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Abstract

The purposes of this thesis are focused on the finite element biomechanical analysis,
which contains surface mesh optimization and biomechanical analysis of Nuss pectus
excavatum repair. For a biomechanical research, one of the significant problems is to create
an appropriate finite element volume mesh and the surface mesh generation plays a crucial
role in finite element volume mesh generation. Usually surface meshing methods in three
dimensions generate meshes relying on prescribed patch interpolation. For some
biomechanical researches, the analyzed, models, which were usually reconstructed based on
measured data or computer tomography scan data, do not have well defined surface function,
such as tibia, spine and rib cage.models. In order:to improve the surface mesh quality of the
reconstructed geometrical models, an approach of surface meshing optimization procedure is
developed, which consists of a conversion scheme.for primary triangular and quadrilateral
surface meshes, a C' continuous surface function reconstruction and a micro-genetic
algorithm (MGA) mesh smoothing procedure. This procedure performs surface mesh
optimization without pre-defined surface function. The practical cases are given to
demonstrate its successful performance and its versatility.

Pectus excavatum (PE) is one of the commonly found congenital chest wall deformity. It
is characterized by depression of the sternum and the lower costal cartilages, producing a
concave appearance to the anterior chest wall. The Nuss procedure is a minimal invasion
technique that corrects pectus excavatum by inserting a pre-bent bar under the depressed
sternum to elevate the sternum. After the Nuss procedure, the chest wall is deformed with the
raised sternum and a reasonable amount of stress is induced on the chest wall. In this thesis,
five patient-specific finite element models were generated to analyze the stress and the strain
distributions induced on the chest wall after the Nuss procedure. The finite element models
were reconstructed by applying a semiautomatic procedure based on patients’ computer
tomography slices. The simulation results show that there are greater stresses occurred over

the back and concentrated on the third through seventh ribs bilaterally, near the vertebral
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column. These phenomena might explain back pain on some patients after insertion of pectus
bar and sporadically reported thoracic scoliosis after Nuss procedure. Moreover, we
developed two thoracic volume measurement procedures to estimate the thoracic volume
change of postoperative PE patients. The thoracic volume measurement procedure was
performed based on the finite element analysis results and the increase of lung volume is
estimated by measuring the increase of thoracic volume. The estimated results shown that the

thoracic volume is increased about 2.72% to 8.88%.
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Chapter 1. Introduction

1.1 Overview

Finite element analysis (FEA) is a popular numerical method which is widely used in
science and engineering. In a finite element biomechanical analysis, the structural system is
first modeled by a set of appropriate subdivisions called elements and then calculated with
assigned material properties and applied boundary conditions. The FEA provides a convenient
way to investigate the biological phenomena of an object without practical experiment. In this
thesis, we employ the finite element analysis to perform the biomechanical analysis of pectus
excavatum (PE) patients after a Nuss procedure.

It is well known that a quality mesh is imperative to enhance the accuracy of a finite
element simulation. In engineering practice, meshes can be generated on the boundary and/or
in the interior of the object, which correspond to surface meshing and volume meshing,
respectively. Usually, a well defined geometrical model is requested before the mesh
generation. The geometrical model can bedefined with algebraic form or defined by patches.
However, for some biomechanical researches, the geometrical models were reconstructed
from measuring data or computer tomoegraphy-(CT) scan data [1,2], and it was difficult to
provide a pre-defined surface function, In-this thesis, we present a different approach that
surface meshing is on a set of unorganized points in which the surface function is yet to be

defined [3].
1.2 Surface mesh optimization

For surface meshing, most existing methods [4] generate the surface mesh based on
pre-defined surface functions, either in parametric patches or in algebraic form, by using
existing mesh generation schemes such as Delaunay Triangulation [5] or Advancing Front
Methods [6]. However, in many real cases, the given data may just be a set of unorganized
points, in which its surface function cannot be devised in a usual fashion. It is often
encountered in the applications of biomechanics, which require a geometrical reconstruction
from a set of sampling points that is extracted from a sequence of scanned images, e.g.
histological sections in tomography. An immediate way to generate a surface mesh for this

application is to triangulate the given points [7-10]. However, some sets of such sampling



points can be scattered and irregular, and results in locally ill-posed meshes, which may not
acceptable for finite element analysis. In this study, a posteriori approach is adopted to tackle
this problem: The given points are first triangulated to generate a triangular mesh and/or
convert to the quadrilateral mesh and then an additional procedure is introduced to enhance
the quality of the mesh. For finite element meshes, the common used procedure for this
enhancement is mesh smoothing.

The most popular mesh smoothing method is Laplacian smoothing [11], in which every
internal grid node is repositioned at the geometrical center of the adjacent nodes. Generally,
for surface mesh smoothing, Laplacian smoothing is first employed on a parametric plane and
then maps the result onto the physical surface domain. It is well known that the mapping
between a reconstructed surface and its parametric plane for Laplacian smoothing strongly
affects the resultant mesh quality. A given unorganized point set is usually lack of geometrical
regularity in distribution. It cannot guarantee to form a proper primary mesh for the mapping
of the Laplacian smoothing.

Optimization-based mesh smoothingstechnique is another way to smooth the finite
element mesh, in which the new locatien.of node is found by using the optimization
algorithms [12-15]. Freitag [12]-presented several articles described about the finite element
mesh smoothing techniques, which contained smart Laplacian smoothing, optimization-based
smoothing and the combination of both, in two-dimensional plane mesh and
three-dimensional tetrahedral mesh.” For the "combination method, the smart Laplacian
smoothing is used to adjust every internal node and is followed by the optimization-based
algorithm, the steepest decent method [16], in only the poorest-quality elements [12]. The
steepest decent method searches an optimal solution by a given initial step along a search
direction, which is calculated from the gradients of the object function, i.e. mesh quality
measurement. However, the calculating of gradients according to the real coordinates is
inconvenient for this application, in which the surface function is yet to be defined. Besides,
the search direction may let the nodes to deviate from the original surface.

Garimella et al. [14] presented a surface mesh quality optimization procedure that the
nodes are repositioned based on element-based local parametric spaces. They employ the
conjugate gradient method [16], whose search direction is estimated by computing the
gradients of the mesh quality measurement with respect to the local parametric spaces, to
reposition the nodes to enhance the mesh quality. It is beneficial that mesh smoothing based
on local parametric spaces can remain the nodes close to the original surface. The calculation

of the gradients of object function, which is based on the local parametric spaces and without
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the need of surface functions, is suitable for this application. However, two problems will be
arisen: (1) the repositioned points are re-allocated on the planes of corresponding elements,
that are not projected onto the original surface, and this will affect the geometrical accuracy of
model. (2) The gradient search methods as a local search method may encounter local
optimum problem.

In this study, we propose an innovation surface mesh smoothing procedures that mesh
nodes were repositioned by using the micro-genetic algorithm (MGA) based on local
reconstructed surface. The MGA [17-20] is similar to the genetic algorithms (GA) [21,22],
which is a global search method that searches optimal solution by employing natural
evolution without calculating search direction and step size. The MGA works with small
population size and reaches new optimal regions much earlier than the conventional GA
implementation [17]. It has been successfully applied to many fields [17-20]. Moreover, in
order to ensure the geometrical accuracy of the analytical model, we projected the
repositioned nodes onto the original surface based on an interpolation surface function [23],
which is reconstructed from the primarystriangular elements. The one drawback of our
approaches is that the computational cost.ef MGA is larger than the gradient search methods
[16] but it is feasible by applying. parallel computation algorithms [24] to accelerate its

computational efficiency.

1.3 Pectus excavatum

Pecuts excavatum (PE), also known as sunken or funnel chest, is one of the most
commonly congenital chest wall deformity, occurring in approximately 8 per 1,000 live births,
with males afflicted 5 times more often than females [25,26]. PE deformities are about 6 times
more common than pectus carinatum. Figure 1-1 illustrates a typical appearance of PE
deformity in a 7-year-old boy. The cause of this defect is thought to be the excessive growth
of the costal cartilage, which produces a concave anterior chest wall [27]. Approximately 40%
of PE patients are aware of one or more members of the family constellation who have pectus
deformities.

Symptoms are infrequent during early childhood, but become increasingly severe during
adolescent years with easy fatigability, dyspnea with mild exertion, decreased endurance, pain
in the anterior chest and tachycardia [25]. Scoliosis is one of the coexistent malformations for
pestus excavatum patients. The deformations of pectus excavatum not only affect the shape of

front chest but also affect the pulmonary and cardiac function. The depressed sternums of PE
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patients decrease in the intrathoracic volume and induce the effects on pulmonary and cardiac
function. In some serious PE patients, the decreasing intrathoracic volume induces the
pressure in the lung and heart, and results in the shortness of breath and increasing the heart
rate. The severity of pectus excavatum can be calculated by a pectus index [28], which is
calculated by dividing the transverse diameter of the chest by the anterior-posterior diameter
(Fig. 1-2). The mean pectus index for normal persons is 2.52, and mean pectus index of
patients who underwent PE repair in the large series reported by Haller et al was 4.4 [28].

In 1949, Ravitch presented a technique of pectus excavatum repairing [29]. It is a classic
surgical repair of pecuts excavatum, which involves bilateral costal cartilage resection and
sternal osteotomy technique. In 1998, a minimal invasive technique for repairing pectus
excavatum without costal cartilage resection and sternal osteotomy was presented by Nuss et
al. [30]. In this procedure, one pre-bent metal bar (pectus bar) is placed under the depressed
sternum through bilateral thoracic incisions and then forcibly turned around to elevate the
sternum. Since the bilateral costal cartilage is not resected, the chest wall of PE patients will
deform with the raised sternum and suffer frem stresses. The generated stresses on the chest
wall may be the cause for some ¢omplications, such as pain [31] and scoliosis [32]. Until
recently, most research focused on improving the Nuss procedure [33,34] and demonstrating
the embedded complications [31,35,36].-The analysis of biomechanical effects of the chest
wall of the PE patient after a Nuss.procedure was rarely mentioned [37]. It is essential, for the
cure of pectus excavatum, to understand the: effects of the pectus bar implantation. In this
study, we developed a finite element analysis (FEA) procedure to analyze the stress and the
strain distributions induced on the chest wall after a Nuss procedure.

Force requirement to raise the sternum of pectus excavatum was presented by
Fonkalsrud and Reemtsen [38] and Weber et al. [39]. According to their researches, the
raising force was measured by a spring scale through an anterior incision during PE repair.
However, the Nuss procedure performed PE repair through bilateral thoracic incisions, which
were two small openings on the sides of the chest, the forces of pectus bar applied to the chest
wall can not be measured directly. Awrejcewicz and Luczak [37] presented a finite element
model of the human rib cage, contains rib, costal cartilage, sternum and Nuss implant, to
investigate stress distributions of the human thorax with Nuss implant for an impact load.

Finite element analysis is a versatile technique for engineering simulation. It had been
extensively applied to many biomechanical analysis researches of biomedical researches, such
as the tibia [40], the femur [41] and the rib cage [37,42]. In the previous works [37,42], the

finite element analysis procedures were performed with simplified finite element models.
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However, the finite element biomechanical analysis for PE patient is not presented before. In
order to ensure the accuracy and to recognize the validity of the FEA results, five
patient-specific finite element rib cage models were crested in this study based on individual
computer tomography (CT) slices.

Geometrical model reconstruction based on CT slices was commonly used to obtain a
biomechanical model [37,40]. However, since the grayscale value of costal cartilage is similar
to some of other human tissues, the image of costal cartilage is difficult to be observed form
CT slices. In this thesis, a semiautomatic procedure was developed to reconstruct a rib cage
model, which was consisted of rib, costal cartilage and sternum. Moreover, according to
clinical observation, the lung volumes of PE patients were indeed increased after the Nuss
procedure. However, it is difficult to measure the increase of lung volume due to that the PE
patients can not receive CT scan after the implant of Nuss procedure. To conquer this problem,
we present two thoracic volume measurement procedures to estimate the increase of lung
volume with the FEA models. The increase of lung volume is estimated by measuring the

variation of intrathoracic volume.



Fig. 1-1 A 7-year-old boy with pectus excavatum.



Fig. 1-2 Pectus index.



Chapter 2. Genetic algorithm

2.1 Genetic algorithm

The genetic algorithm is one of the popular evolutionary algorithms. It is a programming
technique that mimics natural evolution to solve optimization problem. The GA begins with a
set of initial individuals called the population that represent the potential solutions of the
given problem. The population is used to represent the chromosomes and the potential
solutions are the individuals. During the evolutionary process, the potential solutions were
encoded as a bit string to simulate the gene of nature. At the beginning, several strings are
created randomly to form an initial population and a fitness function was defined to allow
each candidate to be quantitatively evaluated. As Darwin's theory of evolution, the population
is evolved generation after generation to search an optimal solution and historical information
is then exploited to speculate on new search points with expected performance during the
iteration [21]. Fig. 2-1 showed the flowchart of the traditional genetic algorithm.

GA searches an optimal solution based on the mechanics of natural selection and natural
gene. Before the GA procedure; several design parameters were created to characterize the
optimization problem and a fithess~function-was -defined to evaluate the solution. The
potential solutions were created with'the design parameters and coded as binary string to form
the initial population. Then the GA was performed to search a global optimal solution by

using several genetic operators, which were described below.

2.1.1 Coding

In order to perform the GA evolution with computational calculation, the population was
coded as binary string, suggested by Holland in his pioneering efforts [43], to simulate the
gene of nature. The length of each substring can be determined according to the interval of
each design parameter and the solution accuracy. Let a be a interval of design variable and the

solution accuracy is 0.001, then the length of each substring can be calculated as fellows

2" < ax1000 < 2" (1-1)



where n/ is the length of substring.

2.1.2 Initialization

At the beginning, several strings of individuals were created randomly to form an initial
population. The population size is always problem dependent. The usual choice of population
size is based on the conception that bigger population relates to better schema processing,
lesser chance of premature convergence, and better optimal results [17]. However, the
computational loading is increased in proportion to the population size. The general choice of

population size for conventional GA can range from 100 to 1000.

2.1.3 Selection

Selection operator is a process of deciding which chromosomes in the current population
will pass their solution information to the next generation. For a genetic algorithms
optimization process, the selection operator selects niot only the currently best chromosomes
but also some other chromosomes to avoid 4 local optimal solution. There are two popular
selection strategies, roulette wheel selection-and-tournament selection [44].

The roulette wheel selection (Fig: 2-2) is theclassical and simple selection scheme. As
shown in Fig. 2-2, the roulette wheel selection selected chromosomes based on their
probability. The probability was estimated as

= (1-2)

Pselection Z Fl

where Fi is the fitness value of /" individual. For the roulette wheel selection, individuals
with high fitness value will be selected more often than less fitness individuals, but it does not
guarantee that the fittest member goes through to the next generation.

For tournament selection (Fig. 2-3), a subpopulation of N individuals is chosen randomly
from the current population. Then the highest fitness of individual in the subpopulation wins
the tournament and becomes the selected individual. The tournament size (N) can be changed
to adjust the selection pressure. If the tournament size is larger, weak individuals have a

smaller chance to be selected. The benefits of the tournament selection are (1) efficient to



code and (2) easy to adjust the selection pressure.

Moreover, a so called “elitism” process was commonly adopted to select the better
individuals to pass to the next generation. The elitism process allows the better information to
pass to next generation to get better solutions over times. It is essential, mainly for small

population size.

2.1.4 Crossover

Crossover is a principal genetic operator for a genetic algorithm optimization procedure.
The selection operator selects several individuals to be the parents and the crossover operator
accepts a pair of parents’ solutions to generate two new individuals for the next generation
population (Fig. 2-4). Many variations of crossover have been developed and the simplest one
is one point crossover. As shown in Fig. 2-4(a), a cutting point was randomly selected in the
parents’ chromosomes and the portion of the chromosomes of parents following the cutting
point was changed to form two children: /Fhescutting point can be one or more than one point
(Fig. 2-4(b)). The selection of cutting point-number is always depended on the optimization

problem and population size.

2.1.5 Mutation

Mutation operator is analogous to biological mutation to avoid the loss of some
important genes and increase the variation of the individuals. The individuals of new
population were generated either directly copied or produced by crossover. In order to ensure
that the individuals are not all exactly the same, a mutation operator is adopted to add new
information into individuals occasionally. As shown in Fig. 2-5, one gene was selected
randomly and flipped (0 becomes 1, 1 become 0).

A very small mutation rate may lead to a premature convergence of the genetic algorithm
in a local optimum. A mutation rate that is too high may lead to loss of good solutions. In
order to avoid the premature or the loss of good solutions, a fluctuated mutation rate was
developed. A very small mutation rate was set in the beginning of optimization procedure to
avoid the loss of good information and the mutation rate was increased when the candidate

solution was convergenced to an optimal solution to avoid the premature.
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2.2 Micro-genetic algorithm

The standard genetic algorithm is successfully applied to many different applications
[21,22]. However, one major drawback is that the iterative global searching of the algorithm
is time consuming. It will be deteriorating when additional iterations are needed in the
smoothing procedure. There are many approaches to tackle this problem. For the genetic
algorithm practice, reduction of the population size is an effective way. For conventional GA,
the general choice of population size can range from 100 to 1000. This imposes a
considerable loading on the computational time. To trade-off, the micro-genetic algorithm
[17,20] 1s particularly adopted to accelerate the convergence of the conventional GA. The
MGA is similar to the GA that proceeds with binary coded population and employs the
selection and crossover operations to evolve population for generations, but with smaller
population size than conventional GA. It had been reported that MGA reaches near optimal
regions much earlier than the standard GA does [17]. Fig. 2-6 showed the flowchart of the
micro-genetic algorithm.

The micro-genetic algorithni is a  §mall“poptlation genetic algorithm. MGA uses a
micro-population of five individuals [17]. It.is well known that the GA works poorly with
small population size due to insufficient information-processing, which results in premature
convergence to local optimal solutions. For the MGA, the best individual is passed to the new
generation to ensure that the good individual'is held, and it requires multiple convergences.
The best individual of the old is remained and the others are randomly generated after each
convergence. This operation is used to add new information and avoid premature convergence,

and the mutation rate is set to zero.

11
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Chapter 3 Surface function reconstruction

In order to generate a proper surface mesh and ensure the geometrical accuracy of the
analytical model, the surface function is necessary during the surface mesh smoothing
procedures. In some previous articles, the mesh smoothing procedures were applied to
reposition the internal nodes on the plane (or tangent plane) of the primary elements, which is
C°-continuous [14,45]. It is based on an assumption that the primary surface elements were
well matched to the original surface. However, in this study, since the given data points may
be chosen irregularly, the primary surface elements, which were triangulated directly from the
given data points, may not match the original surface well. Therefore, in this study, a C'
continuous surface function reconstruction algorithm was adopted to ensure the geometrical
accuracy during the nodes repositioning.

There are many surface function reconstruction methods developed [23,46-51]. For a
finite element analytical model, a C'-continuous surface function is necessary for sufficient
numerical accuracy. Here, a C' triangulaf patéhsinterpolation method developed by Goodman
and Said [23] was adopted to reconstruct the surface function. It is a simpler and efficient
method for the surface function reconstruction. In this method, surface function is
reconstructed by local cubic Bezier triangular patches. The gradients of vertices are necessary
for this surface function reconstruction procedure. We adopted a local derivative estimation

method, which is also developed by Goodman'¢t al. [52], to calculate the gradients of vertices.

3.1 Gradient estimation

The gradients of surface nodes are calculated by the following approach: V' is a vertex

of a triangle and ¢,, i =1,...k are the triangles around V (Fig. 3-1). We denote g, as the

gradient of the plane of 7,. The gradient D, of the node V' is

D, =iﬂ’igi Zk:/li (3-1)
i=1 i=1

where A, is the inverse of the area of the triangle ¢,. In (3-1) the node V' is assumed to be

in the interior of the domain. If the node V' is on the boundary of a domain, such as that in

Fig. 3-2, the gradient D, ofthenode V is given by
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_ : (2/ﬂ“i+l/)’i,)gi_gi’/ﬂ“i :
D= ;Zl{ VA, +1 4 Zﬂi -2

i=1

which A is the inverse of the area of the triangle ¢/, and ¢/ is the triangle which shares the
common edge of triangle ¢, opposite to V.
The value of g, can be estimated as the following: Let (x;,y,,z;), j=12,3 be the

vertices of a triangle. Then the triangle can be written as
ox+ py+z+0=0 (3-3)

where «, f and y are the components of the normal vector of the triangle

a=y, =y )Nz —2,) = (2, = 2)(y; = ¥,)
B=(z, —z)(x; —x,) = (X, —x,)(z3 — 2,) (3-4)

7 =06 —x)(y;—y,) = (1, =y = x,)

Then the gradient can be calculated as

[z oz _(_a B 35
& (596’@} ( a ?/j -

3.2 Interpolation method

Consider a triangle 7 with vertices V,, V,, V, in barycentric coordinates u, v, w

such that any point on the triangle can be expressed as

V=ul, +vV, +wl;, u+v+w=1 (3-6)

to V

i+2

We denote by e, the side opposite the vertex V;, from V,

i+l

(see Fig. 3-3). A cubic

Bezier triangular patch is then defined as
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P(u,v,w) = u3b3’0,0 +3u’vb,  , + 3u2wb2,0,1 +3uv’h,, + 3uw2bl,0’2 + v3bo,3’0

+ 3vzwbo,2 + 3vwszl , + w3bo,0,3 + 6uvwbm (3-7)

where b, ; are the triangular Bezier control points of P . The derivative of P with respect
to the direction z =(z,,z,,z;)=z,V, +z,V, +z,V;, z, +z,+z, =0 is given by
oP oP
a—P:a—le —z,+—2z, (3-8)
0z oOu ov ow
We assume that function values F(V;) are given and its first partial derivatives can be

calculated from Section 3.2.1. Then the derivative along the side e, can be calculated by

oF oF oF
F, = = — X))+ Vi — Vi) (3-9)
Oe, ox oy

From the equation given above,"we can determine the coordinates of all the control points

b, ;. except b ,,. For example, following Equation (3-9) the three control points at vertex

V, can be decided as follows

b3,o,o =F1)
£,(00)
by o =F()+ 3 (3-10)
£,(00)
b2,0,1 =F) -
3
Similarly we can obtain another six control points.
Let n, be the inward normal direction to the edge e, (see Fig. 3-3). Then
n, = (Lh —1,-h)
ny, =(=hy,Lh, = 1)) (3-11)

ny = (hy —1,-hy.1)
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where

T" : i=123 (3-12)

Hence, by using Equations (3-7) and (3-11) we can define the normal derivative on e, as

oP

2 _3(b120 030 h1(021 030))V
n
+6(b1 1L b, 2.1 —h (bo,l,z _bo,2,1 ))vw (3-13)

+3 (b1,o,2 - bO,l,Z - h1 (bo,o,s - bo,1,z ))Wz

From (3-13), the linear normal derivative on e, is

2(b11,1,1 0,2,1 h’l (bo 1,2 0,2,1)) = (b1,2,0 0 3,0 h’l (bo 217 0,3,0))

= (1 - h1 )(2bo,2,1 = bo,a,o - b0,1,2 )) (3‘14)

Then

1
bll,l,l = E(bl,z,o + bl,o,z + hl (2b0,1,2 - b0,2,1 - b,

0,0,3)

+(A-h )(2bo,2,1 - b0,3,0 - bO,l,Z ) (3-15)
Similarly we can obtain 5], andbd; ;. Finally, the interpolation function can be defined as

P(u,v,w) = u3b3,0’0 + 3u2vb2’1,0 + ?auzwbm1 + ?auvzbm0 + 3uw2b1’0,2

3 2 2 3

+v b0,3,0 +3v wbo’z,l +3vw bo,l’2 +w bo’o’3 (3-16)
22711 212 2.213

VW 111+W”b111+”"b1,1,1

v2w2+wu +1/l V

+ 6uvw
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3.3 Geometrical accuracy comparison

The comparison of geometrical accuracy for the original C’-continuous and our
enhanced C'-continuous surface can be shown as follows: thirty-six points and triangulation

in Whelan [46] were chosen (Fig. 3-4) and two test functions (Fig. 3-5) were employed:

Fi(x,9)=0.75exp(~((9x = 2)" +(9y=2)")/4)
+0.75exp(=(9x +1)> /49— (9y +1)/10
+0.5exp(—((9x = 7)* +(9y —3)*)/ 4)
—0.2exp(—(9x—4)> =9y -7)%)

F,(x,y) = (1.25+co0s(5.4y)) /(6 + 6(3x —1)*)

The interpolated values of the test furctions at a’25x 25 uniform mesh points in a unit square
were computed and the maximum 'and mean errors. The computed surface errors were shown
in Fig. 3-6 and Fig. 3-7 for test function 1 and test function 2 respectively. The surface errors,
shown in Table 3-1, indicate ‘that ‘the=€'=continus surface is more accuracy than the
C’-continuous surface both on makimum and mean surface errors. Therefore, surface mesh
smoothing based on the reconstructed C' surfaces is beneficial to enhance the geometrical

accuracy of the analytical model.
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Fig. 3-1 Triangles in the triangulation.

Fig. 3-2 Node V on the boundary.
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Fig. 3-3 Notation of a triangle.

Fig. 3-4 Thirty-six points and triangulations.
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Fig. 3-5 (a) test function 1 and (b) test function 2.
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Fig. 3-6 Surface errors of test function 1: (a) C° surface and (b) C' surface.
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(a)
(b)
Fig. 3-7 Surface errors of test function 2: (a) C° surface and (b) C' surface.
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Table 3-1 Surface errors of the test functions for

0 1 .
C" and C’ surface reconstruction.

) C° surface C' surface
Test function
Max. error | Mean error | Max. error | Mean error
Fl(x, y) 0.215184 .£10:027594 | 0.120067 | 0.022945
F2(x,y) 0.059769 |_0.008789. | 0.035420 | 0.005101
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Chapter 4. Surface mesh smoothing

4.1 Mesh generation

4.1.1 Triangular mesh generation

In general, finite element surface mesh is generated based on prescribed patch
interpolation by adopting the Delaunay Triangulation [5] or Advancing Front Methods [6].
However, the generation of surface mesh based on unorganized points set is necessary in
some science and engineering fields, where geometrical data is often measured or generated at
isolated and unorganized positions, such as mentioned earlier of the biomedical research. In
this application, the given data is just the points set and the surface function is yet to be
defined. Therefore, the surface mesh can not be generated based on its surface function
directly. For this application, a common,way: to reconstruct the surface model is to triangulate
the given points [7-10]. The triangulation.procedute aims at generating a primary triangular
surface mesh as well as creating.background triangular patches for the use in surface function
reconstruction procedure. Furth€rmore, since the diStribution of the given points may be
irregular over the surface of the model; the primary triangular meshes always contain some
ill-posed triangles. Therefore, some mesh ¢leanup operations [53] were introduced to improve
the topological connectivity of the triangular meshes, and then MGA approach was applied to

enhance the mesh quality further.
4.1.2 Quadrilateral mesh generation

Once the primary triangular surface mesh was created, the quadrilateral surface mesh can
be generated based on the triangular one. The conversion scheme [4,45,54-56] was employed
to serve this purpose. It is a common and convenient way to generate an unstructured
quadrilateral mesh. The quadrilateral mesh was created by a careful process to merge two
adjoining triangles to form a quadrilateral element. However, the conversion scheme usually
introduces plenty of ill-posed quadrilaterals. To improve the mesh quality, a two-stage
procedure is required. First, mesh structure modification (topological improvement)
operations [57,58], such as edge swapping, node elimination and edge dividing, were

employed to refine the mesh connectivity. Then the mesh quality was further enhanced by
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applying the MGA approach.

4.1.3 Mesh structure modification operations

For the finite element mesh generation, the ideal numbers of elements connected to a
node are six and four for triangular and quadrilateral mesh respectively. Generally, the bad
nodes, which were connected with more than or less than the ideal number of elements, were
treated before mesh smoothing procedure. In this section, we presented three basic mesh

structure modification operations to tackle these bad nodes.
1. Edge swapping

This operator swaps an edge adjacent to two elements. It is used to adjust the number of
surrounding elements of the connected nodes. As shown in Fig. 4-1(a), the number of
elements connected to node a (V,) and node b (V) are seven, which are more than the ideal
number of triangular elements. Therefore, the interier edge was swapped to improve this mesh

structure. In Fig. 4-1(b), N, and N, are-five, which are more than the ideal number of
quadrilateral elements, and the interior edge (edge b_e) was swapped (edge ¢f ) to modify

this mesh structure.
2. Node eliminating

This operator eliminates nodes whose number of surrounding elements is less than the
ideal number. As shown in Fig. 4-2(a), N4 is three and it is an improper node. For this
situation, the node d is eliminated to exclude the improper node. Figure 4-2(b) shows the
improper node g with three surrounding quadrilateral elements and the mesh structure will be

improved by eliminated the improper node g.
3. Edge dividing

This operator divides edge by inserting a new node on the center of a long edge. In Fig.
4-3(a), the edge bd is longer than others. Then a node f was inserted to the center of edge
bd and the nearby edges were rearranged to improve the triangular mesh quality locally.
Similarly, the longest edge be in Fig. 4-3(b) was divided by inserting a new node g on the
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center and the elements connected to it were rearranged too.

There are many mesh structure modification operations presented in the previous articles
[53,57,58]. These operations were based on the three basic operations, edge swapping, node
elimination and edge dividing. Please refer to [53], [57] and [58] for the details of the mesh

structure modification operations.

4.2 Micro-genetic algorithm surface mesh smoothing

In this thesis, the given surface mesh was triangular mesh and/or converted the triangular
mesh into quadrilateral mesh. The surface mesh was first refined by the mesh structure
modification operators [53,57,58], and then the MGA mesh smoothing procedures were
applied to enhance the surface mesh quality further. The procedures of our surface mesh
smoothing and the MGA adopted in our scheme were summarized as follows:

Step 1) Input data: Input the data of primary, mesh, which includes surface function, node
positions and element connectivity:-If the surface function is not given, the gradients
of nodes will estimated by the gradients estimation procedures [52].

Step 2) MGA mesh smoothing begins:
Step 3) Search the optimal solutions within each adjacent element by using Step 4 to Step 7
and then choose the best one to be the new position of the node.

Step 4) Initial population: The MGA requires multiple convergences. According to the
reference [17], a population size of five is chosen in each convergence. The best
individual of the previous generation will be held. The others are generated
randomly.

Step 5) Decode the strings and calculate their node positions based on the reconstructed
surface function (Section 3.2). Calculate their fitness values and then carry the best
string to the next generation.

Step 6) Select four strings (contains the best string) for reproduction by employing the
roulette wheel strategy [21]. Generate four individuals by employing the crossover
operator with probability of one [17].

Step 7) Check the convergence criterion. If it is not convergence, go to step 5 or else go to
step 3 or step 4.

Step 8) Go to step 2 to smooth next node until the end of the smoothing.
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Step 9) Check the convergence of the whole mesh smoothing procedures. If it is not

convergence, go to step 2 or else end off the smoothing procedures.

4.2.1 Design parameters

In the MGA mesh smoothing procedures, the design parameters were chosen to represent
the nodes position. In order to avoid degenerate elements, the search space was restricted

within a triangular area for each adjacent element in both triangular and quadrilateral mesh
smoothing. To represent a node lay on a triangle, we choose two parameters 7, and r,,
which relate to the barycentric coordinates as the following: Consider a triangle 7 (Fig. 4-4)

with vertices V|, V, and V, in barycentric coordinates u, v and w, such that any point

on the triangle can be expressed as

V=uV,+vV, +wl,, u+v+w=1 (3-17)

Now, with 0<r,<I, i=1,2, the bdrycenttic coordinates can be given as

u=n(l-r)+A-n)1-r)=1=x
v=r(-r) (-18)

wW=nr,

Substituting (3-18) into (3-17), we get

V=0-r)V,+r,d-n)V, +nnV, (3-19)

As shown in Fig. 4-4, the vertices V;, V, and V, are collinear when r,=1. To avoid

that, we let 0<r,<0.5. After the position of point /' is obtained, the exact position is

calculated by mapping it to the original surface based on its corresponding triangular patch

and the local reconstructed surface function (Section 3.2).

4.2.2 Fitness function
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In this study, the fitness function is a criterion to judge the mesh quality and defined with
the mesh quality measurement index. For the triangular mesh quality measurement, the

common used quality index is

a=23— IABxACY (3-20)
[ AB " +[| BC || +[| AC]|

where 4, B, C are the vertices of a triangle. According to this mesh quality measurement,

the fitness function for the triangular mesh smoothing F, is defined as

F=a, (3-21)

where 7 1is the number of adjacent triangular elements.

For the quadrilateral mesh quality measurement, Knupp [59] presented an algebraic
mesh quality metrics from the Jacobian matrix. The definition of quadrilateral shape quality
metric is as follows: for a plane quadrilatetal element, let the coordinates of the four nodes be

(x,,¥,), k=0,1,2,3. The Jacobian matrices, 4, , one at each node of the quadrilateral:

X —X X — X
Ak :[ k+1 k k+3 k} (3_22)
Yiet =V Vs = Wk

where the indices k+1 and k+3 are taken modulo four, for example, if k=1 then k+3
becomes 0. Four metric tensors are obtained by the combinations 4, 4, . Let /15. ,i,7=1,2,be
the ij th component of the kth metric tensor. Geometrically, at the kth node, 4, is the
square of the length of the side connecting nodes k and k+1, A3, is the square of the

length of the side connecting nodes k and k+3. Let 6, be the angle between the two

sides joined at the kth node, the quadrilateral shape quality metric can be expressed as

B= 8
Zi:o(”'”f)/(rk sind,)

(3-23)
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where 7 =44, /4, is the length ratio of k™ node. This concept can be extended to

measure quadrilateral surface mesh quality directly. Then the fitness function for the

quadrilateral mesh smoothing F, is defined as

F,=Y5 (3-24)

where n is the number of adjacent quadrilateral elements.

4.3 Surface mesh smoothing results

The proposed approach is tested in several unorganized point datasets. A simple
geometry of saddle shape with prescribed surface function is used to validate the procedure
and to compare the performance of our MGA approach and the conjugate gradient method
(Table 4-1). It is then applied to coniplicated geometries, such as wing-fuselage, which is
often used in preliminary aircraft'designy and bielogical dataset of shapes of a foot and a rat,
which are constructed from contours by a-three dimmensional laser scanning and from a
sequence of segmented bio-images respectively. The/geometrical reconstruction of bio-images
is a crucial pre-processing for physical modeling in biology and biomechanics. So, the
applications are used to demonstrate not only the effectiveness but also the practical use of
our approach. In order to show the capability of our MGA mesh smoothing approach, all of
the smoothed results are obtained by smoothing the primary meshes directly without any
additional mesh treatment. The mesh quality is measured according to the Section 4.2 that the
triangular mesh quality index is « and the quadrilateral mesh quality index is . The results
are summarized in Table 4-2 and 4-3 for triangular and quadrilateral surface meshes
respectively. Significant enhancement is found by our approach. Furthermore, in the Table 3-4,
the worst quadrilateral mesh quality is set as 0.0001, which represents that one of theinterior
angle is greater than 179° and the codes are run in Linux PC with a dual core AMD 2 GHz
CPU and 3 GHz RAM.

The first example is a basic mathematical function of saddle shape (Fig. 4-5), which
allows us to scrutinize the performance of the approach. The surface function is denoted as

the following:

32



z=x2/10-y* /4 (3-25)

The saddle shape surface, unlike the usual well-behaved elliptic shape, has negative
curvature, which is appealing to be used as a test case for the surface smoothing [60]. The
triangular surface mesh is generated based on Delaunay triangulation and the quadrilateral
surface mesh converted from the triangular mesh (Section 4.1). The performance of MGA can
be observed by comparing with that of the conjugate gradient method in the saddle shape. The
Table 4-2 shows that the improvement of the mean quality of triangular mesh reaches to
0.9562 and 0.9509 by both approaches, but the CPU time of our MGA approach is
approximate five times of the conjugate gradient method. This is one drawback of GA, but
can be easily tackled by parallelism and there are several parallel GA [24] developed with
great success. The approach is similarly employed to the quadrilateral mesh. Our quadrilateral
meshes are generated using a popular conversion scheme or fission scheme [4,45,54-56]. The
conversion scheme essentially merges two neighboring triangles to form a new quadrilateral.
This method may introduce ill-posed quadrilaterals, and needs further treatments [57,58] for
practical use. The Table 4-3 shows thatthesimproyvement of mean quality of quadrilateral
mesh reaches to 0.8736 and 0.9001. by employing the conjugate gradient method and our
MGA approach respectively. It is clear/that'our performance as a global method achievement
for mesh quality improvement< is better than."the conjugate gradient method. The
enhancements of the mesh quality can be‘alsowvisually observed from Fig. 4-5 and Fig. 4-6 for
triangular and quadrilateral surface mesh respectively.

The following example is a complicated geometry of wing-fuselage configuration of
NCKU-ILD-101 [61]. Such kind of geometrical model is often used in CFD simulation for
aircraft preliminary design. The usual practice for generating a surface mesh for such a
geometrical model is based on a pre-defined patch interpolation. The current data is prepared
from a point datasets that is well generated by usual mesh generation methods of Delaunay
triangulation. The point datasets are deliberately reduced from 9,962 points to 1,314 points,
but the feature of the geometry is carefully preserved by using AMIRA [62]. The reduction
makes mesh so coarse that it is difficult to maintain quality for simulation. However, it is well
suited to test the performance of the current MGA procedure. The points at the edges and
joints have to be marked and fixed to avoid singularity during the smoothing. The results are
shown in Fig. 4-7 and Fig. 4-8 for triangular and quadrilateral meshes respectively. The
improvement is significant, which can be seen from the quality indices measured in Table 4-2

and 4-3. The mean quality index of triangular mesh is enhanced from 0.8483 to 0.9046. It is
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well known that quadrilateral mesh is less stiff than triangular mesh and allows more degrees
of freedom to move the mesh to change the shape of elements. As a result, it needs more
smoothing treatments after generating the surface mesh. Our results show significant
improvement in terms of worst and average property measured within elements. The mean
and worst qualities are enhanced from 0.6982 to 0.8580 and 0.0001 to 0.4215 respectively.

Due to the advance of image processing, geometry reconstruction and mesh generation,
nowadays larger and more complicated geometry models can be reconstructed from a
sequence of bio-medical images data set. The need for such reconstruction is immense and it
has become a common practice for bio-medical and bioengineering study. By scrutinizing the
reconstruction procedure for such geometry models, it can be found that the surface geometry
is usually defined by a set of unorganized points, or at least by a sequence of un-associated
contours, that is identified by pattern recognition methods on each image of interest. The
surface triangulation is not straightforward. It is even more challenging for surface mesh
quality enhancement in that the re-arrangement of the point distribution needs higher order
interpolation methods for accuracy. Tweo test cases are given to demonstrate the capability of
the proposed methods for tackling these challenging issues.

The first example is the foot shape model of Polhemus [63]. The original model was
created by using FastSCAN with the FastRBF Extensions. The surface data points are
measured by the laser scanner FastSCAN, and then the data points are reconstructed to form
the geometrical model by the software! FastRBF Extensions. It is a very convenient and
efficient way to reconstruct a geometrical model, especially when the surface function is not
pre-defined, by using a laser scanner system. In this study, the original foot model contains
25,845 nodes. Similarly the original data points are reduced to 4,039 and it contains 8,000
triangles on the surface. Our MGA approach constructs a high order interpolation and
iteratively optimizes the point distribution in terms of local evolution. The triangular mesh
quality was enhanced as expected from0.8275 to 0.9192 (Fig. 4-9). The original surface mesh
obtained is actually well defined. However, the current approach can still give further
enhancement of the mesh quality. For systematical comparison, the quadrilateral mesh is
generated and smoothed in a similar fashion. The results of obvious improvement are as
expected that the surface quadrilaterals are more regular after the MGA approach (Fig. 4-10).
This also can be readily observed from the mean quality, which is improved from 0.7049 to
0.8632 (Table 4-3).

The last case is a rat shape that is reconstructed from a sequence of image slices of

histological sections from Ryutaro Himeno of RIKEN [64]. The original reconstructed model
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contains skin, bone, organs and so on, and it can help people to observe the whole model of
rat virtually without dissect a real rat. This approach can be used to reconstruct more models
of biology. In this study, we extract the skin model and reduce it by using AMIRA. As shown
in Fig. 4-11, this model contains 25,670 nodes and 51,354 elements. The reconstructed shape
is rough and irregular and the primary surface mesh contains many poor triangles elements.
Some of the nodes connect to 3 elements and others connect to more than 9 elements. The
poor connectivity is treated first by the mesh structure modification operators [53,57,58]. To
avoid interpolation error, the singular points, which locate at the boundary or contain large
curvature variation, need be identified and fixed before the surface mesh smoothing. The
MGA procedure is then used to re-construct surface interpolation function and to smooth the
mesh by optimizing the point distribution. The result is shown in Fig. 4-11(b) and the mean
mesh quality improved from 0.8963 to 0.9453. The similar improvement for quadrilateral

mesh can be found in Fig. 4-12 and Table 4-3.
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Fig. 4-2 Node eliminating: (a) triangular elements and (b) quadrilateral elements.
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Table 4-1. The comparison between conjugate gradient method

and MGA method using the saddle geometry.

) Number | Number | Worst | Mean CPU
Method Object ) ) ]
of node | of element | quality | quality | time(sec)
Conjugate .
. Triangular 0.6834 | 0.9562 | 0.8000
gradient 601 1104
saddle mesh
MGA 0.4591 | 0.9509 | 3.8199
Conjugate .
. Quadrilateral 0.4099 | 0.8736 | 0.8400
gradient 597 548
saddle mesh
MGA 0.5696 | 0.9001 | 2.3199

Table 4-2. Mesh quality improvement for the triangular surface meshes.

Obiect Number | Number | Worst Mean CPU
ec
! of node | of element:| quality | quality | time(sec)
original Wing- 0.2535 | 0.8483
1419 2432 3.0500
smoothed | fuselage 0.2535 | 0.9046
original 0.3803 | 0.8275
Foot 4039 8000 23.8200
smoothed 0.3469 | 0.9192
original 0.2225 | 0.8963
Rat 25670 51354 150.0509
smoothed 0.2460 | 0.9453

Table 4-3. Mesh quality improvement for the quadrilateral surface meshes.

Obiect Number | Number | Worst Mean CPU
ec
! of node | of element | quality | quality | time(sec)
original Wing- 0.0001 | 0.6982
1405 1200 4.1000

smoothed | fuselage 0.4215 | 0.8580
original 0.0001 | 0.7049

Foot 4010 3971 19.6400
smoothed 0.4111 | 0.8632
original 0.0001 | 0.7568

Rat 25374 25383 88.8099
smoothed 0.2553 | 0.8899
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MGA smoothing; and (c) Surface mesh after conjugate gradient smoothing.

39



(©)
Fig. 4-6 Quadrilateral surface mesh of saddle: (a) Original surface mesh; (b) Surface mesh

after MGA smoothing; and (c) Surface mesh after conjugate gradient smoothing.
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Fig. 4-11 Triangular surface mesh of rat: (a) Original surface mesh; (b) Surface mesh after
smoothing; (c) Original surface mesh (enlarged); and (d) Surface mesh after

smoothing (enlarged).
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Chapter 5. Pectus excavatum repairs

5.1 Pectus excavatum repairs

In 1949, Ravitch presented a technique of pectus excavatum repairing by using bilateral
costal cartilage resection and sternal osteotomy [29]. It is a classic surgical repair of pecuts
excavatum, which involves bilateral costal cartilage resection and sternal osteotomy technique.
Fonkalsrud et al. [65] presented a highly modified Ravitch repair (HMRR), which was
performed with minimal costal cartilage resection technique. As shown in Fig. 5-1, a
transverse inframammary incision with upward curvature was made midway between the
nipples, and a short vertical extension in the midline was made to expose the superior sternum.
Short cautery incisions (1.0-1.5 cm) were made through the perichondrium of deformed costal
cartilages adjacent to the sternum; a 1.0 to 1.5 cm incision was made laterally near or beyond
the costochondral junction where the chest wall was at the highest level. Short segments of
cartilage (1.0-1.5 cm) were resected medially and laterally from each of the deformed ribs. A
transverse wedge osteotomy was-made across the.anterior table of the sternum at the desired
level and then sutures were placed across the osteotomy. Finally, a thin stainless-steel bar was
placed under the depressed sternum to elevate-the sternum and attached to the appropriate rib
on each side with fine wire (Fig. 5-2). Please refer to [25] and [65] for the details of this
highly modified Ravitch repair.

In 1998, a minimal invasive pectus excavatum repair (MIRPE or Nuss procedure) was
presented by Nuss ef al [30]. In this procedure, one pre-bent metal bar (pectus bar) was placed
under the depressed sternum thorough bilateral thoracic incisions to elevate the depressed
sternum. The Nuss procedure performed a PE repair without costal cartilage resection and
sternum osteotomy. Because the incisions were small (about 2 cm) [66] and were located on
bilateral midaxillary line, the PE patients underwent the Nuss procedure obtained good

cosmetic result and the Nuss procedure became an attractive option for PE repair.

5.2 Nuss procedure

In 1987, Dr. Donald Nuss, a pediatric surgeon at Children’s Hospital of the King’s
Daughters in Norfolk, Virginia, developed a new technique for the correction of pectus

excavatum, now known as the minimal invasive PE repair or Nuss procedure [30]. The Nuss

49



procedure performed a PE repair by inserting a pre-bent metal bar under the depressed
sternum to correct the anterior deformation. As shown in Fig. 5-3, the pectus bar was bent to
match a desired shape, which was decided by surgeon.

In a Nuss procedure, two lateral incisions were made on either side of the chest, which
were located on bilateral midaxillary line. A clamp was passed through the bilateral thoracic
incisions under the sternum to create a tunnel for the pectus bar. Then the clamp clipped a
strand, which was tied to a pectus bar, to guide the pectus bar across the chest through the
bilateral thoracic. The pectus bar was placed with the concave side anteriorly and then the bar
was forcibly turned over to elevate the depressed sternum to the desired position [Fig. 5-4].
During the operation, a separate, small lateral incision was made to allow for a thoracoscope
for direct visualization as the clamp and the bar were passed under the sternum. A lateral
stabilizer plate was routinely placed on the left hand side of the pectus bar to secure to ribs
[Fig. 5-5], and the right hand side of the pectus bar was secured to the lateral chest wall
muscles. Finally, the incisions were closed and dressed, and the bar was hidden from the
outside. The bar was left after 2 or more,years,.depending on the severity of the deformity and
the age of the patients.

Complications of the Nuss procedure are uncommon. One of the frequent complications
of the postoperative of this procedure is ait-1n the chest (pneumothorax) and it usually requires
no treatment besides some serious symptoms. The benefits of this procedure are shorter
operating time (less than 90 minutes), low blood loss (less than 80ml), short hospitalization
stay (4-5 days) and low rate of complications [65]. The inconvenience is that it need

reoperation to leave the pectus bar after 2 or more years
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perichondrium

Fig. 5-1 A transverse inframammary incision with upward curvature was made midway
between the nipples, and a short vertical extension in the midline was made to expose the

superior sternum [65].
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Fig. 5-3 The pectus bar is pre-bent to match a desired shape [66].
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Fig. 524 Nuss procedure [25].

Fig. 5-5 Pectus bar is secured to ribs with a stabilizer plate [67].
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Chapter 6 Finite element analysis and thoracic

volume measurement

6.1 Patient-specific finite element models

Awrejcewicz and Luczak presented a simplified finite element model, which contained
rib, sternum, costal cartilage and Nuss implant, to investigate stress distributions on the
human thorax for an impact load [37]. In their research, a force of 5000 N, which was
generated by a car-to-car frontal collision, was applied to the center of sternum. However,
according to the ref. [39], the force requirement to raise the sternum of pectus excavatum,
who were males and aged 5-17 years, was only 181+48.3 N. The impact force applied to the
sternum was 27.62 times the force to raise the sternum of pectus excavatum. Moreover, since
the biomechanical analysis of the PE patients after the Nuss procedure was not been presented
before, there did not exist confirmed simplified finite element model can be used to perform
this FEA work. In order to confirm the simulation. results, we developed the finite element
biomechanical analysis with five patient-specific. finite element models and the simulated
results showed that their biomechanical changes after the Nuss procedure were similar.

Five symmetric type of PE "patients [34]-were carefully chosen to eliminate the factors
due to asymmetric configuration of thejchest- wall for our analysis. Their personal information
was shown in Table 5-1. In the previous work [42], the rib cage model contained sternum, ribs,
costal cartilages and vertebral column. According to the clinical observation, the vertebral
column was not immediate deformation after the Nuss procedure. In order to reduce the
computational loading, the created rib cage model contained the ribs, costal cartilages and
sternum, and the vertebral column was not considered here, which was similar to ref. [37].

For the reconstruction of the rib cage model, there is one serious problem occurred that
the image of costal cartilage was indistinct on CT slices. As shown in Fig. 6-1 (a), the
automatic segmentation results, which were segmented by the AMIRA [62], contained many
islands and the segments of costal cartilage were incomplete. In order to overcome this, a
semiautomatic procedure was developed to reconstruct the rib cage model. First, the CT slices
were imported into AMIRA and the original segments of the rib, sternum, and costal cartilage
were labeled automatically by assigning respective grayscale values. Then, the islands were
eliminated and the segments of costal cartilage were modified manually (Fig. 6-1(b)). Since

the image of costal cartilage was indistinct, the modifications of segments relied on
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professional experience of researchers. Therefore, it is not suitable to perform a great cases
simulation and we will keep on working to overcome this problem. After the segment
modification, the rib cage model was reconstructed by connecting these segments and the
finite element models were generated with tetrahedral element by employing the AMIRA.
Due to the surface mesh of the rib cage model was coarse, the surface function, which was
reconstructed based on the triangular surface elements, was not suitable to perform a surface
mesh smoothing. The MGA surface mesh smoothing procedure [3] was not adopted to
improve the surface mesh quality of rib cage model.

A convergence test was performed to confirm the simulated accuracy of mesh by
comparing the simulated results of six rib cage meshes (Table 6-2). The convergence criterion
is that the difference of the corrected displacement of the end of the sternum was less than 1%.
The convergence test curve was shown in Fig. 6-2, and the final choice was that the finite

element model consisted of approximately 320,000 tetrahedral elements.

6.2 Finite element analysis

Five FEA models were created to perform the. biomechanical analysis of the PE patients
after the Nuss procedure. The material properties of-bone and cartilage were based on the
work of Yang and Wang [68]. An elastic modulus. of 11.5GPa was chosen for the ribs and
sternum, while 12.25 MPa was assumed for the pectus costal cartilages, which is about half of
the value for normal cartilage, as suggested by Feng et al. [69].

For the Nuss procedure, the concave side of the pectus bar was placed under the sternum
through bilateral thoracic incisions and then forcibly turned around to raise the depressed
sternum. After the sternum was raised, several forces were generated on the chest wall and on
the pectus bar. As shown in Fig. 6-3, the pectus bar provided an elevating force (Fe) to raise
the depressed sternum and a reaction force (Fr) was generated on the contact area of pectus
bar. Simultaneously, two support forces (Fs) were applied to the pectus bar around the two
intercostals exits to preserve the equilibrium of forces generated on the pectus bar.
Furthermore, the intercostals muscle, located on the two exits, supplied support forces (Fs) to
the pectus bar and the forces were transmitted to the ribs above and below the exits, called rib
support forces (Fsr). Although these forces can not be measured directly from the operative
patient during a Nuss procedure, it is reasonable to assume that they are equally distributed
and the total of the rib supporting forces should be equivalent to the elevating force, i.e. Fe =

2 Fs = 4Fsr. The locations of Fe and Fsr were observed during the operation. As shown in Fig.
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6-4, the forces Fe and Fsr were applied to the corresponding positions and the displacement of
the joints (head and tubercle of rib [70]) between the ribs and the spine was assumed to be
rigid. Moreover, the actual upward displacements of the end of the sternum were measured
from each patient’s CT scan which was taken before the Nuss procedure and chest X-ray films
after the Nuss procedure. These displacements of the five PE patients were shown in Table
6-1.

Based on these assumptions, the FEA procedure was developed using ANSYS 9.0
software (ANSYS Inc.) and the finite element models were meshed with ANSYS solid 185
tetrahedral element. The large displacement static solver on ANSYS was adopted due to the
large correcting displacements of the finite element models. Since the forces of Fe and Fsr can
not be measured directly, each finite element model was analyzed several times with different

force sets to obtain the equivalent correcting displacement of the end of sternum.

6.3 Thoracic volume measurement

Lung volume increase of PE patients;after-the implant of Nuss procedure is an interesting
problem. According to clinical ebservation, the lung: volumes of PE patients are increased
after a Nuss procedure. However, it is/difficult.to estimate the lung volume variation due to
that the pectus bar will seriously degrades image quality of CT, particularly near the surface
of the bar. In order to investigate the pulmonary function improvement of PE patients after a
Nuss procedure, the lung thoracic volume change is a significant index.

In this thesis, we created five simplified rib cage models, which consisted of ribs,
sternum and costal cartilages, to perform the finite element biomechanical analysis of PE
patients. Since these simplified models did not contain the lung model, the lung volume could
not be measure directly. In order to treat this, we provided an alternative way to estimate the
lung volume by measuring the intrathoracic volume or the thoracic volume. According to
human anatomy, the lungs are located on the lateral sides of the thoracic cavity, above the
intrathoracic (Fig. 6-5) [71]. It is reasonable to assume that the increased intrathoracic volume
is filled principally with lung. Therefore, the increase of lung volume can be estimated by
measuring the increase of intrathoracic volume.

In this thesis we present two methods to measure the intrathoracic volume and thoracic
volume. The first method is intersection method and the other is surface approximation
method. The intersection method was used to measure the intrathoracic volume and the

surface approximation method was used to measure the thoracic volume.
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6.3.1 Method 1: intersection method

As shown in Fig. 6-4, the finite element models presented here were constituted only ribs,
sternum and costal cartilage, the intrathoracic volume can not be measured directly from this
model. To overcome this problem, we developed a program to compute the intersection
between a set of planes and the finite element model. These planes are parallel and with
equidistance (about 2.6mm) along the longitudinal axis of the model (Fig. 6-6), from the apex
of the lung to the dome of the diaphragm. The intersection points in the plane were drawn in a
picture (512x512 pixels). Fig. 6-7 shows the intersection points between the plane and the
pre- and post-operation finite element models. These pictures were then imported into
AMIRA to establish the intrathoracic volume. Finally the volume difference between the two
models was calculated. The calculated volume difference is estimation to the final total

difference of the intrathoracic volume.
6.3.2 Method 2: surface approximation method

Surface approximation is a common procedure to-generate a surface to approximate a set
of sampling points [72-80] and there 15 a brief introduced by Fasshauer and Schumaker [78].
Generally, surface approximation is used to generate.a surface to approximate all of the given
point set. In this thesis, we present a”particular application that the approximated surface is
like the skin envelope to lay on the outside of a human rib cage model, which is constituted
with the ribs, sternum, costal cartilages and vertebral column. The approximated surface was
constructed by employing the C' continuous Ferguson’s bicubic surface [81].

In this surface approximation procedure, a cylinder surface, which was consisted of
nxm Ferguson’s bicubic patches, was first constructed to surround the rib cage model
along the longitudinal axis of this model (Fig. 6-8). The parameters n and m represented
the number of patches along the longitudinal axis and along the circle of this model
respectively, and the total number of the key-points was (n+1)xm. Then the cylinder
surface was converged by moving the key-pints along the radial line toward the central axis
to approximate the rib cage model. The flow chart of the surface approximation procedure
was shown in Fig. 6-9.

As shown in Fig. 6-9, the surface approximation procedure was an iterative process that

each key-point was moved with a decided step along the radial line toward the central axis. As

the rib cage model was cut in by the approximated surface, this key-point was returned to the
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preceding position and held. After all of the key-points were held, the step was reduced and
then the convergence procedure was restart again until converged. During the surface
approximation procedure, a distance detecting process was used to detect the distances
between the approximated surface and the sampling points. In this process, the sampling
points were projected to the approximated surface along the radial line and the intersected
points of the radial line and the approximated surface were calculated by adopting the
Newton-Raphson method [82].

As shown in Fig. 6-4, the gapes between the ribs and the hole near the abdominal cavity
were large and there was not sampling point located there. This status resulted in a serious
concave shape of approximated surface. According to the observation of a human body, the
surface near the abdominal cavity is flat or convex. In order to generate a skin envelope-like
approximated surface, several additional treatments were applied to overcome these problems.
For some key-points located outside the abdominal cavity, there was not sampling point to
bound them during the surface approximation procedure. To treat this problem, an additional
treatment was applied as following: To,deteet. these singular key-points, each surface patch
was divided into four regions unifermly. As;shown'in Fig. 6-10, there was not sampling point
located in the regions surrounded the key-point 7. and the key-point / was marked to be a
singular key-point. Then a connection was created between the key-point / and its closest
key-point (/ — 1), which was not marked, along the circle. As the key-point / — 1 was bounded
during the surface approximation procedure, the key-point / was bounded simultaneously. The
approximated results showed that this treatment can avoid the concaves generated on the
abdominal cavity.

Moreover, the number of patches plays a crucial role in surface approximation. In
general, larger number of patches relates to higher accuracy of approximated result. However,
since the gapes between the ribs and the hole near the abdominal cavity were large, the
number of patch should be carefully chosen to avoid the generation of an inappropriate
approximated surface. According to our approximated results, the dense patches will result in
a skinny surface and the sparse patches will induce a poor accuracy of the approximated
surface. Figure 6-11(a) showed a skinny surface consisted of 26 x28 Ferguson’s patches and
Fig. 6-11(b) showed an approximated surface consisted of 6 X10 Ferguson’s patches.

As described above, a denser surface patches will result in a skinny surface. The causes
were that some key-points were located on the gapes of intercostal, and they were fallen into
the intercostals during the surface approximation procedure. Even the number of patches was

reduced to 16x16, there were several incorrect concaves generated on the approximated
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surface (Fig. 6-12(a)). According to the clinical observation on the PE patients, the concave
shape was appeared on the anterior chest wall (around the end of sternum) and the shape near
the intercostals was flat along the longitudinal axis. Therefore, we applied a smoothing
process to adjust the radial distance between the key-points and the central axis.

For this smoothing process, all of the key-points were smoothed excepte the key-points
located on the upper plane, lower plane and around the end of the sternum. The smoothed
key-points called selected key-points were smoothed with their neighbor key-points along the
longitudinal axis, and their height (z-coordinate) was not varied during the smoothing process.

The smoothing process was performed as following: Let L, be the perpendicular distance
between the original position of P, (x,y) and the central axis (O(x,y)). The new distance

L, between the central axis and the new position P/;(x,y) was calculated as

i+1

Y|P, () -0, y)

L= 3 Jf iy > L

L = ,i=2,nandj=1,m (6-1)

ij
3 !
L . sHAbE Xk,

The key-point F,; was shifted when the'new displacement L, was longer than the original
displacement L, ; to avoid the approximated surface to cut in the rib cage model. Since the

smoothing process was applied before the surface approximation procedure, this adjustment
will not affect the accuracy of the approximated result. Figure 6-12(b) showed that the
smoothing process was beneficial to reduce the generation of incorrect concaves on the
approximated surface.

After the approximated surface was generated, the following process was to measure the
thoracic volume. According to Mckinley and O’Loughlin [70], the lungs are located on the
lateral sides of the thoracic cavity and ranged from the intrathoracic to the apex. The apex is
located near the first thoracic vertebra and the intrathoracic is near the end of the sternum.
Therefore, the measurement of thoracic volume was ranged from the end of sternum to the
first thoracic vertebra.

For the measurement of thoracic volume, the upper and lower bound of the measurement

range were assumed to be a plane. According to Faux and Pratt [81], the volume of a closed
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parametric surface can be calculated as a volume of pyramid. As shown in Fig. 6-13, the

surface area of the element ABCD can be calculated as

or o
a=|[ (éx a_’v’]dudv (6-2)

Since the volume of the pyramid is equal to one third of the surface area times the height, the

volume V subtended by ABCD at the origin O is approximately

y=Lf (@ —jd i (6-3)

where R is the region of the u, v plane. Moreover, the upper and lower planes were divided
into several triangular elements and the volume subtended by each element at the origin O

was calculated as a pyramid directly.

6.4 Results
6.4.1 Finite element analysis results

Five finite element models of PE patients were analyzed by employing the ANSYS.
Since the elevating force and support forces can not be measured from the operative PE
patients directly, each model was simulated several times with different force sets. The first
set of elevating force was 20 N and increased with 20 N per time until the displacement of the
end of sternum was equivalent to the corrected displacement. The simulation results were
shown in Table 6-1 and Fig. 6-14 shows the relationship between elevating force and the
displacement of the end of sternum. Fonkalsrud et al. [38] reported that 4 children with pectus
who are younger than 11 years old will require a force about 15.3 pounds (68.058 Newtons) to
raise the sternum to the normal position. The force required in correction of Pectus excavatum
was also measured by Weber et al. [39]. For male patients, aged 5-17 years, the force was 181
+48.3Newtons. The amount of force in our simulation is quite similar to these two studies.

As shown in Fig. 6-14, the increasing of displacements are alleviative after the elevating
forces are greater than 60N. It may be an import information for the surgeon to weigh the

correcting displacement for the PE repair. Figure 6-15 shows the deformation with different
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elevating force (patient one). Figure 6-16 shows the stress distribution of the first model under
a load of 140 N. It is apparent that there are greater stresses generated on the back and
concentrated on the third through seventh ribs, near the vertebral column. It is an import
phenomenon that it may be the cause of some complications for the PE patients underwent a
Nuss procedure, such as back pain [67,83] and thoracic scoliosis [32].

Figure 6-17 shows the simulation result of the strain of the first model. The greater strain
was focused on the third to seventh cartilages, especially at the junction with the sternum and
ribs, bilaterally. Figure 6-18 shows the variations of strain along the right fifth costal cartilage
and rib. In Fig. 6-18, the position is represented the sidelong distance from the center of
sternum to the right fifth rib. The measured points were selected from the sternum (0~0.95
cm), the right fifth costal cartilage (0.95~6.35cm) and part of the right fifth rib (6.35~7.46cm).
According to the measured data, the maximum strain occurred on sternum and rib is 0.0005
and the minimum strain occurred on costal cartilage is 0.034. It is apparent that the variation
of strain on the two joints (sternocostal joint and costochondral joint [70]) present severe
variations. The simulation results of the:stress, and strain distribution were similar in other
patients, as presented in Table 6-1,

Since there is no removal of any costal cartilage-during a Nuss procedure, the elevating
force applied to the sternum will-generate-a corresponding stress that is conducted through the
sternum, cartilage, and ribs to the entire'chest wall:/As shown in Fig. 6-17, the greater strain is
occurred on the costal cartilage and focused on the joints of the cartilage with the
corresponding bony rib and sternum. This result matched our expectations. However, as
shown in Fig. 6-16, there are greater stresses generated on the back and concentrated on the
third through seventh ribs bilaterally, near the vertebral column. It is important that the strain
of costal cartilage was greater than the strain of ribs, but the generated stress on the ribs was
greater than costal cartilage. In Fig. 6-17, the greatest strain on the costal cartilage was 0.93,
while the strain on the bony rib was about 0.01. Thus, the strain on the costal cartilage was 93
times higher than that on the rib. The elastic modulus of a rib and costal cartilage are 11.5
GPa and 12.25 MPa, respectively, i.e., the elastic modulus of the rib is 938 times higher than
that of the costal cartilage. Based on the fundamental elasticity equation o = E¢, where o, E,
and ¢ are the stress, modulus of elasticity, and strain of the mechanical parts under study
respectively [84], it makes sense that greater stress was generated on the rib of the patients
than on the cartilage.

Moreover, the generated stress on the chest wall of postoperative PE patients may induce

some complications. If the transmitted stresses were imbalance, it may be induce some
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complications, such as back pain [67,83] and thoracic scoliosis [32]. If the pectus bar was

implanted into a wrong position, slipped or flipped, the imbalance state may be occurred.

6.4.2 Thoracic volume measurement results

1. Intersection method

Five finite element models were analyzed to obtain their corrected shapes after the Nuss
procedure and the finite element models were employed to measure the variation of lung
volume. As described above, the lung volume was estimated by measuring the increase of
intrathoracic volume. Figure 6-19(a) shows the intrathoracic volume of the first patient before
the Nuss procedure. Table 6-1 and Fig. 6-19(b) shows the intrathoracic volume after the Nuss
procedure. Figure 6-20 shows the measured results of the five patients and the intrathoracic
volume of the five patients are increased about 2.72% to 8.88%. We believe that the increased
volume can relax the pressure of the heart and lung, and improve the PE patients’ breath
behavior substantially. In Fig. 6-20, the increasing of volumes is alleviative when the
elevating forces are great than 60N and it-is:similar to Fig. 6-14. It may be an import signal

for the PE patients repair.

2. Surface approximation method

One 7 years pectus excavatum patient, the second patient on Table 6-1, was used here to
measure her thoracic volume changes before and after a Nuss repair. The approximated
surface was consisted of 16%16 Ferguson’s bicubic patches and the approximated results are
shown in Fig. 6-21 and Fig. 6-22. Figure 6-21(a) shows the rib cage model of before the Nuss
procedure. In Fig. 6-21(b), the approximated surface of preoperative model, the funnel chest
is appeared around the end of sternum and it is similar to the PE patients. The thoracic volume
of the preoperative model was measured as Fig. 6-21(c) and the thoracic volume is measured
to be 1885.809cm3. Figure 6-22(b) shows the approximated surface of postoperative model
(Fig. 6-22(a)) and the thoracic volume of the postoperative mode was estimated to be
2129.294cm3 (Fig. 6-22(c)). Therefore the thoracic volume of the postoperative PE patient is
increased about 12.91%.

As shown in Fig. 6-21(b) and Fig. 6-22(b), the approximated surfaces are smooth but

there are several incorrect concaves appeared near the top and the foot of the models. The
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generation of the incorrect concaves is due to the great holes around the abdominal cavity and
above the sternum. The approximated results indicate that it needs more treatments to

improve the approximated results.

In this thesis, we present two methods to measure the intrathoracic volume and thoracic
volume of pre- and postoperative PE patients. According to the measurement results, the
intrathoracic volume and thoracic volume of the second patient were increased about 5.05%
and 12.91% respectively. It is a huge difference between the measured results. The cause of
this error is that the approximated surface does not fit the rib cage model very well. It has

room to improve.
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Table 6-1 Five pectus excavatum patients information.

of intrathoracic (%)

Case 1 Case 2 Case3 | Case4 Case 5
Sex/Age *M/8 *F/7 M/7 M/6 M/5
Pectus Index 53 4.7 5.2 3.7 3.6
Elevation of the end of
4.47 3.40 3.99 3.54 3.75
sternum (cm)
Simulation results:
1.simulation
displacement of the 4.49 343 4.00 3.55 3.79
end of sternum (cm)
2.Loading force at
140 120 190 80 70
sternum end (N)
3. **Max. stress (MPa) | “ifgs 90.6 | 3325 | 377 54.5
4. Max. strain
0.93 1.20 1.04 0.65 0.59
5. Increasing volume
) . N 89.98 54.63 29.76 54.24 107.04
of intratoracic (cm”)
6. Increasing volume
6.09 5.05 2.72 4.43 8.88

*M:male F:female

** Max.: Maximum
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(b)

Fig. 6-1 Segment on AMIRE: (a) automatic segments and (b) modified segments.
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Table 6-2 Corrected displacement of six rib cage meshes.

Number of elements | 97939 | 170660 | 223522 | 269163 | 320519 | 443470
Corrected displacement | 4.304 | 4.370 | 4.417 | 4.462 | 4490 | 4.519
Mean difference (%) 1.5381 | 1.064 | 1.035 | 0.619 | 0.649
2 —
S}
S 1.5
5
£ 17
=
g 05 -
g
0
0 100000 200000 300000 400000 500000

Fig. 6-2 Convergence test.

number of elements
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Fig. 6-3 Reaction forces applied to a pectus bar.

Fig. 6-4 Boundary conditions of a FEA model.
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Fig. 6-5 Major internal structures of human [71].
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Fig. 6-6 Cutting plane.
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Fig. 6-7 Segment of intratoracic volume: (a) original and (b) deformed.
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Fig. 6-8 Original cylinder.
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Fig. 6-9 Flow chart of surface approximation procedure.
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Fig.6-10 Singular key-point identification.



(b)

Fig. 6-11 (a) Skinny surface with 26 x28 patches (b) 6x 12 patches.
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(b)
Fig. 6-12 Approximated surface consisted of 16x 16 Ferguson’s bicubic patches
(a) without smoothing (b) smoothing.
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Fig. 6-13 Volume calculation of a pyramid.
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Fig. 6-14 The relationship between elevating force and the

displacement of the end of sternum.
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Fig. 6-15 Deformation with different elevating force (patient one).
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Fig. 6-16 Stress distribution of patient one with an elevating force 140N.
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Fig. 6-18 Variation of strain of patient one along the right fifth costal cartilage
and rib with an elevating force 140N.
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Fig. 6-19 Intrathoracic volume (a) original and (b) after Nuss procedure.
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(©)

Fig. 6-21 (a) rib cage model of pre-operative PE patient (b) approximated surface
(c) thoracic volume measurement(1885.809cm’).



(b)
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C

Fig. 6-22 (a) rib cage model of postoperative PE patient (b) approximated surface
(c) thoracic volume measurement(2129.294cm’).
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Chapter 7 Conclusions

The purposes of this thesis are focused on the finite element biomechanical analysis,
which contains surface mesh optimization and biomechanical analysis of Nuss pectus
excavatum repair. We present an evolutionary procedure, which integrates the micro genetic
algorithm and a C' surface function interpolation method, applied to surface meshing on a set
of unorganized points. Original surface meshes are generated based on Delaunay triangulation
or reduced from the original models. Quadrilateral meshes are generated via the conversion of
the triangular meshes and elementarily modified by the mesh structure modification operators.
A C' interpolation function is constructed using the primary local elements to ensure the
surface geometrical feature is preserved. The meshes are then smoothed using the
micro-genetic algorithm on the reconstructed high order surface elements. The procedure is
then tested in complicated and large-scale point datasets. The results show that the procedure
successfully achieves better surface meshing with mesh quality significantly enhanced for
different kinds of practical applications:

Generally, the generation ofsurface mesh.is based on a pre-defined surface function,
either in parametric patches or i algebraic form. In this study, the given data of model is just
a set of unorganized points. In this situation, the majot problem of surface mesh generation is
of the mesh smoothing. As mention above, the given points are first triangulated to form a
triangular mesh and/or converted them "mto quadrilateral mesh, and then surface mesh
smoothing procedure is applied to improve the mesh quality. A MGA mesh smoothing
procedure is adopted in this study, which allows us to avoid the calculation of search direction
and step size and to enable a global search for optimum. Furthermore, a C' surface function
interpolation method is integrated into the MGA mesh smoothing procedure to ensure the
geometrical accuracy of models during the surface mesh smoothing.

The extensions of the proposed method are to enhance the efficiency of MGA and the
accuracy of the reconstructed surface functions. The MGA as one of the GA methods is by
nature well suited to parallelization. Therefore, our further enhancement will be in
performance issues of parallelism. The accuracy of the reconstructed local interpolation
functions on surfaces determines the baseline of the accuracy of the entire model. Higher
order interpolation methods can be further developed to serve the purpose.

For the biomechanical analysis of the pectus excavatum repair, the simulation results

indicated the stress and strain distributions on the chest wall for PE patients after a Nuss
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procedure. It is considerable that the generated stress may induce some complications. In Fig.
6-15, the anterior chest wall is a plane with 40N elevating force and the shape with 80N is
similar to normal shape. However, the corrected displacement of this patient is 4.47 cm and
the shape is like a pectus carinatum. We consider that it is over correction. Since the shape of
the pectus bar was decided by surgeon based on personal experience and made in the surgery
directly. The shape of pectus bar was made without any scientific computation and sometimes
the corrected results do not fit the surgeon’s expectation. Therefore, over or under correction
is periodically occurred during the Nuss procedure. This thesis presents a procedure not only
to estimate the distribution of stress and strain but also to predict the corrected shape of PE
repair. The simulation results can be used to design an optimal shape of pectus bar for PE
repairing.

For the measurement of lung volume, we present two thoracic volume measurement
methods to estimate the lung volume changes of the pre- and post-operation PE patients. The
presented methods are preliminary investigation to measure the intrathoracic volume and
thoracic volume. The cause of the hugedifference between the measured results is that the
approximated surface does not fit the rib eage model very well. It need more modifications to
improve the accuracy of the surface approximation procedure.

Moreover, this finite element biomechanical analysis of PE patients under a Nuss
procedure was performed with many Simplified -assumptions, such as simplified rib cage
model and the applied load of elevating and reaction forces. These assumptions may influence
the accuracy of simulated results. The complexity of the interaction of the spine, the muscles,
and the skin all should be considered to provide a more precise calculation. After perfecting
the FEA model, we expect that our simulation will help to customize the Nuss procedure
preoperatively, i.e., by designing the optimal pectus bar shape that gives the best shape
correction, while minimizing the stress and strain. The point of the best elevation for the
pectus bar, and whether two bars should be chosen instead of one, can also be estimated

preoperatively.
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