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Synchronization, Adaptive Synchronization and Generalized
Synchronization of Coupled Chaotic Systems via Partial Stability
Theory

Student : Yen-Sheng Chen Advisor : Zheng-Ming Ge

Department of Mechanical Engineering

National Chiao Tung University

Abstract

Chaos synchronization can_be achieved by several methods but there is no easy
unified criterion in general. Heré¢in, a general scheme for both unidirectional and
mutual coupled systems is proposed to-achicve chaos synchronization via stability
with respect to partial variables.

Follow the procedure of the proposed scheme, the unidirectional coupled
systems are discussed first and three sufficient criteria are derived. One of them is
suitable for systems without perturbation and the other two are suitable for systems
under two kinds of perturbations, vanishing and nonvanishing, respectively. Similar to
the unidirectional case, three theorems are proven to ensure occurrence of
synchronization for mutual coupled systems. One of them is suitable for systems
without perturbation and the other two are suitable for systems under two kinds of
perturbations, vanishing and nonvanishing, respectively.

In previous six criteria, to guarantee the emergence of synchronization a matrix
equation should be satisfied and the estimation of Lipschitz constant is needed.
Specifically, the estimate of Lipschitz constant is often conservative. To overcome
these two shortcomings, this matrix equation and the estimation of Lipschitz constant
are replaced by adopting an adaptive coupling gain and an adaptive estimator,

respectively. As a result, a simple and convenient adaptive synchronization is realized

ii



for both unidirectional and mutual coupled systems.

In the foregoing results, the synchronization discussed indicates the identical
synchronization (or complete synchronization). Another kind of synchronization
called generalized synchronization which means that there is a functional relation
between the states of driving and response systems as time goes to infinity are studied
in the chapter 5. Similar, a scheme to achieve chaos generalized synchronization via
partial stability is proposed. Follow the procedure of this scheme, one theorem is
proven to ensure generalized synchronization for a general kind of unidirectional
coupled systems by linear feedback.

All the criteria derived in this dissertation work for regular and chaotic systems,
linear and nonlinear systems, autonomous and nonautonomous systems. Finally,

several systems are simulated numerically to illustrate the theoretical analyses.
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Chapter 1

Introduction

Chaotic systems exhibit sensitive dependence on initial conditions. Because of
this property, chaotic systems are thought difficult to be synchronized or controlled.
From the earlier works [1-3], especially after Pecora and Carroll [3], the researchers
have realized that synchronization of chaotic motions is possible. From then on,
synchronization of chaos was of great interest in these years [4-16]. In particular, it
was pointed out that chaos synchronization has the potential in secure communication.
Many engineers and scientists were attracted to this discipline [17-36].

Synchronization means that the states of response system approach eventually to
the ones of driving system. Two kinds of chaos synchronization are discussed the
most often. (1) Duplication (or master-slave): the first kind introduced by Pecora and
Carroll [3] consists of a driving .system and a.response system. The former one
evolves chaotic orbits and the lattef is'identical to-the driving system except some
partial states replaced by that-of the driving one.(2) Coupling: the second kind
consists of two identical chaoti¢ systemsrexcept coupling term. Coupled systems can
be unidirectional or mutual. Under certain conditions (appropriate coupling functions
and/or system parameters with enough evolution time) the response system will
behave the same orbit with the driving system.

There are many control methods to synchronize chaotic systems such as
observer-based design methods [37-44], adaptive control [45-54], sliding mode
control (or variable structure control) [41, 43, 44, 55-58], impulsive control [59-65]
and other control methods [66-72]. A another kind of more general synchronism
called generalized synchronization (GS) is studied in [73-77], this means that there is
a functional relation between state variables of driving and response systems as time
evolves. This function need not to be defined on the whole phase space but on the
attractor only. Three methods were proposed to detect GS in [73-75] respectively
while another method measuring the smooth degree of this function in [77].

Zero crossing of Lyapunov exponent which is used widely as a criterion of chaos
synchronization is derived from the variational equation. There is a drawback that we

can only calculate finite evolution time in computer simulation but infinite evolution



time is needed by definition of Lyapunov exponent. The variational equation itself is
also used to ensure the occurrence of synchronism. But its stability is in the sense of
Lyapunov first method. Especially, the domain of attraction is infinitesimal, as a result
that the stability of synchronization guaranteed by the variational equation is not
robust. On other hand, it is difficult to use traditional Lyapunov direct method since
the state error equation is not a pure function of state error in general.

In this dissertation, we propose a general scheme to achieve chaos
synchronization via partial stability due to Rumjantsev [78]. The previous obstacles
will be overcome by our method and it serves as a criterion for chaos synchronization
by control methods. Follows the procedure of proposed scheme, the unidirectional
coupled systems are discussed and three sufficient criteria are derived in chapter 2.
One of them is suitable for systems without perturbation and the other two are suitable
for systems under two kinds of perturbations, vanishing and nonvanishing,
respectively. In chapter 3, the effort is concentrated on synchronization of mutual
coupled systems. Similar to the unidirectional case, three theorems are proven to
ensure the occurrence of synchronization=@ne-of them is suitable for systems without
perturbation and the other two.are suitable for: systems under two kinds of
perturbations, vanishing and nonvanishing; respectively.

In previous six criteria, to guarantee the emergence of synchronization a matrix
equation should be satisfied and the' estimation of Lipschitz constant is needed.
Moreover, the estimate of Lipschitz constant is often conservative. To overcome these
two shortcomings, this matrix equation and the estimation of Lipschitz constant are
replaced by adopting an adaptive coupling gain and an adaptive estimator,
respectively. As a result, a simple and convenient adaptive synchronization of chaotic
systems is realized for both unidirectional and mutual coupled systems in chapter4. It
is easier and more convenient to use this method for synchronization of both
unidirectional and mutual coupled systems than the six theorems in chapter 2 and 3.
Furthermore, to increase the convergent rate of state error dynamics we only need to
set a larger initial condition of the adaptive equation.

The synchronization discussed indicates the identical synchronization (or
complete synchronization) in the foregoing results. Another kind of synchronization
called generalized synchronization which means that there is a functional relation
between the states of driving and response systems as time goes to infinity are studied

in the chapter 5. This function can increase the complication of synchronization.
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Similar to the chapter 2, a scheme to achieve generalized synchronization of chaos via
partial stability is proposed. One theorem is proven to guarantee the occurrence
generalized synchronization for a general kind of unidirectional coupled
nonautonomous systems by linear feedback. Furthermore, the function between the
states of the two coupled systems can be arbitrary assigned.

Superficially, the order of the error dynamic equation is enlarged since it is
replaced by an extended equation in this scheme. But only partial variables are
manipulated in actual. Furthermore, many control techniques can be applied to
synchronize coupled systems in this scheme. All the criteria derived in this
dissertation work for regular and chaotic, linear and nonlinear systems, autonomous
and nonautonomous systems. Finally, several examples are simulated numerically to

illustrate the theoretical analyses.



Chapter 2

A General Scheme and Synchronization of Unidirectional

Coupled Systems

2.1 A General Scheme

Consider the following coupled nonautomonous systems
)i(1 =f(t, X, X,), o1
X, =9(t, X,, X,),
where X, X, € R" are the states variables and Q is a domain containing the origin.
Assume that the solution of Eq. (2.1) exist for infinite time. That is, for given
(tys Xi9» X50) €Q  the solution [¢] (t;t,,X,,%,) @5 (t;t,, X, %,)]" of Eq. (2.1)

exists for t>t,. At the first, we recall the definition of identical synchronization (or

complete synchronization).

Definition The system (2.1) s (identical) synchrenized if there is an invariant

manifold S cRxR* for the solution [p (t;t;;X,,%X,) @ (t;t,, X,,X,)]" of Eq.

21 st lime,(t: 8, X5, X,0) =2 (£ T2 X, Xy )| = 0 with (L, X9, X,) € Q.

For convenience, rewrite Eq. (2.1) in a form which contains a coupling term to
enhance synchronization

>:<1 =f(t, x) +G,(t, X, X,), 22)
X, =f(t, X,)+G,(t, X, X,),

where f:QcRxR" > R" satisfy the Lipschitz condition
Ift, x)—f(t, x)|<L|x,=x,| in x for all (t,x) and (t,x,) in Q with
Lipschitz constants L and G,,G, are the coupling functions. Assume that
G,(t,%X,X,)=0 and G,(t,%,X,)=0 for X/(t)=X,(t),vt=t, . That is the
synchronized sub-manifold of Egs. (2.2) agrees with the original uncoupled one while
synchronization occurs. In order to discuss the transversal stability of

synchronization manifold, define e =X, —X; to be the state error. Error equations

can be written as



e =F(t, x,) —F(t, X)) +[G,(t, X, X,) -G, (t, X, X,)]. (2.3)
Notice that the right hand side of Egs. (2.3) is not a pure function of e, as a result
that the traditional Lyapunov direct method might hardly be used. The variational
equation and zero crossing of Lyapunov exponent are used to clarify transversal
stability locally. Moreover, Josi¢ [81] analyzed that synchronization manifolds will
persist under perturbation if such manifolds posses a property of k-hyperbolicity.

In our method, the upper half (lower half also works) of Eq. (2.2) is added into

Eq. (2.3) with X, replaced by X, =e+X,, then an extended equation is obtained as
follows

X, =f(t,x)+G,(, X,e+X,),

. (2.4)
e=f(t,e+x)—f(t,x)+[G,(t, x,,e+Xx) -G, (t, x,,e+X,)].

If the partial variable e in Eq. (2.4) are asymptotically stable about e =0, the
synchronization manifold is stable in transversal directions. This means that the
system in the form of Eq. (2.2) is synchronized. The determination of whether e is
asymptotically stable can be done+¥1a stability with respect to partial variables. The
theory of partial stability can be found mrappendix or in [78-80]. Note that the same
procedure can be developed for Eq. (2.1).-But this form of system might too general
to be used. The scheme proposed in this section not only satisfies the case of mutual
coupled nonlinear systems but also satisfies the unidirectional case. Actually, it works

for the case of unidirectional coupled nonlinear systems if G, =0. The rest mission
is to choose appropriate controllers G, and G, to guarantee the occurrence of

synchronization. In the remainder of this chapter, we will adopt this scheme to
develop some criteria of synchronization for unidirectional coupled systems and give

some simulated illustrations.
2.2 Unidirectional Coupled Systems without Perturbation

In this section, a theorem will be given for unidirectional coupled
nonautonomous system which is a special case of Eq. (2.2). This theorem is suitable
for the case without perturbation and will be applied to two examples, the Rdssler

system and the Duffing-van der Pol system. Choose G, =0 and G, =I'(X,—X,),
then the Eq. (2.2) becomes



x, =f(t, x,),

. (2.5)

XZ :f(t> X2)+F(Xl _X2)7
where f satisfies Lipschitz condition with ||f(t,X1)—f(t, X2)||S L||X1—X2|| in X
for all (t,X,) and (t,X,) in domain € with Lipschitz constant L and I'eM
is a constant matrix whose entries represent the coupling strength of the linear
feedback term (X, —X,). The index of entry y; means that the j-th component of

(X, —X,) exerts on the i-th component of X, . Follow the procedure stated in section

2.1. Eq. (2.5) can be rephrased in the form of an extended equation as
X, =f(, X)),

. (2.6)
e=f(t,e+x,)—f(t,x,)-Te.

where e =X, —X,.
Theorem 2.1 The partial state e is uniformly asymptotically to 0 in Eq. (2.6) if

LI, —T is negative definite, i.e. the system in the form of Eq. (2.5) is synchronized if

LI, —I" is negative definite.

Proof Choose a function V(xl,e)=%eTe which is-positive definite function with

respect to e and with infinitesimal upper bound. Then its time derivative along the
solution of Eq. (2.6) is
V=e'é

=e' [f(t,e+x,)—f(t,x,)—Te]

<[le]-L|e]-e'Te

<L|e|" —e'Te

=e' (LI, -Te.
The state error e uniformly asymptotically approaches 0 if LI, —I" is negative
definite by Theorem A2 in appendix. The Cauchy-Schwarz inequality and the
Lipschitz condition were used in the derivation.
Remark 2.1 From the matrix theory, we know that LI —T is negative definite if
and only if all its eigenvalues are negative. For the case ' =diag(y,,7,,-,7,) Wwith
y,>0 for i=L---,n , synchronization occurs if y . >L , where

Voo <7, 1=1---,n. This is because the time derivative of V(X,,e) can be written as



V(x,e)<(L=7) e||2. Moreover, the result is global by Theorem A4 if f is

globally Lipschitzian.

2.3 Unidirectional Coupled Systems with Two Kinds of Perturbations

The criterion given in section 2.2 is suitable for the case without system
perturbation. If the system possesses a vanishing perturbation, similar result can be
obtained. Consider unidirectional coupled nonautonomous systems with perturbation

in the form of
% =fx) @.7)
X, =F(X,)+Af(t, X, X,)+ (X, — X,),
where f satisfies Lipschitz condition with ||f (t, x,)—f(t, X2)|| < L||X1 -X, || in X
for all (t,X,) and (t,X,) in domain € with Lipschitz constant L and I'eM

is a constant matrix whose entries represent the coupling strength of the linear

feedback term (X, —X,). The termy*AF(t,X;X}). is a vanishing perturbation which
means that Af(t,x,X,)=0 with x(t)=X,®);V1t. Af(t,X,,X,) can be rephrased
tobe Af(t,X,,e) while e=xs=X,.Then;an extended equation can be obtained as

Xl = f(xl)a

: (2.8)
e="f(e+x,)—-f(X)+Af(t; x,e)—Te.

Theorem 2.2 Assume that 3K >0 = |Af| <K e|. Then the Eq. (2.8) is uniformly
asymptotically e-stable if (L+K)I —I" is negative definite, i.e. the system in the

form of Eq. (2.7) is synchronized if (L+K)I, —I" is negative definite.

Proof Choose a function V(xl,e)zéeTe which is positive definite function with

respect to € and with infinitesimal upper bound. Then its time derivative along the
solution of Eq. (2.6) is
V=g'é
<(L+K)|e[*~e'Te
<e'[(L+K)I, -T]e.
Hence, the Eq. (2.8) is uniformly asymptotically e-stable if (L+ K)I —I" is negative

definite.



Remark 2.2 (L+K)I,—T is negative definite if and only if all its eigenvalues are
negative. When I' =diag(y,,7,,"--,7,) with », >0 for i=1,---,n, synchronization
occurs if y,,, >L+K, where y_, is the minimum one in p;. Furthermore, this

result is global by Theorem A4 if f and Af(t, x,,X,) are globally Lipschitzian.

If Af(t,X,,X,) is not a vanishing perturbation, the origin 0 is no longer a
trivial solution. It is difficult to design a controller to guarantee the occurrence of
asymptotically partial stability like Theorem 2.2. What we called the stable under
constantly acting perturbation small on the average will take it over.

Theorem 2.3 Assume that the functions f and Df(x) are continuous and
bounded in Q. The the Eq. (2.7) is uniformly e-stable under constantly acting
perturbation small on the average if LI —I" is negative definite.

Proof From theorem 2.1, the partial state e is uniformly asymptotically to 0 in Eq.

(2.6) if LI —T is negative definite: By corollary Al, the Eq. (2.7) is uniformly
e-stable under constantly acting perturbation small on the average if LI —I" is
negative definite with the assumption -that f and Df(x) are continuous and

bounded in Q. This completes the proof.

Remark 2.3 Theorem 2.3 means that the coupled structure perturbed systems (2.7)

are practical synchronized [82]. If I =diag(y,,7,,--,y,) Wwith », >0 for
I=1,---,n, practical synchronization occurs if y,,, >L,where y ., <y, i=L1--,n.
Moreover, the larger .. is, the smaller bounds of the state errors are. This result is

global if f is globally Lipschitzian.
2.4 Numerical Hlustrated Examples

In this section, the Réssler system and the Duffing-van der Pol system are
adopted to demonstrate the results given in section 2.2 and 2.3. They are simulated for
the cases with and without system perturbation, respectively. The system equation of

the Rossler system is as following



x=-y-22 f,(x),

y=x+ay = f,(x),

2=b+z(x-c) = f,(x),
where a=b=0.2 and c¢=5.7 ensure that there exists chaotic behavior. The chaotic
attractor is shown in Fig. 2.1. To apply the theorem given in this chapter, one needs to

estimate the Lipschitz constant at the beginning. By Cauchy-Schwarz inequality, it

can be derived forany x,=[X, Yy, z,],% =[x VY, z],wehave

|f1(X2)_ f1(x1)|g|| [0 -1 _1]””)(2_)(1

|£,06) = )| |1 @ 01 x, —x,

| £,(x,) = f,(x)| =|2,%, — 2, —cg;|
=|2,%, — 2,% + 2, — ,X, —Cg,|

2

b

=z, + xe, —cey|

<[[(B, 0 B-c]|[x,-x,

2

where |x(1)|<B,,

y, (D)< B,,

Z, (t)| <B,,Vt>t,,i=1,2. Hence, a Lipschitz constant

can be obtained as

L=yJ0 —E-uf£liaof H[e o B-c].
From numerical simulation, B, =12,B, =8, B, =23, then L =23.55.

The governing equation of the Duffing=van‘der Pol system is
x=y = f,(x),
y=u(l-yx>)y—x + AsinQt = f,(x).
The chaotic behavior exists while x#=0.2,y =8, A=5 and Q=1.02. The chaotic
attractor is shown in Fig. 2.2. Apply the Cauchy-Schwarz inequality to estimate the

Lipschitz constant. For any X, =[x, Y,],X,=[X V], it can be derived

| £,0¢,) = £,00)] <[, = x,
|f2(X2)_ fz(x1)|3‘,ue1 _7/X22y2 +7X12Y1 _X; +X13‘

<|[27BB,+38" w+yB}]

b

2

“|X2 %

where |x ()| <B,,

Y, (t)| <B,,vVt>t,,i=12. Hence, one Lipschitz constant can be

obtained as

L =\/1+H (2788, +38" u+yB]| .



From numerical simulation, B, =1,B,=1,then L=20.72.

2.4.1 Unidirectional Coupled Systems without Perturbation

Example 2.1 Autonomous case: Consider the following unidirectional coupled

Rdossler systems without perturbation in the form of Eq. (2.5) as

Xl ==Y, -7,

Yy, =X +ay,

2, =b+2z,(x —0),

X, =Y, ~ 2, + 7(% %),

Yo =X +ay, +7(Y, — Y,),

z,=b+z,(x,-C)+y(z, - 2,),
where I'=diag{y, 7,7} and y=24. The initial value is X,=[-9,0,0,0,—-1,—1]".
The simulated results are shown in Fig. 2.3-2.5. In Fig. 2.3, three state errors versus
time are shown and the state errors approach zero as time evolves. Since X, = X,
Y, =>Y,, Z, > as t— oo, the projections of'synchronized manifold shown in Fig.
2.4 represent diagonal-like. The three Lyapunov. exponents versus coupling strength
y are shown in Fig. 2.5. There is a zero-crossing-of a Lyapunov spectrum while
y~0.074. This value of y is a threshold“wvalue which synchronization occurs.
Choose 7 =0.09, the simulated result in Fig. 2.6 shows that the state errors still
converge but the transient time of convergence is long. This agrees with our intuition.
Moreover, it also demonstrates that the estimate of Lipschitz constant is conservative.
In chapter 4, the estimation of Lipschitz constant will be replaced by a simple and
convenient adaptive estimator.
Example 2.2 Nonautonomous case: The unidirectional coupled Duffing-van der Pol
systems without perturbation is

X =Y,

y, = u(l—yx)y, — X + AsinQt

X, =Yy +7(% = X)),

Vo = 1(1=7%;)Y, =X, + AsinQt+ (Y, - ¥,).
where I' =diag {7, 7} and y=21. The initial value is X, =[-0.2,0.2,1,1]". The

simulated results are shown in Fig. 2.7 and Fig. 2.8. In Fig. 2.7, the state errors

approach zero as time evolves. Since X, > X, Y, =Y, as t— oo, the projections
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of synchronized manifold shown in Fig. 2.8 represent diagonal-like.

2.4.2 Unidirectional Coupled Systems with Perturbation ||Af||< K |e|

Example 2.3 Autonomous case: Consider the following unidirectional coupled
Rossler systems with some perturbations in the form of Eq. (2.7) as
X ==Y, -1,

Y, =X +ay,,

2, =b+1z,(x, —-c),

X, ==Y, =2, +(2, = 7))+ y(X, = X,),

Y, =X, +ay, +sint- (X, —X,)+7(y, = Y,),

z,=b+z,(x,-C)+y(z, - 2,).
The system perturbation is |Af1| = |Z2 - 21| < ||e|| and |Af2| = |sint-(x1 - X2)| < ||e|| Then
||Af|| <2 ||e|| Choose y =25 to satisfy y>L+ K. With the same initial condition

in example 2.1, the state errors approachizero as time goes to infinite in Fig. 2.9
although there exists perturbation:The prejections of synchronized manifold shown in
Fig. 2.10 still represent diagonal-like.
Example 2.4 Nonautonomous-case: The unidirectional coupled Duffing-van der Pol
systems with some perturbations'is

X =Y

Y, = u(1-yx’)y, —x + AsinQt,

X, =Y, +costsin(y, = y,)+ (X, = X)),

Vo = u(1=7%)Y, =X, + AsinQt+ (Y, - y,).

The system perturbation is |Af]|:|costsin(y2—y1)|S||e||. The initial value is also

X, =[-0.2,0.2,1,1]". Choose y =22 to satisfy y > L+ K. The simulated results are

shown in Fig. 2.11 and Fig. 2.12. In Fig. 2.11, the state errors approach zero as time

evolves. Since X, > X, Y, >V, as t—oo, the projections of synchronized

manifold shown in Fig. 2.12 represent diagonal-like.
2.4.3 Unidirectional Coupled Systems with Perturbation Small on the Average
Example 2.5 Autonomous case: Consider the following unidirectional coupled

Rdossler systems with nonvanishing perturbation as

11



X ==Y -1,

Y =X tay,

2, =b+1z,(x -c),

X, ==Y, — 2z, + randn(t) + y(x, — X,),
Y, =X, +ay, +5c0s30t+ y(y, - Y,),
2, =b+2,(%,—C)+ (2, - 2,).

The first error dynamics is € =g +ae, +randn(t), where randn(t) is the unit

normal random variable. Thus, the first system perturbation is bounded on the average

as IT sup{|Af1|}dz' <T . Similar, the second system perturbation is bounded on the
0

average as _[OT sup{|Af2|}dr < 5T . The initial condition and y =24 are the same as in

the example 2.1. Three state errors versus time are shown in Fig. 2.13 and they are
bounded by a constant as time evolves. The projections of synchronized manifold are
shown in Fig. 2.14. They do not represent exact diagonal-like since the state errors are
stable but not asymptotically stablesiFor, » =80, state errors dynamics and
synchronized sub-manifolds are ,shown in-Fig. 2.15 and Fig. 2.16, respectively. As
coupling strength y increases; the error bounds decrease and the synchronized
sub-manifolds look more diagonal.
Example 2.6 Nonautonomous case: The unidirectional coupled Duffing-van der Pol
systems with nonvanishing perturbations is

X =Y

Y, = u(l—yx>)y, — X + AsinQt,

X, =Y, +cos20zt + y(X, — X)),

Y, = u(1—yX2)y, —X; +sin307zt + Asin Qt + y(y, — y,).

The nonvanishing perturbations are bounded as |Af1|=|cos207rt|S1 and

|Af2| = |sin 307zt| <1. The initial condition and y =21 are the same as in the example

2.2. The simulated results are shown in Fig. 2.17 and Fig. 2.18. The state errors versus
time are shown in Fig. 2.17 and they are bounded by a constant as time evolves. The
projections of synchronized manifold are shown in Fig. 2.18. They look like vague
diagonal lines since the state errors are stable but not asymptotically stable. Choose
y =100, the results are shown in Fig. 2.19 and Fig. 2.20, respectively. As coupling
strength y increases, the error bounds decrease and the projections of synchronized

manifold look clear.
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Rossler System

Fig. 2.1 Chaotic attractor of the Rossler system.

13



Duffing-van der Pol System

0.8+
0.6
0.4

0.2

02F W
0.4
0.6

-0.8 -

Fig. 2.2 Chaotic attractor of the Duffing-van der Pol System.
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Fig. 2.3 State errors versus time of unidirectional coupled Rdssler systems without

perturbation.
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Fig. 2.4 Projections of synchronized manifold for unidirectional Rossler systems

without perturbation.
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Fig. 2.6 State errors versus time of unidirectional coupled Rdssler systems without
perturbation while » =0.09.
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Fig. 2.7 State errors versus time of unidirectional coupled Duffing-van der Pol system

without perturbation.
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Fig. 2.8 Projections of synchronized manifold of unidirectional coupled Duffing-van

der Pol system without perturbation.
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Fig. 2.9 State errors versus time of unidirectional coupled Rssler systems with
perturbation Af =z,-2z and Af, =sint-(X —X,).
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Fig. 2.10 Projections of synchronized manifold of unidirectional coupled Rossler
systems with perturbation Af, =z,—-2z and Af, =sint-(x, —X,).
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Fig. 2.11 State errors versus time of unidirectional coupled Duffing-van der Pol
system with perturbation Af, =costsin(y,-Y,).
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Fig. 2.12 Projections of synchronized manifold of unidirectional coupled Duffing-van
der Pol system with perturbation Af, =costsin(y,—V,).
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Fig. 2.13 State errors versus time of unidirectional coupled Rossler systems with
perturbation Af, =randn(t) and Af, =5cos30t.
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Fig. 2.14 Projections of synchronized manifold of unidirectional coupled Rossler
systems with perturbation Af, =randn(t) and Af, =5cos30t.
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Fig. 2.15 State errors versus time of unidirectional coupled Rossler systems with
Af, =randn(t), Af, =5cos30t and y=280.
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Fig. 2.16 Projections of synchronized manifold of unidirectional coupled Rossler
systems with Af, =randn(t), Af,=5cos30t and y =80.
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Fig. 2.17 State errors versus time of unidirectional coupled Duffing-van der Pol
system with perturbations Af, =cos20zt and Af, =sin30xt.
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Fig. 2.19 State errors versus time of unidirectional coupled Duffing-van der Pol
system with ~ Af, =cos20zt, Af, =sin30zt and y=100.
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Chapter 3

Synchronization of Mutual Coupled Systems

3.1 Mutual Coupled Systems without Perturbation

The proposed scheme to achieve synchronization in the chapter 2, it is suitable
for both unidirectional and mutual coupled systems. The unidirectional case is
discussed in chapter 2. Three sufficient theorems, one for systems without
perturbation and two for systems with perturbations, are derived. In this chapter, the
effort will be concentrated on synchronization of mutual coupled nonautonomous
systems. Similar to the results in the chapter 2, three theorems will be proven to
ensure synchronization for a general kind of mutual coupled nonautonomous systems
by linear feedback coupling term. One of them is suitable for the case without system
perturbation and the other two are’ suitable for systems under two kinds of
perturbations, vanishing and nonvanishing; respectively. Finally, six numerical
examples are simulated to illustrate the theoretical analysis.

Consider a mutual coupled:nonautenomous system as

X, =f(t, X))+ I(X;=X,), G
X, =F(t, ;) + (X, =X3),
where X,,X, € R" are the states variables and f:QcRxR*™ - R" satisfy the
Lipschitz condition ||f(t, X)) —f(t, X2)||£ L||X1—x2|| in X for all (t,x,) and (t,X,)
in  with Lipschitz constants L. I'e M, , is a constant matrix whose entries
represent the coupling strength of the linear feedback term (X, —X,) and (X,—X,).
The index of entry y; means that the j-th component of (X,—X,) or (X,—X,)

exert on the i-th component of X, or X,, respectively. Follow the procedure stated

in section 2.1. Define e =X, —X,, an extended equation can be obtained as

X, =ft,x)+Te,

. (3.2)
e="f(t,x,+e)—f(t,x,)—2le.

Theorem 3.1 The partial state e in Eqg. (3.2) asymptotically approaches to 0

uniformly if LI, —2I" is negative definite, i.e. the system in the form of Eq. (3.1) is
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synchronized if LI —2T" is negative definite.

Proof Choose a function V(xl,e)zaeTe which is positive definite function with

respect to e and with infinitesimal upper bound. Then its time derivative along the
solution of Eq. (3.2) is
V=e'é
=e' [f(t,x, +e)—f(t,x,)]-2e'Te
<L|e[" -e'Te
=e' (LI, —2D)e.
The state error e asymptotically approaches 0 uniformly if LI —2I" is negative

definite by Theorem A2 in appendix.

Remark 3.1 LI, —2I" is negative definite if and only if all its eigenvalues are

negative. For the case I =diag(y,,7,,-:,7,) with » >0, i=1---,n ,
synchronization occurs if y, . >5, Vo S Vs h=l,---,n. This is because the time

derivative of V(X,,e) can be-written as V(x;,e)<(L-2y,, ) e||2. Moreover, the

result is global by Theorem A4 if f is globally Lipschitzian.
3.2 Mutual Coupled Systems with Two Kinds of Perturbations

The criterion given in section 3.1 is suitable for the case without system
perturbation. If the system possesses perturbation, similar result can be obtained.
Consider mutual coupled nonautonomous systems with perturbation in the form of

X, =f(t, X))+ Af,(t, X, X,)+ (X, —X,), (33)

)'(zzf(t, X2)+Af2(t, X, X))+ (X, = X,), .
where f satisfies Lipschitz condition with ||f (t,x,)—f(t, X2)|| < L||Xl —X2|| in X
for all (t,X,) and (t,X,) in domain € with Lipschitz constant L and I'eM

is a constant matrix whose entries represent the coupling strength of the linear

feedback term (X, —X,). The terms Af,(t,X,,X,) and Af,(t,X,,X,) are vanishing
perturbations which means that Af(t,X,X,)=0 and Af,(t,X,,X,)=0 with

X, =x,t),vt . Af(t,x,X,) and Af,(t,x,,X,) can be rephrased to be
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Af (t,Xx,,e) and Af,(t, X,,€e), where € =X, —X,. Then, an extended equation can be

obtained as
X, =f(t,x,)+Af, +Te,

. (3.4
e="f(t,e+x,)—f(t,x,)+Af, —Af +2le.

Theorem 3.2 Assume that 3K; >0 = [Af[<K;|e

,i=1,2. Then the Eq. (3.4) is
uniformly asymptotically e-stable if (L+K, +K,)I, —2I" is negative definite, i.e. the
system in the form of Eq. (3.3) is synchronized if (L+K,+K,)I, —2I" is negative

definite.

Proof Choose a function V(Xl,e):EeTe which is positive definite function with

respect to € and with infinitesimal upper bound. Then its time derivative along the
solution of Eq. (3.4) is
V=e'é

=e' [f(t,e+x)=F(t, x,) +Af, —Af |-2e'Te

<(L+K,+K))e'e—2e'Te

=e' [(L+K, +K,)I,=2l]e.
Hence, the Eq. (3.4) is uniformly asymptotically e-stable if (L+K, +K,)I —-2I" is
negative definite.
Remark 3.2 (L+K,+K,)I,—2I' is negative definite if and only if all its
eigenvalues are negative. When I =diag(y,,7,, --,7,) with », >0 for i=1,---,n,

L+K, +K,

synchronization occurs if y,;, > , where y_.. 1s the minimum one in y,.

Furthermore, the result is global by Theorem A4 if f is globally Lipschitzian.

If Af(t,X,,X,) and Af,(t,X,,X,) are not vanishing perturbations, it is

difficult to design a controller to guarantee the occurrence of asymptotically partial
stability like Theorem 3.2. The stable under constantly acting perturbation small on

the average will take it over.

Theorem 3.3 Assume that the functions f and Df(x) are continuous and
bounded in Q. The the Eq. (3.4) is uniformly e-stable under constantly acting

perturbation small on the average if LI —2I" is negative definite.
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Proof From theorem 3.1, the partial state € is uniformly asymptotically to 0 in Eq.
(3.1) if LI, -2T" is negative definite. By corollary Al, the Eq. (3.4) is uniformly
e-stable under constantly acting perturbation small on the average if LI, —2I" is
negative definite with the assumption that f and Df(x) are continuous and

bounded in Q. This completes the proof.

Remark 3.3 Theorem 3.3 means that the coupled structure perturbed systems (3.3)
are practical synchronized [82]. If I'=diag(y,,7,,-:-,7,) Wwith » >0 for
I=1,---,n, practical synchronization occurs if y,,, >L,where y, <y, i=L--,n.
Moreover, the larger y,., is, the smaller bounds of the state errors are. This criterion

is global if f is globally Lipschitzian.
3.3 Numerical Hlustrated Examples

In this section, the Lorenz system:and the Ueda system are adopted to
demonstrate the results given in section 3zl-and 3.2, They are simulated for the cases
with and without system perturbation, tespectively. The system equation of the
Lorenz system is

X=-o(x-Y)= f(X),
y=rx—y-xz= f,(x),
2=xy—bz= f,(x),
where 0=10,r =28 and b=8/3 ensure that there exists chaotic behavior. The

chaotic attractor is shown in Fig. 3.1. To apply the theorem given in this chapter,

estimation of the Lipschitz constant is needed. By Cauchy-Schwarz inequality, it can

be derived forany x, =[x, Yy, z]1,X =[x Yy, ] ,wehave

|1,(x,) - f,(x)| =|]-0¢, + 08| <[[-o & 0] |x,-x,

9
|f2(X2)_ fz(X1)| :|re1 —€,— X1, +X]Zl|
=|re, —e, = X,2, + %,2, = X,Z, + X 2, | [X, = X,
=|re, —e, = x,8, — 2,8, |, = x|

<[[r+B, -1 B]J[x,-x,

2
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| £,0x,) = f,(x)| =%, ¥, — Xy, —bey|
=[%,Y, =X Y, + XY, =X Y, —be|
=|y,& +xe, —be|
e, s bl

3

where |Xi (t)| <B,

y,(D|<B,,

Z, (t)| <B,,Vt>t,,i=1,2. Hence, a Lipschitz constant

can be obtained as

L=\~ o off +[[r+8, -1 B][ +|[B. B -b][
From numerical simulation, B, =20, B, =28, B, =49, then L =87.87.

The governing equation of the Ueda system is

X: yé fl(X)a
y=—x'—by+ AsinQt = f,(x).

The chaotic behavior exists while b=0.05, A=5 and Q=1. The chaotic attractor is
shown in Fig. 3.2. Apply the Cauchy-Schwarz inequality to estimate the Lipschitz

constant. For any X, =[X, Y,]" ;X =[XwY,J ,itcan be derived

| f,0¢,) — f, ) <% =%
|f2(X2)_ fz(X1)| :‘_Xg +Xl3 _be2|

<|[38’ -b]

“|X2 =X

b

where |x(t)|<B,,

Y, (t)| <B,,Vt>t,,i=1,2. Hence, one Lipschitz constant can be

obtained as

L :\/1+H (38 —b]H2 .

From numerical simulation, B, =3.5,B, =7,then L=36.77.

3.3.1 Mutual Coupled Systems without Perturbation

Example 3.1 Autonomous case: Consider the following mutual coupled simplest
quadratic chaotic system without system perturbation as in the form of Eq. (3.1)
X =—0o(X —y)+7(X,—X),

Vo= =Y, =Xz, +7(Y, = Y))
2, =XY,—bz +y(z,-7),
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X, = _U(Xz - y2)+7(xl _X2)>
Yo =% =Y, = %2, + 7 (Y, = Y,),
2, =%Y,-bz, +y(z,-7,),

where I'=diag{y,y,7} and y=44>L/2 . The initial value s

X, =[1,-0.0L3,0,0, 5]". The simulated results are shown in Fig. 3.3-3.6. In Fig. 3.3,

three state errors versus time are shown and the state errors approach zero as time

evolves. Since X, =X , Y,—=>VY,, Z,—>Z as t—>o , the projections of

synchronized manifold shown in Fig. 3.4 represent diagonal-like. The three Lyapunov
exponents versus coupling strength » are shown in Fig. 3.5. There is a zero-crossing
of a Lyapunov spectrum while y ~0.41. This value of y 1is a threshold value which
synchronization occurs. Fujisaka and Yamada [1] proved that synchronization of
linear coupled autonomous systems occurs if the coupling strength larger than half of
the largest Lyapunov exponent. The largest Lyapunov exponent is 0.82 and its half
is 0.41. This coincides with the valuesi of:zero-crossing of a Lyapunov spectrum.
Choose y =0.6, the simulated result inyFig: 3.6 shows that the state errors still
converge but the transient time of convergence. is long. This agrees with our intuition.

Example 3.2 Nonautonomous® ¢ase:  The mutual, coupled Ueda systems without

perturbation is

X =Y, +y(X,—X%),

Yi :_X13 _byl + Asin Qt +7/(y2 - yl)a
X, =Y, +7(X1 _Xz)a
Y, ==X, —by, + AsinQt + y(y, - Y,),

where T'=diag{y,} and y=18.5. The initial value is X,=[2.5,0,1,1]". The

simulated results are shown in Fig. 3.7 and Fig. 2.8. In Fig. 3.7, the state errors

approach zero as time evolves. Since X, > X, Y, =Y, as t— oo, the projections

of synchronized manifold shown in Fig. 3.8 represent diagonal-like.

3.3.2 Mutual Coupled Systems with Perturbation [Af|<K [e|

Example 3.3 Autonomous case: Consider the following mutual coupled Lorenz

systems with system perturbation as

38



X, = =0 (% = ¥,)+cost- (¥, = ¥)+ 70 = X,),
Vi =X =Y =Xz 4+ 7(Y, = V),

2, =XY,—bz, +y(z,-7),

X, ==0 (X, = ¥,)+7(X = X,),

Vo =% =Y, = %2, + (Y, = Y,),

Z, =XY,—bz, + (X, —X,)+7(z, - 2,).

The system perturbations are bounded as |Af1|=|cost~(y1—y2)|S||e|| and
|Af6|:|X1—X2|S||e||. Choose y =45 to satisfy y>(L+K,+K,)/2 and the initial

condition is the same as in example 3.1. In Fig. 3.9, the state errors approach zero as
time goes to infinite although there is persistent acting perturbation. The projections
of synchronized manifold shown in Fig. 3.10 represent diagonal-like.

Example 3.4 Nonautonomous case: The mutual coupled Ueda systems with some

perturbations is

X =Y, +7(% = X%),
y, ==X —by, + Asin@t +cost sin(x, — X))+ 7(Y, = ¥,),

X, =Y, + (Y, 2D 704 = %),
Y, = —X; _byz +ASIn Qt -+ (Y, — Y5).

The system perturbations are. bounded-as |Af2| = |costsin(x2 - x1)| < ||e|| and
|Afy =y, = y|<|e]. Choose y=195"to satisfy y>(L+K, +K,)/2. The initial
value is also X, =[0.2,-0.2,1, 1]" . The simulated results are shown in Fig. 3.11 and
Fig. 3.12. In Fig. 3.11, the state errors approach zero as time evolves. Since X, = X,

y, > Y, as t—>oo, the projections of synchronized manifold shown in Fig. 3.12

represent diagonal-like.
3.4.3 Mutual Coupled Systems with Perturbation Small on the Average

Example 3.5 Autonomous case: Consider the following mutual coupled Lorenz
systems with nonvanishing perturbation in the form of Eq. (3.3) as

% ==o(X =Y+ 7 (% —X),

Y, =rX =Y, =Xz, +2sin(207t) + y(y, - ¥,),

2, =xY,-bz,+y(z,-7,),
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X, =—0(X, —Y,)+randn(t) + y(x, — X,),
Y, =X, =Y, —X,Z, +7(y1 - yz),
Z, =X,Y,—bz, +5cos(30xt) + y(z, - 2,),

where randn(t) is the unit normal random variable. The second system perturbation
is Af, =2sin(20zt) . It is bounded on the average since LHT sup {|Af2|}dr <2T,

vVt €[0,0) . Similar, for te[0,00) the fourth system perturbation Af, =randn(t)

and the sixth system perturbation Af, =5cos(30zt) are bounded on the average by

t+T t+T
J‘I sup{|Af4|}dr£T and L sup{|Af6|}dz'£5T, respectively. The initial condition

and y =44 are the same as in the example 3.1. Three state errors versus time are
shown in Fig. 3.13 and they are bounded by a constant as time evolves. The
projections of synchronized manifold are shown in Fig. 3.14. They look like a little
vague since the state errors are stable but not asymptotically stable. If y =130, the
results are shown in Fig. 3.15 and Fig; 3.16, respectively. As coupling strength y
increases, the error bounds decrease andjthe:projections of synchronized manifold
look clear.

Example 3.6 Nonautonomous= case: The mutual- coupled Ueda systems with

nonvanishing perturbations is

X] =Y +7(X2 _Xl)’

Y, ==X —by, + Asin Qt +cos(257t) + (Y, - ¥,),
X, =Y, +5sin(157t) + 7 (X, — X,),

Yy, ==X, —by, + Asin Qt+ y(y, - Y,).

The system perturbations are Af, =cos(25xt) and f,=5sin(1572t) , then

t+T t+T
J.t sup {|Af2|}dz' <T and L sup {|Af3 |}dz‘ <5T,Vte[0,0). The initial condition

and y =18.5 are the same as in the example 3.2. The simulated results are shown in

Fig. 3.17 and 3.18. The state errors versus time are shown in Fig. 3.17 and they are
bounded by a constant as time evolves. The projections of synchronized manifold are
shown in Fig. 3.18. They do not look like exact diagonal lines since the state errors

are stable but not asymptotically stable. Choose y =100, the results are shown in Fig.
3.19 and Fig. 3.20, respectively. As coupling strength » increases, the error bounds

decrease and the projections of synchronized manifold look clear.
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Lorenz System

Fig. 3.1 Chaotic attractor of the Lorenz system.
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Ueda System

Fig. 3.2 Chaotic attractor of the Ueda system.
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Fig. 3.3 State errors versus time of mutual coupled Lorenz system without

perturbation.
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Fig. 3.4 Projections of synchronized manifold for mutual coupled Lorenz system

without perturbation.
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Fig. 3.6 State errors versus time of mutual coupled Lorenz systems without

perturbation while » =0.6.
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Fig. 3.8 Projections of synchronized manifold of mutual coupled Ueda system without

perturbation.
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Fig. 3.9 State errors versus time of mutual coupled Lorenz systems with perturbations
Af, =cost-(y,—y,) and Af, =X —X,.
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Fig. 3.10 Projections of synchronized manifold of mutual coupled Lorenz systems
with perturbations Af, =cost-(y,—y,) and Af,=x —X,.
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Fig. 3.11 State errors versus time of mutual coupled Ueda systems with perturbations
Af, =costsin(x, —X,) and Af, =y, -y,.
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Fig. 3.12 Projections of synchronized manifold of mutual coupled Ueda systems with
perturbations Af, =costsin(x, —x,) and Af,=y,-y,.
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Fig. 3.13 State errors versus time of mutual coupled Lorenz systems with
perturbations Af, =2sin(207t), Af, =randn(t) and Af, =5cos(30xt).
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Fig. 3.14 Projections of synchronized manifold of mutual coupled Lorenz systems
with perturbations Af, =2sin(20xt), Af, =randn(t) and Af, =5cos(30xt).
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Fig. 3.15 State errors versus time of mutual coupled Lorenz systems with
Af, =2sin(20xt), Af, =randn(t), Af, =5cos(30zt) and y=130.
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Fig. 3.16 Projections of synchronized manifold of mutual coupled Lorenz systems
with Af, =2sin(20zt), Af, =randn(t), Af, =5cos(30xt) and y =130.
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Fig. 3.17 State errors versus time of mutual coupled Ueda Systems with perturbations

Af, =cos(25xt) and f, =5sin(157t).
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Fig. 3.18 Projections of synchronized manifold of mutual coupled Ueda Systems with

perturbations Af, =cos(25zt) and f, =5sin(15xt).
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Fig. 3.19 State errors versus time of mutual coupled Ueda Systems with

Af, =cos(25xt), f,=5sin(152t) and y=100.
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Fig. 3.20 Projections of synchronized manifold of mutual coupled Ueda Systems with

Af, =cos(25xt), f,=5sin(15zt) and y=100.
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Chapter 4

Adaptive Synchronization of Unidirectional and Mutual

Coupled Systems

4.1 Introduction

In chapter 2, it is proposed a general scheme to achieve chaos synchronization of
unidirectional coupled nonautonomous systems via partial stability theory due to
Rumjantsev [78]. Three theorems are derived to achieve synchronization for
unidirectional coupled systems by linear feedback. This scheme is also applied to
mutual coupled systems in chapter 3. Three theorems are also derived to achieve
synchronization for mutual coupled systems by linear feedback.

To use these theorems a relation about coupling gain matrix must be satisfied in
advance since these theorems are’sufficient. Moreover, the estimate of Lipschitz
constant is needed and it is often conservative. In this chapter, an adaptive coupling
gain replaces this coupling gain matrix. To implement this adaptive coupling gain an
adaptive law is adopted to estimate the Lipschitz constant of the chaotic system. It is
easier and more convenient to use this adaptive method for synchronization of both
unidirectional and mutual coupled systems than the theorems in previous two chapters.
Furthermore, to increase the convergent rate of state errors we only set a larger initial
condition of the adaptive equation.

The theoretical analyses are arranged in section 2 and section 3 for both
unidirectional and mutual coupled systems, respectively. Two theorems for adaptive
synchronization of unidirectional and mutual coupled nonautonomous chaotic systems
are derived individually. An adaptive coupling gain is realized by adopting an
adaptive law to estimate the Lipschitz constant of the chaotic system. In section 4, the
Lorenz system and the Duffing system are simulated to demonstrate analytical results

for unidirectional and mutual coupled chaotic systems, respectively.
4.2 Adaptive Synchronization of Unidirectional Coupled Systems

Consider the following unidirectional coupled nonautonomous systems
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x=1(t, x),

5 . N 4.1)
X="1(t, %) +u(t,x,X),

where X, XeR" and f:Q cRxR"—>R" satisfy Lipschitz condition

Ift, x)—f(t.x,)|<L|x,—x,[ in x for all (t,x,) and (t,x,) in €, with

Lipschitz constant L. u:Q, c RxR"xR" - R" is the coupling function. Q,,Q,

are domains containing the origin. Assume that the solution of Eq. (4.1) exists for

infinite time. That is, for given (t,,X,,X,)€Q,NQ, the solution
[X"(t;t,, Xy, %y) X' (651, Xy, X)]T of Eq. (4.1) exists for t>t,.
To ensure diagonal-like synchronized manifold, assume u(t,x,X)=0 if

X(t)=X(t), Vt. Define e=X—X to be the state error. Then an extended equation

can be obtained as
x=f(t, x),

e="f(t,e+x)—f(t, X)+u(t, x,e +X). 42)

Our goal is to choose an appropridte U so that.the partial state e=0 of equation

(4.2) is asymptotically stable. This means:that" X. synchronizes to X.
Theorem 4.1 The partial state. e =0, of EQ. (4.2) is uniformly asymptotically stable

if u=—(L+¢&)e with >0 and-adaptation ﬁ=||e||2, i.e. the system in the form of

Eq. (4.1) is synchronized if u=—(L+&)e with £>0 and adaptation [ - ||e||2.

Proof Choose a positive definite function as
Y :leTe+l(£— L)?,
2 2
then its time derivative along the solution of Eq.(4.2) is

V =€ [f(t,e+x)—F(t, x)+u(t, x,e+x)]+ (L - L)L
<Lfef +eu+(L-L)L.

Let the adaptive law be I:=||e||2 and u=—(L+¢&)e with £>0. We obtain

vV <—g||e||2. Hence the equilibrium e=0 is uniformly asymptotically stable by

partial stability theory [78-80].

4.3 Adaptive Synchronization of Mutual Coupled Systems
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For the mutual coupled nonautonomous systems, consider the systems in the

form as follows

x =Tf(t, X)—u(t, X, X),
) t,%)-u( ) 4.3)
X=1(t, X)+u(t,x,X),

where Xx,XeR" and f:Q, cRxR"—>R" satisfy Lipschitz condition
Ift x)—fF(tx,)|<L|x,—x,[ in x for all (t,x,) and (t,x,) in €, with
Lipschitz constant L. u:Q, c RxR"xR" - R" is the coupling function. Q,,Q,

are domains containing the origin. Assume that the solution of Eq. (4.3) exists for

infinite  time. That is, for given (f,,X,,%X,)€Q, NQ, the solution
X" (t;t,, Xy, %y) X' (651, Xy, X,)]" of Eqs. (4.3) exist for t>t,.
To ensure diagonal-like synchronized manifold, assume that u(t,x,x)=0 for

X(t) =X(t), Vt. Define e=X—X to be the state error. Then an extended equation

can be obtained as
x =T (t, x)=u(t, x,e + X),

e=f(t,e+x)=F@, X)+2u(t, x,e +X). 44

Theorem 4.2 The partial state- e =0 of Eq. (4.4) is:uniformly asymptotically stable
if u=-0.5(L+¢&)e with &> 0 “and adaptation Ii:||e||2, i.e. the system in the form
of Eq. (4.3) is synchronized if u=-0.5(L+&)e with £>0 and adaptation
A 2
L=[e["-
Proof Choose a positive definite function as

Y% :leTe+l(£— L)?,

2 2

then its time derivative along the solution of Eq.(4.4) is

V =€ [f(t,e+X)—F(t, x)+ 2u(t, x,e+x)]+ (L - L)L

<L +2e'u+(L-L)L

Let the adaptation be I: = ||e||2 and U= —0.5(I: +¢)e with £€>0. We can obtain

V <-0.5¢ ||e||2 . Hence the partial state € =0 is uniformly asymptotically stable.

Remark 4.1 The partial stability theory is used in the proofs of Theorem 4.1 and 4.2.

On the other hand, as the usual approach the Barbalat lemma can be used to prove the
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asymptotical stability of the error dynamics. It seems that using partial stability theory

is convenient.
Remark 4.2 Since the adaptive law is I::||e||2 >0. Therefore, L and L—L are

increasing functions of t and so is L+¢. If ¢ or the initial value L, of L is

large, then the feedback gain L+e is always large. Hence, the larger I:O or ¢ the

faster convergent rate of ||e|| is.

4.4 Numerical Illustrated Examples

Example 4.1 Unidirectional coupled autonomous system: Lorenz systems

XZ_O-(X_y)a
y=IX—Yy—Xz,
z2=xy—-bz,

R=—c(X—9)—(L+&)(RX=X),
§=ri—ya%2=(L+ag-v),
7=y <bi = (L+e)(222),

where o =10,r=28,b=8/3,x=[x"y-z)"“and X=[X § 2]". Let the initial value
be [X] X; I:O]T =[11100 01] and &=0.1. The simulated results are shown in

Fig. 4.1. Fig. 4.2 and Fig. 4.3 show the results for changed values I:o =25 and

e =20, respectively. The rates of convergence for the later two conditions are faster
than the first one.
Example 4.2 Unidirectional coupled nonautonomous system: Duffing systems
X=Y,
y=X—X —38Y+ycosat,
J—(L+e) (%),
-8 =59+ ycosat—(L+e)y-y),

X

-
Il

2
9

L

e

where w=1,8=0.25y=04,x=[x y]' and X=[X ¥]. Let the initial value be
[X; X I:O]T =[110.10.11]" and &=0.1. The simulated results are shown in Fig.

4.4. Figs. 4.5 shows the results for changed values L, =5.Set £=8 and L, =1, the
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simulated results are shown in Fig. 4.6. The rates of convergence for the later two
conditions are faster than the first one.
Example 4.3 Mutual coupled autonomous system: Lorenz systems
x=-o(x=y)~(L+e)(x-X),
y=rx-y-xz—(L+e)Xy-9),
z=xy-bz—(L+¢&)z-12),
¢=—0(X~9)~(L+&)x-X),

>

y=rk—-y-%2—-(L+&)(J-y),
P =%9-bi—(L+e&)2-2),
L=[ef .

where 0 =10,r=28,b=8/3,x=[x y z]' and X=[X § 2]'. Let the initial value
be [X{ X; A '=[1110001] and &£=0.1. The simulated results are shown in

Fig. 4.7. Fig. 4.8 and Fig. 4.9 show the results for changed values I:O =20 and

€ =18, respectively. The rates of convergence for the later two conditions are faster
than the first one.
Example 4.4 Mutual coupled nonautonomous system: Duffing systems
X =y =0.5(LEe)(x=x%),
y=X—-X2=8y+ycosat—0.5L+e)y—Y),
§—0.5(L+e)(X—x),
R—% =89+ ycosamt—0.5(L+e)(Y-Y),

%
y
L

el

where w=1,6=025,7y=04,x=[x y]' and X=[R ¥]'. Let the initial value be
%0 L)' =[11001] and £=0.1. The simulated results are shown in Fig.

4.10. Figs. 4.11 and 4.12 show the results for changed values I:O =5 and =3,

respectively. The rates of convergence for the later two conditions are faster than the

first one.
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Fig. 4.1 State errors and estimated Lipschitz constant versus time for L, =1 and

£ =0.1 of unidirectional coupled Lorenz systems.
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Fig. 4.2 State errors and estimated Lipschitz constant versus time for I:O =25 and

£ =0.1 of unidirectional coupled Lorenz systems.
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Fig. 4.3 State errors and estimated Lipschitz constant versus time for L, =1 and

& =20 of unidirectional coupled Lorenz systems.
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Fig. 4.4 State errors and estimated Lipschitz constant versus time for L, =1 and

£ =0.1 of unidirectional coupled Duffing systems.
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Fig. 4.5 State errors and estimated Lipschitz constant versus time for [, =5 and

£ =0.1 of unidirectional coupled Duffing systems.
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Fig. 4.6 State errors and estimated Lipschitz constant versus time for L, =1 and

¢ =8 of unidirectional coupled Duffing systems.
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Fig. 4.7 State errors and estimated Lipschitz constant versus time for L, =1 and

£ =0.1 of mutual coupled Lorenz systems.
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Fig. 4.8 State errors and estimated Lipschitz constant versus time for I:O =20 and

£ =0.1 of mutual coupled Lorenz systems.
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Fig. 4.9 State errors and estimated Lipschitz constant versus time for L, =1 and

£ =18 of mutual coupled Lorenz systems.
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Fig. 4.10 State errors and estimated Lipschitz constant versus time for I:O =1 and

£ =0.1 of mutual coupled Duffing systems
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Fig. 4.11 State errors and estimated Lipschitz constant versus time for I:O =5 and

£ =0.1 of mutual coupled Duffing systems.
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Fig. 4.12 State errors and estimated Lipschitz constant versus time for I:O =1 and

& =3 of mutual coupled Duffing systems.
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Chapter 5

Generalized Synchronization of Coupled Chaotic Systems

5.1 Introduction

In the foregoing three chapters, the synchronization discussed indicates the
identical synchronization (or complete synchronization). Besides the identical
synchronization, there are many other types of synchronization, such as phase
synchronization, lag synchronization, anticipated synchronization and generalized
synchronization. In this chapter, the effort will be concentrated on generalized
synchronization which means that there is a functional relation between the states of
driving and response systems as time goes to infinity.

Similar as the contents in the chapter 2 to chapter 4, a scheme to achieve chaos
generalized synchronization via partialsstability will be proposed in this chapter. One
theorem is proven to ensure the' occurreneesof ‘generalized synchronization for a
general kind of unidirectional coupled nonautonomous systems by linear feedback.
The result works for both regular and ‘chaotic systems. Finally, two numerical

examples are simulated to illustrate the'theoretical analysis.
5.2 Theoretical Analysis

Consider the following unidirectional coupled nonautonomous systems
x =f(t, X),

_ (5.1)
z=9(t,2)+u(t,2,x),

where Xx,2eR" . The vector value functions f,g:Q cRxR"—>R" |

u:Q, cRxR*" —R" satisfy Lipschitz condition. €, and €, are domains

containing the origin. Assume that the solutions of Eq. (5.1) have a priori bounds then

they must exist for infinite time. That is, for given (t,,X,,2,) <€, NQ, the solution

I:XT (6, Xy, 2,) 2" (51, X, 20)]T of Eq. (5.1) exists for t>t,. At the first, we recall
the definition of generalized synchronization.

Definition 5.1 The system (5.1) is generalized synchronized if there is a continuous
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function H:R" —>R" st }imHH[x(t;to,xo,zo)]—z(t;to,xo,20)H=0 with

(t), X, 2,) €Q,NQ,.
In Eq. (5.1) u is the coupling function or the controlling term. In order to

investigate the transversal stability of synchronization manifold, define z = H(X)

and e=2-z to be the state error. Herein, the function H €C' is differentiable and
can be arbitrary assigned to increase the complication of synchronization. Then the

error equations can be written as

e=2-z=g(t, 2)+u(t, 2,x)— H(X),

where
. oH oH
H(X)=—xXx=—-Tf(,X).
) OX OX %
So we have
e=g(t, 2)—%—Hf(t, X)+Uu(t, Z,X). (5.2)
X

Notice that since the right hand side.of Eq. (5.2) is not only a function of t and
error e but also a function of .X. Als a result, the traditional Lyapunov direct method
can not be used. On the other hand, the-variational €quation or Lyapunov exponents
may be used to clarify transversal stability. As mentioned before, there is a drawback
that we can only calculate finite evolution time in computer simulation but infinite
evolution time is needed by definition of Lyapunov exponent.

Herein, we add the upper half (lower half also works) of Eq. (5.1) with 2
replaced by Z2=e+2z to Eq. (5.2), then an extended equation is obtained as following

x=1(t,x),

5.3
ézg(t,e+z)—%—Hf(t,x)+u(t,e+z,x). (>3)
X

If the partial variables e in Eq. (5.3) are asymptotically stable about e =0, the
synchronization manifold is stable in transversal directions. This can be done via

stability with respect to partial variables.
In the following, we choose u(t,2,z)=1(z-2) and g(t,2)= %—Hf(t, X) ,
X

where TI'eM, , is a constant matrix whose entries represent the coupling strength

n

of the linear feedback term (z—2). Then the Eq. (5.3) becomes
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x=1(t, x),

) (5.4)
é=g(t,e+z)—g(t,z)-Te.

where 0 is still an equilibrium point of the second equation of Egs. (5.4) as

synchronization occurs.
Theorem 5.1 The partial state e asymptotically approaches to 0 in Eq. (5.4) if
LI, -I" is negative definite, i.e. the system in Eg. (5.1) is in generalized

synchronization if LI, —T is negative definite.

. 1 . iy : .
Proof Choose a function V(X,e) :EeTe that is positive definite with respect to e

and with infinitesimal upper bound. Then its time derivative along the solution of Eq.
(5.3)is
V =e'[g(t,e+2)—g(t,z)-Te]
<e'[Ll,-Tle.

If LI, -I" is negative definite, V_.i§'negative definite. Then the partial state e

uniformly asymptotically approaches to -0. in.Eq..(5.4) by partial stability theory.

Hence the system in Eq. (5:) "is in generalized  synchronization if LI —-T is

negative definite.

Remark 5.1 LI, —T is negative definiteif and only if all its eigenvalues are
negative. For the case I =diag(y,,7,,--,»,) with », >0 , i=L---,n ,

synchronization occurs if y,_. >L, where y . <y, i=1---,n. This is because the

time derivative of V(x,,e) can be written as V (x,,)<(L~y,. )|e|"- The criterion

is global if f is globally Lipschitz.
5.3 Numerical Hlustrated Examples

Example 5.1 Autonomous case: Lorenz systems
X ==0(X —X,) = f,(%),
Xy =X =X, = XX = f,(X),
X, = XX, —bx, = f,(x),
where o =10,r=28,b=8/3,x=[x X, X,]'. To apply the theorem given in this

chapter, one needs to estimate the Lipschitz constant at the beginning. By
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Cauchy-Schwarz inequality, it can be derived for any
X, =% Xy X23]T X=Xy X, X13]T , we have
| fl(XZ)_ fl(X1)| < ” [-o o 0] ” ”Xz =X
| fz(xz)_ fz(X1)| < ” [r + B3 -1 Bl] ” “Xz =X
|£,0) = £,0)|<|[B, B, —b]|[x,-x,

b

where ‘xij (t)‘ <B,,vt>t,,i=12,j=1,2,3. Hence, a Lipschitz constant can be

obtained as

L=\|[-o o 01 +|[r+B, -1 B[ +|[B, B —b]| .
From numerical simulation, B, =20, B, =28, B, =49, then L =87.87. If we choose
z=®(X) = Ax+b to be an affine mapping, then the response system becomes
2=Af(@"(2)-T(Z-2X)),
where T'=diag{y,--,y} and 2=[2 2, 2,]'. LI, —T is negative definite if
y =88 . First, select @ be a reflection, that is, A=—-1 and b=0. With the initial
value [x{ 271" =[10 10 10 0.5 0.5 0/5] , ‘the simulated results are shown in

Fig.5.1-5.4. As expectation, the projections of synchronized manifold in Fig.5.2 are
diagonal-like and reflected to vertical axis.‘Compare Fig.5.4 with Fig.5.3, the phase
portrait of response system in Fig.54 is reflected to the phase portrait of driving
system in Fig.5.3. This case is also called anti-synchronization of chaos. With the

same initial condition, let

1 -1 0 0
A=(01 2 1| and b=| 0 |,
03 1 2 -50

the simulated results are shown in Fig. 5.5 and Fig. 5.7, respectively. The projections
of synchronized manifold are no longer diagonal-like but more complicated.
Example 5.2 Nonautonomous case: An extended equation of the coupled Duffing
systems is written as

X =X, = f,(x),

X, =X —X — X, +acoswt = f,(X),

72=Af(@'(2)-T(Z-DdX)),

where 0=1,8=025a=04,x=[x X1',2=[2 2,]' , T[=diag{y,--,y} and
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z=0(X)=Ax+b . By Cauchy-Schwarz inequality, it can be derived for any
X, =Xy Xy ]T X =[x, Xlz]T

| fl(XZ)_ fl(X1)| < ”Xz - X

2

[£,06) = F0)| <[ [1+387 =] I, =,

2

where [x;(1)|<B,,

Yi (t)‘ <B,,Vt>t,,i=1,2, j=1,2. Hence, a Lipschitz constant

can be obtained as

L:\/1+H[1+3Bf -5

From numerical simulation, B, =1.5,B,=0.9,then L =7.82. Choose

105
Al Vel
18 1 5

and the initial value [x; 2;]" =[1 1 0.1 0.1]". LI -T is negative definite if y=8§.

The simulated results are shown in Fig. 5.8-5.11. Fig. 5.9 shows that the projections
of synchronized manifold are complicated. Fig. 5.10 and Fig. 5.11 show that the phase

portraits of the driving and response systems are different.
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Fig. 5.3 Ph

the driving system.

85



X2

Fig. 5.4 Phase portrait of the response system.
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Fig. 5.7 Phase portrait of the response system.
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Fig. 5.9 Projections of synchronized manifold.
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Fig. 5.11 Phase portrait of the response system.
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Chapter 6

Conclusions

Chaos synchronization is an important research topic in these years. There are
several methods to guarantee the emergence of chaos synchronization but there is no
easy unified criterion in general. Most of them are suitable for a specific kind of
system or even for a special system. Herein, a general scheme for both unidirectional
and mutual coupled systems is proposed to achieve chaos synchronization via partial
stability theory. It can overcome two drawbacks. First, it is difficulty to use the
traditional Lyapunov method since the state error equation is not a pure function of
state error in general. Second, zero crossing of Lyapunov exponent whose definition
needs infinite evolution time is used as a criterion of chaos synchronization widely
but we can only calculate finite evolution time in computer simulation. The benefit of
this scheme is that the usage of thepartial stability theory is similar to the traditional
Lyapunov method. Superficially; the order of the error dynamic equation is enlarged
since it is replaced by an extended equation’in this scheme. But only partial variables
are manipulated in actual. Furthermotejsmanyrcontrol techniques can be applied to
synchronize coupled systems in this,scheme.

Follows the procedure of the proposed scheme, the unidirectional coupled
systems are discussed first and three sufficient criteria are derived. One of them is
suitable for systems without perturbation and the other two are suitable for systems
under two kinds of perturbations, vanishing and nonvanishing, respectively. Second,
the effort is concentrated on synchronization of mutual coupled systems. Similar to
the unidirectional case, three theorems are proven to ensure the occurrence of
synchronization. One of them is suitable for systems without perturbation and the
other two are suitable for systems under two kinds of perturbations, vanishing and
nonvanishing, respectively.

In previous six criteria, to guarantee the emergence of synchronization a matrix
equation should be satisfied and the estimation of Lipschitz constant is needed.
Moreover, the estimate of Lipschitz constant is often conservative. To overcome these
two shortcomings, this matrix equation and the estimation of Lipschitz constant are

replaced by adopting an adaptive coupling gain and an adaptive estimator,
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respectively. As a result, a simple and convenient adaptive synchronization of chaotic
systems is realized for both unidirectional and mutual coupled systems. It is easier and
more convenient to use this method for synchronization of both unidirectional and
mutual coupled systems than the six theorems in chapter 2 and 3. Furthermore, to
increase the convergent rate of state error dynamics we only need to set a larger initial
condition of the adaptive equation.

The synchronization discussed indicates the identical synchronization (or
complete synchronization) in the foregoing results. Another kind of synchronization
called generalized synchronization which means that there is a functional relation
between the states of driving and response systems as time goes to infinity are studied
in the chapter 5. This function can increase the complication of synchronization.
Similar to the chapter 2, a scheme to achieve chaos generalized synchronization via
partial stability is proposed. One theorem is proven to ensure generalized
synchronization for a general kind of unidirectional coupled nonautonomous systems
by linear feedback.

Several examples are simulated numerically to illustrate the theoretical analyses.
All the criteria derived in this+dissertation work for regular and chaotic, linear and
nonlinear systems, autonomous and, nonautonomous systems. Hence, the proposed

scheme to achieve chaos synchronization is successful.
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Appendix

The content of this appendix follows [78-80]. Consider a differential system
x=f(t,x), (Al)

where f:[t,©0)xQ—>R", f(t,00=0 Vtel=[t,o)and QcR" is a region

containing the origin. Assume that f is smooth enough to ensure that the solution of

(A1) exists uniquely. To shorten the notation, write X=(Y,,"**Y,,Z1 2, 1) »

m 12 n-m 12 n 12 12
=3 )  =(32] ana (S ) =(olele)” win o<men.
i=1 =1 i=1

We assume that the solution of (A1) is z-extendable, i.e. any solution of (A1) exists

for all t>t, and ||y(t)|| <H , H is a constant.  Write

Q={tx0|t=t,

y|<H,0<|z] <40} and Q={(t.x)|t>t,

x||<oo}.

Definition Al The solution of (Al) is stable:with respect to y (y-stable) if V& >0,
v, €[0,0) , 35, e)>0 T WX, €By={X] [ x|<(t, &)} such that
ly(t.t,, x,)| <& Vt=t,. The solution*of-(Al) is Uniformly y-stable if &(t,, &) is

independent of t, in the definition of‘y-stable.

The solution of (A1) is asymptotically stable with respect to y (asymptotically
y-stable) if it is (1) y-stable and (2) Vy-attractive, 1e. Vit €[0,0) ,
35'(t)>0 , V&'>0 , Vx,eB,={z|llzll5'(t) } . 3IT(t.X,,&) such that
||y(t, tO,XO)||<8' Vt>t,+T . The solution of (Al) is uniformly asymptotically
y-stable if it is (1) uniformly y-stable and (2) uniformly y-attractive, i.e. o'(t,, &) is
independent of t, and T(t,,X,,&") is independent of t,, X, in the definition of

y-attractive.

The solution of (Al) is globally y- attractive if B;=R" in the definition of

y-attractive. Furthermore, if B;=R" and 36'(t,) >0 can be replaced by VS the

solution of (Al) is globally uniformly y- attractive. The solution of (A1) is globally
asymptotically y- stable if it is (1) y-stable and (2) globally y-attractive. The solution
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of (A1) is globally uniformly asymptotically y- stable if it is (1) uniformly y-stable
and (2) globally uniformly y-attractive.

The next definition extended the notation of definite functions to partial variables.

Let V(t,x)€C([t,,0)xR", R) with V(t,00=0 and V is in the domain Q.

Definition A2 A t implicit positive (negative) semi-definite function V(x) is called
positive (negative) definite with respect to y if V(x) can vanish only when y=0.

A positive (negative) semi-definite function V (t,X) is called positive (negative)
definite with respect to y if there is a positive (negative) definite function W(y) such
that V(t,X)>W(y) (V(t,X)<W(y)).

Definition A3 A function V(t,x) is called bounded if 3IM >0 such that
|V(t,x)|£ M . A bounded function V (t,x) possesses an infinitesimal upper bound if
VE>0,35(£)>0, for t>t, and ||X|<J(&) such that |V(t,x)|<&. A bounded

function V(t,x) possesses any infinitesimal “upper bound with respect to
~ k ~
X.oou% (m<k<n) if  VE>0,35(8)>0 , “for tx=t, , > x<o ,
i=1
—00 < X¢, ++--+ X2 <o such that V(£ X)[< &

Theorem A1 Suppose there exists a positive definite function V (t,x) with respect
to x,---,% (k<n) such that V(t,x) is positive semi-definite or vanishes, then the

undisturbed motion is stable with respectto x,---,x, (kK <n).

Theorem A2 Suppose there exists a positive definite function V (t,x) with respect

to x,---, % (k<n) such that V(t,x) possesses an infinitesimal upper bound and
V (t,x) is positive definite with respect to x,,---,%,, then the undisturbed motion is

asymptotically stable with respectto x,---, X, .

Theorem A3 Suppose there exist a function V :[0,0)xQxR™ — R such that for

some functions a,b,ce Xk andevery (t,x)eQ:

@) a(ly])<Vvt.x),V(,0=0,
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K 12
(i) V(t,x)sb{( xfj ],mSKSn,

) 12
(i) V(t, x)s—c{(fo] J

i=1

then the origin is uniformly asymptotically y-stable.
Theorem A4 Suppose there exist a function V :[0,0)xQxR™ — R such that for
some functions a,b,cex, a:R"—>R" with r—+wo=a(r)—+wo and every
t,x)eQ:

() a(]y])<Vt.x),V(t0=0,

v 12
(ii) V(t,x)sb((z‘xfj ],msksn,

i=1

‘ 12
(iii) V(t, x)g—c((foJ J

(iv) DX =40 = V(t, X)= %0,
i=1

then the origin is globally asymptotically y-stable.

If there is perturbation in the system, the stability of motion is different. Consider
differential equation of a system under constantly acting perturbation
x=1(t,x)+R(t, x), (A2)
where R(t, X)e[l xQ2, R] with R(t,0)#0 in general. Assume that the solution
X(t;t,, X,) exists for infinitely time.
Definition A4 The motion x=0 of system (Al) is said to be y-stable under
constantly acting perturbation small at each instant, if Ve>0, t, >0,
36,(e,4,)>0 , (e t)>0 such that whenever [x|<d(e,t,) and
IR, x)| <3,(e,t,), the partial solution y(t;t,,x,) satisfy |y(t;t,,x,)||<e. The

motion x=0 of system (Al) is said to be y-stable under constantly acting

perturbation small on the average, if Ve>0, t,>0, VT >0, 35,(s,t,T)>0,

5,(£,1,,T)>0 such that whenever ||x | <d,(e,t,,T) and
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t+T
L sup{|R(z. )|} dz <6, (6.1, T) Vtel

, the partial solution y(t;t,,x,) satisfy |y(t;t,,x,)|<e.

If 0,,0, do not dependent on t,, the y-stable under constantly acting perturbation,

small at each instant, are uniform. This is also called total stability.

Theorem A5 Suppose there exist a function V :[0,0)xQxR™ — R such that for
some functions a,b,ceX andevery (t,x)eQ:

oV

< N = constant,
OX

(i)

) 12
(i) V(t, x)s—c{(fo] J

then the solution of system (A2) is y=stable under constantly acting perturbation

‘ 1/2
(ii) a(||y||)sV(t,x)§b£( xf) J,mSKSn,

small at each instant.

Theorem A6 Suppose there exist a“function=V :[0, 0)xQxR™ — R such that for
some functions a,b,ceX andevery ‘t,X)eQ:

ov

OX
(i) a(lvl) =V <b(ly]) .

(i) V(t, %) <—c(|y]).,

then the solution of system (A2) is y-stable under constantly acting perturbation small

< N =constant,

(i)

on the average.

Corollary Al The functions f and Df(x) are continuous and bounded in Q. If
the invariant set {x|y:0} is uniformly asymptotically stable, then it is uniformly

stable under constantly acting perturbation small on the average.
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