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應應應用用用於於於相相相關關關性性性多多多輸輸輸入入入多多多輸輸輸出出出系系系統統統

之之之通通通道道道建建建模模模、、、估估估測測測及及及前前前置置置編編編碼碼碼

研究生：陳彥志 指導教授： 蘇育德 博士

國立交通大學 電信工程學系博士班

摘摘摘要要要

有別於傳統單一天線系統，多輸入多輸出(MIMO)技術由於能大幅提升通道傳輸容

量，因此已被納入目前許多重要的無線通訊標準之中。藉由在傳輸端與接收端設置多

根天線，我們可以透過分解通道矩陣來創造許多平行通道並用以同時傳輸多個資料

流。為了充份發揮多天線系統的優勢，特別是要進行高速資料傳輸時，精準的通道狀

態資訊通常是不可獲缺的。然而，隨著天線個數的增長，估測及處理龐大通道矩陣的

工作顯得益發困難。在本論文中，我們提出一種簡潔有效的通道矩陣表示法，藉由此

表示法我們可以減少在描述通道矩陣時所需的參數數量，同時也減輕後續信號的運算

複雜度。在中至高度相關的多天線傳輸環境下，使用本文所提出的通道表示法將可大

幅減少通道狀態資訊的參數個數，同時維持良好的資訊品質。

基於所提之通道描述，我們發展了一種遞迴最小平方法來估測幾種典型的多輸出入

通道。所得到的通道估測值呈現一個緊緻的形式，該形式將有助於簡化許多需要利用

通道矩陣估測值進行的後置信號處理程序。此外，藉由調整通道估測器中的一個模型

階數，我們可以在演算法的估測準確性和計算複雜度之間取得平衡。值得一提的是，

由於估測器中維度縮減特性所帶來額外的雜訊消除效果，我們將可得到比傳統最小平

方估測法更優越的均方誤差表現。我們對所提的通道估測器之相關性能也作了理論分

析並就不同通道環境進行數值模擬用以評估該通道估測器的效能並證明理論的正確

性。

為了能充份發揮所提通道模式及估測器所帶來的好處，我們更進一步利用該模式發

展新型的回饋前置編碼系統。由於在設計前置編碼器時引入前述的通道模式，我們可

大幅減少回饋前置編碼系統所需的回授頻寬，並降低建構前置編碼器及後置等化器的
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計算複雜度。相較於傳統上使用完整即時通道資訊的前置編碼系統，我們的系統只在

非常高訊號雜音比時造成極輕微的性能損失，然而其在縮減回授頻寬和簡化計算複雜

度上所帶來的好處卻是相對可觀。為了進一步評估系統因為模型通道模式的誤差所帶

來可能的效能損失，我們在數學上推導了數個效能上界，用以評估訊號接收的均方誤

差及回授訊號的資訊品質。同樣地，我們也提供了相關的數值結果用以驗証系統效能

並証實所推導的效能上界的確可以準確預測系統的效能趨勢。
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Channel Representation, Estimation and Precoding

for Correlated MIMO Systems

Student: Yen-Chih Chen Advisor: Y. T. Su

Department of Communications Engineering

National Chiao Tung University

Abstract

Multiple-input multiple-output (MIMO) technology has been included in many in-

dustrial standards to achieve significant throughput enhancement compared with conven-

tional single antenna systems. By using multi-element antennas at both transmit and

receive sides, multiple data streams can be transmitted simultaneously through parallel

spatial modes. To realize the advantages of MIMO systems, accurate channel state infor-

mation (CSI) is indispensable, especially for high rate transmissions. With the increase of

antenna number, the task of estimating or processing a MIMO channel matrix becomes

more and more difficult. In this thesis, we propose an efficient channel representation such

that the number of required parameters is reduced and the computation complexity can

be lessened as well. For medially to highly correlated MIMO environments, the proposed

representation can lead to significant parametric dimension reduction while maintaining

good CSI quality.

Based on the proposed channel representation, we develop iterative least squared (LS)

schemes to estimate several typical MIMO channels. The reduced-rank CSI representa-

tion is very useful for many post-channel-estimation operations that require processing

the instantaneous channel matrices. Depending on the specified modelling order, the pro-

posed channel estimators offer tradeoff between identification accuracy and computational

complexity. Moreover, the dimension-reduction induced noise rejection effect enables the

proposed model-based estimators to achieve superior mean squared error (MSE) perfor-

mance over certain SNR region when compared with that of the conventional LS approach.
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Theoretical analysis and numerical simulations of MSE performance are provided to assess

the estimators’ performance and validate the analytical predictions.

Taking advantage of the proposed compact CSI representation, we proceed to develop a

model-based feedback precoded system. By incorporating our new channel representation

into the precoder design, the resulting precoded system provides significant reductions on

the feedback bandwidth and the computational complexity needed for constructing the

precoder and equalizer matrices. Numerical results show that compared with the conven-

tional approaches that need full knowledge of instantaneous CSI, our proposal suffers only

negligible performance degradation at very high SNR region. The reductions on comput-

ing complexity and feedback channel bandwidth, nevertheless, are significant. To assess

the performance of our model-based approach, we establish several bounds regarding the

reception error and feedback information loss. Simulated results are compared with these

analytical bounds to verify that performance trends can indeed be accurate predicted.
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Chapter 1

Introduction

Increasing demand for higher wireless system capacity has catalyzed several ground-

breaking transmission techniques, among which is the multiple-input/multiple-output

(MIMO) technology that has attracted the great part of recent attention. It has been

shown that in comparison with conventional single antenna systems, significant capacity

gains are achievable when multi-element antennas (MEA) are used at both the transmit

and receive sides [4],[5]. Spatial multiplexing techniques, for example, the BLAST (Bell-

labs Layered Space-Time) system, was developed to attain very high spectral efficiencies

in rich scattering environments.

Ideal rich-scattering environments decorrelate channels between different pairs of trans-

mit and receive antennas so that maximum number of orthogonal subchannels is available.

In practice, however, spatial correlations do exist and should be considered when design-

ing a MIMO receiver for evaluating the corresponding system performance [6]. Spatial

correlation depends on physical parameters such as antenna spacing, antenna arrange-

ment, and scatters’ distributions. Antenna correlations reduce the number of equivalent

orthogonal subchannels, decrease spectral efficiency, making it more difficult to detect the

transmitted data [4].

A coherent MIMO receiver requires an accurate channel estimate to perform critical

operations and provide satisfactory performance. Not only is reliable channel estimation

mandatory in guaranteeing signal reception quality but it is also needed in designing an

adequate precoder at the transmit side to achieve maximum throughput or minimum bit

error rate in feedback MIMO systems. Various pilot-assisted MIMO channel estimators
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have been proposed [7, 8]. Unfortunately, few estimators are specifically designed for

correlated MIMO channels and those few exploited only channel’s time and frequency

correlation characteristics by approximating the time- and/or frequency-domain responses

by an analytic model [8, 9]. These analytic model based approaches can do without the

channel information like covariance functions and signal-to-noise ratio which are required

by most estimators and are to be obtained by on-line measurements. However, they fail

to take into account and the advantage of the spatial structure of such channels which has

significant impact on the system performance and should also be explored. The spatial

correlation structure instead was often used to analyze the system capacity [10], to design

beamformer [11] or pilot sequences [7, 12].

We present novel pilot-assisted channel estimation schemes on the basis of the pro-

posed new general MIMO channel representation which does not require information of

second-order channel statistics. Spatial and time covariance (or correlation) functions are

described by nonparametric regression and the influence of the mean angle of departure

(AoD) is related to other channel parameters via a regression model. This representation

admits a reduced-rank channel model and compact channel state information (CSI) repre-

sentation, making possible reduced feedback channel bandwidth requirement. It results in

separable descriptions of channel correlations and mean AoD for correlated MIMO systems

and enables us to develop efficient algorithms to identify the realistic channel responses.

Although a model-based scheme inevitably induces a modelling error [9]-[13], as will be

shown in Chapter 3, our algorithms are capable of describing realistic correlated MIMO

channels with negligible modelling errors. The estimated CSI can be efficiently exploited

for use in many channel estimation related operations such as MIMO data detection and

optimal MIMO transceiver designs.

Optimal MIMO transceiver designs based on CSI at the transmitter (CSIT) have

been thoroughly studied under several performance measures such as minimum mean

squared error (MMSE) or maximum mutual information (MMI) [14]-[11]. When CSI is

available at both ends of a link, conventional precoding-eigen-beamforming schemes can

adapt to the channel condition to optimize the reception performance in the correlated

2



environment. However, in practice, downlink CSI (from base station to mobile unit) is

often not available at transmit site and has to be estimated unless the channel transfer

function can be assumed to be identical in both directions. Oftentimes, the downlink

receiver has to send the information back to the transmitter through a feedback channel.

It is thus critical that one control the amount of feedback information as the feedback

channel usually has a very limited bandwidth.

To lessen the feedback load, several transmitter precoding/eigen-beamforming schemes

based on partial channel information such as channel mean feedback and channel covari-

ance feedback were proposed to reduce the feedback cost [15]-[16]. Mean feedback relies

on the proposition that CSI resides in the mean of the distribution with white covariance.

Therefore, only for very slowly faded channels can mean feedback adequately capture the

channel behavior. On the other hand, covariance feedback models the channels as random

vectors with zero mean and non-white covariance, which are only hold for rapid fading

environments. Both feedback scenarios relies on imperfect long term statistical models

and thus cannot well represent the instant or short term channel variations. Moreover,

prior knowledge of channel statistics are often needed to compute the approximated feed-

back information. Generally, systems using statistical feedback come with a non-negligible

performance loss compared with those using instantaneous channel realization.

Based on the proposed model-based channel representation, the instantaneous CSI

is represented in a more compact form and estimated accordingly. With this efficient

CSI estimation, we present a framework of transceiver design to render the advantage

of the proposed model-based structure. For correlated MIMO channels, the proposed

precoding scheme provides an alternative to reduce the requirement of instantaneous CSI

feedback, while retaining or even improving the reception performance. Several perfor-

mance bounds regarding reception error and feedback information loss are established to

assess the system performance.

The rest of this thesis is arranged as follows. After a brief review of the typical

space-time antenna setup and a general received MIMO signal model, we derive two new

models [17] for spatial-correlated block-faded narrowband MIMO channels and their rela-

3



tions with some established analytic models in Section 2.3. We then propose single-block

based iterative least squares (LS) channel estimators in Section 3.1 while the extension

that takes the time-correlation and frequency-selective cases into account are given in

Section 3.2 and 3.3, respectively. In Section 3.4, we analyze the mean squared error

(MSE) of the proposed channel estimation algorithms. Numerical examples using indus-

trial standard approved channel models are given in Section 3.5 to validate the proposed

channel models and to demonstrate the effectiveness of our algorithms. In Chapter 4,

we develop the basic framework of transceiver designs based on the reduced rank CSIT.

Section 4.1 quickly reviews the channel representation proposed in Section 2.3 as the

foundation for the proposed MIMO eigen-beamforming system. Section 4.2.1 and Section

4.2.2 give a brief review of some conventional MIMO precoder/beamforming systems with

feedback CSI. Section 4.2.3 make use of the proposed channel representation to establish

a nonparametric CSIT. With the nonparametric CSIT, the proposed eigen-beamforming

design is developed and discussed in Section 4.2.4. Performance analysis of the proposed

beamforming method is given in Section 4.3. In Section 4.5, we provide several numer-

ical and simulation examples by using some well-established industrial channel models.

Conclusion and remarks are given in Section 4.6. Chapter 5 summarizes the studies in

this thesis and suggests some interesting research subjects under the framework of the

proposed nonparametric scheme.
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Chapter 2

MIMO Channel Representation

2.1 MIMO System

In this thesis, we focus on the clustered channel model. In such a MIMO setup, MS is

surrounded by local scatterers and waveforms impending the receive antennas are richly

scattered. On the other hand, BS is often unobstructed by local scatterers and has a mean

angle of departure (AOD) with respect to the receiver cluster. The clustered channel setup

is typical in urban environments, and has been validated through field measurements. A

typical “one-ring” model is shown in Fig. 2.1, ∆ denotes the azimuthal angle spread at

the BS and φ denotes the mean AOD between BS and MS.

D
f

D

R

dT

dR

BSat 

antennas transmit M

MSat 

antennas receive N

Figure 2.1: “One-ring” model with M transmit antennas at BS and N receive antennas
at MS. D: distance from BS to MS. R: radius of the scatterer ring. φ: angle of departure.
∆: angle spread at BS. dT : antenna spacing at BS. dR: antenna spacing at MS.
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2.2 Modelling Spatial-Correlated MIMO Channels

2.2.1 System Setup

Consider a cellular MIMO system in which the base station (BS) and a mobile station

(MS) are equipped with linear arrays of M and N antennas, respectively. Independent

data streams x(t) = [x1(t), x2(t), x3(t), · · · , xM(t)]T are transmitted from the BS at time

t, where xm(t) denotes the source signal of the mth transmit antenna and the superscript

T denotes vector (matrix) transposition. At the MS, the received baseband signals are

given by y(t) = [y1(t), y2(t), y3(t), · · · , yN(t)]T , where yn(t) is the signal received by the

nth receive antenna at time t. With a sampling interval of △t seconds, the corresponding

ith transmit and receive sample vectors are xi = x(i△t), and yi = y(i△t), respectively.

2.2.2 Wireless MIMO Channels

A general MIMO channel between BS and MS antennas is modelled as

H(t) =
G∑

l=1

Hlδ(t − τl), (2.1)

where G is the maximum number of paths associated with any sub-channel between a

transmit and receive antenna pair, τl is the delay of the lth path, and δ denotes the

Dirac delta function. The complex channel gain matrix associated with the lth path

is given by Hl = [hl
ij ], for 1 ≤ i ≤ N, 1 ≤ j ≤ M , where hl

ij is the complex sub-

channel gain between the jth transmit and ith receive antennas. For a narrowband

fading channel, (2.1) is reduced to a single-tape fading matrix and the received vector

waveform is y(t) = H(t)x(t) + n(t), where H(t) is an N × M complex channel matrix

and n(t) a zero mean additive white Gaussian noise (AWGN) vector with covariance

matrix E{nnH} = N0IN . We first consider the block fading case in which the channel

gain matrix remains unchanged within a block of B symbol intervals and eliminate the

time parameter t in related expressions. Section IV will discuss the case which takes the

time-correlation among blocks into consideration.
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2.2.3 Spatial-correlated block fading channels

Many analytic models for spatial-correlated MIMO channels have been proposed in the

literatures. The Kronecker model [6] assumes separable statistics at transmitter and

receiver so that the spatial correlation matrix Φ of vec(H), vec(·) being the stacking

operator, is given by the Kronecker product (⊗) [18] of those of the transmit (ΦT) and

receive (ΦR) antennas, Φ = ΦR ⊗ ΦT = Φ
1
2 (Φ

1
2 )H , where the “square root” matrix Φ

1
2

has a similar decomposition Φ
1
2 = Φ

1
2
T ⊗Φ

1
2
R. The separable statistics assumption yields

H = Φ
1
2
RHwΦ

1
2

T

T , (2.2)

where Hw is an N × M channel matrix whose entries are i.i.d. complex zero-mean,

unit-variance Gaussian random variables.

Although the Kronecker model is mathematical tractably, many measurement and

theoretical results reveal that this separable model in general leads to misfits for capacity

and error probability due to the smaller number of degrees of freedom (DF) [19],[20]. The

Kronecker model has been generalized by Sayeed [21] and, more recently, by Weichsel-

berger et al. [22] who considered joint correlation of both link ends and suggested the

following analytic model

H = UR

(
Ω̃ ⊙R

)
UT

T, (2.3)

where UT and UR are the eigenbases of the one-sided correlation matrices at the transmit

and receive sites, respectively. Operator ⊙ denotes the Hadamard product operation [18].

R denotes a random matrix whose elements are i.i.d. zero-mean, unit-variance complex

Gaussian random variables. Ω̃ is the element-wise square root of the coupling matrix in

which each entry specifies the mean amount of energy coupled with an eigenvector of the

transmitter to that of the receiver. The Weichselberger model provides a more general

framework of canonical modelling [22],[23],[24], where (2.3) can be represented by the

following canonical form,

H = URHindU
T
T. (2.4)

Hind has independent, but not necssarily identically distributed entries. The Kronecker

model can thus be understood as a special case of the Weichselberger and the canonical
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model by the following equations

H = Φ
1
2
RHwΦ

1
2

T

T

canonical (2.4)
= UR D

1
2
RHwD

1
2
T︸ ︷︷ ︸

: Hind

UT
T (2.5)

Weichselberger (2.3)
= UR((diag(D

1
2
R)diag(D

1
2
T)T )︸ ︷︷ ︸

: Ω̃

⊙Hw)UT
T, (2.6)

where ΦT = UTDTUH
T and ΦR = URDRUH

R denote the eigen decomposition of correla-

tion matrices at transmitter and receiver, respectively. (2.5) follows from the isotropicity

of an i.i.d. random matrix under an unitary transformation. Note, the DF of Ω̃ in (2.6)

is N + M , while Ω̃ of the general Weichselberger model in (2.3) has DF equal to NM .

The small number of DF explains the deficiency of the Kronecker model as described

above and is mainly due to the lack of modelling the cross-correlation between transmit-

ter and receiver sides. In the following, we will develop a channel representation which

takes the Kronecker, Weichselberger and canonical model as special cases, and is useful

for reduced-rank processing.

2.3 Channel Representation

An N ×M matrix H always admit the singular value decomposition (SVD), H = UΛVT ,

where U is an N × N unitary matrix, V is an M × M unitary matrix, and the diagonal

matrix Λ is N × M with non-negative entries. When H is random, its SVD component

matrices are random and depend on the sample (matrix) value of H. As U and V can

be transformed into two predefined unitary matrices QR and QT by UP1 = QR and

VP2 = QT, with both transforms P1 and P2 being unitary, we have

H = QRP−1
1 Λ(P−1

2 )TQT
T = QRCQT

T (2.7)

and the only random component is C. For the Weichselberger model, the predefined

matrices are eigenbases of the one-sided correlation matrices while Sayeed’s virtual channel

representation uses the DFT bases.

Let Φ
1
2
T

def
= [φT(i, j)], where φT(i, j) represents the root spatial correlation between ith

and jth transmit antennas. As the M column vectors of Φ
1

2

T lie in a KT (≤ M) dimensional

8



subspace, we have

Φ
1/2
T = QTΛT, (2.8)

where QT is an unitary matrix and the coefficient matrix ΛT can be obtained by the

Gram-Schimdt orthonormalization procedure. The above equation implies φT(i, j) =
∑KT

k=1 λj
kqk(i), where qk(i) is the ith element of the kth basis vector, λj

k is the projection

of the jth column on qk.

Using a similar decomposition for Φ
1/2
R leads to

Φ1/2 = (QTΛT) ⊗ (QRΛR) = (QT ⊗ QR) (ΛT ⊗ ΛR) ,

where we have invoked the identity [18],

(A1 ⊗ B1)(A2 ⊗B2) · · · (Ak ⊗ Bk) = (A1A2 · · ·Ak) ⊗ (B1B2 · · ·Bk). (2.9)

From the canonical representation, vec(H) = Φ
1
2 vec(Hw), we obtain

vec(H) = (QT ⊗QR) (ΛT ⊗ΛR) vec(Hw)
def
= (QT ⊗ QR) vec(C). (2.10)

The identity

vec (ABD) =
(
DT ⊗ A

)
vec (B) (2.11)

implies vec(H) = vec
(
QRCQT

T

)
, and so H = QRCQT

T, which is the same as (2.7).

We summarize the above derivation on the relation between the proposed analytic

model with the Kronecker, Sayeed, and Weichselberger models in

Proposition 2.1. An N × M MIMO channel matrix H, can always be expressed as

H = QRCQT
T (2.12)

where C is a complex random coefficient matrix, QR and QT are predefined unitary ma-

trices. The above model is equivalent to the Kronecker model if the matrix C satisfies the

separable correlation condition

vec(C) = (ΛT ⊗ ΛR) vec(Hw) (2.13)
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where ΛT and ΛR are coefficient matrices that depend on the spatial correlations among

the transmit and the receive antenna arrays, respectively. (2.12) is related to the Weich-

selberger model via

UT = QTPH
T , UR = QRPH

R (2.14)

PH
R ΓRPR = E

{
CCH

}
, PH

T ΓTPT = E
{
CTC∗

}
(2.15)

where PT, PR are unitary matrices and ΓR, ΓT have the same eigenvalues of the matrices

E
{
HHH

}
and E

{
HTH∗

}
, respectively. When the predefined matrices are the same as

UR and UT, C has the special form Ω̃⊙R. Moreover, (2.12) is equivalent to the virtual

representation of Sayeed if columns of QR and QT are DFT basis vectors and entries of

C are independent complex Gaussian random variables.

[1] suggested and [25] verified through field measurements that the mean direction

of arrival (DoA) can be embedded in the channel model by pre-multiplying the channel

matrix H by a diagonal matrix which is a function of the DoA. We can derive a similar

model by invoking the fact that if W is a diagonal matrix with unit modulus entries

and V is unitary then both VW and W−1V are also unitary, to obtain the alternative

representation (2.16).

Corollary 2.1. An equivalent channel matrix for stationary frequency-flat MIMO channel

is given by

H = QRCQ
T

TW (2.16)

where Q
T

TW = QT
T and W is a diagonal matrix with unit modulus entries.

Several remarks and observations on the channel models (2.12) and (2.16) are given

below.

R1. The Kronecker model requires that C has the special structure (2.13) while the

Weichselberger, Sayeed and canonical models demand that the entries of C be in-

dependent (but not identical) random variables. In contrast, the proposed model

does not impose any constraint on the coefficient matrix C and is valid for arbitrary

block-faded H.
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R2. The Weichselberger model is perhaps more convenient to generate the matrix chan-

nel H and for evaluating the channel capacity of correlated MIMO channels as the

coefficient matrix has independent entries. It is also useful to analyze MIMO system

performance. However, it is not suitable for channel estimation applications because

the number of parameters, including the unknown eigenbases, is even larger than

that of H.

R3. For practical correlated MIMO channels, which are of particular concern, the entries

of H are not i.i.d. but correlated random variables and H admits reduced-rank

representation. That is, although H is likely to be of full rank, one can approximate

it by reduced-rank unitary matrices (so is the coefficient matrix), ignoring the weaker

eigenmodes. The rank-reduction is most obvious for typical urban macro-cellular

environments in which an MS is surrounded by local scatterers, and waveforms

impending the receive antennas are richly scattered, while the BS is not obstructed

by the local scatterers [6][26]. Appendix A shows that, if the angle spread (AS) ∆

is not too large, the diagonal matrix W

W = diag [w1, w2, · · · , wM ] , (2.17)

has entries of the form wi = exp
[
−j2π (i−1)d

λ
sin φ

]
, d being the inter-element dis-

tance, that bear the mean AoD information. As will become clear later, the sep-

arability of channel correlation and angle information characterizations has some

useful implications.

R4. Given predefined bases QR, QT, or QT, the statistic properties of the corresponding

coefficient matrix is completely determined by those of H. Identification of the

unknown channel H is equivalent to the estimation of C or the pair (C,W), which

usually has a lower rank and much smaller number of entries than those of H for

the link environment of interest. Thus, using model (2.12) or (2.16) reduces the

number of parameters to be estimated and enhances the performance. Moreover, as

the bases in both (2.12) and (2.16) are pre-defined, these two models can be easily

extended to time-varying block fading and frequency-selective fading environments.
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R5. There are several classes of basis functions to choose from. The Taylor and Weier-

strass arguments and the results of [27] suggest the use of polynomial bases. If we

use polynomials of degree P as basis functions in expanding a spatial correlation

function of length P , the corresponding basis matrix PP has entries

[P]i,j = (i − 1)j−1, i, j = 1, 2, . . . , P, (2.18)

Although the column vectors in (2.18) form a basis, they are not orthogonal. Fur-

thermore, these vectors have different norms, which might result in numerical insta-

bility. By applying the QR decomposition to the corresponding PP [28], we obtain

an orthonormalized polynomial basis matrix Po. The basis matrices QM,KT
and

QN,KR
of (3.2) or QL,KL

of (3.23) are obtained by selecting the first KT , KR or KL

columns of the corresponding Po.

R6. For a fixed base one needs to determine the modelling orders, KT and KR. Ei-

ther the Akaike information criterion (AIC) and the minimum description length

(MDL) approach can be used to determine the optimal modelling orders that trade-

off the system complexity and performance [29]. Time domain modelling order KL

discussed in Section IV can also be similarly determined. Depending on the appli-

cation scenario, these order parameter values can be obtained by an one-shot open

loop estimate or should be periodically updated.

R7. The model (2.16) is especially useful for channel estimation application because, as

will be shown in the next section, it allows very efficient (in terms of convergence

rate) channel estimation algorithms that iteratively estimate C and W separately,

and, at low SNR’s, the reduced-rank model gives performance superior to that of the

full-rank model. Furthermore, for a small-to-medium AS, which occurs quite often

in cellular downlinks, the extracted AoD information can be feedback for downlink

beamforming.

R8. Our simulation experiments indicate that, when the AS △ becomes large, the rank

of C increases and there is no dominant spatial angle. The steering matrix W
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becomes an identity matrix which gives no AoD information and (2.16) degenerates

to (2.12).

R9. The proposed channel representation for single-block frequency-flat MIMO channels,

i.e., (2.16), can also be extended to the cases of time-variant frequency-flat and time-

variant frequency-selective fading channels by properly modelling the time-domain

correlation. These extensions are given in Section 3.2 and Section 3.3 respectively.
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Chapter 3

Model-based MIMO Channel

Estimation

This chapter presents novel schemes for estimating correlated multiple-input multiple-

output (MIMO) fading channels. Our schemes are based on an analytic correlated block

fading model and its time-variant extension which encompass the popular Kronecker

model and the more general Weichselberger model as special cases. Both static and time-

variant models offer compact representations of spatial- and/or time-correlated channels.

When the transmit antenna array is such that the associated MIMO channel has a small

angle spread (AS), which occurs quite often in a cellular downlink, our models admit

reduced-rank channel representations. They also enable us to develop effective estimators

and provide compact channel state information (CSI) descriptions which are needed in

feedback systems and for many post channel estimation applications. The latter has

the important implication of reduced feedback channel bandwidth requirement and lower

post-processing complexity.

We propose iterative algorithms for estimating static and time-variant MIMO chan-

nels. The proposed models make it natural to decompose each iteration into two succes-

sive stages that are responsible for estimating the correlation coefficients and the signal

direction, respectively. Both spatial- and time-correlated fadings are considered. The

mean-squared error (MSE) performance of our estimators are analyzed as well. Using

popular industry-approved standard channel models, we verify through simulations that

our algorithms yield offer good MSE performance which, in many practical cases, is better

than that achievable by a conventional least-square estimator.
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3.1 Single-Block Based Channel Estimation

In this section we consider estimation schemes which are based on a single block of ob-

servation without taking into account the (time-)correlation among blocks. We propose

two iterative schemes in which an iteration consists of two phases. The first phase is

responsible for the estimation of the coefficient matrix, C, while the directional matrix,

W in (2.16), is estimated in the second phase. Both tentative estimates are updated as

one proceeds with each new iteration until the stopping criterion is met. The two schemes

differs in the second phase only.

Consider the M ×B matrix X = [x1,x2, · · · ,xB] formed by B length-M input symbol

vectors, where B ≥ M . Assuming H remains static during a B-block period, we express

the received sample block, Y = [y1,y2, · · · ,yB] as

Y = HX + N, (3.1)

where N = [n1,n2, · · · ,nB] is the corresponding noise matrix whose entries are i.i.d.

zero mean complex Gaussian random variables. In estimating H, X is assumed to be

composed of either the pilot vectors or some decision feedback results. Substituting two

known unitary matrices QM,KT
and QN,KR

with ranks KT (≤ M) and KR(≤ N) for QT

and QR in (2.16), we want to find the optimal solution {Wopt,Copt} to the problem

arg min
W,C

‖Y − QN,KR
CQT

M,KT
WX‖2 (3.2)

We express the corresponding optimal (least-squares) channel estimate in terms of Wopt

and Copt

Hopt = QN,KR
CoptQ

T
M,KT

Wopt (3.3)

so that (3.1) can be rewritten as

Y = HoptX + ∆HX + N
def
= HoptX + Ñ, (3.4)

where Ñ represents the sum of the modelling error ∆HX due to the reduced rank repre-

sentation and the AWGN vector, N.
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To derive an iterative algorithm for obtaining the joint directional and channel solution

{Wopt,Hopt}, we assume that, at the (i − 1)th iteration,

Y = Ĥi−1X + ∆Ĥi−1X + Ñ (3.5)

where ∆Ĥi−1
def
= Hopt − Ĥi−1 is the residual error at the end of the (i − 1)th iteration,

and consider the estimation of the channel (coefficients) and AoD in two separate phases.

3.1.1 Phase I - Coefficient Estimation

Assume that the directional matrix in this phase is optimum, i.e., W = Wopt . From

(3.1) and (3.3), we have

vec(Y) =
{(

(WoptX)TQM,KT

)
⊗ QN,KR

}
vec(C) + vec(N). (3.6)

Substituting the definition Z
def
= ((WoptX)TQM,KT

) ⊗ QN,KR
into (3.6), we have the LS

solution

vec(Ĉ) = (ZHZ)−1ZHvec(Y)
def
= F (Wopt). (3.7)

While the optimal directional matrix estimate is not available, we replace it by the tenta-

tive estimation from the previous iteration, Wi−1. vec(Ĉ) is then obtained by computing

F (Wi−1) instead, and the corresponding tentative estimate is denoted by Ĉi. Initially,

we can arbitrarily set W0 to be an identity matrix.

3.1.2 Phase II - Direction Estimation

Similar to Phase I, we begin with the assumption that the coefficient matrix in this

estimation phase is optimum. The directional information is to be obtained by estimating

a diagonal matrix W with unit modulus entries; see (2.17). Setting

G
def
= QN,KR

CoptQ
T
M,KT

(3.8)

and invoking (3.3), we have Ĥi−1 = GŴi−1. As Copt is unavailable, Copt is replaced by

the previous estimate Ĉi−1 in computing G during the ith iteration. In the following, we

propose two algorithms to estimate the phase of the unit modulus diagonal entries of W.
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3.1.2.1 Algorithm A - Maximum Matching Output

To estimate Ŵi in diagonal form, we start with the following lemma whose proof is given

in Appendix B.

Lemma 3.1. For two matrices A and B of size N ×M and M ×E respectively, and an

arbitrary vector c of size M × 1, the following identity holds.

vec (A · diag(c) · B) =
[
(1E ⊗A) ⊙

(
BT ⊗ 1N

)]
c, (3.9)

where “diag” denotes the diagonal operation used to translate a vector into a diagonal

matrix, with its diagonal terms being the elements of the original vector.

Combined with matrix G defined in (3.8), (3.4) is rewritten as

Y = GWoptX + Ñ. (3.10)

Let wopt be the column vector that consists of the diagonal elements of Wopt, i.e., wopt(i) =

Wopt(i, i), for any 1 ≤ i ≤ M . Then, by Lemma 3.1, we have

vec (Y) =
[
(1B ⊗G) ⊙

(
XT ⊗ 1N

)]
wopt + vec

(
Ñ
)

(3.11)

and the LS estimate of wopt is given by ŵLS = T†·vec(Y), where
[
(1B ⊗ G) ⊙

(
XT ⊗ 1N

)] def
=

T.

In order to extract the steering vector ŵ, we introduce v(θ)
def
=
[
1, v(θ), . . . , vM−1(θ)

]T
,

where v(θ) = exp
[
−j2π d

λ
sin(θ)

]
. The AoD information φ̂ is retrieved by maximizing the

matching output

φ̂ = arg max
−π≤θ≤π

Re
{

P (ŵLS)H
v(θ)

}
, (3.12)

where P(·) is defined by the following phase extraction operator,

P
(
[a0e

jb0, a1e
jb1 , · · · , aKejbK ]

) def
= [1, ej(b1−b0), · · · , ej(bK−b0)],

for {ai}K
i=0 ∈ RK+1 and {bi}K

i=0 ∈ [0, 2π). (3.13)

Once φ̂ is available, it is straightforward to obtain Ŵ = diag(v(φ̂)). Solving (3.12) over

[0, 2π) can be accomplished by using the conventional line searching algorithm.
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Computing ŵLS in (3.12) involves a pseudo-inverse operation of matrix T, and is thus

computational expansive. Thanks to the special structure of T, a training matrix with

orthogonal rows can be used to bypass the calculation of pseudo-inversion. Note that

THT = (BGHG) ⊙ (NX∗XT ), (3.14)

the right-hand side of (3.14) will become a diagonal matrix with nonnegative real elements

if X∗XT = BI. Such an orthogonality is guaranteed provided that the optimal training

matrix for LS estimator is used [7]. Under the assumption of orthogonal training matrix,

we have

P (ŵLS) = P
(
T† · vec(Y)

)
= P

(
TH · vec(Y)

) def
= P

(
˜̂wLS

)
, (3.15)

where ˜̂wLS doesn’t require the cumbersome matrix inversion. The AoD information can

thus be obtained simply by substituting ˜̂wLS for ŵLS in (3.12).

3.1.2.2 Algorithm B - Root Finding Method

An alternative way to find the optimal phase is to convert (3.12) into a root finding

problem. Note that the elements of wopt are of geometric progression, i.e., they form a

row vector of a Vandermonde matrix. Hence if we define the correlation polynomial

P (z)
def
= P(ŵLS)Hz − M, (3.16)

where z = [1, z, . . . , zM−1] and let Z be the set of its zeros in the complex plane, then

solving (3.12) is equivalent to

ẑ = arg min
z∈Z

|(|z| − 1)| and φ̂ = sin−1

(−Arg{ẑ}λ
2πd

)
(3.17)

and the directional matrix is reconstructed by Ŵ = diag(ẑ), where ẑ = [1, ẑ, · · · , ẑM−1].

Unlike Algorithm A whose solution accuracy relies on the resolution the numerical search

algorithm used, this algorithm gives the exact analytic solution once (3.16) is solved. Sim-

ilar to Algorithm A, ˜̂wLS can be substituted for ŵLS in (3.16) to simplify the computation.

Since the object function in (3.2) is jointly convex with respect to C and W and

the proposed algorithms have the form of a nonlinear Gauss-Seidel algorithm, the con-

vergences of our algorithms are guaranteed [30]. All the simulation examples reported

18



in Section 3.2 converge and achieve the theoretical performance lower bound derived in

Section 3.4.

The computation complexity of the proposed algorithm is dominated by the LS oper-

ations in Phase I. The flop count of the LS operation in Phase I is O(BK2
T ), KT ≤ M

while the conventional LS estimator needs O(BM2) flops [31]. The complexity of Phase

II is mainly contributed by the product of T and vec(Y), and is in general much less

than that of Phase I, thanks to Eq. (3.15) and the special structure of T. Therefore,

the total complexity of the proposed algorithm is less than that of the conventional LS.

Moreover, except for static channels, the estimates for both W and C need to be updated

periodically. Let each B−symbol interval be called an estimation interval (EI). Since the

mean AoD usually change much slower than the channel coefficients (gains) variation,

updating frequencies for W and C can and should be different, i.e., if the two estimates

are updated every T c
o and Tw

o EIs, respectively, then Tw
o ≫ T c

o (see Fig. 3.8 of Section

3.5). This dual updating frequency option is unique to our approach and implies that

Phase II may be disabled most of the time while Phase I needs single iteration per update

EI, hence our algorithm can be computational more efficient than the conventional LS

approach for many non-static channels.

The major advantage of our channel model and estimator lies not only in the computa-

tional efficiency of the channel estimator but also in the compactness of CSI representation

which is needed in a feedback system and that of post processing operations. As men-

tioned in R3 and R4 in the previous chapter, a small KT is often sufficient to accurately

describe a MIMO channel with high transmit spatial correlation. For any post channel es-

timation operation associated with H, e.g., taking pseudo-inverse or eigen-decomposition

of H, the computing load is reduced as it involves the KR × KT coefficient matrix and

the estimated AoD instead of the original N × M channel matrix.

3.1.3 Order Determination for Block-Fading Channels

The remark R4 in Chapter 2 tells us that we can choose to use low-rank bases to closely

approximate H provided that the modelling orders KT and KR are properly selected. We

use Akaike information criterion (AIC) to determine the optimal modelling orders as it
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tends to give robust and reliable results, especially for small sample size. Taking into

account the proposed channel estimator, the AIC-based order determination scheme is

given by [29],

[KT , KR] = arg min
1≤KT≤M,1≤KR≤N

N log

(
RSSKT ,KR

N

)
+ 2(KT + KR). (3.18)

where RSSKT ,KR
is the squared error of (3.2) associated with the modelling orders KT

and KR. Instead of using the instant sample error, we can use the time-average squared

error in calculating the AIC solution to obtain a more reliable estimate.

Since the channel statistics varies much slower than the instantaneous channel strength,

the update period of the modelling order is much longer than that of the instant channel

estimate; reducing the overhead required by order estimation. Similar order determination

scheme can be used to estimate the modelling order for time-correlated fading channels,

provided that RSSKT ,KR
of (3.2) is calculated using the time-correlated model (3.24) given

in the next section and the frequency-selective case (3.38) discussed in Section 3.3. More-

over, the optimal time domain modelling order can also be determined by incorporating

KL discussed in the next section into the degrees of freedom in AIC’s formula.

3.2 Channel Estimation with Time Correlation Con-

sideration

We now extend our investigation to the case that considers the time correlation among

blocks. Similar to our spatial modelling approach, we use a set of orthonormal basis

functions to describe a snap shot of a fading channel’s time domain behavior. We assume

an equally spaced pilot-block arrangement. The issue of the optimal pilot arrangement

that minimizes the MSE or bit error rate (BER) was addressed in [12] and [32].

Assume the two leading pilot symbol vectors of two consecutive pilot block is T symbol

intervals away. The receive signal block at time nT can be written as

Yn = HnXn + Nn (3.19)

where Yn = Y(nT ) and Xn = X(nT ) are the N × B receive matrix at time nT and the

corresponding M ×B transmit block, respectively. Hn is the N ×M matrix whose (i, j)th
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entry represents the link gain between the ith transmit and the jth receive antennas at

time nT .

We consider the time-variant behavior of a MIMO channel within a fixed observation

window of L blocks (EIs). The received sample blocks from nT to (n + L − 1)T can be

cascaded into the matrix

Yn,L
def
= [Yn,Yn+1, . . . ,Yn+L−1] . (3.20)

Using (2.11), we obtain

vec(Yn,L) =
(
XT

n,L ⊗ IN

)
· vec (Hn,L) + vec (Nn,L) (3.21)

where vec(Hn,L)
def
=
[
vec(Hn)

T , . . . vec(Hn+L−1)
T
]T

, vec(Nn,L)
def
=
[
vec(Nn)

T , . . . vec(Nn+L−1)
T
]T

,

and

XT
n,L

def
=




XT
n 0 · · · 0

0 XT
n+1

... 0
...

...
. . .

...
0 0 · · · XT

n+L−1


 .

Substituting (2.12) for each Hn and assuming the eigenbases QT and QR remain invariant

during an estimation period, we obtain

vec(Hn,L) = (IL ⊗QT ⊗QR)Γn,L. (3.22)

Each component of the vector Γn,L = [γn, γn+1, · · · , γn+L−1]
T is itself an (NM)×1 column

vector γn =
(
γ1n, γ2n, · · · , γ(NM)n

)T
that represents the complex fading coefficients for all

NM MIMO subchannels at time nT and, γpn, 1 ≤ p ≤ NM , are independent.

The stacked vector, γ(p) =
[
γpn, γp(n+1), · · · , γp(n+L−1)

]T
, represents a finite-duration

sample of the complex random process associated with the pth subchannel [25]. Such a

process can also be expanded by a set of smooth functions [8, 33], and thus its estimation

can be obtained by using a method similar to that developed in the previous section.

Similar to the approach used in Section 2.2.3, we can first apply the orthogonal transform

γ(p) = QLbpn, where QL is an L×L orthogonal matrix, and bpn is the transform domain

coefficient vector. Then, the time domain channel correlation can be approximated by

using the reduced basis matrix QL,KL

γ(p) ≈ QL,KL
cpn, and Γn,L ≈ (QL,KL

⊗ ILMN) · ccoef, (3.23)
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where KL denotes the time domain modelling order, and cpn is a KL×1 coefficient vector.

By using (2.16), (3.22) and the approximation (3.23), we decouple the signal part of

(3.21) into the product of two modelling domains - space and time domains

vec(Ȳn,L) ≈
(
XT

n,L ⊗ IN

) [
QL,KL

⊗ (WTQT) ⊗QR

]
ccoef

≈
(
XT

n,L ⊗ IN

) [
QL,KL

⊗ (WTQT,KT
) ⊗ QR,KR

]
c̃coef

def
=

(
((WLXn,L)T Q̃T,KT

) ⊗QR,KR

)
c̃coef (3.24)

where WL
def
= (IL⊗W), Q̃T,KT

def
= QL,KL

⊗QT,KT
and QT,KT

and QR,KR
are composed of

KT and KR column vectors of QT and QR, respectively. W is the steering matrix defined

in (2.17). Since the mean AoD usually varies slowly with respect to a sub-channel’s

coherent time, we assume that W remains the same during a period of L data blocks.

Similar to the narrowband model (2.16), we do not impose the implicit Kronecker structure

and Gaussian assumption on c̃coef.

As (3.24) can be obtained by replacing X, Y, W, vec(C), QM,KT
, and QN,KR

in (3.6)

by Xn,L, Yn,L, WL, c̃coef, Q̃T,KT
, and QR,KR

, we conclude that both spatial and time

correlations can be described by similar models. Hence, the two-phase iterative estimation

scheme developed in Section 3.1 can be extended to estimate the coefficient vector c̃coef,

and the directional matrix WL in (3.24). In the following, we describe two-phase channel

estimation schemes with time correlation consideration.

3.2.1 Phase I - Coefficient Estimation

Following an argument similar to that used in Section 3.1, we assume that the directional

matrix WL is optimal in the coefficient estimation phase and define

Z̃
def
=
(
(WL,optXn,L)T Q̃T,KT

)
⊗ QR,KR

. (3.25)

The LS estimate of c̃coef is

̂̃ccoef = (Z̃HZ̃)−1Z̃Hvec (Yn,L)
def
= F̃ (WL,opt), (3.26)

which is a function of the optimal directional matrix WL,opt. At the ith iteration, since the

optimal directional matrix is not available, the tentative estimation, WL,i−1, is substituted

for WL,opt.
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3.2.2 Phase II - Direction Estimation

Similar to the single-block based case, we propose two AoD estimation algorithms. Again,

we assume the optimal coefficient vector is available, i.e., c̃coef = c̃coef,opt, when estimating

the directional information.

Define a new matrix G̃
def
= QR,KR

C̃coef,optQ̃
T
T,KT

, where C̃coef,opt is a KR × KLKT

matrix derived from c̃coef,opt by C̃coef,opt(i, j) = c̃coef,opt (KR(j − 1) + i), 1 ≤ i ≤ KR, 1 ≤

j ≤ KLKT . We rewrite the received matrix in vector form

vec(Yn,L) = vec
(
G̃WLXn,L

)
+ Ñn,L

=
(
XT

n,L ⊗ G̃
)

vec(IL ⊗W) + Ñn,L, (3.27)

where Ñn,L represents the sum of the modelling error associated with G̃ and the AWGN

term Nn,L.

3.2.2.1 Algorithm A - Maximum Matching Output

If W is constrained to be a diagonal matrix, i.e., W = diag(w), then IL⊗W = diag(1L⊗

w) and therefore

vec(Yn,L) = vec
(
G̃ · diag(1L ⊗w) · Xn,L

)
+ Ñn,L. (3.28)

From Lemma 3.1, we have

vec
(
G̃ · diag(1L ⊗ w)) ·Xn,L

)

=
((

1BL ⊗ G̃
)
⊙
(
XT

n,L ⊗ 1N

))
(1L ⊗ IM)w

def
= T̃w. (3.29)

Similar to Algorithm A presented in the previous subsection, the LS estimate of wopt is

ŵLS = T̃† · vec(Yn,L). To improve the estimate and reconstruct a steering vector ŵ,

we analogously define a steering vector v(θ)
def
=
[
1, v(θ), · · · , vM−1(θ)

]T
, where v(θ) =

exp(−j2π d
λ

sin(θ)). The AoD information φ̂ can be retrieved by

φ̂ = arg max
−π≤θ≤π

Re
{
P(ŵLS)Hv(θ)

}
, (3.30)

where P denotes the phase extraction operator defined by (3.13). Having obtained φ̂, we

then proceed to compute ŴL = IL ⊗ V(φ̂), where V(φ̂) = diag(v(φ̂)).
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Also, the pseudo-inverse operation T̃† is not necessary if orthogonal training matrix is

used for Xn, i.e., XnX
H
n = BI for each n. Following the discussion given in Section 3.1.2,

for orthogonal training matrices, we have

P( T̃† · vec (Yn,L) ) = P(

def
= ebwLS︷ ︸︸ ︷

T̃H · vec (Yn,L) ), (3.31)

and ŵLS can be replaced by ˜̂wLS in (3.30).

3.2.2.2 Algorithm B - Root-Finding Method

The root-finding approach for the block fading case can be used as well. It is easy to

see that (3.30) is equivalent to searching for the root of the correlation polynomial P (z)

which is the closest to the unit circle, i.e.,

ẑ = arg min
z

||z| − 1|, subject to P (z)
def
= P(ŵLS)Hz − M = 0 (3.32)

and then retrieving the AoD information from ẑ = exp
[
−j2π d

λ
sin(φ̂)

]
. The directional

matrix is to be reconstructed by ŴL = IL ⊗diag(ẑ), where ẑ = [1, ẑ, . . . , ẑM−1]. Also, for

orthogonal training matrices, ˜̂wLS can be substituted for ŵLS to skip the pseudo-inverse

computation.

The total complexity per block of the proposed algorithm, like the single-block based

case in Section 3.1, is smaller than that of the conventional LS estimator. Given a fixed

iteration number, the flop count of the proposed algorithm is decided by Phase I and is of

the order O(BK2
TL), while the conventional LS estimator needs O(BM2L) flops. Thus,

we can save the computational complexity up to the ratio
K2

T

M2 . Moreover, if the operating

scenario allows the use of the dual updating frequencies option and Tw
o ≪ T c

o , the total

complexity can be reduced further. For slowing time-variant channels, the required time

domain modelling order, KL, is small, the number of channel representation parameters is

reduced from LMN to KLKT KR +1. Such a reduction yields compact CSI representation

and benefits many post channel estimation operations involving H, as was discussed at

the end of last section.
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3.3 Channel Estimation for Frequency-Selective Time-

Varying Fading Channels

For estimating a correlated frequency-selective time-varying fading channel, approaches

used in the previous sections are extended to accommodate frequency-selective character-

istics. Assume that the power delay profiles for the sub-channels between transmit and

receive pairs are independent but of the same form. With a sampling interval of T , the

receive signals at time nT can be written as

Yn =

D−1∑

d=0

H(d)
n X(d)

n + Nn (3.33)

where Yn = Y(nT ) is the N × B receive vector at time nT , X
(d)
n = X(nT − dT ) is the

M ×B transmit block, at time (n− l)T , and B denotes the length of training block. H
(d)
n

is the N ×M matrix whose (i, j)th entry represents the fading coefficient of the dth delay

path, at time nT for the channel between the ith transmit and jth receive antennas.

In the estimation of the time-variant fading MIMO channel, an observation window

is included to take into account the channel variation. For an observation window of size

L, the stacked receive sample vector from time nT to (n + L − 1)T can be expressed as

Yn,L
def
= [Yn,Yn+1, . . . ,Yn+L−1] . (3.34)

Applying (2.11) to the stacked version of (3.33), we have

vec(Yn,L) =
(
XT

n,L ⊗ IN

)
· vec (Hn,L) + vec (Nn,L) (3.35)

where

vec(Hn,L)
def
=
[
vec(Hn)

T , . . . vec(Hn+L−1)
T
]T

,

vec(Hn)
def
=
[
vec(H(0)

n )T , · · · , vec(H(D−1)
n )T

]T
,

vec(Nn,L)
def
=
[
vec(Nn)

T , . . . vec(Nn+L−1)
T
]T

,

and

XT
n,L

def
=




X
(0)
n

T
, · · · ,X

(D−1)
n

T
0 · · · 0

0 X
(0)
n+1

T
, · · · ,X

(D−1)
n+1

T ... 0
...

...
. . .

...

0 0 · · · X
(0)
n+L−1

T
, · · · ,X

(D−1)
n+L−1

T




.
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Substituting (2.12) for each Hn and assuming the eigenbases QT and QR remain invariant

during an estimation period, we obtain

vec(Hn,L) = (ILD ⊗ QT ⊗ QR)Γn,L. (3.36)

Each component of the vector Γn,L =
[
γ

(0)
n

T
, · · · , γ

(D−1)
n

T
, · · · , γ

(0)
n+L−1

T
, · · · , γ

(D−1)
n+L−1

T
]T

is itself an (NM) × 1 column vector γ
(d)
n =

(
γ

(d)
1n , γ

(d)
2n , · · · , γ

(d)
(NM)n

)T

that represents the

complex fading coefficients of the dth path for the pth MIMO subchannel at time nT ,

p ∈ {1, 2, · · · , NM}, and d ∈ {0, 1, · · · , D − 1}.

The stacked vector, γ(p) =
[
γ

(d)
pn , γ

(d)
p(n+1), · · · , γ

(d)
p(n+L−1)

]T
, represents a finite-duration

sample of the complex random process associated with the dth delay path which has a

fixed Doppler spectrum [25]. Such a process can also be expanded by a set of smooth

functions [33],[8], and thus its estimation can be obtained by using a method similar to

that developed in the previous section. Similarly, as described in Section 2.2.3, we can

first apply the orthogonal transform γ(p) = QLb
(d)
pn , where QL is a full-rank orthogonal

matrix, and b
(d)
pn is the transform domain coefficient. Then, the time domain channel

correlation is approximated in the following equation by using the reduced bases matrix

QL,KL
,

γ(p) ≈ QL,KL
c(l)

pn, and Γn,L ≈ (QL,KL
⊗ IDMN) · ccoef, (3.37)

where KL denotes the time domain modelling order, and c
(d)
pn is a KL×1 coefficient vector.

By using (3.35), (3.36) and the approximation (3.37), we decouple the signal part of

(3.35) into the product of two modelling domains - space and time domains

vec(Yn,L) ≈
(
XT

n,L ⊗ IN

)
(ILD ⊗ ULS ⊗UR) (QL,KL

⊗ IDMN) ccoef

=
(
XT

n,L ⊗ IN

) [
(QL,KL

⊗ ID) ⊗
(
(WTQT,KT

) ⊗ QR,KR

)]
c̃coef

def
=

(
((WDLXn,L)T Q̃T,KT

) ⊗ QR,KR

)
c̃coef (3.38)

where WDL
def
= (ILD⊗W), Q̃T,KT

def
= QL,KL

⊗ID⊗QT,KT
, c̃coef = (IKLD ⊗ PT ⊗PR) ccoef.

W is the steering matrix defined in (2.17). Since the mean AoD usually varies slowly with

respect to a sub-channel’s coherent time, we assume that W remains the same during a

period of L data blocks. Similar to the narrowband model (21), we do not impose the

implicit Kronecker structure and Gaussian assumption on c̃coef.
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As (3.38) can be obtained by replacing X, Y, W, vec(C), QM,KT
, and QN,KR

in

(3.6) by Xn,L, Yn,L, WDL, c̃coef, Q̃T,KT
, and QR,KR

, we conclude that both block fading

and time variant frequency selective fading channels can be described by similar models.

Hence, the two-phase iterative estimation scheme developed in Section 3.1 can be extended

to estimate the coefficient vector c̃coef, and the directional matrix WDL in (3.38). In the

following, we describe a two-phase channel estimation approach for frequency-selective

time-variant MIMO fading channels.

3.3.1 Phase I - Coefficient Estimation

Following an argument similar to that used in Section 3.1, we assume that the directional

matrix WDL is optimal in the coefficient estimation phase and define

Z̃
def
=
(
(WLD,optXn,L)T Q̃T,KT

)
⊗QR,KR

. (3.39)

The LS estimate of c̃coef is

̂̃ccoef = (Z̃HZ̃)−1Z̃Hvec (Yn,B)
def
= F̃ (WLD,opt), (3.40)

which is a function of the optimal directional matrix WLD,opt. At the ith iteration, since

the optimal directional matrix is not available, we substitute the tentative estimation at

(i − 1)th iteration, WLD,i−1, for WLD,opt.

3.3.2 Phase II - Direction Estimation

The two AoD estimation algorithms established in Section 3.2 can be directly extended

here for wide-band MIMO channels. Again, we assume the optimal coefficient vector is

available, i.e., c̃coef = c̃coef,opt, when estimating the directional information.

Define a new matrix G̃
def
= QR,KR

C̃coef,optQ̃
T
T,KT

, where C̃coef,opt is a KR×DKLKT ma-

trix derived from c̃coef,opt by C̃coef,opt(i, j) = c̃coef,opt (KR(j − 1) + i), 1 ≤ i ≤ KR and 1 ≤

j ≤ DKLKT . We rewrite the received matrix in vector form

vec(Yn,L) = vec
(
G̃WDLXn,L

)
+ N′

n,L =
(
XT

n,L ⊗ G̃
)

vec(IDL ⊗ W) + N′
n,L, (3.41)

where N′
n,L represents the sum of the modelling error associated with G̃ and the AWGN

term Nn,L.
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If W is constrained to be a diagonal matrix, i.e., W = diag(w), then IDL ⊗ W =

diag(1DL ⊗ w) and therefore

vec(Yn,L) = vec
(
G̃ · diag(1DL ⊗w) · Xn,L

)
+ N′

n,L. (3.42)

From Lemma 3.1, we have

vec
(
G̃ · diag(1DL ⊗ w)) · Xn,L

)
=
((

1BL ⊗ G̃
)
⊙
(
XT

n,L ⊗ 1N

))
(1LD ⊗ IM)w

def
= T̃Dw. (3.43)

Here, we can extend the proposed two direction estimation algorithms developed in

Section 3.2.2 to extract the AoD information for frequency-selective channel, simply by

replacing the T̃ in (3.29) with T̃D in the above equation.

3.4 Performance Analysis

In analyzing the MSE performance

ǫ
def
= E

{
‖H− Ĥ‖2

F

}
= E

{
‖vec(H) − vec(Ĥ)‖2

2

}
. (3.44)

of the proposed Ĥ, we first make the optimistic assumptions that the optimal orthogonal

pilot matrix [7] for conventional LS channel estimator is used and the directional matrix

estimate Ŵ is perfect.

Notations

For notational simplicity and when there is no danger of ambiguity, H and W in this

section denote the channel and directional matrices of (3.1)/(3.2) or (3.21)/ (3.24) for

single-block based or time-correlated based estimators, and Xp represents X in (3.6) or

Xn,L in (3.24). Furthermore, QT and QR denote either the modelling bases QM,KT
and

QN,KR
in (3.6), or Q̃T,KT

and QR,KR
in (3.24).

Then (3.44) can be expressed as

ǫ(Xp;W) = E
{
‖vec(H) − vec(QRĈQT

TW)‖2
2

}

= E
{
‖vec(H) − ΨΩzvec(HXp + N)‖2

2

}
(3.45)

where Ψ
def
= (WTQT)⊗QR and Ωz

def
= (ẐHẐ)−1ẐH , Ẑ being the LS estimate of Z defined

in 3.1.1, i.e.,

Ẑ
def
= ((WXp)

TQT) ⊗ QR (3.46)
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As HXp and N are statistically independent, the MSE can be separated into two terms

which are contributed by modelling error (reduced-rank basis matrices) and AWGN, re-

spectively.

ǫ(Xp;W) = E
{
‖vec(H) −ΨΩzvec(HXp)‖2

2

}
+ E

{
‖ΨΩzvec(N)‖2

2

}

def
= ǫh(Xp,W) + ǫn(Xp,W). (3.47)

Define the following projections

PW

def
=

[
WTQT(QT

TW∗X∗
pX

T
p WTQT)−1QT

TW∗X∗
pX

T
p

]
⊗ QRQT

R

P̃W

def
=

[
WTQT(QT

TQT)−1QT
TW∗

]
⊗ QRQT

R.

The first term on the RHS of (3.47) becomes

ǫh(Xp;W) = E‖(I− PW) vec(H)‖2
2

= tr
(
(I − P̃H

W)(I − P̃W)Rh

)

=

χ∑

k=1

λk‖(I− P̃W)fk‖2
2 (3.48)

where Rh = E
{
vec(H)vec(H)H

}
is the channel correlation matrix and fk is Rh’s eigenvec-

tor associated with the eigenvalue λk, λ1 ≥ λ2 ≥ · · · ≥ λχ; χ being the degree of freedom of

H. For the single-block based case, χ = NM and it is equal to NML when the estimator

considers the time correlation effect. (3.48) is valid since the orthogonal training matrix

Xp is used. Let 1 < K ≤ χ be the rank of the dominant signal subspace of the channel

covariance matrix. Then Rh =
∑χ

k=1 λkfkf
H
k ≃

∑K
k=1 λkfkf

H
k , with λk ≪ 1 for K < k ≤ χ.

Since ‖(I − P̃W)fk‖2
2 ≤ 1, we have

∑χ
k=K+1 λk‖(I − P̃W)fk‖2

2 ≤
∑Ks

k=K+1 λk ≪ 1. Let the

compound modelling order Ks be equal to KT KR and KT KRKL for the two cases under

investigation. If Ks is chosen to be larger than K, the rank of Rh, i.e., K < Ks ≤ χ,

and the basis matrices QT and QR span the dominant signal subspace of Rh, then the

matrix P̃W is a projection operator whose range lies mostly in the space spanned by

{fk}, 1 ≤ k ≤ K and we conclude that ‖(I − P̃W)fk‖2
2

def
= |P̃⊥

Wfk‖2
2 ≪ 1, for 1 ≤ k ≤ K.

Therefore, the modelling error ǫh is negligible in this case. On the other hand, if the

modelling order is not enough to span the signal subspace, there is under-modelling error

contributed by those non-negligible terms λk‖(I−P̃W)fk‖2
2 which will dominate the mean

squared error when the AWGN is small (high SNR region).
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As for the MSE due to thermal noise–the second term on the RHS of (3.47), we can

show that

ǫn(Xp,W) = E
{
‖ΨPzvec(N)‖2

2

}
= tr

(
N0

B
P̃W

)
=

N0

B
Ks, (3.49)

where we have invoked the facts that (i) the training signal Xp and the noise N are

independent, (ii) unitary pilot matrix is used, X∗
pX

T
p = BI and (iii) elements of N is i.i.d.

complex white Gaussian noise with variance σ2
n = N0. (3.49) implies that thermal noise

induced MSE can be reduced by using a small modelling order. In Section 3.5 (Figs.

3.3 -3.5), we find that this noise-reduction effect is significant in low SNR environments

where thermal noise dominates the MSE performance while the modelling error of (3.48)

dominates in high SNR region.

If Ŵ is not perfect and W = Ŵ + ∆W, then

Ẑ
def
= Z + ∆Z = ((WXp)

TQT) ⊗ QR + ((∆WXp)
TQT) ⊗QR. (3.50)

The coefficient vector estimation vec(Ĉ) can be approximated up to the first order of ∆Z

as [34]

vec(Ĉ) ≃ vec(C) − Z†∆Zvec(C) + Z†vec(N) + (ZHZ)−1∆ZHP⊥
Z vec(N) − Z†∆ZZ†vec(N),(3.51)

where P⊥
Z = I − Z(ZHZ)−1Z. The above equation indicates that, besides the terms that

have to do with the noise N, the coefficient vector estimation error is determined by the

projection error ∆Z. Hence, when the projection error ∆W is small (and thus ∆Z is

small), vec(Ĉ) is a good approximation of vec(C) at high SNR region.

3.5 Numerical Results and Discussion

Simulation results reported here use the reference MIMO channel model [2], the IEEE

802.11 TGn channel model [3], and the SCM model [35]. The former two are stochastic

models whose spatial correlation matrices are generated by the power azimuth spectrum

(PAS) at the BS and MS, respectively. The SCM model generates the channel coefficients

according to a set of selected parameters (e.g., AS, AoD, AoA, etc.). It is a popular

parametric stochastic model whose spatial cross correlations are functions of the joint
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Figure 3.1: MSE performance of Algorithm B as a function of SNR with different modelling
orders; solid curves: AS=2◦, dotted curves: AS=15◦.

distribution of the AoD at the transmit side and the AoA at the receive side. We assume

that the environment surrounding MS is rich scattering with negligible spatial correlations.

Hence, a full rank basis matrix is used to characterize the spatial correlation at the receive

side. Other assumptions and conditions used in our simulation are: (i) the antenna

spacings at transmit and receive arrays are both 0.5λ, (ii) an orthogonal pilot matrix is

used, (iii) 10 iterations are used for all simulations (although in most cases convergence

occurs in less than 3 iterations), and (iv) SNR (Eb/N0) is defined as the average signal to

noise power ratio at the input of each receive antenna, (v) orthonormal polynomial basis

matrices are used. Both algorithms compute Ĥ by substituting the final result of Phase

I–estimated coefficient matrix Ĉ–and that of Phase II–Ŵ–into (3.3).

Solid curves in Fig. 3.1 are the MSE performance of Algorithm B in Section 3.1 for an

8×8 MIMO system with ∆ = 2◦ and are based on the channel model of [2]. The channel is

a block fading channel with an approximated rank of two. Since the BS spatial correlations

are high, the corresponding correlation function lies in a low-dimension subspace so that a

small KT is sufficient to describe the channel. Dotted curves in Fig. 3.1 show the system
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Figure 3.2: The effect of the modelling order on Algorithm B’s MSE performance in a
channel generated by the model described in [1] with AS=2◦.

performance when ∆ = 15◦. It is obvious that as ∆ increases, the spatial correlations

among the transmit antennas elements decrease and a higher modelling order is necessary

to describe rapid-changing spatial waveforms at the transmitter side. However, as can

be seen from Figs. 2-5, an optimal KT exists for any given SNR and ∆; increasing the

modelling order does not necessary improves the channel estimator’s performance. As

expected, we find that modelling errors dominate the MSE performance when SNR is

high. Such a behavior is consistent with what the performance analysis given in Section

3.4 has predicted and is similar to those observed in other model-based approaches [9]-[13].

The MSE performance of Algorithm B of Section 3.2 for a time-correlated fading

channel [2] are depicted in Fig. 3.2 and Fig. 3.3 using an observation window of 12 EIs

and fdTs = 0.031772 or 0.015886. Similar to the single-blocked based case (Fig. 3.1),

the processing dimension (KT ) can be drastically reduced provided that either the spatial

or time domain correlation is high enough. Performance degradation occurs when the

modelling order is not large enough to capture the channel characteristics. In Fig. 3.4,

we compare the theoretical MSE derived in Section 3.4 with the simulated performance
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Figure 3.3: The effect of modelling order on Algorithm B’s MSE performance in a channel
generated by the model described in [1] with AS=15◦ and fdTs=0.031772.
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Figure 3.4: Comparison of theoretical and simulated MSE performance of Algorithm B in
a channel generated by the model described in [1]; AS=15◦ and fdTs=0.031772.
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and find that the latter is very close to the theoretical bound which assumes a perfect

Ŵ. When used for estimating other reference channels, the proposed estimators exhibit

similar performance behaviors. Fig. 3.5 depicts the MSE performance in an IEEE 802.11

TGn channel [3] with L = 12, ∆ = 15◦, and fdTs = 0.0022, while Fig. 3.6 shows the MSE

performance in a 3GPP-SCM channel [35] with L = 12, ∆ = 15◦ and fdTs = 0.02844.

When KT is large enough, the time-domain modelling order needed to characterize a slow

fading channel like the IEEE 802.11 TGn channel is smaller than that for a fast fading

SCM channel. Note that in all cases, the performance becomes independent of the AS

when the full modelling order is used (i.e., KT = 8) and is equivalent to that of the

conventional LS approach.
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Figure 3.5: The effect of the modelling order on the MSE performance of Algorithm B in
a channel generated by IEEE 802.11 TGn channel model A; AS=15◦, and fdTs =0.0022.

The next two numerical results assume that the algorithms developed in Section 3.1

are used and, except for Fig. 3.8, the same channel model as that used for Fig. 3.1.

Fig. 3.7 compares the MSE performance of Algorithms A and B developed in Section

3.1 when ∆ = 15◦. If the maximum matching output is obtained by selecting the best

one from the outputs using 100 candidate phases uniformly distributed within [−π, π),
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Figure 3.6: The effect of the modelling order (KT ) on the MSE performance of Algorithm
B in a 3GPP-SCM channel; AS=15◦ and fdTs=0.02844.
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AS=15◦.

35



Algorithm A and Algorithm B give almost identical performance. However, if only 20

candidate phases are used, Algorithm A results in a little performance degradation with

respect to that obtained by Algorithm B when SNR is high. Fig. 3.8 examines the MSE

performance when Ŵ is updated with different EI lengths for various channel settings.

Smaller performance loss results if the channel is more static or less dynamic (smaller

fdTs). When KT ≥ 3 for channel 1 and KT ≥ 2 for channel 2, the performance loss is

negligible for all the update frequencies. Recall that more computation saving is obtained

by a larger Tw
o . It is clear that our reduced-order modelling approach outperform the

conventional LS estimator for most Eb

N0
when a proper KT is used.
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Figure 3.8: The effect of the update period on the MSE performance of Algorithm B.
Channel-1 is based on [2] with fdTs=0.015886 while Channel-2 is based on [3] with fdTs =
0.0022. AS=2◦, T c

o = 1; both T c
o and Tw

o are measured in EIs.

Fig. 3.9 and 3.10 illustrate the MSE performance when the target MIMO channels

are time-variant and frequency-selective. We use Algorithm B developed in Section 3.3 to

estimate the instant channel waveform. Fig. 3.9 is simulated under the MIMO channels

generated by [2] where the power delay profile of six independent paths is given by [0, -1,

-9, -10, -15, -20] dB with relative delays of [0, 310, 610, 1090, 1730, 2510] nanoseconds.
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Figure 3.9: The effect of the angle spread on the MSE performance of Algorithm B in a
channel generated by the model described in [2]; L = 12 and fdTs=0.015886.

Fig. 3.10 depicts the identification error under the fadings generated by [35]. In both Fig.

3.9 and 3.10, KL = 3 is used to model the time-domain correlation. Compared with the

frequency-nonselective cases reported above, we can also reach similar conclusions about

the relationship between the performance trend and the underlying modelling order.

3.6 Summary

This chapter presents novel schemes to estimate spatial correlated MIMO fading channels

based on new compact analytic models which can span the spatial and/or time correlation

functions over the dominant signal subspace and provides additional directional informa-

tion. Iterative algorithms are proposed for estimating spatial-correlated MIMO channels.

We then extend our work to model both spatial- and time-correlated link gains associ-

ated with a MIMO channel and derive efficient estimators when the time-correlation is

taken into account. We simulate the estimators’ performance in various popular industry-

approved and standardized channels to validate the accuracy of our model and the useful-

ness of our channel estimators. Numerical results show that in many instants the proposed
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Figure 3.10: MSE performance of Algorithm B in an SCM channel; AS=8◦, L = 12 and
fdTs=0.02844.

algorithms give superior MSE performance. Our estimators offer tradeoffs between per-

formance and complexity. They are easily extendable for use in wideband MIMO systems

and are most effective when the channel’s AS is small, i.e., when the dimension of the

dominant subspace is much smaller than full channel correlation rank. Not only do they

offer fast and accurate estimates, give MSE performance improvement due to the noise

reduction effect but, more importantly, also provide compact and useful CSI that lead

to significant feedback channel bandwidth reduction and other potential post processing

complexity cutbacks.
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Chapter 4

Model-Based Eigen-Beamforming

In this chapter, we present a novel transceiver design based on a nonparametric MIMO

channel estimator established in the previous chapter. Optimal MIMO system perfor-

mance is achieved when CSI is available at both sites of the communication link. This is

usually accomplished by deriving the CSI at the receiving site and feeding it back to the

transmitting site. To maintain the promised system performance, large amount of CSI

must be regularly updated at the transmit side through a feedback channel. Providing

channel tracking information to the transmitter either consumes feedback bandwidth or

increases the feedback delay. By using a reduced-order nonparametric MIMO channel

model that characterizes the channel spatial correlations, we are able to reduce the feed-

back requirement while compromising no system performance. We obtain bounds of the

reception mean squared error and feedback information loss that can be used to assess

the system performance. Numerical and simulation results based on several environment

settings are given to validate the proposed method.

4.1 Modelling of Correlated MIMO Channels

4.1.1 Notations

Boldface upper-case and boldface lower-case letters denote matrices and column vectors,

respectively. Italics denote scalars. R
i×j and C

i×j denotes the set of i × j real and

complex matrices, respectively. The super-scripts (·)T , (·)∗ and (·)H denote transpose,

complex conjugate, and Hermitian operations, respectively. Tr(·) denotes the trace of a

matrix and det(·) denotes the determine of a square matrix. ‖X‖F is the Frobenius norm
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of a matrix X, and ‖Y‖2 is the 2-norm of a matrix Y. R(A) denotes the range (column

space) of the matrix A. diag(x) is a diagonal matrix with its diagonal entries given by

the elements of vector x, while diag(Y) denotes the column vector whose entries are the

diagonal elements of matrix Y. vec(X) denotes a column vector obtained by stacking the

columns of matrix X into a single vector. Operator ⊗ denotes the Kronecker product. IK

denotes a K × K identity matrix. [X]i,j denotes the (i, j)th element of X while [X]L×M

signifies that X is an L × M matrix. Operator (x)+ is defined as max(x, 0).

4.1.2 System Setup

Following the same system configuration used in Chapter 2 and Chapter 3, the base station

(BS) and mobile station (MS) are equipped with linear arrays of M and N antennas, re-

spectively. Independent data streams x(t) = [x1(t), x2(t), x3(t), · · · , xM (t)]T are transmit-

ted at BS at time t, where xm(t) denotes the source signal at the mth transmit antenna. At

the MS, the received baseband waveform is given by y(t) = [y1(t), y2(t), y3(t), · · · , yN(t)]T ,

where yn(t) is the received signal at the nth receive antenna at time t. For notational

simplicity, we define the two M-dimensional vectors xi = x(i△t) and yi = y(i△t), where

△t is the sampling interval.

4.1.3 Nonparametric Channel Modelling

For the convenience of reference, we summarize the channel representation proposed in

Chapter 2 as following,

H ≃ QN,KR
CQT

M,KT
W, (4.1)

where W is the matrix bearing the directional information, QM,KT
and QN,KR

are M×KT

and N × KR matrices whose column vectors are the orthonormal bases used to describe

the discrete root power correlations, KT and KR being the associated modelling orders.

Reminding that when the angle spread ∆ at BS is zero and antennas at BS are fully

correlated, the waveform transmitted from the BS MEA can be regarded as a plane wave

with a fixed AOD φ and W is therefore equivalent to a diagonal steering matrix,

W = diag ([w1, w2, · · · , wM ]) (4.2)
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where wi = exp
[
−j2π (i−1)d

λ
sin(φ)

]
, d is the inter-element distance. On the other hand,

if the angle spread is large enough and the MEA at the BS tends to be fully uncorrelated,

the resulting modelling order KT used in QM,KT
equals M .

There are several classes of basis functions to choose from. The Taylor and Weier-

strass theorem arguments and the results of [27] suggest the use of polynomial regression

estimators. If we use polynomials of degree K as basis functions for estimating spatial

correlation functions of length L, the corresponding basis matrix PL,K has entries

[P]l,k = (l − 1)k−1, l = 1, 2, . . . , L, and k = 1, 2, . . . , K, (4.3)

where the modelling order is K ≤ L. Although the column vectors in (4.3) can be used

as bases, they are not orthogonal. Furthermore, these vectors have different norms, which

might result in numerical instability. By applying the QR decomposition to PL,K [28], we

obtain the orthonormalized basis matrices for QM,KT
and QN,KR

.

Another class of candidate basis matrices is the discrete cosine transform (DCT) ma-

trices. The reasons for using DCT are twofold. Firstly, DCT is very good at energy

compaction for most correlated sources, especially for Markov sources with high correla-

tion coefficient. Furthermore, the channel correlation matrix RH defined in (4.11) below

tends to be a toeplitz matrix, which can be approximately diagonalized by DCT. Sec-

ondly, DCT has several well established computing structures that are both efficient and

robust. A typical L × (K + 1) DCT matrix is defined as

[Q]l,k = q(k) cos
π(2l − 1)(k − 1)

2L
, l = 1, 2, . . . , L, and k = 1, 2, . . . , K, (4.4)

where q(k) =
√

1
L

for k = 1 and q(k) =
√

2
L

for 2 ≤ k ≤ K. If the modelling order

K equals to L, both the orthonormalized polynomial basis matrix and the DCT matrix

become full-ranked.

4.1.4 Nonparametric Space-Time Channel Estimation

For a receiver to extract both the coefficient matrix C and the directional information W

in (4.1), in Chapter 3, we develop iterative schemes which consist of two processing phases

to estimate several typical channels, such as block fading, time-variant frequency non-

selective, and time-variant frequency-selective channels. The proposed channel estimators
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incorporate the following two steps : (i) at the ith iteration, estimate the coefficient matrix

Ŵi based on the estimate Ĉi−1 obtained from the previous iteration, and (ii) estimate

the directional matrix Ĉi based on the tentative estimate Ŵi. Both estimators improve

as one proceeds with more iterations. The proposed nonparametric estimators can be

summarized as follows.

• Given a data block of B length-M input symbol vectors, X = [x1,x2, · · · ,xB], and

the channel output block, Y = [y1,y2, · · · ,yB], the proposed channel estimator

outputs the optimal solution {φ̂, Ĉ} for the least squared (LS) problem,

{
φ̂, Ĉ

}
= arg min

φ,C
||Y −QN,KR

CQT
M,KT

W(φ)X||2F , (4.5)

where Ĉ is a KR × KT complex matrix.

• Let ŵi = exp
[
−j2π (i−1)d

λ
sin(φ̂)

]
and define Ŵ

def
= W(φ̂) = diag ([ŵ1, ŵ2, · · · , ŵM ]),

a diagonal steering matrix associated with the mean AOD estimate φ̂. The LS

channel estimate is obtained by Ĥ = QN,KR
ĈQT

M,KT
Ŵ.

It is clear that once the low dimensional channel representation
{
φ̂, Ĉ

}
becomes available,

we can use them to synthesize the required CSI for feedback. In other words, these two

matrices, Ĉ and Ŵ, serve as an alternative CSI that provide potential saving of feedback

information.

4.2 Model-Based Optimal Transceiver Design

Based on the nonparametric channel model developed in the previous section, we will

propose a basic structure for MIMO transceiver, and present the corresponding optimal

minimum mean squared error (MMSE) designs. In a sense, the proposed transceiver

design is a generalization of the optimal multi-dimensional eigen-beamforming systems

based on the general precoding framework developed in [14], [11]. In this thesis, the

terms “precoder” and “eigen-beamforming” are used interchangeably. For convenience

of reference, some notations used follow closely with those used therein [11]. To begin

with, we review conventional optimum designs under various performance criteria and

then proceed to present the proposed framework.
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Figure 4.1: Basic structure of a general MIMO transceiver.

4.2.1 Basic Transceiver Structure

Fig. 4.1 illustrates the basic structure of a conventional MIMO transceiver in which a

L × 1 source vector s is precoded by

x = Bs, (4.6)

where B ∈ C
M×L is a linear precoder, and x ∈ C

M×1 is the encoded output.

The received baseband signal can be written as

y = Hx + n, (4.7)

where y ∈ CN×1 is the channel output, H ∈ CN×M represents the fading channel matrix,

n ∈ C
N×1 is the additive noise, which is assumed to be a zero-mean circularly symmetric

complex Gaussian vector with covariance matrix Rn. At the receiving site, the source

vector is estimated via

ŝ = AHy = AHHBs + AHn, (4.8)

where AH ∈ C
L×N represents the linear equalization operator.

4.2.2 Optimal Design under MMSE Criterion

Considering the mean squared error matrix associated with source signal s,

MSE
def
= E

[
(ŝ− s)(ŝ− s)H

]
. (4.9)

Given fixed precoder B, the optimum receive matrix based on MMSE criterion min E {‖ŝ− s‖2
2} =

min Tr {MSE (A,B)} is given by the Wiener solution [36][11],

Aopt = R−1
n HB

(
I + BHRHB

)−1
, (4.10)
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where

RH

def
= HHR−1

n H. (4.11)

Since the optimal equalizer in (4.10) is deterministic when B is given, we express the MSE

in (4.9) as a function of matrix B

MSE(B)
def
= MSE (Aopt,B)

= (I + BHHHR−1
n HB)−1, (4.12)

with the diagonal element [MSE(B)]i,i representing the achievable MSE of si. The indi-

vidual signal to interference-plus-noise ratio (SINR) is shown to be closely related with

individual MSE [11] by,

SINRi =
1

[MSE(B)]i,i
− 1, (4.13)

which says that minimizing the MSE is equivalent to maximize the SINR and thus mini-

mize the bit error rate (BER). Since MSE(B) depends on the transmit matrix (precoder)

only, the following constrained optimization problem arises.

{
minB Tr(MSE(B))
s.t. Tr

(
BBH

)
≤ PT ,

(4.14)

where PT is the maximum total transmit power.

The corresponding solution B can be derived by using the Karush-Kuhn-Tucker (KKT)

conditions. From the eigenvalue decomposition (EVD) of RH

RH = UΛUH (4.15)

we collect the eigenvectors of U corresponding to the first L largest eigenvalues in de-

scending order to form UL ∈ CM×L. Note that L also represents the maximal number

of parallel streams provided by the eigen-beamforming system. The optimum solution of

(4.14) is given as

Bopt = ULΦ. (4.16)

Φ = diag({φi}) is a L × L diagonal matrix with its (i, i)th element being decided by the

water-filling principle [14]-[11],

φ2
i =

(
µλ

−1/2
i − λ−1

i

)+

, (4.17)
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where φi is the ith diagonal element of Φ and λi is the ith eigenvalue of Λ in descending

order. Parameter µ denotes the water level, which is chosen to satisfy
∑

i φ
2
i = PT .

It was proved [37], [11] that, under the same fixed transmit power constraint, other

design criteria such as zero forcing (ZF), minimum weighted sum of MSEs, minimum

product of MSEs, minimum det (MSE(B)), or maximum mutual information, give trans-

mit precoder solutions differ only in how power is loaded on the eigen-channels associated

with RH. This implies that if the CSI, RH or H and R−1
n , can be perfectly estimated

and fed back to the transmitter, the ideal system performance bound will be achieved.

It becomes impractical when the transmit array size is large and/or the CSI must be

updated for every block. This is where our proposed method comes in play.
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Figure 4.2: CSI compression rate of the proposed transceiver; M = number of transmit
antennas, KT = modelling order of the transmit spatial correlation.
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4.2.3 CSI Compression by nonparametric channel representa-

tion

By substituting the proposed channel representation (4.1) into (4.11), we have

RH ≃ WHQM,KT
CHQT

N,KR
R−1

n QN,KR
CQT

M,KT
W (4.18)

def
= WHQM,KT

RCQT
M,KT

W. (4.19)

The modelling bases QM,KT
and QN,KR

are deterministic, and are available at both trans-

mit and receive sites. Therefore, the coefficient matrix RC

def
= CHQT

N,KR
R−1

n QN,KR
C and

the steering matrix W contain the same information as that in the full matrix RH. Since

RC is a Hermitian matrix, it can be represented by KT (KT +1)
2

× 2 real floating numbers.

Moreover, only a single mean AOD φ is needed to fully characterize the steering matrix

W, which has a diagonal structure as described in (4.2). The total number of the feedback

information in our approach is KT (KT + 1) + 1 while feedback of RH needs M(M + 1)

real floating numbers. The information compression rate, which is defined by the ratio be-

tween the floating numbers of RC and that required by RH, is given by min{K2
T +KT +1

M2+M
, 1}.

Fig. 4.2 shows the compression rate performance of the proposed approach. Note that if

KT equals to M , QM,KT
and QN,KR

are simply orthogonal transforms, no rank reduction

is obtained and so the compression ratio is just one. In such a case, the CSI is fully

characterized by RC and the estimate directional information φ̂ can be discarded.

When the additive noise at the receiver is white complex Gaussian then Rn is a scaled

identity matrix, and the pair {H,W} can fully represent the feedback information. (4.1)

and (4.5) indicate that C and φ are all we need to represent the channel information. The

compression rate in this case is min{2KT KR+1
2MN

, 1}, which says the pair {C, φ} also offers a

compressed CSI representation and is particularly useful when KT is small.

For both CSI representations, the compression rate improves as the spatial correlation

between antenna elements increases or as the modelling order KT decreases.

4.2.4 Model-based Transceiver Design

From (4.18), the optimum MMSE precoder Bopt in (4.16) can be approximated according

to the eigenvectors and eigenvalues of WHQM,KT
RCQT

M,KT
W. After performing the
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eigenvalue decomposition, RC can be rewritten as

RC = UCΛCUH
C , (4.20)

where UC is the unitary matrix composed of eigenvectors and ΛC is a diagonal matrix

with its elements being the eigenvalues of RC in descending order. From (4.19) and (4.20),

we rewrite RH as

RH ≃ WHQM,KT
UC︸ ︷︷ ︸

def
= eUC

ΛC UH
CQT

M,KT
W

︸ ︷︷ ︸
= eUH

C

(4.21)

Since W and UC are unitary matrices, and QM,KT
∈ R

M×KT has orthonormal columns,

ŨC ∈ CM×KT also has orthonormal columns, and there exists Ũ⊥
C ∈ CM×(M−KT ) such

that Ũ =
[
ŨC Ũ⊥

C

]
is unitary [18]. We can rewrite (4.21) as

RH ≃ Ũ

[
ΛC 0

0 0

]
ŨH

def
= ŨΛ̃ŨH . (4.22)

Equation (4.22) represents the approximated eigenvalue decomposition of RH. The ap-

proximated precoder B̃opt in (4.16) can be computed as

B̃opt = ŨLΦ̃, (4.23)

where ŨL is composed of the columns in Ũ that are associated with the L largest eigen-

values of Λ̃. Φ̃ = diag({φ̃i}) is a L×L diagonal matrix, with its (i, i)th element λ̃i being

computed by the water-filling strategy,

φ̃2
i =

(
µ̃λ̃

−1/2
i − λ̃−1

i

)+

. (4.24)

φ̃i is the (i, i)th element of Φ̃, and λ̃i is the ith largest eigenvalues of Λ̃. µ̃ denotes the

water level under which the total transmit power is preserved, i.e.,
∑

i φ̃
2
i = PT . From

(4.22), we know that there is at most min{KT , rank(RH)} nonzero eigenvalues associated

with Λ̃. Therefore, the maximum number of equivalent active subchannels (defined as

φ̃2
i > 0) of model-based transceiver systems is less than or equal to the maximum number

of equivalent active subchannels (defined as φ2
i > 0) of the transceiver systems with perfect
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Figure 4.3: Proposed structure of the model-based MIMO transceiver.

CSI RH. Hence, the size of source symbols s should satisfy L ≤ min{KT , rank(RH)} for

not losing any information when the SNR is high and PT is large.

From (4.1) and (4.10), the optimum linear equalizer Ãopt based on the proposed chan-

nel estimation is given as

Ãopt ≃ R−1
n QN,KR

CQT
M,KT

WB̃opt

(
I + B̃H

optW
HQM,KT

RCQT
M,KT

WB̃opt

)−1

. (4.25)

Fig. 4.3 illustrates the basic structure of the proposed model-based transceiver. Fol-

lowing the basic framework in this section, many optimum precoder designs in [11] can

be translated to model-based designs with U and λi in (4.15) being replaced by Ũ and

λ̃i in (4.22), respectively. The MSE performance of the equalization, however, depends

on not only the realistic channel state but also the difference between the true channel

information RH and the approximated channel subspace decided by W, QM,KT
and RC .

4.3 Performance of the Model-Based Designs

In this section, we derive performance bounds of the reception MSE in the presence of

CSI modelling error. These bounds can give us a measure of how much the MSE drifts

away from the optimum value when using the model-based schemes. We also suggest

a distance function to assess the effects of both channel estimation error and regression

modelling error.
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4.3.1 MSE performance in the presence of modelling error

From (4.12) and (4.23), the MSE performance based on B̃opt is written as

Tr
{

MSE(B̃opt)
}

= Tr

{(
I + B̃H

optH
HR−1

n HB̃opt

)−1
}

= Tr

{(
I + Φ̃ŨH

L RHŨLΦ̃
)−1
}

= Tr

{(
I + Φ̃ŨH

L ŨΛ̃ŨHŨLΦ̃
)−1
}

≤ Tr

{(
I + ΦUH

L ŨΛ̃ŨHULΦ
)−1
}

(4.26)

=

L∑

i=1

1

1 + γi
. (4.27)

where γ1 ≥ γ2 ≥ · · · ≥ γL are eigenvalues of ΦUH
L ŨΛ̃ŨHULΦ. The inequality of (4.26)

results from the fact that the optimal precoder for transform channel ŨΛ̃ŨH is given by

B̃opt in (4.23). On the other hand, Tr
{

MSE(B̃opt)
}

is obviously lower bounded by the

optimal system performance Tr {MSE(Bopt)} given by (4.12).

Let E ∈ CM×M denotes the modelling error between the perfect CSI and the transform

subspace such that E = ŨΛ̃ŨH −UΛUH . By applying matrix perturbation theory [18],

[38], we show that the MMSE performance is bounded by following theorem.

Theorem 4.1. Let ǫ1 ≥ ǫ2 ≥ · · · ≥ ǫL be the eigenvalues of ΦUHEUΦ, {λiφ
2
i } the

diagonal elements of ΦΛLΦ. The MMSE in (4.27) is bounded by

Tr
{

MSE(B̃opt)
}
≤

L∑

i=1

1

1 + λiφ2
i + ǫL

, (4.28)

if mini(λiφ
2
i ) + ǫL > −1 is satisfied.

Proof. see Appendix C

To obtain a tighter upper bound, we need to invoke the notion of majorization.

Definition 4.1. A descending sequence {bi}L
i=1 majorizes another descending sequence

{ai}L
i=1, denoted by {ai}L

i=1 ≺ {bi}L
i=1, if

∑k
i=1 ai ≤

∑k
i=1 bi, 1 ≤ k ≤ L−1 and

∑L
i=1 ai =

∑L
i=1 bi.

Applying the majorization theory developed in [39], we obtain a refined upper bound.
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Theorem 4.2. If mini{λiφ
2
i }+ ǫL > −1, the minimum mean square error (4.27) is upper

bounded by

Tr
{

MSE(B̃opt)
}
≤

L∑

i=1

1

1 + λπ,iφ2
π,i + ǫi

. (4.29)

Proof. see Appendix D

The above theorems reveal that the MSE performance upper bound of any reduced-

rank precoders of the form (4.23) is the same as long as its CSI modelling error results in

the same dominant eigenvalue values ǫi, i = 1, 2, · · · , L.

4.3.2 Impact of Imperfect CSI

Having established the relationship between the MSE and the CSI modelling error, we now

use a geometric measure to compare the sensitivities of our approach and conventional

EVD approach against various sources of error.

Define the distance between two equidimensional subspaces S1 and S2 as [40]

dist(S1,S2) = sin Θ(S1,S2)
def
= ‖(I − PS1)PS2‖2 = ‖(I − PS2)PS1‖2, (4.30)

where PS1 and PS2 denote the projectors on the subspace S1 and S2, respectively.

Rewrite (4.15) in the partition form,

RH = UΛUH def
= [U1 U2]

[
Λ1 0

0 Λ2

]
[U1 U2]

H (4.31)

where Λ1 is a KT ×KT diagonal matrix, and let R̃H = RH+δRH, where δRH denotes the

perturbation due to quantization error, channel estimation error, and uplink transmission

error. Denote the eigenvalue decomposition of R̃H by

R̃H = [Ũ1 Ũ2]

[
Λ̃1 0

0 Λ̃2

] [
Ũ1 Ũ2

]H
. (4.32)

Assume that ‖ · ‖ = ‖ · ‖2. The following lemma from the results of Wedin [41] and Fierro

[40] can be used to bound the distance between the subspaces of R(RH) and R(R̃H).

Lemma 4.1. Assume there exists a δ > 0 and α ≥ 0 such that min(λ(Λ̃1)) ≥ α + δ, and

max(λ(Λ2)) ≤ α. If ‖δRH‖ < λKT
− λKT +1, then

sin Θ
(
R(U1Λ1U

H
1 ),R(Ũ1Λ̃1Ũ

H
1 )
)
≤ ‖δRH‖

λKT
− λKT +1 − ‖δRH‖

. (4.33)

50



The above theorem shows that the optimal EVD-based design is relatively insensitive

to small perturbation, i.e., ‖δRH‖ ≪ λKT
− λKT +1.

On the other hand, the channel model we use implies that RH can be decomposed as

RH = [

def
= Q1︷ ︸︸ ︷

WHQM,KT

def
= Q2︷ ︸︸ ︷

WHQ⊥
M,KT

]

[
RC FH

F G

] [
WHQM,KT

WHQ⊥
M,KT

]H
(4.34)

where F and G are the residual coefficient matrices that cause the modelling error. The

matrix Q⊥
M,KT

contains the residual M − KT columns of QM,M excluding those columns

in QM,KT
. Q1 and Q2 have orthonormal columns that span the whole column/row space

of RH , and Q2 = Q⊥
1 .

R̃H can also be represented by the unitary decomposition

R̃H = [Q1 Q2]

[
R̃C F̃H

F̃ G̃

]
[Q1 Q2]

H . (4.35)

Based upon the above observations, we obtain an upper bound on the distance between

the eigen-subspace R(U1Λ1U
H
1 ) and the perturbed modelling subspace R(Q1R̃CQH

1 ) as

a lemma to Fierro [40].

Lemma 4.2. Assume there exists a δ > 0 and α ≥ 0 such that min(λ(R̃C)) ≥ α + δ and

max(λ(G)) ≤ α, we have

sin Θ(R(U1Λ1U
H
1 ),R(Q1R̃CQH

1 )) ≤ 2‖F̃‖ + ‖δRH‖
min(λ(R̃C)) − λKT +1

(4.36)

≤ 2‖F̃‖ + ‖δRH‖
λKT

− λKT +1 − 2‖F̃‖ − ‖δRH‖
. (4.37)

From Lemmas 4.1 and 4.2, we conclude that, compared with the EVD-based optimal

design, our approach is slightly more sensitive to perturbation δRH because of the exis-

tence the off diagonal block matrix F̃. Hence, we should select a basis for expanding the

channel spatial correlation that minimizes ‖F̃‖ under the modelling order constraint.

4.4 Limited Feedback using Model-Based Estimated

CSI

Before feeding back the instantaneous CSI estimation to the transmitter side, proper

quantization schemes can be applied to reduce the data rate needed on the reverse link
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[42]. To do this, conventionally, we can quantize the channel directly, feed back the

quantized CSI and let the transmitter calculate the precoder assuming that the feedback

CSI is perfect [43],[44]. Or, the recevier can pick the linear precoder/eigen-beamforming

matrix from a set of pre-calculated codebooks according to the channel estimation results

and sent the index back to the transmitter over a feedback channel [45],[46],[47]. Generally,

to design a codebook aims to find a finite set, or packing, of subspaces that represent the

CSI or precoders [47].

Conventionally, we can use the theory of Grassmannian subspace packing [47] to estab-

lish such codebooks. Grassmannian subspace packing method attempts to design finite

sets of matrices that maximize the minimum subspace distance. Besides the subspace

distance presented in the previous section, various distance measures can also be used

[48] to optimize different performance criteria for various linear receivers. Alternatively,

vector quantization (VQ) is an technique that we can use to construct the codebooks [49].

Basically, VQ minimizes a selected distortion function by using an iterative numerical

method, such as the conventional Lloyd algorithm. After several iterations, the algo-

rithm tends to converge to a near optimal solution and generate a candidate codebook.

Both Grassmannian and VQ methods can generate good enough codebooks that achieve

satisfactory error rate performance under spatially uncorrelated Rayleigh channels.

Theoretically, the distortion cost functions which serve as the design criteria of Grass-

mannian or VQ grow exponentially with the number of transmit antennas M provided

that the number of spatial streams L is fixed [47]. Under the framework of the proposed

channel representation scheme developed in Chapter 2, the equivalent CSI, C, in (4.1) is

of size KR×KT . The exponent of the distortion cost function is thus scaled by a factor of

KT

M
. For example, considering the mean squared error selection criterion (MSE-SC) [47],

B = arg min
Bi∈B

tr (MSE(Bi)) (4.38)

where MSE(·) is defined in (4.12) and Bi is the ith precoding matrix of the set of codebook

matrices B = {B1,B2, · · · ,BS}. Here, S denotes the total number of precoding matrices

used in the codebook and the number of feedback bits equals to log2(S). Under the con-

dition of high SNR and white Gaussian noise, we can bound tr (MSE(Bi)) in (4.38), and
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characterize the distortion of the Grassmannian subspace packing by using the following

cost function modified from the results of [47]

EH

[
λmin{HBopt} − max

Bi∈B
λmin{HBi}

]
(4.39)

/ EH

[
λL{H}φ2

L

]
·
(

1 + S ·
(

δproj

2
√

L

)2ML+o(M)(δ2
proj

4
− 1

))
, (4.40)

where φL is given in (4.17), Bopt is defined in (4.16), and λL(M) denotes the Lth largest

eigenvalue of matrix MHM. δproj is the minimum distance between any two subspaces

δproj = min
1≤i<j≤S

dproj(Bi,Bj) (4.41)

where

dproj(Bi,Bj) = ‖BiB
∗
i − BjB

∗
j‖2 =

√
1 − λmin{B∗

i Bj} (4.42)

denotes the projection two-norm distance. Since we always have δproj < 1, the distortion

cost function is an increasing function of M . Assuming that the modelling order KT can

fully characterize the signal space of RH, the exponent, 2ML+o(M), inside the distortion

cost function (4.40) can be replaced by 2KT L+ o(KT ). Thus, the distortion cost function

decreases for any KT < M . Accordingly, either the proposed model-based system can

achieve smaller distortion by using the codebook of the same size as that used in the

original precoding system, or we can have similar distortion with a codebook of smaller

size such that feedback data rate is reduced.

Although both Grassmannian and VQ methods can generate good enough codebooks

under spatially i.i.d. Rayleigh channels, the reception performance degrades when the i.i.d.

codebook design is used for spatially correlated channels [42]. Under the i.i.d. assump-

tion, the isotropicity of the dominant right singular vector of H allows a Grassmannian

subspace packing solution [47]. For spatial correlated MIMO channels, this isotropicity,

however, is destroyed and large degradation of reception performance is possible when

the i.i.d. codebook is used in the correlated environment [50]. This implies that for spa-

tially correlated MIMO channels, an i.i.d. codebook of larger size is necessary to achieve

similar error rate performance as that of the spatially uncorrelated channels. Otherwise,

we have to quantize the dominant space nonuniformly [50]. Under the framework of the
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proposed model-based system, since the subspace packing is more compact (i.e., smaller

distortion can be achieved using the same number of feedback bits), the reception per-

formance can be improved as well. Moreover, even if exact spatial correlation is used in

designing a statistical precoding systems, there will be significant performance loss for

the so-called ”mismatched channels” [50],[20],[51]. Here, the term ”mismatched channel”

means that: 1) the eigenvalues of the transmit covariance matrix can not be partitioned

into two components: a dominant component of L eigenvalues that is well-conditioned∗

and a sub-dominant component of M − L eigenvalues that is ill-conditioned away from

the dominant component, and 2) the eigenvalues of the receive covariance matrix are

ill-conditioned. In practice, however, the ”mismatched channel” is very common for spa-

tial correlated environments. Under the framework of proposed model-based scheme, the

orthogonal matrix QM,KT
plays the role of pre-conditioned matrix and the correlation

matrix of the coefficient matrix C is generally better conditioned compared with that of

the original channel matrix H. In other words, the reception performance of statistical

precoding systems can be improved if the Grassmannian subspace packing is performed

on C rather than H in spatial correlated environments.

4.5 Simulation Results and Discussions

Simulation results reported in this section use the reference MIMO channel model of [52],

[2]. We consider an 8×8 MIMO system. Spatial correlation matrices are generated by the

power azimuth spectrum (PAS) at the BS and MS respectively according to the specific

physical settings. To comply with the one-ring model, we assume that the environment

surround MS is rich scattering and uncorrelated. Different physical settings at BS such as

angle spread and nonzero AOD are used to examine the effect of different degrees of spatial

correlation. The size of source vector, L, is 2, and the BPSK constellation is assumed.

Each element of the channel matrix is normalized to E [|Hi,j|2] = 1, for 1 ≤ i ≤ N , and

1 ≤ j ≤ M . The SNR is defined as the total transmitted power over the noise variance

at each received antenna. Other assumptions used in our simulation are: (i) the antenna

∗If λ1 ≥ λ2 ≥ · · · ≥ λL denote the first L eigenvalues and λ1

λL

is not significantly larger than 1, we can

roughly say that these eigenvalues are well-conditioned. Oppositely, we say that they are ill-conditioned.
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spacing at transmit and receive antennas are both half wavelength, and (ii) additive noise

distribution at the receiver is complex white Gaussian. The DCT bases are used in the

proposed transceiver since we found that the DCT and polynomial bases give almost the

same performance. For comparison purpose, we also present performance of the optimal

transceiver with a full rank estimated CSI feedback (F-CSI).
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Figure 4.4: MSE performance of DCT-based transceiver; angel spread = 4◦, AOD = 45◦,
L = 2.

Performance curves in Fig. 4.4 represent the MSE performance for the MIMO system

with AOD = 45◦ and angle spread ∆ = 4◦. The simulation results are obtained by

averaging over 100 random channels. Since the channel correlation at BS is high, the

corresponding correlation function lies in functional subspace of small dimension. Hence,

even the number of antennas at BS increases, the amount of feedback information required

by the proposed technique remains low and the performance degradation with respect to

that of the optimal transceiver with F-CSI remains negligible. When the modelling order

is only 3, which gives a compression rate of 0.18, the MSE performance of the proposed

model-based system is still very close to that of the system with F-CSI. The MSE gap
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between the performance of the optimal transceiver with perfect CSI and that of the

transceivers with estimated CSI is obviously due to channel estimation error.

As the angle spread ∆ increases, correlation between the transmit antennas diminishes

and a higher modelling order is necessary to describe the rapid-changing spatial correlation

at the transmit site. MSE curves in Fig. 4.5 are the performance of an 8×8 MIMO system

with AOD= 45◦, angle spread ∆ = 15◦, and different modelling orders. Simulation results

indicate that bases of order less than 4 tend to incur larger modelling errors while those

of order larger or equal to 4 provide performance which is almost the same as that of the

optimal transceiver with F-CSI.
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Figure 4.5: MSE performance of DCT-based transceiver; angel spread = 15◦, AOD = 45◦,
L = 2.

In both figures, we notice that the proposed approach outperform the F-CSI approach

at low SNRs. This observation indicates that although our approach introduces modelling

error due to reduced-rank regression model it also reject the noise outside the modelling

space. At higher SNRs, like other model-based methods, the modelling error dictates the

performance whence this advantage gradually disappears.
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The usefulness of the upper bounds derived in Theorems 4.1 and 4.2 are demonstrated

in Fig. 4.6. It is shown that both bounds predict correct trend of the MSE performance

of the system. These bounds becomes tighter as the modelling order increases. Although

the bound of (4.29) is tighter than (4.28), (4.28) needs only the knowledge of the smallest

eigenvalue, ǫL.

We use the two perturbation upper bounds given in Lemma 4.2 to review the effect of

CSI error from a geometric perspective in Fig. 4.7(a), assuming AS = 2◦. The distance

between the subspace associated with perturbed CSI using a rank 1 (KT = 1) approxima-

tion and that associated with the perfect CSI increases as the quality of channel estimation

deteriorates at lower SNRs, and remains steady for the case of good channel estimation

(high SNR).

In Fig. 4.7(b), we plot the distance between the above-mentioned two subspaces for

the cases of AS equals to 4◦. These curves show that in higher correlation case, a rank-1

model is sufficient to describe the spatial correlation and thus the corresponding distance

is small. For the larger AS case, since the channel correlation decreases the subspace

distance increases for the rank 1 system and a larger modelling order is needed.

4.6 Summary

This chapter presents a novel regression model-based transceiver design for spatial corre-

lated MIMO fading channels. Orthogonal bases and an additional AOD information are

used to model the spatial correlation functions associated with MEAs in BS and MS so

that compact CSI representation can be obtained. Optimum precoding strategies are pro-

vided based on the proposed channel representation. Computer simulation results show

that excellent performance is attainable if proper modelling basis and order are used.

The modelling order provides trade-off between reception performance and feedback com-

plexity. Significant feedback compression is achieved if the channel spatial correlation is

high. To analyze the performance loss, we derive perturbation bounds for the reception

MMSE caused by CSI modelling errors. We also provide bounds for the distance between

the signal subspace associated with perfect CSI and that associated with the proposed
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Figure 4.6: MSE upper bounds of DCT-based transceiver; angel spread = 10◦, AOD
= 45◦, L = 2.

approach for which only imperfect CSI is available. Numerical results for these bounds

are given to show that performance trends can be accurate predicted.
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Figure 4.7: (a): angle spread = 2◦, AOD = 45◦, and (b): angle spread = 4◦, AOD = 45◦.
� : distance between signal subspaces of perfect CSI and model-based CSI using a rank-1
approximation; △ : perturbation bound of (4.36). ◦ : perturbation bound of (4.37).
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Chapter 5

Conclusion and Future Work

This thesis presents a framework of nonparametric model-based MIMO systems which

are basically based on the proposed compact analytic models for correlated MIMO fad-

ing channels. The proposed work models both spatial- and time-correlated link gains

associated with a MIMO channel and derive efficient estimators when the spatial and/or

time-correlation is taken into account. For correlated MIMO channels, by spanning the

spatial and/or time correlation functions over the dominant signal subspace using a set

of orthogonal modelling bases, we obtain an efficient channel representation that can al-

leviate the processing complexity for many post-channel-estimation processes and reduce

the feedback bandwidth requirement for MIMO precoding systems as well. Tremendous

computation saving and large reduction of feedback data rate are accessible especially for

large MIMO systems and highly correlated environments. Based on the proposed models,

we develop channel estimation schemes against several typical channel situations. Iter-

ative batch algorithms are proposed to accomplish the task of channel estimation, and

the sequential adaptive algorithms are also available for channel tracking [17]. Various

popular industry-approved and standardized channels are simulated to validate the accu-

racy of our model and the usefulness of our channel estimators. Numerical results show

that the proposed algorithms can provide tradeoffs between performance and complexity.

Moreover, we also show that under different channel conditions, the modelling order that

leads to dimension reduction may also achieve the best MSE performance due to the noise

reduction effect discussed in Chapter 3. In this situation, we can provide compact and

useful CSI that lead to significant feedback channel bandwidth reduction and other po-
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tential post processing complexity cutbacks while retaining good reception performance

at the same time.

Based on the proposed channel representation, optimum precoding/eigen-beamforming

strategies are provided for feedback MIMO systems. Computer simulation results show

that excellent performance is attainable provided proper modelling basis and order are

used. Over a wide range of interested SNR, the reception performance of the model-

based eigen-beamforming system using optimal modelling order is shown to be better

than that of the conventional eigen-beamforming systems, which use full dimensional LS

channel estimation results as feedback CSI. Significant feedback compression is achieved

if the channel spatial correlation is high. We derive perturbation bounds for the reception

MMSE to analyze the performance loss caused by CSI modelling errors. We also provide

bounds for the distance between the signal subspace associated with perfect CSI and that

associated with the proposed approach for which only imperfect CSI is available. Numer-

ical results for these bounds are given to show that performance trends can be accurate

predicted. For limited feedback MIMO systems, we prove that the proposed model will

lead to fewer distortion or compact compression if a conventional quantization scheme,

such as Grassmannian packing, is used.

The framework of the proposed model-based MIMO system leads to a new class of

model-based MIMO processing techniques. Similar to the proposed precoding/eigen-

beamforming systems, MIMO detection schemes that incorporate the MIMO channel

matrices, such as LLL aglorithm which is based on the theory of lattice reduction [53],

and the sphere decoding algorithm that performs the QR factorization of the channel

matrix [54],[55], can be derived accordingly. Besides the potential saving of computational

complexity, the proposed channel representation may lead to essential improvement of

the lattice structure embedded in the underlying channel matrix. Such improvement

is suspected to bring additional reception benefits. Hence, experimental algorithms and

theoretical studies are going to be conducted to reveal the potential usages of the proposed

model-based schemes.

The performance improvement made by the proposed model-based systems somehow
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depends on the accuracy of the selected modelling order. Although, in general, we can use

a modelling order larger than is needed to guarantee a negligible modelling error, repre-

sentation efficiency and processing advantages will diminish for an over-modelling system.

The order determination scheme provided in this thesis calculates the optimal order based

on the long-term channel statistics. In practice, for a more non-stationary channel, the

modelling order should be update in a short period. Hence, a order determination scheme,

which is computational more efficient and works reliably under non-stationary environ-

ment is what we try to explore next.
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Appendix A

AoD Information Extraction

For small ∆, the correlation between two transmit antennas i, j can be approximated by

[6]

E
{
hmih

∗
mj

}
≈ exp

{
−j

2π

λ
(i − j)d sinφ

}
J0

(
∆

2π

λ
(i − j)d cosφ

)
. (A.1)

In addition, correlation between two receive antennas p, q can be approximated by E
{
hpih

∗
qi

}
≈

J0

(
2π
λ

(p − q)d
)
, for d

R
≪ 1. By using the W defined in (2.17), the definition ∆̃

def
=

2πd
λ

∆ cos φ and (A.1) implies

ΦT =




1 e
j 2π

λ
d sin φ

J0(∆̃) ··· e
j 2π

λ
|M−1|d sin φ

J0(|M−1|∆̃)

e
−j 2π

λ
d sin φ

J0(∆̃) 1 ···

...
...

...
...

...
e
−j 2π

λ
|M−1|d sin φ

J0(|M−1|∆̃) ··· ··· 1


 ,

which can be further decomposed by using the W defined in (2.17)

ΦT = W ·




1 J0(∆̃) ··· J0(|M−1|∆̃)

J0(∆̃) 1 ··· J0((|M−1|−1)∆̃)
...

...
...

...

J0(|M−1|∆̃)J0((|M−1|−1)∆̃)
... 1


 · WH

def
= WΦ̄TWH = WΦ̄

1
2
TΦ̄

1
2
H

T WH , such that Φ
1
2
T = WΦ̄

1
2
T. (A.2)

The correlation matrix at the receive site can also be decomposed as

ΦR =




1 J0(d̃) ··· J0(|M−1|d̃)

J0(d̃) 1 ··· J0((|M−1|−1)d̃)
...

...
...

...

J0(|M−1|d̃)J0((|M−1|−1)d̃)
... 1


 def

= Φ̄
1
2
RΦ̄

1
2

H

R (A.3)

where d̃
def
= 2πd

λ
. The above two equations immediately lead to (A.4) and (A.5). Here, the

separable model (2.2) is equivalent to

H = Φ̄
1
2
RHwΦ̄

1
2

T

T W, (A.4)
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and the canonical model (2.4) is equivalent to

H = Φ̄
1
2
RHindΦ̄

1
2

T

T W, (A.5)

where Φ̄T and Φ̄R denote the power correlation matrices at the transmit and the receive

sites, respectively. Using Φ
1/2
T = WΦ̄

1/2
T and following a procedure similar to (2.12)–

(2.15), we obtain (2.16) of the main text.

The separable W can also be obtained directly from the physical model [56],[57]. In

[56], the directional term exp
(

−j2π(i−j)d sin φ
λ

)
is also shown to be separable in the expres-

sion of spatial correlation (i.e., Eq. (9) in [56]), and has the similar form of (A.1). Note

that Forenza et al. [58] have recently showed that, for a clustered MIMO channel with

uniform linear or circular array, the cross-correlation coefficients also have a regression

form similar to (A.1). Hence, if we assume a similar environment, we will obtain an

analytical model of the same form as (2.16).

In the above single-directional model, the AoD from the transmitting antennas at

the transmitter can be captured by a mean AoD. In contrast, the principle of maximum

entropy [59] assumes i.i.d. uniformly distributed AoA angles over [0, 2π] and leaves no

mean arriving direction being modelled at the mobile side. It models the separate power

azimuthal spectra (PAS) of AoA and AoD, with a common direction being described by

the mean AoD at the base station [57].
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Appendix B

Proof of Lemma 3.1

According to Lemma 5.1.3 of [18], the ith entry of the vector
[
(1E ⊗A) ⊙ (BT ⊗ 1N)

]
c is

identical to the (i, i)th diagonal entry of the square matrix
[
(1E ⊗ A)diag(c)(B ⊗ 1T

N )
]
,

for i = 1, 2, . . . , NE. Define Ã = [ãm,n]
def
= (1E ⊗A) and B̃ = [̃bm,n]

def
= (BT ⊗1N ). Then,

for i = N(p − 1) + q, p ∈ {1, . . . , E} and q ∈ {1, . . . , N}, we have

[
(1E ⊗A)diag(c)(B⊗ 1T

N)
]
i,i

=
M∑

j=1

ãi,jcj b̃i,j =
M∑

j=1

aq,jcjbj,p = [vec (Adiag(c)B)]i , (B.1)

where aq,j is the (q, j)th entry of A and bj,p is the (j, p)th entry of B. [D]i,i denotes the

(i, i)th entry of the matrix D, while [e]i denotes the ith entry of the vector e. Hence we

conclude that

[(
(1E ⊗ A) ⊙ (BT ⊗ 1N)

)
c
]
i
= [vec (Adiag(c)B)]i , ∀ i = 1, . . . , NE, (B.2)

which proves the Lemma 3.1.
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Appendix C

Proof of Theorem 4.1

Proof. Since ΦΛLΦ is a diagonal matrix, its eigenvalues are the permutation of the di-

agonal elements {λiφ
2
i }. Let {λπ,iφ

2
π,i} be the permutation of {λiφ

2
i } such that λπ,1φ

2
π,1 ≥

λπ,2φ
2
π,2 ≥ . . . ≥ λπ,Lφ2

π,L are in descending order. Due to the fact that ΦUHEUΦ is

Hermitian, we have the following perturbation bound from Weyl theorem [18],

λπ,iφ
2
π,i + ǫL ≤ γi. (C.1)

Since the function f(z)
def
= 1

1+z
is monotonically decreasing for z > −1, we have

∑

i

f(ai) ≥
∑

i

f(bi), if − 1 ≤ ai ≤ bi, ∀ i. (C.2)

Combining (4.27), (C.1) and (C.2), we complete the proof by recognizing that

L∑

i=1

1

1 + λπ,iφ2
π,i + c

=

L∑

i=1

1

1 + λiφ2
i + c

, ∀ c /∈ {−1 − λiφ
2
i }. (C.3)

In order to keep f(·) being monotonically decreasing, we must have mini(λiφ
2
i )+ǫL > −1,

which implicitly satisfies the constraint in (C.3).
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Appendix D

Proof of Theorem 4.2

Proof. Notice that ΦΛΦ is a diagonal matrix, its descending ordered eigenvalues are

exactly the permuted diagonal elements {λπ,iφ
2
π,i}L

i=1. From theorem (9.G.1) of [39], we

have

(γ1, γ2, . . . , γL)

=
(
µ1(ΦUHRHUΦ), µ2(ΦUHRHUΦ), . . . , µL(ΦUHRHUΦ)

)

≺
(
µ1(ΦΛΦ) + µ1(ΦUHEUΦ), . . . , µL(ΦΛΦ) + µL(ΦUHEUΦ)

)

=
(
λπ,1φ

2
π,1 + ǫ1, λπ,2φ

2
π,2 + ǫ2, . . . , λπ,Lφ2

π,L + ǫL

)
, (D.1)

where µi(G) is the ith largest eigenvalues of the matrix [G]L×L and µ1 ≥ µ2 ≥ . . . ≥ µL.

Let h({zi}) =
∑

i f(zi) =
∑

i
1

1+zi
, where zi ≥ zi+1. Since f ′(z) = −1

(1+z)2
is negative,

continuous and monotonically increasing for z > −1, f(z) is convex for z > −1. From

(3.C.1) of [39], h({zi}) is thus Schur-convex, hence, h({xi}) ≤ h({yi}), if {xi} ≺ {yi}.

Combining the above results with (D.1), we complete the proof by restricting the

domain to min
(
{γi}, {λπ,iφ

2
π,i + ǫi}

)
= λπ,Lφ2

π,L + ǫL = mini{λiφ
2
i } + ǫL > −1.
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