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Laser Dynamics of a 10 GHz 0.55 ps Asynchronously
Harmonic Modelocked Er-Doped Fiber Soliton Laser

Wei-Wei Hsiang, Hon-Chieh Chang, and Yinchieh Lai

Abstract—Laser dynamics of a 10 GHz 0.55 ps asynchronously
harmonic modelocked Er-doped fiber soliton laser are investigated
both theoretically and experimentally. Theoretical analyses based
on the master equation model solved by the variational method
have indicated that all the pulse parameters of the laser output will
exhibit complicated slow periodic variations in the asynchronous
soliton modelocking (ASM) mode. New experimental methods
based on analyzing directly the RF spectra of the ASM laser
output have been developed to accurately determine the sinusoidal
variation of the pulse timing and the pulse center wavelength for
the first time. It is found that the pulse center wavelength variation
can be as large as 1 nm half-peak-to-peak and the pulse timing
variation can be as large as 3 ps. The consistency among all the
experimental data and theoretical prediction is carefully examined
and the results indicate that the ASM pulse dynamics observed
experimentally are in good agreement with those obtained from
the theoretical analyses.

Index Terms—Asynchronous soliton modelocking, fiber lasers,
modelocked lasers, ultrashort optics.

I. INTRODUCTION

LTRASHORT optical pulse trains with high repetition
U rates are highly desirable in a wide range of applications
including the high speed optical communication [1], ultrafast
optical signal processing [2], [3], supercontinuum generation
[4], [5], optical frequency metrology [6], and many other sci-
entific researches [7]. Over the past few decades, a lot of efforts
have been devoted to the generation of sub-ps pulses with GHz
repetition rates from modelocked fiber lasers. In particular, the
soliton pulse shaping techniques have been employed in mode-
locked fiber lasers by active harmonic modelocking [8], hybrid
modelocking [4], [9], and passive harmonic modelocking [10],
[11]. Recently asynchronous soliton modelocking (ASM) has
been proved to be an effective technique of generating ultra-
short pulses with GHz repetition rate and high supermode-sup-
pression ratio (SMSR) [12]-[14]. By employing an EO phase
modulator driven at the frequency detuned from the cavity har-
monic by 10-65 kHz in the modelocked Er-doped fiber laser,
10 GHz 0.8 ps pulses with the SMSR more than 70 dB have
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been successfully demonstrated [14]. Most interestingly, mode-
locked fiber lasers with asynchronous phase modulation exhibit
many unique laser dynamics when compared to normal actively
modelocked fiber lasers. The previous theoretical analyses with
the soliton perturbation theory has shown that, due to the asyn-
chronous phase modulation, both the output pulse timing and
the output pulse center frequency will exhibit slow sinusoidal
variation at a few (or a few tens) kHz [13]. The peak-to-peak
displacement of the sinusoidal variation in the pulse center fre-
quency of a 1 GHz 1 ps asynchronously mode-locked Er-doped
fiber laser was measured to be 5-25 GHz by using a Fabry—Pérot
interferometer [12]. However, the characterization of the pulse
timing variation has not been performed experimentally. For
practical purposes, it is crucial to carefully characterize such
periodic variation of the output pulse parameters before one can
actually utilize the ASM fiber lasers in real applications. This is
especially true for those applications which will depend on the
laser pulse timing or the pulse center frequency.

In the present paper, the laser dynamics of a high-repeti-
tion-rate (10 GHz) ultrashort-pulsewidth (0.55 ps) asynchro-
nously harmonic modelocked Er-doped fiber soliton laser are
investigated both theoretically and experimentally. Theoretical
analyses based on the master equation model solved by the vari-
ational method have been carried out. The calculation results
indicate that not only the pulse timing and the center frequency,
but also all other pulse parameters such as the pulse energy are
found to exhibit more complicated slow periodic variations than
expected previously. In addition, new experimental techniques
have been developed to measure the sinusoidal variations of
the pulse timing and the pulse center wavelength accurately.
Instead of performing the ultrafast measurement in the time
domain, the output pulse timing variation is characterized
by analyzing directly the RF spectra of the laser output. The
typical half peak-to-peak displacement of the sinusoidal pulse
timing variation is identified to be ~3 ps for the studied laser.
Furthermore, by measuring the extra pulse timing variation
introduced by the pulse center wavelength variation through
the group velocity dispersion (GVD) of an external optical
fiber section, the corresponding half peak-to-peak displacement
of the sinusoidal pulse center wavelength variation can be
identified to be ~1 nm. We believe this is for the first time
that the variation of these two pulse parameters for an ASM
fiber laser is determined accurately from direct experimental
data. The connection among the experimental results of the
asynchronously modelocked Er-doped fiber laser, including
the pulsewidth, the optical spectrum, and the pulse center
wavelength variation, are carefully examined. We find that the
ASM pulse dynamics observed experimentally are in good
agreement with those obtained from the theoretical analyses.

0018-9197/$26.00 © 2010 IEEE
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Fig. 1. Schematic of the asynchronously modelocked Er-doped fiber soliton
laser and the feedback control module for long-term stabilization. BPF, band-
pass filter; PD, photodiode; DSF, dispersion-shift fiber.
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Fig. 2. Optical spectrum of the 10 GHz asynchronously modelocked Er-doped
fiber soliton laser.

II. EXPERIMENTAL SETUP AND LASER OUTPUT

The experimental setup of the studied 10 GHz asynchro-
nously harmonic modelocked Er-doped fiber soliton laser is
shown in Fig. 1, which is similar to that described in [14], [15].
The modelocked Er-doped fiber laser consists of a LiNbOg
waveguide phase modulator, two polarization controllers, a
polarization-insensitive isolator, a polarizer, a tunable optical
filter with FWHM = 13.5 nm, a section of 5.5-m Er-doped
fiber, an output coupler, two wavelength-division multiplexing
(WDM) couplers and two 980-nm pump laser diodes. The
average cavity length and GVD are estimated to be 24.8 m
and —4.1 ps? /km respectively. With the suitable orientation of
the polarization controllers, stable 10 GHz 0.55 ps pulse trains
can be obtained from the laser output when the modulation
frequency is detuned from the cavity harmonic frequency by
a deviation frequency of 10-65 kHz. Fig. 2 shows the typical
optical spectrum of the laser output and the full-width at
half-maximum (FWHM) bandwidth of the optical spectrum is
5 nm. The optical frequency components spaced by 0.08 nm
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Fig. 3. SHG intensity autocorrelation trace (open circles) and the fitting curve
(solid curve) of the laser output, assuming sech? pulse shape.
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Fig. 4. RF spectrum of the laser output near 10 GHz with 50-MHz span and
SMSR > 70 dB.

(i-e., 10 GHz) can be partially resolved by the spectrum analyzer
with the resolution bandwidth of 0.07 nm. The corresponding
second-harmonic generation (SHG) intensity autocorrelation
trace is shown in Fig. 3 by the empty circles. The solid curve in
Fig. 3 is the fitting of the SHG intensity autocorrelation trace
with the assumption of sech? pulse shape, indicating that the
pulsewidth is 0.55 ps. The average output power is ~30 mW
when the modelocked Er-doped fiber laser is pumped with
~650 mW of pump power. The RF spectrum near 10 GHz from
the fast photodiode detecting the laser output is shown in Fig. 4.
The span of the RF spectra is 50 MHz and the fundamental
cavity frequency of the modelocked Er-doped fiber laser is
8.3 MHz. From the figure, it can be seen that the SMSR is
greater than 70 dB at the resolution of 3 kHz, indicating that the
main supermode is much larger than the other supermodes. This
also means the fast (from ~ MHz to ~ GHz) pulse-to-pulse
energy fluctuations, which usually occur in normal harmonic
modelocking, can be efficiently suppressed in the asynchro-
nously mode-locked Er-doped fiber laser. The high SMSR
also has been confirmed by the uniformity of thel0 GHz ASM
pulse train measured by a fast sampling oscilloscope, which
also suggests that all the pulse slots are filled and there is no
multiple-pulse in a time slot [15].

On the RF spectrum we do not observe the beat signals that
may be resulted from the supermode hopping. However, since
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Fig. 5. RF spectra of the laser output with 500 kHz span. Data are taken (a)
near 10 GHz; (b) near 20 GHz; (¢) near 30 GHz; (d) near 40 GHz.

the fundamental cavity frequency is only 8.3 MHz, it is not
easy to make direct observation of the supermode hopping in
the optical domain experimentally. The experimental results
described above indicate that the advantages of ASM are the
shorter pulsewidth and the greater SMSR when compared to
normal harmonic mode-locking. The reasons for these ad-
vantages can be understood and explained briefly as follows.
The combination of the periodic pulse center frequency drift
and the fixed optical filter in ASM is equivalent to the effects
of sliding-frequency guiding filters in soliton communication
systems [16]. The solitons can follow the relative periodic
frequency shift induced by asynchronous phase modulation
because of their nonlinear optical property and thus the center
wavelength of the solitons will oscillate around the spectral
peak of the fixed optical filter. On the other hand, the linear
noises will experience more losses and will be filtered out more.
Hence, the suppression of the supermode noises can be more
effective than that of normal frequency modulation (FM) mod-
elocking. Furthermore the suppression of the noises in ASM
will also enhance the laser stability for a shorter pulsewidth,
which is usually lacked in normal FM modelocking when the
pulsewidth is getting shorter and shorter.

In real experiments, the oscillating laser dynamics of ASM
fiber lasers can not be observed directly in the optical spectra or
the SHG intensity autocorrelation traces due to the long integra-
tion time of the two measurements. However, they can be easily
observed on the RF spectra of the laser output with a smaller
span. Fig. 5 shows the RF spectra of the laser output with a span
of 500-kHz near the 10, 20, 30, and 40 GHz pulse train har-
monics respectively. The evenly spaced sub-frequency compo-
nents near the main pulse train harmonics indicate the existence
of the slow (~ kHz) and complicated pulse parameter varia-
tion. The similar sub-frequency components also appear near
DC, which has been utilized for long-term stabilizing the 10
GHz asynchronously modelocked Er-doped fiber laser [15]. In
the following sections, detailed theoretical analyses will be car-
ried out and new measurement methods based on analyzing the
RF spectra of Fig. 5 will be developed to fully characterize the
pulse dynamics of the ASM fiber laser.
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III. THEORY OF ASYNCHRONOUS SOLITON MODELOCKING

A. Master Equation of Asynchronous Soliton Modelocking

Under the assumption of small round-trip change, an asyn-
chronously modelocked fiber soliton laser can be described by
the master equation as follows [13], [17]:

9o 0%
u + (dr + jdi)w

ou(T,t) ;
= —lo

oT u|2dt
T

+(ky 4 jki)|ul*u + M cos [wp, (t + RT)]u. (1)

Here u (T, t) is the complex field envelope of the pulse, gq is the
unsaturated gain, F; is the gain saturation energy, [y is the linear
loss, d,- represents the effect of the optical filtering, d; is group
velocity dispersion, k, represents the effect of equivalent fast
saturable absorption caused by the polarization additive pulse
modelocking (P-APM), k; is the self phase modulation coeffi-
cient, M is the phase modulation strength, w,, is the angular
modulation frequency, 7 is the number of the cavity round trip,
t is the time axis measured in the moving frame propagating at a
specific group velocity along with the pulse, and R is the linear
timing walk-off per round-trip due to asynchronous phase mod-
ulation, which can be expressed by

RzN(L—i>: of . 2)

N f R f m f R f m

Here ¢ f is the deviation frequency between the N-th cavity har-
monic frequency N fr and the modulation frequency f,,. In
the following analyses, the sinusoidal modulation curve of the
phase modulator will be expanded by the Taylor’s series at the
center of the pulse ¢o(7") to the second order:

Mcos [wy (t + RT)] ~mo —my [t — to(T)] = ma [t — to(T)]”

3)
where
m1 = Mwyy, sin {wy, [to(T) + RT]} 4)
and
M,
Mg = —- W, COS {wm [to(T) + RT]}. 3)

Such an approximation should be quite accurate since the laser
pulsewidth is much shorter than the modulation time period in
modelocked fiber lasers.

B. Variational Analysis of Asynchronous Soliton Modelocking

The master equation (1) describing ASM can be reformu-
lated as a variational problem and then solved approximately by
assuming a reasonable pulse solution ansatz [18]. In the vari-
ational approach, the Lagrangian corresponding to the master
equation (1) is

I R S e
L=3 <“8T u8T>+d7’ at

82 32 *
+]dr( UO/UJ*_ uo“)

2
ki
- §|’“|4

a2
+ J [krluol? + (g — lo)] (wou* — ugu)
+{m (¢ = t0(T)) + ma (t = to(T))” } (o™ + ) 6)
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where g = go/1 + ([ |u|?dt/E) is the saturated gain and the
modulation curve has been expanded by (3)—(5). The master
equation (1) can de derived from the Lagrange by taking the
variation of the functional I = [ [ Ld1'dt with respective to u
and u*

., Ou Ou* Ou Ou*

which is equivalent to the following equation:

oL _ 0 oL 0 oL ®
du* 9o (2e) 9T (%)

Note that the functions u¢ and ug in (6) are treated like fixed
functions so that they do not take part in the variational pro-
cedure in (7). However, they should be replaced by « and u*
respectively after performing the variation. This is the standard
technique to deal with loss terms under the variational formula-
tion, since all the non-conserved terms can not be directly han-
dled in the usual Lagrangian formulation. For the ASM fiber
lasers, the reasonable pulse solution ansatz [17] is given by

t—to(T) 14+38(T) B
)= 3lw(T) (t=to (T))+6(T)]
w(T,t) a(l)sech[ () } e

©)

where a(T) is the pulse amplitude, 7(7') is the pulsewidth,
to(T') is the pulse timing, S(7T") is the chirp, w(T") is the pulse
center frequency, and 6(7") is the phase. One can obtain the
evolution equations of all the pulse parameters from the reduced
Lagrange (L)

5 /(L)dT — 0 (10)
where .
<L> = / Lansaltzdt (11)

and L,y s, 1t, represents the Lagrange L in which the ansatz (9)
has been substituted for the function » and u*.

The evolution equations of the pulse parameters are derived
from the corresponding Lagrange equations

oLy o o)
dui 0T 9 (3%)

(12)

where x; represents each pulse parameter in the ansatz (9).
The final derived equations for the pulse center frequency, the
timing, the chirp, the amplitude, and the pulsewidth are given
below

dw 4d,. (1 + 3?)
- my — 3.2 w (13)
dty
T = 2w + 24, f (14)
B mar®r* + 2a%7% (ki — k. 8) — 2(2d; + d,.)(1 + °)
aTr 372
(15)
da
ar (9 —lo)a
8k,a?12 + 6d;8 — d,.(B? + 7+ 97%w?
oSt GG — A+ TH O] g

972
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dr _ 4(=2d, + kra®r? 4+ 3d; 3 + d,.[3%) (17
dT 97

For simplicity the evolution equation for the phase has been
omitted because of irrelevance. Please also note that the linear
timing drift effects caused by the asynchronous phase modula-
tion are included in the expressions for m; and ms in (4) and
(5), which are periodic functions of T" and to(T').

C. Periodic Variation of the Pulse Parameters in ASM

The laser dynamics of ASM lasers can be investigated in
terms of the evolution of the pulse parameters described by
(13)—(17). To the lowest-order approximation, only the evo-
lution of the pulse timing and the pulse center frequency are
needed to be considered and the variation of all the other pulse
parameters can be ignored. Equations (13) and (14) for chirp-
less pulse (8 = 0) can be further simplified to the following
two equations under the assumption that the oscillating pulse
timing ¢o(7") is much less than the linear timing drift RT' due
to asynchronous modulation

dw . 4d,
T = —Mwy, sin(w,, RT) — 3T2w (18)
and
dto

These two simplified coupled equations can also be derived
from the soliton perturbation theory [13]. The solutions of (18)
and (19) have the following forms:

M 1
w(T) = 5 : cos(wm RT + 6,)
1+ (3751:1;;113)
=Awcos(2nd fTTr + 04) (20)
and
2d; M 1 .
to(T) = di sin(wm RT + 64)

= 5 =
wm R L4 Ad,
312w, R

= Aty Sin(QW(SfTTR + Hd) 21

where the cavity round-trip time 7'y is the inverse of fr, Aw and
Aty are the half peak-to-peak displacements of the sinusoidal
variation in the pulse center frequency and the pulse timing.
The two solutions (20) and (21) indicate that to the lowest-order
approximation the variation of the pulse timing and the pulse
center frequency of ASM lasers is simply sinusoidal at the de-
viation frequency 6 f. In addition, the phase difference between
the pulse timing and the pulse center frequency is exactly 7 /2.
This knowledge will be utilized when we try to experimentally
determine the pulse center frequency variation in Section I'V.
The accurate simulation results of the full set of coupled equa-
tions (13)—(17) are shown in Fig. 6. The simulation parameters
used are given as follows: d; = 0.2, d, = 0.05, k; = 0.4,
k. = 01,90 = 4, 1o = 08, By = 047, M = 0.8, fr =
8 MHz, fg = 1250 fr, and 6 f = 25 kHz. These parameters
are estimated by the following procedure. The units for time t
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Fig. 6. Slow periodic evolution of the pulse parameters: (a) pulse center fre-
quency; (b) pulse timing; (c) pulse amplitude; (d) pulse energy.

is chosen to be 0.5 ps, which is of the same order with the laser
pulsewidth. The value of d,. is then determined from the known
filter bandwidth (13.5 nm) and the value of d; is determined
from the estimated cavity average dispersion (—4.1 ps?/km) as
well as the cavity length (25 m). The values of [ and g are from
the roughly estimated loss and gain of the cavity. The values of
k; and k, are estimated from the values of d; and d,- under the
assumption that the pulse is a chirpless fundamental soliton with
roughly the unit normalized pulsewidth and the unit normalized
amplitude. To be more specific, we have simply set k; = 2d;
and required k; : k. = d; : d, [17]. The value of E; also can
be estimated based on the above normalization assumption. The
other parameters can be directly estimated from the actual ex-
perimental conditions. In this way, a reasonable set of parame-
ters that correspond to the studied fiber laser can be obtained for
illustrative studies. These numbers should not be very far from
the actual operating conditions of the studied laser. From the ob-
tained plots, one can clearly observe the slow periodic variation
at the deviation frequency as shown in Fig. 6(a)—(d). The half

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 46, NO. 3, MARCH 2010

peak-to-peak displacement of the pulse center frequency varia-
tion is found to be ~125 GHz in Fig. 6(a), corresponding to the
variation of the pulse center wavelength of 1 nm around 1550
nm, and the half peak-to-peak displacement of the pulse timing
is ~3 ps in Fig. 6(b). Besides these two parameters, other pulse
parameters are also found to exhibit smaller but more compli-
cated slow periodic variation. In particular the evolution of the
pulse amplitude and the pulse energy are shown in Fig. 6(c) and
(d), respectively, which clearly indicates that the oscillation is
not purely sinusoidal and the components of the higher-order
harmonics of the deviation frequency appear. Direct numerical
simulation of the master equation (1) has also been performed
to verify the obtained results. The direct numerical solution is
based on the finite difference Crank-Nicholson method for prop-
agating a suitably chosen initial pulse along the T-direction till
the stable periodic oscillating solution is reached. The pulse pa-
rameters are then extracted from the numerical pulse solution
for comparison. The ASM oscillating behavior is directly ob-
served and the excellent agreement with the variational solution
has been found. Nevertheless, even though the variational ap-
proach as well the direct numerical solution have been proved
to be very helpful for understanding the steady-state dynamics
of ASM modelocked fiber lasers, they are both under the as-
sumptions of the master equation model (1). In particular, the
cavity round-trip change has been assumed to be small, only the
evolution of a single pulse is considered, and no noise source is
included. Therefore, to investigate the noise dynamics of ASM
modelocked fiber lasers will require a more elaborated theoret-
ical model and will be a good subject of further studies.

IV. EXPERIMENTAL DETERMINATION OF PERIODIC VARIATION
OF THE PULSE PARAMETERS

According to the results obtained from the theoretical
analyses in Section III, all the pulse parameters of the ASM
laser may exhibit the slow periodic variation. We have found
that when the modulation depth of the phase modulator is
not too large, the simulation results indicate that the variation
appearing in the pulse timing and the pulse center frequency
are nearly pure sinusoidal at the deviation frequency 6 f. In this
section, new experimental methods based on directly analyzing
the RF spectra of the laser output are developed to directly
characterize the sinusoidal variation of the pulse timing and
pulse center frequency.

A. New Method to Determine the Sinusoidal Variation of
Pulse Timing

With the reasonable assumption that the pulse timing varia-
tion is mainly a simple sinusoidal function at the deviation fre-
quency 0 f, the photocurrent from the fast photodiode detecting
the pulse train can be expressed by
it)=[rt)@p®)]® Y 8[t—mTy+Atysin(2rs fmTy)]

(22)

where r(t) is the response function of the fast photodiode,
p(t) = |u(t)|? is the pulse intensity, Ty = 1/fir = 1/N fg is
the period of the cavity harmonic, At is the half peak-to-peak
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displacement of the sinusoidal pulse timing variation, 6(-)
is the Dirac’s delta function, and ® stands for the operation
of convolution. We have assumed that the variation of other
pulse parameters can be ignored at least to the first order
approximation. This should be a reasonable assumption given
with the theoretical results in Section III, where the variation
of the pulse energy is much smaller in percentage. The Fourier
transform of the photocurrent i(t) can be expressed as

I(w) x Rw)P(w) Y Y Ju(wAty)

x6(w = 2rmfg — 2mndf) (23)
where R(w) and P(w) are the Fourier transforms of the re-
sponse function of the fast photodiode and the pulse intensity
distribution, respectively, and J,,(-) is the Bessel function of
the first kind of order n. The periodic Dirac’s delta functions
with the sinusoidal timing variation in the time domain gives
rise to the comb-like sub-components in the frequency domain
as shown in Fig. 5. That is, the pure sinusoidal timing variation
will produce the frequency components with the amplitudes of
Jn(wAtg), which are spaced equally by the deviation frequency
6 f around the pulse train harmonics m fzr. When the pulsewidth
is sub-ps short and the response speed of the photodiode is also
fast enough compared to the slow modulation frequency, then
the intensity of the n-th sub-component of I(w) in (23) is simply
proportional to |J,,(wAt)|?. Therefore, by comparing the peak
intensity at the main pulse train harmonic (n = 0) to the peak
intensity at the first sub-component (n = 1) from the experi-
mental data,

J() [27TmeAt0] 2

A= JL2m(mfa + 6 f)Atg]

(24)

the half peak-to-peak displacement At of the sinusoidal pulse
timing variation can be identified.

B. Experimental Determination of the Pulse Timing Variation
by Analyzing the RF Spectra of Laser Output

Experimentally the peak intensity ratio A in (24) can be ob-
tained directly by analyzing the RF spectra of the laser output.
The output pulse train from the 10 GHz asynchronously mode-
locked Er-doped fiber soliton laser is detected by a fast photo-
diode and the amplified electric signals of the photodiode are
connected to a RF spectrum analyzer. The RF spectra with a
smaller span of 500 kHz near the 10 GHz, 20 GHz, 30 GHz,
and 40 GHz of the main pulse train harmonics have been shown
in Fig. 5(a)—(d), respectively. The values of the RF peak inten-
sities T4 at mfy and Ip at mfg + 0 f form =1 tom = 4 are
represented by the solid squares in Fig. 7. According to (24), the
differences between I4 and Ip are equal to

IA — IB = IOIOgloA
:2010&0(‘ Jol2mm fiz Ato] )
Ji [QW(me + (5f)At0]
Jo[2mm frr Ato] ) . 25)
Jl [QWmeAto]

~ 20 log;, (
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Fig. 7. Intensity difference between the Oth and 1st frequency sub-components
around the 10, 20, 30, 40 GHz pulse train harmonic frequencies.

The fitting curve based on (25) shown by the solid line is used to
identify the value of the half peak-to-peak displacement of the
sinusoidal pulse timing variation Aty. The value is found to be
around 3.5 ps for all the four values of m. The consistency of the
estimated values from different orders of pulse train harmonics
indicates that the proposed method should be able to give con-
sistent and reasonable results for the pulse timing variation.

C. New Method to Identify Sinusoidal Variation of Pulse
Center Frequency

The method developed above for determining the pulse
timing variation can be further extended to identify the pulse
center frequency (wavelength) variation as well. The pulse
center wavelength variation will turn into extra pulse timing
variation after the pulse train of ASM propagates through an
external section of dispersive optical fiber. As indicated by
(20) and (21), the phase difference between the two sinusoidal
variations of the pulse timing and the pulse center frequency is
/2, i.e., sine and cosine, respectively. Thus, the variation of
the pulse timing At;(T') of the ASM pulse train after propa-
gating through a length L of the optical fiber with the dispersion
parameter D will be given by

Atior(T) = Atgsin(RT) + AADL cos(RT)
=/(Atg)2 + (AXDL)2sin(RT + ¢)
= Atl SHI(RT -+ QS)

(26)

where AADL cos(RT) is the extra pulse timing variation in-
troduced by the dispersion of the external optical fiber. Based
on (26), the half peak-to-peak displacement of the pulse center
wavelength variation A\ can be determined according to

A}\:—\,At%—At%

DI (27)

with the additional experimental measurement for At;.
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Fig. 8. Experimental setup for the measurement of the pulse center frequency
variation.
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Fig. 9. RF spectra of the pulse train after propagating through an external sec-
tion of SMF-28 fiber. The data are taken near 10 GHz with 500-kHz span. The
fiber length is (a) 50 m; (b) 100 m; (c) 200 m; (d) 300 m.

D. Experimental Examination of the Pulse Center Frequency

The experimental setup used to measure the sinusoidal vari-
ation of the pulse center wavelength is shown in Fig. 8. As
the same as the measurement of the pulse timing variation, the
analyses of RF spectra of the laser output are utilized to identify
the pulse timing variation before and after (i.e., Aty and Atq)
the pulse train propagates through an external single mode fiber.
Fig. 5(a) and Fig. 9(a)—(d) are the RF spectra of the pulse train
measured near 10 GHz with a 500-kHz span before and after
propagating through 50-m, 100-m, 200-m, and 300-m SMF-28
fibers, respectively. It can be clearly seen that the peak inten-
sity ratio between the Oth and 1st sub-frequency components is
indeed reduced with increasing fiber length. By comparing the
differences of the RF intensities 74 and I, the corresponding
pulse timing variations Aty and At; are evaluated according to
(25) and represented by the solid squares in Fig. 10. The curve
in Fig. 10 is the fitting curve of Aty in (26) with the parameter
D = 17 ps?/km for the SMF-28 fiber. The fitting results in-
dicate that the half peak-to-peak displacement of the sinusoidal
pulse center wavelength variation A\ is around 1.12 nm for the
studied ASM laser.

V. DISCUSSION

The ASM laser dynamics have been analyzed theoretically
in Section III and investigated experimentally in Section IV.
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Fig. 10. Measurement (square dots) and the fitting curve (solid line) of the net
pulse timing variation At; versus the length of the SMF-28 fiber.

Although the slow periodic variation of the pulse center fre-
quency and the pulse timing do not appear directly in the
experimental optical spectra and SHG autocorrelator traces
presented in Section II, the connection among all the experi-
mental and theoretical results still needs to be carefully checked
for ensuring consistency. According to the SHG autocorrelator
trace in Section II, the measured pulsewidth is 0.55 ps. For
such a pulsewidth, the corresponding transform-limited optical
FWHM bandwidth Apgwy is 4.58 nm with the assumption
of the sech™2 pulse shape. Compared to the measured optical
spectrum of the pulses presented in Section II, it implies that
an extra ~0.5 nm bandwidth is introduced by the slow periodic
variation of the pulse center wavelength. Theoretically the
broadened optical spectrum caused by the sinusoidal pulse
center wavelength variation can be estimated by calculating the
averaged optical spectrum

of 7sec h? (

By using Apgwym = 4.58 nm derived form the pulsewidth
and A\ = 1.12 nm obtained from Section IV, the calculated
FWHM bandwidth of the broadened optical spectrum from (28)
is close to that measured by the optical spectrum analyzer. This
shows that the results obtained from Sections II-IV are consis-
tent and also proves the feasibility of the new measurement tech-
niques for identifying the pulse timing variation and the pulse
center frequency variation presented in Section IV.

— (Mo + AXcos(2mdfT,)

)\FHWM

) dT,.  (28)

VI. CONCLUSION

To conclude, the pulse dynamics of a 10 GHz 0.55 ps asyn-
chronously mode-locked Er-doped fiber soliton lasers have been
carefully investigated both theoretically and experimentally. By
putting the experimental parameters of the studied mode-locked
Er-doped fiber laser into the theoretical formulation, the simula-
tion results have shown that all the ASM pulse parameters will
exhibit complicated slow periodic variation. In order to know
more exactly the magnitudes of the sinusoidal variation for the
ASM pulse timing as well as the pulse center wavelength, new
experimental methods based on analyzing the RF spectra of the
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laser output have been developed. The consistency of all the ex-
perimental and theoretical results has been examined and ver-
ified. The ASM laser dynamics observed experimentally have
been found to be in good agreement with the results obtained
from the theoretical analyses. The evolution equations of the
pulse parameters derived from the variational analysis should
provide a very illustrative physical model for understanding the
laser dynamics of ASM fiber lasers.
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