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A novel process monitoring scheme is proposed to compensate for shortcomings in the conventional
independent component analysis (ICA) based monitoring method. The primary idea is first to augment
the observed data matrix in order to take the process dynamic into consideration. An outlier rejection
rule is then proposed to screen out outliers, in order to better describe the majority of the data. Finally, a

Keywords: rectangular measure is used as a monitoring statistic. The proposed approach is investigated via three
PCA cases: a simulation example, the Tennessee Eastman process and a real industrial case. Results indicate
ICA that the proposed method is more efficient as compared to alternate methods.
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1. Introduction

Principal component analysis (PCA) has been a widely used
technique for monitoring multivariate processes. However, PCA
assumes that latent variables follow a Gaussian distribution.
Martin and Morris (1996) reported that PCA extracted variables
rarely conform to a multivariate Gaussian distribution in real
industrial processes such as chemical and biological plants. More
recently, independent component analysis (ICA) has been devel-
oped to deal with non-Gaussian process monitoring. Kano,
Tanaka, Hasebe, Hashimoto, and Ohno (2003) developed ICA-
based statistical process control (SPC), and showed its superiority
over the PCA-based SPC. However, their proposed method applies
control charts to individually monitor extracted ICA components,
and it may produce false alarms. Thus, Lee, Yoo, and Lee (2004a)
developed ICA-based monitoring statistics and variable contribu-
tion plots for process monitoring and diagnosis, respectively.
Further, Lee, Qin, and Lee (2006) proposed a modified ICA
algorithm to sort the proper order of ICA components and
determine how many components should be extracted. Ge and
Song (2007) proposed a new monitoring scheme by integrating
ICA and PCA. Then Ge and Song (2008) developed an adaptive
local model approach for monitoring nonlinear multiple mode
processes. Readers can refer to this work on ICA-based monitoring
methods in Yoo, Lee, Vanrolleghem, and Lee (2004), Lee, Yoo, and
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Lee (2004b), Xia and Howell (2004), Gonzalez and Sanchez (2007),
Lee, Qin, and Lee (2007), Lu, Wu, Keng, and Chiu (2008), and Zhu,
Hong, Wong, and Wang (2008) .

The above-mentioned studies have demonstrated ICA to be an
efficient tool for monitoring non-Gaussian processes. Yet there are
still some disadvantages with the traditional ICA algorithm. ICA
assumes observations at one time to be independent over time.
This assumption is invalid because of dynamic process character-
istics. Although Lee et al. (2004b) proposed a dynamic ICA (DICA)
algorithm in order to deal with the dynamic non-Gaussian
multivariate process, the DICA algorithm still has some limita-
tions. First, the training dataset is assumed to be “clean”, which
means there is no contamination (outliers) in the training dataset.
The effect of outliers may lead to an incorrect conclusion, such as
a wrong estimation of parameters. Further, DICA applied
Mahalanobis-type distance as the monitoring statistic, in which
all variables are assumed to be obtained from an elliptical
distribution, particularly the multivariate Gaussian (Hubert &
Van der Veeken, 2008). Nevertheless, the extracted ICA compo-
nents usually exhibit skewed distributions. In order to illustrate
the influence, consider two independent uniform source signals
with range [ -1, 1]; Fig. 1(a) shows its scatter plot. By mixing the
source signals with matrix A, the scatter plot of observed signals is
shown in Fig. 1(b), and it exhibits a high correlation between
variables. Fig. 1(c) shows the scatter plot of ICA extracted
components. Clearly, ICA can reconstruct the source signals and
make variables be independent. For process monitoring purposes,
two types of control limits (i.e., rectangular and elliptical) are also
drawn with a dotted line in Fig. 1(c). Obviously, the rectangular
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Fig. 1. (a) Source signal; (b) observed signal; and (c) ICA extracted signal.

type control limit fits better than the elliptical one. This implies
that when an elliptical control limit is used for monitoring ICA
components, the type II error (oblique lines in Fig. 1(c)) is
increased and hence the fault detection rate is decreased. Note
that the rectangular control limit only fits well for the assumption

of variables to be skew-distributed. It implies that the elliptical
control limit is still suitable for monitoring Gaussian processes.
Thus, the constraint of this study assumes process variables to be
non-Gaussian distributed.

This study proposes a new process monitoring scheme for ICA.
The observed data matrix is first augmented by adding time-
lagged variables for each measurement so as to take the process
dynamic into consideration. After that, ICA is used for dimension
reduction and then a rejection rule is proposed for excluding
outliers. Next, the extracted ICA components are combined into a
rectangular type monitoring measure. Finally, the kernel density
estimation (KDE) method is utilized to determine the control
limit. The proposed monitoring method will be investigated by
using a simulated dynamical process with five variables and the
Tennessee Eastman (TE) process. Additionally, it is applied to a
real industrial case of a thermal power plant in Taiwan. To
demonstrate the efficiency of this proposed method, several
traditional monitoring methods are applied as benchmarks.

The remainder of this article is as follows. In the next section,
the theory of the ICA algorithm is first introduced. After that, the
ICA-based monitoring method is also introduced. The proposed
method is then demonstrated in Section 3. Section 4 implements
the proposed method and illustrates the comparisons with other
alternatives. Finally, conclusions are drawn in Section 5.

2. ICA-based process monitoring

This section introduces the application of the ICA technique for
non-Gaussian multivariate process monitoring. The theory of ICA
is first reviewed, and an ICA-based process monitoring method
which was proposed by Lee et al. (2004a) is then introduced.

2.1. ICA algorithm

In the ICA algorithm, the d observed variables x1,x5,...,Xx; can
be expressed in linear combination with m (<d) unknown
independent components sq,5>,...,Sy. The relationship between
them is given as

X=AS 1)

where X e R™" is the data matrix (unlike PCA, ICA employs the
transposed data matrix), S is the independent component matrix,
and A is the unknown mixing matrix.

The objective of ICA is to find a de-mixing matrix W such that
the reconstructed signal § =WX becomes as independent as
possible. The initial step in ICA is whitening. Assume the whitened
signal can be expressed as z = QX where Q denotes the whitening
matrix. The Q can be obtained by calculating Q = A™'/?U’, where
A is a diagonal matrix with the eigenvalues of the data covariance
matrix (i.e. EXX")) and U is a matrix with the corresponding
eigenvectors as its columns. Thus, the whitened signal can be
further expressed as

z=QX=QAS=BS 2)

where B is an orthogonal matrix (E(zz')=BE(SS")B" = BB =1I).
According to Eq. (2), the reconstructed signal can be obtained by

S=B'z 3)

To calculate B, each column vector b; is initialized and then
updated so that ith independent component may have great non-
Gaussianity (Lee et al., 2004b). Two common measures of non-
Gaussianity are kurtosis and negentropy. However, the kurtosis is
sensitive to outliers and hence the negentropy becomes the
widely used measure of non-Gaussianity. The negentropy J of
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random variable y is defined as

.](V) = H(.VGaussian)'H(y) (4)

where H(y)=- [f(y)logf(y)dy and f(y) is the density of y. The
YGaussian 18 @ Gaussian random variable with the same variance of y.
According to Eq. (4), if J(y)=0, then y follows the same
distribution of yggussian. Thus, negentropy is non-negative and
measures the departure of y from Gaussianity (Lee et al., 2004a).
From Eq. (4), it is known that an estimate of probability density
function is required before estimating negentropy. Thus,
Hyvdrinen (1999) suggested approximating negentropy by using
a fixed-point algorithm for ICA (FastICA), calculated over the
whitened signal z (i.e. Eq. (2)). In general, the FastICA calculates
matrix B according to the following procedures.

1. Randomly choose an initial weight vector b; with unit norm.

2. Let bieE{xg(biTx)}—E{g’(biTx)}bi, where g is the first derivative
and g is the second derivative of G in which
G(u) = 1/a; log cosh(a;u), and a; is a constant and 1 <a; <2.

3. Normalize b; < b;/Iib;ll.

4. If b; has not converged, go back to Step 2.

Note that the convergence means that the dot-product of old
and new values of b; is equal to 1. After constructing the matrix B,
the signal can be reconstructed as § =B'z=B'QX=WX. The
related Matlab software of FastICA toolbox can be downloaded
from http://www.cis.hut.fi/projects/ica/fastica/.

ICA considers higher order statistics and tries to let components
be independent. Thus, the ICA components can reveal more useful
information than PCA components (Lee et al,, 2004a). In the next
section, the ICA-based process monitoring method will be reviewed.

2.2. ICA process monitoring

Lee et al. (2004a) proposed three measures for ICA process
monitoring: 2, IZ and squared prediction error (SPE). To divide W
into two parts: the dominant part (W,;) and the excluded part
(W), the I? at observation k is defined as

P(ky=84(k)"$q(k) 5)

where $4(k) =W, x(k). Thus, I? is usually used to monitor the
systematic part of process variation.

The second statistic, squared prediction error (SPE), is used to
monitor the non-systematic part of common cause of variation,
and it is defined as

SPE(k) = e(k)" e(k) = (x(k)-X(k))" (x(k)-X (k)) (6)

where e(k) is the residual at observation k and the predictor
x(k) = AS(k) = AWX(k).

Another statistic, I? represents an incorrectly selected number
of dominant ICA components, and it is defined as

(k) =S$e(k)"$e(k) )

where S¢(k) = Wx(k).

For process monitoring, the kernel density estimation (KDE) is
applied to determine the control limits for %, SPE and I2, respectively.
A univariate kernel estimator with kernel K is defined by

foo= %; [y ®)

where x is the considered data point, x; is the observation, h is the
smoothing parameter, n is the number of observations and K is the
kernel function. There are several kernel functions adopted in the
literature, among which the Gaussian kernel is the most popular one
(Chen, Kruger, & Leung, 2004; Chen, Wynne, Goulding, & Sandoz,
2000; Silverman, 1986).

The aforementioned ICA process monitoring method does not
take the dynamic characteristic into account. Hence, Lee et al.
(2004b) suggested augmenting the observed data matrix by
adding time-lagged observations and then performing FastICA
algorithm. This procedure was named “dynamic ICA (DICA)".
However, DICA still has some shortcomings. First, DICA is
sensitive to outliers. Second, the process monitoring statistic in
DICA is of an elliptical type. Therefore, an outlier rejection
procedure will first be proposed. Further, a rectangular type
measure is recommended to be the monitoring statistic.

3. Proposed process monitoring scheme

This section will present a novel process monitoring scheme
for ICA. In the proposed approach, a measurement, namely
adjusted outlyingness (AO), which is proposed by Brys, Hubert,
and Rousseeuw (2005), is utilized for rejecting outliers and on-
line process monitoring. The definition of AO is presented in
Appendix A. Figs. 2(a) and (b) graphically illustrate the results of I?
and AO for measuring ICA components, in which the used data are
the same as in Fig. 1(c). Obviously, AO can produce a rectangular
type measure, but I? generates an elliptical type measure.

Fig. 3 presents the framework of the proposed monitoring
scheme. In outline, the proposed method includes three primary
extensions. First, the original data matrix is augmented with time-
lagged variables in order to take the process of autocorrelation
into consideration. Second, an outlier rejection procedure is
developed so as to better describe the greater part of the
training data. Note that the proposed outlier rejection procedure
is different from the work of Brys et al. (2005). In this study, the
ICA is first performed to reduce the number of variable
dimensions and then reject the outliers according to the
extracted ICA components. The main advantages of this outlier
rejection procedure include simplicity and shorter computation
time. Third, AO is used as the monitoring statistic, and KDE is then
performed to determine the control limit. The procedure of this
proposed monitoring method includes off-line training and on-
line process monitoring. The objective of the off-line training
procedure is used to build a reference model. After that, the built
model is executed on-line in order to monitor the process. The
steps of off-line training are detailed as follows.

3.1. Off-line training

Step 1: Obtain a training dataset X e R"* with n observations
and d variables.

Step 2: Determine the time lag | and augment each observation
vector with previous observations as in the following form:

lag0 lagl --- lagl
Xt x| X
xT xT || xT
X(=| " ©)
XL n-1 XL nj|te xtT+ n-1-1

where X! denotes the d-dimensional observation vector at time t
and T is the transpose operator. Ku, Storer, and Georgakis (1995)
presented an iterative procedure to determine [ in order to
capture process dynamics. Besides, Chiang, Russell, and Braatz
(2001) utilized Akaike’s Information Criterion (AIC) and the
subspace identification method for selecting . Further, Lee et al.
(2004b) concluded according to their experience that a value of
[=1 or 2 is usually appropriate for conducting dynamic process
monitoring. As mentioned above, there is no standard criterion for
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determining I. Thus, this study adopts [=2 to implement Step 2

according to Lees’ suggestion.

Step 3: Normalize the augmented data matrix, and then
perform FastICA algorithm. Thus, a demixing matrix W can be
obtained. By selecting a few rows of W in which the first ith rows
of W have the largest sum of squares (Lee et al., 2004a). The

a

245

dominant part of W is denoted as W,. Hence, the m extracted

independent components (ICs) can be obtained by S = XHW1.
Step 4: Screen out outliers by AO. The rejection rule for AO is

given as follows (Brys, 2005):

AO > Q3 +1.5e*MCIQR

b

Fig. 2. I?and AO measures for ICA signal.
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where AO can be calculated by using Eq. (14) in Appendix A, in
which the $ substitutes for x'. The MC can be obtained from Eq.
(16) and IQR = Q3-Q; is the interquartile range between Qs (i.e.
the third quartile of projected data points SvT) and Q; (i.e the first
quartile of projected data points Sv7). Note that the filtering
procedure is conducted once, in order to avoid destroying the
non-Gaussianity that ICA depends on. After eliminating outliers, a
robust data matrix, X;opusr can be obtained. Re-run the FastICA
algorithm to X,pust, the robust ICs (S,opusr) and dominant part of W
(W,opust) Can been obtained.

Step 5: Apply Syopus to substitute X’ in Eq. (14) and the value of
AO can be calculated. Each projection direction v is obtained as the
normal on the hyperplane through m randomly selected data
points. Further, the bound of [cq, ¢;] can be calculated from Eq. (15).

Step 6: Perform the KDE method in order to determine the 99%
control limit for AO measurement.

The steps of on-line process monitoring are detailed as follows.

3.2. On-line process monitoring

Step 1: Obtain a new data matrix, Xpew-

Step 2: Generate the augmented data matrix with lag | and
then apply the same normalization to the augmented data matrix,
denoted as Xpew(D).

Step 3: Calculate ICs by Spew = Xnew(HWH.

Step 4: Calculate AO measure for ﬁnew, which is given as

[S newVT'n‘led(s robustV1)]

0.1. u is the input with

0.811 -0.226
0477 0415

0.193 0.689

0320 -0749 WD (3

u(k) = { }u(k—1)+ [
w is a uniformly distributed random vector over interval (—2,2).
The input u and output y, total five variables (y1,¥2,¥3,u1,U2)
which are used for process monitoring.

A total of 1,000 observations are sampled for each simulation.
The first 500 observations are used as a training dataset and the
remainders are used for on-line process monitoring. A step change
of wy by 3 is introduced at observation 500. This means that the
first 500 training observations are not contaminated by outliers.
In several simulation runs, the training dataset is contaminated by
adding a contamination fraction (&%) into the training dataset. In
other words, there are 500 x &% outliers existing in the training
dataset.

For comparison purposes, several methods are also imple-
mented, as shown below.

Scheme 1: The traditional ICA method without outlier rejection
procedure and 2 monitoring statistic is investigated by running
the dataset.

Scheme 2: The DICA method without outlier rejection proce-
dure and I? monitoring statistic is applied, in which two time-
lagged variables are added in Eq. (9).

Scheme 3: The DICA method with Stahel-Donoho (SD) (Brys
et al., 2005) outlier rejection procedure and I> monitoring statistic
is applied, in which two time-lagged variables are added in the

AOpew = Max x

veH (C2 (V)'med(srobusth))I[gneva > mEd(grobustVT)] + (med(srobusth)'Cl (v))l[gneva < mEd(grobustVT)]

where med denotes medcouple and is defined in Eq (16). From
Steps 4 and 5 of the off-line training procedure, the S,opys, vV and
[c1,C2] can be obtained.

Step 5: Determine whether AOy., exceeds the control limit
generated in the off-line training procedure. If an out-of-limit
alarm is generated, some rectification should be enacted.

The proposed monitoring scheme takes account of the process
dynamic, the contaminated dataset, and utilizes a rectangular
measure for ICA. In the next section, the efficiency of this
proposed method will be demonstrated through the implementa-
tion of three examples.

4. Implementation

This section first verifies the efficiency of the proposed method
via a simulation example. Second, a Tennessee Eastman (TE)
process is used to demonstrate the superiority of the proposed
monitoring approach by comparison to several traditional
methods. Finally, a real test case of a thermal power plant in
Taiwan is implemented.

4.1. A simulation example
The applied simulation work is similar to Lee et al. (2004a,

2004b) and Ku (1995). Consider a dynamic process with five
monitored variables as follows:

0.118 -0.191 0.287 1 2

z(k)=| 0.847 0264 0943 |z(k-1)+ |3 -4 |uk-1)
-0333 0514 -0217 2 1

y(k) =z(k)+v(k) (12)

where y is the output with three variables (y;,y,,¥3). v is the
normal distributed random vector with zero mean and variance of

an

augmented data matrix. In short, the details of the SD method can
be referred to in Brys et al. (2005), Stahel (1981), and Donoho
(1982).

Scheme 4: The DICA method with AO outlier rejection
procedure and I> monitoring statistic is applied. Also, two time-
lagged variables are added in the augmented data matrix.

Scheme 5: The proposed monitoring method (i.e. DICA method
with AO outlier rejection procedure and AO monitoring statistic) is
investigated by using the dataset. Two time-lagged variables are
also added to the augmented data matrix.

For Scheme 1, the normalization is performed to the original
data matrix, whereas the normalization procedure is conducted to
the augmented data matrix for Schemes 2-5. In order to make a
fair comparison, the 99% control limits for all schemes are
determined by the KDE method. Table 1 summarizes the process
monitoring results of the above five schemes in terms of detection
rate (%). Additionally, the number of outliers that were omitted
from the training data for Schemes 3-5 is also listed in Table 1.

Table 1 indicates that all methods detect disturbance well
when the training dataset is not contaminated. Also, the DICA
methods (Schemes 2-5) perform better than the traditional ICA
method (Scheme 1). Comparing the results of Schemes 1 and 2
(without outlier rejection rule) to those of Schemes 3-5 (with
outlier rejection rule) shows that when the contamination is small
(say &€ <2%), Schemes 1 and 2 still possess satisfactory detection
rates. However, when the training dataset is highly contaminated,
the outlier rejection procedure can enhance the detection rate. To
compare the SD and AO based rejection rule, even though Scheme
3 (SD with I> monitoring statistic) is comparable to Scheme 4 (AO
with I? monitoring statistic) in terms of detection rates, the SD
rejection rule discovers less outliers than AO. Further, comparing
the detection rates between Schemes 4 and 5 and Table 1 presents
that the AO-based monitoring statistic possesses performance
superior to that of the I?>-based monitoring statistic. Thus, a
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rectangular measure is more suitable than the elliptical measure
for describing ICA components.

4.2. Tennessee Eastman process

Several previous studies such as Ge and Song (2007), Lee et al.
(2007, 2004b), and Ku et al. (1995) have used the Tennessee
Eastman (TE) process as the experimental example for monitoring
multivariate processes. The TE process is schematically presented
in Fig. 4, which is taken from Downs and Vogel (1993). Five major
units are contained in the process: an exothermic two-phase
reactor, a condenser, a recycle compressor, a flash separator and a
reboiler stripper. The TE process produces two products (G and H)
and one by-product F from four reactants (A, C, D and E),
according to the following reactions:

A+C+D-G Product 1
A+C+E—-H Product 2
A+E—F By-product
3D-2F By-product

Readers may refer to the book of Chiang et al. (2001) for a
detailed description of this process. In this current study,
the same simulation data generated by Chiang et al. (2001)
are applied, which can be downloaded from http://brahms.scs.
uiuc.edu.

Table 1
Comparison results in terms of detection rates (%).

Table 2 presents the 33 monitored process variables, namely
22 process measurements and 11 manipulated variables. The 21
process faults are presented in Table 3. The Fault 0 was generated
with no faults, and a total of 500 observations are used as the
training dataset. The testing dataset contains 960 observations,
and all 21 faults are introduced at observation 160. For
implementing the dynamic methods (i.e., DPCA(T?), DICA(I?),
DICA(A0)), two time-lagged variables for each monitored variable
are added. Similar to the work by Lee et al. (2004b), nine
components are selected for implementing static methods (i.e.,
PCA(T?), ICA(I?), ICA(AO)) and 22 components are extracted for
implementing dynamic methods. Note that the original data
matrix is normalized before implementing static methods and the
augmented data matrix is normalized before conducting dynamic
methods. Furthermore, there are total eight outliers (observation
195, 207,224, 304, 433, 435, 446 and 488) that were omitted from
the training data before conducting each monitoring scheme. For
fair comparison, the 99% control limit for each process monitoring
scheme is determined by KDE from Eq. (8).

The detection rates for all 21 faults under several monitoring
methods are computed and tabulated in Table 4. Not all methods
detected Faults 3, 9 and 15 well, since these faults are quite small
and had almost no effect on the overall process (Lee et al., 2004b).
On the contrary, all methods produced high detection rates for
Faults 1, 2, 6, 8, 12, 13, 14 and 18.

Contamination on fraction =~ Number of outliers Without outlier

With outlier rejection

(&) added rejection
SD-based rejection rule AO-based rejection rule
Scheme Scheme Scheme Number of omitted Scheme Scheme Number of omitted
1 2 3 outliers 4 5 outliers
0% 0 96 99 99 0 99 99 0
1% 5 94 99 99 1 99 99 2
2% 10 71 98 99 5 99 99 6
3% 15 46 74 81 5 83 99 11
4% 20 37 56 69 6 71 97 12
5% 25 30 47 61 6 61 88 15
® 91 % o
[ = ] \ '
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Fig. 4. Layout of TE process (Downs and Vogel, 1993).
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Table 2
Monitored process variables.

No. Process measurements No. Manipulated variables
1 A feed (stream 1) 23 D feed flow (stream 2)
2 D feed (stream 2) 24 E feed flow (stream 3)
3 E feed (stream 3) 25 A feed flow (stream 1)
4 A and C feed (stream 4) 26 Total feed flow valve (stream 4)
5 Recycle flow (stream 8) 27 Compressor recycle valve
6 Reactor feed rate (stream 6) 28 Purge valve (stream 9)
7 Reactor pressure 29 Separator pot liquid flow (stream 10)
8 Reactor level 30 Stripper liquid product flow (stream 11)
9 Reactor temperature 31 Stripper steam valve
10 Purge rate (stream 9) 32 Reactor cooling water valve
11 Product sep temp 33 Condenser cooling water flow
12 Product sep level
13 Prod sep pressure
14 Prod sep underflow (stream 10)
15 Stripper level
16 Stripper pressure
17 Stripper underflow (stream 11)
18 Stripper temperature
19 Stripper steam flow
20 Compressor work
21 Reactor cooling water outlet temp
22 Separator cooling water outlet temp
Table 3 Table 4

Process faults.

Detection rates (%) of TE process.

Fault State Disturbance Faults Static methods (nine Dynamic methods (22
no. components) components)
0 No fault No PCA(T?) ICA(?) ICA(AO) DPCA(T?) DICA(?) DICA(AO)
1 A/C feed ratio, B composition constant Step
(stream 4) 1 99 100 100 99 100 100
2 B composition, A/C ratio constant (stream Step 2 98 98 98 98 99 99
4) 3 2 1 2 2 2 2
3 D feed temperature (stream 2) Step 4 20 61 84 26 97 100
4 Reactor cooling water inlet temperature Step 5 33 100 100 36 100 100
5 Condenser cooling water inlet Step 6 99 100 100 100 100 100
temperature 7 61 99 100 100 100 100
6 A feed loss (stream 1) Step 8 97 97 97 98 98 98
7 C header pressure loss-reduced Step 9 1 1 1 1 1 1
availability (stream 4) 10 53 78 82 55 82 90
8 A, B, C feed composition (stream 4) Random variation 11 40 52 70 48 54 83
9 D feed temperature (stream 2) Random variation 12 98 99 100 99 100 100
10 C feed temperature (stream 4) Random variation 13 94 94 95 94 95 96
11 Reactor cooling water inlet temperature Random variation 14 87 100 100 100 100 100
12 Condenser cooling water inlet Random variation 15 1 2 2 1 2 2
temperature 16 43 71 78 49 82 91
13 Reaction kinetics Slow drift 17 80 89 94 82 90 96
14 Reactor cooling water valve Sticking 18 89 90 90 90 90 90
15 Condenser cooling water valve Sticking 19 3 69 80 3 81 95
16 Unknown Unknown 20 49 87 91 53 88 92
17 Unknown Unknown 21 38 45 62 42 46 62
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown
21 Valve position constant (stream 4) Constant position

From Table 4 it can be seen that the ICA-based monitoring
methods (ICA(I?), ICA(AO), DICA(I?) and DICA(AO)) outperformed
PCA-based monitoring methods (PCA(T?), DPCA(T?)) for most fault
modes. This indicates that ICA can detect non-Gaussian multi-
variate processes more efficiently than PCA. Fig. 5 compares the
monitoring results for Fault 5 by using PCA(T?) and ICA(I?). Fault 5
is the step where there is a change in the condenser cooling water
inlet temperature. The increased temperature will also cause a
rise in the flow rate of the outlet stream from the condenser to the
separator. As shown in Fig. 5, PCA(T?) can initially detect this
approximately at observation 160. However, it cannot detect the
fault mode after observation 350.

Overall, the dynamic methods possess better detection rates
than static methods, since the dynamic methods take process
autocorrelation into account. Furthermore, the detection rates by
using the rectangular monitoring statistic (AO) for ICA can
outperform the elliptical based monitoring statistic (I?). For
example, DICA(AO) produces better performance than DICA(I?)
for Faults 10, 11, 16, 17 and 19. Fig. 6 illustrates the monitoring
results for Fault 10 by using DICA(I?) and DICA(AO). From Fig. 6,
both methods generate no false alarms, but DICA(I?) produces
more points that fall within the control limit after observation
160 as compared to DICA(AO). In summary, the above results
indicate that DICA(AO) can more efficiently monitor the process
than all the other methods. Therefore it can be concluded that the
proposed dynamic ICA approach can provide operators more
correct information for judging the process status.
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Fig. 5. Monitoring results of Fault 5: (a) PCA(T?) and (b) ICA(I?).
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Fig. 6. Monitoring results of Fault 10: (a) DICA(T?) and (b) DICA(AO).

4.3. A thermal power plant case

4.3.1. Case description

The power company studied herein possesses eight thermal
power plants. More than 70% of the power is generated from these
thermal power plants (Chien, Chen, Lo, & Lin, 2007). Thus, immediate
fault detection for its equipment is an important issue. Fig. 7 shows
the thermal power plant layout. Generally, the equipment in a
thermal power plant consists of four major parts: the steam
generator, the steam turbine generator, the electrical driven
generator, and the monitoring alarm system.

1. The steam generator: The steam-generating boiler aims to
produce high pressure steam required for the steam turbine
that drives the electrical generator. The generator includes a
boiler, water feeding system, fuel system, SCR, air heater, EP,
FGD, etc.

2. The steam turbine generator: The steam turbine generator is
used to transform the thermal energy into mechanical energy.
The generator includes the turbine and the condensed system.
It is the major piece of equipment at a thermal power plant.

3. The electrical driven generator: The electrical driven generator
transforms the mechanical energy into electrical energy. The
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Fig. 7. Layout of thermal power plant (http://www.taipower.com.tw/).

Table 5
Abnormal parameters vs. failure modes.

Monitored parameters Parameter Failure modes
variation
Pressure and temperature of primary Abnormal Failure in inlet
steam and reheated steam increase steam of turbine
Pressure and temperature of primary Abnormal Erosion of turbine
steam and reheated steam decrease blade
Vibration Abnormal Failure in bearing
increase of turbine
Rotation speed Over speed  Failure in blade of
turbine

generator includes the electrical generator, exciter, and
transformer, etc.

4. The monitoring and alarm system: This system is used to
monitor the above generators, and to sound alarms if any
abnormal event occurs.

Among these four systems, the steam turbine generator is the
main equipment module in the thermal power plant. The key
monitoring parameters of steam turbine generation include
temperature and pressure of the primary steam, temperature
and pressure of the reheated steam, vibration of the steam turbine
generator, and rotation speed of the turbine blade. Table 5
summarizes the causes of abnormal changes in monitoring
parameters that may lead to failures in steam turbine generation.

4.3.2. Implementation

The case comes from a thermal power plant which owns four
500-MW oil/gas fired units. A total of 10,960 observations were
collected by the real-time monitoring system, with 29 variables
monitored, which are listed in Table 6. The normality test (by
using the Shapiro-Wilk statistic) for each variable is tabulated in
Table 7. It indicates that all 29 variables depart from the
assumption of a normal distribution. X6, X12, X18 and X24 are
randomly selected to plot the autocorrelation function as shown
in Fig. 8. Clearly, observations at one time are not independent
over time due to the high autocorrelation in the process.

The electric power loads in the 10,960 observations are
exhibited in Fig. 9. From this figure, obviously, two faults can be
located. The first type of fault can be found at observations 7,098-
7,675 and 10,702-10,935, in which the negative load is generated,
and this abnormal situation is named Fault 1: low load. Another

Table 6
Monitored variables.

Variable no. Variable code Variable name
X1 M4471 Vibration

X2 M4499 Velocity

X3 P4111 Stress

X4 P4113 Stress

X5 P4115 Stress

X6 P4120 Stress

X7 P4129 Stress

X8 P4132 Stress

X9 P4144 Stress

X10 P4145 Stress

X11 P4151 Stress

X12 T4107 Temperature
X13 T4108 Temperature
X14 T4109 Temperature
X15 T4111 Temperature
X16 T4113 Temperature
X17 T4114 Temperature
X18 T4115 Temperature
X19 T4122 Temperature
X20 T4129 Temperature
X21 T4132 Temperature
X22 T4144 Temperature
X23 T4151 Temperature
X24 T4470 Temperature
X25 T4484 Temperature
X26 T4485 Temperature
X27 T4486 Temperature
X28 T4487 Temperature
X29 T4488 Temperature

type of fault appears at the surrounds of peaks in Fig. 9. The effect
of a high power load may rapidly increase the pressure and
temperature of equipment which may cause an increase in air and
water pollutions. Thus, it is also necessary to detect any high load
situations, and this type of fault is named as Fault 2: overload.
Analysis based on the data of electric power loading is ineffective
since the faults may have occurred before detection. Hence, the
proposed process monitoring approach will be applied for
detecting faults by using these 29 variables.

The first 4,000 observations were used as the dataset of off-line
training. The rest of the observations are used for on-line process
monitoring. Six components of PCA(T?) and ICA(I?) are extracted
for analysis. In the proposed method (DICA(AO)), two-lagged
variables for each measurement are added and 10 components are
extracted. The original data matrix is normalized before imple-
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menting PCA and ICA, whereas the augmented data matrix is
normalized before implementing DICA. Furthermore, there are
total 174 outliers that were omitted from the training data before
implementing each monitoring method. In order to make a fair

Table 7
Normality test for variables.

Variable no. Shapiro-Wilk statistics p-Value
X1 0.2276 <0.01
X2 0.5302 <0.01
X3 0.2036 <0.01
X4 0.1776 <0.01
X5 0.1839 <0.01
X6 0.1999 <0.01
X7 0.1767 <0.01
X8 0.1519 <0.01
X9 0.1621 <0.01
X10 0.1718 <0.01
X11 0.2809 <0.01
X12 0.4867 <0.01
X13 0.3997 <0.01
X14 0.4310 <0.01
X15 0.4485 <0.01
X16 0.5020 <0.01
X17 0.5020 <0.01
X18 0.4922 <0.01
X19 0.3572 <0.01
X20 0.3992 <0.01
X21 0.4157 <0.01
X22 0.4640 <0.01
X23 0.3971 <0.01
X24 0.3393 <0.01
X25 0.5065 <0.01
X26 0.5038 <0.01
X27 0.5051 <0.01
X28 0.4948 <0.01
X29 0.3862 <0.01

Autocorrelation Function for X6
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comparison, the KDE 99% control limit is determined for each
method.

Fig. 10 shows the monitoring results of PCA(T?), ICA(I?)
and DICA(AO). As shown in Fig. 10, PCA(T?), ICA(I?) and
DICA(AO) can detect Fault 1: low load well. However, Fault 2
(overload) can only be discovered by ICA(I?) and DICA(AO).
Therefore, the ICA-based monitoring methods can efficiently
provide information for notifying operators to reduce the
rotation speed of steam turbines in order to decrease the
pressure and temperature of equipment or to perform
maintenance to equipment. The detection rate for ICA(I?) is
about 97% and 99% for DICA(AO). Thus, the proposed method
possesses a slight superiority.

5. Conclusion

In this study, a novel dynamic process monitoring scheme
for ICA has been developed and presented. The advantage of
this proposed method takes the process dynamic into con-
sideration. Further, the proposed AO outlier rejection procedure
has been shown to eliminate outliers before implementing ICA.
Additionally, a rectangular type measure, AO, was used as the
monitoring statistic. Through investigating a five-variable
simulation example, the rejection procedure was seen to be
more efficient when the training dataset was contaminated. The
TE process demonstrated that the proposed monitoring method
possessed superior performance for most faults in comparison
to other alternatives. Finally, a real case of a thermal power
plant showed that the proposed method can correctly detect
fault types when compared to PCA.

The proposed method can be extended to other ICA algorithms,
such as kernel ICA, multiway ICA and so forth. Determining the
number of lags (I) is also an important issue worthy of further
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investigation. Last but not least, reduction in computational time Appendix A

of AO is an additional benefit.
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can be obtained by

[c1,C2) =[Q;-1.5eMCIQR, Q3 4+ 1.5e*MCIQR]  if MC >0
[c1, 2] =[Q;-1.5e3MCIQR, Q3 +1.5e*MCIQR] if MC <0 (15)

where Q; and Qs are the first and third quartiles, respectively, of
the projected data x{ v, and IQR = Q3-Q;. The MC means medcouple
(Brys, Hubert, and Strufy, 2004) and is a robust measure of
skewness which is given as

(gj-med, gy)-(gi-medygy)
&i-8i

where i and j satisfy g < medy(gy) < gjand g; # g;. To implement

the AO measure, readers may download the software of LIBRA

Matlab toolbox from http://www.wis.kuleuven.ac.be/stat/robust.

html, and the user guide can be obtained from Verboven and
Hubert (2005).

MC(g1,....81) = mlgd (16)
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