, image and pendigits are from the UCI Repository
machine learning databases [3], and segment, dna and satimage
are from the UCI statlog collection. Data structures are character-
ized in Table 1. For data sets without a given training/testing split,
we divide them into 10 folds for cross-validation (CV). The
splitting into CV folds is stratified over classes. Before making
kernel data, we standardize the training inputs to have
coordinatewise zero mean and unitary variance, and the same
centering and scaling are applied to the testing set, where the
center location and the coordinatewise scale factors are
determined by the training set. Our proposal will be compared
with the benchmark nonlinear SVM software LIBSVM [6], which
has the reputation of being efficient in computation and having
reliable prediction accuracy.

Model selection. Gaussian kernel is used for nonlinearly
transforming the input instances. A selection method based on
nested uniform designs (UDs) [23] is adopted for finding the
parameter g in the Gaussian kernel and the weight parameter C in
SVM. The key advantage of the UD model selection over the grid
search is that the UD points are ‘‘far more uniform’’ and ‘‘far more

space filling’’ than lattice grid points. The number-theoretic based
Table 1
Data structures.

Data # Training data # Testing data # Classes # Attributes

ionosphere 351 0 2 33

Iris 150 0 3 4

wine 178 0 3 13

glass 214 0 6 9

segment 2310 0 7 18

image 210 2100 7 19

dna 2000 1186 3 180

satimage 4435 2000 6 36

pendigits 7494 3498 10 16
UD methodology [13] is a deterministic analogue of random
search known as the quasi-Monte Carlo. It is known that a quasi-
Monte Carlo method with judiciously chosen deterministic points
usually leads to a faster rate of convergence than the lattice grid
method [32]. The phenomena of better uniformity and more
space-filling make the UD points very economic by avoiding
wasteful function evaluations of similar patterns. Throughout this
experimental study, we have used a 2-stage nested UDs search
with the first stage of a 13-point UD and the second stage of a
9-point UD. The center UD point of the second stage is the best
parameter setting from the first stage and needs not be re-trained.
That is, we have to tune only 21 different combinations of g and C

instead of an exhaustive grid search. In [23] and our experience ,
the results by using the nested-UDs are usually good enough with
much less computational cost as compared to the grid search for
parameters tuning.

As all the scoring schemes in their full lengths are equivalent,
we use BS in our tuning procedure via a 10-fold CV for all training
data sets. In our experience, C is not as influential as g. Hence, to
save tuning time, we conveniently fix C at a large number, 106, for
large data sets (segment, dna, satimge and pendigits), while still
tune for C for smaller sets. For the case of a fixed C, the UD method
then becomes a one-dimensional 21-grid-points search for g. Note
that the reduced kernel technique is employed for large data sets,
i.e., a compressed model is used. In such cases, we are allowed for
a large C without over-fitting. We provide 2 options for LIBSVM.
One is their default setting C ¼ 1 and g¼ 1=t, where t is the
number of attributes. The other is to apply our UD-based tuning
method to LIBSVM. All resulting parameter settings are recorded
in Table 2.

Experimental results. To demonstrate our classification proce-
dure, we use IS, BS and OS to run the experiment by using
RLS-mSVR to extract a discriminant feature subspace, and then
perform a linear algorithm for classification. Here we particularly
have used FLDA and linear SSVM as our choice of base classifiers.
Other linear algorithms, acting on this low-dimensional fitted
feature subspace, can be feasible as well. Note that this fitted
feature subspace is a subspace of the Hilbert space generated by
the underlying kernel. The FLDA can be easily generalized to a
Bayes rule incorporating prior class probabilities to produce
posterior probability outputs given in (7). For data without a
given test set the reported accuracy is the mean accuracy over 20
replicate runs of 10-fold CV. Within each 10-fold partition,
accuracy is averaged over 10 folds. Numbers in parentheses are
standard deviations of the mean accuracies for 10-fold CV over 20
replicate runs. We have also used the reduced kernel approxima-
tions for large data sets, such as segment, dna, satimage and
Data FLDA SSVM LIBSVM

C g C g C g

ion 4.217 0.0517 6.8129 0.0586 10 0.0324

Iris 17 413 0.0458 21 544 0.0334 0.7499 0.3405

wine 215.44 0.0150 139.905 0.025 1 0.0035

glass 146 780 0.0361 139.905 0.0815 3162.278 0.0045

segmenta
106 0.0525 106 0.0608 106 0.0049

image 22 792 0.0458 3162.3 0.0425 100 0.002

dnaa
106 0.0025 106 0.0051 10 000 0.08

satimagea
106 0.03 106 0.0608 3.1623 0.1045

pendigitsa
106 0.0475 106 0.05 3.1623 0.0712

a Indicates the use of a reduced kernel with reduction rates 0.3, 0.4, 0.3 and

0.05 for segment, dna, satimage and pendigits data sets, respectively.
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Table 3
Comparison of testing accuracy.

Data FLDA SSVM LIBSVM LIBSVM (default)

ionosphere 0.9556 0.9516 0.9472 0.9417

(std) (0.0049) (0.0048) (0.0045) (0.0045)

Iris 0.9773 0.9777 0.9633 0.9636

(std) (0.0057) (0.0064) (0.0049) (0.0045)

wine 0.9849 0.9912 0.9834 0.9826

(std) (0.0040) (0.0046) (0.0038) (0.0035)

glass 0.6753 0.7232 0.7152 0.7109

(std) (0.0223) (0.0156) (0.0142) (0.0127)

segmenta 0.9729 0.9761 0.9715 0.9451

(std) (0.0012) (0.0011) (0.0022) (0.0011)

image 0.9214 0.9343 0.9062 0.8857

dnaa 0.9545 0.9570 0.9520 0.9503

satimagea 0.9085 0.9125 0.9170 0.8955

pendigitsa 0.9783 0.9813 0.9826 0.9791

a Indicates the use of a reduced kernel with reduction rates 0.3, 0.4, 0.3 and

0.05 for segment, dna, satimage and pendigits data sets, respectively.

Table 4
Comparison of training time in CPU seconds.

Data IS BS OS LIBSVM

FLDA SSVM FLDA SSVM FLDA SSVM UD Default

image 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.01

dnaa 0.60 0.59 0.57 0.59 0.60 0.62 2.64 2.05

satimagea 2.83 2.59 2.74 2.82 2.34 2.55 1.02 0.71

pendigitsa 0.63 0.83 0.66 0.85 0.60 0.81 0.62 0.66

a Indicates the use of a reduced kernel with reduction rates 0.4, 0.3 and 0.05

for dna, satimage and pendigits data sets, respectively.

Table 5
Comparison of testing time in CPU seconds.

Data IS BS OS LIBSVM

FLDA SSVM FLDA SSVM FLDA SSVM UD Default

image 0.01 0.02 0.01 0.02 0.01 0.02 0.06 0.08

dnaa 0.15 0.15 0.15 0.15 0.15 0.15 2.50 1.61

satimagea 0.38 0.33 0.38 0.33 0.38 0.33 0.92 0.88

pendigitsa 0.20 0.22 0.20 0.22 0.20 0.21 0.84 0.96

a Indicates the use of a reduced kernel with reduction rates 0.4, 0.3 and 0.05

for dna, satimage and pendigits data sets, respectively.
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pendigits, where the reduction rates are 0.3, 0.4, 0.3, 0.05,
respectively. All else have used the full kernel. As a reference,
we also include LIBSVM in our study. The LIBSVM (default)
columns indicate the results are from LIBSVM default setting. The
LIBSVM (UD) columns indicate the results are from LIBSVM with
UD-tuned parameters. The accuracies obtained by LIBSVM are all
with full kernel. We did individually run our multiclass proce-
dures, i.e., RLS-mSVR combined either with FLDA or one-one
SSVM, using IS, BS, OS and 3-way scores. Since the accuracies we
empirically obtained are all the same, which numerically confirm
Theorem 4, they are combined into FLDA and SSVM columns and
are compared with LIBSVM in Table 3. We also report the training
and testing time in CPU seconds in Tables 4 and 5 for data sets
with separate test sets. We have also tried the Lagrangian SVM
[29], which has the same formulation as SSVM but solved in the
dual space instead of in the primal. The resulting prediction
accuracies of Lagrangian SVM are same as those of SSVM but with
a bit longer CPU run time, and thus are omitted from the
numerical report. We have used ASUS notebook with Core Duo
T7200 CPU and 2 GB RAM in all our experiments.

From Table 3, we see that testing accuracies of SSVM are often
better than FLDA. The testing accuracies via regression setting
combined with SSVM are comparable to LIBSVM, and often a bit
better. From the accuracy report for segment, dna, satimage and
pendigits data sets, we see that the reduced kernel approximation
works well. Table 4 shows the training time of our approach is
comparable to LIBSVM (UD and default). All our programming
codes (for making kernel, doing regression, FLDA, SSVM, etc.) are
written in Matlab, while LIBSVM is in C. The training time for
RLS-mSVR based methods has included the time for generating
scores and kernel data. SSVM often takes a bit more CPU time than
FLDA, but not necessarily always so. It solves JðJ�1Þ=2�many
binary linear SVM sub-problems, while FLDA solves one bigger
problem on the same subspace. The training time difference for
different scoring schemes is not significant. Though OS involves
extra computation of a generalized eigenvalue problem, the
problem size is often not large. Here for the image data example,
we have to solve for the leading 6 eigenvectors in a problem of
size 210; and for the dna data example, we solve for the leading 2
eigenvectors in a problem of size 800. It is noticeable that the
RLS-mSVR approach provides a fast and efficient way for feature
extraction and next a convenient linear discriminant algorithm
can act on top of these very low-dimensional feature subspace
(with dimensionality at most J�1) for fast computation. The
testing CPU time of our approaches, RLS-mSVR with FLDA or
SSVM, is much less than LIBSVM. The reason is that the regression
approach has extracted a very low-dimensional discriminant
feature subspace and the testing is extremely fast in this low-
dimensional feature subspace, while the testing time of LIBSVM
depends on the number of support vectors, which is usually much
bigger than the number of classes.

Time complexity. All the coding schemes introduced
in this article have very little computing load except possibly
for OS in large data problems with quite some number of
classes. OS is solved by a generalized eigenvalue problem of a
data projection (12). Time complexity for solving the OS-related
eigenvalue problem is OðJ3Þ and for forming the underlying
projection matrix is Oðn ~n2

Þ. The time complexity for solving
the RLS-mSVR is Oðn ~n2

Þ regardless of the number of score
columns k.

The OS scheme provides an extra nice feature. Its columns are
ranked by descending eigenvalues as commented in Remark 2.
Some experiments are done to gain insights into the optimal
scoring scheme as compared with others. Figs. 1 and 2 depict
the effect of the code length on rates of test accuracy using
pendigits and letter data sets, respectively. The left most
columns from YOS, YBS and YIS are sequentially added to the
regression model fitting, while for the random code, J independent

random code columns are drawn one at a time and sequentially
added to the regression model fitting. The experiment of
random code is repeated 6 times. The superiority of OS is clear
when the code length is short, but when the code length
reaches J�1, the schemes, OS, BS, IS and random code, become
equivalent.

The performance of random code actually has better general-
ization ability with higher test accuracy than the OS, when the code
length is of intermediate size. The OS is optimal in the training
accuracy and in the case when the code length is small, such as 1–3
in length in the pendigits data set and 1–5 in length in the letter
data set. Figs. 3 and 4 provide a pictorial explanation why
OS performs better. Fig. 3 gives the data scatters and the
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Fig. 1. Comparison of scoring schemes using pendigits data set in six replicate runs.
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one-dimensional discriminant feature subspace by OS (in solid line)
and by IS (in dashed line). Fig. 4 presents the data projections onto
these 2 lines and their fitted normal probability density functions. It
is clear that, for data projected along the OS-found direction,
the class centroids are far apart, while the spread within each class
is small. On the contrary, for data projected along the IS-found
direction, classes 2 and 3 are collapsed together and the within
class spread is larger than projections along the OS-direction. We
further provide some 2D views of OS-found and IS-found
discriminant feature subspaces in Figs. 5 and 6. They are,
respectively, pendigits data scatters over the 2D discriminant
feature subspace using the first 2 columns of OS-code and
IS-code, respectively. The 2D-OS and the 2D-IS discriminant
feature subspace are obtained based on the entire training set,
while only 10 points per digit group from test set are used to plot
the data scatter to avoid excessive ink. Data projections onto the
2D-OS discriminant subspace have much better class separation
than data projections onto the 2D-IS discriminant subspace. All
programming codes are available upon email request to the last
author.
5. Concluding remarks

In this article the mSVR is proposed for the multiclass
classification problem. The class labels are encoded into multi-
response scores and then the regression of scores on kernel inputs
is used to extract a low-dimensional discriminant feature sub-
space, which is spanned by the regression coefficient variates. The
discriminant feature subspace generated by different coding
schemes with long enough code length will be identical, which
introduces the notion of equivalence of codes. Data are then
mapped to this low-dimensional feature subspace and classifica-
tion is carried out therein. The regression step can be viewed as a
feature extraction to make the final classification (decoding) step
computationally light and easy. We can apply any feasible linear
learning algorithm to the data images in this low-dimensional
discriminant feature subspace. Even there is a nonlinear structure
between different classes in the input space, the linear algorithm
still perform very well in the kernel-based feature subspace.
Though this feature subspace is linear in the Hilbert space sense, it
is nonlinear from the viewpoint of original input attributes. Two



ARTICLE IN PRESS

0 10 20
0

0.2

0.4

0.6

0.8

1

code length

te
st

 a
cc

ur
ac

y

0 10 20
code length

0 10 20
code length

0 10 20
code length

0 10 20
code length

0 10 20
code length

0

0.2

0.4

0.6

0.8

1

te
st

 a
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

te
st

 a
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

te
st

 a
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

te
st

 a
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

te
st

 a
cc

ur
ac

y

OS
BS
IS
random code

Fig. 2. Comparison of scoring schemes using letter data set in six replicate runs.
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Fig. 3. Data scatters and projection lines by OS and IS.
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underlying linear algorithms, FLDA and one-one SSVM, are used
for experimental study. However, our proposed method is not
limited to these two particular algorithms. We also include
LIBSVM for comparison. The RLS-mSVR solves a linear system and
provides an economic implementation for multiresponse regres-
sion, and it can be combined with any reasonable linear
discriminant algorithms for satisfactory prediction accuracy.
Results show that our mSVR setup combined with a feasible
linear discriminant algorithm is an easy and yet competent
alternative to the multiclass classification problem. One thing is
worth to be pointed out. By the equivalence of codes, if we allow
the code length to reach J�1, the maximum dimensionality of
linear separation for J classes, then BS will be the best choice for
its simplicity in computation and interpretation. It is not
necessary to look for the optimal scores for encoding. However,
if there is a limitation on the code length, which is much shorter
than J�1, the optimal scoring will have an extra nice feature. Its
columns are ranked by descending eigenvalues, and hence, the OS
can provide a further dimension reduction by using only leading
columns. For intermediate code length, random code
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Fig. 6. Pendigits data scatter over 2D-IS discriminant feature subspace.
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(with independent code columns enforced) is recommended for
its simplicity in forming the code matrix and for its better
generalization ability. The BS, which has taken the class sizes into
account and has contracted one class with the baseline and with
the rest as reference, is a better choice than the IS with one less
column of code length. The indicator scoring has the simplest
form and is easiest to interpret especially for users not familiar
with coding. As for the 3-way or random codes with longer length
than J, they provide the extra ability of error-detecting and
correcting. Also, given a fixed code length, one can design a
deterministic selection of columns from Y3W or random code to
optimize its prediction performance. This is a design problem and
may deserve some further study. The reduced kernel technique
for dealing with massive data sets and the nested uniform designs
for selecting parameters have been incorporated successfully into
the mSVR framework. Results show that our regression setup
combined with a feasible linear discriminant algorithm is an easy
and yet competent alternative to the multiclass classification
problem.
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Appendix
Proof of Proposition 3. Assume that Y1 and Y2 are equivalent.
For i¼ 1;2,

RY i ¼ In�
1n1n

0

n

� �
YISYi

¼ In�
1n1n

0

n

� �
YISQYiþ In�

1n1n
0
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� �
YIS

1JeJ
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� �
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� �
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n

� �
YISQYiþ

1neJ
0

n
�

1neJ
0

n

� �
Yi

¼ In�
1n1n

0

n

� �
YISQYi:

Since QY1 and QY2 have the same column span, so do
RYISQY1 and RYISQY2. Hence, CðRY1Þ ¼ CðRY2Þ, and Y1 and Y2 are
equivalent. Conversely, assume that Y1 and Y2 have the same
central column space, we want to show that Y1 and Y2 are
equivalent. Since that YIS

0 YIS ¼D, we have Yi ¼D�1YIS
0 Yi. Then, for

i¼ 1;2

QYi ¼QD�1YIS
0 Yi

¼QD�1YIS
0 In�

1n1n
0

n

� �
YiþQD�1YIS

0 1n1n
0

n
Yi ð13Þ

¼QD�1YIS
0 In�

1n1n
0

n

� �
Yi; ð14Þ

as QD�1YIS
0 1n ¼ ðIJ�1JeJ

0 =nÞD�1eJ ¼D�1eJ�1J ¼ 0J . Since that Y1

and Y2 have the same central column space, so do
QD�1YIS

0 ðIn�1n1n
0 =nÞYi for i¼ 1;2. Hence, CðQY1Þ ¼ CðQY2Þ, and

Y1 and Y2 are equivalent. &

The following lemma is for Theorem 4. Let Ŵ
ðISÞ
¼ ½ŵ

ðISÞ
1 ;

. . . ; ŵ
ðISÞ
J �, ŵ

ðISÞ
j AR

~n , and b̂
ðISÞ
¼ ½b̂

ðISÞ

1 ; . . . ; b̂
ðISÞ

J �AR1�J be the RLS

estimates for W and b using scores YIS.

Lemma 1. The RLS estimate of W using scores YIS, denoted by Ŵ
ðISÞ

,
satisfies the condition that Ŵ

ðISÞ
1J ¼ 0 ~n .

Proof of Lemma 1. Let

M¼
M11 M12

M21 M22

" #
¼

~K 0 ~KþlI ~n ~K 01n

1n
0 ~K n

" #
; where l¼ 1=C:

Then,

M�1 ¼
M�1

11�2 �M�1
11�2M12M�1

22

�M�1
22 M21M�1

11�2 M�1
22 M21M�1

11�2M12M�1
22 þM�1

22

" #
;

where M11�2 ¼M11�M12M�1
22 M21 [2] . By solving the RLS we have

that

Ŵ ðISÞ

b̂ðISÞ

" #
ð ~nþ1Þ�J

¼M�1
~K 0

1n
0

" #
YIS:

Thus,

Ŵ
ðISÞ

1J ¼ ½M
�1
11�2 �M�1

11�2M12M�1
22 �

~K 0

1n
0

" #
YIS1J
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¼ ½M�1
11�2 �M�1

11�2M12M�1
22 �

~K 01n

1n
0 1n

" #
¼M�1

11�2ð
~K 01n�nM12M�1

22 Þ

¼M�1
11�2 � 0 ~n : &

Proof of Theorem 4. For i¼ 1;2, let Ŵ
ðiÞ
¼ ½ŵ

ðiÞ
1 ; . . . ; ŵ

ðiÞ
ki
�AR

~n�ki

and b̂
ðiÞ
¼ ½b̂

ðiÞ

1 ; . . . ; b̂
ðiÞ

ki
�AR1�ki be the RLS estimates of regression

coefficients and intercepts using scores Y1 ¼ YISY1 and Y2 ¼ YISY2,
respectively. Then, as Yi ¼ YISYi, it is straightforward to check that

Ŵ
ð1Þ
¼ Ŵ

ðISÞ
Y1; Ŵ

ð2Þ
¼ Ŵ

ðISÞ
Y2; b̂

ð1Þ
¼ b̂

ðISÞ
Y1 and b̂

ð2Þ
¼ b̂

ðISÞ
Y2:

ð15Þ

Below we show that Ŵ
ð1Þ

and Ŵ
ð2Þ

have the same column span.

Express Ŵ
ðiÞ

as follows:

Ŵ
ðiÞ
¼ Ŵ

ðISÞ
QYiþŴ

ðISÞ 1JeJ
0

n
Yi: ð16Þ

Since QY1 and QY2 span the same column space, so do Ŵ
ðISÞ

QY1

and Ŵ
ðISÞ

QY2. Also notice that Ŵ
ðISÞ

1J ¼ 0 ~n by Lemma 1. Thus, we

have CðŴ
ð1Þ
Þ ¼ CðŴ

ð2Þ
Þ. In other words, scores Y1 and Y2 lead to the

same discriminant subspace. &

Proof of Theorem 5. We can either check that CðQYÞ for Y¼YIS,
YOS, YBS, Y3W and YEX are all the same, or equivalently,
check that CððIn�1n1n

0 =nÞYÞ for Y ¼ YIS, YOS, YBS, Y3W and YEX are
all the same. Both ways are straightforward to verify by using
Definition 1 or Proposition 2. &
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