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Efficiency and effectiveness for non-storable commodities represent two distinct dimensions and a joint
measurement of both is necessary to fully capture the overall performance. This paper proposes two
novel integrated data envelopment analysis (IDEA) approaches, the integrated Charnes, Cooper and
Rhodes (ICCR) and integrated Banker, Charnes and Cooper (IBCC) models, to jointly analyze the overall
performance of non-storable commodities under constant and variable returns to scale technologies.
The core logic of the proposed models is simultaneously determining the virtual multipliers associated
with inputs, outputs, and consumption by additive specifications for technical efficiency and service
effectiveness terms with equal weights. We show that both ICCR and IBCC models possess the essential
properties of rationality, uniqueness, and benchmarking power. A case analysis also demonstrates that
the proposed novel IDEA approaches have higher benchmarking power than the conventional separate
DEA approaches. More generalized specifications of IDEA models with unequal weights are also
elaborated.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Data envelopment analysis (DEA) is a technique for measuring the relative efficiency of decision making units (DMUs) which produce
similar products. Measures of both technical efficiency (a transformation of factors to production) and service effectiveness (consumption
of production) for storable commodities are essentially the same because the commodities, once produced, can be stockpiled until con-
sumed. Nothing will be lost throughout the transformation from production to consumption if one assumes that all the stockpiles are even-
tually sold, there is no storage cost, and there is no loss incurred. Namely, conventional measures for storable commodities assume perfect
sale and no storage cost effectiveness. However, technical efficiency and service effectiveness for non-storable commodities, such as trans-
port services, represent two distinct measurements because one can never store the surplus service during periods of low demand (off-
peak hours) for use during periods of high demand (peak hours). When such non-storable commodities are produced and a portion of
which are not concurrently consumed, the technical effectiveness (a joint effect of both technical efficiency and service effectiveness)
would be less than the technical efficiency. To explain this concept, Fielding (1987) first introduced three performance measures for a pub-
lic transit system by defining technical efficiency as the ratio of production to factors, service effectiveness as the ratio of consumption to
production, and technical effectiveness as the ratio of consumption to factors as depicted in Fig. 1. As shown in Fig. 1, once the transport
production (e.g. seat-miles) is transformed from such factors as labor, vehicle, and fuel, seat-miles must be consumed immediately by the
passengers; otherwise they are exhausted and wasted. Thus, both technical efficiency and service effectiveness should be jointly evaluated
to account for the portion of seat-miles not utilized in practice. The technical effectiveness depends not only on how well the production
(seat-miles) is transformed from the factors but also on how well the consumption (passenger-miles) is transformed from the production.
Any poor performance of transport services can be attributed to either poor technical efficiency or poor service effectiveness or a combi-
nation of both. Without separation of technical efficiency and service effectiveness measurements, it is difficult to scrutinize the sources of
poor performance. In other words, to assess the system performance for non-storable commodities, it would become more informative if
one could have jointly analyzed the efficiency and effectiveness measurements.
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Fig. 1. Distinctive performance measurements for transport service. Source: Revised from Fielding (1987).
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Over the past three decades, various DEA models have been widely used to evaluate the technical efficiency or technical effectiveness of
decision making units (DMUs) in different organizations or industries. In transport performance evaluation, numerous applications of DEA
have also been found in various fields, including airline (e.g. Schefczyk, 1993; Charnes et al., 1996; Sengupta, 1999; Alder and Golany,
2001), airport (e.g. Salazar de La Cruz, 1999; Joseph, 2000; Martin and Roman, 2001; Adler and Berechman, 2001), maritime (e.g. Tongzon,
2001; Cullinane et al., 2006), transit (e.g. Nolan, 1996; Kerstens, 1996; Viton, 1998; Cowie and Asenova, 1999; Odeck and Alkadi, 2001;
Nolan et al., 2002; Karlaftis, 2003, 2004; Boame, 2004; Sheth et al., 2007; Margari et al., 2007), and railway (e.g. Oum and Yu, 1994; Cowie,
1999). Most of these works, however, merely evaluated the performance from the perspective of technical efficiency or technical
effectiveness.

In order to completely and fairly evaluate the relative performance of non-storable transport services, several recent works have em-
ployed various DEA approaches to evaluating the efficiency and effectiveness. In general, they can be divided into four categories: sep-
arate DEA model (hereinafter, SDEA; e.g. Karlaftis, 2004; Chiou and Chen, 2006), separate two-stage DEA model (hereinafter, STDEA; e.g.
Rousseau and Rousseau, 1997; Lan and Lin, 2003; Keh et al., 2006), network DEA model (hereinafter, NDEA; e.g. Yu and Lin, 2008; Yu,
2008; Kao, 2009), and integrated two-stage DEA model (hereinafter, ITDEA; e.g. Kao and Hwang, 2008; Chen et al., in press; Chen et al.,
2009). The SDEA employs independent DEA models to measure technical efficiency, service effectiveness, and technical effectiveness
separately. Hence, paradoxical improvement strategies were usually generated based on the results of these independent DEA models.
To overcome this shortcoming, the STDEA uses an input-oriented DEA model to evaluate the technical efficiency and an output-oriented
DEA model to assess the service effectiveness, holding the output level unchanged. Although the STDEA model will not generate con-
flicting improvement strategies, it suggests the organization be divided into two independent departments: production and sale, such
that the performance of one department is not interrelated with that of the other department. This is of course not exactly true from
the organizational perspective. The lack of interrelated performance among different departments may be solved by the NDEA or ITDEA
modeling. However, due to the complexity of the modeling, the scale economy and slack values for each DMU are hard to compute by
the NDEA model, proposed by Yu and Lin (2008) and Yu (2008), which is only applicable to the case of constant returns to scale. The
ITDEA model proposed by Chen et al. (in press) can be applied to both technologies of constant and variable returns to scale, and the
scale economy and slack values can easily be computed as well. However, for the ease of transforming the objective function into a lin-
ear form, the ITDEA model sets rather restricted weights proportional to the relative contributions of inputs, outputs and consumption in
association with their corresponding virtue multipliers. This would lead to difficulties provided that the organization would value the
weights differently across the departments. Strictly speaking, the weights should represent the relative importance of efficiency and
effectiveness valued by the evaluator or the decision maker, and they should remain unchanged in evaluating all DMUs. To further rec-
tify this shortcoming, this paper develops integrated DEA (IDEA) models which jointly evaluate the non-storable commodities’ efficiency
and effectiveness. In fact, the pioneering IDEA concept was proposed and tested in our early work (Chiou et al., 2007). The present study
further extends the IDEA models to generalized IDEA models. Moreover, important underlying properties of the proposed models are
also proven. In this paper, we also demonstrate the applicability and superiority of our proposed IDEA models and generalized IDEA
models.

The rest of the paper is organized as follows. The formulation of the IDEA models under constant and variable returns to scale contexts is
proposed in Section 2. The essential properties—rationality, uniqueness, benchmarking power—are proven in Section 3. To demonstrate the
applicability of the proposed IDEA models and to compare the benchmarking power with the conventional SDEA models, a case analysis is
presented in Section 4. Generalized IDEA approaches with unequal weights are further elaborated and analyzed in Section 5. Finally, con-
cluding remarks and suggestions for future studies are addressed.

2. Model formulation

DEA is a method for measuring the relative efficiency of DMUs that perform similar tasks. A DEA model under constant returns to scale
(CRS) context was developed by Charnes et al. (1978, CCR model hereinafter). A DEA model under variable returns to scale (VRS) context
was later developed by Banker et al. (1984, BCC model hereinafter) based on the CCR model by adding the convexity constraint. To simul-
taneously measure the efficiency and effectiveness for non-storable commodities with avoidance of the above mentioned shortcomings,
this paper proposes two integrated DEA approaches under CRS and VRS contexts, which are termed as integrated CCR (ICCR) model and
integrated BCC (IBCC) model, respectively. The formulation of the proposed ICCR and IBCC models is given below.
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2.1. Integrated CCR model

The proposed integrated CCR model [ICCR] aims to maximize the technical efficiency and service effectiveness by simultaneously solv-
ing for virtual multipliers corresponding to factor, production, and consumption variables under CRS assumptions. The model is formulated
as follow:
½ICCR� Max
u;v;w

Hk ¼
PR

r¼1urykrPJ
j¼1v jxkj

 !
þ

PS
s¼1wszksPR
r¼1urykr

 !
ð1Þ

s:t:
XR

r¼1

uryir 6
XJ

j¼1

v jxij; i ¼ 1;2; . . . ; I; ð2Þ

XS

s¼1

wszis 6
XR

r¼1

uryir ; i ¼ 1;2; . . . ; I; ð3Þ

v j P 0; j ¼ 1;2; . . . ; J; ð4Þ
ws P 0; s ¼ 1;2; . . . ; S; ð5Þ
ur P 0; r ¼ 1;2; . . . ;R; ð6Þ
where Hk 2 ½0;2� represents the overall efficiency score of DMU k. If Hk equals to two, the DMU is defined relatively efficient; otherwise the
DMU is relatively inefficient. xkj represents the jth input of DMU k. ykr denotes the rth output of DMU k. zks represents the sth consumption of
the DMU k. The variables v j;ur ;ws are corresponding virtual multipliers of the jth input, the rth output, and the sth consumption. I; J; S;R are
the number of DMUs, inputs, outputs, and consumption, respectively.

Adding slack to each constraint, [ICCR] can then be reformulated as [ICCR-S]:
½ICCR-S� Max
u;v;w

Hk ¼
PR

r¼1urykrPJ
j¼1v jxkj

 !
þ

PS
s¼1wszksPR
r¼1urykr

 !
ð7Þ
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� �
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XS
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v j P 0; j ¼ 1;2; . . . ; J; ð10Þ
ws P 0; s ¼ 1;2; . . . ; S; ð11Þ
ur P 0; r ¼ 1;2; . . . ;R: ð12Þ
For a given production ðyirÞ, [ICCR-S] model can be expressed as:
½ICCR-S� Max
u;v;w

Hk ¼
XR
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urykr

 ! XR
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v j xij � sij
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; i ¼ 1;2; . . . ; I; ð15Þ

XS

s¼1

ws zis þ sisð Þ ¼
XR

r¼1

uryir ; i ¼ 1;2; . . . ; I; ð16Þ

v j P 0; j ¼ 1;2; . . . ; J; ð17Þ
ws P 0; s ¼ 1;2; . . . ; S; ð18Þ
ur P 0; r ¼ 1;2; . . . ;R: ð19Þ
With the optimal virtual multipliers, the technical efficiency, service effectiveness and technical effectiveness of DMU k can be, respectively,
calculated as follows:
hk ¼
PR

r¼1u�r ykrPJ
j¼1v�j xkj

 !
; gk ¼

PS
s¼1w�s zksPR
r¼1u�r ykr

 !
; and ok ¼

Ps
s¼1w�s zksPJ
j¼1v�j xkj

 !
:

Based upon the optimal slack values, we can determine the amount of inputs to be curtailed or the amount of consumption to be added
or promoted to achieve efficiency.

2.2. Integrated BCC model

The above ICCR model can be easily extended to an integrated BCC model [IBCC] by simply adding the convexity constraint, which is
expressed as:
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½IBCC� Max
u;v ;w

PR
r¼1urykr � u0PJ

j¼1v jxkj

 !
þ
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s¼1wszks � u1PR
r¼1urykr � u0

 !
ð20Þ

s:t:
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r¼1
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v j P 0; j ¼ 1;2; . . . ; J; ð23Þ
ws P 0; s ¼ 1;2; . . . ; S; ð24Þ
ur P 0; r ¼ 1;2; . . . ;R: ð25Þ
3. Properties of the proposed models

In what follows we prove the ICCR and IBCC models exhibiting three essential properties: rationality, uniqueness and benchmarking
power.

3.1. Rationality property

3.1.1. Rationality of ICCR
According to Charnes et al. (1978), the efficiency of any DMU is obtained as the maximum of a ratio of weighted outputs, subject to the

condition that the similar ratio for every DMU be less than or equal to unity. Since the proposed ICCR model is to maximize two aspects of
efficiency values, the overall efficiency value should be less than or equal to two. The measure of the efficiency of any DMU can also be
obtained in a similar way. Mathematically,
½ICCR0� Max
u;v;w

PR
r¼1urykrPJ
j¼1v jxkj

 !
þ

PS
s¼1wslksPR
r¼1urykr

 !
ð26Þ

s:t:
PR

r¼1uryirPJ
j¼1v jxij

6 1; i ¼ 1;2; . . . ; I; ð27Þ

PS
s¼1wslisPR
r¼1uryir

6 1; i ¼ 1;2; . . . ; I; ð28Þ

v j P 0; j ¼ 1;2; . . . ; J; ð29Þ
ws P 0; s ¼ 1;2; . . . ; S; ð30Þ
ur P 0; r ¼ 1;2; . . . ;R: ð31Þ
Let E0r ¼
xR
xr

and E00r ¼ lr
lR

respectively represent the technical efficiency (ratios of inputs at a given output) and service effectiveness (ratios
of consumption at a given output), where xR is the minimum input that can produce the given output and xr is the actual input being rated
from the same output. Likewise, lR is the maximum consumption that can be generated from the given output and lr is the actual consump-
tion being rated from the same output. The overall efficiency can be calculated as Er ¼ E0r þ E00r ¼

xR
xr
þ lr

lR
. Essentially, 0 6 Er 6 2.

Alternately, we can also derive the overall efficiency, Er , of our proposed ICCR as follows. For any given output y,
Max
u;v;w

hr ¼
uyr

vxr
þwlr

uyr
ð32Þ

s:t:
uyR

vxR
6 1; ð33Þ

uyr

vxr
6 1; ð34Þ

wlR
uyR
6 1; ð35Þ

wlr
uyr
6 1; ð36Þ

u;v ;w P 0: ð37Þ
Let u�;v�;w� represent the optimal triplet of corresponding values. As xR 6 xr ; lR P lr and yR ¼ yr ¼ y imply u�yr ¼ u�yR ¼ v�xR and
u�yr ¼ u�yR ¼ w�lR, we then have the following results and relationships:
Technical efficiency ¼ u�yr

v�xr
¼ u�yR

v�xr
¼ v�xR

v�xr
¼ E0r;

Service effectiveness ¼ w�lr

u�yr
¼ w�lr

u�yR
¼ w�lr

w�lR
¼ E00r :
Thus, ho ¼ u�yr
v�xr
þ w� lr

u�yr
¼ E0r þ E00r ¼ Er .
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No matter which alternatives are adopted, the efficiency scores determined by the ICCR model are proven to possess an essential prop-
erty of rationality 0 6 Er 6 2, because the optimal values of ICCR model have satisfied the definition of efficiency.

3.1.2. Rationality of IBCC
The proposed IBCC model can be expressed as follow:
½IBCC0� Max
u;v;w

PR
r¼1urykr � u0PJ

j¼1v jxkj

 !
þ

PS
s¼1wslks � u1PR
r¼1urykr � u0

 !
ð38Þ

s:t:
PR

r¼1uryir � u0PJ
j¼1v jxij

6 1; i ¼ 1;2; . . . ; I; ð39Þ

PS
s¼1wslis � u1PR
r¼1uryir � u0

6 1; i ¼ 1;2; . . . ; I; ð40Þ

v j P 0; j ¼ 1;2; . . . ; J; ð41Þ
ws P 0; s ¼ 1;2; . . . ; S; ð42Þ
ur P 0; r ¼ 1;2; . . . ;R: ð43Þ
Similar to the measure of efficiency in the ICCR model, we can derive the overall efficiency from the IBCC model as follows:
Max
u;v

hr ¼
uyr � u0

vxr
þwlr � u1

uyr � u0
ð44Þ

s:t:
uyR � u0

vxR
6 1; ð45Þ

uyr � u0

vxr
6 1; ð46Þ

wlR � u1

uyR � u0
6 1; ð47Þ

wlr � u1

uyr � u0
6 1; ð48Þ

u;v ;w P 0: ð49Þ
Let u�;v�;w�;u0;u1 represent the optimal set of corresponding values. As xR 6 xr ; lR P lr and yR ¼ yr ¼ y imply
u�yr � u0 ¼ u�yR � u0 ¼ v�xR and u�yr � u0 ¼ u�yR � u0 ¼ w�lR � u1, we can then obtain the following relationships:
Technical efficiency ¼ u�yr � u0

v�xr
¼ u�yR � u0

v�xr
¼ v�xR

v�xr
¼ E0r ;

Service effectiveness ¼ w�lr � u1

u�yr � u0
¼ w�lr � u1

u�yR � u0
¼ w�lr � u1

w�lR � u1
¼

w� lr � u1
w�

� �
w� lR � u1

w�
� � ¼ lr � u1

w�

lR � u1
w�
;

0 < Service effectiveness ¼
lr � u1

w�

lR � u1
w�
< 1; where u1 is a scale variable:
When u1 > 0, the result of lr > lr � u1
w� can be obtained, suggesting that the inputs for DMU r should be reduced to reach its optimal scale.

When u1 ¼ 0, the result of lr ¼ lr � u1
w� can be obtained, suggesting that DMU r is already at its optimal scale. When u1 < 0, the result of

lr < lr � u1
w� can be obtained, suggesting that DMU r needs to expand to reach its optimal scale.

In conclusion, the efficiency scores determined by the IBCC model have been proven to exhibit an essential property of rationality. Addi-
tionally, the IBCC model can further indicate the improving direction of each DMU to reach its optimal scale.

3.2. Uniqueness property

3.2.1. Uniqueness of ICCR
To show the uniqueness of the joint efficiency measurement of the ICCR model, we have to prove that the virtual multipliers of u, v, and

w determined by the ICCR model are a global optimum, not a local optimum. Technically, we examine the concavity or convexity of the
objective function as well as of the feasible region for this nonlinear programming problem. Concavity and convexity establish necessary
conditions for optimality and the Karush–Kuhn–Tucker (KKT) conditions establish sufficient conditions.

For simplicity, without loss of generality, the mathematical model of [ICCR-S] is examined under the case of a single variable for each of
the three stages of the model: input, output and service. Since all the constraints in [ICCR-S] are linear, the feasible set defined by these
constraints is definitely convex. The bordered Hessian matrix of objective function of [ICCR-S] can be derived as:
H ¼
0 0 �y�1lu�2

0 2x�1yv�3u �x�1yv�2

�y�1lu�2 �x�1yv�2 2y�1lu�3w

�������
�������;
where the signs of the first, second and third leading principal minors of H are H1j j 6 0; H2j jP 0 and H3j j 6 0, indicating that the bordered
Hessian is negative semi-definite and the objective function is a concave function. In other words, the sufficient conditions for a global max-
imum are proven.
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3.2.2. Uniqueness of IBCC
For simplicity and without loss of generality, the mathematical model of [IBCC-S] is also examined under the case of single variable in

three aspects of input, output and service. Likewise, the bordered Hessian matrix of objective function of [IBCC-S] can be derived as:
Table 1
Summa

Item

Median
Std. De
Max
Min
H ¼

0 0 0 l uy� u0ð Þ�2 �yl uy� u0ð Þ�2

0 2x�1v�3 uy� u0ð Þ 0 x vxð Þ�2 �xy vxð Þ�2

0 0 0 � uy� u0ð Þ�2 y uy� u0ð Þ�2

l uy� u0ð Þ�2 x vxð Þ�2 � uy� u0ð Þ�2 2 wl� u1ð Þ uy� u0ð Þ�3 �2y wl� u1ð Þ uy� u0ð Þ�3

�yl uy� u0ð Þ�2 �xy vxð Þ�2 y uy� u0ð Þ�2 �2y wl� u1ð Þ uy� u0ð Þ�3 2y2 wl� u1ð Þ uy� u0ð Þ�3

��������������

��������������
;

where, the signs of principal minors of H are H1j j 6 0; H2j jP 0; H3j j 6 0; H4j jP 0 and H5j j 6 0, indicating that the bordered Hessian is neg-
ative semi-definite and the objective function is a concave function. In other words, the sufficient conditions for a global maximum are
proven.

3.3. Benchmarking power property

The benchmarking power of DEA models, in this study, is defined as ‘‘the fewer number of efficient DMUs, the higher the benchmarking
power of the model.” To show the benchmarking power of the IDEA model, we have to prove that the performance score evaluated by the
IDEA model is lower than or equal to that evaluated by the conventional DEA model. On the other hand, if the IDEA model rates a DMU as
overall efficient, the conventional DEA model should also rate the DMU as both ‘‘technically efficient” and ‘‘service effective.”

Let u�T ; v�T and u�S;w
�
S represent the optimal set of virtual multipliers determined by the conventional DEA models in aspects of technical

efficiency and service effectiveness, respectively. Assuming that DMU R is evaluated as technical efficiency and service effectiveness by the

conventional DEA models, implying that hTR ¼
u�T yR

v�T xR
¼ 1 and oSR ¼

w�S lR
u�

S
yR
¼ 1. Two cases are discussed. First, if u�T ¼ u�S , then DMU R will be also

evaluated as overall efficient by optimally setting v�I ¼ v�T ;u�I ¼ u�T ¼ u�S, and w�I ¼ w�S, then HR ¼
u�I yR

v�I xR
þ w�I lR

u�I yR
¼ u�T yR

v�T xR
þ w�S lR

u�
S
yR
¼ 2. If u�T – u�S , due to

the uniqueness property of the proposed IDEA and conventional DEA model, u�T yR

v�T xR
>

u�I yR

v�T xR
, if u�I – u�T and w�S lR

u�
S
yR
>

w�S lR
u�I yR

, if w�I – w�S. Thus, for the case

of v�I ¼ v�T ;u�I ¼ u�T ;w
�
I ¼ w�S;HR ¼

u�T yR

v�
T

xR
þ w�S lR

u�
T

yR
< 2 and for the case of v�I ¼ v�T ;u�I ¼ u�S;w

�
I ¼ w�S;HR ¼

u�SyR

v�
T

xR
þ w�SlR

u�
S
yR
< 2. It can be concluded that the

proposed IDEA model exhibits higher benchmarking power than the conventional DEA models.

4. Application

The main contribution of this study is to develop the novel IDEA approaches and to prove the theoretical properties exhibited in the
proposed ICCR and IBCC models. To further demonstrate the applicability and superiority of our proposed IDEA models and to compare
the benchmarking power with the conventional SDEA models (more specifically, SCCR and SBCC models associated with CRS and VRS tech-
nologies), a real case analysis from Taiwanese intercity bus companies is conducted.

4.1. Data

Currently, there are 39 intercity bus companies in Taiwan. We take these bus companies as our case analysis. Potential variables of two
factor variables (number of buses and operating network), two production variables (number of bus runs and bus-km) and four consump-
tion variables (operating revenue, number of passengers, passenger-km and average number of on-board passengers per run) are consid-
ered; all of these data are available from the annual report published by Ministry of Transportation and Communications. Table 1 presents
the descriptive data of these variables. To select important and relevant variables, regression analyses are further conducted by respectively
regressing production variables on factor variables and consumption variables on production variables, respectively. The results are pre-
sented in Table 2. Note that all the explanatory variables have shown positive and significant effects on at least one of the associated depen-
dent variables, suggesting the appropriateness of the above variables selected.

4.2. Efficiency scores

The optimal virtual multipliers corresponding to all variables are determined by the proposed IDEA approaches, ICCR and IBCC models,
which jointly measure the overall efficiency scores of each bus company under CRS and VRS respectively, and by the SDEA approaches,
ry of descriptive data for the case of 39 Taiwanese intercity bus companies in 2007.

Factor variable Production variable Consumption variable

Number
of buses

Operating
network (km)

Number of
bus runs

Vehicle-km Operating revenue (NT) Number of passengers Passenger-km Average number of
on-board passengers
per run

24 92 37,526 1,852,906 40,062,094 441,581 19,311,871 13.30
v. 208 1,666 243,305 39,782,472 700,333,679 4,530,141 588,420,076 4.44

1,083 7,810 1,266,527 126,078,237 3,574,792,434 26,330,194 2,217,682,256 17.59
4 65 3,866 297,875 2,272,480 26,056 2,114,183 2.33
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SCCR and SBCC models, which separately measure the efficiency scores of each company under CRS and VRS respectively. Table 3 compares
the efficiency scores under CRS by ICCR and SCCR models; whereas Table 4 compares the scores under VRS by IBCC and SBCC models.
Table 3
Scores of overall and individual efficiencies for each company under constant returns to scale.

DMU ICCR model SCCR model

Overall efficiency Technical efficiency Service effectiveness Technical effectiveness Technical efficiency Service effectiveness Technical effectiveness

1 1.464 0.572 0.892 0.510 0.573 0.916 0.579
2 1.555 0.570 0.985 0.561 0.699 1.000* 0.993
3 1.410 0.767 0.643 0.493 0.799 0.809 0.587
4 1.531 0.830 0.701 0.582 0.830 0.726 0.671
5 1.174 0.393 0.781 0.307 0.414 0.818 0.440
6 0.823 0.153 0.670 0.102 0.574 0.704 0.570
7 1.597 0.636 0.961 0.611 0.673 1.000* 1.000*

8 1.045 0.105 0.940 0.099 0.569 1.000* 0.328
9 0.679 0.266 0.461 0.121 0.285 0.456 0.175

10 1.976 1.000* 0.976 0.976 1.000* 0.976 1.000*

11 1.666 0.754 0.912 0.688 0.754 1.000* 1.000*

12 1.644 0.683 0.961 0.656 0.696 1.000* 0.891
13 1.933 1.000* 0.933 0.933 1.000* 1.000* 1.000*

14 1.634 0.634 1.000* 0.634 0.668 1.000* 0.884
15 1.518 0.771 0.747 0.576 0.772 0.851 1.000*

16 1.627 0.761 0.866 0.659 0.761 0.869 0.695
17 1.157 0.505 0.652 0.329 0.539 0.808 0.574
18 1.423 0.764 0.659 0.504 0.764 0.659 0.685
19 1.832 1.000* 0.832 0.832 1.000* 0.832 1.000*

20 1.836 0.890 0.946 0.842 0.902 1.000* 0.971
21 1.362 0.623 0.738 0.460 0.651 0.820 0.642
22 1.776 0.985 0.791 0.779 1.000* 0.948 0.925
23 2.000* 1.000* 1.000* 1.000* 1.000* 1.000* 1.000*

24 1.613 0.655 0.957 0.628 0.656 1.000* 0.917
25 1.258 0.469 0.789 0.370 0.502 0.798 0.592
26 1.261 0.570 0.691 0.394 0.627 0.693 0.747
27 1.281 0.478 0.803 0.384 0.478 0.804 0.471
28 0.765 0.212 0.553 0.117 0.213 0.653 0.260
29 1.569 1.000* 0.569 0.569 1.000* 0.738 0.983
30 1.393 0.625 0.768 0.480 0.668 0.826 0.720
31 1.240 0.605 0.635 0.384 0.634 0.712 0.609
32 1.151 0.375 0.776 0.291 0.407 0.781 0.411
33 1.443 0.443 1.000* 0.443 0.446 1.000* 0.922
34 2.000* 1.000* 1.000* 1.000* 1.000* 1.000* 1.000*

35 1.456 0.456 1.000* 0.456 0.456 1.000* 0.909
36 1.274 0.683 0.591 0.403 0.684 0.757 0.691
37 0.836 0.192 0.644 0.124 0.192 0.768 0.251
38 0.973 0.531 0.442 0.235 0.531 0.506 0.395
39 1.467 0.468 0.999 0.468 0.468 1.000* 0.909

Note: *Denotes the DMU achieving corresponding efficiency (effectiveness).

Table 2
Regression results from technical efficiency and service effectiveness perspectives.

Perspective Dependent variable Independent variable

Number of bus Operating network Number of bus run (in thousand) Bus-km (in thousand)

Technical efficiency Number of bus runs (in thousand) 0.04 0.24
(0.00) (4.72)

R2 ¼ 0:92
Bus-km (in thousand) 266.91 10.02

(18.07) (5.42)
R2 ¼ 0:99

Service effectiveness Operating revenue (in thousands) 521.24 14.64
(5.71) (26.25)

R2 ¼ 0:99
Number of passengers (in thousand) 25.46 0.05

(36.29) (11.73)
R2 ¼ 0:99

Passenger-km (in thousand) 678.53 10.93
(9.73) (25.62)

R2 ¼ 0:99
Average number of on-board passengers per run 0.01 0.00

(3.15) (1.27)
R2 ¼ 0:35

Note: t values in parentheses.



Table 4
Scores of overall and individual efficiencies for each company under variable returns to scale.

DMU IBCC model SBCC model

Overall efficiency Technical efficiency Service effectiveness Technical effectiveness Technical efficiency Service effectiveness Technical effectiveness

1 1.490 0.579 0.911 0.528 0.579 0.916 0.599
2 1.230 1.000* 0.230 0.230 1.000* 1.000* 1.000*

3 1.132 0.533 0.599 0.319 0.835 0.823 0.589
4 1.535 0.826 0.709 0.586 0.831 0.731 0.707
5 1.315 0.489 0.826 0.404 0.489 0.831 0.475
6 0.977 0.248 0.729 0.180 0.803 0.729 0.719
7 1.880 1.000* 0.880 0.880 1.000* 1.000* 1.000*

8 0.903 0.138 0.765 0.106 0.579 1.000* 0.332
9 0.712 0.261 0.451 0.118 0.430 0.705 0.365

10 1.977 1.000* 0.977 0.977 1.000* 0.977 1.000*

11 1.751 0.754 0.997 0.752 0.754 1.000* 1.000*

12 1.710 0.710 1.000* 0.710 0.748 1.000* 0.893
13 1.439 1.000* 0.439 0.439 1.000* 1.000* 1.000*

14 1.998 1.000* 0.998 0.998 1.000* 1.000* 1.000*

15 1.539 0.771 0.769 0.592 1.000* 0.859 1.000*

16 1.652 0.798 0.853 0.681 0.798 0.874 0.696
17 1.204 0.204 1.000* 0.204 1.000* 1.000* 1.000*

18 1.355 0.690 0.665 0.459 0.850 0.665 0.715
19 1.836 1.000* 0.836 0.836 1.000* 0.836 1.000*

20 1.691 0.699 0.992 0.693 0.904 1.000* 0.973
21 1.446 0.610 0.836 0.510 0.673 0.836 0.643
22 1.823 0.996 0.828 0.824 1.000* 0.951 0.951
23 2.000* 1.000* 1.000* 1.000* 1.000* 1.000* 1.000*

24 1.659 0.659 1.000* 0.659 0.659 1.000* 0.917
25 1.313 0.512 0.801 0.410 0.519 0.801 0.594
26 1.389 0.686 0.703 0.483 0.697 0.703 0.763
27 1.282 0.478 0.804 0.385 0.482 0.807 0.475
28 1.572 0.571 1.000* 0.571 0.571 1.000* 0.571
29 1.768 1.000* 0.768 0.768 1.000* 0.768 1.000*

30 1.786 0.887 0.899 0.797 1.000* 1.000* 0.895
31 1.361 0.683 0.678 0.463 0.725 0.786 0.644
32 1.016 0.220 0.796 0.175 0.415 0.796 0.419
33 1.547 0.547 1.000* 0.547 0.575 1.000* 0.946
34 2.000* 1.000* 1.000* 1.000* 1.000* 1.000* 1.000*

35 2.000* 1.000* 1.000* 1.000* 1.000* 1.000* 1.000*

36 1.608 0.818 0.790 0.646 0.823 0.790 0.816
37 0.985 0.188 0.797 0.150 0.260 0.797 0.266
38 1.000 0.444 0.556 0.247 0.554 0.556 0.504
39 2.000* 1.000* 1.000* 1.000* 1.000* 1.000* 1.000*

Note: *Denotes the DMU achieving corresponding efficiency (effectiveness).
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Note from Table 3 that only two bus companies (DMU 23 and DMU 34) are benchmarked as overall efficient by the proposed ICCR mod-
el. In contrast, three bus companies (DMU 13, DMU 23 and DMU 34) are evaluated as overall efficient by the SCCR models. Namely, the
proposed ICCR model has higher benchmarking power than the conventional SCCR models. By definition, the overall efficient score of
the proposed ICCR model is equal to the sum of scores of technical efficiency and service effectiveness. However, the SCCR models do
not possess this essential relationship. Also note from Table 4 that four companies are benchmarked as overall efficient by the proposed
IBCC model, whereas nine companies have been assessed as overall efficient by the SBCC models. Once again, our proposed IBCC model
demonstrates superior benchmarking power over the conventional SBCC model. In sum, the proposed IDEA approach is superior to con-
ventional SDEA approach in terms of the benchmarking power.

Using the proposed IBCC model, we further examine the signs of u0ðu1Þ to identify the scale property for technical efficiency (service
effectiveness). The DMU is characterized with increasing returns to scale (IRS) if u�0 < 0ðu�1 < 0Þ. If u�0 > 0ðu�1 > 0Þ, the DMU is decreasing
returns to scale (DRS). If u�0 ¼ 0ðu�1 ¼ 0Þ, the DMU is constant returns to scale (CRS). The results are summarized in Table 5. Note that
most DMUs are characterized with IRS in their production or consumption, implying enlarging the scale may be required for most of
the Taiwanese intercity bus companies to become more technical efficiency and service effective.
4.3. Slack analysis

To propose improvement strategies for the inefficient companies, slack values for each of the factor and consumption variables are com-
puted according to [ICCR-S] models. The results are reported in Table 6. Except for two efficient companies (DMU23 and DMU34), most of
the inefficient companies require either reducing factor amounts or raising consumption amounts. Taking DMU 9 as an example, decreas-
ing 6.46% of buses, 9.08% of operating network, or increasing operating revenue by 11.05% would achieve efficiency frontier. Note that con-
tradictory improvement suggestions are likely to emerge on the basis of slack analysis, provided that SDEA approaches are employed for
the same case analysis.



Table 5
Returns to scale for each company.

DMU Technical efficiency Service effectiveness

u�0 RTS u�1 RTS

1 �0.101 IRS �0.123 IRS
2 2.120 DRS 2.760 DRS
3 �0.035 IRS 0.004 DRS
4 �0.075 IRS �0.088 IRS
5 �0.484 IRS �0.522 IRS
6 �0.568 IRS �0.617 IRS
7 �0.740 IRS �0.804 IRS
8 �0.022 IRS 0.011 DRS
9 �0.996 IRS �1.000 IRS

10 �0.383 IRS 2.940 DRS
11 0.002 DRS 2.352 DRS
12 �0.191 IRS �0.170 IRS
13 0.154 DRS 0.159 DRS
14 0.107 DRS 4.315 DRS
15 �1.000 IRS �1.000 IRS
16 0.107 DRS 0.103 DRS
17 �0.999 IRS �1.000 IRS
18 �0.360 IRS �0.390 IRS
19 �0.139 IRS �0.154 IRS
20 �0.063 IRS �0.093 IRS
21 �0.389 IRS �0.425 IRS
22 �0.110 IRS �0.133 IRS
23 0.000 CRS 0.000 CRS
24 0.065 DRS 0.270 DRS
25 �0.149 IRS �0.124 IRS
26 �0.264 IRS �0.350 IRS
27 0.001 DRS �0.001 IRS
28 �0.999 IRS �1.000 IRS
29 �0.787 IRS �0.816 IRS
30 �0.632 IRS �0.672 IRS
31 �0.159 IRS �0.200 IRS
32 �0.967 IRS �0.981 IRS
33 �0.249 IRS �0.307 IRS
34 0.000 CRS 0.000 CRS
35 �1.000 IRS �1.000 IRS
36 �0.622 IRS �0.676 IRS
37 �1.000 IRS �1.000 IRS
38 �1.000 IRS �1.000 IRS
39 3.924 DRS 0.704 DRS
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5. Generalized IDEA approaches

5.1. Models

Both of the abovementioned two novel IDEA approaches have adopted an additive form of technical efficiency and service effectiveness
terms with equal weights. More generalized specifications of the proposed IDEA approaches can be reformulated by introducing unequal
weights for both terms. The generalized ICCR model [GICCR] can thus be formulated as:
½GICCR� Max
u;v;w

Hk ¼ a
PR

r¼1urykrPJ
j¼1v jxkj

 !
þ ð1� aÞ

PS
s¼1wqlkqPR
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 !
ð50Þ
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j¼1

v j xij � sij
� �

; i ¼ 1;2; . . . ; I; ð51Þ

XS
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ws lis þ sisð Þ ¼
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r¼1

uryir; i ¼ 1;2; . . . ; I; ð52Þ

v j P 0; j ¼ 1;2; . . . ; J; ð53Þ
ws P 0; s ¼ 1;2; . . . ; S; ð54Þ
ur P 0; r ¼ 1;2; . . . ;R; ð55Þ
where a is the weight for technical efficiency and ð1� aÞ is the weight for service effectiveness. If, for instance, the decision maker wishes to
place more emphasis on service effectiveness, then a should be set less than 0.5.

Similarly, the generalized IBCC model [GIBCC] can be formulated by introducing a as the weight for technical efficiency and ð1� aÞ as
the weight for service effectiveness.



Table 6
Slack values of factors and consumption under constant returns to scale (in percentage).

DMU Factor variable Consumption variable

Number of buses Operating network Operating revenue Number of passengers Passenger-km Average number of passengers on board per run

1 0.00 �8.01 1.23 1.23 1.23 0.00
2 0.00 �1.23 1.23 0.00 0.00 1.23
3 �27.97 �1.30 1.23 1.23 1.23 28.38
4 �1.23 �42.00 1.23 4.95 1.23 1.23
5 �2.11 �68.93 0.00 0.00 0.00 4.75
6 �1.94 0.00 0.00 0.00 0.00 6.03
7 �12.35 �1.23 1.23 1.23 1.23 1.23
8 �19.72 0.00 0.00 1.23 0.00 1.43
9 �6.46 �9.08 0.00 0.00 0.00 11.05

10 �1.24 �17.08 1.24 0.00 0.00 1.69
11 �15.13 �3.67 23.77 0.00 1.23 0.00
12 �4.50 �9.10 8.67 0.00 0.00 0.00
13 �16.91 �7.05 1.00 7.05 0.00 1.17
14 �0.01 �47.70 0.00 10.81 4.31 0.00
15 �4.27 0.00 0.00 0.00 0.00 5.55
16 �43.44 0.00 18.35 0.00 0.00 1.59
17 �11.53 0.00 1.23 0.00 43.02 0.00
18 �30.13 �75.25 0.00 0.00 0.00 11.46
19 �26.82 �6.25 0.00 26.51 0.00 0.00
20 �17.73 0.00 0.50 0.00 0.00 0.00
21 0.00 �12.58 0.00 0.00 0.00 26.24
22 �8.15 0.00 0.00 0.00 0.00 1.23
23 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 �27.42 0.00 35.89 0.00 0.00
25 �12.94 0.00 21.21 0.00 0.00 0.00
26 �2.86 0.00 1.76 0.00 0.00 0.00
27 �59.77 0.00 0.00 0.00 0.00 12.04
28 0.00 �11.47 0.00 0.00 0.00 1.20
29 �3.10 0.00 0.00 0.00 0.00 0.22
30 �4.04 �6.00 1.24 1.21 0.00 0.00
31 0.00 �9.46 0.00 0.00 23.43 1.27
32 �24.93 0.00 0.00 0.00 0.00 0.89
33 �24.16 �0.59 0.00 0.00 0.00 0.10
34 0.00 0.00 0.00 0.00 0.00 0.00
35 �2.35 0.00 0.00 0.00 0.00 6.20
36 �2.94 0.00 0.00 0.00 1.23 7.33
37 �23.76 �31.25 0.00 31.25 0.00 0.00
38 �1.65 0.00 0.00 0.00 0.00 2.32
39 �1.58 0.00 1.23 0.00 0.00 0.00

Table 7
Technical efficiency and service effectiveness for DMU 6 under various weights.

a Technical efficiency Service effectiveness

0.1 0.128 0.702
0.2 0.130 0.701
0.3 0.148 0.681
0.4 0.153 0.670
0.5 0.153 0.670
0.6 0.159 0.637
0.7 0.160 0.619
0.8 0.160 0.619
0.9 0.160 0.619
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Table 8
Slack values of factors and consumption for DMU6 under various weights (in percentage).

a Factor variable Consumption variable

Number of buses Operating network Operating revenue Number of passengers Passenger-km Average number of passengers on board per run

0.1 �7.53 0.00 0.00 0.00 0.00 6.14
0.2 �2.31 0.00 0.00 1.23 0.00 4.88
0.3 �2.29 �0.04 2.79 1.29 1.99 4.89
0.4 �2.12 �0.04 2.37 1.10 1.69 5.17
0.5 �1.94 0.00 0.00 0.00 0.00 6.03
0.6 �9.38 0.00 0.00 1.29 0.00 4.87
0.7 �5.12 0.00 0.00 1.23 0.00 1.52
0.8 �5.13 0.00 0.00 1.23 0.00 6.27
0.9 �1.90 0.00 0.00 0.00 0.00 5.23
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Fig. 2. Technical efficiency and service effectiveness for DMU 6 under various weights.

Table 9
Technical efficiency for each DMU under various weights.

DMU a (weight)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.490 0.542 0.546 0.572 0.572 0.572 0.572 0.572 0.572
2 0.570 0.570 0.569 0.570 0.570 0.570 0.570 0.570 0.570
3 0.537 0.538 0.538 0.572 0.767 0.799 0.799 0.799 0.799
4 0.751 0.777 0.805 0.830 0.830 0.830 0.830 0.830 0.830
5 0.259 0.377 0.379 0.393 0.393 0.393 0.411 0.411 0.414
6 0.128 0.130 0.148 0.153 0.153 0.159 0.160 0.160 0.160
7 0.584 0.584 0.584 0.584 0.636 0.636 0.673 0.673 0.673
8 0.105 0.105 0.105 0.105 0.105 0.516 0.517 0.550 0.568
9 0.266 0.266 0.266 0.266 0.266 0.275 0.275 0.285 0.285

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
11 0.637 0.637 0.637 0.637 0.754 0.754 0.754 0.754 0.754
12 0.683 0.683 0.683 0.683 0.683 0.683 0.683 0.683 0.683
13 0.315 0.929 0.951 0.951 1.000 1.000 1.000 1.000 1.000
14 0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.634 0.642
15 0.520 0.630 0.771 0.771 0.771 0.771 0.771 0.772 0.772
16 0.748 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761
17 0.499 0.499 0.505 0.505 0.505 0.505 0.505 0.505 0.505
18 0.763 0.763 0.763 0.763 0.764 0.764 0.764 0.764 0.764
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.628
20 0.633 0.843 0.855 0.890 0.890 0.890 0.892 0.902 0.902
21 0.381 0.567 0.567 0.567 0.623 0.651 0.651 0.651 0.651
22 0.651 0.651 0.900 0.984 0.985 1.000 1.000 1.000 1.000
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
24 0.634 0.634 0.634 0.634 0.655 0.655 0.656 0.656 0.656
25 0.462 0.462 0.462 0.469 0.469 0.469 0.502 0.502 0.502
26 0.570 0.570 0.570 0.570 0.570 0.627 0.627 0.627 0.627
27 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.478 0.478
28 0.163 0.163 0.163 0.163 0.212 0.212 0.213 0.213 0.213
29 0.706 0.706 0.799 1.000 1.000 1.000 1.000 1.000 1.000
30 0.247 0.604 0.604 0.625 0.625 0.625 0.646 0.646 0.663
31 0.222 0.564 0.587 0.605 0.605 0.605 0.605 0.613 0.626
32 0.370 0.370 0.370 0.375 0.375 0.407 0.407 0.407 0.407
33 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443 0.443
34 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
35 0.456 0.456 0.456 0.456 0.456 0.456 0.456 0.456 0.456
36 0.477 0.477 0.477 0.543 0.683 0.684 0.684 0.684 0.684
37 0.150 0.150 0.192 0.192 0.192 0.192 0.192 0.192 0.192
38 0.383 0.431 0.447 0.531 0.531 0.531 0.531 0.531 0.531
39 0.462 0.468 0.468 0.468 0.468 0.468 0.468 0.468 0.468
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Table 10
Service effectiveness for each DMU under various weights.

DMU a (weight)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 0.915 0.906 0.904 0.892 0.892 0.892 0.892 0.892 0.890
2 0.984 0.986 0.984 0.986 0.985 0.985 0.985 0.984 0.985
3 0.810 0.809 0.809 0.788 0.643 0.610 0.610 0.610 0.610
4 0.726 0.721 0.713 0.701 0.701 0.701 0.701 0.701 0.701
5 0.818 0.790 0.789 0.781 0.781 0.781 0.745 0.745 0.725
6 0.702 0.701 0.681 0.670 0.670 0.637 0.619 0.619 0.619
7 1.000 1.000 1.000 1.000 0.961 0.961 0.898 0.898 0.900
8 0.940 0.940 0.940 0.940 0.940 0.283 0.282 0.420 0.304
9 0.046 0.046 0.461 0.461 0.461 0.451 0.451 0.425 0.425

10 0.976 0.976 0.976 0.976 0.976 0.976 0.976 0.977 0.976
11 1.000 1.000 1.000 1.000 0.912 0.912 0.912 0.912 0.912
12 0.961 0.961 0.961 0.961 0.961 0.961 0.961 0.961 0.955
13 0.788 0.954 0.948 0.948 0.933 0.933 0.933 0.933 0.933
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0.817 0.792 0.747 0.747 0.747 0.747 0.747 0.742 0.742
16 0.869 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866
17 0.701 0.701 0.652 0.652 0.652 0.652 0.652 0.652 0.652
18 0.659 0.659 0.659 0.659 0.659 0.658 0.661 0.658 0.658
19 0.833 0.833 0.832 0.832 0.832 0.834 0.832 0.835 0.882
20 0.999 0.966 0.962 0.946 0.946 0.946 0.946 0.912 0.912
21 0.822 0.788 0.787 0.788 0.738 0.707 0.707 0.707 0.707
22 0.950 0.949 0.843 0.792 0.791 0.773 0.773 0.772 0.772
23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
24 0.907 0.907 0.907 0.907 0.957 0.957 0.961 0.961 0.961
25 0.793 0.793 0.793 0.789 0.789 0.790 0.720 0.720 0.720
26 0.691 0.691 0.691 0.691 0.691 0.620 0.620 0.620 0.620
27 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803 0.803
28 0.588 0.588 0.588 0.588 0.553 0.553 0.550 0.551 0.550
29 0.736 0.736 0.699 0.569 0.569 0.569 0.569 0.569 0.569
30 0.846 0.779 0.779 0.768 0.768 0.768 0.726 0.726 0.595
31 0.713 0.655 0.646 0.635 0.635 0.635 0.635 0.606 0.518
32 0.779 0.779 0.779 0.776 0.776 0.735 0.735 0.734 0.734
33 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
34 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
35 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
36 0.761 0.761 0.761 0.722 0.591 0.589 0.589 0.589 0.589
37 0.647 0.647 0.644 0.644 0.644 0.644 0.644 0.644 0.644
38 0.499 0.493 0.488 0.442 0.442 0.442 0.442 0.442 0.442
39 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
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5.2. Case analysis

Various weights are attempted to DMU 6, for instance, for the same case analysis as above and the detailed results are presented in Table
7 and Fig. 2. These results show that technical efficiency increases and service effectiveness decreases as a increases. Moreover, slack values
for factor and consumption variables associated with various weights are also detailed in Table 8. Looking into the slack values under the
weights a ¼ 0:1;0:5 and 0.9, for example, one can see the improvement pressure to reduce the number of buses and to increase the average
number of on-board passengers per run so as to achieve both efficiency and effectiveness are relieved as a increases. It indicates that DMU
6 is an efficiency-emphasis company—the preference of efficiency over effectiveness will lessen the improvement pressure for this com-
pany. Such a case analysis demonstrates that change in weights can not only alter the performance measures but also influence the
improvement strategies.

The technical efficiency and service effectiveness for each of 39 bus companies under various weights are further detailed in Tables 9
and 10, respectively. Note from Table 9 that six DMUs are evaluated as technical efficient by ICCR model ða ¼ 0:5Þ, but only four remain
efficient by GICCR model (a ranging from 0.1 to 0.9). Also note from Table 10 that five DMUs are evaluated as service effective by ICCR
model ða ¼ 0:5Þ and these DMUs remain effective by GICCR model (a ranging from 0.1 to 0.9). It is interesting to note that only two com-
panies, DMU 23 and DMU 34, are robustly overall efficiency because these two companies are originally benchmarked as both technical
efficient and service effective by ICCR model (Table 3) and they remain technical efficient and service effective by GICCR model.

6. Concluding remarks

To more correctly evaluate the overall performance and to fully capture the insights of lacking efficiency or effectiveness for non-stor-
able commodities, it is imperative to measure the efficiency and effectiveness simultaneously because both terms represent distinct as-
pects of performance. As transport services are typically non-storable commodities, conventional measurement of technical efficiency
or technical effectiveness only represents one aspect of the performance. The managers may also need to know the service effectiveness
to understand how much consumption (passenger-miles or ton-miles) would be generated from the output (vehicle-miles). This paper pro-
poses two novel integrated data envelopment analysis (IDEA) approaches, including the ICCR and IBCC models, to jointly measure the over-
all performance for non-storable commodities from two aspects: technical efficiency and service effectiveness. We prove that the proposed
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ICCR and IBCC models possess the essential properties of rationality, uniqueness, and benchmarking power. In addition to this theoretical
contribution to the DEA literature, we also demonstrate that the proposed IDEA approaches have revealed higher benchmarking power
than the conventional separate DEA approaches for practical applications. We therefore recommended our proposed IDEA approaches
(with equal weights) or generalized IDEA approaches (with unequal weights) be used for non-storable commodities’ overall efficiency
measurement.

Some directions for future studies can be identified. The IDEA models are specified in an additive form in the present paper, other spec-
ification forms of IDEA models or even multi-objective IDEA models deserve further exploration. The present paper only demonstrates the
overall efficiency measurement for bus transit services with two departments—production (technical efficiency) and sale (service effective-
ness). It is a challenging issue to extend our proposed IDEA models to evaluate the overall performance for an enterprise with more than
two departments vertically and/or horizontally interrelated, e.g., the supply chain systems within an enterprise, the postal mail pickup,
processing and delivery, the air-express courier’s ground operation (pickup/delivery and processing) and air transport and hubs, among
others. Although the proposed IDEA models have been proven and demonstrated with higher benchmarking power than the conventional
SDEA models, further comparisons with other DEA models aiming at enhancement of benchmarking power, such as super-efficiency and
cross-efficiency models (e.g. Banker et al., 1989; Chen, 2002), are worthy of investigation.
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