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We present a conservation element and solution element method in time and momentum space. Several
paradigmatic wave problems including simple wave equation, convection-diffusion equation, driven
harmonic oscillating charge and nonlinear Korteweg-de Vries (KdV) equation are solved with this method
and calibrated with known solutions to demonstrate its use. With this method, time marching scheme is
explicit, and the nonreflecting boundary condition is automatically fulfilled. Compared to other solution

methods in coordinate space, this method preserves the complete information of the wave during time
evolution which is an useful feature especially for scattering problems.
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1. Introduction

In the early 90’s, Chang et al. first introduced the idea of
space-time flux conservation to solving the general wave prob-
lems [1], later coined the conservation element and solution ele-
ment (CESE) method. Since its inception, the CESE method has
shown distinguished power in solving wave equations in various
fields, notable examples including problems in computational fluid
dynamics, aeroacoustics, electromagnetism and magnetohydrody-
namics, etc. [2]. In the CESE method, the space degree and the
time degree of freedom are treated in an unified way. The space-
time domain is discretized into solution elements (SE), and the
nonoverlap space-time cells bounded by SE are called the con-
servation elements (CE), as depicted in Fig. 1. In each CE, the
space-time flux conservation law is enforced, from which the time
marching scheme is derived. The nonreflecting boundary condition
(NRBC) [3] is naturally implied by applying the flux conservation
idea at the boundary CE, requires no filter function, absorbing po-
tential, etc. [4] near the boundary to keep the numerical region
from being contaminated by the aliased reflection at the numeri-
cal boundary.

However, there is a general problem in coordinate space calcu-
lations: the correct information is obtained in the model numerical
region, but the part of wave outside of the numerical region which
is of interest in some physics problems, is lost. For example, in
the problem of highly excited states or the photoionized electron
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spectrum, the wave function extends to a very large spatial range,
making calculations in coordinate space intractable. Theoretically,
the coordinate space and the momentum space representations
are equivalent and complementary to each other in case the so-
lution is complete. This complementarity implies that a widely
diffusive wave in coordinate space will correspond to a narrowly
localized one in momentum space, and because momentum is di-
rectly related to kinetic energy, extremely large momentum for
a system would usually be unphysical. Thus a moderate momen-
tum region will be sufficient for a numerical modeling of complete
information. Also, the wave will simply vanish at the numerical
boundary and cause no trouble like methods in coordinate space.
Naturally, solving problems in momentum space was attempted,
yet difficulties such as singularity in Coulombic system are usually
encountered [5]. Some method such as Lande regularization was
proposed to resolve that singularity, but the range of momentum
space must be unreasonably large to produce correct eigenstates,
causing a disadvantage in practice. Recently we found that the
controversy can easily be resolved by taking the numerical finite
coordinate range into consideration in constructing the momentum
space representation. With this recipe, we have efficiently calcu-
lated the photoelectron spectra of hydrogen atom under intense
laser pulses [6].

In this paper, we aim to develop a new momentum space CESE
(p-CESE) method that preserves the power of CESE and keeps the
complete information of the solution simultaneously during time
evolution. A Fourier transformation can convert the momentum
space solution into coordinate space representation at any time
if information in the latter is requested, making the momentum
space approach useful for time-dependent systems and scatter-
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Fig. 1. Definitions of the momentum-time staggered mesh, CE, and SE in E,.

ing problems. This paper contains the layout of the fundamental
ideas of the p-CESE method and justification of this new method
by calculating the analytic solutions of some paradigmatic wave
equations. The development covered classical, quantum mechanical
and nonlinear wave problems. The extension to higher-dimensional
systems will be reported in future work. The rest of the paper is
organized as follows: In Section 2, we present the formulation of
the p-CESE method for the simple wave equation. In Section 3, we
treat the convection-diffusion equation. In Section 4, we calculate
the time-dependent Schrédinger equation of a driven harmonically
oscillating charge. And in Section 5, the nonlinear Korteweg-de
Vries (KdV) equation was solved by p-CESE method. Discussion and
conclusions are given in Section 6.

2. Simple wave equations and the formulation of momentum
space CESE method

Consider first the simple wave equation
au au
—tao—= (M
at X
where the wave speed a is a constant. The solution of u(x,t)
is in the form of f(x — at) with a shape function f. For posi-

0,

tive a, the wave will move toward the positive x direction. Because
the numerical range of x is finite, eventually the wave front will
reach the numerical boundary in sufficiently long time. The treat-
ment in coordinate space will encounter difficulties if the wave at
large distance is important, such as in the scattering state prob-
lem. This simple system was employed in Ref. [1] to develop the
basic CESE method and was named the a-scheme. Making the fol-
lowing Fourier transformations, the system has the coordinate and
the momentum representation alternatively:

u(x,t) =/ﬁ(p, t)ePXdp,

1 )

ti(p,t)= — [ u(x,t)e PXdx, 2
(.0 o f (x,1) (2)

the wave equation in momentum representation becomes

au(p,t) . .

= lapu(p. D). 3)

This is simply an ordinary differential equation. With initial condi-
tion u(p,t = 0), the solution at any time is

ﬁ(p,f)=a(pat=0)€_ipat. (4)
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Obviously, the amplitude of the solution i (p, t) is stationary at any
time in the momentum space. Though the equation and its solu-
tion in momentum space are rather simple, they serve the devel-
opment as a calibration example for the p-CESE method. Following
the formalism of the a-scheme in coordinate space CESE [1], we
derive the a-scheme of p-CESE method below. We define the two-
dimensional Euclidean space (x1,x2) = (p,t), V= (9/dp, d/dt) and
the two-dimensional vector h = (h1, hy) = (0, 1). Then, Eq. (3) be-
comes

V -h= —ipaii(p, t). (5)

The momentum-time (p-t) space is discretized with the staggered
SEs and nonoverlapping CEs similarly as described in Ref. [1] ex-
cept the coordinate x is now the momentum p. For completeness,
the p-t space is drawn in Fig. 1. Associated with each p —t mesh
point (pj,t"), designated as (j,n), is the SE(j,n) shown as the
cross line segments passing the mesh point (j,n). Conservation
elements CE_(j,n) and CE,(j,n) are associated with SE(j,n). In-
tegrating Eq. (5) over the CEL(j,n) and applying the divergence
theorem, we have

/h-ds: f[—ipaﬁ(p,t)]dpdt,

CE, CE,
/h-ds: /[—ipaﬁ(p,t)]dpdt, (6)
CE_ CE_

where ds is the generalized line element associated with the gen-
eralized area element dpdt, with fixed convention in the normal
direction. We take ds = (dt, —dp), that is, the line integral in each
CE is calculated counterclockwise. For the left-hand side of Egs. (6),
the line integrals along t segments are null because h-ds = —iidp,
which has no component in the t-direction. For any (p,t) lying
on SE(j,n), ui(p,t) and h(p,t) are expanded at i(p,t; j,n) and
h(p,t; j,n) up to the first order, respectively

(p,t; j,m) =G+ (@p)}(p — pj) + @)} (t — "),

h(p,t; j,n) ~(0,i(p,t; j,n)), (7)
where (j,n) denotes the mesh point (p;, t"). With the expansion,
it is seen that on the space-time mesh grids,

(i)} = —iapu. (8)
By Egs. (7), the flux conservation equations (6) become

~n = _\n n—3 N i Al
i + (p)] — [uji% :F(up)ji%] =—iap;,; —-0%, (9)

where we designate ii5 = % -Up. u% denotes the mean value of i
in the integrand of the area integrals of Eqs. (6) such that

L . At-Ap _,
f [—ipail(p,t)]dpdt = —iapj, 1 ——u%,
CEL

(10)

for CE(j,n)4, respectively. Since @i, are not located on our mesh
grids, we develop a convenient numerical iteration scheme for
time marching. Let the index £ indicate the iteration level of con-

_1
vergence. In the first step, @i’ is approximated by ﬂ:if; after the
i
initial step, ﬁ;?il is employed as the new input #% . Although these
i

u% are not on the mesh grids, they are in the solution elements
and Eq. (7) can be used. The iteration scheme goes as follows:
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Fig. 2. Results of the coordinate space CESE a-scheme at t =1 and 5 obtained with
x € [—5,5]. Notice that the wave u will flow out the boundary at sufficient long
time. Dots: numerical results. Solid line: exact solution.

The iteration is stopped if the convergence criterion
~n ~n
| g — 1| <€ (12)

is satisfied for a plausibly small €, which is usually matched within
ten iterations. The time-marching scheme developed above is ex-
plicit. From the known ﬁ'};}g and (ﬁﬁ)'};}g at time level n — 1,2,
we can solve for unknowns ﬂ? and (ﬁl-,);? at subsequent time
level n. A time step At consists of two half-time steps %At as
in the original CESE method [1].

For testing, we set a =1 and study the following traveling
Gaussian wave packet and its Fourier transform:

u(x, t) = e~ 2*-0%
fi(p t):—l o=ty (13)
’ V27

As a comparison, we perform the coordinate space CESE a-scheme
with the range —5 < x < 5. In Fig. 2 we show the calculated and
analytic solutions at t =1 and at t = 5. For the case of t =1,
the wave is still wholly inside the numerical region; for the case
of t =5, part of the wave has already flowed out of the coordi-
nate space. The NRBC derived from flux conservation automatically
gives a smooth leakage of wave through the numerical boundary
without causing aliased reflection error.

Next we calculate the same wave equation through the devel-
oped a-scheme of the p-CESE method using Ap =0.16, At =0.08
and the Courant number 0.5. Fig. 3 shows the real part and the
imaginary part of the analytic and computed waves at t = 5. Note
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Fig. 3. Computational results & at t =5 by the p-CESE method. Data obtained with
p € [-5,5], Ap =0.16, and At = 0.08. Dots: numerical results. Solid line: exact
solution.

2

that |t(p,t)| = e‘pT, thus the momentum space solution at the
boundary is equal to e~125 =3.7 x 10~% times of its peak value
at p =0, appropriate to be considered as vanishing. Therefore we
can take the momentum space wave as stationary with no flow
out of the numerical region. The behavior of computational errors
will be discussed in the section of KAV equation later, but basically
the error is visually invisible. The results of this section imply that
for a traveling wave, the momentum space method contains more
complete information than the coordinate space method, and the
formulation of the new p-CESE method is justified.

3. Convection-diffusion equations

Next, we consider the convection-diffusion equation:

du aau Bzu_o (14)
ot ax Mo T

where the wave velocity a, and the viscosity coefficient w are con-
stants, called the w-scheme in the CESE framework [1]. By Fourier
transformation, Eq. (14) can be transformed into the momentum
space form,

ot . -
§+(lap+up2)u=0. (15)

Applying the Gauss divergence theorem to the two-dimensional
p-t space,
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Fig. 4. Results of i at t =5 obtained with p € [-5,5] at Ap =0.16, and At =0.16.
Dots: numerical results. Solid line: exact solution.

h-ds=— / (iap + pup?)iidp dt, (16)

S(CE+(j.m)) CE+(j.m)

where h = (h, hy) = (0, 1), we can see that with & = t(p,t; j,n)
defined by Eq. (7), at the mesh points (j, n),

(@)} = —(iap; + up3)i’. (17)

The explicit time-marching scheme is derived similarly to the pre-
vious simple wave case, that is,

1

1
~n ~_\n _[s2 = \172
uj o+ Wp)j g [”ji% + (”p)jii]

At )
:_7(lapj:t}1 +iji%)”1,z4s (18)

where ¢ is the iteration index and the iterative scheme is the same
as described in the previous section. With the aid of Eqs. (17) and
(18), the unknowns ﬁ’]? and (u ,3)’]? can be solved iteratively in terms
of known ﬂ'};}g and (ﬁﬁ)?;}g in the preceding time level.

The momentum space convection-diffusion equation is also an
ordinary differential equation with the general solution

fie(p,t) = f(p) x exp[—(iap + up?)t], (19)

with an arbitrary shape function f(p). As a calibration of the p-
CESE method, we use a Gaussian shape f(p) = exp(—p?) below.
The numerical results for a=1 and =1 at t =5 are depicted in
Fig. 4, showing excellent agreements between calculated and exact
solutions. As we know, solving Eq. (14) in coordinate space is not
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as straightforward as this momentum space approach. A c-scheme
with numerical dissipation was implemented for the treatment in
the coordinate space approach [2], while the simplest a-scheme in
p-CESE method already gives accurate results. For a reference, the
exact solution in coordinate space corresponds to Eq. (19) is

ux,t) = /l—iy-r,ut xexp[_(x—_at)]. (20)

4(1 + ut)
4. Driven simple harmonic oscillator

Next we solve a quantum mechanical problem by the p-CESE
method. Under the velocity gauge and the dipole approximation,
a charge q oscillating in the simple harmonic potential with ap-
plied electromagnetic pulse is described by the time-dependent
Schrédinger equation
du [p? 1 5,
i—=|—=—4+=-02 —A()-p |u. 21

or [ ) ®-p (21)
Throughout this section, we use atomic units i=1, m=1 and
e =1, thus 1 a.u. laser peak intensity equals to 7.02 x 10'® W/cm?.
The relationship between electric field and vector potential is given
by
E(t)=—0A(t)/0ot.

The transition probability from the ground state |0 > to an excited
state |N > is given by Poisson’s distribution [7]
N
.0
P0_>N=e UF!, (22)
where o is a pulse parameter

oo 2
o=—| [ Eedt 23
50| | EO (23)
x
Recast Eq. (21) into p-space, we obtain
N B 2 g
iy + 5 2%y = [% —A(t)-p]u. (24)

With &t =1(p, t; j,n) and expansion of Eq. (7) at mesh point (j, n),
Eq. (24) becomes

2

. [ Pj -
(@)’ :—1[71 —A(t”)-pj]uy. (25)
Furthermore, for (p,t) € SE(j, n), we define
. 1 5. . . .
h(p.t; j,nm) = (592up(19,t; J.m, iu(p, t; J,n)>, (26)
and the flux theorem for CEL (j,n) becomes
p?
h-ds= / [7—A(t)-p]ﬁdpdt. (27)

S(CE+(j.m) CE£(j.n)

Evaluating the area integral over CEL(j,n) by the mean value
method of i, as described in former sections, we obtain

S~ ~ n—1 _ n=1
i+ - [ 5 @)

1 2 At ~ \n - nf%

:FE-Q A_p[(up)j’[_(up)j+%]

2
At pjil _1 -
=7|: 24—A(t” 4)'pji%i|xui’ (28)

where ¢ is the iteration index, and the iteration scheme as in
previous sections is applied for time marching. With the aid of
Egs. (25) and (28), the unknowns ﬁ’} and (ﬁ,—;)? can be solved iter-

atively in terms of the known ﬂ'];} g and (ﬂﬁ)'};} g of the previous
time level. As an illustration of the method, we choose a light pulse
with a sin? envelop,

., Tt
E(t) = Epp sin T coswt,
O<t<T. (29)

We assume the carrier frequency of the electric field is w =
0.057 a.u. (800 nm in wavelength), E;, = 0.002 a.u., and the to-
tal time duration T is 8 optical cycles. Furthermore, we assume
the near resonant case, £2 = 0.058 so that excitations are signifi-
cant. The system is initially prepared in the ground state

1 p?
(,Q]‘[)All exp(—ﬁ). (30)

The transition probabilities Po_,ny from the ground state to other
excited state N are listed in Table 1, calculated from the overlap of
the final wave function u(p,t = T) with the eigenstate iiy:

u(p,t=0)=

¢}

/ ity dp

—00

2

PonN= . (31)

We can see that reasonably good results are obtained through
the p-CESE method, and the error in each transition probability
is scaled nearly to (Ap)? with different grids. This error behavior
will be discussed in KdV system.

5. The Korteweg-de Vries equation

The Korteweg-de Vries (KdV) equation is a classic example of the
nonlinear wave equations [8,9]. The general form is
1 du 1 d%u
B ot y3 9x3
where «, 8 and y are nonzero constants. The system contains both

nonlinearity and dispersion. For convenience, we study in this sec-
tion the scaled equation

a Ju
“u— =0, (32)
y ox

Uy — BULy + Uyex = 0. (33)

By Fourier transformation and some manipulations, the momen-
tum space equation is

oo

i(p, ), = 3ip / i(q. 0i(p — q.0)dq + ip*i. (34)

—0o0

Let h = (0,u) and applying the Gauss divergence theorem in Es,
Eq. (34) becomes

o0

% h-ds:/|:3ip / ﬁ(q,t)ft(p—q,t)dq+ip3ﬂi| dpdt. (35)

S(V) 1% —00

We can see that for a nonlinear system, the source terms on
the right-hand side of Eq. (34) contain the convolutional integral
of unknown functions, hence the straightforward explicit itera-
tion scheme described in previous sections does not work. We
implement two new ideas for the treatment of nonlinear prob-
lems in the p-CESE method. First, at each time level, we calculate
u(p,t) and iip(p,t) at grids of half spacings, instead of spacings
at staggered Ap in linear examples. The convolutional integral can
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Table 1

Numerical results of transition probability from the ground state to state |N). Also listed are the exact values and the errors. Three grid spacings Ap = 0.08,0.04 and 0.02

were used in calculations. The time step At =8 x 104 is used throughout.

N Pon
Exact [Ap=0.02 Error| [Ap=0.04 Error] [Ap=0.08 Error]
0 0.1951894 0.1948923 —2.97(—4) 0.1940719 ~1.12(-3) 0.1916537 —3.54(-3)
1 0.3188975 0.3183566 —5.41(—4) 0.3168929 —2.00(—3) 0.3130507 —5.85(—3)
2 0.2605050 0.2603970 —1.08(—4) 0.2602243 —2.81(—4) 0.2612223 7.17(—4)
3 0.1418697 0.1421716 3.02(—4) 0.1430856 1.21(-3) 0.1462422 4.37(-3)
4 0.0579461 0.0582811 3.35(—4) 0.0591675 1.22(-3) 0.0609044 2.96(—3)
5 0.0189343 0.0191296 1.95(—4) 0.0195836 6.49(—4) 0.0198997 9.65(—4)
6 0.0051558 0.0052353 7.95(—5) 0.0053896 2.34(—4) 0.0053358 1.80(—4)
7 0.0012033 0.0012287 2.54(—5) 0.0012640 6.07(—5) 0.0012595 5.62(—5)
> Poon = 0.9997011 0.9996922 0.9996794 0.9995683
Note: —2.97(—4) denotes —2.97 x 1074,
then be calculated by Simpson’s rule [10]. Second, for every half- 01
marching time step, say from =3 to t", we begin by using i and ] a
ip at t"=3 for the source terms and find the solution at t", then
with the obtained, we can find & and i, at grids (j+ %, n) through ~ 0.0 -
the expansion with respect to SE(j,n) as in Egs. (7). These are i
used in the source terms to generate new solutions iteratively un- a
til the convergent criterion is satisfied. Usually the results converge 2 -0.1 1
within a few iterations. g
In mathematical forms, from the conservation laws for CEL(j, n),
-0.2 -
h(x,t; j,n)-ds
S(CE+(j,n)) -0.3
oo
. ~ ~ T T T T T
=3ip / / u(q,Hu(p —q,t)dq | dpdt -4 -2 0 2 4
CE+(j,n) "—o0 p
+ / ip*tidpdt, (36) 03 -
CE+(j.n) b
where h(p,t; j,n) = (0, i(p, t; j,n)). We can derive the following 0.2 1
a-scheme iterations
1 n-1 n-1 F G = 0.1
ui={lu—upl. ;+utul 4+ -—+—, 4
J 2{ Pli+s ”J—%} Ap  Ap S o
1 n—l n—l F G S 7
up,t=-{u—-uz]. *—[u+uz] 2}+-———, 37 >
P 2{[ p]1+% [ p]J—%} Ap Ap (37) g
= -0.1
where we designate u’]. =u(pj,t"), ul—,,gz %(ﬂp)’}, and At =
Ap At
-5 for shorthand. And 02
F =3, e 12y (g, 12 AP
= Dit1/2 ZU(PH-]/Z qj, )U(q], ) 2 -0.3 T T T T T
] -4 2 0 2 4
p
3 ) n—-1/2
+ip;, U N AT,
pl+1/2 (p'+1/2 ) Fig. 5. Results of the real and imaginary part of KdV solution at t =5 obtained with
p €[—5,5] and At =0.01. Solid line: analytical solution, dots: numerical results.
Ap
— 13in: ) _ . =172 _n—1/2\ 2P
G =13ipi-1y2 Z u(pi-12 =45t Ju(gj. ¢ ) 2 a solution. Without loss of generality, we set the initial peak posi-
J tion at xo = 0 with the wave propagating at speed c to the right of
the x-axis without shape change. The exact solution in momentum
3 ) n—-1/2 .
+ lP,-,1/2U(P:—1/z,t ) {AT. space is
. - . ~ Tp .
The KdV equation (33) has a solitonic solution te(p,t) = —pcsch 7 exp(—ipct). (39)
c
c c
ux,t) = -3 Sechz(g(x —ct +xo)). (38) Figs. 5a and 5b depict the real and the imaginary part of the nu-

Note that the solution depends on the speed c of soliton and there-
fore multiplying the solution by an arbitrary constant is no longer

merical results together with the analytic results at time t =5 and
show excellent agreements between the p-CESE calculation and
the analytic results.
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Fig. 6. (a) Results of the magnitude of KdV solution at t =5 obtained with p €
[—5,5] and At =0.01. Solid line: exact solution, dots: numerical results. (b) Error
as function of square of grid size Ap. It shows ~ O(Ap)? behavior.

In Fig. 6a, comparison of the magnitudes of the calculated and
the exact solutions at t =5 with ¢ =1 is shown. For the soliton
solution, although the real part and the imaginary part oscillate
with time, the magnitude is stationary as seen from Eq. (39).

The previous section has shown that our developed p-CESE
method works well for various kinds of wave problems. Here we
present the error analysis for this method. We define the root-
mean-square error at the final moment of time as follows:

— 1 S . final 2
E(N) = N Z[U(P],f ) - uexact] . (40)
j=0

In Table 2, we listed the errors with respect to the grid size Ap
and in Fig. 6b the error versus (Ap)? are plotted. The straight line
shows that the error behaves as ~ O(Ap)2, a general scaling be-
havior of our developed p-CESE a-scheme method.

6. Discussion and conclusions

In this paper, we developed the CESE method in momen-
tum space on a fundamental scope and explored the solutions
of several paradigmatic wave equations, namely the basic one-
dimensional wave equation, the convection-diffusion equation, the
driven quantum mechanical problem and the nonlinear KdV equa-
tion. In each problem, we developed an explicit time-marching

Table 2
The root-mean-square error E[N] versus mesh size Ap shows O (Ap?) behavior for
KdV equation in our p-CESE method under the a-scheme.

N Ap E[N]
26 0.4 5.57 x 1072
51 0.2 1.23x1072

101 0.1 2.94x1073

201 0.05 7.18 x 1074

401 0.025 1.72x 1074

801 0.0125 3.57 x 107>

scheme in the p-CESE method. While it is straightforward for lin-
ear problems, for nonlinear problems such as the KdV equation,
convolution integral of unknown functions in the source term is
involved. This difficulty is resolved by employing the half-step grid
size for the convolutions and the iterations during time march-
ing. Each system was calibrated with a known exact solution, and
we showed that the p-space CESE method works well for sys-
tems from classical wave equations, quantum mechanical problems
to nonlinear equations, and the error behavior of the developed
scheme is ~ O (Ap)2. The main advantages of the p-CESE method,
in cooperation with the superior CESE method in coordinate space,
are threefold. First, like the original CESE method, applying the
momentum-time flux conservation concept in staggered mesh, the
explicit time marching scheme for every wave equation can be de-
rived. Second, the boundary conditions are fulfilled automatically.
That is, for a sufficient large momentum value, the wave and its
derivatives are simply vanishing small at the numerical bound-
ary, because the kinetic energy of a system is physically finite.
Third, the information of the wave is completely preserved within
the numerical momentum region, without loss at the boundary as
in the coordinate space method. This will be especially useful in
treating scattering problems. In this paper, we aim to develop a
method for waves that extend to far distance as time goes on. This
category of problems is closely related to the experimental prob-
lems such as photoelectron spectra, etc. The problem with waves
extending to far distances is not easy to treat by coordinate space
methods, as demonstrated in Fig. 2. We show that the p-CESE is
capable for this kind of problem. On the other hand, the boundary
value problems in finite domain were solved neatly by coordinate
space CESE method [1], and is not our goal here. Our algorithm fol-
lows the core scheme of CESE method, and the stability criterion
has been rigorously discussed [1,11]. The criterion in our scheme
is adt/dp < 1. Also, in each time step, we calculate the correla-
tion integral and the cost is ~ O(N?) for N grid points. During
each time step, there is an iteration scheme for accurate compu-
tation of the correlation integral. However, the integral converges
within ten iterations, so the cost is ~ ¢ - O(N2) where c is a con-
stant of order 1. The computational cost can be compared with
other conventional finite-difference schemes. Finally, for realistic
problems, higher-dimensional method is necessary. This problem,
together with higher order of accuracy p-CESE method, is currently
under development.
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