© The Author 2009. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions @oxfordjournals.org

Advance Access publication on May 10, 2009

doi:10.1093/comjnl/bxp043

Imprecision-Tolerant Location
Management for Object-Tracking
Wireless Sensor Network

CHIH-YU LIN'"*, YU-CHEE TSENG? AND YUNG-CHIH Liu?

]Department of Information Science and Applications, Asia University, Taichung, Taiwan, R.O.C.
2Department of Computer Science, National Chiao Tung University, Hsin-Chu, Taiwan, R.O.C.
3 Networks and Multimedia Institute, Institute for Information Industry, Taipei, Taiwan, R.O.C.

*Corresponding author: lincyu@asia.edu.tw

An important issue of wireless sensor networks is object tracking, where the key steps include event
detection, target classification, location estimation and location management. The main theme of this
paper is location management. Because imprecision is an inherent property in object-tracking sensor
networks, this paper focuses on the scenarios where users can tolerate a certain degree of imprecision
in their query results. We intend to develop a location management scheme that can achieve two
goals. First, multiple precision levels are provided. Second, the query cost is proportional to the
precision level. To achieve these two goals, we propose a tree-based imprecision-tolerant location
management scheme that includes three major components: (1) update and query mechanisms that
can support imprecision-tolerant queries, (2) the approach to taking the statistics of imprecision-
tolerant queries and (3) a tree construction algorithm that can reduce the query cost and minimize
the increment of update cost. Performance evaluations are conducted through simulations to verify
the proposed scheme.

Keywords: imprecision-tolerance; in-network processing; location management; object tracking; wireless
sensor networks; wireless communications

Received 5 November 2008; revised 3 March 2009
Handling editor: Ing-Ray Chen

INTRODUCTION

The rapid progress of wireless communication and embedded
micro-sensing MEMS technologies have made wireless sensor
networks (WSN) possible. Applications of WSN have been
widely studied (e.g. in [1-3]). Object tracking is one of the
important issues of WSN, which has applications in military
intrusion detection, habitat monitoring and so on. The key steps
of object tracking include event detection, target classification
and location estimation [4—10]. In a WSN, when the locations
of objects are successfully determined, a location management
scheme for continuously reporting objects’ locations and
disseminating users’ queries is required [11-14]. The main
theme of this paper is location management. We explore the
in-network data processing capability of WSN by executing
distributed location updates and queries inside the network. In
particular, we consider the scenarios where users can tolerate a
certain degree of imprecision in their query results.

Inaccuracy of sensing data is inherent in WSN, and
applications of WSN can usually tolerate some degree of
imprecision. These properties have been exploited in the
design of network protocols for WSN. For example, precision-
constrained data aggregation is considered in [15], and a storage
system that supports drill-down queries with different precision
levels is proposed in [16]. Similarly, in an object-tracking sensor
network, maintaining the exact locations of objects anytime
is almost infeasible [10, 13, 17]. Not only the positioning
results may contain errors, but also the data transfer delay and
object mobility may make the locations of objects known by
users not be up-to-date. Fortunately, imprecision is tolerable
in many object-tracking applications. For example, when life
scientists intend to pursue an animal, it may be sufficient to
know its moving direction rather than its exact location. In
addition, the location information recorded several hours ago,
instead of at the current time, may still be helpful for the

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

352 C.-Y.LIN et al.

life scientists to understand the animal’s daily life. Therefore,
developing an in-network location management scheme to
support imprecision-tolerant queries is desirable for object-
tracking sensor networks.

In-network location management schemes for object-
tracking sensor networks have been studied in [11-13, 18-20].
In [11], sensors are organized as a logical tree. When an object
moves from one sensor to another, update messages are only
forwarded to the lowest common ancestor of these two sensors
in the tree. Further, queries are only forwarded along the path
from the sink to the sensor containing the queried object. Thus,
the communication cost is reduced. Nevertheless, this work
fails to consider the physical structure of the WSN. Reference
[12] further takes the physical structure of the network into
consideration while constructing the logical tree. In addition,
when the query cost dominates the communication cost, a way
to reduce the query cost is proposed. This results in further
reduction of the overall cost. Statistics is required in [12].
Reference [20] proposes a Markov-chain model to generate
the mobility profile so that it is unnecessary to take statistics.
Besides, reference [19] shows that constructing an optimal tree
is NP-complete. Both [11, 12] consider precise object tracking.
A storage scheme called EASE, which can support imprecision-
tolerant object tracking, is studied in [13]. The goal of the EASE
scheme is to reduce network traffic for transmitting updates
and queries. The location information of an object is stored
in a centric storage node and a local storage node. When a
user intends to know the location of an object, the query will
be forwarded from the querying node to the centric storage
node of that object. If the precision level is satisfactory, the
centric storage node will reply to this query. Otherwise, the
query will be forwarded to the local storage node, which has
more precise location information of that object. Because the
EASE scheme benefits from the structure-free property, it can
tolerate faults such as sensor failure well. However, this scheme
has two major drawbacks. First, when the querying node is
very close to the local storage node of the queried object,
the query will still be forwarded to the centric storage node,
which may be far from the querying node. Second, only two

®. Therange (- The range The range
reported by A -) reported by B reported by C

Spatial imprecision

precision levels are provided. Motivated by the EASE scheme,
we argue that an imprecision-tolerant location management
solution should achieve two desirable goals. First, multiple
precision levels should be provided. Second, the query cost
should be proportional to the precision level.

In this paper, we propose an in-network location management
scheme to support imprecision-tolerant queries for object-
tracking sensor networks. Two types of imprecision are
considered. Spatial imprecision means that an object could be
located near, rater than at, the location reported by the WSN.
Temporal imprecision means that the location reported by the
WSN may be recorded near, rather than at, the current time.
For both of these two imprecision types, two desirable goals
should be achieved. First, multiple precision levels should be
provided. Second, the query cost should be proportional to the
precision level. For example, for spatial imprecision, the report
provided by node C should be more accurate than that provided
by node A, because node C is farther from the sink (Fig. 1a).
Similarly, for temporal imprecision, the location reported by
node C should be newer than that reported by node A (Fig. 1b).

We observe that a tree-based location management scheme
similar to those proposed in [11, 12] could achieve these
two goals naturally. A detailed explanation will be given
in Section 2.3. Based on this observation, this paper pro-
poses a tree-based location management scheme to support
imprecision-tolerant queries. To begin with, we describe the
update and query mechanisms that can be used to support
imprecision-tolerant queries. The proposed update and query
mechanisms can be applied to any tree structure. We then make
an observation regarding the relationship between the com-
munication cost and the tree structure, and then propose a tree
construction algorithm to facilitate the proposed imprecision-
tolerant location management scheme by reducing the query
cost while minimizing the increment of the update cost. Finally,
performance studies are conducted via simulations.

The remainder of this paper is organized as follows. Section 2
describes the network model and reviews the operation of
the tree-based location management schemes. The proposed
imprecision-tolerant location management scheme is presented

The moving
path of the

@_ . U — object

The location
reported by C

The location The location

reported by A reported by B

Temporal imprecision

FIGURE 1. Examples of spatial imprecision and temporal imprecision.

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

IMPRECISION-TOLERANT LOCATION MANAGEMENT FOR OBJECT-TRACKING WSN 353

in Section 3. Performance studies are given in Section 4.
Section 5 concludes this paper; besides, possible future work
is presented.

2. PRELIMINARIES

2.1. Network model

Our proposed network model includes a sensing submodel
and a communication submodel. For the sensing submodel,
we assume that a simple nearest-sensor tracking model is
adopted, in which the sensor that receives the strongest signal
from an object is responsible for tracking the object (this can
be achieved from [21]). Therefore, the sensing field can be
partitioned into a Voronoi graph [22], as shown in Fig. 2a,
where each sensor is responsible for the its polygon area. In
this paper, we assume that whenever an object crosses the
boundary of the Voronoi graph, a movement event will be
triggered. More specifically, these movement events can be
regarded as events on the edges of the corresponding Delaunay
triangulation, denoted by Gs = (Vig, Egg). Figure 2b shows
the corresponding G of Fig. 2a. The definition of a movement
event can be defined well using Gs.

For the communication submodel, given a set of sensors
and the transmission range of sensors, we can derive a
communication graph Gc = (Vge, Ege), where Vge
represents sensors and an edge (4, v) € Eg. if and only if u
and v can communicate with each other directly. In this paper,
we assume that the network G¢ is connected. G¢ will be used
to calculate the communication cost.

2.2. Tree-based location management

Tree-based location management has been studied in [11,
12, 18]. Because the proposed imprecision-tolerant location

management also follows this tree-based model, we briefly
review the operation of the tree-based location management
schemes.

First, a logical tree T = (Vr, ET) rooted at the sink will
be constructed, where Vt represents sensors and ET represents
tree edges. Note that T is a logical tree and thus could be of any
shape. Specifically, an edge (4, v) € ET may neither belong to
EGg nor belong to Eg.. Therefore, for each (u, v) € Et, we
assume that the communication cost of (u, v) is the hop count
between u and v on G¢. By this design, the shape of the tree
will be more flexible.

After T is constructed, when an object moves from one sensor
u to another node v (i.e. across edge (u, v) on Gg), update
packets will be forwarded to the lowest common ancestor of u
and v in T'. For example, in Fig. 2b, a tree rooted at sensor A is
constructed (solid lines). When an object moves from K to E,
update packets will be forwarded from K to D and from E to D,
respectively. This allows any sensor to trace any object under
its subtree. For example, when D receives the update packets, it
knows that the object is located somewhere in the subtree rooted
at E rather than that rooted at F'. Afterward, when D receives a
query, it will forward the query to E. Therefore, any object can
be traced along T easily.

2.3. Observation

We observe that a tree-based location management could
achieve the desired goals naturally; that is, multiple precision
levels should be provided, and the query cost should be
proportional to the precision level. We use an example to explain
this observation. Figure 3a shows a tree used for location
management. In the tree-based schemes, when an object moves
from one sensor to another, the update messages will be
forwarded to the lowest common ancestor of those two sensors
in the tree. Thus, in Fig. 3a, when an object originally located

(a)

(b)

FIGURE 2. (a) The Voronoi graph of a sensor network that consists of eleven nodes {A, B, ..., K}. (b) The corresponding Delaunay triangulation
G (dotted lines), where a logical tree rooted at sink A is constructed and represented by solid lines.

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

354 C.-Y.LIN et al.

The spatial range
reported by x

\

N
Sansor A detécts the
object at t,
~ — s =™ /

The query result replied by x

(b) Sink

The spatial range
reported by y
1

\Sensor B detects the /7
S\ object at tJ_ e
-

The query result replied by y

FIGURE 3. Anexample of the tree-based location management scheme, where the dotted circles shown in (a) and (b) are C (A, tolerant_radius)
and C(B, tolerant_radius), respectively, where C(x, r) denotes the circle area centered at sensor x with a radius of 7.

outside the spatial range of the subtree rooted at y moves into
the range of A at time ¢y, node x (i.e. the parent of y) will be
updated. However, x will not be updated again unless the object
leaves the range of y’s subtree. Therefore, when the location of
the object is provided by x, one can only derive that the object
is located at some sensor in y’s subtree after time 5. On the
contrary, in Fig. 3b, if the location of the object is provided
by a deeper node, say y, then one can derive that the object is
located at some sensor in z’s subtree after time #;. From the
above example, we see that a user can get more precise location
information when a query goes deeper down the tree. This also
implies that a higher query costis required. Thus, in a tree-based
scheme, the query cost is proportional to the precision level.
In addition, because of its hierarchical structure, a tree-based
solution can provide multiple precision levels easily. Based
on this observation, this paper proposes a tree-based location
management scheme to support imprecision-tolerant queries.
The detailed proposed scheme will be presented in the next
section.

3. IMPRECISION-TOLERANT LOCATION
MANAGEMENT

The proposed tree-based imprecision-tolerant location manage-
ment scheme is presented in this section. First, assuming that
a logical tree T has been constructed, we introduce our pro-
posed update and query mechanisms. Second, we discuss how
to collect query statistics. From these statistics, we show how
to construct a cost-efficient tree 7.

3.1. Imprecision-tolerant update and query mechanisms

We assume that a tree T rooted at the sink has been constructed.
Each sensor x will maintain an object list OL, to store the
information of objects known by x. For each object o in OL,,
x maintains three fields:

e o.next: The sensor node from which more precise
information about object o can be found. If o is currently
tracked by x, then o.next = x. Otherwise, o.next =y,
where y is a child of x and o is currently located somewhere
in Subtree(y), where Subtree(y) denotes the subtree rooted
at y. The major purpose of the update mechanism is to
maintain the value of o.next correctly.

e o.loc: The latest location of 0 known by x.

e o.ts: The timestamp when o.loc was recorded by x.

Our update mechanism works as follows. When an object
o moves from sensor a to sensor b at time ¢ (recall that
(a,b) € Eg), two Update(o, a, b, t) packets will be initiated
by a and b. These packets will be forwarded to the lowest
common ancestor of @ and b in T. When a sensor x receives
such a packet, it will take the following actions. For simplicity,
we say that a node itself is a descendant of itself.

e If b is not a descendant of x, then x will remove o from
OL,, because o is not located anywhere in Subtree(x) now.
Then, x will further forward Update(o, a, b, t) toits parent.

e Ifbisadescendantof x buta is notadescendant of x, then x
will add o into OL. If x = b, then 0.next = b. Otherwise,
o.next is set to the child of x that sends Update(o, a, b, t)
to x. In addition, x sets o.loc = b and o.ts = t. Then, x
will further forward Update(o, a, b, t) to its parent.

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

IMPRECISION-TOLERANT LOCATION MANAGEMENT FOR OBJECT-TRACKING WSN 355

e If both a and b are descendants of x (i.e. x is the lowest
common ancestor of a and b in T), then x will modify o’s
informationin OL,.If x = b, then o.next = b. Otherwise,
o.next is set to the child of x whose subtree contains b. In
addition, x sets o.loc = b and o.ts = t.

Next, we present our query format and query mechanism.
Each query can be represented by Query(o, tole_radius,
tole_time), where tole_radius and tole_time denote the
spatial imprecision and time imprecision that can be tolerated,
respectively. More precisely, the distance between the reported
location of o and the real location of o should be less than
or equal to tole_radius and the reported location should be
recorded after cur_time —tole_time, where cur_time denotes
the current time.

The imprecision-tolerant query mechanism operates as
follows. (Note that we assume that all queries will be issued
from the sink. When an object enters the network, an update
packet will be forwarded to the sink; thus, the sink must
have the information of all objects tracked by the WSN.)
When a sensor x (including the sink) receives a query
Query(o, tole_radius, tole_time), x will check its OL, and
take the following actions. (Note that the update mechanism
ensures that if x is the intended receiver of the query, then
o € OL,.) Here we denote by C(x, r) the circle area centered
at sensor x with a radius of r.

e Ifthe queried objectis tracked by x currently (i.e. 0.next =
x), then x will reply to the query immediately. The detected
time will be set to the current time and the detected location
will be set to x itself.

e If the queried object is not tracked by x currently, then x
will check the following two conditions:

(i) o.ts > cur_time — tole_time.
(ii) For each sensor z € Subtree(o.next), z is inside
C(o.loc, tole_radius).

Based on the result of checking, x acts as follows.

e If both conditions are true, x will reply to the query by
stating that o is located at 0.loc at time o.ts.

e Otherwise, the query will be further forwarded to o.next
and the same procedure will be repeated until the object is
found or the above two conditions are satisfied.

Condition (i) is for temporal imprecision. Condition (ii) is
for spatial imprecision. According to our update mechanism,
o is currently being tracked by a sensor in Subtree(o.next).
(Note that x does not know exactly which sensor is currently
tracking o.) If condition (ii) is true, then the distance from o.loc
to each sensor in Subtree(o.next) will be less than or equal to the
tolerable distance tole_radius. This implies that the distance
between o.loc stored in OL, and the real location of o is less
than or equal to tole_radius. This also means that 0./oc can be
tolerated. Therefore, when both conditions are true, a reply can
be sent.

An example is shown in Fig. 3, where a query
Query(Dog, tole_radius, tole_time) is issued. In the case of
Fig. 3a, we can see that x cannot reply to this query even
if t9 > cur_time — tole_time, because D is one of y’s
descendants and D is not within C(A, tole_radius). On the
contrary, in the case of Fig. 3b, y can reply to the query if
t1 > cur_time — tole_time, because z and all of its descen-
dants are within C (B, tole_radius).

3.2. Query statistics

In this paper, we assume that users’ queries have regular
patterns. For example, in habitat monitoring, life scientists may
query an animal everyday. Thus, we can collect statistics so as
to optimize the communication cost. The purpose of the query
statistics is to identify the correlation of sensors. Later, we will
show that uncorrelated sensors should not be put together under
a subtree to reduce the query cost and correlated sensors should
be put together to reduce the update cost.

The statistics is done by the sink. The sink will maintain a
counter x.rep_cnt for each sensor x. Whenever the sink receives
a response to a query Query(o,tole_radius,tole_time)
indicating that o is located at sensor x, x.rep_cnt will be
increased by 1. (Note that this query may be replied by a
sensor z, where z # x.) In addition, a correlation counter
c_cnt(x, y) is also increased by 1 for each y located inside
C(x, min{tole_radius, tole_time x spd(0)}), where spd(o) is
the observed average speed of 0. Based on these two counters,
we define a correlation function

Corr(x, y) = c_cnt(x, y)/x.rep_cnt. (D)

Note that the statistics will be taken continuously, and thus 7’
may need to be recomputed periodically. However, we assume
that the query patterns will not change frequently and so we do
not need to reconstruct 7' frequently.

3.3. Tree optimization for imprecision-tolerant queries

To begin with, we make an observation. Then, based on the
observation, we present our tree construction algorithm. We
observe that uncorrelated sensors should not be put together
under a subtree so as to reduce the query cost while correlated
sensors should be put together so as to reduce the update cost.

We use an example to explain this observation. In
Fig. 4, we consider a scenario where z receives a query
Query(o, tole_radius, tole_time) and OL, indicates that
o.loc = x. Assume that the values of Corr(x, d), Corr(x, e)
and Corr(x, h) are high. This implies that the probability that d,
e and h are located inside C (x, min{tole_radius, tole_time x
spd(0)}) is high and the probability that a, b, ¢, f, g and k are
located inside C (x, min{tole_radius, tole_time x spd(0)}) is
low. Thus, d, e and h are correlated sensors of x and a, b, c,
f, g and k are uncorrelated sensors of x. Now we consider

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

356 C.-Y.LIN et al.

the tree shown in Fig. 4a. Because Subtree(g) contains some
uncorrelated sensors of x, it is very likely that z cannot reply to
this query. This may lead to a high query cost because z needs
to forward the query to its child. On the contrary, in Fig. 4b,
because Subtree(x) only contains the correlated sensors of x,
it is more likely that z can reply to this query. However, one
drawback of the tree in Fig. 4b is its high update cost. For
example, when an object moves from e to x, update messages
have to be forwarded to z (i.e. the lowest common ancestor of ¢
and x). To reduce the update cost, if we can put e and x (which
are correlated sensors) together as shown in Fig. 4c, then z can
still reply to this query with high probability and the update cost
can also be kept low.

Now, we describe our tree construction algorithm. Based
on the observation mentioned above, sensors will be divided
into clusters based on their correlation. Each cluster is then
organized into a subtree. However, when connecting these
subtrees together, a subtree should not be connected to another
subtree because this implies that uncorrelated sensors will be
attached. For example in Fig. 5a, when Subtree(y) is connected

to Subtree(x), this implies that the members of Subtree(x) will
change and include some uncorrelated sensors. Therefore, in
order to connect these clusters together, some nodes have to
be sacrificed to serve as bridges of these clusters. We call the
structure formed by these bridges the backbone. For example, in
Fig. 5b, some nodes will be selected to be backbone nodes and
subtrees will be connected to backbone nodes. By this design,
the members of the subtrees will not be destroyed. Therefore,
our algorithm consists of three steps: (1) BackboneConstruction
(to select backbone nodes and to construct the backbone tree),
(2) SubtreeFormation (to cluster non-backbone nodes and to
organize them into subtrees) and (3) ConnectingSubtrees (to
connect subtrees to the backbone). Details of these steps are
described below.

(1) BackboneConstruction: In this steps, an important issue
is how to select backbone nodes. We argue that the nodes that
are close to the sink and with lower rep_cnt should be selected
to be backbone nodes. The reason is explained as follows. With
our design, we can see that if a reply indicates that the queried
object is located at a sensor that is a non-backbone node, then

FIGURE 4. Some observations on arranging correlated and uncorrelated sensors, where each irregular area represents a subtree and each dotted

circle denotes C (x, min{role_radius, tole_time x spd(0)}).

FIGURE 5. (a) An example of connecting a subtree to another subtree. (b) An example in which subtrees are connected to the backbone tree,
where the black nodes are backbone nodes and the dotted lines are the edges of the backbone tree which may consist of multiple hops.

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

IMPRECISION-TOLERANT LOCATION MANAGEMENT FOR OBJECT-TRACKING WSN 357

this reply will be sent by a backbone node with high probability.
For example, in Fig. 5b, if a reply indicates that the queried
object is located at sensor v, there is a high probability that this
reply is sent by the backbone node w because the members of
Subtree(u) are v’s high correlated sensors. In this case, some
query cost can be saved. On the contrary, if a reply indicated that
the queried object is located at a sensor that is a backbone node,
then this reply will be sent by that backbone node itself with high
probability, because many uncorrelated sensors will be attached
to that backbone node. In this case, there can be no saving in the
query cost. Therefore, it is preferred that the backbone nodes
are selected from those nodes with lower rep_cnt, because for
a backbone node x, x.rep_cnt will be increased by 1 when
a reply indicates that the object is located at x and there is
high probability that this reply is sent by x itself. (There can
be no saving in the query cost) In addition, we can see that
most queries will be replied by backbone nodes. Thus, when
backbone nodes are close to the sink, more query cost can be
saved.

Based on the aforementioned discussions, we adopt two
parameters to select backbone nodes. The first parameter «
(0 < o < 1) is to set a constraint on the rep_cnt values of
backbone nodes. Nodes with lower rep_cnt will be selected.
(Note that we can also see that at most |a x |Vg.|] nodes
will be selected as backbone nodes.) The second parameter 8
(0 < B < 1) is to set a constraint on the distances between
backbone nodes and the sink.

Then, the backbone nodes will be organized into a backbone
tree. We enforce that a backbone node x can only choose
a backbone node y as its parent such that hc(sink,x) =
he(sink, y) + hc(x, y), where hc(u, v) denotes the hop count
between u and v on G¢. (Recall that a tree edge may consist
of multiple hops.) If there are multiple candidate parents, then
the sensor y with the minimum hc(x, y) will be selected. The
reason behind this is to reduce the update cost.

The corresponding pseudo-code is shown in Procedure 1,
where Vpg denotes the set of backbone nodes, cp denotes the set
of candidate parents, and MAX_HC = max{hc(x, sink)|Vx €
Vi1 The backbone selection is from line 1 to line 7, and the
backbone construction is from line 8 to line 17. It is not hard to
see that with this greedy strategy, a virtual backbone tree can
be formed at the end.

(2) SubtreeFormation: This step will divide non-backbone
nodes into clusters and form a subtree for each cluster. It works
as follows. To begin with, we sort non-backbone nodes into a
list L by their rep_cnt values in an ascending order. The reason
for using an ascending order is explained below. An ideal tree
for reducing query cost is one where non-backbone nodes are
alone or in smaller clusters, because less uncorrelated sensors
will be attached. However, small clusters will incur higher
update cost. Figure 4b has shown an example. To minimize the
increment of the update cost, we expect that correlated sensors
with smaller rep_cnt are grouped into a larger cluster. When
we examine non-backbone nodes in an ascending order, sensors

Procedure 1 BackboneConstruction(Gc, QueryStatistics).

1: Vg <« {sink}

2: y <« the sensor with the |« x |Vg|]th least rep_cnt among

all sensors
3: for each node x € Vg except for the sink do
4 if (he(x,sink) < B x MAX_HC) A (x.rep_cnt <
y.rep_cnt) then

5 VBG < VBG U {x}
6 end if
7: end for
8
9

: for each node x € Vg except for the sink do

cp < ¢
10: for each node y € Vg do
11: if hc(sink, x) = hc(sink, y) 4+ he(x, y) then
12: cp < cpU{y}
13: end if

14: end for
15: chooseanode p suchthathc(p, x) = min{hc(y, x)|Vy €

cp}
16: x’s parent <— p
17: end for

with lower rep_cnt will form subtrees first and sensors with
higher rep_cnt will have a higher chance to be alone or in
smaller clusters.

With the sorted list L, we visit each node in L sequentially.
If anode x € L is not clustered yet, then a cluster C containing
only x will be formed and x will assume itself as the leader
of C denoted by C_Idr. Besides, a candidate list cl will be
constructed and nodes that are candidates for joining C will be
added into cl. To begin with, all of x’s unclustered non-backbone
neighbors will be added into cl. Then, each node y € cl will
be checked whether it can be added into C. Two scenarios are
considered.

o Ify.rep_cnt > C_ldr.rep_cnt,then y will check whether
all current members of C are its correlated nodes. If so, y
will be added into C. Since y has a higher rep_cnt value
than the C_Idr, y will become the new leader of C. In
addition, cl also will be updated by including all of y’s
unclustered non-backbone neighbors. (By this design, two
members in the same cluster could be more than one hop
away.)

e Otherwise, the leader will check whether y is its correlated
nodes. If so, y will be added into C. Again, cl also will
be updated by including all y’s unclustered non-backbone
neighbors.

The same procedure will be performed on all nodes in cl until
cl becomes empty. Then, C is determined.

After the cluster members are determined, nodes in C will be
organized into a subtree. Similar to the backbone construction,
each backbone node x € C will choose a node y € C as its
parent such that he(sink, x) = he(sink, y) + he(x, y). If there

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

358 C.-Y.LIN et al.

are more than one such candidate, then the sensor y with the
minimum hc(x, y) will be selected. Then, we shall construct
the next subtree until all non-backbone nodes are clustered. The
pseudo-code of the SubtreesFormation is shown in Procedure 2,
where Nei(x) denotes the neighbors of sensor x and min_corr is
an adjustable system parameter. It is possible that some nodes
in a cluster cannot determine their parents after this step. In
the next step, those nodes will choose backbone nodes as their
parents.

Procedure 2 SubtreesFormation(Gc, QueryStatistics).
1: Sort non-backbone nodes into a list L by their rep_cnt in
ascending order

2: for each node x in L do
3 x.examined < 0
4: end for
5: for each node x in L do
6: if x.clustered = 0 then
7: C <« {x}
8: C ldr < x
9: cl < {y|ly ¢ Vg Ay € Nei(x) A y.clustered = 0}
10: while cl # ¢ do
11: Extract a sensor y from cl
12: if y.rep_cnt > C_ldr.rep_cnt then
13: if Vz € C, Corr(y, z) > min_corr then
14: Cldr <y
15: C «— CU{y}
16: cl <« clU{zlz ¢ Vg Az € Nei(y) A
z.clustered = 0}
17: v.clustered < 1
18: end if
19: else if y.rep_cnt < C_ldr.rep_cnt then
20: if Corr(C_Ildr, y) > min_corr then
21: C < CU{y}
22: cl <« cdU{zlz ¢ Vg Az € Nei(y) A
z.clustered = 0}
23: y.clustered < 1
24: end if
25: end if
26: end while
27: for each node x € C do
28: cp < ¢
29: for each node y € C do
30: if hc(sink, x) = he(sink, y) + he(x, y) then
31: cp <—cpU{y}
32: end if
33: end for
34: choose a node p such that hc(p,x) =
min{hc(y, x)|Vy € cp}
35: X’s parent <— p
36: end for
37: end if
38: end for

(3) ConnectingSubtrees: Now we have a number of subtrees,
each of which will be connected to the backbone tree in this step.
As mentioned earlier, a subtree’s parent (i.e. the parent of the
root of the subtree) is usually responsible for replying to queries
on behalf of the subtree. If a subtree’s parent is closer to the sink,
more query cost may be saved. Thus, we adopt a parameter y
(0 < y < 1) to limit the distance between the root of the
subtree and its parent. The pseudo-code of ConnectingSubtrees
is shown in Procedure 3. Note that a tree edge may consist of
multiple hops.

Because we assume that 7 will not be reconstructed
frequently, the cost for tree construction can be ignored. Finally,
we prove some properties of the virtual tree T constructed
above. We say that a tree T is deviation-free if for all x € Vg,
the hop count of the tree path from x to the sink is equal
to he(x, sink).

Procedure 3 ConnectingSubtrees(Gc).
1: for each subtree root x do
22 cp< ¢
3: for each node y € Vg do

4: if (hc(sink,x) = hc(sink,y) 4+ hc(x,y)) A
(he(sink, y) < y x he(sink, x)) then

5: cp < cpU{y}

6: end if

7. end for

8: chooseanode p suchthathc(p, x) = min{hc(y, x)|Vy €
cp}

9: Xx’s parent <— p

10: end for

THEOREM 1. If G¢ is connected, the tree T constructed by the
proposed algorithm is a connected deviation-free tree rooted at
the sink.

Proof. First, we show that T is connected. For backbone nodes,
we argue that nodes except for the sink can determine their
parents successfully, because the sink is a backbone node and
hc(sink, x) = he(sink, sink) +hc(x, sink) is always true (i.e. cp
will not be empty). Thus, the backbone tree rooted at the sink is
connected. For non-backbone nodes, some nodes will determine
their parents in the step SubtreeFormation. On the contrary,
nodes that do not determine their parents yet will determine
their parents in the step ConnectingSubtrees. Because the sink
is a backbone node, and both hc(sink, x) = hc(sink, sink) +
hc(x, sink) and he(sink, sink) = 0 < y x he(sink, x) are true,
cp must not be empty. Therefore, all nodes except for the sink
will have their own parents and this implies that T is connected.

Then, we show that T is a deviation-avoidance tree. When
a node chooses its parent, the constraint hc(sink, x) =
hc(sink, y) 4+ hc(x, y) ensures that the tree path from x to
x’s parent is deviation-free. Therefore, the tree path from

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

IMPRECISION-TOLERANT LOCATION MANAGEMENT FOR OBJECT-TRACKING WSN 359

every node except for the sink to its parent will be deviation-
free. This implies that T is deviation-free. Hence, the theorem
follows. O

3.4. Practicality issues

In this section, we discuss two practicality issues related to our
scheme. The first one is regarding the nearest-sensor model, in
which it is assumed that the sensor that receives the strongest
signal from the object is responsible for tracking the object.
In practice, signal strength is unstable and is highly sensitive
to environment change [23-25]. We believe that many existing
schemes can solve this issue. In addition, our scheme can be
extended to the imprecise nearest-sensor model easily. Note that
the nearest-sensor model is used to distinguish which sensor
should be responsible for tracking the detected object. That is,
when an object moves from sensor a to sensor b, sensors a and
b should be identified in our scheme. There are many ways to
achieve this goal. For simplicity, we adopt the simple nearest-
sensor model to identify sensors that should be responsible for
tracking the object.

The second one is regarding structure maintenance. In this
paper, we assume that the tree structure is known by all sensors.
That is, each sensor knows the members of its subtrees so
as to determine whether it is the lowest common ancestor
of any two sensors. However, maintaining the tree structure
is costly for storage-constrained sensors when the network
scale becomes large. One alternative is to apply the clustering
techniques [26, 27] to relieve the scalability problem. First,
sensors will be clustered. Then, each cluster can be viewed as
a tree node so that the number of tree nodes can be reduced.

4. SIMULATION RESULTS

We developed an event-driven simulator using C language
to demonstrate the efficiency of our proposed imprecision-
tolerant location management scheme. A sensing field with a
size of 256 x 256 units is simulated, in which 1024 sensors
are deployed randomly with uniform distribution. The sensor
located at one of the corners of the sensing field is selected to
be the sink. The detailed setting of the simulator is described
as follows. The nearest-sensor tracking model is adopted to
simulate the detection of objects; in addition, we simply
assume that G¢c = Gg in the simulation. We assume that
a medium access control (MAC) protocol supporting ideal
wireless communication is adopted; thus, collisions and packet
drops are not modeled in our simulator. The modified city
mobility model proposed in [12] is adopted to simulate the
movement of objects. Two query scenarios are simulated. In
the first scenario, each object is queried evenly. In the second
scenario, some objects will be queried frequently such that
there are some query hotspots in the sensing field. Besides,
for each query, the value of role_radius is selected randomly

from 0 to MAX_TOLE_RADIUS with uniform distribution,
and the value of tole_time is selected randomly from O to
MAX_TOLE_TIME with uniform distribution. The default
setting of the simulation is shown in Table 1.

The tree constructed by our proposed tree construction
algorithm is called (imprecision-tolerant query tree (QT). We
compare the performance of the IQT trees with that of the
DAT trees proposed in [12]. In the original DAT scheme,
the query mechanism proposed in [12] is used. That query
mechanism does not support imprecision-tolerant queries. In
the DAT-1 scheme, a DAT tree will be constructed and our
proposed imprecision-tolerant query mechanism mentioned in
Section 3.1 will be applied. The metric used for evaluating the
performance is the communication cost, which is the sum of
the update cost and the query cost. The update cost is defined
as the number of hops used for transmitting update packets. For
example, when an object moves from sensor a to sensor b, two
update packets will be forwarded to the lowest common ancestor
of a and b, denoted by c. Then, the update cost of this event is
hops(a, ¢) + hops(b, c), where hops(u, v) denotes the number
of hops between u and v. Similarly, the query cost is defined as
the number of hops used for transmitting query packets. Lower
communication cost implies better performance.

In Section 4.1, we compare the IQT scheme with the DAT
scheme. In Section 4.2, we further investigate the impact of
important parameters used in the IQT scheme, that is, «, 8, ¥ and
min_corr. In Section 4.3, two query scenarios are compared.

4.1. Performance comparison between IQT and DAT

To begin with, we consider the scenario in which each object
is queried evenly. In Fig. 6, we observe the impact of objects’
speeds. A higher speed implies a higher update cost. First, we
compare the DAT scheme with the DAT-1 scheme. We can see
that the saved query cost is limited, because the DAT tree is
optimized by minimizing the update cost rather than the query
cost. On the contrary, the proposed IQT tree optimized by
reducing the query cost incurred by imprecision-tolerant queries
can be used to save more on query cost. Especially, when the
query cost dominates the communication cost (i.e. when objects’
speed is low), the IQT trees can reduce the communication
cost significantly. We can further find that when the query rate

TABLE 1. The default setting of the simulation.

Mobility model
Sensing model

Modified city mobility model [12]
Nearest-sensor tracking model
Communication model An ideal MAC protocol
Simulation time 25920005
MAX_TOLE_RADIUS 30 units

MAX_TOLE_TIME 3600 s

Number of objects 128

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

360 C.-Y.LIN et al.

increases from 0.2 to 0.4, the total cost of IQT trees almost
does not increase, because the IQT tree can make the query
cost as low as possible. On the other hand, when the query rate
increases from 0.2 to 0.4, the total cost of DAT trees is doubled.
However, when the speed is high enough, the DAT trees still
outperform the IQT trees, because the DAT tree is optimized by
minimizing the update cost.

We also investigate the impact of query rates in Fig. 7. We can
see that the total costs of the IQT trees do not increase when
the query rates become higher. The major reason is also that
the IQT trees are optimized by minimizing the query cost. On
the other hand, the total cost of DAT trees increases rapidly
when the query rate becomes higher. We can make a brief
conclusion for the results shown in Figs. 6 and 7 as follows.
When the update cost dominates the query cost, DAT that is
designed for minimizing the update cost outperforms IQT. On
the contrary, when the query cost dominates the update cost,
IQT that is designed for minimizing the query cost outperforms
DAT.

We further argue that the IQT tree can benefit from low query
response time. In Fig. 8, we consider two cases in which the IQT

(a) 6.0E+07
5.0E+07
. 40E+07 |
S
= 3.0E+07 | ,
s
o
F 20E+07 [
% DAT -0 DAT-I
1.0E+07 | —A—1IQT1 —X%—IQT2
--6--1QT3 —%—1IQT4
0.0E+00 '
0.00 0.20 0.40 0.60 0.80

Speed (units/second)

Query Rate: 0.2 queries/second

trees and the DAT trees have similar performances in terms of
total cost. However, we can see that the query cost of IQT trees
can be minimized significantly. The major reason is that queries
can be replied earlier. This implies low query response time to
which users are sensitive.

4.2. Performance evaluation under different parameter
setting

To get further insight into the performance of IQT, we
investigate the impact of important parameters used in the IQT
scheme, that is, o, B8, ¥ and min_corr. Two scenarios are
conducted. In the first scenario, the query cost dominates the
total cost. The results are shown in Fig. 9. In Fig. 6a, we can
see that the value of o should be low when the query cost
dominates the total cost. As we mentioned in Section 3.3, most
queries will be replied by backbone nodes. When the number
of backbone nodes is high (i.e. the value of « is high), most
queries cannot be replied to early. The values of § and y
do not affect the performance significantly. This is because
only a few nodes are selected as backbone nodes. (In the

(b) 6.0E+07
5.0E+07
_ 40E+07
g
© 308+07 F
5
o
& 2.0E+07
0 DAT O DATI
1.0E+07 | —A—IQT1 —>—IQT2
~e-IQT3 —*—IQT4
0.0E+00 '
0.00 0.20 0.40 0.60 0.80

Speed (units/second)

Query Rate: 0.4 queries/second

FIGURE 6. The impact of objects’ speeds, where the settings of parameters («, B, y, min_corr) used in IQT1, 1QT2, IQT3, IQT4 are
(0.1, 0.3, 0.3, 0.9), (0.3,0.3,0.3,0.9), (0.1, 0.5, 0.5, 0.9), and (0.1, 0.3, 0.3, 0.6).

(a) 6.0E+07

-0~ DAT
—~—1QT1

--0-- IQT3
4.0E+07 9 — &

5.0E+07

3.0E+07 [

Total Cost

2.0E+07

1.0E+07 [

0,0E+00 1 1 1 1 1
0.00 0.10 020 030 040 050 0.60
Query Rate (queries/second)

Query Rate: 0.2 units/second

(b) 6.0E+07
5.0E+07 | B
., 40E+07 F
g
2 30E+07 F)
S &
& 20E+07 |
o’ ~©--DAT O DAT-I
LOE+07 ——IQT1 —*—1QT2
~©-1QT3 —*—1QT4
0.0E+00 : : : : :

0.00 0.10 020 030 040 050 0.60
Query Rate (queries/second)

Speed: 0.4 units/second

FIGURE 7. The impact of query rates.

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

IMPRECISION-TOLERANT LOCATION MANAGEMENT FOR OBJECT-TRACKING WSN 361

(@) | O Update Cost B Query Cost | (b) | 0O Update Cost B Query Cost |
5.0E+07 4.0E+07
4.0E+07 |
3.0E+07 [
% 3.0E+07 F 2
S O
o — 2.0E+07
s 8
5 20E+07 | i
1.0E+07
1.0E+07 |
0.0E+00 : L ") 0.0E+00 . L . !
DAT-I IQT1 IQT2 1QT3 1QT4 DAT-I 1QT1 1QT2 1IQT3 1QT4
Query Rate: 0.4 queries/sec, Query Rate: 0.3 queries/sec,
Speed: 0.5 units/sec Speed: 0.4 units/sec

FIGURE 8. Comparison of ratios of update cost to query cost.

3.0E+07 3.0E+07
. 20E+07 . 20E+07 | : . N
8 5]
7 F
[[

1.OE+07 | 1.OE+07 |

0.0E+00 4 A + 0.0E+00

0.10 0.30 0.50 070 0.90 0.10 0.30 0.50 0.70 0.30
B
B =03, v =03, min_corr=0.9 a=0.1, ¥ =0.3, min_corr=09
(a) (b)
3.0E+07 5.0E+07
4.0E+07

Ja0ERO7E L . e _
s | g 3.0E+07 |
[&] [&]
2 |
£ £ 20E+07 -

1.0E+07

1.OE+07
0.0E+00 L L L 0.0E+00 + L
0.10 0.30 0.50 0.70 0.90 0.10 0.30 0.50 0.70 0.50
Y min_corr
a=0.1, B =03, min_corr=09 a=0.1, =03, y=03

(©) (d)

FIGURE 9. The impact of parameters in the IQT scheme, where the query rate is 0.5 queries/second and the objects’ speed is 0.2 units/second.

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

362

C.-Y.LIN et al.

experiments shown in Fig. 9b and 9c, the value of « is 0.1.)
Thus, the impact is limited even though some of backbone
nodes may be far from the sink (when the values of g and
y are high). Finally, we can see that the value of min_corr
impacts the performance of the IQT scheme significantly.

5.0E+07 :
-
4.0E+07 \
g 3.0E+07 |
i
2 2.0E+07
1.OE+07 |
0.0E+00 L H L
0.10 0.30 0.50 0.70 0.90
a
B =03, y=0.3, min_corr=09
(@)
5.0E+07
4.0E+07 |
T 3.0E+07 |
&)
i
2 2.0E+07
LOE+07 |
0.0E+00 . ! .
0.10 0.30 0.50 0.70 0.90
¥

FIGURE 10. The impact of parameters in the IQT scheme, where the query rate is 0.2 queries/second and the objects’ speed is 0.5 units/second.

(@) S.0E+07

a =01, f =03, min_corr=0.9

(c)

4.0E+07

3.0E+07

Total Cost

2.0E+07 |

1.0E+07 |

0.0E+00

e

-5 1QT1
—A—IQT5

——1QT6

0.38

FIGURE 11. The impact of objects’ speeds under two different query scenarios, where the query rate is 0.4 queries/second and the settings of

0.40

042 044 046 048
Speed (units/second)

0.50

Scenario 1 (without query hotspots)

0.52

When the value of min_corr is low, uncorrelated sensors may
be put together under a subtree. Thus, the result shown in
Fig. 9 demonstrates our observation that uncorrelated sensors
should not be put together under a subtree so as to reduce the

query cost.

Total Cost

Total Cost

(b)

Total Cost

5.0E+07 -

4.0E+07

3.0E+07

2.0E+07

1.0E+07 |

0.0E+00
0.10

5.0E+07

3
4.0E+07 »—a—/—/’/_/'//ﬂ

3.0E+07

2.0E+07

L.OE+07 F

0.30 0.50 0.70 0.50

B

a =01, y=03, min_corr=09

(b)

L L "

0.0E+00
0.10

5.0E+07

0.30 0.50 070 0.90
min_corr
a=01, =03, y=03
(d)

4.0E+07

3.0E+07 |

2.0E+07

1.0E+07 F

0.0E+00

e

—E-1QTI
—A—1QTS
—¢—1QT6

0.38

0.40

0.42 0.44 0.46 0.48 0.50 0.52
Speed (units/second)
Scenario 2 (without query hotspots)

parameters («, B, y, min_corr) used in IQTS and 1QT6 are (0.5, 1.0, 0.3, 0.9), and (0.8, 1.0, 0.3, 0.9), respectively.

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

IMPRECISION-TOLERANT LOCATION MANAGEMENT FOR OBJECT-TRACKING WSN 363

(@) S5.0E+07
4.0E+07 | p ﬁ
Z 3.0E+07 |
&)
s
S 2.0E+07 |
~E-1QT!
10E+07 —&—1QT5
—<—1QT6
0.0E-+00 L L L L L L

0.28 0.30 0.32 034 036 0.38 0.40 0.42

Query Rate (queries/second)

Scenario 1 (without query hotspots)

(b) S.0E+07
4.0E+07 | %

Z 3.0E+07

&)

s

£ 2.0E+07 | —E-1QTI

—A— QTS

1.0E+07 | —X—1QT6
0.0E+00

0.28 0.30 0.32 034 036 0.38 0.40 0.42

Query Rate (queries/second)

Scenario 2 (without query hotspots)

FIGURE 12. The impact of query rates under two different query scenarios, where the objects’ speed is 0.4 units/second.

In the second scenario, the update cost dominates the total
cost. The results are shown in Fig. 10. In Fig. 10a, we can see
that the value of @ should not be too low in this scenario. Recall
that the subtrees formed by non-backbone nodes will connect
to the backbone nodes. When only few nodes are selected as
backbone nodes, the average number of hops between the roots
of subtrees and the backbone nodes will be large. This means
that when an object moves from one subtree to another subtree,
the update cost will be high. In Fig. 10d, we can further see that
it is meaningless to put correlated sensors together. The more
important requirement is to shorten the average height of the
lowest common ancestors when the update cost dominates the
total cost.

Therefore, we can draw a similar conclusion made in
Section 4.1. When the update cost dominates the query cost, the
IQT scheme may not be a good choice. On the contrary, when
the query cost dominates the update cost, the IQT scheme that
is designed for minimizing the query cost should be considered.

4.3. Evaluation under different query scenarios

Finally, we consider a scenario in which some objects will
be queried frequently such that there are some query hotspots
in the sensing field. Figures 11a and 12a show the results of
the scenario in which each object is queried evenly. On the
other hand, Figs. 11b and 12b show the result of the scenario
in which some objects are queried frequently. Intuitively, one
may think that y should be larger than or equal to 8, because
some backbone nodes will be useless (i.e. no non-backbone
nodes will connect to them) when y is less than . This can
be verified by the results shown in Figs. 11a and 12a. In the
setting of IQT1, y is equal to 8. On the contrary, y is less than
B in the setting of IQTS and IQT6. It can be seen that IQT1
outperforms IQT5 and IQT6. However, in the second query
scenario, we argue that it is useful to make y less than 8. The
reason is explained as follows. Because sensors in the query
hotspots are queried frequently, it is better to select them to be
non-backbone nodes. When the sensors in the query hotspots

are close to the sink and y is larger than or equal to 8, the
probability of selecting them as backbone nodes is high. This
problem can be solved by setting y less than § so that sensors
in the query hotspots will not be selected as backbone nodes.
This can be verified by the results shown in Figs. 11b and 12b,
in which IQTS5 outperforms IQT1.

5. CONCLUSIONS

Inaccuracy of location information is an inherent property in
object-tracking sensor networks. In this paper, we propose a
tree-based location management scheme for object-tracking
sensor networks that can tolerate a certain degree of spatial and
temporal imprecision. The proposed scheme consists of update
and query mechanisms that can be used to support imprecision-
tolerant queries. In addition, a tree construction algorithm
is proposed to facilitate the proposed location management
scheme, which can reduce the query cost while minimizing
the increment of the update cost. By exploiting the features
of the tree-based location management scheme, the proposed
scheme can provide multiple precision levels and ensure that
the query cost will be proportional to the precision level. We
have also demonstrated the efficiency of the proposed scheme
by simulation. With regard to future direction of research it
will be interesting to develop a fault-tolerant tree construction
algorithm and design a cross-layer protocol that take the
contention and collision problems into consideration.

FUNDING

This research is supported by National Science Council,
Taiwan, under the grant number NSC-97-2218-E-468-008.
Y.-C. Tseng’s research is co-sponsored by MoE ATU Plan,
by NSC grants 95-2221-E-009-058-MY 3, 96-2218-E-009-004,
97-3114-E-009-001, 97-2221-E-009-142-MY3, and 97-2218-
E-009-026, by MOEA under grant 94-EC-17-A-04-S1-044, by
ITRI, Taiwan, and by III, Taiwan.

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

364 C.-Y.LIN et al.

REFERENCES

[1] Akyildiz, L.F., Su, W., Sankarasubramaniam, Y. and Cayirci, E.
(2002) Wireless sensor networks: a survey. Comput. Netw., 38,
393-422.

[2] Burrell, J., Brooke, T. and Beckwith, R. (2004) Vineyard
computing: sensor networks in agricultural production. IEEE
Pervasive Comput., 3, 38—45.

[3] Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R. and
Anderson, J. (2002) Wireless Sensor Networks for Habitat
Monitoring. Proc. WSNA’02, Atlanta, GA, USA, September 28,
pp- 88-97. ACM, New York, NY, USA.

[4] Aslam,]., Butler, Z., Constantin, F., Crespi, V., Cybenko, G., and
Rus, D. (2003) Tracking a Moving Object with Binary Sensors.
Proc. SenSys’03, Los Angeles, CA, USA, November 5-7. ACM,
New York, NY, USA.

[5] Blackman, S. and Popoli, R. (1999) Design and Analysis of
Modern Tracking Systems. Artech House, Norwood, MA, USA.

[6] Kim, W., Mechitov, K., Choi, J.-Y. and Ham, S. (2005) On
target tracking with binary proximity sensors. Proc. IPSN’05,
Los Angeles, CA, USA, April 25-27, p. 40. IEEE, Piscataway,
NJ, USA.

[7] Li, D., Wong, K., Hu, Y. and Sayeed, A. (2002) Detection,
classification, and tracking of targets. I[EEE Signal Process. Mag.,
19, 17-29.

[8] Shrivastava, N., Madhow, R.M.U. and Suri, S. (2006) Target
Tracking with Binary Proximity Sensors: Fundamental Limits,
Minimal Descriptions, and Algorithms. Proc. SenSys’06,
Boulder, CO, USA, October 31 - November 3, pp. 251-264.
ACM, New York, NY, USA.

[9] Wang, Z., Bulut, E. and Szymanski, B.K. (2008) A Distributed
Cooperative Target Tracking with Binary Sensor Networks.
Proc. ICC’08, Beijing, China, May 19-23, pp. 306-310. IEEE,
Washington, DC, USA.

[10] Wang, Z., Bulut, E. and Szymanski, B.K. (2008) Distributed
Target Tracking with Imperfect Binary Sensor Networks. Proc.
GLOBECOM’08, New Orleans, LA, USA, November 30 —
December 4, pp. 1-5. IEEE, Washington, DC, USA.

[11] Kung, H.T. and Vlah, D. (2003) Efficient Location Tracking using
Sensor Networks. Proc. WCNC’03, New Orleans, LA, USA,
March 16-20, pp. 1954-1961. IEEE, Washington, DC, USA.

[12] Lin, C.-Y., Peng, W.-C. and Tseng, Y.-C. (2006) Efficient in-
network moving object tracking in wireless sensor networks.
IEEE Trans. Mob. Comput., 5, 1044-1056.

[13] Xu,J., Tang, X. and Lee, W.-C. (2008) A new storage scheme for
approximate location queries in object-tracking sensor networks.
IEEE Trans. Parallel Distrib. Syst., 19, 262-275.

[14] Tseng, Y.-C., Kuo, S.-P., Lee, H.-W. and Huang, C.-F. (2004)
Location tracking in a wireless sensor network by mobile agents
and its data fusion strategies. Comput. J., 47, 448-460.

[15] Tang, X. and Xu, J. (2006) Extending Network Lifetime for
Precision-Constrained Data Aggregation in Wireless Sensor
Networks. Proc. INFOCOM’06, Barcelona, Catalunya, Spain,
April 23-29. IEEE, Washington, DC, USA.

[16] Ganesan, D., Greenstein, B., Perelyubskiy, D., Estrin, D. and
Heidemann, J. (2003) An Evaluation of Multi-resolution Storage
for Sensor Networks. Proc. SenSys’03, Los Angeles, CA, USA,
November 5-7, pp. 89—102. ACM, New York, NY, USA.

[17] Cheng, R., Kalashnikov, D.V. and Prabhakar, S. (2004) Querying
imprecise data in moving object environments. /EEE Trans.
Knowl. Data Eng., 16, 1112-1127.

[18] Lin, C.-Y., Tseng, Y.-C., Lai, T.-H. and Peng, W.-C. (2008)
Message-efficient in-network location management in a multi-
sink wireless sensor network. Int. J. Sensor Netw., 3, 3—15.

[19] Liu, B.-H., Ke, W.-C., Tsai, C.-H., and Tsai, M.-J. (2008)
Constructing a message-pruning tree with minimum cost for
tracking moving objects in wireless sensor networks is np-
complete and an enhanced data aggregation structure. /IEEE
Trans. Comput., 57, 849-863.

[20] Yen, L.-H. and Yang, C.-C. (2006) Mobility Profiling Using
Markov Chains for Tree-Based Object Tracking in Wireless
Sensor Networks. Proc. SUTC’06, Taichung, Taiwan, June 5-7,
pp. 220-225.

[21] Chen, W.-P., Hou, J.C. and Sha, L. (2004) Dynamic clustering for
acoustic target tracking in wireless sensor networks. IEEE Trans.
Mob. Comput., 3, 258-271.

[22] Aurenhammer, F. (1991) Voronoi diagrams - a survey of a
fundamental geometric data structure. ACM Comput. Surv., 23,
345-405.

[23] Bahl, P. and Padmanabhan, V.N. (2000) RADAR: An In-building
RF-Based user Location and Tracking System. Proc. INFO-
COM’00, Tel-Aviv, Israel, March 26-30, pp. 775-784. IEEE,
Washington, DC, USA.

[24] de Moraes, L.EM. and Nunes, B.A.A. (2006) Calibration-
Free WLAN Location System Based on Dynamic Mapping
of Signal Strength. Proc. MobiWac’06, Terromolinos, Malaga,
Spain, October 2, pp. 92-99. ACM, New York, NY, USA.

[25] Elnahrawy, E., Li, X. and Martin, R.P. (2004) The Limits of
Localization Using Signal Strength: A Comparative Study. Proc.
SECON’04, Santa Clara, CA, USA, October 4-7, pp. 406—414.
IEEE, Washington, DC, USA.

[26] Xin, G., YongXin, W. and Fang, L. (2008) An Energy-Efficient
Clustering Technique For Wireless Sensor Networks. Proc.
NAS’08, Chongqing, China, June 12-14, pp. 248-252. IEEE,
Washington, DC, USA.

[27] Younis, O. and Fahmy, S. (2004) Distributed Clustering in Ad-hoc
Sensor Networks: A Hybrid, Energy-Efficient Approach. Proc.
INFOCOM’04, Hong Kong, China, March 7-11, pp. 629-640.
IEEE, Washington, DC, USA.

THE COMPUTER JOURNAL, Vol. 53 No. 3, 2010

102 ‘v |Udy uo Arigi Aisleniun Buny ceyd euoieN e /Hio'seulnolployxo’ julwody/:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 Preliminaries
	2.1 Network model
	2.2 Tree-based location management
	2.3 Observation

	3 Imprecision-tolerant Location Management
	3.1 Imprecision-tolerant update and query mechanisms
	3.2 Query statistics
	3.3 Tree optimization for imprecision-tolerant queries
	3.4 Practicality issues

	4 Simulation results
	4.1 Performance comparison between IQT and DAT
	4.2 Performance evaluation under different parameter setting
	4.3 Evaluation under different query scenarios

	5 Conclusions

