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Abstract In this paper, we propose a novel nonparametric regression model to generate
virtual humans from still images for the applications of next generation environments (NG).
This model automatically synthesizes deformed shapes of characters by using kernel
regression with elliptic radial basis functions (ERBFs) and locally weighted regression
(LOESS). Kernel regression with ERBFs is used for representing the deformed character
shapes and creating lively animated talking faces. For preserving patterns within the shapes,
LOESS is applied to fit the details with local control. The results show that our method
effectively simulates plausible movements for character animation, including body
movement simulation, novel views synthesis, and expressive facial animation synchronized
with input speech. Therefore, the proposed model is especially suitable for intelligent
multimedia applications in virtual humans generation.

Keywords Image deformation . Nonparametric regression . Elliptic radial basis functions .

Functional approximation . Locally weighted regression

1 Introduction

Deforming characters in a 2D image has received lots of interests. Besides, it is very useful
for advanced intelligent multimedia applications for next generation environments (NG)
utilization, such as character animation [21], real-time live performance [30], and enhancing
graphical interface [7]. Based on reanimating still pictures, it has become solvable. For
example, Chuang et al. [12] deformed pictures using stochastic motion textures. They
animated passive elements which are subject to natural forces like wind. Hornung et al. [20]
achieved the motion of photographed persons by projecting them to 3D motion data.
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In our work, we would take the idea of creating deformations directly in image space
one step further by making characters move and creating virtual humans. In practice, a
virtual human can be the spokesman or substitute in various services of the NG applications
domain, such as remote education, remote diagnosis, network gaming, virtual shopping,
digital photo frame, video conference, and so on. In this paper, we propose a nonparametric
regression model to generate virtual humans by animating characters from still images, as
shown in Fig. 1. Note that the model is trained to fit the shape and detail of the character
between two key-poses or moving templates while minimizing unnatural distortion. For
instance, animating the character in a comic could be carried out by the creation of a novel
view, as shown in Fig. 2. It shows two continuous frames in the original comic that can be
regarded as two different scenes and the synthesized frames from a single input frame.
Furthermore, the model can be applied to generate virtual humans, who are constructed by
different multimedia technologies, such as body movements, novel views synthesis, and
expressive facial animation with lips movements from speech.

For body movements and novel views synthesis in virtual humans generation, the
proposed nonparametric regression model is trained from two key-poses of a character.

Fig. 1 Virtual humans generation. a The picture of Mona Lisa. b Novel views synthesis. c The lively talking
face simulation
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Then the trained model is applied to synthesize the smooth transition between key-poses.
For facial animation, the trained nonparametric model is employed to generate
synchronized lip movements and drive the stochastic process for facial expression
movements by giving any speech data and the relative moving templates.

The proposed model is based on the prediction abilities of both kernel regression and
locally weighted regression [19, 28]. Kernel regression approximates the deformed shape of
character between two key-poses or moving templates by the prior use of a set of kernel
functions. Previously, researchers [48] presented image morphing techniques using radial
basis functions (RBFs) for the kernel. RBFs are based on spatially-limited circular Gaussian
distribution functions. In contrast, circular Gaussian is not an appropriate choice to fit
contours, which have noncircular structures, as shown in Fig. 3. Figure 3a is the original
character, Fig. 3b using the circular Gaussians needs five kernels to fit the contour of the
right arm of the character, and Fig. 3c using the arbitrary directional elliptic Gaussians can
fit the right arm and left leg with the same number of kernels. Using too many circular
Gaussians increases the learning and fitting time.

In this work, kernel regression using elliptic radial basis functions (ERBFs), specifically
elliptic Gaussians which provide less learning time, is applied for contours fitting during

Fig. 2 Novel views synthesis in a comic. a Two consecutive frames in a comic. b The frames synthesized
from a single frame. © Georges Remi (Hergé)
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shape deformation (shape fitting). Although ERBFs require more computation during
optimization, better quality is obtained with smaller number of basis functions.

Except the globally smooth shape fitting mentioned above, the local-fitting methodology
is also applied to preserve important features within the contour (that is filling in the color
and texture information obtained from the original character in the given image). For
example, the wood grain of the character in Fig. 3a. Locally weighted regression, or
LOESS, is used to preserve the features of details. LOESS is based on the minimized
weighted sum of squared residuals. It is a way of estimating the regression surface through
a multivariate smoothing procedure by fitting a function of independent variables locally.

In summary, this paper makes the following contributions:

& A novel approach for shape fitting based on kernel regression with ERBFs is proposed,
which is suited to the natural shape of characters such as the human’s head or body.

& By using a closed-form solution of LOESS, a new method for detail preserving is
presented, which maintains features invariant during deformations while minimizing
unnatural distortion.

& The proposed nonparametric model composed of kernel regression with ERBFs and
LOESS would be further applied to body movements and novel views synthesis.
Besides, it is further used to create lively animated talking faces and synthesize the
stylistic variations and mood of facial expression for virtual humans generation.

The rest of this paper is organized as follows. Section 2 presents related works. Section 3
then summarizes the virtual humans generation process. Next, Section 4 introduces the
process of character extraction. Section 5 describes the nonparametric regression model for
virtual humans generation. The results are shown in Section 6. Conclusions are finally drawn
in Section 7, along with recommendations for future research. Additionally, Appendix 1
describes hyper radial basis functions (HRBFs) for the inference of ERBFs in more detail.

2 Related work

Various techniques have been applied to animate characters for virtual humans generation
in image morphing, image interpolation, view interpolation, shape deformation, and viseme
synthesis.

Fig. 3 Comparison of the number of basis functions using Gaussians. a The original image. b Using RBFs
to fit right arm with five kernels. c Using ERBFs to fit right arm and left leg with the same number of kernels
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Image morphing In image morphing, several studies [18, 33, 48] referred to as shape
blending have been conducted. For example, Sederberg and Greenwood [38] employed an
interpolation scheme that can interpolate the length of edges and angles between two
keyframes. Besides, RBFs have also been used for image morphing. RBF is a weighted
sum of the translation of a radially symmetric basic function augmented by a polynomial
term. It is suitable for fitting smooth functions and is used to warp facial expressions and
animate images or drawings [2, 25, 36].

In contrast, circular Gaussian is not an appropriate choice to fit noncircular structures. In
this paper, we adopt ERBFs to fit contours of characters instead of RBFs. ERBF has the
advantage of RBF-like smoothness and is applicable to more general shapes than RBF.
Computer graphics researchers may be unfamiliar with ERBFs. Nonlinear approximation of
functions in certain general spaces with ERBF networks (referred to as elliptic basis
function networks in [31]) was proposed. Furthermore, a volumetric approximation and
visualization system was developed with ellipsoidal Gaussian functions for a 3D volume
(referred to as ellipsoidal basis functions in [22]).

Image interpolation Optical flow techniques [17, 23, 24, 34, 42, 43, 49] can be widely
adopted for image interpolation. Baker et al. [3] created a collection of optical flow datasets
with ground truth. They measured the flow accuracy and the interpolation quality of these
optical flow algorithms adopted for image interpolation. While the primary focus of the
optical flow algorithms was on evaluating the flow itself. Ghosting and blurring artifacts were
visible in their interpolated images even though there were minor errors in the flows. Mahajan
et al. [26] proposed an inverse optical flow method. They traced out the path of each pixel
between two given images. Then the pixel in the interpolated frame was obtained by moving
gradients along the corresponding path and using Poisson reconstruction. Note that they need
to determine the flow of each pixel for constructing the path framework. Since these optical
flow techniques are based on the disparity of two given images, most of them can only handle
two similar images (the disparity or the motion between two images is limited).

View interpolation Besides, several approaches [11, 16, 39, 44] for view interpolation can
be applied to generate virtual humans. Seitz and Dyer [39] proposed a method known as
view morphing. The input image was prewarped with the image points through the
fundamental matrix computed by computer vision or predefined. Then images were
transformed onto the same plane such that their scan lines were aligned. Two views were
then morphed, and the interpolated images were postwarped with the user-specified
parameters to achieve better morphing quality. However, the quality depends on the number
of line correspondences made by users.

Shape deformation Recently, Skeleton-based techniques [15, 50] have been used to deform
the shapes by manipulating the space in which they are embedded. They are very efficient
in computation and easy to be implemented. However, they do not provide convenient or
meaningful interaction tools for the user. Note that the weight tuning for rigging is a painful
process for users. Besides, shape matching techniques have been used to shape
deformation. Wang et al. [46] utilized uniform grids for 2D shapes and maintained the
rigidity of each square in the grid by using shape matching during deformations. They
implemented pure rotational transformation for each square. Note that the global area
cannot be preserved. Botsch and Sorkine [5] deformed a 2D shape by discretizing the shape
into finite elements. However, the computation time is dominated by the complexity of the
discretization, and not by the intrinsic complexity of the shape itself.
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As mentioned previously, Hornung et al. [20] accomplished the motion of photographed
persons by projecting them to 3D motion data. However, they stipulated extra 3D
information, including 3D model construction or a 3D motion database, thus increasing the
overloads which do not belong to shape deformation. Although they can be applied to
animate 2D images of arbitrary characters, their system does not work for motions where
the character changes its moving direction, or where it turns its head. Furthermore, Alexa et
al. [1] considered that the shape deformation of an image should be as rigid as possible.
Such deformations would minimize the amount of local scaling and shearing. Igarashi et al.
[21] triangulated the input image and minimized the distortion of these triangles in the
deformation process by solving a linear system of equations. Schaefer et al. [37] proposed a
rigid transformation method by moving least squares. They focused on specifying
deformation by using user-specified handles. In order to deform the image, users should
set the next pose by manipulating control vertices. Then the method deformed the entire
image plane. Since it ignored the geometry of the shape, unnatural distortions or serious
artifacts would be generated when the range of controlling handles were exceeded because
the locally influencing extent using moving least squares is limited. Weber et al. [47]
generalized the concept of barycentric coordinates and provided a few examples of known
coordinates which can be used for planar shape deformations. Note that the inputs of these
works are images and the outputs are also the edited and deformed images. In comparison,
our input is just an image and the output is the whole sequence of interpolated frames.

Viseme synthesis There is a strong correlation between lip movements and speech [27], and
a great deal of studies have been conducted on facial animation involve lip-synching. There
have been multiple attempts at generating an animated face to match some given speech
realistically [4, 6, 13, 14]. Incorporating speech therefore seems crucial to the generation of
true-to-life animated faces. Our synthetic faces of virtual humans are also driven by input
speech. Furthermore, we reproduce small variations in facial expressions that convey the
affective states, mood, and personality of the virtual human. Moreover, the strong
interrelation between facial gestures and prosodic features has been reported in the speech
processing literatures [8, 9]. However, the interrelation between facial gestures and
individual phonemes is not obvious. Our main focus is to synthesize facial animation
possibly driven by analyzing phonemes from input speech.

3 Algorithm overview

In Fig. 4, the outline reflects the structure of our proposed method for virtual humans
generation. Considering Fig. 4, we briefly describe our method in the following paragraphs.

1. Character and features extraction: In order to reduce the effects of the background
upon deformations, we first extract characters from the input image. We use level-set-
based GrabCut to extract characters and features, as described in Section 4. Similar
regions are extracted by the level set method. The bounding box of all regions is then
used by GrabCut [35]. The boundaries of regions corresponding to the matte produced
automatically are further applied to obtain the final character matte. The foreground and
background are separated successfully. Besides, the facial features are extracted
simultaneously by the level set method. As shown in Fig. 4, Mona Lisa is extracted,
which is described by the similar parts found by level-set-based GrabCut, and the
contours are applied to build the nonparametric regression model for shape fitting and
detail preserving.
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2. Nonparametric regression model: We propose a nonparametric regression model to
fit the movements of virtual humans. Movement fitting can be divided into two models:
shape fitting and detail preserving. In the shape fitting, the correspondence in training
data set is constructed first. Kernel regression with ERBFs is employed to train the first
model to fit the contour of deformed shape, as described in Section 5.3. In the detail
preserving step, the second model is trained by LOESS, as described in Section 5.5.
Then we would fit the details of deformed shape. LOESS is suitable for detail
preserving in accordance with the previously fitted contours.

3. Training data: For model learning, according to different multimedia applications,
the nonparametric regression model is trained from different training data sets. As
mentioned before, the model is trained from two key-poses of a character for
body movements and novel views synthesis. To generate facial animation, the
training data set consists of two extreme templates in moving templates V for
visemes synthesis, which are the neutral mouth shape and the mouth shape with

Fig. 4 The overview of virtual humans generation with the picture of Mona Lisa
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vowel /o/, and two emotional states in moving templates D for facial expression
simulation, as described in Section 5.6. The moving templates are the base target
positions of the facial features to be animated. The positions of mouth shape are
recorded in moving templates V. Moving templates D focuses on the positions of all
facial features, as shown in Fig. 4.

4. Body movements and novel views synthesis: After model learning, we would fit
the movements of virtual humans. Given two key-poses of a character, we would
deform the shape of the character to synthesize body movements by using the
nonparametric model trained from the key-poses. Moreover, we could apply one
key-pose and its reverse to train the model for generating novel views of the
character.

5. Viseme segmentation: In viseme synthesis, the goal is to model the correspondence
between facial motion and speech. Viseme segmentation, which means to determine all
visemes and their durations, is done from the speech data. Note that it is to align
phoneme labels to the audio stream, and use this information to label the corresponding
lips movement, as described in Section 5.6.

6. Expressive face with speech animation: Given moving templates D, we can use the
trained nonparametric regression model to synthesize facial expression of any
emotional state in moving templates D. In addition, we collect moving templates V
and speech data, whereas the speech data is the voice data. After viseme segmentation,
we would convert to the corresponding mouth shape and synthesize speech animation
by using the trained nonparametric regression model.

4 Character and features extraction

The level set method, proposed by Osher and Sethian [40, 41], is an approach for
approximating the dynamics of moving curves and surfaces. Chan [10] developed the
level set method to detect objects in a given image. We adopt his method to extract
regions with a similar color distribution in an image. Note that we choose HSV color
space, it is not only close to the people understanding of colors, but also is regarded as
the best option in judgment on the color changes. It consists of three components,
namely representatives of hue H (hue), saturation S (saturation), and brightness V
(value). We introduce the concept of color gradient information of images, instead of
using gray gradient to update the curve evolution function of the level set method.
Furthermore, these regions representing the facial features of a character are found
simultaneously.

After feature extraction, GrabCut is then applied to separate foreground (characters
including humans) and background. However, it requires an initial trimap constructed by
users which represents the seeds of foreground and background in GrabCut. We
construct a bounding box of all these regions extracted by using the level set method.
Then we use the bounding box for GrabCut instead of the initial trimap. Note that the
extracted regions correspond to the regions of a character matte with the similar color
distribution. The pixels inside the contours of the regions are considered the foreground
distribution replacing users’ refinement in GrabCut. Subsequently, the entire energy
minimization process would be performed again with the updated foreground
distribution. After the iterative process is completed, the character matte is extracted
successfully.
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Note that we choose HSV color space. Due to the hue, saturation, and brightness of the
three components to determine changes in color, the level set method with color gradient
enrich the way only use gray gradient to judge whether at the border. Since joining the color
factor, the character and feature extraction is robust for the images, which the gray level of
the background is close to the gray level of the foreground. The final character and features
matte is shown in Fig. 4.

5 Virtual humans generation

After extracting characters in two key-poses or features in moving templates, for virtual
humans generation, we train a statistical model by using nonparametric regression and
specific training data sets. Note that the model consists of two phases: kernel regression
with ERBFs trained for shape fitting and LOESS trained for detail fitting. Then the trained
model is applied to generate a virtual human by deforming the shape of character to
synthesize body movements, a novel view, or expressive face with speech animation. First,
we focus on the nonparametric regression model trained from two key-poses for body
movements and novel views synthesis. We introduce ERBFs in Section 5.1. Then, in
Section 5.2, an initial solution to regression parameters is obtained. We discuss the kernel
regression model with ERBFs trained to fit the character’s deformed shape in Section 5.3.
After synthesizing the contours of the character’s deformed shape, LOESS is applied to
preserve the details or features of characters (that is filling in the color and texture
information obtained from the original character in the given image). LOESS is described
in Section 5.4. In Section 5.5, the detail is preserved within the deformed shape by using
LOESS. Then body movements and novel views are synthesized. Besides, we further focus
on the face of the character and create an animated talking or expressive face by using the
model trained by moving templates, as described in Section 5.6.

5.1 Elliptic radial basis functions

For body movements and novel views synthesis, the nonparametric regression model
with kernel regression is trained for the prediction of deformed character shape. Because
the initial regions used to predict deformations between two key-poses are achieved
using the level set method, the distribution of data values (pixels) in each region is
assumed to be normal. RBFs are chosen to fit a smooth surface. However, RBF, which is
a circularly shaped basis function, has a limitation in fitting long, high-gradient shapes
such as cylindrical shapes. The radius might reach the shortest boundary of the area and
might require numerous small RBFs to fit one long shape, which would be matched to
the shape of the character such as the body or head of the human. Therefore, we use
ERBFs instead of RBFs.

Note that there are two kinds of ERBFs: axis-aligned and arbitrary directional ERBFs. A
comparison of these two basis functions is shown in Fig. 5. This figure shows a long
diagonal data distribution (pixels along contours) and the influences of the two basis
functions are drawn overlaid on the data. The data is approximated by two basis functions:
axis aligned ERBF in Fig. 5a and arbitrary directional ERBF in Fig. 5b. Note that the major
axis of the ellipse with arbitrary directional ERBFs is aligned along the contour of the
character which is a long diagonal data distribution (gray region). For achieving more
accurate quality with smaller number of basis functions, we train the kernel regression
model with arbitrary directional ERBFs.
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Let u!¼ x; yð Þ be a coordinate vector and v!¼ mx;my

� �
be a center vector of an

elliptic Gaussian. An arbitrary directional ERBF can be represented in a matrix form as
follows:

k u!; v!� � ¼ exp � u!x � v!x

� �T
Aqx;ax u!x � v!x

� �
2s2

x

� u!y � v!y

� �T
Aqy ;ay u!y � v!y

� �
2s2

y

( )
;

u!¼ u!x þ u!y ¼ x 0½ �T þ 0 y½ �T ;
v!¼ v!x þ v!y ¼ mx 0½ �T þ 0 my

h iT
;

ð1Þ

Aqi;ai ¼
cos qi=ai sin qi=ai
�ai sin qi ai cos qi

" #
; for i 2 x; yf g; ð2Þ

where s2
i for i ∈ {x, y} is the covariance of Gaussian along i-axis. The orientation θi (the

angle between the major axis of ellipse and i-axis) and the aspect ratio a2i are used to
transfer to an arbitrary directional ERBF, as shown in Fig. 6. The transformation matrix
Aqi;ai , which contains a rotation and scaling component, is applied for alignment along the

Fig. 5 Comparison of ERBFs. a Axis aligned ERBF. b Arbitrary directional ERBF. The influence range of
each basis function is shown as blue arrows and black curve

Fig. 6 Schematic diagram of an elliptic Gaussian basis function (arbitrary directional ERBF)
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data distribution. In our work, the major axis of ellipse is aligned along the contour of the
character, as shown in Fig. 5b. For the mathematical details of (1), it can be inferred from
hyper radial basis functions [19, 45]. Please refer to Appendix 1.

5.2 The determination of initial values

The initial guesses are important for further optimization convergence in model learning.
Before setting the initial value of center and covariance, the correspondence with regard to
feature alignment should be done. First we create a window and use it to compute the
curvature along each region boundary in the face. Note that these regions in the face are
obtained by using the level set method. We choose the top five curvatures from the window
interiors and sample points along these contours. The five bounding boxes of these sets of
sample points are the feature blocks shown in Fig. 7a and b. The structure of these feature
blocks (that is the order of the feature blocks) is constructed to maintain the spatial
relationship among these features, as shown in Fig. 7c. Note that the structure is similar to
the tree structure. There are no the root node and the leaf node in our work. We only use the
link between two nodes (feature blocks) to record the spatial relationship or the order of two
nodes. Subsequently, Tchebichef moments (TMs) [29] of these blocks are used to determine
the correspondence with the spatial constraints of the other key-pose, which is obtained by
reversing the original input image, as shown in Fig. 7d and e.

TMs are translation, scale, and rotation invariant functions and useful for image retrieval
and pattern recognition. For each feature block, we compute TMs of the block and compare
with the other key-pose by using a window with the same size of the block. Since the
minimal difference is found, the correspondence can be obtained. Moreover, the hard
constraint is used to refine the correspondences found by TMs. According to the spatial
relationship of the feature blocks, some correspondences are interchanged. For example, the
correspondences of right eye and left eye found by TMs are interchanged. The
correspondences based on the structure of the spatial relationship are constructed.

Owing to predicting the contours of deformed character by the nonparametric regression
model, we sample the contours and obtain the correspondences shown in Fig. 7f and g as
red dots by using TMs. The contour samples, feature blocks mentioned above, and their
correspondences are defined as n pairs of anchor points in the space U ¼
u!1; u

!0

1; . . . ; u
!

n; u
!0

n

� �
for the training stage. K-means clustering is used to set the

starting center values to the means of the training anchor points. In addition, the covariance
for each k-means group shown in Fig. 7f as the block is computed.

Fig. 7 Correspondences and initial value determination. a Top five features are selected. b The structure is
constructed from feature blocks. c The spatial relation is obtained from first key-pose. d e The
correspondences in the other key-pose are extracted based on the structure of spatial relationship. f g The
samples and correspondences are shown as red dots, and k-means clustering is employed to determine initial
value of regression parameters
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5.3 Kernel regression with ERBFs trained for shape fitting

Given n pairs of anchor points and m means of these points we use arbitrary directional
ERBFs to predict the contours by interpolating a smooth function. The resulting ERBF
interpolating function is defined as a transformation function F : <2 ! <. For m pairs of
anchor points in input space U, F contains the radial part R and the affine part P as follows:

F ~uð Þ ¼ R ~uð Þ þ P ~uð Þ; ð3Þ

R ~uð Þ ¼
Xm
i¼1

aik ~u;~við Þ; ð4Þ

P ~uð Þ ¼ M~uþ "; ð5Þ
where αi is the corresponding weight and F(.) is the displacement of either the x-coordinate
or the y-coordinate between the correspondences (the given m pairs of anchor points). P(.)
is a 2D affine transformation, where M is a 2×2 real matrix and ε is the error term. It can be
computed according to the correspondences of anchor points in feature blocks and
determined by a least-squares approximation procedure. After the affine component has
been computed, the radial component satisfies the following equation:

R ~uð Þ ¼ F ~uð Þ � P ~uð Þ: ð6Þ

The estimated weight bai is determined by solving the linear system.

ba1; . . . ; bam

¼ arg min
a1...am

Xn
j¼1

Xm
i¼1

aik u!j; v
!

i

� �� F u!j

� �� P u!j

� �� ������
�����
2

: ð7Þ

This can be solved by the least-squares normal equations to minimize the sum of the
square difference in the matrix form:

A ¼ KTK
� ��1

KT F ~uð Þ � P ~uð Þð Þ; ð8Þ
where A is the matrix form of the vector αi, K is the matrix form of the vector k u!; v!� �

,
and F u!� �� P u!� �� �

is the matrix form of the vector F u!� �� P u!� �� �
.

After the weights ba1; . . . ; bamð Þ are computed in the initial loop, we can compute the
residual for nonlinear optimization. Since residuals are recomputed, the residuals update
these parameters in the next iteration, which are centers, covariances, and weights, with a
gradient descent. Optimization convergence is achieved when the residual is sufficiently
small. The whole process is converged completely soon after in several iterative loops.
Then the kernel regression model with ERBFs is trained. Note that we can use the model to
fit the complete contours of the deformed shape. We can make predictions of the
displacement for each contour point using Equation (3). Furthermore, we use Catmull-Rom
splines to connect new positions of the contour points. For each in-between frame in
temporal domain, the contours of the deformed shape are synthesized by the model.
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5.4 Locally weighted regression

After synthesizing the contours of the character’s deformed shape, a local-fitting
methodology called LOESS is applied to preserve the details or features of characters
(that is filling in the color and texture information obtained from the original character in
the given image). Like kernel regression, LOESS [28] is a procedure for fitting a regression
surface to data through multivariate smoothing. LOESS uses the data from the
neighborhood around a specific location. In other words, LOESS performs a linear
regression on points in the data set, weighted by a kernel centered at that pre-defined
location. It is much more strongly influenced by the data points that lie close to the location
pre-defined according to some scaled Euclidean distance metric. This is achieved by
weighting each data point according to its distance to the pre-defined location: a point very
close to it is given a weight of one and a point far away is given a weight of zero.

Note that the shape of the kernel is a design parameter for which many possible choices
exist. The original LOESS uses the tri-cube weighting function. Nonetheless, we have used
the Gaussian kernel to estimate the weights in the range of unit circle, as shown in Fig. 8b.
Let x0 be the specific location (red dot), which would be filled color or texture information.
LOESS performs a linear regression on the sampled contour points weighted by a kernel
centered at x0. Given n pairs of points sampled along the contour (purple dots) of the
character in the input image and the corresponding new locations of these points, the weight
of the i-th sampled contour point xi with Gaussian kernel is

wi x0ð Þ ¼ w xi � x0ð Þ ¼ exp �s xi � x0ð Þk k2
� �

; ð9Þ

where s ¼ 1
�
2k2 and n ¼Pi wi x0ð Þ for n data points. s is a smoothing parameter that

determines how quickly weights decline in value as one moves away from x0, k is the
kernel width or bandwidth.

5.5 Detail preserving with LOESS

In addition to shape fitting for the whole animation process, the details from the character
interiors have to be preserved by filling in the color and texture information obtained from
the original character in the given image. To implement detail preserving, we sample the
original image with a uniform grid (50×50), as shown in Fig. 8a. Given a grid point x0, its

Fig. 8 LOESS analysis. a Original image with a uniform grid. b The zoom-in view of the image. LOESS
with Gaussian kernel is applied to estimate the weights
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color or texture information would be controlled by LOESS. Let xi ¼ xi;x; xi;y
� �

be the i-th
point sampled along the contours of the character in the given image, as shown in Fig. 8b.
Let yi ¼ yi;x; yi;y

� �
be the measurements of the dependent variables representing the new

position of the sample point xi in a synthesized frame in temporal domain.
Suppose that the target coordinate byi is estimated by an estimated local multivariate

polynomial as follows:

byi ¼ b1t1 xið Þ þ b2t2 xið Þ þ . . .þ bMtM xið Þ; ð10Þ
where tj(.) is a function that produces the j-th term in the polynomial, and b ¼ b1; . . . ; bMð Þ
is a vector of parameters to be estimated. In our transformation model, we have t1 xið Þ ¼ 1
for β1 which is a translation coefficient and t2 xið Þ ¼ xi for β2 which is a rotation coefficient.
(10) can be written for matrix manipulation, which can be easily extended to datasets with
many inputs:

byi ¼ bT t xið Þ; ð11Þ
where t xið Þ ¼ t1 xið Þ; t2 xið Þ; . . . ; tM xið Þð Þ is the vector of the polynomial terms. Given n pairs
of (xi, yi), the general way to estimate bb is by minimizing

bb ¼ argmin
b

Xn
i¼1

wi x0ð Þ2 yi � bT ti
� �2

; ð12Þ

where ti ¼ t xið Þ and wi(.) is defined in (9). The minimization can be obtained by the least-
squares normal equations. Then target position byj of the new sample xj in details within the
contours can be approximated from (11) or directly from the closed-form solution as
follows. For brevity, we drop the argument x0 for wi(x0) and denote the estimated means
and covariances in the following manner:

mx ¼
P

i wixi
n

; ð13Þ

s2
x ¼

P
i wi xi � mxð Þ2

n
; ð14Þ

sxy ¼
P

i wi xi � mxð Þ yi � my

� �
n

; ð15Þ

my ¼
P

i wiyi
n

: ð16Þ

Then the estimated target coordinate byj of the new sample xj can be computed as
follows:

byj ¼ my þ
sxy

s2
x

xj � mx

� �
: ð17Þ

Therefore, we can use (17) to find the new location of the grid point x0 and obtain the
pixel values for filling in the color and texture information. In practice, we find the new
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location of each vertex in the grid (each grid point). Then we fill the resulting quad using
bilinear interpolation. Note that we would reconstruct the details within the contours fitted
with ERBFs via a simple closed-form solution. After shape fitting and detail preserving,
body movement or a novel view synthesis is carried out. In order to maintain the 3D effect
of the new view, it is sometimes combined with backward deformation by using color
blending.

5.6 Viseme synthesis with expressive face

For viseme synthesis, viseme segmentation of the speech data is performed to determine all
visemes and their durations. First of all, we employ a Hidden Markov Model (HMM [32])
speech recognizer, which is the high-precision speech recognition software in noisy
environments, to analyze the given speech data. In practice, HMM speech recognizer is
used to obtain the phoneme segmentations called phoneme samples, as shown in Fig. 9.
Besides, we design fifteen templates in moving templates V for visemes synthesis, which
are fourteen common mouth shapes with their relative visemes and a neutral mouth shape
for all other visemes, as shown in Fig. 4. The templates in moving templates V are
employed to record the positions of anchor points sampled on the contour of the lips. These
anchor points are obtained from the extracted features found by using the level set method,
as mentioned before. Then we construct a phoneme-viseme mapping table by using a
simple table lookup method [51] to find the relative moving template (viseme) of a
phoneme sample in moving templates V directly, as shown in Fig. 9. Table 1 shows the
conversion from the phoneme to the mouth shape. For two continuous phoneme samples
with the same neutral mouth shapes, one of the samples is redefined as the mouth shape
with vowel /o/.

In addition, we collect the moving templates D for facial expression simulation, which
consist of a neutral expression and several common expressions, such as happy, angry, sad,
fear, surprise, and wink, as shown in Fig. 4. The templates in moving templates D are
employed to record the positions of anchor points sampled and grouped from the contours
of the extracted features, such as facial shape, eyebrows, eyes, nose, and lips, as shown in
Fig. 10. Given moving templates D, moving templates V with their relative visemes, and
the input phoneme samples, we may create expressive lip-synch animation.

Now, the nonparametric regression model consisting of kernel regression with ERBFs
and LOESS is trained, as mentioned in Section 5.3 and Section 5.5. In the shape fitting
stage, the kernel regression model with ERBFs is trained. For viseme synthesis, we would
train the model with the training data, that is, n pairs of anchor points recorded in two
extreme moving templates which are the neutral mouth shape and the mouth shape with
vowel /o/ in V. Then the trained model is applied to fit the variations of mouth shape

Fig. 9 Viseme segmentation of the given speech data
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between arbitrary two visemes of the phoneme samples using the corresponding moving
templates in V for lip-synch animation generation. For facial expression simulation, note
that we would train the model with a different training data, that is, n pairs of anchor points
recorded in two moving templates which are the neutral expression and the specific
emotional state in D. Then the trained model is applied to fit the movements of facial
features between these two emotional states.

Fig. 10 Groupings of facial shape and features labeled as anchor points and relative curves

Table 1 Conversion table from phoneme to mouth shape and the corresponding phonetic alphabet

Mouth shape (Viseme) No. Phoneme samples Phonetic alphabet

1 AA, AE, AX, HH, SIL, and Y /a/, /æ/, /ə/, /h/, /sil/, and /j/

2 B, M, and P /b/, /m/, and /p/

3 CH, J, and SH /t /, /d /, and / /

4 OO, OY, W, and UH /u/, / /, /w/, and /U/

5 AY, EY, and ER /

6 F and V /f/ and /v/

7 IH and IY / / and /i/

8 G and K /g/ and /k/

9 N and NG /n/, and / /

10 OH /o/

11 R /r/

12 S, TS, and Z /s/, /ts/, and /z/

13 D, L, and T /d/, /l/, and /t/

14 TH / /
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Next, we would find the positions of anchor points for facial features in the target
expressive face composed of specific emotion and visemes before the model with LOESS is
trained for detail preserving. Actually, we would like to identify facial expression simulation
independently of the content (utterance of sentences and the corresponding lip movements).
The target animated expressive face with lip-synch FE can be represented as follows:

FE ¼ P N þ Fnl þ Flð Þ ¼ P N þ
X
i

Di þ gDl þ 1� gð ÞL
 !

; ð18Þ

where P(.) is a 2D rigid transformation of the head movements. The head movements are
specified by users. N is a neutral expression. Fl (lips) and Fnl (facial features except lips) are
the movements of facial features. Note that Fl and Fnl are displacements from the neutral
expression. So N þ Fnl þ Fl represents an individual facial expression in a certain
emotional state and viseme.

Instead of using Fl and Fnl, Dl is applied for the detailed movements of lips in a specific
emotional state, and Di for each i represents an individual facial feature except lips. Note
that five non-overlapping features are identified for a specific emotional state, such as left
eyebrow, right eyebrow, left eye, right eye, and nose. Dl and Di are obtained through the
fitted movements of facial features. Besides, L is lip movement. L is obtained through the
fitted variations of mouth shape. For the final mouth shape, a blend weight γ is considered
to generate lip synchronization.

After finding the positions of facial features in the target expressive face, the model with
LOESS is trained by these facial features. The trained model is employed to preserve details
within the target expressive face. For example, after the mouth shape is obtained, the mouth
cavity, which is the region between the upper lip and lower lip, is filled in the color and
texture information obtained from the original character in the given image by using the
trained model. Note that we use the color and texture information inside the mouth of the
character to make the virtual human appear realistic while talking. Thus the virtual human
with a lively animated talking face is created.

6 Results

In the shape fitting stage, the number of basis functions of all the examples fitting the
contours is decided by residual analysis. The default setting is eighteen basis functions with
better fitting results. Moreover, we apply only our ERBF model on the top five regions in
contours to align the significant features in two key-poses or moving templates instead of
the entire character because the prediction of unimportant features leads to redundancy.

The proposed nonparametric model was implemented on an Intel Pentium M 1.5 GHz
processor that allows efficient generation of virtual humans. The complete generation
process consists of two independent steps: shape fitting and detail preserving. Table 2 lists
the resolutions and executions for the figures shown. Execution time was measured in each
step. After training the proposed model, it took us only one minute to generate the 20 sec
virtual human animation.

The synthesized results of body movements are shown in Figs. 11 and 17. Fig. 11a
shows the original image of a cat representing one key-pose. Another key-pose is shown in
Fig. 11e. The two key-poses are employed to train the proposed nonparametric regression
model consisting of kernel regression with ERBFs and LOESS. Then body movements are
fitting from the model, as shown in Fig. 11b, c, and d. Besides, Fig. 17a shows one key-
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pose of a human-like object. Another key-pose is the reverse of Fig. 17a. Body movements
of the object are synthesized and shown in Fig. 17d. Note that the pattern of fur in Fig. 11
and the pattern of wood grain in Fig. 17 are preserved with LOESS.

Our experiments were also performed on digitized images obtained from “The
Adventures of TinTin: The Shooting Star” which was originally produced by Georges
Remi (Hergé). The results are presented in Figs. 2 and 12. They show different frames in
the original comic, several synthesized frames of character’s motion, and the zoom-in
views. They are only head movement. A user specification exists by which the head and
body can be segmented. For fitting the contours of the head component, the second key-
pose involves reversing the contours of the head component and concatenating with the
other contours. A novel view would then be synthesized using the trained model. Another
example of Mona Lisa is shown in Fig. 1.

Besides, we are interested in extending our concept to facial expression and viseme
synthesis. With the exception of body movements and a novel view interpolation, several
facial effects observed in virtual humans, such as eye, nose, and mouth movements, could
be created, as shown in Figs. 1, 13, 14, and 15. By moving the facial features obtained from
the structure of spatial relationship, which we constructed before, we simulate the dynamics

Table 2 Running times for figures

Figure name Body
movements

Novel views synthesis Viseme
synthesis

Facial
expression

Cat Object
with
wood

TinTin
(head
fitting)

Captain
(head
fitting)

Snowy
(head
fitting)

Mona
Lisa

Lips Mona
Lisa

Oil
painting

Figure no. 11 17 2 12 12 1 15 13 14

Resolution 193×
280

189×
216

240×
502

519×
446

169×
117

182×
268

565×
281

182×
268

505×
582

Shape fitting ~
training

9366 14366 16435 14788 23599 26167 30639 27331 35458

~ fitting
(millisecond)

1535 1835 2031 1755 3499 5049 8356 5223 10854

Detail preserving ~
training

6997 8997 8899 8590 9565 8567 10967 8499 12199

~ fitting
(millisecond)

856 1065 1101 999 1890 2432 4288 2511 4805

Fig. 11 Body movements synthesis. a e Two key-poses of the cat. b c d The synthesized results
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of the features to synthesize different expressions, such as blink, anger, or happy. We could
enhance the expression by shaking the shoulders or wagging the human’s head. Figure 13a
is the original picture of Mona Lisa. Figure 13b, c, d, and e are the synthesized facial
expressions. Note that the proposed model is trained from moving templates of an
emotional state (smiley). Furthermore, we use the model to predict other emotional states of
another character in Vincent van Gogh’ Self-Portrait and as shown in Fig. 14. For viseme
synthesis, Fig. 1c shows several frames in the synthesized speech animation of Mona Lisa.
Another lip-synch example is shown in Fig. 15 for five vowels.

Since our goal is to do visually plausible character animation for virtual humans
generation, we focus on the qualitative analysis. We provide the results obtained by using

Fig. 12 Novel views synthesis in a comic. a The frames in the comic. b The frames synthesized from a
single frame. c The zoom-in views of the results. © Georges Remi (Hergé)

Fig. 13 Virtual human with expression synthesis. a The picture of Mona Lisa. b c d e The synthesized
expressions
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kernel regression with RBFs, view morphing proposed by Seitz and Dyer [39], image
deformation using the moving least squares method proposed by Schaefer et al. [37], and
animation of still images using the path-based method proposed by Mahajan et al. [26], that
suffices for a direct visual comparison. Figure 16 shows a comparison of novel views
synthesis. Figure 16b is obtained by using kernel regression with RBFs, and Fig. 16c is
obtained by our model with ERBFs respectively. Figure 16d is our results combined with
the original background. Note that the number of basis functions is the same. Since shape
fitting with RBFs contains more unnatural distortions in forward deformation, ghost effects
are observed in the final result with color blending even though feature alignment is
achieved in contours fitting. The quality of the final blending result with ERBFs is better.

As mentioned before, previous techniques such as view interpolation and shape
deformation may be able to produce good quality results for body movements and novel
views synthesis. However, both techniques needed user intervention. Figures 16e and 17
provide the comparisons with the view morphing technique proposed by Seitz and Dyer
[39], and the image deformation using the moving least squares method proposed by
Schaefer et al. [37]. In view morphing, it is necessary to compute an additional estimated
fundamental matrix for camera calibration. Further, many users’ specifications are required
for correspondences. Figure 16e shows that lacked users’ specification would create ghost
effects because of nonalignment. There were seventeen control lines on the face specified
by users. A better result was obtained when more than thirty or forty control lines were
specified. Besides, the method of Schaefer et al. preserved the details of characters, such as
wood grain. This property may lead to an undesired result and unnatural distortions when
users specify the moving handles which exceed the control extent because of the constraint
using moving least squares, as shown in Fig. 17. This man-made situation or interference
would not occur in the proposed model. Our model would be automatic in shape
deformation process of body movements synthesis.

Moreover, Fig. 18 shows a comparison with the path-based method proposed by
Mahajan et al. [26]. Their method is based on an inverse optical flow and preserves the

Fig. 14 Virtual human with expression synthesis. a The original expression in Vincent van Gogh’s Self-
Portrait. b Sad. c Smiley. d Staring. e Winking

Fig. 15 Viseme synthesis for five vowels. a The original mouth shape. b /a/. c /e/. d /i/. e /o/. f /u/
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spatial frequencies of the input images. However, as mentioned before, the disparity or the
motion that they can handle between the images is limited. In [26], the disparity or motion
between the images is about 30 pixels. The novel views shown in Fig. 18d and f are
synthesized by using our method from Fig. 18a and the reverse of Fig. 18a. Note that the
maximum disparity or motion between two images is 70 pixels. A few shades on the face
are due to the fact that the inconsistent illumination or brightness on the face in the input
image and the aforementioned color blending we used to maintain the 3D effect of the
synthesized view. Besides, a few blurring artifacts near the whiskers and tongue are
observed in another example of the yawning cat synthesized by their method, as shown in
Fig. 18k. Note that the details are preserved explicitly by using our method, such as fur,
whiskers, tongue, and wood shown in Fig. 18i and j.

In general, we find that our method provides visually superior shape fitting or details
preserving with minimal artifacts in most cases. On the other hand, our method does not
suffer from serious ghosting, blurring artifact, or unnatural warping, which exists in other
methods. Moreover, our proposed shape fitting and detail preserving method does not
require user-specified correspondences. Considering view morphing and image deformation
using the moving least squares method, they require users’ intervention for correspondences
or handling the deformation.

In addition, there are many possible applications of our proposed nonparametric
regression model consisting of kernel regression with ERBFs and LOESS. For example, we

Fig. 16 Comparison of a novel view obtained by using kernel regression with RBFs, kernel regression with
ERBFs, and view morphing proposed by Seitz and Dyer [39]. a The picture of Mona Lisa. b The result
obtained by using kernel regression with RBFs. c d The result obtained by using kernel regression with
ERBFs (our model). e Ghost occurrence in view morphing without enough correspondences (red lines are
specified by users)

Fig. 17 Comparison with image deformation using the moving least squares method proposed by Schaefer
et al. [37]. a The character with handles (red dots). b The results created by using moving least squares with
distortions. c The undesired warp occurrence (moving handles exceeds the control extent). d The same pose
with b created by using our method
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may adopt our model to learn realistic passive elements movements for synthesizing a
rippling pond in the scene, which is subject to natural forces like wind. Thus, we could
reanimate arbitrary still images without limiting our domain, including both active virtual
humans and passive elements for advanced intelligent multimedia applications.

7 Conclusion

In this paper, we have proposed a novel nonparametric regression model by using kernel
regression with ERBFs and LOESS, which allows virtual humans generation. The virtual
humans, who are constructed by body movements, novel views synthesis, and expressive
facial animation with lips movements from speech, are generated and animated smoothly
while minimizing unnatural distortion. Just like an agent system, the behaviors that are
commonly observed for humans would be simulated and forecasted by using the trained
model. Furthermore, we have shown visual results for the purpose of comparison. The
results also reveal that the generated virtual humans are suitable to be the spokesman or
substitute in the NG applications domain. Moreover, generating animated faces of virtual
humans from speech has immediate applications to the games and movie industries.

However, the prediction performance of our model is considerably limited by the
structure of the input image. The proposed model may fail in case of overlapping regions
such as an arm overlapping the body. Each region may be applied to deform separately with
users’ interaction. In future, we intend to improve the performance and quality of the
scattered ERBFs and LOESS fitting algorithm and synthesize the smooth transition
between two motions. Furthermore, we can predict the time series model of a moving
virtual human with the nonparametric model using kernel regression with ERBFs and
LOESS. The time series model would be applied to retarget the motion onto any similar
humans or human-like characters.

Fig. 18 Comparison with animation of still images using the path-based method proposed by Mahajan et al.
[26]. a h The input images obtained by [26]. b c The face emotions synthesized by using our method (staring
and smiley). d e Different face emotions in a novel view synthesized by using our method (neutral and
smiley). f Another novel view synthesized by using our method. g k The results obtained by [26] (smiley and
yawning). i j Two frames of a yawning cat synthesized by using our method
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Appendix 1 Hyper radial basis functions (HRBFs)

HRBF is computed by using the Mahalanobis distance, which is defined in the matrix form
as follows:

k ~u;~vð Þ ¼ exp � ~u�~vð ÞT
X

~u�~vð Þ
� �

;

for Σ ¼ diag s�2
1 ; . . . ; s�2

N

� �
and s1; . . . ; sN 2 <þ;

ð19Þ

where s2
N should be the covariance of the multidimensional Gaussians rather than the single

variance. HRBF differs from a standard RBF insofar each axis of the input space # � ‘N2 (the
space of square summable sequences of length N) has a separate smoothing parameter, i.e., a
separate scale onto which the differences on this axis are viewed. It is worth mentioning that
RBF kernels map the input space onto the surface of an infinite dimensional hyperspace. Note
that N=2 in arbitrary directional ERBF kernel represents the analysis of data distribution
along the major axis and the minor axis in an ellipse. Along the orientation of arbitrary
directional ERBF (the major axis and the minor axis), (1) is constructed.
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