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a b s t r a c t

An investigation of a dual-reflection phenomenon of a natural convection induced by a high temperature
difference in a three dimensional horizontal channel is studied numerically. Because of a situation of high
temperature difference, the Boussinesq assumption usually made in the natural convection problem is no
longer available, the effects of the compressibility of fluid on all related factors must be considered. Solu-
tion methods of Roe, preconditioning and dual time stepping are appropriate for low speed compressible
flow field and combined to solve the governing equations. For saving computation time, the computa-
tional process is parallel and 8 processors are used. At the aperture of the horizontal channel, the direc-
tions of fluid flows in the upper and lower regions are opposite which results in the reflection problems in
the upper and lower regions induced by the large difference between the velocities of acoustic waves and
fluids being completely different. The two different reflections phenomena occurring at the same aper-
ture is conveniently named as a dual-reflection phenomenon which has never been investigated.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction ings [6–8] is usually used. And the boundary condition at the inlet
Accompanying with minimization of devices, a superfluous
space used to install a forced cooling system to remove useless
heat energy is not admitted and the accumulation of useless heat
energy generated by the devices becomes a main barrier to develop
the device of higher level. Also, processes involving high tempera-
ture conditions in which a natural convection plays a role are con-
tinuously developed for many industrial applications such as a
flow in a chimney, drying processes, solar receiver system, fire re-
search and deposition processes in semiconductor manufacturing.
As a result, a natural convection in an opened-ended finite length
channel is still a very important subject in both academic and
industrial researches. The coexistence of variable densities of fluids
and slow velocities of flows is the characteristic of the above sub-
ject. For avoiding the complexity of the solving process caused by
the characteristics mentioned above, the Boussinesq assumption in
which a factor of the variable density of fluid only affects a buoy-
ancy force is usually adopted when theoretical analyses of the nat-
ural convection are executed. As for the treatment of boundary
conditions at the channel apertures, one of the methods of adjust-
ment of the length for satisfying a fully developed flow [1–8], an
adoption of effective boundary conditions at the aperture planes
[9], and no pressure difference between the outlet and surround-
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of the channel, a method of mass conservation or according to
Bernoulli’s equation is proposed [6–8].

According to Gray and Giorgini [10], when the temperature
difference between the heat and cold sources of the natural convec-
tion problem is smaller than 30 K, the results obtained by the Bous-
sinesq assumption are well consistent with the practical situation.
However, in many other important natural convection problems
mentioned earlier, the temperature differences are often higher
than several hundred degrees. Because of the inapplicability of
the Boussinesq assumption under the high temperature difference
natural convection, the factor of compressibility of fluid which
causes the problems to become very complicated should be then
considered. Also, under a realistic condition the pressure difference
between the inside and outside of the channel aperture is existent.
Otherwise, the fluid from the outside could not flow into the chan-
nel and the fluid in the channel could not be discharged to the out-
side. This pressure difference would lead acoustic waves caused by
the compressibility of fluid to reflect at the aperture [11]. And
when the related numerical calculation is executed, the solutions
in the channel are easily polluted by the reflections of the acoustic
waves mentioned above which lead the computation processes to
be poorly convergent, especially for a low speed compressible flow.
Therefore, for analyzing the problem of natural convection in a
channel under high temperature difference realistically, in addition
to the consideration of the properties of viscosities and compress-
ibility of fluid, the reflection problems at the aperture should also
be considered simultaneously.
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Nomenclature

b horizontal channel gap (m)
c original acoustic wave speed (m/s)
c0 modified acoustic wave speed (m/s)
g acceleration of gravity (m/s2)
k thermal conductivity (W/mK)
M local Mach number
Nu local Nusselt numbers defined in Eq. (27)
Nu average Nusselt number defined in Eq. (24)fNu average Nusselt number defined in Eq. (29)
P pressure (Pa)
P0 surrounding pressure (Pa)
Pr Prandtl number
_q constant heat flux (W/m2)
R gas constant (J/kg/K)
Ra Rayleigh number defined in Eq. (25)
Ra* Rayleigh number defined in Eq. (28)fRa Rayleigh number defined in Eq. (30)

t time (s)
T temperature (K)
T0 temperature of surroundings (K)
Th temperature of heat surface (K)
u, v, w velocities in x-, y- and z-directions (m/s)
u0 Modified flow speed (m/s)
W width of channel (m)
X dimensionless Cartesian coordinates in x-direction
x, y, z Cartesian coordinates (m)

Greek symbols
q density (kg/m3)
q0 surrounding density (kg/m3)
l viscosity (N s/m2)
c specific heat ratio
h dimensionless temperature
b thermal expansion coefficient (1/K)
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For resolving the viscous compressible fluid in a low speed flow
correctly, several related numerical methods had been proposed. In
an explicit numerical method, the time step due to CFL (Courant-
Friedrichs-Levy) condition is limited to an extremely small magni-
tude, and the convergent condition is difficult to be satisfied. In an
implicit numerical method, the stiff situation causes an inefficiency
of calculation to occur easily. For overcoming these defects men-
tioned above, Briley et al. [12] used a preconditioning method to
improve the efficiency of calculation for a low Mach number flow,
and adopted the implicit numerical method to resolve the conver-
gent problem of the Navier-Stokes equation. Turkel [13] developed
and applied a preconditioning matrix into problems of compress-
ible and incompressible flows. Choi and Merkel [14] investigated
convergent problems induced by the stiff situation and factoriza-
tion error when an implicit numerical method was used to solve
inviscid flow under a low Mach number flow. Moreover, the con-
vergent problem of the Mach number of 0.05 flow was successfully
resolved by using the precondition matrix. Afterward Choi and
Merkel [15] proposed an adaptable preconditioning matrix to solve
convergent problems of a viscous flow under a low Mach number
situation. Roe [16] developed averaged variables method for com-
pressible flow to solve discontinuous phenomenon occurring at a
cell interface. This method has been widely used in solving com-
pressible flow recently. Weiss and Smith [17] extended the re-
searches of Choi, applied the Roe scheme mentioned above with
preconditioning method into the solution method of three dimen-
sional Navier-Stokes equations, and added a dual time stepping to
resolve transient states of a low Mach number flow.

Also, in order to treat boundary conditions at the channel
aperture of the compressible flow properly, Rudy and Strikwerda
[18] proposed a concise non-reflecting boundary condition. Poin-
sot and Lele [11] developed the Navier-Stokes characteristics
boundary condition (NSCBC) to resolve problems induced by
boundary conditions of inlet, outlet and no slip on a wall. Polifke
et al. [19] proposed a non-reflecting boundary condition modifi-
cated from NSCBC with the linear relaxation term and appear
fully non-reflecting to plane acoustic waves with normal inci-
dence on the boundaries for all frequencies. The velocities of flow
fields investigated by both literatures mentioned above were
larger than the Mach number of 0.3. Khanafer and Vafai [9]
proposed a concise method to adopt effective boundary condi-
tions obtained by a previous computation under an extended
computational domain at the channel aperture. This method is
for incompressible flows exclusively, and no reflection occurred
at the channel aperture.

Relatively few researchers investigated natural convection
problems in which the flow is regarded as a compressible fluid
flow. Weiss and Smith [17] adopted the preconditioning method
to simulate a natural convection in a two dimensional concentric
circle. The temperatures of inner and outer walls were 2000 K
and 1000 K, respectively. The corresponding Rayleigh number
was about 4.7 � 104. The results showed that usage of the precon-
ditioning method could reduce the computational time by approx-
imately 60 times. Paillere et al. [20] used the preconditioning
method to calculate a natural convection in a two dimensional
enclosure. The results indicated that heat transfer rates obtained
by the small temperature difference were close to these obtained
by the Boussinesq assumption in spite of high temperatures of heat
sources. All the studies mentioned above were in enclosure situa-
tions and did not consider the boundary conditions at the aperture.
Yamamoto et al. [21] investigated a natural convection of a circular
cylinder set in an external flow. The preconditioning method was
used to calculate a compressible flow in a natural convection,
and the results had good agreement with experimental results. Be-
cause of the external flow, the reflection problems induced by the
reflection of acoustic waves at the aperture did not occur. As for a
high temperature difference natural convection of a three dimen-
sional horizontal channel which involves several complicated
problems of a low speed compressible fluid flow, reflections of
acoustic waves at apertures and unsuitability of the Boussinesq
assumption is seldom investigated.

Therefore, the aim of this study is to investigate a subject of nat-
ural convection in a three dimensional horizontal channel numer-
ically. In order to simulate the subject more realistically and
broaden industrial applications, the channel is of an open-ended
finite length and the temperature difference between the heat
sources of the high and low temperatures is over several hundred
degrees. The Boussinesq assumption is then no longer suitable for
this study. A compressible fluid flow is taken into consideration in-
stead of renunciation of the Boussinesq assumption. Since the
influence of dimension factors on the natural convection in a hor-
izontal channel is remarkable, and a model of three dimensional
channel is used, solution methods of Roe, preconditioning and dual
time stepping are combined to resolve the low compressible fluid
flow in a transient state. Besides, a modification of the method
proposed by Poinsot and Lele [11] is conducted to resolve the
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reflection problems of velocity and temperature occurring at the
apertures of the channel. For saving the computational time, the
calculation process is parallel. The results show that at the aperture
of the horizontal channel the directions of fluid flows in the upper
and lower regions are opposite which results in the reflection prob-
lems in the upper and lower regions induced by the large differ-
ence between the velocities of acoustic waves and fluids being
completely different. These two different reflections phenomena
occurring at the same aperture are conveniently named as a
dual-reflection phenomenon which has never been investigated
yet. And the results of transient developments of pressure, flow
and thermal fields are authenticated.
2. Physical model

A three dimensional horizontal channel which is open-ended
and has finite length is regarded as a physical model and indicated
in Fig. 1. The length, width and height are 11W, 2W and W, respec-
tively. A heat surface of which the length and width are 2W and
2W, respectively, is installed on the center of the xz-plane. The
temperature of the heat surface is Th which is higher than the tem-
perature T0 of the surroundings. Except the heat surface region, the
other regions are adiabatic. The gravity is downward and the tem-
perature and pressure of the surroundings are 298.0592 K (T0) and
101,300 Pa (P0), respectively.

Since the temperature Th of heat surface is higher, and a nat-
ural convection is produced in the channel. Ascending fluids
caused the natural convection to impinge the top surface of the
channel, and afterward the ascending fluids are divided into
two parts which separately turn the flow directions to both aper-
tures in the upper regions. In the meantime, cool fluids in the
surroundings are sucked and via both of the apertures flow into
the channel in the low regions to implement the ascending flu-
ids. As a result, at the aperture the reflection problems caused
by the large difference between the velocities of acoustic wave
and fluid in the upper and lower regions are completely differ-
ent. These two different reflections phenomena occur at the same
4.5W 2W

2W
W

y

xz

4.5W

b

a

Fig. 1. Physical model.
interface are conveniently named as a dual-reflection phenom-
enon.

For facilitating the analysis, the following assumptions are
made.

1. The fluid is an ideal gas and follows the state of equation.
2. Fluid flows are laminar flows.
3. On the wall velocities satisfy no slip condition.
4. Except the heat surface, the other surfaces are adiabatic.

The governing equations in which the parameters of viscosity
and compressibility of the fluid and gravity are considered simul-
taneously are shown in the following equations.

@U
@t
þ @F
@x
þ @G
@y
þ @H
@z
¼ S ð1Þ

P ¼ qRT ð2Þ

The contents of U, F, G, H and S are indicated as follows.

U ¼

q
qu

qv
qw

qE

0
BBBBBB@

1
CCCCCCA

F ¼

qu

qu2 þ P � sxx

quv � sxy

quw� sxz

qEuþ Pu� k @T
@x � usxx � vsxy �wsxz

0
BBBBBB@

1
CCCCCCA

G ¼

qv
qu� syx

qv2 þ P � syy

qvw� syz

qEv þ Pv � k @T
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0
BBBBBB@

1
CCCCCCA

H ¼

qw

qu� szx

qv � szy

qw2 þ P � szz

qEwþ Pw� k @T
@z � uszx � vszy �wszz

0
BBBBBB@

1
CCCCCCA

S ¼

0
0

�ðq� q0Þg
0

�ðq� q0Þgv

0
BBBBBB@

1
CCCCCCA

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð3Þ

The viscosity and thermal conductivity of the fluid are based upon
Sutherland’s law and shown as follows.

lðTÞ ¼ l0
T

T0

� �2
3 T0þ110

Tþ110

kðTÞ ¼ lðTÞcR
ðc�1ÞPr

9>=
>; ð4Þ

where q0 = 1.1842 kg/m3, g = 9.81 m/s2, l0 = 1.85 � 10�5 N s/m2,
T0 = 298.0592 K, c = 1.4, R = 287 J/kg/K and Pr = 0.72.
3. Numerical method

In a natural convection, a speed of compressible fluid flow is
much slower than that of an acoustic wave. The Roe method [16]
coordinating preconditioning methods are then adopted to resolve
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the governing equations shown in Eq. (1). To derive Eqs. (1) and (5)
can be obtained.

C
@Up

@s
þ @F
@x
þ @G
@y
þ @H
@z
¼ S ð5Þ

where C is a preconditioning matrix proposed by Weiss and Smith
[17] and Up is a primitive form of [P, u, v, w, T]t.

In Eq. (5) a third order Runge-Kutta method which can be easily
coded and paralleled is adopted to resolve the temporal term @Up

@s .
Besides, the method of dual time stepping is added to calculate

the transient state of the physical model. The derived equation is
shown in Eq. (6).

C
@Up

@s
þ @U
@t
þ @F
@x
þ @G
@y
þ @H
@z
¼ S ð6Þ

In the calculating processes of Eqs. (5) and (6), the contents of the
term of F are divided into two parts of inviscid term Finviscid and vis-
cous term Fviscous.

Finviscid¼

qu

qu2 þ P

quv
quw

qEuþ Pu

0
BBBBBB@

1
CCCCCCA ð7Þ

Fviscous ¼

0
�sxx

�sxy

�sxz

�k @T
@x � usxx � vsxy �wsxz

0
BBBBBB@

1
CCCCCCA ð8Þ

Utilize methods of the Roe [16] and preconditioning to calculate the
magnitude of Finviscid at the position of iþ 1

2

� �
between the cells for

low Mach number condition.

Finviscid;iþ1
2
¼ 1

2
ðFR þ FLÞ �

1
2

C�1Ap

�� ��DUP

n o
ð9Þ

where Ap ¼ @F
@Up

� �
is a flux jacobian.

A fourth order central difference is adopted to calculate Finviscid

@u
@x
¼ ui�2 � 8ui�1 þ 8uiþ1 � uiþ2

12Dx
þ oðDx4Þ ð10Þ

As for the boundary conditions at the apertures of the channel, in
order to avoid the flow in the channel being polluted by the reflec-
tions of acoustic waves mentioned above, the non-reflecting bound-
ary conditions are then necessarily used at the apertures of the
channel.

In a high speed compressible flow condition, the method of
LODI (local one dimensional inviscid relations) proposed by Poin-
sot and Lele [11] was suitably adopted for determining the non-
reflecting boundary conditions at the apertures of the channel.
However, a preconditioning matrix is not necessary in the above
method that causes the method to be not appropriately adopted
for determining the non-reflecting boundary conditions at the
apertures of the channel under a low speed compressible flow.
As a result, the modification of the method mentioned above is
necessary for resolving the non-reflection boundary conditions un-
der an extremely low speed compressible flow. The variations of
densities of fluids are small near the regions of the apertures of
the channel. The term of S indicated in Eq. (1) can be neglected.
Then a flow field near the regions of the apertures of the channel
can be approximately described by the following local one dimen-
sional Navier-Stokes equation.

C
@Up

@s
þ @F
@x
¼ 0 ð11Þ
To multiply C�1 on the left side of Eq. (11), @F
@x is transferred to be a

primitive form.

@Up

@s
þ C�1 @F

@x
¼ 0 ð12Þ

The term of C�1 @F
@x can be expressed as the following form further.

C�1 @F
@x
¼ C�1 @F

@Up

@Up

@x
¼ C�1Ap

@Up

@x
ð13Þ

Substitute Eq. (13) into Eq. (11), and obtain the following equation
based on the primitive form.

@Up

@s
þ C�1Ap

@Up

@x
¼ 0 ð14Þ

A similar transformation of the term of C-1Ap is executed to ob-
tain the characteristic velocities of the apertures of the channel.

C�1Ap ¼ KkK�1 ð15Þ

where K is a eigenvector, k are eigenvalues of the term of C�1Ap, as
well k are characteristic velocities at the apertures of the channel.
According to Dennis et al. [22], transform the orders of u (original
flow speed) and c (original acoustic wave speed) into the similar or-
ders of u0 (modified flow speed) and c0 (modified acoustic wave
speed), and the following equation is obtained.

k ¼

k1

k2

k3

k4

k5

0
BBBBBB@

1
CCCCCCA ¼

u

u

u

u0 þ c0

u0 � c0

0
BBBBBB@

1
CCCCCCA ð16Þ

where u0 ¼ ðHþ1Þu
2 ; c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðH�1Þ2þ4Hc2
p

2 and H � 100M2 according our
test.Let

L ¼ kK�1 @Up

@x
ð17Þ

The contents of the term of L are

L ¼

L1

L2

L3

L4

L5

0
BBBBBB@

1
CCCCCCA ¼

u @T
@x þ 1

qc
@P
@x � c @P

@x

� �
u @w

@x

u � @v
@x

� �
ðu0 þ c0Þ @P

@x � qðu0 � c0 � uÞ @u
@x

� 	
ðu0 � c0Þ @P

@x � qðu0 þ c0 � uÞ @u
@x

� 	

0
BBBBBB@

1
CCCCCCA ð18Þ

The physical meaning of the term of L is the magnitude of wave
amplitude with time variation.

Based on the characteristic velocities Eq. (16), the propagation
speeds of L1, L2, L3, L4 and L5 are u, u, u, u0 + c0 and u0 � c0, respec-
tively. Substitute Eq. (17) into Eqs. (14) and (19) can be obtained.

@Up

@s
þ KL ¼ 0 ð19Þ

Derive Eq. (19), the equations of pressure, velocities and tempera-
ture through the aperture of the channel are obtained, respectively.

@p
@s
þ 1

2c0
½L4ðu0 þ c0 � uÞ � L5ðu0 � c0 � uÞ� ¼ 0

@u
@s
þ 1

2qc0
ðL4 � L5Þ ¼ 0

@v
@s
� L3 ¼ 0

@w
@s þ L2 ¼ 0

@T
@s
þ L1 þ

1
q

c� 1
c

1
2c0
½L4ðu0 þ c0 � uÞ � L5ðu0 � c0 � uÞ� ¼ 0

ð20Þ
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The difference forms of Eq. (20) can be expressed as the following
forms.

pkþ1 ¼ pk � Ds
2qc0

L4ðu0 þ c0 � uÞ � L5ðu0 � c0 � uÞ½ �

ukþ1 ¼ uk � Ds
2qc0

ðL4 � L5Þ

vkþ1 ¼ vk þ L3Ds
wkþ1 ¼ wk � L2Ds

Tkþ1 ¼ Tk � L1Dsþ 1
q

cþ 1
c
ðpkþ1 � pkÞ

ð21Þ

where k is an iteration number in artificial time.
Traditionally, when an investigation of natural convection in a

vertical finite length channel is executed, a phenomenon of fluids
from the inside of a channel via an aperture discharged to sur-
roundings or fluids sucked from surroundings via an aperture flow-
ing into a channel is usually encountered. Shown in Fig. 2(a), the
magnitude of fluid velocity is larger than 0 and the direction of
fluid velocity is from the inside of the channel to the surroundings.
Under this situation, the directions of L1, L2, L3, and L4 are the same
as that of the fluid velocity, and the magnitudes of L1, L2, L3, and L4

can be obtained from Eq. (18). Due to the negative magnitude of
(u0 � c0), the direction of L5 is opposite to that of fluid velocity.
The pressure at the infinite is invariant, the magnitude of @p

@s is equal
to 0 and the first equation of Eq. (20) becomes Eq. (22).

1
2c0
½L4ðu0 þ c0 � uÞ � L5ðu0 � c0 � uÞ� ¼ 0 ð22Þ

Finally, the magnitude of L5 can be obtained from Eq. (22)

L5 ¼
ðu0 þ c0 � uÞ
ðu0 � c0 � uÞ L4 ð23Þ

Oppositely, shown in Fig. 2(b) when the direction of fluid velocity is
from the surroundings to the inside of the channel and the magni-
tude of fluid velocity is smaller than 0. The magnitude of L4 can be
obtained from Eq. (18) directly. Due to the existence of non-reflec-
tion condition at the aperture, the magnitudes of L1, L2, L3 are set to
be 0. The last one L5 can be calculated from Eq. (23).

However, when a study of natural convection in a horizontal fi-
nite length channel is conducted. At the aperture, fluids flow
streams from the inside of the channel to the surroundings are ob-
served in the upper region, and fluids flow streams from the sur-
roundings to the inside of the channel are observed in the lower
region. These behaviors are indicated in Fig. 3 and named as a
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Fig. 2. The orientations of L1, L2, L3, L4 and L5 at the aperture.
dual-reflection phenomenon. Usage of the methods mentioned
above, in the upper region the magnitudes of L1, L2, L3, and L4 can
be obtained from Eq. (18), and the magnitude of L5 can be obtained
from Eq. (23). In the lower region, because of non-reflection condi-
tion at the aperture the magnitudes of L1, L2 and L3 are equal to 0.
Since the magnitude of (u0 + c0) is still larger than 0, the magnitude
of L4 is obtained from Eq. (18) and is the same as that in the upper
region, subsequently the magnitude of L5 can be obtained from Eq.
(23). The region of demarcation which divides the channel into the
upper and lower regions is composed of fluids having zero velocity.

A procedure calculating the equations mentioned above is
briefly described as follows.

(1) Assign the initial conditions of the pressure, velocities and
temperatures in the channel.

(2) Use Eqs. (18) and (21) to calculate the velocities, pressure
and temperature at the aperture of the channel.

(3) Use MUSCL method to calculate Eq. (9), to obtain the magni-
tudes of FR, FL and DUP .

(4) Substitute the magnitude of DUP into Eq. (9) and use the Roe
method to calculate the magnitudes of inviscid terms of
Finviscid .

(5) Calculate the magnitudes of viscous terms and substitute in
Eq. (8).

(6) Use Runge-Kutta to obtain a new magnitude of Ukþ1
p .

(7) Under a steady state, examine the convergence of the itera-
tional computation of Ukþ1

p . Repeat the processes from (2)–
(6) until the convergent criteria are satisfied. The convergent
criteria of variables are /nþ1�/n

/nþ1 < 10�3, u = p, u, v, w, T

Under a transient state, calculate Eq. (6) and examine the con-
vergence of the iterational computation of the @Up

@s . When the con-
vergent condition is satisfied, the magnitude of Ukþ1

p will be
regarded as that of Up of the (n + 1)th time step and the process
proceeds to the next time step. In order to economize the con-
sumption of computing time, parallel computations are executed
by 8 processors.
4. Results and discussion

The working fluid is air and the Prandtl number is 0.72. Two
grid distributions are used to examine the adoptable grid distribu-
tion. The results of distributions of u, v and T parallel to the y-axis
at the position of x = 5.5W and z = W are shown in Fig. 4. The devi-
ations of both the results obtained by the two grid distributions are
slight, the uniform grid distribution of 220 � 40 � 40 is used.

According to Gray and Giorgini [10], in a natural convection
when the temperature difference of natural convection between



Fig. 4. Comparisons of velocities and temperature profiles along y-axis at the
position of x = 5.5W, z = W (Ra* = 104).
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two heat sources is smaller than 30 K, the results based on the
Boussinesq assumption are well consistent with experimental
results. In order to examine the suitability of this study under a
low temperature difference, the temperature difference of two
heat sources of 10 K is assigned and the computational method
developed by this study in which the Boussinesq assumption is
not yielded is used to investigate the same subject investigated
by Davis [23], Khanafer and Vafai [9] and Andreozzi et al. [24].
The same physical models of Davis [23], Khanafer and Vafai [9]
and Andreozzi et al. [24] are adopted, respectively. The definitions
of average Nusselt number Nu and Rayleigh number Ra are shown
as follows, respectively.

Nu ¼ 1
2W

Z
W

ðTh � TcÞ
@T
@y


 �
wall

dx ð24Þ

Ra ¼ Pr
gq2

0bðTh � TcÞW3

l2 ð25Þ

where W is the height of the channel and b is the thermal expansion
coefficient.

In Fig. 5, the isothermal lines of present results are compared
with Davis [23]. The model of Ra = 105 is a cavity with the differ-
ence of temperature between the two vertical walls and adiabatic
conditions in other two horizontal walls. The figures of isothermal
lines of both results are almost completely consistent. Besides, the
Numax, Numin and Nu of present results and Davis [23] are also tab-
ulated in Table 1. The results of Nusselt numbers of both results
also have good agreements. Base on the comparisons mentioned
above, the accuracy of present method is positive.

The results shown in Fig. 6 are the comparisons of the distribu-
tions of streamlines and isotherms of the present study and Khana-
fer and Vafai [9]. The model used is a two dimensional channel, and
the temperatures of upper and lower walls are constant, and the
Rayleigh number is 104. The region indicated in the figure is a right
half region. The boundary conditions on the aperture used in
Khanafer and Vafai [9] were obtained from a previous computation
with an extended boundary. The magnitudes of the gradient of
variables assigned to be zero are the boundary conditions on the
extended boundary when the previous computation with the ex-
tended boundary was executed. In this work, a non-reflection con-
dition on the aperture is yielded, and the results in the channel can
be resolved directly. Shown in the figures, in spite of the distribu-
tion of streamlines or isotherms, both the results have good agree-
ments. Comparisons of the average Nusselt numbers of the present
study and Khanafer and Vafai [9] are tabulated in Table 2. Due to
the differences of numerical methods and properties of fluids be-
tween the present study and Khanafer and Vafai [9], the deviations
of the magnitudes of average Nusselt numbers of the two studies
mentioned above are difficult to exempt. In natural convection
phenomena, the thermal situation on the lower heat wall is more
unstable than that on the upper heat wall, and the acquirement
of accurate average Nusselt number of the lower heat wall is more
difficult than that of the upper heat wall. Then the deviations of the
average Nusselt numbers of the lower side are usually larger than
those of the upper side.

Shown in Fig. 7, comparisons of the distributions of upper and
lower wall temperatures distributions of Andreozzi et al. [24]
and present study are indicated. The nondimensional temperature
is shown in the following equation.

h ¼ ðT � T0Þk
_qb

ð26Þ

where _q is a constant heat flux subject to the wall and b is the hor-
izontal channel gap.

A constant heat flux _q is separately added into the upper
and lower walls of a two dimensional channel. For the same
reason mentioned above, the deviations of the magnitudes of the



Fig. 5. Comparisons of isothermal line of the present results and results of Davis [23].

Table 1
Comparisons of the Numax, Numin and Nu of the present results and results of Davis
[23].

Results of Davis[23] Present results Error (%)

Nu 4.519 4.509 0.22
Numax 7.717 7.698 0.25
Numin 0.729 0.751 3.02
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temperatures between the two studies are existent. The maximum
deviation is about 10%, and the variation trends are consistent.

In Fig. 8, the variations of thermal contour, steamlines, pressure
contour and pressure differences with time are indicated for
Ra = 104 situation. The plane is selected at the central position of
the z-axis. The initial conditions of temperature and pressure in
the channel are the same as those of the surroundings. As the heat-
ing process starts, the temperature of the heat surface is raised to
401.0490 K and kept at this temperature.

Shown in Fig. 8(1), t = 0.0001 s by means of a heat condition
mode the temperatures of fluids above the heat surface rise first
and the densities of these fluids become small. Thus the volume
of these fluids is expanded and part of other fluids are pushed to
flow out of the channel. This phenomenon is shown in Fig. 8(1b).
The magnitude of the gray scale of pressure contour means the
pressure differences between the pressures of fluids in the channel
and the pressure of surroundings. The light fluids of which the den-
sities are small form a thin dark region in which the pressures are
relatively low shown in Fig. 8(1c). Due to the expansion of the light
fluids, the original fluids above the dark region are suppressed
which causes the pressures of original fluids to be raised and to
push neighboring fluids to flow to the aperture. In the Fig. 8(1d),
there are local pressure difference distributions of the four selected
positions of 0, 1.8, 3.6 and 5.5 along y-axis to be indicated. The
dashdotdot and solid lines mean the pressures of the surroundings
and fluids at the selected local position, respectively. The intervals
of the two lines indicate the pressure difference, and the scale of
interval is in right proportion to the magnitude of pressure differ-
ence. The maximum magnitudes are annotated only. On the right
side of the dashdotdot line means the pressures of fluids are larger
than that of surroundings and vice versa. In this situation, all the
pressures of fluids are larger than that of surroundings, then the
fluids in the channel flow to the surroundings exclusively.

In Fig. 8(2), the time t is equal to 0.001 s. In Fig. 8(2a), a natural
convection heat transfer starts to appear and affects the flow field
which results in the isothermal lines in the left half region shown
in the figure of thermal contour being distorted. Then a circulation
zone is found in the left half region of the channel and indicated in
Fig. 8(2b). The region near the heat surface in which the fluids ab-
sorb heat energy from the heat surface directly expands gradually
and suppresses the above region that leads the pressure in the
above region to be raised. This is shown in Fig. 8(2c). This behavior
causes some fluids to be discharged to the surroundings. Due to the
existence of circulation zone, the region in which the local pressure
differences are negative appears in the lower portion of left half
channel. In the right half channel, the fluids are still discharged
to the surroundings, then the magnitudes of local pressure differ-
ences in this region are positive and shown in Fig. 8(2d).

Accompanying with the increment of time, the phenomena
shown in Fig. 8(3) are similar to those shown in Fig. 8(2), and the
influence of natural convection on the flow field almost expands
to the whole region of the channel.

Shown in Fig. 8(4), the time t is equal to 0.01 s. The flow field
caused by the natural convection is almost fully developed in the
whole channel. In Fig. 8(4a), the variation of temperature distribu-
tion from the left to right sides of the channel is from the large to
small magnitudes, and the isothermal lines are distorted which is a
characteristic of convection phenomenon. Shown in Fig. 8(4b), a
drainage which is composed of the fluids flowing into the channel
from the surroundings in the low region of the aperture and vice
versa in the upper region of the aperture in place of the circulation
zone appearing in the figures mentioned above is observed. Above
the heat surface, the lowest and highest pressure regions which
mainly cause the fluid to flow into and out of the channel, respec-
tively, are observed and shown in Fig. 8(4c). At the aperture of
channel of Fig. 8(4d), the magnitudes of local pressure differences
are positive and negative in the half upper and lower regions,
respectively. This phenomenon occurring at the aperture is named
as a dual-reflection phenomenon.

In Fig. 9, the distribution of isothermal surfaces at a steady state
are indicated. The natural convection is fully developed in the
channel that causes the isothermal surfaces to be distorted.

In Fig. 10, the distributions of local Nusselt numbers along z-
direction at positions of x = W, and 0 are indicated, respectively.
The local Nusselt number Nu and Rayleigh number Ra are defined
as follows, respectively.

Nu ¼ W
k0ðTh � TcÞ

kðTÞ @T
@y


 �
wall

ð27Þ

Ra� ¼ Pr
gq2

0ðTh � TcÞW3

T0lðTÞ2
ð28Þ

where W is the height of the channel.



Fig. 6. Comparisons of the distributions of streamlines and isotherms of the present study and Khanafer and Vafai [9].

Table 2
Comparisons of the average Nusselt numbers of the present study and Khanafer and
Vafai [9].

Present study Khanafer and Vafai [9] Deviation (%)

Ra = 104

Nu (lower) 2.20 1.99 10.0
Nu (upper) 1.10 1.09 0.5

Present study Khanafer and Vafai [9] Percent dif. (%)
Ra = 105

Nu (lower) 3.50 3.15 11.2
Nu (upper) 2.69 2.90 7.2
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The position of center of the heat surface corresponds to x = 0,
and the edge of the heat surface corresponds to x = W. Cool fluids
contact with the heat surface at the position of x = W first, thus
the effect of heat transfer on the heat surface is the most apparent
at this position, and the temperatures of cool fluids are then raised.
Subsequently the heated fluids flow over the positions of x ¼ W

2 and
0. The Nusselt numbers at the position of x ¼ W
2 and 0 naturally de-

crease gradually. But the differences are slight between the posi-
tions of x ¼ W

2 and 0. Due to the edge effect, Nusselt numbers on
both sides are smaller than those at the center.

In Fig. 11, the distributions of local Nusselt numbers along x-
direction at positions of z = W, z ¼ W

2 and z ffi 0 are indicated,
respectively. Because of the edge effect of side wall mentioned ear-
lier, the distribution of local Nusselt numbers at the positions of
z ffi 0 is smaller than those at the positions of z = W and W

2 , but
the deviations among the three distributions are small.

Comparisons of the distributions of local Nusselt numbers on
the central heat surface (z = W) for different Rayleigh numbers in
which only the temperature differences are different are indicated
in Fig. 12. The larger temperature difference naturally achieves the
larger Nusselt number. However, the increasing rate of the Nusselt
number is not proportional to that of temperature difference.

Average Nusselt number Nu� and modified Rayleigh number fRa
are defined as follows, respectively



Fig. 7. Comparisons of the distributions of upper and lower wall temperatures at
steady state.

Fig. 8. (1) The variants of thermal contours, streamlines, pressure contour and
pressure difference distributions with time under Ra* = 104.

Fig. 8. (2) The variants of thermal contours, streamlines, pressure contour and
pressure difference distributions with time under Ra* = 104.

Fig. 8. (3) The variants of thermal contours, streamlines, pressure contour and
pressure difference distributions with time under Ra* = 104.
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Fig. 8. (4) The variants of thermal contours, streamlines, pressure contour and
pressure difference distributions with time under Ra* = 104.

Fig. 9. The distribution of isothermal surfaces at a steady state.

Fig. 10. The distributions of local Nusselt numbers along z-direction at positions of
x = W, x ¼ W

2 and x = 0.

Fig. 11. The distributions of local Nusselt numbers along x-direction at positions of
z = W, z ¼ W

2 and z ffi 0.
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fNu ¼ 1
A

Z Z ðW=2Þ
k0ðTh � TcÞ

kðTÞ @T
@y


 �
wall

dxdy ð29Þ
fRa ¼ Pr
gq2

0ðTh � TcÞ � ðW=2Þ3

T0lðTÞ2
ð30Þ

where A is the area of the heat surface and W/2 is the characteristic
length of the heat surface according to Bejan [25].

The average Nusselt numbers obtained from this study can be
expressed as a function of modified Rayleigh number and shown
in the following equation.
fNu ¼ 0:019113� ðfRaÞ0:3735 ð31Þ

The relationship between the average Nusselt number and modified
Rayleigh number presents an exponential form. This trend is similar
to those obtained by experimental works of Bejan [25] and Marto-
rell et al. [26] for natural convection in an infinite space.

5. Conclusions

A natural convection induced by high temperature difference in
a three dimensional horizontal channel is investigated without the
Boussinesq assumption. Solution methods of the Roe scheme, pre-
conditioning and dual time stepping are combined to resolve



Fig. 12. Comparisons of the local Nusselt numbers on the heat surface for different
Rayleigh numbers.
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governing equations and non-reflecting conditions are adopted at
the aperture. Several conclusions are summarized as follows.

1. Under a low temperature difference condition the results
obtained by the Boussinesq assumption and this work are well
consistent.

2. Under a high temperature difference condition in which the
Boussinesq assumption is not held, the results obtained by this
work are reasonable.

3. A dual-reflection phenomenon is observed at the aperture due
to the opposite directions of fluid flows in the upper and lower
regions of the aperture.

4. An average Nusselt number can be expressed as a function of
the Rayleigh number in an exponential form.
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