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Abstract

Multiple-input multiple-output (MIMO). technology has been included in many in-
dustrial standards to achievesignificant throughput enhancement compared with conven-
tional single antenna systems.—By using multi-element antennas at both transmit and
receive sides, multiple data streams can be transmittéd simultancously through parallel
spatial modes. Torealize the advantage?@f MIMO systems, aceurate channel state infor-
mation (CSI) is indispensable, espemallf”\’for high rate transmissions. With the increase of
antenna number, the task of estimating.or-processing-a MIMO ¢hannel matrix becomes
more and more diffieult. In this thesis, we propose an efficient channel representation such
that the number of required. parameters is reduced and the computation complexity can
be lessened as well. For medially to highly correlated MIMO environments, the proposed
representation can lead to significant parametric dimension reduction while maintaining
good CSI quality.

Based on the proposed channel representation, we develop iterative least squared (LS)
schemes to estimate several typical MIMO channels. The reduced-rank CSI representa-
tion is very useful for many post-channel-estimation operations that require processing
the instantaneous channel matrices. Depending on the specified modelling order, the pro-
posed channel estimators offer tradeoff between identification accuracy and computational
complexity. Moreover, the dimension-reduction induced noise rejection effect enables the
proposed model-based estimators to achieve superior mean squared error (MSE) perfor-

mance over certain SNR region when compared with that of the conventional LS approach.
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Theoretical analysis and numerical simulations of MSE performance are provided to assess
the estimators’ performance and validate the analytical predictions.

Taking advantage of the proposed compact CSI representation, we proceed to develop a
model-based feedback precoded system. By incorporating our new channel representation
into the precoder design, the resulting precoded system provides significant reductions on
the feedback bandwidth and the computational complexity needed for constructing the
precoder and equalizer matrices. Numerical results show that compared with the conven-
tional approaches that need full knowledge of instantaneous CSI, our proposal suffers only
negligible performance degradation at very high SNR region. The reductions on comput-

ing complexity and feedback channel bandwi svertheless, are significant. To assess
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Chapter 1

Introduction

Increasing demand for higher wireless system capacity has catalyzed several ground-
breaking transmission techniquesy among which. is the multiple-input/multiple-output
(MIMO) technology that, has attracted the great, part of recent attention. It has been
shown that in comparison with conventional single antenna systems, significant capacity
gains are achievableswhen multi-element-antennas (MEA) are used at both the transmit
and receive sides j4},[5]. Spatial-multiplexing techniques, for example, the BLAST (Bell-
labs Layered Space-Time) system, was iﬁz\%&oped to attain very high spectral efficiencies
in rich scattering.environments! a

Ideal rich-scattering environments decorrelate channels between different pairs of trans-
mit and receive antennas so.that maximum number of orthegonal subchannels is available.
In practice, however, spatial eorrelations do exist-andshould be considered when design-
ing a MIMO receiver for evaluating the corresponding system performance [6]. Spatial
correlation depends on physical parameters such as antenna spacing, antenna arrange-
ment, and scatters’ distributions. Antenna correlations reduce the number of equivalent
orthogonal subchannels, decrease spectral efficiency, making it more difficult to detect the
transmitted data [4].

A coherent MIMO receiver requires an accurate channel estimate to perform critical
operations and provide satisfactory performance. Not only is reliable channel estimation
mandatory in guaranteeing signal reception quality but it is also needed in designing an
adequate precoder at the transmit side to achieve maximum throughput or minimum bit

error rate in feedback MIMO systems. Various pilot-assisted MIMO channel estimators



have been proposed [7, 8]. Unfortunately, few estimators are specifically designed for
correlated MIMO channels and those few exploited only channel’s time and frequency
correlation characteristics by approximating the time- and /or frequency-domain responses
by an analytic model [8, 9]. These analytic model based approaches can do without the
channel information like covariance functions and signal-to-noise ratio which are required
by most estimators and are to be obtained by on-line measurements. However, they fail
to take into account and the advantage of the spatial structure of such channels which has
significant impact on the system performance and should also be explored. The spatial
correlation structure instead was often used to analyze the system capacity [10], to design
beamformer [11] or pilot sequences [7, 12].

We present novel pilot-assisted channel estimation sechemes on the basis of the pro-
posed new general MIMO channel representation whichdoes not_require information of
second-order channel statistics. Spatial-and time covariance (or correlation) functions are
described by nonparametri¢ regression-and the influence of the mean.angle of departure
(AoD) is related to other channel parametersgfﬁ}@ regression model. This representation
admits a reduced-rank channel model and com%pact channel state information (CSI) repre-
sentation, making possible reduced feedback channel bandwidth requirement. It results in
separable descriptions of channel correlations and mean AoD for correlated MIMO systems
and enables us to develop efficientralgorithms to identify the realistic channel responses.
Although a model-based scheme inevitably induices a modelling error [9]-[13], as will be
shown in Chapter 3, our algorithms are capable of describing realistic correlated MIMO
channels with negligible modelling errors. The estimated CSI can be efficiently exploited
for use in many channel estimation related operations such as MIMO data detection and
optimal MIMO transceiver designs.

Optimal MIMO transceiver designs based on CSI at the transmitter (CSIT) have
been thoroughly studied under several performance measures such as minimum mean
squared error (MMSE) or maximum mutual information (MMI) [14]-[11]. When CSI is
available at both ends of a link, conventional precoding-eigen-beamforming schemes can

adapt to the channel condition to optimize the reception performance in the correlated



environment. However, in practice, downlink CSI (from base station to mobile unit) is
often not available at transmit site and has to be estimated unless the channel transfer
function can be assumed to be identical in both directions. Oftentimes, the downlink
receiver has to send the information back to the transmitter through a feedback channel.
It is thus critical that one control the amount of feedback information as the feedback
channel usually has a very limited bandwidth.

To lessen the feedback load, several transmitter precoding/eigen-beamforming schemes
based on partial channel information such as channel mean feedback and channel covari-
ance feedback were proposed to reduce the feedback cost [15]-[16]. Mean feedback relies
on the proposition that CSI resides im the mean of the distribution with white covariance.
Therefore, only for very slowly faded c¢hannels‘can mean feedback adequately capture the
channel behavior. On.the other hand, covariance feedback models the channels as random
vectors with zero mean’and nen-white covariance, which are only hold for rapid fading
environments. Beth feedback-seenarios relies on.imperfect long-term statistical models
and thus cannot_well represent the ins%'/?}%or short term channel variations. Moreover,
prior knowledge of channel statistics are%offén needed to compute the approximated feed-
back information. ‘Generally, systems using statistical feedback come with a non-negligible
performance loss compared with those using instantaneouis'channel realization.

Based on the proposed. model-based channel réprésentation, the instantaneous CSI
is represented in a more compact form and estimated accordingly. With this efficient
CSI estimation, we present a framework of transceiver design to render the advantage
of the proposed model-based structure. For correlated MIMO channels, the proposed
precoding scheme provides an alternative to reduce the requirement of instantaneous CSI
feedback, while retaining or even improving the reception performance. Several perfor-
mance bounds regarding reception error and feedback information loss are established to
assess the system performance.

The rest of this thesis is arranged as follows. After a brief review of the typical
space-time antenna setup and a general received MIMO signal model, we derive two new

models [17] for spatial-correlated block-faded narrowband MIMO channels and their rela-



tions with some established analytic models in Section 2.3. We then propose single-block
based iterative least squares (LS) channel estimators in Section 3.1 while the extension
that takes the time-correlation and frequency-selective cases into account are given in
Section 3.2 and 3.3, respectively. In Section 3.4, we analyze the mean squared error
(MSE) of the proposed channel estimation algorithms. Numerical examples using indus-
trial standard approved channel models are given in Section 3.5 to validate the proposed
channel models and to demonstrate the effectiveness of our algorithms. In Chapter 4,
we develop the basic framework of transceiver designs based on the reduced rank CSIT.
Section 4.1 quickly reviews the channel representation proposed in Section 2.3 as the
foundation for the proposed MIMO eigen-beanmforming system. Section 4.2.1 and Section
4.2.2 give a brief review of some donventional MIMO precoder /heamforming systems with
feedback CSI. Section 4.2.3.make use of the.proposed channel representation to establish
a nonparametric CSIT. With/the nonparametric CSIT, the propesed.eigen-beamforming
design is developed and.discussed in-Section 4.2.4. Performance analysis of the proposed
beamforming method is given in Section 4.3@Section 4.5, we provide several numer-
ical and simulation examples by using some %\évéﬁ—established industrial channel models.
Conclusion and remarks_ are given in Section 4.6. Chapter 5 summarizes the studies in
this thesis and suggests some interesting research subjects under:the framework of the

proposed nonparametric schenie.



Chapter 2

MIMO Channel Representation

2.1 MIMO System

In this thesis, we focus on the‘clustered channel model. In such a MIMO setup, MS is
surrounded by local scattererssand waveforms impending the receive antennas are richly
scattered. On the other hand, BS.is.often unobstructed by localscatterers and has a mean
angle of departures(tAOD) with-respect tatheweceiver ‘cluster. The clustered channel setup
is typical in urban environments, and haﬁwbeen validated through field measurements. A
typical “one-ring” model is shown in FZ?ZI, A denotes the azimuthal angle spread at

the BS and ¢ denotes the mean AOD-between BS and MS.

® N receiveantennas
® atMS

Je e

o

-0
|w)

@ M transmitantennas
atBS

Figure 2.1: “One-ring” model with M transmit antennas at BS and N receive antennas
at MS. D: distance from BS to MS. R: radius of the scatterer ring. ¢: angle of departure.
A: angle spread at BS. d’: antenna spacing at BS. d: antenna spacing at MS.



2.2 Modelling Spatial-Correlated MIMO Channels

2.2.1 System Setup

Consider a cellular MIMO system in which the base station (BS) and a mobile station
(MS) are equipped with linear arrays of M and N antennas, respectively. Independent
data streams x(t) = [21(t), 25 (t), 23(t), - - -, 22,(t)]" are transmitted from the BS at time
t, where x,,(t) denotes the source signal of the mth transmit antenna and the superscript
T denotes vector (matrix) transposition. At the MS, the received baseband signals are
given by y(t) = [y1(t), y2(t), y3(t), -, yn(t)]", where y,(t) is the signal received by the
nth receive antenna at time t. With a sampling interval of At seconds, the corresponding

ith transmit and receive sample vectors arex; = x(2Al), and y; = y(i/At), respectively.

2.2.2 Wireless MIMO Channels

A general MIMO channel between BS-and MS antennas is,modelled as

G
H(t) = > Hib(t —7), (2.1)

where G is the maximum number:of paths<associated with any sub-channel between a
transmit and receive antenna. pair, 7; 18 the delay of the [th path, and 0 denotes the
Dirac delta function. The complex channel gain matrix asseciated with the [th path
is given by H; = [n}], for 1 € 1 < NodwS oM Where bl is the complex sub-
channel gain between the jth transmit ‘and #th receive antennas. For a narrowband
fading channel, (2.1) is reduced to a single-tape fading matrix and the received vector
waveform is y(t) = H(t)x(t) + n(t), where H(¢) is an N x M complex channel matrix
and n(t) a zero mean additive white Gaussian noise (AWGN) vector with covariance
matrix F{nnf’} = NyIy. We first consider the block fading case in which the channel
gain matrix remains unchanged within a block of B symbol intervals and eliminate the
time parameter ¢ in related expressions. Section IV will discuss the case which takes the

time-correlation among blocks into consideration.



2.2.3 Spatial-correlated block fading channels

Many analytic models for spatial-correlated MIMO channels have been proposed in the
literatures. The Kronecker model [6] assumes separable statistics at transmitter and
receiver so that the spatial correlation matrix ® of vec(H), vec(-) being the stacking
operator, is given by the Kronecker product (®) [18] of those of the transmit (®1) and
receive (®y) antennas, ® = &y @ Sy = &2 (H2)7 | where the “square root” matrix ®2

1 1

has a similar decomposition Pz = ®7 ® ®;. The separable statistics assumption yields
1 L7

H=®H,®; (2.2)

where H,, is an N x M channel matrix whosé entries are i.i.d. complex zero-mean,
unit-variance Gaussian randem variables.

Although the Kromecker model is mathematical tractably, many measurement and
theoretical results reveal that this-separable model in_general leads to misfits for capacity
and error probability duetothe smaller number of degrees.of freedom (DF) [19],[20]. The
Kronecker model"has been generalizediééﬁayeed [21] and, more recently, by Weichsel-

berger et al. [22]"who considered joint correlation of both link"ends and suggested the

following analytic model

H = Uy <Q ® R) U, (2.3)

where Ut and Upg are the eigenbases of therone-sided correlation matrices at the transmit
and receive sites, respectively. Operator @ denotes the Hadamard product operation [18].
R denotes a random matrix whose elements are i.i.d. zero-mean, unit-variance complex
Gaussian random variables. € is the element-wise square root of the coupling matrix in
which each entry specifies the mean amount of energy coupled with an eigenvector of the
transmitter to that of the receiver. The Weichselberger model provides a more general
framework of canonical modelling [22],[23],[24], where (2.3) can be represented by the
following canonical form,

H = UgH,,,U%L. (2.4)

H,,4 has independent, but not necssarily identically distributed entries. The Kronecker

model can thus be understood as a special case of the Weichselberger and the canonical

7



model by the following equations

1 1
H = & H, P51
. 1 1
canonlgl (2.4) UR DﬁHwD’% U% (25)
N—
‘Hjng
i selberger . . i : 3
Weichselberger (2.3) UR((dlag(Df{)dlag(D%)TzQHw)Ua (2.6)
-0

where &1 = UrDr U4 and &y = URDRUQ denote the eigen decomposition of correla-
tion matrices at transmitter and receiver, respectively. (2.5) follows from the isotropicity
of an i.i.d. random matrix under an unitary transformation. Note, the DF of € in (2.6)
is N 4+ M, while  of the general Weichselberger model in (2.3) has DF equal to NM.
The small number of DF explains the deficieney-of the Kronecker model as described
above and is mainly due to. thelack of modelling the cress-corréelation between transmit-
ter and receiver sides. In the following, we will develop a channel representation which

takes the Kronecker, Weichselberger-and canenical‘model as special cases, and is useful

for reduced-rank processing. gj/*f“fﬁ\%
I~ 4

2.3 Channel Representation

An N x M matrix H always admit thé singular value decomposition,(SVD), H = UAVT,
where U is an N X N unitary‘matrix;nV is an M x M.unitary matrix, and the diagonal
matrix A is N x M with non-negative/entries. When H'is random, its SVD component
matrices are random and depend on the sample (matrix) value of H. As U and V can
be transformed into two predefined unitary matrices Qg and Qt by UP; = Qg and

VP, = Qr, with both transforms P; and P, being unitary, we have

H = QzP;'A(P;)"QL = QrCQT (2.7)

and the only random component is C. For the Weichselberger model, the predefined
matrices are eigenbases of the one-sided correlation matrices while Sayeed’s virtual channel
representation uses the DFT bases.

def

1
Let @3 = [¢1(i,7)], where ¢r(4, j) represents the root spatial correlation between ith

1
and jth transmit antennas. As the M column vectors of ®2 lie in a K7(< M) dimensional

8



subspace, we have

@/ = QrAr, (2.8)

where Qr is an unitary matrix and the coefficient matrix At can be obtained by the
Gram-Schimdt orthonormalization procedure. The above equation implies ¢r(i,7) =
ZkK:Tl M qi (i), where q (i) is the ith element of the kth basis vector, X, is the projection
of the jth column on qj.

Using a similar decomposition for ‘Iﬁ{/ ? leads to

$'? = (QrAr) ® (QrAR) = (Qr ® Qr) (A1 @ Ag),
where we have invoked the identity [18],
(A1 ®@B1)(A; @Bs)+ - (A, @ Br) = (A1As 5 Ag)® (B1By - - - By). (2.9)
From the canonical'tépresentations-vee(H) =@z vec(Hy,), we obtain

vec(H= (Qr @ Q) (Ar & Ap) vec(Hig) CQr @ Q) vec(C). (2.10)

The identity

vec (ABD) = (D" ® A)vec (B) (2.11)

implies vec(H) = vec (Qr€Q1), and so H = QrCQZ which is the same as (2.7).
We summarize the above derivation on the relation between the proposed analytic

model with the Kronecker, Sayeed, and Weichselberger models in

Proposition 2.1. An N x M MIMO channel matrix H, can always be expressed as

H = QzCQL (2.12)

where C is a complex random coefficient matriz, Qr and Qr are predefined unitary ma-
trices. The above model is equivalent to the Kronecker model if the matriz C satisfies the

separable correlation condition

vee(C) = (At ® Ag) vec(H,,) (2.13)



where At and Ar are coefficient matrices that depend on the spatial correlations among
the transmit and the receive antenna arrays, respectively. (2.12) is related to the Weich-

selberger model via
Ur = QrP{, Ug = QrPf (2.14)

PPy = E{CC"}, P{ItPr=FE{C"'C"} (2.15)

where P, Pgr are unitary matrices and IU'r, 't have the same eigenvalues of the matrices
E {HHH} and E {HTH*}, respectively. When the predefined matrices are the same as
Ug and Uy, C has the special form Q ® R. Moreover, (2.12) is equivalent to the virtual
representation of Sayeed if columns of @y and Qr fare. DF'T basis vectors and entries of

C are independent complex Gaussian random variables.

[1] suggested and [25], verified through. field measurements, that, the mean direction
of arrival (DoA) can be.embedded in-the channelumodel by pre-multiplying the channel
matrix H by a diagonal matrix which is a function of the DoA. We can derive a similar
model by invoking the fact that if W is a ;g%}onal matrix with unit modulus entries
and V is unitary then both VW and W~V are also unitary, to obtain the alternative

representation (2.16).

Corollary 2.1. An equivalent ¢hannel matrix for stationary frequency-flat MIMO channel
15 given by

H = QrCQW (2.16)
where QiW = QL and W is a diagonal matriz with unit modulus entries.

Several remarks and observations on the channel models (2.12) and (2.16) are given

below.

R1. The Kronecker model requires that C has the special structure (2.13) while the
Weichselberger, Sayeed and canonical models demand that the entries of C be in-
dependent (but not identical) random variables. In contrast, the proposed model

does not impose any constraint on the coefficient matrix C and is valid for arbitrary

block-faded H.
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R2.

R3.

R4.

The Weichselberger model is perhaps more convenient to generate the matrix chan-
nel H and for evaluating the channel capacity of correlated MIMO channels as the
coefficient matrix has independent entries. It is also useful to analyze MIMO system
performance. However, it is not suitable for channel estimation applications because
the number of parameters, including the unknown eigenbases, is even larger than

that of H.

For practical correlated MIMO channels, which are of particular concern, the entries
of H are not i.i.d. but correlated random variables and H admits reduced-rank
representation. That is, although H is likely to be of full rank, one can approximate
it by reduced-rank unitaryimatrices. (so is the c¢oefficient matrix), ignoring the weaker
eigenmodes. The rank-reduction is most obvieus for.typical urban macro-cellular
environments in which_an MS is surrounded by local scatterers, and waveforms
impending the receive antennas are richly scattered, while the BS is not obstructed

by the local scatterers [6][26]. Appendix A shows that, if the angle spread (AS) A
is not too large, the diagonal maﬁ?gé%v

Wzdla’g [wl,w%"' ,’UJM], (217)

has entries of the form w; = exp [— jQW@ sin qﬁ], d being the inter-element dis-
tance, that bear the/mean AoD.information. "As will become clear later, the sep-
arability of channel correlation and angle information characterizations has some

useful implications.

Given predefined bases Qr, Qr, or Q, the statistic properties of the corresponding
coefficient matrix is completely determined by those of H. Identification of the
unknown channel H is equivalent to the estimation of C or the pair (C, W), which
usually has a lower rank and much smaller number of entries than those of H for
the link environment of interest. Thus, using model (2.12) or (2.16) reduces the
number of parameters to be estimated and enhances the performance. Moreover, as
the bases in both (2.12) and (2.16) are pre-defined, these two models can be easily

extended to time-varying block fading and frequency-selective fading environments.
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R5.

R6.

R7.

RS.

There are several classes of basis functions to choose from. The Taylor and Weier-
strass arguments and the results of [27] suggest the use of polynomial bases. If we
use polynomials of degree P as basis functions in expanding a spatial correlation

function of length P, the corresponding basis matrix P p has entries

P]. . =(G—1Y"1 4,j=12,..., P (2.18)

Z‘?j o

Although the column vectors in (2.18) form a basis, they are not orthogonal. Fur-
thermore, these vectors have different norms, which might result in numerical insta-
bility. By applying the QR decomposition to the corresponding Pp [28], we obtain
an orthonormalized polynomial basis matrix P,. The basis matrices Qs x, and
Qn .k, of (3.2) or Qp , of (3.23) are obtained by selecting the first Kr, K or K,

columns of the corresponding P,.

For a fixed base one needs to-determine the modelling orders, . K and Kg. Ei-
ther the Akaike information criterion (AIC) and the minimum description length
(MDL) approach can be used to deterrr{iééﬁle optimal modelling orders that trade-
off the system complexity and performance [29]. Time domain modelling order K,
discussed in Section IV can also be similarly-determined. Depending on the appli-
cation scenario, these order parameter values can be obtained by an one-shot open

loop estimate or should be periodically.updated.

The model (2.16) is especially useful for channel estimation application because, as
will be shown in the next section, it allows very efficient (in terms of convergence
rate) channel estimation algorithms that iteratively estimate C and W separately,
and, at low SNR’s, the reduced-rank model gives performance superior to that of the
full-rank model. Furthermore, for a small-to-medium AS, which occurs quite often
in cellular downlinks, the extracted AoD information can be feedback for downlink

beamforming.

Our simulation experiments indicate that, when the AS A becomes large, the rank

of C increases and there is no dominant spatial angle. The steering matrix W
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becomes an identity matrix which gives no AoD information and (2.16) degenerates

to (2.12).

R9. The proposed channel representation for single-block frequency-flat MIMO channels,
i.e., (2.16), can also be extended to the cases of time-variant frequency-flat and time-
variant frequency-selective fading channels by properly modelling the time-domain

correlation. These extensions are given in Section 3.2 and Section 3.3 respectively.
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Chapter 3

Model-based MIMO Channel
Estimation

This chapter presents novel schemes:for ‘estimating correlated multiple-input multiple-
output (MIMO) fading channels. Our'schemes are based.on amranalytic correlated block
fading model and its time-variant extension which e€ncompass the popular Kronecker
model and the more general Weichselberger model as special cases. Both static and time-
variant models offer compact representations of spatial- and /or-time-correlated channels.
When the transmit antenna array is such thafg:@f% associated MIMO channel has a small
angle spread (AS), which occurs quiteoften in a cellular downlink, éur models admit
reduced-rank channel representations. They also enable us to develop effective estimators
and provide compact channel state information (CSI) descriptions which are needed in
feedback systems and for many post. channel estimation applications. The latter has
the important implication of reduced feedback channel bandwidth requirement and lower
post-processing complexity.

We propose iterative algorithms for estimating static and time-variant MIMO chan-
nels. The proposed models make it natural to decompose each iteration into two succes-
sive stages that are responsible for estimating the correlation coefficients and the signal
direction, respectively. Both spatial- and time-correlated fadings are considered. The
mean-squared error (MSE) performance of our estimators are analyzed as well. Using
popular industry-approved standard channel models, we verify through simulations that
our algorithms yield offer good MSE performance which, in many practical cases, is better

than that achievable by a conventional least-square estimator.
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3.1 Single-Block Based Channel Estimation

In this section we consider estimation schemes which are based on a single block of ob-
servation without taking into account the (time-)correlation among blocks. We propose
two iterative schemes in which an iteration consists of two phases. The first phase is
responsible for the estimation of the coefficient matrix, C, while the directional matrix,
W in (2.16), is estimated in the second phase. Both tentative estimates are updated as
one proceeds with each new iteration until the stopping criterion is met. The two schemes
differs in the second phase only.

Consider the M x B matrix X = [x1,Xg, -, Xp] formed by B length-M input symbol
vectors, where B > M. Assuming H remains static during a B-block period, we express

the received sample block, ¥ ="[y1,y2, - ,¥y5| as
Y = HX + N, (3.1)

where N = [ny,ng, -\ ng| is the correspondingmoise matrix.whose entries are i.i.d.

)
zero mean complex Gaussian random \g;wgables. In estimating H, X is assumed to be
composed of either the pilot wectors or some decision feedback results. Substituting two
known unitary matriees Qrr, and Qu kp, with ranks K#(£.01) and Kg(< N) for Q.

and Qg in (2.16), we want to find the optimal solution’ {Wy,;, C,,:} to the problem
ari i (¥ - @0Q 0 ., WX (3.2

We express the corresponding optimal (least-squares) channel estimate in terms of W,

and G,
Hy = QunCoptQir ey Wopt (3.3)
so that (3.1) can be rewritten as
Y =H,, X + AHX + N “ H,,,X + N, (3.4)

where N represents the sum of the modelling error AHX due to the reduced rank repre-

sentation and the AWGN vector, N.
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To derive an iterative algorithm for obtaining the joint directional and channel solution

{Wpt, Hypt }, we assume that, at the (¢ — 1)th iteration,

Y =H, ;X +AH,_; X+ N (3.5)

where AICIZ-_I def H,,: — }AIZ-_l is the residual error at the end of the (i — 1)th iteration,

and consider the estimation of the channel (coefficients) and AoD in two separate phases.

3.1.1 Phase I - Coefficient Estimation

Assume that the directional matrix in this phase is optimum, i.e., W = W, . From

(3.1) and (3.3), we have
vec(Y) = {(W@X)"Qir xr) ® Qu,rcy, y Vec(€) vec(N). (3.6)

Substituting the definition Z ' 4 (WeerX) T Qut ) © Qv 10804(3.6), we have the LS
solution
vec(C) = (ZHZ)_leﬁ@(Y) P (W) (3.7)
v

2%
%\4.{

While the optimal directional matrix ‘estimate is not available, we replace it by the tenta-
tive estimation from the previous iteration, W,_;. Vec(a) is then/obtained by computing
F(W,_1) instead, and the.corresponding tentative estimate is denoted by 62 Initially,

we can arbitrarily set Wy to be aniidentity matrix.

3.1.2 Phase II - Direction Estimation

Similar to Phase I, we begin with the assumption that the coefficient matrix in this
estimation phase is optimum. The directional information is to be obtained by estimating

a diagonal matrix W with unit modulus entries; see (2.17). Setting

de
&/ QNyKRCOPtQ?\—‘/[,KT <3‘8)

and invoking (3.3), we have IjI,-_l = Gwi_l. As C,,; is unavailable, C,, is replaced by
the previous estimate (A]Z-_l in computing G during the ith iteration. In the following, we

propose two algorithms to estimate the phase of the unit modulus diagonal entries of W.
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3.1.2.1 Algorithm A - Maximum Matching Output

To estimate W, in diagonal form, we start with the following lemma whose proof is given

in Appendix B.

Lemma 3.1. For two matrices A and B of size N x M and M x E respectively, and an

arbitrary vector ¢ of size M x 1, the following identity holds.
vec(A - diag(c) -B) = [(1; @ A) © (BT ® 1y)] c, (3.9)

where “diag” denotes the diagonal operation used to translate a vector into a diagonal

matrix, with its diagonal terms being the _elements of the original vector.

Combined with matrix ‘G defined in (3.8), (3:4) is rewritten as
Y = GW,; X + N. (3.10)

Let Wyt be the column vector that consists of the diagonal elements of W, i.e., Wy (1) =

W ot (2, 7), for angel < ¢ < M. Then, by’%ﬁﬁnma 3.1, we have

vee (V) =([(1g @ G) & (X" @ 1y)] wo,: + vee (N) (3.11)

and the LS estimate of Wy, is given by wis = T'T-vec(Y )gwhere [(13 ®G)©® (XT ® lN)} =

T.
In order to extract the steering vector w, we introduce v(6) < [1,0(0),...,0M71(8)] T
where v(0) = exp [—j27%sin(f)]. The AoD information ¢ is retrieved by maximizing the

matching output

o~

é = arg max Re{P(st)HV(e)}, (3.12)

—r<O0<mw

where P(+) is defined by the following phase extraction operator,

P ([aoejbo’ alejbl, . ’aKeij]) d;f [1’ ej(b1—b0)’ . ’ej(bK_bO)]’

for {a;}5, € R* ™ and {b;}}<, € [0, 27). (3.13)

Once ¢ is available, it is straightforward to obtain W = diag(v(¢)). Solving (3.12) over

[0,27) can be accomplished by using the conventional line searching algorithm.
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Computing wpg in (3.12) involves a pseudo-inverse operation of matrix T, and is thus
computational expansive. Thanks to the special structure of T, a training matrix with

orthogonal rows can be used to bypass the calculation of pseudo-inversion. Note that
TT = (BG"G)o (NX*XT), (3.14)

the right-hand side of (3.14) will become a diagonal matrix with nonnegative real elements
if X*X7” = BI. Such an orthogonality is guaranteed provided that the optimal training
matrix for LS estimator is used [7]. Under the assumption of orthogonal training matrix,

we have

P (W.s) = P (T vee(Y)) = B (T vec(Y)) € P (%LS> , (3.15)

where wrg doesn’t require thescumbersome matrix inversion. The AoD information can

thus be obtained simply by substituting W g for Wigdn (3.12).
3.1.2.2 Algorithm B.- Root Finding Method

An alternative way to find the optimal ph}f\%}g toconvert (3.12) into a root finding

problem. Note that the elements of Wy are%\’;of“geometric progression, i.e., they form a

row vector of a Vandermonde matrix: Henece if wedefinesthe correlation polynomial

Plz) D P(w,s) 2 — M, (3.16)

M—l]

where z = [1,2,...,2 and let"Z be thesset-of its zeros in the complex plane, then

solving (3.12) is equivalent to

~ : ~ [ —Arg{Z}A
_ _ _ 1
7= argmin |(|]z] —1)] and ¢ = sin ( 5d ) (3.17)

—~

and the directional matrix is reconstructed by W = diag(z), where z = [1,2,--- ,2M~1].
Unlike Algorithm A whose solution accuracy relies on the resolution the numerical search
algorithm used, this algorithm gives the exact analytic solution once (3.16) is solved. Sim-
ilar to Algorithm A, v:ng can be substituted for wyg in (3.16) to simplify the computation.

Since the object function in (3.2) is jointly convex with respect to C and W and

the proposed algorithms have the form of a nonlinear Gauss-Seidel algorithm, the con-

vergences of our algorithms are guaranteed [30]. All the simulation examples reported
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in Section 3.2 converge and achieve the theoretical performance lower bound derived in
Section 3.4.

The computation complexity of the proposed algorithm is dominated by the LS oper-
ations in Phase I. The flop count of the LS operation in Phase Iis O(BK?), K7 < M
while the conventional LS estimator needs O(BM?) flops [31]. The complexity of Phase
II is mainly contributed by the product of T and vec(Y), and is in general much less
than that of Phase I, thanks to Eq. (3.15) and the special structure of T. Therefore,
the total complexity of the proposed algorithm is less than that of the conventional LS.
Moreover, except for static channels, the estimates for both W and C need to be updated
periodically. Let each B—symbol interval be called an estimation interval (EI). Since the
mean AoD usually change'much slower thanthe channel coefficients (gains) variation,
updating frequencies for Wrand C can.and should be different, i.e., if the two estimates
are updated every L' and T*-Els. respectively, then 77 3 T¢ (see Fig. 3.8 of Section
3.5). This dual updating frequeney option is unique to our approach and implies that
Phase II may be disabled most of the tlgff% whilePhase Ineeds single iteration per update
EI, hence our algorithm can be computatlonal more efficient than the conventional LS
approach for many non-static channels.

The major advantage of our ¢hannel model and estimator lies not only in the computa-
tional efficiency of the channel estimator but also inthe’compactness of CSI representation
which is needed in a feedback ‘system and that of post processing operations. As men-
tioned in R3 and R4 in the previous chapter, a small Kr is often sufficient to accurately
describe a MIMO channel with high transmit spatial correlation. For any post channel es-
timation operation associated with H, e.g., taking pseudo-inverse or eigen-decomposition
of H, the computing load is reduced as it involves the K x Kr coefficient matrix and

the estimated AoD instead of the original N x M channel matrix.

3.1.3 Order Determination for Block-Fading Channels

The remark R4 in Chapter 2 tells us that we can choose to use low-rank bases to closely
approximate H provided that the modelling orders K and Kg are properly selected. We

use Akaike information criterion (AIC) to determine the optimal modelling orders as it
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tends to give robust and reliable results, especially for small sample size. Taking into
account the proposed channel estimator, the AIC-based order determination scheme is
given by [29],

RSSk, kx

[Kr, Kp] = arg 1<K7<M, 1n<KR<NN10g ( N

) +2(KT—|—KR). (318)

where RSS, r, is the squared error of (3.2) associated with the modelling orders K
and Kg. Instead of using the instant sample error, we can use the time-average squared
error in calculating the AIC solution to obtain a more reliable estimate.

Since the channel statistics varies much slower than the instantaneous channel strength,
the update period of the modelling order is much.longer than that of the instant channel
estimate; reducing the overhead required by order-estimation. Similar order determination
scheme can be used to estimate the modelling order for.time-correlated fading channels,
provided that RSSg, k, 0of (3.2) is calculated using the time-correlated model (3.24) given
in the next section and the frequency=selective case(3.38) discussed in Section 3.3. More-
over, the optimal time domain modelling or(}/ea,*gan also be determined by incorporating

=
K, discussed in the next section into the deg??ees of freedom in AIC’s formula.

L

3.2 Channel Estimation with-Time Correlation Con-
sideration

We now extend our investigation to/the casethat considers the time correlation among
blocks. Similar to our spatial modelling approach, we use a set of orthonormal basis
functions to describe a snap shot of a fading channel’s time domain behavior. We assume
an equally spaced pilot-block arrangement. The issue of the optimal pilot arrangement
that minimizes the MSE or bit error rate (BER) was addressed in [12] and [32].

Assume the two leading pilot symbol vectors of two consecutive pilot block is T symbol

intervals away. The receive signal block at time n’I" can be written as
Y,=H,X,+N, (3.19)

where Y,, = Y(nT') and X,, = X(nT') are the N x B receive matrix at time n7" and the

corresponding M x B transmit block, respectively. H,, is the N x M matrix whose (i, j)th
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entry represents the link gain between the ith transmit and the jth receive antennas at
time n7T'.

We consider the time-variant behavior of a MIMO channel within a fixed observation
window of L blocks (EIs). The received sample blocks from n7T to (n + L — 1)T can be
cascaded into the matrix

def
Yn,L = [er Yn+1> cee aYn-‘rL—l] . (320)
Using (2.11), we obtain
vee(Yo,) = (X5, @ Iy) - vec (H, 1) + vec (N, 1) (3.21)

where vec(H,, 1) «f [vec(H,,) e .Vec(Hn+L_1)T]T, vec(N,,.1) «f [vec(N,,)7, .. .vec(Nn+L_1)T]T,

and .
X, 0
X7} der—p0 Xy
0 Oulll _QGNXTP,

Substituting (2.12)for each H,, and ass%;;%g theeigenbases Qp and Qg remain invariant

during an estimation period, we obtain =«

VeC(Hn’L) = (IL (%9 QT ® QR) Fn,L- (322)

Each component of theweetor I',, 1 = [V, Ynt1, - - ,%JFL_l]T is itself an (N M) x 1 column
vector vy, = (fyln, Yons N NM)n)T that.represents the complex fading coefficients for all
NM MIMO subchannels at time n7" and, vy, 1 < p < NM, are independent.

The stacked vector, v(p) = hpn, Vp(n+1)s ,vp(nJrL_l)]T, represents a finite-duration
sample of the complex random process associated with the pth subchannel [25]. Such a
process can also be expanded by a set of smooth functions [8, 33|, and thus its estimation
can be obtained by using a method similar to that developed in the previous section.
Similar to the approach used in Section 2.2.3, we can first apply the orthogonal transform
v(p) = Qrby,, where Q, is an L x L orthogonal matrix, and by, is the transform domain
coefficient vector. Then, the time domain channel correlation can be approximated by

using the reduced basis matrix Qr x,

v(p) ~ QrLk,Cpn, and Ty p ~ (Qrk, @ILmn) - Ceoets (3.23)
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where K7, denotes the time domain modelling order, and c,, is a K, x 1 coefficient vector.
By using (2.16), (3.22) and the approximation (3.23), we decouple the signal part of

(3.21) into the product of two modelling domains - space and time domains

VeC(Yn,L> ~ (Xz;L X IN) [QL,KL X (WTQT) ® QR} Ceoef

~ (X 9Iy) [Qui, @ (WTQr i) @ Qrkp) Ceoet

def (((WLXn,L)TQT,KT) ® QRvKR) Cooof (3.24)

where W = (I,@W), QT,KT &

Qr.x, ®Qr Kk, and Qr x, and Qg g, are composed of
K7 and Ky column vectors of Q and Qg, respectively. W is the steering matrix defined
n (2.17). Since the mean AoD usually varies slowly with respect to a sub-channel’s
coherent time, we assume that W' remains-the same during.a period of L data blocks.
Similar to the narrowband médel (2.16), we do not impose the.implicit Kronecker structure
and Gaussian assumption on €qocf-

As (3.24) can be obtained by replacing X, Y, W, vee(C); Qs kp, and Qu k,, in (3.6)
by X, Yo, WL, Ccoef, QT Ky, and Qg we conclude that both spatial and time
correlations can be deseribed by similar modef%’ Hence, the two-phase iterative estimation
scheme developed in Seéetion 3.1 can be extended to estimate the coefficient vector Ceoer,

and the directional matrix Wy in'(3.24). 'In the following, we descxibe two-phase channel

estimation schemes with time correlation consideration.

3.2.1 Phase I - Coefficient Estimation

Following an argument similar to that used in Section 3.1, we assume that the directional

matrix W is optimal in the coefficient estimation phase and define
A <(WL optXnL) QT,KT) ® QR,Kp- (3.25)
The LS estimate of C.oef 1S
Ceoet = (Z1Z) ' ZHvec (Yor) € F(Wp o), (3.26)

which is a function of the optimal directional matrix Wy ;. At the ith iteration, since the
optimal directional matrix is not available, the tentative estimation, Wy ;_;, is substituted

for WL,opt-
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3.2.2 Phase II - Direction Estimation

Similar to the single-block based case, we propose two AoD estimation algorithms. Again,
we assume the optimal coefficient vector is available, i.e., Ccoer = Ceoet,opt, When estimating
the directional information.

Define a new matrix G = QR7KRécoef7oth,1T1’KT, where écoeﬁopt is a Kp x KKt
matrix derived from €eoctopt DY Ceootopt(is 7) = Ceoctopt (Kr(j — 1) +1), 1 < i < K, 1 <

7 < K Kp. We rewrite the received matrix in vector form

vec(Y, ) = vec (éWLXn,L> + NH,L

- (XQL ® é) vee(I, ® W) + N,, 1, (3.27)

where Nn 1, represents the sum of the modelling error-associated with G and the AWGN

term N, 1.
3.2.2.1 Algorithm/A - Maximum Matching Output

If W is constrained to be a diagonal maﬁr\;ﬂx*%i.e., W = diag(w), then I; @ W = diag(1, ®
¥ <

w) and therefore g

vee( Yy ) = vee (é - diag(1ly &w ) XmL) 4+ N, L. (3.28)

From Lemma 3.1, we have

vec (é -diag(1l, @ w)) - Xn,L)

- ((1BL ® é) O (X5 1N)) (1L @ Ly)w < Tw. (3.29)

Similar to Algorithm A presented in the previous subsection, the LS estimate of w, is
Wig = Tt . vec(Y,, ). To improve the estimate and reconstruct a steering vector w,
we analogously define a steering vector v(6) [1,0(0), - ,UM_l(G)}T, where v(f) =
exp(—j2r4sin(f)). The AoD information o can be retrieved by

~

¢ = arg max Re{P(w.s)"v(0)}, (3.30)

—m<O6<mw

where P denotes the phase extraction operator defined by (3.13). Having obtained QAS, we
then proceed to compute W, = I @ V(¢), where V(¢) = diag(v(a)).
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Also, the pseudo-inverse operation TT is not necessary if orthogonal training matrix is
used for X,,, i.e., X,,XH# = BI for each n. Following the discussion given in Section 3.1.2,

for orthogonal training matrices, we have

P(T - vee (Ynr) ) = P(TH - vee (Ynr) ), (3.31)

and W can be replaced by Wpg in (3.30).
3.2.2.2 Algorithm B - Root-Finding Method

The root-finding approach for the block fading case can be used as well. It is easy to
see that (3.30) is equivalent to searching for the root of the correlation polynomial P(z)

which is the closest to the unit circle, i€,
z = arg mindjjz| < 1|p=subject to P(z) = P(w.s)?z2-<M =0 (3.32)

and then retrieving thesAoD information from z = exp [— j27r§ sin(g/b\)]. The directional
matrix is to be reconstructed by V/\\fL =I;® eﬁi 7)swhere 7z =[1, 2, .wm M1, Also, for
orthogonal training matrices, w s can be sub%:ti;uted for. wr g to skipsthe pseudo-inverse
computation.

The total complexity per bloek of the proposed algorithmy like the single-block based
case in Section 3.1, is smaller than that.of the conventional LS estimator. Given a fixed
iteration number, the flop count of the propesed algorithm is decided by Phase I and is of
the order O(BKZL), while the conventional LS estimator needs O(BM?L) flops. Thus,
we can save the computational complexity up to the ratio Z—% Moreover, if the operating
scenario allows the use of the dual updating frequencies option and 7} < T, the total
complexity can be reduced further. For slowing time-variant channels, the required time
domain modelling order, K, is small, the number of channel representation parameters is
reduced from LM N to K K1 Kr+1. Such a reduction yields compact CSI representation

and benefits many post channel estimation operations involving H, as was discussed at

the end of last section.
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3.3 Channel Estimation for Frequency-Selective Time-
Varying Fading Channels

For estimating a correlated frequency-selective time-varying fading channel, approaches
used in the previous sections are extended to accommodate frequency-selective character-
istics. Assume that the power delay profiles for the sub-channels between transmit and
receive pairs are independent but of the same form. With a sampling interval of T, the

receive signals at time nT" can be written as

D—-1
Y, =Y HYX?+N, (3.33)
d=0

where Y,, = Y (nT) is the N x.B receive vector at,time nT, X = X(nT —dT) is the
M x B transmit block, atitime (#—[)T', and B denotes the length of training block. H!
is the N x M matrix whosé (i, 7)th entry represents the fading coefficient of the dth delay
path, at time nT for the channel-between thewth transmit and 7th receive antennas.

In the estimation ofithe time-variant fading/MIMO channel, an observation window
is included to take into account the ch @T‘ variation. For an observation window of size
L, the stacked receive sample vector from ‘time n1 to (n + L'~ 1)1 can be expressed as

def

Yn,L N\ [Yn7 Yn+17 00 o 7Yn+L—1] . (334)

Applying (2.11) to the stacked wersion of (3.33), we'have

vee(Yo ) = (X5, @ Iyv) - vec (H, 1) + vec (N, 1) (3.35)

where

vec(H,. 1) = [Vec(Hn)T, Vec(Hn+L_1)T]T,

vec(H,,) = [VeC(HSLO))Ta e aVeC(HgD_l))T}Tv

vec(N,, 1) = [vec(N,,)7, Vec(Nn+L_1)T]T,
and

XO7 o X 0
X7, < 0 X0, X
. 0 X0 T T

n+L—1 »“¥n+L—1
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Substituting (2.12) for each H,, and assuming the eigenbases Qr and Qg remain invariant

during an estimation period, we obtain

vec(Hy, 1) = (Inp ® Qr ® Qr) T 1. (3.36)
T T T T
Each component of the vector I, = [7&0) e ,%D_l) R ,”y,(gL_l ,r 7%(5;1_)1
is i (d) @ (@) @ \'
is itself an (NM) x 1 column vector v, = ( s Vom st ’V(NM)n> that represents the

complex fading coefficients of the dth path for the pth MIMO subchannel at time nT,
pef{l,2,--- ,NM}, and d € {0,1,---,D — 1}.

The stacked vector, v(p) = @ D D Trr nts a finite-duration

e stacked vector, ¥(p) = | Vo s Vps1ys > Vpmir—1y| - represents a e-duratio

sample of the complex random process associated with the dth delay path which has a
fixed Doppler spectrum [25]. Such a proeess can also be expanded by a set of smooth
functions [33],[8], and thus its estimation can be obtained by using a method similar to
that developed in the prévious section. Similarly, as described in-Section 2.2.3, we can
first apply the orthogonal transform-7(p) = Q Lb,(ffl), where-Qy is a full-rank orthogonal
matrix, and bl(fr? is thestransform domain c?@ﬁcient. Then, the time domain channel

o
correlation is approximated in the following équation by using the reduced bases matrix

QL7KL7
v(p) = QL,Kch(Jlr)w and, Ly & (Qiuy ©@dp 1 )4 Ceoer, (3.37)

where K, denotes the time domain medelling order, and cz(fr? is a K, x 1 coefficient vector.
By using (3.35), (3.36) and the approximation(3.37), we decouple the signal part of

(3.35) into the product of two modelling domains - space and time domains

vee(Y, ) =~ (XiL X IN) (Ip ® Urs ® Ur) (Qr,x, @ Ipan) Cooet

= (X5 9Iy) [(Qur, ©1p) © (W'Qr k) © Qrokg) ]| Ceoct

Y (((WDLXn,L)TQT,KT) ® QR,KR) Ceoct (3.38)

de ~ de ~
where Wpy, 2 (ILp@W), Qr.x7 = Qrx, RIp®@Qr K7, Ceoet = (I, p @ P @ PR) Cooe-

W is the steering matrix defined in (2.17). Since the mean AoD usually varies slowly with
respect to a sub-channel’s coherent time, we assume that W remains the same during a
period of L data blocks. Similar to the narrowband model (21), we do not impose the

implicit Kronecker structure and Gaussian assumption on Ceoef.
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As (3.38) can be obtained by replacing X, Y, W, vec(C), Qux,, and Qu i, in
(3.6) by X0, Yoz, WoL, Ceoef, QT,KT, and Qg x,, we conclude that both block fading
and time variant frequency selective fading channels can be described by similar models.
Hence, the two-phase iterative estimation scheme developed in Section 3.1 can be extended
to estimate the coefficient vector €.oef, and the directional matrix Wpy in (3.38). In the
following, we describe a two-phase channel estimation approach for frequency-selective

time-variant MIMO fading channels.

3.3.1 Phase I - Coefficient Estimation

Following an argument similar to that used in Section 3.1, we assume that the directional

matrix Wpy, is optimal in the coefficient-estimation phase and define

/4 ((WLD opt XL QT,KT) ® Qrk - (3.39)

The LS estimate of Ceger is

Ceoet = (ZHZ) T yec () < B (OW L ) (3.40)

J\/[

vn«

which is a functienrof the optimal dlrectlonal matrix Wpp opi. Atsthe ith iteration, since
the optimal directional matrix is not available, we substitute the tentative estimation at

(¢ — 1)th iteration, Wiy py 2, fotm W p o
3.3.2 Phase II - Direction Estimation

The two AoD estimation algorithms established in Section 3.2 can be directly extended
here for wide-band MIMO channels. Again, we assume the optimal coefficient vector is
available, i.e., Ceoef = Ceoef,opt, When estimating the directional information.

Define a new matrix G = Qgr, KRécoef7oth%7 Koy where écoeﬁopt isa Kpx DK Kt ma-
trix derived from €eoetopt bY Ceoctopt(is ) = Ceoctopt (Kr(j — 1) +i), 1 <i < Kp and 1 <

7 < DK Kp. We rewrite the received matrix in vector form

vee(Y 1) = vec (éWDLXn,L) +N,, = (XTL ® G) vee(Ip, ® W) + N/, (3.41)

where N7, ; represents the sum of the modelling error associated with G and the AWGN

term N, 1.

27



If W is constrained to be a diagonal matrix, i.e., W = diag(w), then Ip, @ W =

diag(1p, ® w) and therefore

vec(Y, 1) = vec (6} -diag(1lp, @ w) - Xn7L> + N1 (3.42)
From Lemma 3.1, we have

vec (é -diag(1lp, ® w)) - XmL) = <<1BL ® é) ® (XZL ® 1N)> (1pp @ Iyy)w

Y Tow. (3.43)

Here, we can extend the proposed two direction estimation algorithms developed in
Section 3.2.2 to extract the AoD information for frequency-selective channel, simply by

replacing the T in (3.29) with Tp in the above equation.

3.4 Performance Analysis

In analyzing the MSE performance

¢ {||H - ﬁ||§} LE {||vec(H) b, vec(ﬁ)ng} . (3.44)
of the proposed H wepfirst make the optlmlsﬁi%esssumptlons that the eptimal orthogonal
pilot matrix [7] for conventional LS chanuel estlmator is.used and thesdirectional matrix
estimate W is perfect.

Notations

For notational simplicity and‘whenthere is no danger of ambiguity, H and W in this
section denote the channel and diréctional matrices of (3.1)/(3.2) or (3.21)/ (3.24) for
single-block based or time-correlated based estimators, and X,, represents X in (3.6) or
X, in (3.24). Furthermore, Qr and Qg denote either the modelling bases Qs x, and
Qn kp, in (3.6), or QTJ{T and Qg i, in (3.24).

Then (3.44) can be expressed as
(X W) = E{|lvec(H) - vec(QuCQIW)|3}
= FE {||VeC(H) — ¥Q,vec(HX, + N)|3} (3.45)

where ¥ Y (W7 Q1) ® Qr and Q. 2 (Z#Z)~1ZH, Z being the LS estimate of Z defined

in 3.1.1, i.e.,

N
||<h

“(WX,)TQr) @ Qu (3.46)
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As HX,, and N are statistically independent, the MSE can be separated into two terms
which are contributed by modelling error (reduced-rank basis matrices) and AWGN, re-

spectively.

(X W) = E{[jvec(H) — Q. vec(HX,)[5} + E {|| TQ.vec(N)|3}

= (X, W)+ 6,(X,, W), (3.47)

Define the following projections

de * * — * *
Pw “ [WQu QWX X"W'Qp) 'QIWX:X"] © QrQ}

Pw “ [W'Qr(QfQr)'QfW] © QrQf.
The first term on the RHS of (3.47) becomes
on(Xpt W)= E|[(I — Pw)wee(F)|;
= (L= PYI(I “PYIR, )

= D DT - Byt l3 (3.48)

where Ry, = E {vée(H)vee(H)" | is the g \})%nel cotrelation matrix and f;, is R),’s eigenvec-
tor associated with the eigenvalue A\, A Ay > > Ay: X being the degree of freedom of
H. For the single-block based case, ="M and-it-is-equal to NM L when the estimator
considers the time correlation efféct. (3.48) is valid since/the orthogonal training matrix
X, is used. Let 1 < K"< x be the rank of the dominant signal subspace of the channel
covariance matrix. Then Ry, = )" )X dhifi’ o Zle Mefi £ with Ay < 1for K < k < x.
Since [|(I — Pw)fi[|2 < 1, we have 3% Mel[(I— Pw)fill3 < 305 M < 1. Let the
compound modelling order K, be equal to K7 K and K Kg K, for the two cases under
investigation. If K is chosen to be larger than K, the rank of R, i.e.,, K < K, <y,
and the basis matrices Qr and Qg span the dominant signal subspace of Ry, then the
matrix Pw is a projection operator whose range lies mostly in the space spanned by
{f,},1 < k < K and we conclude that ||(I — Pw)f|? = Pwfel? <1, for 1 <k < K.
Therefore, the modelling error ¢, is negligible in this case. On the other hand, if the
modelling order is not enough to span the signal subspace, there is under-modelling error

contributed by those non-negligible terms Ay ||(I— P )f;||2 which will dominate the mean

squared error when the AWGN is small (high SNR region).
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As for the MSE due to thermal noise-the second term on the RHS of (3.47), we can

show that

No

N,
en(X,, W) = E { | @P.vec(N)| 2 }—tr( OPW> = 5 K., (3.49)

where we have invoked the facts that (i) the training signal X, and the noise N are
independent, (ii) unitary pilot matrix is used, X*XT BI and (iii) elements of N is i.i.d.
complex white Gaussian noise with variance o2 = Ny. (3.49) implies that thermal noise
induced MSE can be reduced by using a small modelling order. In Section 3.5 (Figs.
3.3 -3.5), we find that this noise-reduction effect is significant in low SNR environments
where thermal noise dominates the MSE performance while the modelling error of (3.48)
dominates in high SNR region.
If W is not perfect and, W.= W + AW, then

A~

7Y 7+ A7 2L (WX Q1) S Qr¥ (AWX,) Q)R Q. (3.50)

The coefficient vector éstimation vec(C) can %@‘pproyumated up to the first order of AZ
/x

II:'

as [34]
vec(C) ~ vec(C) — Z' AZvec(C) + Zlveée(N) + (Z¥Z) TAZ" Piyde(N) — ZTAZZ vec(N(3.51)

where Py =1 — Z(Z"Z)~'Z. Thewabove equation indicates that, besides the terms that
have to do with the noise N, the coefficient vector estimation error is determined by the
projection error AZ. Hence, when the projection error AW is small (and thus AZ is

small), Vec(a) is a good approximation of vec(C) at high SNR region.

3.5 Numerical Results and Discussion

Simulation results reported here use the reference MIMO channel model [2], the IEEE
802.11 TGn channel model [3], and the SCM model [35]. The former two are stochastic
models whose spatial correlation matrices are generated by the power azimuth spectrum
(PAS) at the BS and MS, respectively. The SCM model generates the channel coefficients
according to a set of selected parameters (e.g., AS, AoD, AoA, etc.). It is a popular

parametric stochastic model whose spatial cross correlations are functions of the joint
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Figure 3.1: MSE performance of Algorithm Bas a function of SNRiwith different modelling
orders; solid curves:' AS=2°; dotted curves: AS=15°.
distribution of the;AeD at the transmit§ide and the AoA'at thereceive side. We assume
that the environment surrounding MS is rich scattering with negligible spatial correlations.
Hence, a full rank basis matrix is used to characterize the spatial correlation at the receive
side. Other assumptions and conditions used in ouf gimulation are: (i) the antenna
spacings at transmit and recéive arrays are both 0.5\, (i) an orthogonal pilot matrix is
used, (iii) 10 iterations are used for all simulations (although in most cases convergence
occurs in less than 3 iterations), and (iv) SNR (E,/Np) is defined as the average signal to
noise power ratio at the input of each receive antenna, (v) orthonormal polynomial basis
matrices are used. Both algorithms compute H by substituting the final result of Phase
[estimated coefficient matrix C-and that of Phase II-W-into (3.3).

Solid curves in Fig. 3.1 are the MSE performance of Algorithm B in Section 3.1 for an
8 x8 MIMO system with A = 2° and are based on the channel model of [2]. The channel is
a block fading channel with an approximated rank of two. Since the BS spatial correlations
are high, the corresponding correlation function lies in a low-dimension subspace so that a

small K is sufficient to describe the channel. Dotted curves in Fig. 3.1 show the system
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Figure 3.2: The effect of the modelling-order on Algorithm B’s MSE: performance in a
channel generated by the model.described in [1].-with AS=2°.
performance when A =:15°. It is obvious thaf as A increases, the spatial correlations
among the transmit antennas elements decrease and a higher modelling order is necessary
to describe rapid-changing spatial waveforms at the transmittér/side. However, as can
be seen from Figs. 2-5, an eptimal K1 exists for any given SNRand A; increasing the
modelling order does not necessary improves the channel estimator’s performance. As
expected, we find that modelling errors dominate the MSE performance when SNR is
high. Such a behavior is consistent with what the performance analysis given in Section
3.4 has predicted and is similar to those observed in other model-based approaches [9]-[13].
The MSE performance of Algorithm B of Section 3.2 for a time-correlated fading
channel [2] are depicted in Fig. 3.2 and Fig. 3.3 using an observation window of 12 Els
and f;Ts = 0.031772 or 0.015886. Similar to the single-blocked based case (Fig. 3.1),
the processing dimension (K7) can be drastically reduced provided that either the spatial
or time domain correlation is high enough. Performance degradation occurs when the
modelling order is not large enough to capture the channel characteristics. In Fig. 3.4,

we compare the theoretical MSE derived in Section 3.4 with the simulated performance
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Figure 3.3: The effect 'of modelling order-on Algorithm B’s MSE performance in a channel
generated by the.model described in [1] with AS=15° and f,7,=0.031772.
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Figure 3.4: Comparison of theoretical and simulated MSE performance of Algorithm B in
a channel generated by the model described in [1]; AS=15° and f,;7,=0.031772.
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and find that the latter is very close to the theoretical bound which assumes a perfect
W. When used for estimating other reference channels, the proposed estimators exhibit
similar performance behaviors. Fig. 3.5 depicts the MSE performance in an IEEE 802.11
TGn channel [3] with L = 12, A = 15°, and f,;Ts = 0.0022, while Fig. 3.6 shows the MSE
performance in a 3GPP-SCM channel [35] with L = 12, A = 15° and f;7s = 0.02844.
When K7 is large enough, the time-domain modelling order needed to characterize a slow
fading channel like the IEEE 802.11 TGn channel is smaller than that for a fast fading
SCM channel. Note that in all cases, the performance becomes independent of the AS
when the full modelling order is used (i.e., K7 = 8) and is equivalent to that of the

conventional LS approach.
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Nor nal i zed Mean Squared Error
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Figure 3.5: The effect of the modelling order on the MSE performance of Algorithm B in
a channel generated by IEEE 802.11 TGn channel model A; AS=15°, and f;7T, =0.0022.

The next two numerical results assume that the algorithms developed in Section 3.1
are used and, except for Fig. 3.8, the same channel model as that used for Fig. 3.1.
Fig. 3.7 compares the MSE performance of Algorithms A and B developed in Section
3.1 when A = 15°. If the maximum matching output is obtained by selecting the best

one from the outputs using 100 candidate phases uniformly distributed within [—,7),
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Figure 3.6: The effect/of the modelling erder«(K 1 )-on the MSE performance of Algorithm
B in a 3GPP-SCM. channel; AS=15° and f,7,=0.02844.
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Figure 3.7: MSE performance comparison of Algorithm A (——) and Algorithm B (—);
AS=15°.
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Algorithm A and Algorithm B give almost identical performance. However, if only 20
candidate phases are used, Algorithm A results in a little performance degradation with
respect to that obtained by Algorithm B when SNR is high. Fig. 3.8 examines the MSE
performance when W is updated with different EI lengths for various channel settings.
Smaller performance loss results if the channel is more static or less dynamic (smaller
faTs). When Kp > 3 for channel 1 and KT' > 2 for channel 2, the performance loss is
negligible for all the update frequencies. Recall that more computation saving is obtained

by a larger T)*. It is clear that our reduced-order modelling approach outperform the

Ey

o when a proper Kr is used.

conventional LS estimator for most
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Figure 3.8: The effect of the update period on the MSE performance of Algorithm B.
Channel-1 is based on [2] with f;7,=0.015886 while Channel-2 is based on [3] with f,T, =
0.0022. AS=2°, T¥ = 1; both T¢ and T’ are measured in Els.

Fig. 3.9 and 3.10 illustrate the MSE performance when the target MIMO channels
are time-variant and frequency-selective. We use Algorithm B developed in Section 3.3 to
estimate the instant channel waveform. Fig. 3.9 is simulated under the MIMO channels

generated by [2] where the power delay profile of six independent paths is given by [0, -1,
-9, -10, -15, -20] dB with relative delays of [0, 310, 610, 1090, 1730, 2510} nanoseconds.
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Figure 3.9: The effect/of the angle-spread on the MSE performance of Algorithm B in a
channel generatedsby/the.model-described .in [2];:L =12 and fyTs=0.015886.

Fig. 3.10 depicts.the identification erroriinder the fadings'generated by [35]. In both Fig.
3.9 and 3.10, K =3 is used toaodel the time-domain correlation. Compared with the
frequency-nonselective cases reported above, we can-also reach similar conclusions about

the relationship between the performance trend and_theunderlying modelling order.

3.6 Summary

This chapter presents novel schemes to estimate spatial correlated MIMO fading channels
based on new compact analytic models which can span the spatial and/or time correlation
functions over the dominant signal subspace and provides additional directional informa-
tion. Iterative algorithms are proposed for estimating spatial-correlated MIMO channels.
We then extend our work to model both spatial- and time-correlated link gains associ-
ated with a MIMO channel and derive efficient estimators when the time-correlation is
taken into account. We simulate the estimators’ performance in various popular industry-
approved and standardized channels to validate the accuracy of our model and the useful-

ness of our channel estimators. Numerical results show that in many instants the proposed
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Figure 3.10: MSE performance of Algorithm B invan SCM channel; AS=8° L = 12 and
£,T,=0.02844.

algorithms give superior: MSE performance. ©ur estimators offer tradeoffs between per-
formance and complexitys They ave easily extendable for use in wideband MIMO systems
and are most effective when the channel’s AS is.small, i.e., when the dimension of the
dominant subspace is much gmaller, than full channel correlation rank. Not only do they
offer fast and accurate estimates, give MSE performance improvement due to the noise
reduction effect but, more importantly, also provide compact and useful CSI that lead
to significant feedback channel bandwidth reduction and other potential post processing

complexity cutbacks.
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Chapter 4

Model-Based Eigen-Beamforming

In this chapter, we present a novel transceiver design based on a nonparametric MIMO
channel estimator established in the previous: chapter. Optimal MIMO system perfor-
mance is achieved when CSI is available at bothusites of the communication link. This is
usually accomplishedsby deriving the €Slat the réceiving site and feeding it back to the
transmitting site. /Lo maintain-the promised. system performance, large amount of CSI
must be regularlysupdated at the transmit side through a feedback channel. Providing
channel trackingginformation to the trq?ﬁ‘%mtter either consumes-feedback bandwidth or
increases the feedback delay. By usmg a reduced-order nonparametric MIMO channel
model that characterizes the channel spatial correlations, we are able to reduce the feed-
back requirement while compromising no system performance. We obtain bounds of the
reception mean squared‘error.and feedback information loss that can be used to assess
the system performance. Numeéri¢al and simulation results based on several environment

settings are given to validate the proposed method.

4.1 Modelling of Correlated MIMO Channels

4.1.1 Notations

Boldface upper-case and boldface lower-case letters denote matrices and column vectors,
respectively. Italics denote scalars. R/ and C“*/ denotes the set of i x j real and
complex matrices, respectively. The super-scripts (-)7, (-)* and (-)¥ denote transpose,
complex conjugate, and Hermitian operations, respectively. Tr(-) denotes the trace of a

matrix and det(-) denotes the determine of a square matrix. || X]||z is the Frobenius norm
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of a matrix X, and ||Y || is the 2-norm of a matrix Y. R(A) denotes the range (column
space) of the matrix A. diag(x) is a diagonal matrix with its diagonal entries given by
the elements of vector x, while diag(Y) denotes the column vector whose entries are the
diagonal elements of matrix Y. vec(X) denotes a column vector obtained by stacking the
columns of matrix X into a single vector. Operator ® denotes the Kronecker product. Ix
denotes a K x K identity matrix. [X];; denotes the (7, j)th element of X while [X]z s

signifies that X is an L x M matrix. Operator (z)" is defined as max(z,0).

4.1.2 System Setup

Following the same system configuration used in Chapter 2 and Chapter 3, the base station
(BS) and mobile station (MS) are equipped. with-lincar/arrays of M and N antennas, re-
spectively. Independent datalstreams x(t) = [x1(t), 2(t), 23@), 4>, 2, (t)]" are transmit-
ted at BS at time ¢, where' @ (¢) denotes-the source signal at the mthtransmit antenna. At
the MS, the received baseband waveform-is given by ¥ (t) = [#i(t), ya(£), ys(t), - -, yn ()]",
where y,,(t) is the received signal at the nthﬁ})\%eive antenna at time ¢. For notational
simplicity, we define thié"two M-dimensionalVectors x; = x(iAt) and yy= y(iAt), where

At is the sampling interval.

4.1.3 Nonparametric Channel Modelling

For the convenience of reference, we smmmarize the channel representation proposed in

Chapter 2 as following,

H =~ Qu.i,CQL 1, W, (4.1)

where W is the matrix bearing the directional information, Qs x, and Qu k,, are M x Kr
and N x Kp matrices whose column vectors are the orthonormal bases used to describe
the discrete root power correlations, K and Kr being the associated modelling orders.
Reminding that when the angle spread A at BS is zero and antennas at BS are fully
correlated, the waveform transmitted from the BS MEA can be regarded as a plane wave

with a fixed AOD ¢ and W is therefore equivalent to a diagonal steering matrix,

W = diag ([11, ws, -+, wy)) (4.2)
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where w; = exp |—j27 (i_/\l)d sin(¢)], d is the inter-element distance. On the other hand,

if the angle spread is large enough and the MEA at the BS tends to be fully uncorrelated,
the resulting modelling order K7 used in Qs x, equals M.

There are several classes of basis functions to choose from. The Taylor and Weier-
strass theorem arguments and the results of [27] suggest the use of polynomial regression
estimators. If we use polynomials of degree K as basis functions for estimating spatial

correlation functions of length L, the corresponding basis matrix Py, x has entries

[P]lk:(l_l)k_la l:1a2>"'7L7andk:1>2""’K’ (43)

)

where the modelling order is K < L. Although the column vectors in (4.3) can be used
as bases, they are not orthogonal. Furthermore; thesewectors have different norms, which
might result in numerical instability. By applying the.QR decomposition to P x [28], we
obtain the orthonormalizéd basis-matrices for Qaz g and Qi . -

Another class of candidate basis matricesiis the discrete cosine transform (DCT) ma-
trices. The reasons for using DCT are twofold. <Firstly, DCTis very good at energy
compaction for mest correlated sourcessespecially for Markoyv seurces with high correla-
tion coefficient. Furthermore; the'channel correlation matrix Ry defined in (4.11) below
tends to be a toeplitz matrix, which can bé approximately diagonalized by DCT. Sec-

ondly, DCT has several'well established computing strtietures that are both efficient and

robust. A typical L x (K + 1) DCT matrixis defined as

20 -1)(k=1)
2L

where ¢(k) = \/% for k = 1 and ¢(k) = \/% for 2 < k < K. If the modelling order

[Q]HC:(_](I{:)COS7T ,1=1,2,....Lyand k=1,2,..., K, (4.4)

K equals to L, both the orthonormalized polynomial basis matrix and the DCT matrix

become full-ranked.

4.1.4 Nonparametric Space-Time Channel Estimation

For a receiver to extract both the coefficient matrix C and the directional information W
in (4.1), in Chapter 3, we develop iterative schemes which consist of two processing phases
to estimate several typical channels, such as block fading, time-variant frequency non-

selective, and time-variant frequency-selective channels. The proposed channel estimators
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incorporate the following two steps : (i) at the ith iteration, estimate the coefficient matrix
Wi based on the estimate (A]Z-_l obtained from the previous iteration, and (ii) estimate
the directional matrix (A]Z based on the tentative estimate \/7\\7Z Both estimators improve

as one proceeds with more iterations. The proposed nonparametric estimators can be

summarized as follows.

e Given a data block of B length-M input symbol vectors, X = [x;,Xa, -+ ,xp], and
the channel output block, Y = [y1,¥2, - ,ys|, the proposed channel estimator

outputs the optimal solution {quﬁ, 6} for the least squared (LS) problem,
{6.C} = argmin 1Y — Qu 1, CQ, 1, WO)X I (45)

where C is a Kr x K7 complex matrix.

A~

e Let w; = exp [—j2ﬁ@ sin(q@)] and defing W%/ W (¢)=diag ([wy, ws, - - -, War]),
a diagonal steering matrix associated with, the mean AOD' estimate QAS The LS

channel estimate 1§ obtaiied by H=Q N, KR@Q}\F/L KT\/K\/'.

It is clear that once thedow dimensional chaniél representation {(5, 6} becomes available,
we can use them to synthesize the required CSI for feedback. In other words, these two
matrices, C and \/7\\7, servesas an alternative CSI that provide pofential saving of feedback

information.

4.2 Model-Based Optimal Transceiver Design

Based on the nonparametric channel model developed in the previous section, we will
propose a basic structure for MIMO transceiver, and present the corresponding optimal
minimum mean squared error (MMSE) designs. In a sense, the proposed transceiver
design is a generalization of the optimal multi-dimensional eigen-beamforming systems
based on the general precoding framework developed in [14], [11]. In this thesis, the
terms “precoder” and “eigen-beamforming” are used interchangeably. For convenience
of reference, some notations used follow closely with those used therein [11]. To begin
with, we review conventional optimum designs under various performance criteria and

then proceed to present the proposed framework.
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Figure 4.1: Basic structure of a general MIMO transceiver.

4.2.1 Basic Transceiver Structure

Fig. 4.1 illustrates the basic structure of a conventional MIMO transceiver in which a

L x 1 source vector s is precoded by
x = Bs, (4.6)

where B € CM*F ig alinear precoder, and x € €M*! is the‘encoded output.
The received baseband signal can be written as
y =Hx+n, (4.7)
where y € CV*! ig'the channel outputyH € CY*M yepresents the'fading channel matrix,
n € CV*1 is the additive noise, which is assuined to-be a zero-mean circularly symmetric

complex Gaussian veetor with covariance matrix R,. <At the receiving site, the source

vector is estimated via

s =Afy = A"HBs + An, (4.8)
where A# € CE*Y represents the linear equalization operator.
4.2.2 Optimal Design under MMSE Criterion

Considering the mean squared error matrix associated with source signal s,

MSE < £ [(8—s)(38—5)"]. (4.9)

Given fixed precoder B, the optimum receive matrix based on MMSE criterion min € {||$ — s||3} =

min Tr {MSE (A, B)} is given by the Wiener solution [36][11],

Aot = R;'HB(I1+B"RgB)’, (4.10)
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where

Ry & HYR_'H. (4.11)

Since the optimal equalizer in (4.10) is deterministic when B is given, we express the MSE
n (4.9) as a function of matrix B

MSE(B) “ MSE (A, B)

= (I+B"H”R;'HB), (4.12)

with the diagonal element [MSE(B)]; ; representing the achievable MSE of s;. The indi-
vidual signal to interference-plus-noise ratio (SINR) is shown to be closely related with

individual MSE [11] by,

1
) T g SN 4.1
2 [IMSE(B)];; 19

which says that minimizing the MSE is equivalent to.maximize the SINR and thus mini-

mize the bit error rate (BER). Since- MSE(B)"depénds on the transmit matrix (precoder)

only, the following constrainedsoptimization problem arises.

{ ming Tr %(B (4.14)

ER r:[‘I‘ < PT,
where Pr is the maximum total transmit power.
The corresponding solution B canbe derived by using the Karush- Kuhn-Tucker (KKT)

conditions. From the eigenvalue decomposition (EVD) of Rig
Ry = UAUY (4.15)

we collect the eigenvectors of U corresponding to the first L largest eigenvalues in de-
scending order to form U € CM*L. Note that L also represents the maximal number
of parallel streams provided by the eigen-beamforming system. The optimum solution of

(4.14) is given as
By = U, ®. (4.16)

® = diag({¢;}) is a L x L diagonal matrix with its (¢,7)th element being decided by the

water-filling principle [14]-[11],

¢} = (M;”z - A;1)+, (4.17)
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where ¢; is the 1th diagonal element of ® and ); is the ith eigenvalue of A in descending
order. Parameter p denotes the water level, which is chosen to satisfy >, ¢? = Pr.

It was proved [37], [11] that, under the same fixed transmit power constraint, other
design criteria such as zero forcing (ZF), minimum weighted sum of MSEs, minimum
product of MSEs, minimum det (MSE(B)), or maximum mutual information, give trans-
mit precoder solutions differ only in how power is loaded on the eigen-channels associated
with Rg. This implies that if the CSI, Ry or H and R,!, can be perfectly estimated
and fed back to the transmitter, the ideal system performance bound will be achieved.

It becomes impractical when the transmit array size is large and/or the CSI must be

updated for every block. This is wheretour proposed method comes in play.

Conpression Rate of Feedback CSI

Figure 4.2: CSI compression rate of the proposed transceiver; M = number of transmit
antennas, K7 = modelling order of the transmit spatial correlation.
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4.2.3 CSI Compression by nonparametric channel representa-
tion

By substituting the proposed channel representation (4.1) into (4.11), we have

Ry ~ WYQux,C” QNKR ;1QN,KRCQTM,KTW (4.18)

Y WHQu i, RoQly s, W. (4.19)

The modelling bases Qs i, and Qn, i, are deterministic, and are available at both trans-
def _

mit and receive sites. Therefore, the coefficient matrix Rc = CH Q% N.Kg R;'Q Nk, C and

the steering matrix W contain the same information as that in the full matrix Rg. Since

R is a Hermitian matrix, it can be represented by w

x 2 real floating numbers.
Moreover, only a single mean AOD ¢ ismeeded to fully eharacterize the steering matrix
W, which has a diagonal structiwe as described.in (4.2).The total number of the feedback
information in our appreach 4s Kp(cp—+ 1) +.1 while feedback ‘of Rg needs M (M + 1)

real floating numbers. The information-compression rate; which is defined by the ratio be-

K2+KT+1 1}
MZxM S

tween the floating numbers of R and that reﬁﬁr\@d by Rg, is given byanin{—Z
Fig. 4.2 shows the compression rate performance of the proposed approach. Note that if
Ky equals to M, Qs k,and Qy g, aresimply orthogonal transforms, no rank reduction
is obtained and so the compression @atio is just one. In such a case, the CSI is fully
characterized by Rc and the estimate.directional information QAS can be discarded.

When the additive noise at the receiver is white complex Gaussian then R, is a scaled
identity matrix, and the pair {H, W} can fully represent the feedback information. (4.1)
and (4.5) indicate that C and ¢ are all we need to represent the channel information. The
compression rate in this case is min{ %, 1}, which says the pair {C, ¢} also offers a
compressed CSI representation and is particularly useful when K is small.

For both CSI representations, the compression rate improves as the spatial correlation

between antenna elements increases or as the modelling order K1 decreases.

4.2.4 Model-based Transceiver Design

From (4.18), the optimum MMSE precoder B, in (4.16) can be approximated according

to the eigenvectors and eigenvalues of WHQ M,KTRCQ& K W. After performing the
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eigenvalue decomposition, R¢ can be rewritten as
Rc = UcAcUE, (4.20)

where Ug is the unitary matrix composed of eigenvectors and A¢ is a diagonal matrix
with its elements being the eigenvalues of R¢ in descending order. From (4.19) and (4.20),
we rewrite Ry as

Ry ~ vaQMvKTUCJ AcUE Q]{MTW (4.21)

d;;%c o
Since W and Ug are unitary matrices, and Qs x, € RM*57 has orthonormal columns,
Uc € CM*ET glso has orthonormal columns, and there exists Ug € CM*(M=K1) guch
that U = [ﬁc ﬁé] is unitary, [18]."We-can.rewrite (4.21) as

S A0 | =y
RH—U[OO]U

“f gRu. (4.22)

Equation (4.22) xepresents the approxﬁ)j&d eigenvalue decomposition of Ry. The ap-

proximated precoder Bopt in (4.16).can be computed as

By, = U P, (4.23)

where Uy is composed of the eolumns in U that.afe dssociated with the L largest eigen-
values of A. ® = diag({¢;}) is‘a L % L diagonal matrix, with its (¢,4)th element \; being

computed by the water-filling strategy,
- - N
P2 = (g)\i‘l/z — )\;1) . (4.24)

(ﬁi is the (7,7)th element of :I;, and \; is the ith largest eigenvalues of A. it denotes the
water level under which the total transmit power is preserved, ie., >, ng = Pr. From
(4.22), we know that there is at most min{ K7, rank(Rg)} nonzero eigenvalues associated
with A. Therefore, the maximum number of equivalent active subchannels (defined as
gz~5l2 > () of model-based transceiver systems is less than or equal to the maximum number

of equivalent active subchannels (defined as ¢? > 0) of the transceiver systems with perfect
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Figure 4.3: Proposed structure of the model-based MIMO transceiver.

CSI Ry. Hence, the size of source symbols s should satisfy L < min{Kr, rank(Rg)} for
not losing any information when the SNR is high and Pr is large.
From (4.1) and (4.10), the optimum linear equalizer ;&Opt based on the proposed chan-

nel estimation is given as

~ ~ -1
Aop ~ Ry;'Qu 16, CQYy 1 Wi (I+BoptWHQM,KTRCQLKTWBOpt) o (4.25)

Fig. 4.3 illustrates the/basi¢ structure-of the proposed model-based transceiver. Fol-
lowing the basic framework in. this section, many optimum precodersdesigns in [11] can
be translated to model-based designs with Ifguﬁ Ai‘in (4.15) being replaced by U and
Ai in (4.22), respectivelys The MSE performance of the equalizationy-however, depends
on not only the realistic.channel state but also the difference between the true channel

information Ry and the approximatéd channel subspace decided by W, Q. x, and Re.

4.3 Performance of‘the-Model-Based Designs

In this section, we derive performance bounds of the reception MSE in the presence of
CSI modelling error. These bounds can give us a measure of how much the MSE drifts
away from the optimum value when using the model-based schemes. We also suggest
a distance function to assess the effects of both channel estimation error and regression

modelling error.
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4.3.1 MSE performance in the presence of modelling error

From (4.12) and (4.23), the MSE performance based on ]§Opt is written as

Tr{MSE(EOm)} — T {(I+ij;tHHR lHBopt>_1}
{(I+<I>UL RuU, & }
= {(I SUIUAU" U, &) 1}
{(H@UHUAUHUL ) 1} (4.26)

- z_: - %. (4.27)

where 4 > 45 > -+ > 7, dre eigenvaliies of @UHUAU U, ®. The inequality of (4.26)
results from the fact that the optimal precoder for'transform.channel UAU? is given by
B,y in (4.23). Onythe Other hand, Tr {MSE(Eopt)} is obviously lower bounded by the
optimal system performance Tr{MSE(Bgp. )} given by (4.12).

Let E € CM*M denotes the modelhn;ﬁgor between the perfect. CSI and the transform
subspace such that B = UAUH — UAU%H By applying matrix perturbation theory [18],

[38], we show that the MMSE performance is bounded by following theorem.

Theorem 4.1. Let € >.ey > -+ > ¢ be the eigenvalues of PUTEU®D, {\;¢?} the
diagonal elements of ® A ®. The MMSE in.(4727)%s bounded by

L

~ 1

Tr {MSE(Bopt)} S Z m, (428)
i=1 v

if min;(\;¢?) + €1, > —1 is satisfied.
Proof. see Appendix C O

To obtain a tighter upper bound, we need to invoke the notion of majorization.

Definition 4.1. A descending sequence {b;}L, majorizes another descending sequence
{a;}E |, denoted by {a;}2, < {b;}L,, ZfoZl a; < Zle b, 1<k<L-—1 and Zle a; =
ZiLzl b;.

Applying the majorization theory developed in [39], we obtain a refined upper bound.
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Theorem 4.2. If min;{\;¢?} + €, > —1, the minimum mean square error (4.27) is upper

bounded by
L

Tr{MSE(ﬁopt)} <> ';2 . (4.29)
i=1 VYT v

Proof. see Appendix D O

The above theorems reveal that the MSE performance upper bound of any reduced-
rank precoders of the form (4.23) is the same as long as its CSI modelling error results in

the same dominant eigenvalue values ¢;,¢ = 1,2,--- | L.

4.3.2 Impact of Imperfect CSI

Having established the relationship between the MSE and:the CSI modelling error, we now
use a geometric measure to compare the sensitivities ofiour approach and conventional
EVD approach against various sources of error.

Define the distance betwéen two-equidimensional subspaces Sy and S, as [40]

dlSt(Sl,Sg) = sin @(81,82 = I 4 P32H2 = || I PSQ)P$1||2, (430)

s

where Ps, and Ps, denote the projectors on t%e subspace S; and Ss, respectively.

Wu

\

Rewrite (4.15) in the partition form,

Ar O

} Ul (4.31)

where A4 is a Kp x Kr diagonal‘matrix; and-let f{H = Rf +0Ry, where )Ry denotes the
perturbation due to quantization error, channel estimation error, and uplink transmission
error. Denote the eigenvalue decomposition of Ru by
- -~ ~ X ~ ~ qH
Ru = [U, U] {Al 9 } [U1 U2] . (4.32)
0 A,

Assume that || - || = || - ||2- The following lemma from the results of Wedin [41] and Fierro

[40] can be used to bound the distance between the subspaces of R(Ry) and R(Ru).

Lemma 4.1. Assume there exists a 6 > 0 and a > 0 such that min(A\(A;)) > o+ 6, and

max(A(Ag)) < a. If |0Ru|| < Aky — Axpt1, then

o SR
sin © (R(UlAlu{f),R(UlAlu{f)) < [0 R |

. 4.33
< M=yt — Rl (4.33)
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The above theorem shows that the optimal EVD-based design is relatively insensitive
to small perturbation, i.e., |[{Ru| < Ak, — Aipt1-
On the other hand, the channel model we use implies that Ry can be decomposed as
def def

=Q =Q2
7 " N\ 7 ~ N H
RH = [ WHQM,KT WHQJM,KT] |:RC F :| [WHQM,KT WHQJJ\_LKT

G ] (4.34)

where F and G are the residual coefficient matrices that cause the modelling error. The
matrix Q]LVL K, contains the residual M — K7 columns of Qs excluding those columns
in Qur k.- Q1 and Qs have orthonormal columns that span the whole column/row space
of Ry, and Q, = Q7.

Ry can also be represented by themunitary.decomposition

G

Based upon the above observations, we obtain an upper bound on the distance between

Ry = 107 Q] F%C E” ] Q Q)" (4.35)

the eigen-subspace R(U; A, Ut )and the perturbed modelling subspace R(Qlf{cQ{{ ) as

a lemma to Fierro [40].
o,

56‘ \;\?‘E ~
Lemma 4.2. Assume there exists a 0 >0 aid o > 0 suchthat min(A(R¢)) > a+9§ and

max(A(G)) < «a, we have

sin O(R(U ML UE) R (QiRe Qi) v et | # JOR | (4.36)
mm()\(RC)) v )\KT+1
_ | + R .

A = A1 — 2| F| — [|0Ra

From Lemmas 4.1 and 4.2, we conclude that, compared with the EVD-based optimal
design, our approach is slightly more sensitive to perturbation Ry because of the exis-
tence the off diagonal block matrix F. Hence, we should select a basis for expanding the

channel spatial correlation that minimizes ||F|| under the modelling order constraint.

4.4 Limited Feedback using Model-Based Estimated
CSI

Before feeding back the instantaneous CSI estimation to the transmitter side, proper

quantization schemes can be applied to reduce the data rate needed on the reverse link
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[42]. To do this, conventionally, we can quantize the channel directly, feed back the
quantized CSI and let the transmitter calculate the precoder assuming that the feedback
CSI is perfect [43],[44]. Or, the recevier can pick the linear precoder/eigen-beamforming
matrix from a set of pre-calculated codebooks according to the channel estimation results
and sent the index back to the transmitter over a feedback channel [45],[46],[47]. Generally,
to design a codebook aims to find a finite set, or packing, of subspaces that represent the
CSI or precoders [47].

Conventionally, we can use the theory of Grassmannian subspace packing [47] to estab-
lish such codebooks. Grassmannian subspace packing method attempts to design finite
sets of matrices that maximize the minimum subspace distance. Besides the subspace
distance presented in the previeus section; various-distance measures can also be used
[48] to optimize different performance criteria.for various linear receivers. Alternatively,
vector quantization (VQ).is an technique-that we can use to construct.the codebooks [49].
Basically, VQ minimizes a/selected-distortion function by using an.iterative numerical
method, such as the conventional Lloyd alg;ﬁﬂﬁ@m After several iterations, the algo-
rithm tends to converge to a near optimal so%futlon and generate a candidate codebook.
Both Grassmannian and VQ methods can generate good enough/codebooks that achieve
satisfactory error rate performance under spatially uncorrelated Rayleigh channels.

Theoretically, the distortion cost functions which serve as the design criteria of Grass-
mannian or V@ grow exponentially ‘with the number of transmit antennas M provided
that the number of spatial streams L is fixed [47]. Under the framework of the proposed
channel representation scheme developed in Chapter 2, the equivalent CSI, C, in (4.1) is
of size Kr x K. The exponent of the distortion cost function is thus scaled by a factor of

EL. For example, considering the mean squared error selection criterion (MSE-SC) [47],

B = arg min tr (MSE(B;)) (4.38)
B;eB

where MSE(+) is defined in (4.12) and B; is the ith precoding matrix of the set of codebook
matrices B = {B1, By, -+ ,Bg}. Here, S denotes the total number of precoding matrices
used in the codebook and the number of feedback bits equals to log,(.S). Under the con-
dition of high SNR and white Gaussian noise, we can bound tr (MSE(B;)) in (4.38), and
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characterize the distortion of the Grassmannian subspace packing by using the following

cost function modified from the results of [47]

EH |:)\min{HBopt} — gléel}é )\mln{HBz}:| (439)

u [A{H}¢7] - <1 +S- (;SPTY‘%)WHO(M) (% — 1)) , (4.40)

where ¢, is given in (4.17), By is defined in (4.16), and Az (M) denotes the Lth largest

eigenvalue of matrix M¥ M. d,,,; is the minimum distance between any two subspaces

6pr0j 1<IZIEQH<S de‘OJ (Bu B ) (441)
where
oo (BIB= BB} — B;B; > =41 Aia {B; B} (4.42)

denotes the projection/two-norm-distance. Since we always have d,,,; < 1, the distortion
cost function is an increasing function of M. Assuming that the modelling order K can
fully characterize the signal space of RHﬁhe exponent, 2M L +o(M), inside the distortion
cost function (4.40) can be replaced by Q\KTL +o(K 7). Thus, thedistortion cost function
decreases for anyvKp < M. Accordingly;-either the proposed model-based system can
achieve smaller distortion by using the codebook of the'same size as that used in the
original precoding system, or we can have similar distertion with a codebook of smaller
size such that feedback data‘rate is reduced:

Although both Grassmannian and V(@ methods can generate good enough codebooks
under spatially i.i.d. Rayleigh channels, the reception performance degrades when the i.i.d.
codebook design is used for spatially correlated channels [42]. Under the i.i.d. assump-
tion, the isotropicity of the dominant right singular vector of H allows a Grassmannian
subspace packing solution [47]. For spatial correlated MIMO channels, this isotropicity,
however, is destroyed and large degradation of reception performance is possible when
the i.i.d. codebook is used in the correlated environment [50]. This implies that for spa-
tially correlated MIMO channels, an i.i.d. codebook of larger size is necessary to achieve
similar error rate performance as that of the spatially uncorrelated channels. Otherwise,

we have to quantize the dominant space nonuniformly [50]. Under the framework of the
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proposed model-based system, since the subspace packing is more compact (i.e., smaller
distortion can be achieved using the same number of feedback bits), the reception per-
formance can be improved as well. Moreover, even if exact spatial correlation is used in
designing a statistical precoding systems, there will be significant performance loss for
the so-called "mismatched channels” [50],[20],[51]. Here, the term ”mismatched channel”
means that: 1) the eigenvalues of the transmit covariance matrix can not be partitioned
into two components: a dominant component of L eigenvalues that is well-conditioned*
and a sub-dominant component of M — L eigenvalues that is ill-conditioned away from
the dominant component, and 2) the eigenvalues of the receive covariance matrix are
ill-conditioned. In practice, however, the "mismatched channel” is very common for spa-
tial correlated environments. Under the framework of.proposed model-based scheme, the
orthogonal matrix Qs x, plays the role of pre-conditioned matrix and the correlation
matrix of the coefficient matrix C is-generally better conditioned compared with that of
the original channel matrix H. In other words, the reecéption performance of statistical
precoding systems can_be improved if the Gyﬁ“‘/\%s_tpannlan subspace packing is performed

on C rather than H in spatial correlated env1ronments

4.5 Simulation Results and Discussions

Simulation results reported in‘this section use the reference MIMO channel model of [52],
[2]. We consider an 8 x 8 MIMO system. Spatial correlation matrices are generated by the
power azimuth spectrum (PAS) at the BS and MS respectively according to the specific
physical settings. To comply with the one-ring model, we assume that the environment
surround MS is rich scattering and uncorrelated. Different physical settings at BS such as
angle spread and nonzero AOD are used to examine the effect of different degrees of spatial
correlation. The size of source vector, L, is 2, and the BPSK constellation is assumed.
Each element of the channel matrix is normalized to E [|H”|2] =1,for1 <:¢< N, and
1 < j < M. The SNR is defined as the total transmitted power over the noise variance

at each received antenna. Other assumptions used in our simulation are: (i) the antenna

If Ay > Ao > -+ > A denote the first L eigenvalues and i is not significantly larger than 1, we can
roughly say that these eigenvalues are well-conditioned. Oppositely, we say that they are ill-conditioned.
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spacing at transmit and receive antennas are both half wavelength, and (ii) additive noise
distribution at the receiver is complex white Gaussian. The DCT bases are used in the
proposed transceiver since we found that the DCT and polynomial bases give almost the
same performance. For comparison purpose, we also present performance of the optimal

transceiver with a full rank estimated CSI feedback (F-CSI).

MSE
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Figure 4.4: MSE performanceof DCT-based transceiver; angel spread = 4°, AOD = 45°,
L=2.

Performance curves in Fig. 4.4 represent the MSE performance for the MIMO system
with AOD = 45° and angle spread A = 4°. The simulation results are obtained by
averaging over 100 random channels. Since the channel correlation at BS is high, the
corresponding correlation function lies in functional subspace of small dimension. Hence,
even the number of antennas at BS increases, the amount of feedback information required
by the proposed technique remains low and the performance degradation with respect to
that of the optimal transceiver with F-CSI remains negligible. When the modelling order
is only 3, which gives a compression rate of 0.18, the MSE performance of the proposed

model-based system is still very close to that of the system with F-CSI. The MSE gap
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between the performance of the optimal transceiver with perfect CSI and that of the
transceivers with estimated CSI is obviously due to channel estimation error.

As the angle spread A increases, correlation between the transmit antennas diminishes
and a higher modelling order is necessary to describe the rapid-changing spatial correlation
at the transmit site. MSE curves in Fig. 4.5 are the performance of an 8 x8 MIMO system
with AOD= 45°, angle spread A = 15°, and different modelling orders. Simulation results
indicate that bases of order less than 4 tend to incur larger modelling errors while those
of order larger or equal to 4 provide performance which is almost the same as that of the

optimal transceiver with F-CSI.
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Figure 4.5: MSE performance of DCT-based transceiver; angel spread = 15°, AOD = 45°,
L=2.

In both figures, we notice that the proposed approach outperform the F-CSI approach
at low SNRs. This observation indicates that although our approach introduces modelling
error due to reduced-rank regression model it also reject the noise outside the modelling
space. At higher SNRs, like other model-based methods, the modelling error dictates the

performance whence this advantage gradually disappears.
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The usefulness of the upper bounds derived in Theorems 4.1 and 4.2 are demonstrated
in Fig. 4.6. It is shown that both bounds predict correct trend of the MSE performance
of the system. These bounds becomes tighter as the modelling order increases. Although
the bound of (4.29) is tighter than (4.28), (4.28) needs only the knowledge of the smallest
eigenvalue, €.

We use the two perturbation upper bounds given in Lemma 4.2 to review the effect of
CSI error from a geometric perspective in Fig. 4.7(a), assuming AS = 2°. The distance
between the subspace associated with perturbed CSI using a rank 1 (K7 = 1) approxima-
tion and that associated with the perfect CSI increases as the quality of channel estimation
deteriorates at lower SNRs, and remains steady for the case of good channel estimation
(high SNR).

In Fig. 4.7(b), we plot the distance.between the above-mentioned two subspaces for
the cases of AS equals to 4°. These curves show that in higher correlation case, a rank-1
model is sufficient. to describe the-spatial correlation and thus the corresponding distance
is small. For the larger AS case, sinc@g channel correlation decreases the subspace

distance increases for the rank 1 systém and a larger modelling order is needed.

4.6 Summary

This chapter presents a novel regression model-based transceiver design for spatial corre-
lated MIMO fading channels. Orthogonal bases and an additional AOD information are
used to model the spatial correlation functions associated with MEAs in BS and MS so
that compact CSI representation can be obtained. Optimum precoding strategies are pro-
vided based on the proposed channel representation. Computer simulation results show
that excellent performance is attainable if proper modelling basis and order are used.
The modelling order provides trade-off between reception performance and feedback com-
plexity. Significant feedback compression is achieved if the channel spatial correlation is
high. To analyze the performance loss, we derive perturbation bounds for the reception
MMSE caused by CSI modelling errors. We also provide bounds for the distance between

the signal subspace associated with perfect CSI and that associated with the proposed
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Figure 4.6: MSE upper.bounds of DCT-based transceiver; angel spread = 10°, AOD
=45°, L =2.

approach for which only imperfect, CSI is available. Numerical results.for these bounds

are given to show that performance trends can be-accurate predicted:
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Chapter 5

Conclusion and Future Work

This thesis presents a framework of nonparametric model-based MIMO systems which
are basically based on the proposed compact analytic.models for correlated MIMO fad-
ing channels. The proposed work models both spatial-“and time-correlated link gains
associated with a MIMO channel and derive efficient, estimators when the spatial and/or
time-correlation is takenrinto account:—For cerrelated MIMO channels, by spanning the
spatial and/or time correlation functions over the dominant signal subspace using a set
of orthogonal modelling bases, we obtain an ﬁ@ﬁem channel representation that can al-
leviate the processing complexity for many post channelestimation processes and reduce
the feedback bandwidth requirement for MIMO precoding systems as, well. Tremendous
computation saving and large reduction of feedback data rate.are aecessible especially for
large MIMO systems and highly correlated environments. Based on the proposed models,
we develop channel estimation schemes against several typical channel situations. Iter-
ative batch algorithms are proposed to accomplish the task of channel estimation, and
the sequential adaptive algorithms are also available for channel tracking [17]. Various
popular industry-approved and standardized channels are simulated to validate the accu-
racy of our model and the usefulness of our channel estimators. Numerical results show
that the proposed algorithms can provide tradeoffs between performance and complexity.
Moreover, we also show that under different channel conditions, the modelling order that
leads to dimension reduction may also achieve the best MSE performance due to the noise
reduction effect discussed in Chapter 3. In this situation, we can provide compact and

useful CSI that lead to significant feedback channel bandwidth reduction and other po-
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tential post processing complexity cutbacks while retaining good reception performance
at the same time.

Based on the proposed channel representation, optimum precoding/eigen-beamforming
strategies are provided for feedback MIMO systems. Computer simulation results show
that excellent performance is attainable provided proper modelling basis and order are
used. Over a wide range of interested SNR, the reception performance of the model-
based eigen-beamforming system using optimal modelling order is shown to be better
than that of the conventional eigen-beamforming systems, which use full dimensional LS
channel estimation results as feedback CSI. Significant feedback compression is achieved
if the channel spatial correlation is.high: Wederive perturbation bounds for the reception
MMSE to analyze the performancedoss caused by CSI.imodelling errors. We also provide
bounds for the distance beétween the signal subspace associated with perfect CSI and that
associated with the.proposed approach for which only imperfect-CSI is available. Numer-
ical results for these bounds are-given to show that performance-trends can be accurate
predicted. For limited feedback MIMO }@ems we prove that the proposed model will
lead to fewer distortion or compact compressmn if a conventional quantization scheme,
such as Grassmannian packing, is.used.

The framework of«the propesed model-based MIMO system leads to a new class of
model-based MIMO pro¢essingstechniques. Similar-to. the proposed precoding/eigen-
beamforming systems, MIMO“detection schemes that incorporate the MIMO channel
matrices, such as LLL aglorithm which is based on the theory of lattice reduction [53],
and the sphere decoding algorithm that performs the QR factorization of the channel
matrix [54],[55], can be derived accordingly. Besides the potential saving of computational
complexity, the proposed channel representation may lead to essential improvement of
the lattice structure embedded in the underlying channel matrix. Such improvement
is suspected to bring additional reception benefits. Hence, experimental algorithms and
theoretical studies are going to be conducted to reveal the potential usages of the proposed
model-based schemes.

The performance improvement made by the proposed model-based systems somehow
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depends on the accuracy of the selected modelling order. Although, in general, we can use
a modelling order larger than is needed to guarantee a negligible modelling error, repre-
sentation efficiency and processing advantages will diminish for an over-modelling system.
The order determination scheme provided in this thesis calculates the optimal order based
on the long-term channel statistics. In practice, for a more non-stationary channel, the
modelling order should be update in a short period. Hence, a order determination scheme,
which is computational more efficient and works reliably under non-stationary environ-

ment is what we try to explore next.
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Appendix A

AoD Information Extraction

For small A, the correlation between two transmit antennas ¢, j can be approximated by

[6]
. 2m 2m
E { hmihs,; } ~ & —37(1 — J)dsin¢ ¢y AT(Z —j)dcos¢ | . (A.1)
In addition, correlation between two receive antennas p, g can bé approximated by E {hpi hfﬂ-} R~
Jo (B (p— q)d), for % < 1.-By-using the "W defined\in (2:17), the definition A
@A cos ¢ and (Aul) implies p
i~ 45
1 e’z‘%@?i“%@(ﬁ) ejQTW‘M"”dSi”’JO(\Mfl\A)
e*jQT”M_”dSi“¢(J0(1M-1|A) 1
which can be further decomposed by using the W _defimed.in (2.17)
1 Jo(A) o Jo(lM=1]A)
Jo(A) 1 e Jo((IM—1]-1)A)
o = W- : : : -WH
Jo(IM=1]A)Jo((IM—=1]-1)A) : 1
_ _1_1 1 _1
Y WE WY = Wd282"WH | such that B2 = WP2. (A.2)
The correlation matrix at the receive site can also be decomposed as
1 Jo(d) o Jo(IM—1)d)
Jo(d) 1 s Jo(UM=1l=nd) | e 11
Pp=| . L “erpz (A.3)
Jo(IM—1|d)Jo((|M—1]|—1)d) 1

where d & 224 The above two equations immediately lead to (A.4) and (A.5). Here, the

separable model (2.2) is equivalent to

W, (A.4)



and the canonical model (2.4) is equivalent to

w, (A.5)

ol

Hind(i)

ol

H=¢®

where @1 and ®g denote the power correlation matrices at the transmit and the receive
sites, respectively. Using <I>1T/ ? = W<i>1T/ ? and following a procedure similar to (2.12)-
(2.15), we obtain (2.16) of the main text.

The separable W can also be obtained directly from the physical model [56],[57]. In
[56], the directional term exp (M) is also shown to be separable in the expres-
sion of spatial correlation (i.e., Eq. (9) in [56]), and has the similar form of (A.1). Note
that Forenza et al. [58] have recently shewed that;for a clustered MIMO channel with
uniform linear or circular array; thescross-correlation. coefficients also have a regression
form similar to (A.1). Hencey if we assume.a similar‘environment, we will obtain an
analytical model of the same form as-(2.16).

In the above single-diréectional medel, the AoD frem the transmitting antennas at
the transmitter can be captured by a mean ﬁ}}g In contrast, the principle of maximum
entropy [59] assumes i.1.d.  uniformly distrib:iéa AoA angles over [0,27] and leaves no
mean arriving direction being modelled at the mobile side. It models the separate power

azimuthal spectra (PAS) of AoA and AoD, with a common direction being described by

the mean AoD at the base station:[57].
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Appendix B

Proof of Lemma 3.1

According to Lemma 5.1.3 of [18], the ith entry of the vector [(1; ® A) ® (BT ® 1y)] cis

identical to the (4,4)th diagonal ent ire matrix [(1p ® A)diag(c)(B @ 1%)],

fori=1,2,...,NE. De A ‘ 6 = [bon) 24 (BT ®1y). Then,

fori=N(p—1)+ qp

Adiag

which proves the Lemma 3.1.
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Appendix C
Proof of Theorem 4.1

Proof. Since ®A ;P is a diagonal matrix, its eigenvalues are the permutation of the di-

agonal elements {\;¢7}. Let {702 ; rinutation of {47} such that A\r 92 | >

(C.1)
Since the function f( e have
(C.2)
Combining (4.27), (C.1) a izing that
L
2 L4 Arid2; +c (C.3)

i=1
In order to keep f(-) being monotonically decreasing, we must have min;(\;¢?) +¢e7, > —1,

which implicitly satisfies the constraint in (C.3). O
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Appendix D

Proof of Theorem 4.2

Proof. Notice that ®A®P is a diagonal matrix, its descending ordered eigenvalues are
exactly the permuted diagonal elements f\z,#2;}7,. From theorem (9.G.1) of [39], we

have

(717 N2ue 45 7L)
(11 @U"RuUD) 15 RURyUP),. oy (PURHUD))
< ([ @AD) + pua( UHE;MQ i (PA®) + 41 (PUEUD))
'/A'

7r1¢ + €1, 7r2¢7r2+€27:"7 7T,L¢7T7L+€L)7 (Dl)

where 1;(G) is the ith largest eigenvalues of the-matrix [Gliwz and pg > o > ... > pg.

Let h({z}) = >, fz)h =D, ﬁzz_, where z; > z4¢ Sinee f'(z) = 1J_ri)2 is negative,
continuous and monotonically inereasing.for-z >-=1, f(%) is convex for z > —1. From
(3.C.1) of [39], h({z}) is thus Schur-convex, hence, h({z;}) < h({y;}), if {x:} < {v:}.

Combining the above results with (D.1), we complete the proof by restricting the

domain to min ({%}, {Arid2,; + el}) = )\quﬁfnL +er = ming{ \;@?} + e > —1. O
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