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Channel-Aware Decision Fusion With Unknown Local
Sensor Detection Probability
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Abstract—Existing channel-aware decision fusion schemes assume that
the local detection probability is known at the fusion center (FC). However,
this paradigm ignores the possibility of unknown sensor alarm responses
to the occurrence of events. Accordingly, this correspondence examines the
binary decision fusion problem under the assumption that the local detec-
tion probability is unknown. Treating the communication links between the
nodes and the FC as binary symmetric channels and assuming that the
sensor nodes transmit simple one-bit reports to the FC, the global fusion
rule is formulated initially in terms of the generalized likelihood ratio test
(GLRT). Adopting the assumption of a high SNR regime, an approximate
maximum likelihood (ML) estimate is derived for the unknown param-
eter required to implement the GLRT that is affine in the received data.
The GLRT-based formulation is intuitively straightforward, but does not
permit a tractable performance analysis. Therefore, motivated by the affine
nature of the approximate ML solution, a simple alternative fusion rule is
proposed in which the test statistic remains affine in the received data. It
is shown that the proposed fusion rule facilitates the analytic characteriza-
tion of the channel effect on the global detection performance. In addition,
given a reasonable range of the local detection probability, it is shown that
the global detection probability can be improved by reducing the total link
error. Thus, a sensor power allocation scheme is proposed for enhancing
the detection performance by improving the link quality. Simulation re-
sults show that: 1) the alternative fusion rule outperforms the GLRT; and
2) the detection performance of the fusion rule is further improved when
the proposed power loading method is applied.

Index Terms—Communication channels, distributed detection, power al-
location, sensor networks.

I. INTRODUCTION

The problem of distributed signal/event detection and decision
fusion in wireless sensor networks has attracted significant attention
in the literature [1], [12], [13]. However, most previous studies are
based on the idealized assumption that the sensor reports are re-
ceived at the fusion center (FC) without error [13], [16]. Recently,
there have been several proposals that further take into account the
communication channel impairments [2], [3], [6], [7], [11]; see [4]
for a tutorial introduction to distributed detection in the presence of
nonideal channel links. In general, these channel-aware schemes as-
sume that the local sensor detection performance, characterized by the
detection probability and the false-alarm probability, is known to the
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FC. However, this paradigm ignores the possibility of unknown sensor
alarm responses to the occurrence of events within the sensing field.
For example, consider a sensor network designed to monitor the rise
in temperature within a room in order to detect the potential outbreak
of a fire. In practice, the characteristics of a fire are uncertain, e.g.,
the mean temperature may vary from 100� to 1000� depending on the
severity of the fire or the type of fire. Moreover, the characteristics of
the fire may vary over time. As a result, the local detection probability
(under a fixed threshold) could be unknown due to the response to the
uncertain temperature of fire events. To accommodate such variations
in the sensing field conditions, one conceivable approach is to simply
model the local detection probability as an unknown parameter and to
design suitable global decision rules for tackling such uncertainty.

This correspondence proposes a channel-aware decision fusion
scheme tailored for the above-mentioned scenario. The communica-
tion links between the sensor nodes and the FC are modeled as binary
symmetric channels. Each sensor, when triggered, sends a single bit
to the FC to inform it of its local decision. Note that since the FC
treats the local detection probability as an unknown parameter, the
nodes do not need to send an additional message regarding the current
local detection performance, and thus the communication overhead
is reduced. Based solely on the received sensor reports, the global
decision rule is formulated intuitively as a generalized likelihood ratio
test (GLRT) [9]. The implementation of this test calls for the maximum
likelihood (ML) estimate of the unknown parameter, which, in the
current case, does not allow for a closed-form solution. Thus, under
a high signal-to-noise ratio (SNR) assumption, an approximate ML
estimate is derived that is affine in the received data. However, even
when adopting this approximation, the detection performance of the
GLRT decision rule remains difficult to characterize. Therefore, based
on the approximated ML scheme, a simple alternative fusion rule
is proposed in which the test statistic remains affine in the received
data. The proposed fusion rule enables the derivation of a closed-form
expression for the detection performance and, therefore, facilitates
the analytic characterization of the channel effect. In addition, it is
shown that, for reasonable ranges of the local detection and false
alarm probabilities, the global detection performance can be improved
by enhancing the communication-link quality, specifically, reducing
the total link bit-error rate (BER). Hence, an optimal power allo-
cation scheme is proposed to minimize the total BER subject to a
total power budget. Simulations show that the proposed fusion rule
outperforms the GLRT; in addition, the detection performances of
both the proposed fusion rule and the GLRT decision rule are seen to
be further improved via the application of the optimal sensor power
loading scheme. The remainder of this correspondence is organized as
follows. Section II formulates the problem, while Section III presents
the GLRT based detection scheme and derives the approximate ML
solution. Section IV introduces the proposed fusion rule and derives
the associated analytic performance results. Section V formulates an
algorithm for improving the channel link quality in order to improve
the detection performance. Section VI presents the simulation results.
Finally, Section VII provides some brief concluding remarks.

II. PROBLEM STATEMENT

Consider a sensor network with � identical binary nodes designed
to monitor the occurrence of a certain event. Each sensor exists in one
of two different states, namely active (e.g., when the measurement is
above a certain threshold) or silent (e.g., the measurement is below the
threshold, and the sensor simply remains quiet to conserve energy).
Assume that each node is subject to a known false-alarm probability
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�� due to small ambient perturbations.1 When triggered by the occur-
rence of the event of interest, the local detection probability across
the sensors, ��, falls within the interval ���� ��. However, the exact
value of �� is assumed to be unknown. The status of the �th sensor
can thus be represented using a binary random variable �� � ��� ��,
with ����� � �� � �� in the absence of the event of interest, and
����� � �� � �� otherwise. Each sensor records its status using a
single bit and then transmits this bit to the FC. Assume that the com-
munication link between the �th sensor node and the FC is nonideal
and is modeled by a binary-symmetric channel with a crossover proba-
bility ��, � � � � � . At the FC, the bit received from the �th sensor is
decoded, and the resultant message �� � ��� �� is a Bernoulli random
variable

���������
������������������ (event is absent)
������������������ (event is present).

(2.1)

Based on a single snapshot of the observed sensor reports ��, � � � �
� , the FC utilizes a predefined decision rule in order to make a final
decision regarding the occurrence (or absence) of the event of interest
within the sensing field. The main objectives of this study include: 1) to
formulate a suitable fusion rule for the case in which the local detection
probability is unknown; and 2) to devise a technique for mitigating the
channel effect on the global detection performance.

III. GLRT-BASED DETECTION SCHEME

A. GLRT Scheme

Assuming that the set of Bernoulli random variables ���� are con-
ditionally independent given the event under test, the joint probability
mass functions of � 	� 
�� � � � �� � under either �� and �� are given by

������� �

�

���


��� 
����� � ���
�

� 
���� 
����� � ��� ����
��� � 	 � �� �
 (3.1)

Since �� is unknown, the detection problem can be formulated intu-
itively as the following binary composite hypothesis test:

�� 	 �������� (event is absent)
�� 	 �������� �� � ��� (event is present).

(3.2)

The GLRT [9, Ch. 6] is a typical decision rule for problems of this type
and decides �� if

��
����������
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����� � ��� ���
	 � (3.3)

where ������ is the ML estimate of �� and the threshold � is deter-
mined from the prescribed false-alarm probability. However, to imple-
ment (3.3), it is first necessary to find ������. This can be achieved by
solving the equation 
 �� ��������
�� � �, which based on (3.1) can
determined directly as

�

���

��
�� � 
������ 
����

�

�

���

�� ��
�� � 
��� ������� 
����

� �


(3.4)

1Note that knowledge about � can be acquired in a training process con-
ducted in the absence of the event of interest.

In other words, finding the unknown parameter ������ involves solving
certain roots of the polynomial given in (3.4), which is of the order
� � �. While this can be achieved using numerical techniques, an
analytic solution does not exist. Accordingly, given the assumption of
a high SNR regime, the following section derives a simple closed-form
approximate ML solution.

B. Approximate ML Estimate

Crucially, if the link error probability �� is small, it follows that

��
�� 
��

� � � 
�� � ���� � � � � �� 
 ��

and
�� ��
�� 
��

� � � 
�� � ���� � � � � ��� ��� 
 � � �� (3.5)

by neglecting the higher order terms. In accordance with (3.5), (3.4)
can be well approximated by
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� �
 (3.6)

Retaining only the first-order term in the denominator in each summand
and rearranging, (3.6) becomes

�

���

�� � �� � �
�� � ����
��
�
� �� � ��

� �
 (3.7)

Given the assumption that �� is small, ��� � �� � �� 
 ��� � ��.
Therefore, (3.7) can be further reduced to

�

��
�
� ��

�

���


�� � �� � �
�� � ����� � �
 (3.8)

Hence, provided that �� �� ��� ��, ��� (hereafter denoting the approxi-
mate ML estimate of ��) can be found by solving

�

���


�� � �� � �
�� � ����� � �
 (3.9)

Therefore, the following approximate ML scheme is obtained

��� �
�

�

�

���


�� � 
����� � ��� 
 (3.10)

C. Discussions

1) Although the estimate given in (3.10) is only an approximation
to the true ML solution, it is nevertheless attractive since it is
affine in the received data samples, ��, and is therefore potentially
amenable to analysis. Furthermore, extensive simulations reveal
that the detection performances of the GLRT decision rule based
on ��� and the true ML solution, respectively, are very similar (see
Section VI).

2) Even with the approximate ML estimate ��� given in (3.10), the
achievable detection performance of the GLRT (3.3), in partic-
ular, the impact due to channel uncertainty, remains quite difficult
to characterize especially when the number of sensors is finite.
Thus, the following section proposes an alternative fusion test that
exploits the affine nature of ��� to facilitate the analytic character-
ization of the link error effect.
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IV. PROPOSED DETECTION SCHEME

A. Proposed Approach

It is widely known that the GLRT is merely a heuristic approach and
does not take account of any specific optimality criteria regarding the
detection performance [9], [10]. As suggested by [10, p. 204], an al-
ternative (yet simple and intuitive) strategy is to simply compare the
ML estimate against the known parameter �� and decide in favor of
the null hypothesis whenever the resultant difference (measured using
some appropriate metric) is less than a certain threshold. Utilizing this
approach, and in order to further exploit the affine nature of the approx-
imate ML estimate in (3.10), the following alternative test criterion is
proposed:

�� � ��� � �� � �

�� � ��� � �� � ��
(4.1)

The main advantage of this decision rule is that, unlike the GLRT in
(3.3), the test statistic in (4.1) is affine in the estimate ��� and is there-
fore also affine in the received data samples ��. This attractive feature
enables the resultant decision performance to be analytically charac-
terized, as shown below.

B. Analytic Performance

To proceed, let us write
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(4.2)
where 	 denotes the equivalent test statistic. Since �� � ��� ��, 	
assumes a finite number of alphabets, which are to be specified first.
Thus, for each � � 
 � � , let ���� �� ��

���
� � �

���
� � � � � �

���

�
� be the

collection of all the distinct 
-element subsets of ��� � � � � ��, where
��
� �� � �
�
��� � 
	�
 and ���� � ���. Also, for each � � 
 � � ,

let ���� be a set consisting of all possible values of 	 when 
 sensors
are active, i.e.,

���� �� �	 �
 sensors are active�

� �
���
� � �

���
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���

�

where �
���
� ����� 
 � �

���

�� � (4.3)

As a result, it follows that

	 �

�

���

����� where ���� � ���� (4.4)

It is noted from (4.4) that there are a total of ��
� ���

� � � � ����
� �

��� �	� � �� possible levels of 	 . To assess the performance of the
proposed decision rule given in (4.1), assume without loss of generality
that for each � � 
 � � , the elements in ���� are arranged as ����
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Also, let � � 
� � � be such that
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(4.6)

In accordance with the definition of the detection probability, �� �

��	 	 �� � ��
�	 �

��� �� � �����, the following lower bound
for �� can be derived:

�� 	 �
�	�
� (4.7)

in which based on (4.6) and (4.3)
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(4.8)

Similarly, for the false-alarm probability �
 � 
��	 	
�� � ��
�	 �

��� �� � �����, the associated lower bound is
obtained as2
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 (4.9)

where

�
�	�

 � 
� ��� ��� 
 ��� ��� 
 � � � 
 ������� is true

�

�

��� ��

�

���
���

���� ���	�� � ��


�

����

����� ���	�� � ��� ��	
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(4.10)

It is observed that the performance bounds in (4.8) and (4.10) depend
on the link error probability ��. Thus, the performance bounds provide a
convenient means of evaluating the effect of channel link uncertainties
on the detection performance, as discussed in the following section.

V. IMPACT OF CHANNEL LINK UNCERTAINTY ON

DETECTION PERFORMANCE

A. Tractable Approximation of Performance Bounds

The performance bounds in (4.8) and (4.10) vary as a nonlinear func-
tion of the link error probability ��. Therefore, the original forms of
(4.8) and (4.10) do not permit a straightforward analysis of the impact
of nonideal communication channels on the detection performance. It
will be recalled that the approximate ML estimate given in (3.10) is

2Note that the upper bounds for both � and � can be directly obtained by
replacing the lower summation indexes in (4.8) and (4.10) by � . Simulations
indicate that in both cases the gap between the lower and upper bounds is small.
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based on the assumption of a high SNR regime (i.e., the link error prob-
ability has a low value). Adopting the same assumption here, the lower
bounds given in (4.8) and (4.10) can be simplified considerably, as es-
tablished in the following lemma.

Lemma 5.1: For a small value of ��, it can be shown that
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���
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��� ��

�� �
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��� ��

�� (5.1)
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� �� � (5.2)

Similarly
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�� (5.3)

where

�� ����
� ��� ���

������

�� �� ����� ��� ������� ���
�����

� ����
��� ��� ���� ����

� �� � (5.4)

Proof: Based on (4.8) and (4.10), the results can be obtained
by neglecting the high-order terms of �� and performing some direct
manipulations.

B. Characterization of Channel Effects

Lemma 5.1 shows that while (4.8) and (4.10) are complicated func-
tions of ��, in the high SNR regime the detection performance is closely
related to the total link error rate, namely �

��� ��. Although �

��� ��
provides a measure of the aggregate end-to-end communication link
quality, it does not necessarily directly reflect the overall detection per-
formance. However, given certain assumptions regarding the sensor
alarm rates, the lower bounds of the global detection probability can
be enlarged provided that �

��� �� is kept small. More precisely, the
following theorem applies.

Theorem 5.2: Assume that �� 	 ��	 	 ��. With a fixed false-alarm
probability �� , let � ���

� and � ����� be the detection probability lower
bounds associated with two different summed link errors, i.e., 
 �

�

��� �� and 
� � �

��� �
�

�, respectively. If 
� 	 
, then it follows
that � ����� � �

���
� .

Proof: See Appendix.
Theorem 5.2 suggests that, when the condition �� 	 ��	 	 ��

is satisfied, the global detection probability tends to improve as the
value of the total link error rate is reduced. Note that the assump-
tion �� 	 ��	 	 �� is not too restricted for any reasonable detec-
tors. Inspired by Theorem 5.2, the following section develops a sensor
power allocation scheme designed to enhance the global detection per-
formance by reducing the total link error.

C. Optimal Sensor Power Allocation Scheme

Assume that each sensor utilizes an ON–OFF signaling technique to
transmit its one-bit reports to the FC. Assume also that the node-to-FC
communications take place over flat fading channels. Thus, the fol-
lowing discrete-time baseband channel model can be applied:

�� � 
����� � ��� � � � � � (5.5)

Fig. 1. ROC curves of GLRT (3.3) with exact and approximate ML solutions.

Fig. 2. Detection probability and theoretical performance bounds �� � ����.

where �� is the data received at the FC from the �th sensor, 
� is the
instantaneous channel gain of the �th link (assumed to be perfectly
known to the FC), ��� is the power allocation factor for the �th node,
and �� is zero-mean Gaussian measurement noise with variance ��� .
From (5.5), the crossover probability is given by �� � ���
��������,
where���� �� �

�
�����

�

�

��
�������� is the�-function. Given

a fixed total power budget � , the optimal sensor power allocation
problem can be formulated as

�������


�

	��

� ��
�������� � ����
�� ��

�

���

��� � �� (5.6)

Note that the optimization problem given in (5.6) has been addressed
in the context of MIMO wireless communications in [14] and [15].
Thus, the algorithm proposed therein is used directly here to establish
the optimal sensor power allocation factor for each of the nodes within
the network.

VI. SIMULATION RESULTS

In this section, the performance of the proposed scheme is investi-
gated by means of numerical simulation. The channel gains of the com-
munication paths are assumed to be complex Gaussian with zero mean
and unit variance and are i.i.d. across sensors. Throughout the simula-
tion, the noise variance is set to be ��� � ���	; in Figs. 1–6, the local
sensor alarm probabilities are ���� ��� � ����� ����. Fig. 1 presents
the ROC curves of the GLRT test (3.3) implemented using the exact
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Fig. 3. False-alarm probability and theoretical performance bounds �� �
����.

Fig. 4. ROC curves of GLRT (3.3) and proposed scheme (4.1) �� � ���.

Fig. 5. ROC curves of GLRT (3.3) and proposed scheme (4.1) �� � ���.

ML solution [via solving the polynomial (3.4)] and the proposed ap-
proximate ML solution (��� in (3.10)), respectively. It is seen that the
detection performances achieved using ��� and the true ML solution are
almost identical. Figs. 2 and 3 examine the tightness of the performance

Fig. 6. Detection probabilities for different numbers of sensors �� � ����.

Fig. 7. ROC curves of GLRT (3.3) and proposed scheme (4.1) �� � ��	�.

bounds for �� and �� derived in Section IV-B for different number of
sensors � . As we can see, the theoretical bounds well predict the ex-
perimental results, especially when � is large. Figs. 4 and 5 compare
the GLRT (3.3) (with the exact ML solution) and the alternative test
(4.1) for, respectively, � � �� and � � ��. Both methods with and
without power allocation are considered. Note that by “without power
allocation” we mean �� � � for all � in (5.5), and the channel gains ��’s
are drawn from the standard Gaussian distribution in each Monte Carlo
run. Also, the ROC curves obtained by the likelihood ratio test (LRT)
assuming that �� is exactly known are also included as the benchmark.
It is seen that the detection performance of the proposed alternative
rule (4.1) is discriminably improved via the application of the sensor
power allocation scheme (especially when the network size is small)
and is almost identical to the ideal LRT. For the GLRT, the perfor-
mance improvement attained via power loading is only slight. This is
reasonable since the proposed power allocation scheme is specifically
aimed at enhancing the detection probability of the alternative test (4.1)
but not for the GLRT. With fixed �� � ���, Fig. 6 further depicts the
detection probabilities of all methods for �� � � � ���. The results
show that as the number of sensors increases, the performances of all
methods improve and converge to the ideal LRT solution. The proposed
test (4.1), however, performs quite close to the ideal LRT, irrespective
of the network size. Finally, Fig. 7 shows the ROC curve when �� is
set instead as �� � ��� �� � ��	. Compared to Fig. 4, the detection
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Fig. 8. Detection probabilities for different � �� � �����.

performances of all methods improve. This is reasonable since when
�� is small, the occurrence of change is potentially more discernible.
With �� � ���� and � � ��, Fig. 8 shows the detection probability
for ��� � �� � ���. As we can see, the proposed test (4.1) with power
loading still outperforms the GLRT-based solution.

VII. CONCLUSIONS

This correspondence has presented an original contribution to bi-
nary decision fusion with identical sensors when the local detection
probability is unknown. It has been shown that while the global fusion
rule can be formulated in terms of the GLRT, the need for an ML es-
timate of the unknown parameter when implementing the GLRT deci-
sion rule prevents an analytic evaluation of the detection performance,
even when a closed-form approximation of the ML solution is used.
Thus, exploiting the affine nature of the approximate ML solution, a
simple alternative fusion statistic has been proposed, which remains
affine in the received sensor reports. Such an alternative scheme not
only facilitates a tractable performance analysis, but also enables the
analytic characterization of the effect of channel impairments on the
global decision performance. Given a reasonable range of the local de-
tection and false alarm probabilities, it has been shown that a higher ag-
gregate link quality leads to an improved global detection probability.
Therefore, a sensor power allocation scheme has been proposed to min-
imize the summed link errors. The simulation study has shown that the
proposed alternative fusion rule outperforms the GLRT and yields a fur-
ther improved performance when combined with the proposed power
loading method. In the future, we will extend the current study to the
scenario with nonidentical sensors and investigate the problem with the
Bayesian approach.

APPENDIX

PROOF OF THEOREM 5.2

To prove the theorem, let us define
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where�� and�� are defined in (5.2) and	� and
� are defined in (5.4).
The theorem is proven using the following two technical lemmas.

Lemma A.1: Assume that �� � ��� � ��. The following results
hold:

1) Both ��� � � and ��� � � are monotonically decreasing in 
.
2) ��� � � and ��� � � for all 
.

Proof of Lemma A.1: We note that 1) follows immediately by
definition, and thus it remains to prove 2). Let us write
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Note that �� � �� � � since 	���
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we have
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Furthermore, since �� � ���, it follows that
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We further observe that
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From (A.7), and by the definition of�� in (5.2), it follows immediately
that

�� � � for 
 � ��� and �� � � for 
 � ���� (A.8)

From (A.8), ��� decreases when � � 
 � ��� and increases for
��� � 
 � � . This result, together with (A.5) and (A.6), implies that
��� � �. Following a similar approach, it can be shown that ��� � �.

Lemma A.2: The following results hold:
1) If �
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��
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tonically decreasing.
2) If �
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��
 is mono-

tonically decreasing.

Proof: We shall only prove 1) since 2) can be verified using a
similar approach. To proceed, let us first focus on the case in which

 � ���. By assumption we have
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where the last equality follows since ����
��� � ��

� and � � ���.
From (A.9), we immediately have
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Since ��
� � ����
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� , we can rewrite (A.10) as
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The last inequality in (A.11) is equivalent to
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Multiplying both sides of (A.12) by ��� ���
������ and rearranging,

we obtain
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From the definition of the sequences 	� and 
� in (5.2), inequality
(A.13) essentially asserts that
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Since ��� � ����� � 	� and ��� � ����� � 
� , (A.14) implies that
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which proves 1) for � � ���. If � � ���, we have ������
��� �����

�����
� ��� � ����	 � �, and hence the last inequality in (A.11) still

holds. Repeating the procedures shown in (A.12)–(A.14), the relation
given in (A.15) is obtained. The proof is thus completed.

Proof of Theorem 5.2: Associated with the total error rate 
,
let ���� � �

�
� � �

�
� � �

�
� � be accordingly defined as in (A.1). For a given

threshold �, and with the given
, we can then express the performance
bounds in (5.1) and (5.3) as

�
���
	 � ��� �� � ��� ��
 and �

���

 � ��� � ��� 
 (A.16)

where �� is some positive integer. If
 is reduced to
� � 
, it follows
from part 2) of Lemma A.1 that
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Since �� � ��
 � ��, we have �������� � ��� � � and �������
����� � �. Under the assumptions of Lemma A.2, ��� � ��� 
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monotonically decreasing. Let ��
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For such ��

�, it follows that� ���
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 . The corresponding detection probability lower bound

satisfies
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where (a) holds since ��� � ��� 
 is also monotonically decreasing
(see Lemma A.2) and (b) follows from the first inequality in (A.17).
Hence, as 
 is reduced to 
�, we have �

���
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�� � �
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	 when-

ever � ���

 ���
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 . This implies that the detection probability lower

bound � ����
	 corresponding to �
 must exceed � ���

	 .
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