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摘要 

 

 

渾沌同步可以由許多方法達成。但是，一般來說，並沒有通用的簡單判據。

本論文提出一個一般性的解決方案，透過部分變量穩定性理論來達到渾沌同步，

並且可以適用於單向及雙向耦合系統。 

依照提出方案的程序，首先討論單向耦合系統，共推導出三個判據。一個

判據適合系統沒有攝動情況，其他兩個則分別適用於系統存在歸零及非歸零攝動

情形。類似於單向耦合系統，針對雙向耦合系統也有三個保證同步發生的定理被

推導出來。一個判據適合系統沒有攝動情況，其他兩個則分別適用於系統存在歸

零及非歸零攝動情形。 

在上述的六個判據中，為了確保同步的出現，必須滿足一個矩陣方程式並

且事先估算 Lipschitz 常數。特別地，估算 Lipschitz 常數經常太過於保守。為了

克服這兩個缺點，矩陣方程式及估算 Lipschitz 常數分別由一個適應耦合增益值

及適應估測器所取代。則對於單向及雙向耦合系統，由此法可實現一簡單又方便

的適應同步。 

在先前的結果中，同步指的是全等同步(或是完全同步)。接著本論文探討另

一種所謂的廣義同步，其意指在無窮長的迭代時間後，驅迫與被驅迫系統的狀態

之間存在一個函數關係。類似地，本文提出一個藉由部分變量穩定性理論來達到

廣義同步的方案。依此方案的程序，針對單向耦合系統，證出一個透過線性回授

來達到廣義同步的定理。 

所有在本論文中被推導出的判據都適用於規律及渾沌系統、線性及非線性

系統、自治及非自治系統。最後，許多系統被數值模擬用於展示理論分析結果。 
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Abstract 
 
 

Chaos synchronization can be achieved by several methods but there is no easy 

unified criterion in general. Herein, a general scheme for both unidirectional and 

mutual coupled systems is proposed to achieve chaos synchronization via stability 

with respect to partial variables. 

Follow the procedure of the proposed scheme, the unidirectional coupled 

systems are discussed first and three sufficient criteria are derived. One of them is 

suitable for systems without perturbation and the other two are suitable for systems 

under two kinds of perturbations, vanishing and nonvanishing, respectively. Similar to 

the unidirectional case, three theorems are proven to ensure occurrence of 

synchronization for mutual coupled systems. One of them is suitable for systems 

without perturbation and the other two are suitable for systems under two kinds of 

perturbations, vanishing and nonvanishing, respectively. 

In previous six criteria, to guarantee the emergence of synchronization a matrix 

equation should be satisfied and the estimation of Lipschitz constant is needed. 

Specifically, the estimate of Lipschitz constant is often conservative. To overcome 

these two shortcomings, this matrix equation and the estimation of Lipschitz constant 

are replaced by adopting an adaptive coupling gain and an adaptive estimator, 

respectively. As a result, a simple and convenient adaptive synchronization is realized 
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for both unidirectional and mutual coupled systems. 

In the foregoing results, the synchronization discussed indicates the identical 

synchronization (or complete synchronization). Another kind of synchronization 

called generalized synchronization which means that there is a functional relation 

between the states of driving and response systems as time goes to infinity are studied 

in the chapter 5. Similar, a scheme to achieve chaos generalized synchronization via 

partial stability is proposed. Follow the procedure of this scheme, one theorem is 

proven to ensure generalized synchronization for a general kind of unidirectional 

coupled systems by linear feedback. 

All the criteria derived in this dissertation work for regular and chaotic systems, 

linear and nonlinear systems, autonomous and nonautonomous systems. Finally, 

several systems are simulated numerically to illustrate the theoretical analyses.
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Chapter 1 
Introduction 

Chaotic systems exhibit sensitive dependence on initial conditions. Because of 

this property, chaotic systems are thought difficult to be synchronized or controlled. 

From the earlier works [1-3], especially after Pecora and Carroll [3], the researchers 

have realized that synchronization of chaotic motions is possible. From then on, 

synchronization of chaos was of great interest in these years [4-16]. In particular, it 

was pointed out that chaos synchronization has the potential in secure communication. 

Many engineers and scientists were attracted to this discipline [17-36].  

   Synchronization means that the states of response system approach eventually to 

the ones of driving system. Two kinds of chaos synchronization are discussed the 

most often. (1) Duplication (or master-slave): the first kind introduced by Pecora and 

Carroll [3] consists of a driving system and a response system. The former one 

evolves chaotic orbits and the latter is identical to the driving system except some 

partial states replaced by that of the driving one. (2) Coupling: the second kind 

consists of two identical chaotic systems except coupling term. Coupled systems can 

be unidirectional or mutual. Under certain conditions (appropriate coupling functions 

and/or system parameters with enough evolution time) the response system will 

behave the same orbit with the driving system. 

There are many control methods to synchronize chaotic systems such as 

observer-based design methods [37-44], adaptive control [45-54], sliding mode 

control (or variable structure control) [41, 43, 44, 55-58], impulsive control [59-65] 

and other control methods [66-72]. A another kind of more general synchronism 

called generalized synchronization (GS) is studied in [73-77], this means that there is 

a functional relation between state variables of driving and response systems as time 

evolves. This function need not to be defined on the whole phase space but on the 

attractor only. Three methods were proposed to detect GS in [73-75] respectively 

while another method measuring the smooth degree of this function in [77]. 

Zero crossing of Lyapunov exponent which is used widely as a criterion of chaos 

synchronization is derived from the variational equation. There is a drawback that we 

can only calculate finite evolution time in computer simulation but infinite evolution 
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time is needed by definition of Lyapunov exponent. The variational equation itself is 

also used to ensure the occurrence of synchronism. But its stability is in the sense of 

Lyapunov first method. Especially, the domain of attraction is infinitesimal, as a result 

that the stability of synchronization guaranteed by the variational equation is not 

robust. On other hand, it is difficult to use traditional Lyapunov direct method since 

the state error equation is not a pure function of state error in general. 

In this dissertation, we propose a general scheme to achieve chaos 

synchronization via partial stability due to Rumjantsev [78]. The previous obstacles 

will be overcome by our method and it serves as a criterion for chaos synchronization 

by control methods. Follows the procedure of proposed scheme, the unidirectional 

coupled systems are discussed and three sufficient criteria are derived in chapter 2. 

One of them is suitable for systems without perturbation and the other two are suitable 

for systems under two kinds of perturbations, vanishing and nonvanishing, 

respectively. In chapter 3, the effort is concentrated on synchronization of mutual 

coupled systems. Similar to the unidirectional case, three theorems are proven to 

ensure the occurrence of synchronization. One of them is suitable for systems without 

perturbation and the other two are suitable for systems under two kinds of 

perturbations, vanishing and nonvanishing, respectively. 

In previous six criteria, to guarantee the emergence of synchronization a matrix 

equation should be satisfied and the estimation of Lipschitz constant is needed. 

Moreover, the estimate of Lipschitz constant is often conservative. To overcome these 

two shortcomings, this matrix equation and the estimation of Lipschitz constant are 

replaced by adopting an adaptive coupling gain and an adaptive estimator, 

respectively. As a result, a simple and convenient adaptive synchronization of chaotic 

systems is realized for both unidirectional and mutual coupled systems in chapter4. It 

is easier and more convenient to use this method for synchronization of both 

unidirectional and mutual coupled systems than the six theorems in chapter 2 and 3. 

Furthermore, to increase the convergent rate of state error dynamics we only need to 

set a larger initial condition of the adaptive equation. 

The synchronization discussed indicates the identical synchronization (or 

complete synchronization) in the foregoing results. Another kind of synchronization 

called generalized synchronization which means that there is a functional relation 

between the states of driving and response systems as time goes to infinity are studied 

in the chapter 5. This function can increase the complication of synchronization. 
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Similar to the chapter 2, a scheme to achieve generalized synchronization of chaos via 

partial stability is proposed. One theorem is proven to guarantee the occurrence 

generalized synchronization for a general kind of unidirectional coupled 

nonautonomous systems by linear feedback. Furthermore, the function between the 

states of the two coupled systems can be arbitrary assigned. 

Superficially, the order of the error dynamic equation is enlarged since it is 

replaced by an extended equation in this scheme. But only partial variables are 

manipulated in actual. Furthermore, many control techniques can be applied to 

synchronize coupled systems in this scheme. All the criteria derived in this 

dissertation work for regular and chaotic, linear and nonlinear systems, autonomous 

and nonautonomous systems. Finally, several examples are simulated numerically to 

illustrate the theoretical analyses. 
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Chapter 2 

A General Scheme and Synchronization of Unidirectional 

Coupled Systems 

2.1 A General Scheme 

Consider the following coupled nonautomonous systems 

1 1 2

2 1 2

( , , ),
( , , ),
t
t

=
=

x f x x
x g x x

 (2.1) 

where 1 2, n∈x x R  are the states variables and Ω  is a domain containing the origin. 

Assume that the solution of Eq. (2.1) exist for infinite time. That is, for given 

Ω∈),,( 20100 xxt  the solution 1 0 0 0 2 0 0 0ˆ ˆ[ ( ; , , ) ( ; , , )]T T Tt t t tϕ ϕx x x x  of Eq. (2.1) 

exists for 0tt ≥ . At the first, we recall the definition of identical synchronization (or 

complete synchronization). 

Definition The system (2.1) is (identical) synchronized if there is an invariant 

manifold 2nS ⊂ ×R R  for the solution 1 0 0 0 2 0 0 0ˆ ˆ[ ( ; , , ) ( ; , , )]T T Tt t t tϕ ϕx x x x  of Eq. 

(2.1) s.t. 1 0 10 20 2 0 10 20lim ( ; , , ) ( ; , , ) 0
t

t t t tϕ ϕ
→∞

− =x x x x  with Ω∈),,( 20100 xxt . 

For convenience, rewrite Eq. (2.1) in a form which contains a coupling term to 

enhance synchronization 

1 1 1 1 2

2 2 2 1 2

( , ) ( , , ),
( , ) ( , , ),
t t
t t

= +
= +

x f x G x x
x f x G x x

 (2.2) 

where 2: n nΩ⊂ × →f R R R  satisfy the Lipschitz condition 

1 2 1 2( , ) ( , )t t L− ≤ −f x f x x x  in x  for all 1( , )t x  and 2( , )t x  in Ω  with 

Lipschitz constants L  and 2GG ,1  are the coupling functions. Assume that 

1 1 2( , , )t =G x x 0  and 2 1 2( , , )t =G x x 0  for 1 2 0( ) ( ),t t t t= ∀ ≥x x . That is the 

synchronized sub-manifold of Eqs. (2.2) agrees with the original uncoupled one while 

synchronization occurs.  In order to discuss the transversal stability of 

synchronization manifold, define 12 xxe −=  to be the state error. Error equations 

can be written as 
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[ ]),,(),,(),(),( 21121212 xxGxxGxfxfe tttt −+−= . (2.3) 

Notice that the right hand side of Eqs. (2.3) is not a pure function of e , as a result 

that the traditional Lyapunov direct method might hardly be used. The variational 

equation and zero crossing of Lyapunov exponent are used to clarify transversal 

stability locally. Moreover, Josić [81] analyzed that synchronization manifolds will 

persist under perturbation if such manifolds posses a property of k-hyperbolicity. 

In our method, the upper half (lower half also works) of Eq. (2.2) is added into 

Eq. (2.3) with 2x  replaced by 1xex +=2 , then an extended equation is obtained as 

follows 

[ ]
1 1 1 1 1

1 1 2 1 1 1 1 1

( , ) ( , , ),
( , ) ( , ) ( , , ) ( , , ) .

t t
t t t t

= + +

= + − + + − +

x f x G x e x
e f e x f x G x e x G x e x

 (2.4) 

If the partial variable e  in Eq. (2.4) are asymptotically stable about 0e = , the 

synchronization manifold is stable in transversal directions. This means that the 

system in the form of Eq. (2.2) is synchronized. The determination of whether e  is 

asymptotically stable can be done via stability with respect to partial variables. The 

theory of partial stability can be found in appendix or in [78-80]. Note that the same 

procedure can be developed for Eq. (2.1). But this form of system might too general 

to be used. The scheme proposed in this section not only satisfies the case of mutual 

coupled nonlinear systems but also satisfies the unidirectional case. Actually, it works 

for the case of unidirectional coupled nonlinear systems if 1 =G 0 . The rest mission 

is to choose appropriate controllers 1G  and 2G  to guarantee the occurrence of 

synchronization. In the remainder of this chapter, we will adopt this scheme to 

develop some criteria of synchronization for unidirectional coupled systems and give 

some simulated illustrations. 

2.2 Unidirectional Coupled Systems without Perturbation 

In this section, a theorem will be given for unidirectional coupled 

nonautonomous system which is a special case of Eq. (2.2). This theorem is suitable 

for the case without perturbation and will be applied to two examples, the Rössler 

system and the Duffing-van der Pol system. Choose 1 =G 0  and 2 1 2( )= Γ −G x x , 

then the Eq. (2.2) becomes 
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1 1

2 2 1 2

( , ),
( , ) ( ),
t
t

=
= +Γ −

x f x
x f x x x

 (2.5) 

where f  satisfies Lipschitz condition with  1 2 1 2( , ) ( , )− ≤ −t t Lf x f x x x  in x  

for all 1( , )t x  and 2( , )t x  in domain Ω  with Lipschitz constant L  and n nM ×Γ∈  

is a constant matrix whose entries represent the coupling strength of the linear 

feedback term 1 2( )−x x . The index of entry ijγ  means that the j-th component of 

1 2( )−x x  exerts on the i-th component of 2x . Follow the procedure stated in section 

2.1. Eq. (2.5) can be rephrased in the form of an extended equation as 

1 1

1 1

( , ),
( , ) ( , ) .

t
t t

=
= + − −Γ

x f x
e f e x f x e

 (2.6) 

where 12 xxe −= . 

Theorem 2.1 The partial state e  is uniformly asymptotically to 0  in Eq. (2.6) if 

nL −ΓI  is negative definite, i.e. the system in the form of Eq. (2.5) is synchronized if 

nL −ΓI  is negative definite. 

Proof Choose a function 1
1( , )
2

TV =x e e e  which is positive definite function with 

respect to e  and with infinitesimal upper bound. Then its time derivative along the 

solution of Eq. (2.6) is 

[ ]1 1

2

( , ) ( , )

( ) .

T

T

T

T

T
n

V
t t

L

L

L

=

= + − −Γ

≤ ⋅ − Γ

≤ − Γ

= −Γ

e e
e f e x f x e

e e e e

e e e

e I e

 

The state error e  uniformly asymptotically approaches 0  if nL −ΓI  is negative 

definite by Theorem A2 in appendix. The Cauchy-Schwarz inequality and the 

Lipschitz condition were used in the derivation. 

Remark 2.1 From the matrix theory, we know that nL −ΓI  is negative definite if 

and only if all its eigenvalues are negative. For the case 1 2( , , , )ndiag γ γ γΓ =  with 

0iγ >  for 1, ,i n= , synchronization occurs if min Lγ > , where 

min , 1, ,i i nγ γ≤ = . This is because the time derivative of 1( , )V x e  can be written as 
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( ) 2
1 min( , )V L γ≤ −x e e . Moreover, the result is global by Theorem A4 if f  is 

globally Lipschitzian. 

2.3 Unidirectional Coupled Systems with Two Kinds of Perturbations 

The criterion given in section 2.2 is suitable for the case without system 

perturbation. If the system possesses a vanishing perturbation, similar result can be 

obtained. Consider unidirectional coupled nonautonomous systems with perturbation 

in the form of 

1 1

2 2 1 2 1 2

( ),
( ) ( , , ) ( ),t

=
= + Δ +Γ −

x f x
x f x f x x x x

 (2.7) 

where f  satisfies Lipschitz condition with  1 2 1 2( , ) ( , )− ≤ −t t Lf x f x x x  in x  

for all 1( , )t x  and 2( , )t x  in domain Ω  with Lipschitz constant L  and n nM ×Γ∈  

is a constant matrix whose entries represent the coupling strength of the linear 

feedback term 1 2( )−x x . The term 1 2( , , )tΔf x x  is a vanishing perturbation which 

means that 1 2( , , )tΔ =f x x 0  with 1 2( ) ( ),t t t= ∀x x . 1 2( , , )tΔf x x  can be rephrased 

to be 1( , , )tΔf x e  while 12 xxe −= . Then, an extended equation can be obtained as 

1 1

1 1 1

( ),
( ) ( ) ( , , ) .t

=
= + − + Δ −Γ

x f x
e f e x f x f x e e

 (2.8) 

Theorem 2.2 Assume that 0K K∃ > ⇒ Δ <f e . Then the Eq. (2.8) is uniformly 

asymptotically e-stable if ( ) nL K+ −ΓI  is negative definite, i.e. the system in the 

form of Eq. (2.7) is synchronized if ( ) nL K+ −ΓI  is negative definite. 

Proof Choose a function 1
1( , )
2

TV =x e e e  which is positive definite function with 

respect to e  and with infinitesimal upper bound. Then its time derivative along the 

solution of Eq. (2.6) is 

[ ]

2( )

( ) .

T

T

T
n

V
L K

L K

=

≤ + − Γ

≤ + −Γ

e e
e e e

e I e

 

Hence, the Eq. (2.8) is uniformly asymptotically e-stable if ( ) nL K+ −ΓI  is negative 

definite. 
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Remark 2.2 ( ) nL K+ −ΓI  is negative definite if and only if all its eigenvalues are 

negative. When 1 2( , , , )ndiag γ γ γΓ =  with 0iγ >  for 1, ,i n= , synchronization 

occurs if min L Kγ > + , where minγ  is the minimum one in iγ . Furthermore, this 

result is global by Theorem A4 if f  and 1 2( , , )tΔf x x  are globally Lipschitzian. 

 If 1 2( , , )tΔf x x  is not a vanishing perturbation, the origin 0  is no longer a 

trivial solution. It is difficult to design a controller to guarantee the occurrence of 

asymptotically partial stability like Theorem 2.2. What we called the stable under 

constantly acting perturbation small on the average will take it over. 

Theorem 2.3 Assume that the functions f  and ( )Df x  are continuous and 

bounded in Q . The the Eq. (2.7) is uniformly e-stable under constantly acting 

perturbation small on the average if nL −ΓI  is negative definite. 

Proof From theorem 2.1, the partial state e  is uniformly asymptotically to 0  in Eq. 

(2.6) if nL −ΓI  is negative definite. By corollary A1, the Eq. (2.7) is uniformly 

e-stable under constantly acting perturbation small on the average if nL −ΓI  is 

negative definite with the assumption that f  and ( )Df x  are continuous and 

bounded in Q . This completes the proof. 

Remark 2.3 Theorem 2.3 means that the coupled structure perturbed systems (2.7) 

are practical synchronized [82]. If 1 2( , , , )ndiag γ γ γΓ =  with 0iγ >  for 

1, ,i n= , practical synchronization occurs if min Lγ > , where , 1, ,min i i nγ γ≤ = . 

Moreover, the larger minγ  is, the smaller bounds of the state errors are. This result is 

global if f  is globally Lipschitzian. 

2.4 Numerical Illustrated Examples 

In this section, the Rössler system and the Duffing-van der Pol system are 

adopted to demonstrate the results given in section 2.2 and 2.3. They are simulated for 

the cases with and without system perturbation, respectively. The system equation of 

the Rössler system is as following 
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1

2

3

( ),
( ),

( ) ( ),

x y z f
y x ay f
z b z x c f

= − −

= +

= + −

x
x

x
 

where 0.2a b= =  and c=5.7  ensure that there exists chaotic behavior. The chaotic 

attractor is shown in Fig. 2.1. To apply the theorem given in this chapter, one needs to 

estimate the Lipschitz constant at the beginning. By Cauchy-Schwarz inequality, it 

can be derived for any 2 2 2 2 1 1 1 1[ ] , [ ]T Tx y z x y z= =x x , we have 

[ ]

1 2 1 1 2 1

2 2 2 1 2 1

3 2 3 1 2 2 1 1 3

2 2 2 1 2 1 1 1 3

2 1 1 3 3

3 1 2 1

( ) ( ) [0 1 1] ,

( ) ( ) [1 0] ,

( ) ( )

0 ,

f f

f f a

f f z x z x ce

z x z x z x z x ce

z e x e ce

B B c

− ≤ − − −

− ≤ −

− = − −

= − + − −

= + −

≤ − −

x x x x

x x x x

x x

x x

 

where 1 2 3 0( ) , ( ) , ( ) , , 1, 2i i ix t B y t B z t B t t i≤ ≤ ≤ ∀ > = . Hence, a Lipschitz constant 

can be obtained as 

[ ] 22 2
3 1[0 1 1] [1 0] 0L a B B c= − − + + − . 

From numerical simulation, 1 2 312, 8, 23B B B= = = , then 23.55L = . 

The governing equation of the Duffing-van der Pol system is 

1
2 3

2

( ),

(1 ) sin ( ).

x y f

y x y x A t fμ γ

=

= − − + Ω

x

x
 

The chaotic behavior exists while 0.2, 8, 5Aμ γ= = =  and 1.02Ω = . The chaotic 

attractor is shown in Fig. 2.2. Apply the Cauchy-Schwarz inequality to estimate the 

Lipschitz constant. For any 2 2 2 1 1 1[ ] , [ ]T Tx y x y= =x x , it can be derived 

1 2 1 1 2 1

2 2 3 3
2 2 2 1 1 2 2 1 1 2 1

2 2
1 2 1 1 2 1

( ) ( ) ,

( ) ( )

2 3 ,

f f

f f e x y x y x x

B B B B

μ γ γ

γ μ γ

− ≤ −

− ≤ − + − +

⎡ ⎤≤ + + −⎣ ⎦

x x x x

x x

x x

 

where 1 2 0( ) , ( ) , , 1, 2i ix t B y t B t t i≤ ≤ ∀ > = . Hence, one Lipschitz constant can be 

obtained as 

22 2
1 2 1 11 2 3L B B B Bγ μ γ⎡ ⎤= + + +⎣ ⎦ . 
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From numerical simulation, 1 21, 1B B= = , then 20.72L = . 

2.4.1 Unidirectional Coupled Systems without Perturbation 

Example 2.1 Autonomous case: Consider the following unidirectional coupled 

Rössler systems without perturbation in the form of Eq. (2.5) as 

1 1 1

1 1 1

1 1 1

2 2 2 1 2

2 2 2 1 2

2 2 2 1 2

,
,

( ),
( ),
( ),

( ) ( ),

x y z
y x ay
z b z x c
x y z x x
y x ay y y
z b z x c z z

γ
γ

γ

= − −
= +
= + −
= − − + −
= + + −
= + − + −

 

where { }, ,diag γ γ γΓ =  and 24γ = . The initial value is [ 9, 0, 0, 0, 1, 1]T= − − −0x . 

The simulated results are shown in Fig. 2.3-2.5. In Fig. 2.3, three state errors versus 

time are shown and the state errors approach zero as time evolves. Since 2 1x x→ , 

2 1y y→ , 2 1z z→  as t →∞ , the projections of synchronized manifold shown in Fig. 

2.4 represent diagonal-like. The three Lyapunov exponents versus coupling strength 

γ  are shown in Fig. 2.5. There is a zero-crossing of a Lyapunov spectrum while 

0.074γ ≈ . This value of γ  is a threshold value which synchronization occurs. 

Choose 0.09γ = , the simulated result in Fig. 2.6 shows that the state errors still 

converge but the transient time of convergence is long. This agrees with our intuition. 

Moreover, it also demonstrates that the estimate of Lipschitz constant is conservative. 

In chapter 4, the estimation of Lipschitz constant will be replaced by a simple and 

convenient adaptive estimator. 

Example 2.2 Nonautonomous case: The unidirectional coupled Duffing-van der Pol 

systems without perturbation is 

1 1
2 3

1 1 1 1

2 2 2 1
2 3

2 2 2 2 2 1

,

(1 ) sin ,
( ),

(1 ) sin ( ) .

x y

y x y x A t
x y x x

y x y x A t y y

μ γ
γ

μ γ γ

=

= − − + Ω
= + −

= − − + Ω + −

 

where { },diag γ γΓ =  and 21γ = . The initial value is [ 0.2, 0.2,1,1]T= −0x . The 

simulated results are shown in Fig. 2.7 and Fig. 2.8. In Fig. 2.7, the state errors 

approach zero as time evolves. Since 2 1x x→ , 2 1y y→  as t →∞ , the projections 
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of synchronized manifold shown in Fig. 2.8 represent diagonal-like. 

2.4.2 Unidirectional Coupled Systems with Perturbation KΔ <f e  

Example 2.3 Autonomous case: Consider the following unidirectional coupled 

Rössler systems with some perturbations in the form of Eq. (2.7) as 

1 1 1

1 1 1

1 1 1

,
,

( ),

x y z
y x ay
z b z x c

= − −
= +
= + −

 

2 2 2 2 1 1 2

2 2 2 1 2 1 2

2 2 2 1 2

( ) ( ),
sin ( ) ( ),

( ) ( ).

x y z z z x x
y x ay t x x y y
z b z x c z z

γ
γ

γ

= − − + − + −
= + + ⋅ − + −
= + − + −

 

The system perturbation is 1 2 1f z zΔ = − ≤ e  and 2 1 2sin ( )f t x xΔ = ⋅ − ≤ e . Then 

2Δ ≤f e . Choose 25γ =  to satisfy L Kγ > + . With the same initial condition 

in example 2.1, the state errors approach zero as time goes to infinite in Fig. 2.9 

although there exists perturbation. The projections of synchronized manifold shown in 

Fig. 2.10 still represent diagonal-like. 

Example 2.4 Nonautonomous case: The unidirectional coupled Duffing-van der Pol 

systems with some perturbations is 

1 1
2 3

1 1 1 1

2 2 2 1 2 1
2 3

2 2 2 2 2 1

,

(1 ) sin ,
cos sin( ) ( ),

(1 ) sin ( ) .

x y

y x y x A t
x y t y y x x

y x y x A t y y

μ γ
γ

μ γ γ

=

= − − + Ω
= + − + −

= − − + Ω + −

 

The system perturbation is 1 2 1cos sin( )f t y yΔ = − ≤ e . The initial value is also 

[ 0.2, 0.2,1,1]T= −0x . Choose 22γ =  to satisfy L Kγ > + . The simulated results are 

shown in Fig. 2.11 and Fig. 2.12. In Fig. 2.11, the state errors approach zero as time 

evolves. Since 2 1x x→ , 2 1y y→  as t →∞ , the projections of synchronized 

manifold shown in Fig. 2.12 represent diagonal-like. 

2.4.3 Unidirectional Coupled Systems with Perturbation Small on the Average 

Example 2.5 Autonomous case: Consider the following unidirectional coupled 

Rössler systems with nonvanishing perturbation as 
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1 1 1

1 1 1

1 1 1

2 2 2 1 2

2 2 2 1 2

2 2 2 1 2

,
,

( ),
( ) ( ),

5cos30 ( ),
( ) ( ).

x y z
y x ay
z b z x c
x y z randn t x x
y x ay t y y
z b z x c z z

γ
γ

γ

= − −
= +
= + −
= − − + + −
= + + + −
= + − + −

 

The first error dynamics is 1 1 2 ( )e e ae randn t= + + , where ( )randn t  is the unit 

normal random variable. Thus, the first system perturbation is bounded on the average 

as { }10
sup

T
f d TτΔ ≤∫ . Similar, the second system perturbation is bounded on the 

average as { }20
sup 5

T
f d TτΔ ≤∫ . The initial condition and 24γ =  are the same as in 

the example 2.1. Three state errors versus time are shown in Fig. 2.13 and they are 

bounded by a constant as time evolves. The projections of synchronized manifold are 

shown in Fig. 2.14. They do not represent exact diagonal-like since the state errors are 

stable but not asymptotically stable. For 80γ = , state errors dynamics and 

synchronized sub-manifolds are shown in Fig. 2.15 and Fig. 2.16, respectively. As 

coupling strength γ  increases, the error bounds decrease and the synchronized 

sub-manifolds look more diagonal. 

Example 2.6 Nonautonomous case: The unidirectional coupled Duffing-van der Pol 

systems with nonvanishing perturbations is 

1 1
2 3

1 1 1 1

2 2 2 1
2 3

2 2 2 2 2 1

,

(1 ) sin ,
cos 20 ( ),

(1 ) sin 30 sin ( ) .

x y

y x y x A t
x y t x x

y x y x t A t y y

μ γ
π γ

μ γ π γ

=

= − − + Ω
= + + −

= − − + + Ω + −

 

The nonvanishing perturbations are bounded as 1 cos 20 1f tπΔ = ≤  and 

2 sin 30 1f tπΔ = ≤ . The initial condition and 21γ =  are the same as in the example 

2.2. The simulated results are shown in Fig. 2.17 and Fig. 2.18. The state errors versus 

time are shown in Fig. 2.17 and they are bounded by a constant as time evolves. The 

projections of synchronized manifold are shown in Fig. 2.18. They look like vague 

diagonal lines since the state errors are stable but not asymptotically stable. Choose 

100γ = , the results are shown in Fig. 2.19 and Fig. 2.20, respectively. As coupling 

strength γ  increases, the error bounds decrease and the projections of synchronized 

manifold look clear. 
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Fig. 2.1 Chaotic attractor of the Rössler system. 
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Fig. 2.2 Chaotic attractor of the Duffing-van der Pol System. 
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Fig. 2.3 State errors versus time of unidirectional coupled Rössler systems without 

perturbation. 
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Fig. 2.4 Projections of synchronized manifold for unidirectional Rössler systems 

without perturbation. 
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Fig. 2.5 Lyapunov spectra of unidirectional coupled Rössler systems without 

perturbation. 
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Fig. 2.6 State errors versus time of unidirectional coupled Rössler systems without 

perturbation while 0.09γ = . 
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Fig. 2.7 State errors versus time of unidirectional coupled Duffing-van der Pol system 

without perturbation. 
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Fig. 2.8 Projections of synchronized manifold of unidirectional coupled Duffing-van 

der Pol system without perturbation. 
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Fig. 2.9 State errors versus time of unidirectional coupled Rössler systems with 

perturbation 1 2 1f z zΔ = −  and 2 1 2sin ( )f t x xΔ = ⋅ − . 
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Fig. 2.10 Projections of synchronized manifold of unidirectional coupled Rössler 

systems with perturbation 1 2 1f z zΔ = −  and 2 1 2sin ( )f t x xΔ = ⋅ − . 
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Fig. 2.11 State errors versus time of unidirectional coupled Duffing-van der Pol 

system with perturbation 1 2 1cos sin( )f t y yΔ = − . 
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Fig. 2.12 Projections of synchronized manifold of unidirectional coupled Duffing-van 

der Pol system with perturbation 1 2 1cos sin( )f t y yΔ = − . 
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Fig. 2.13 State errors versus time of unidirectional coupled Rössler systems with 

perturbation 1 ( )f randn tΔ =  and 2 5cos30f tΔ = . 
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Fig. 2.14 Projections of synchronized manifold of unidirectional coupled Rössler 

systems with perturbation 1 ( )f randn tΔ =  and 2 5cos30f tΔ = . 
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Fig. 2.15 State errors versus time of unidirectional coupled Rössler systems with 

1 ( )f randn tΔ = , 2 5cos30f tΔ =  and 80γ = . 
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Fig. 2.16 Projections of synchronized manifold of unidirectional coupled Rössler 

systems with 1 ( )f randn tΔ = , 2 5cos30f tΔ =  and 80γ = . 
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Fig. 2.17 State errors versus time of unidirectional coupled Duffing-van der Pol 

system with perturbations 1 cos 20f tπΔ =  and 2 sin 30f tπΔ = . 
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Fig. 2.18 Projections of synchronized manifold of unidirectional coupled Duffing-van 

der Pol system with perturbations 1 cos 20f tπΔ =  and 2 sin 30f tπΔ = . 
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Fig. 2.19 State errors versus time of unidirectional coupled Duffing-van der Pol 

system with  1 cos 20f tπΔ = , 2 sin 30f tπΔ =  and 100γ = . 
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Fig. 2.20 Projections of synchronized manifold of unidirectional coupled Duffing-van 

der Pol system with 1 cos 20f tπΔ = , 2 sin 30f tπΔ =  and 100γ = . 
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Chapter 3 

Synchronization of Mutual Coupled Systems 

3.1 Mutual Coupled Systems without Perturbation 

The proposed scheme to achieve synchronization in the chapter 2, it is suitable 

for both unidirectional and mutual coupled systems. The unidirectional case is 

discussed in chapter 2. Three sufficient theorems, one for systems without 

perturbation and two for systems with perturbations, are derived. In this chapter, the 

effort will be concentrated on synchronization of mutual coupled nonautonomous 

systems. Similar to the results in the chapter 2, three theorems will be proven to 

ensure synchronization for a general kind of mutual coupled nonautonomous systems 

by linear feedback coupling term. One of them is suitable for the case without system 

perturbation and the other two are suitable for systems under two kinds of 

perturbations, vanishing and nonvanishing, respectively. Finally, six numerical 

examples are simulated to illustrate the theoretical analysis. 

Consider a mutual coupled nonautonomous system as 

1 1 2 1

2 2 1 2

( , ) ( ),
( , ) ( ),
t
t

= +Γ −
= +Γ −

x f x x x
x f x x x

 (3.1) 

where 1 2, n∈x x R  are the states variables and 2: n nΩ⊂ × →f R R R  satisfy the 

Lipschitz condition 1 2 1 2( , ) ( , )t t L− ≤ −f x f x x x  in x  for all 1( , )t x  and 2( , )t x  

in Ω  with Lipschitz constants L . n nM ×Γ∈  is a constant matrix whose entries 

represent the coupling strength of the linear feedback term 1 2( )−x x  and 2 1( )−x x . 

The index of entry ijγ  means that the j-th component of 1 2( )−x x  or 2 1( )−x x  

exert on the i-th component of 2x  or 1x , respectively. Follow the procedure stated 

in section 2.1. Define 12 xxe −= , an extended equation can be obtained as 

1 1

1 1

( , ) ,
( , ) ( , ) 2 .

t
t t

= +Γ
= + − − Γ

x f x e
e f x e f x e

 (3.2) 

Theorem 3.1 The partial state e  in Eq. (3.2) asymptotically approaches to 0  

uniformly if 2nL − ΓI  is negative definite, i.e. the system in the form of Eq. (3.1) is 
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synchronized if 2nL − ΓI  is negative definite. 

Proof Choose a function 1
1( , )
2

TV =x e e e  which is positive definite function with 

respect to e  and with infinitesimal upper bound. Then its time derivative along the 

solution of Eq. (3.2) is 

[ ]1 1

2

( , ) ( , ) 2

( 2 ) .

T

T T

T

T
n

V
t t

L

L

=

= + − − Γ

≤ − Γ

= − Γ

e e
e f x e f x e e

e e e

e I e

 

The state error e  asymptotically approaches 0  uniformly if 2nL − ΓI  is negative 

definite by Theorem A2 in appendix. 

Remark 3.1 2nL − ΓI  is negative definite if and only if all its eigenvalues are 

negative. For the case 1 2( , , , )ndiag γ γ γΓ =  with 0iγ > , 1, ,i n= , 

synchronization occurs if min 2
Lγ > , min , 1, ,i i nγ γ≤ = . This is because the time 

derivative of 1( , )V x e  can be written as ( ) 2
1 min( , ) 2V L γ≤ −x e e . Moreover, the 

result is global by Theorem A4 if f  is globally Lipschitzian. 

3.2 Mutual Coupled Systems with Two Kinds of Perturbations 

The criterion given in section 3.1 is suitable for the case without system 

perturbation. If the system possesses perturbation, similar result can be obtained. 

Consider mutual coupled nonautonomous systems with perturbation in the form of 

1 1 1 1 2 2 1

2 2 2 1 2 1 2

( , ) ( , , ) ( ),
( , ) ( , , ) ( ),
t t
t t

= + Δ +Γ −
= + Δ +Γ −

x f x f x x x x
x f x f x x x x

 (3.3) 

where f  satisfies Lipschitz condition with  1 2 1 2( , ) ( , )− ≤ −t t Lf x f x x x  in x  

for all 1( , )t x  and 2( , )t x  in domain Ω  with Lipschitz constant L  and n nM ×Γ∈  

is a constant matrix whose entries represent the coupling strength of the linear 

feedback term 1 2( )−x x . The terms 1 1 2( , , )tΔf x x  and 2 1 2( , , )tΔf x x  are vanishing 

perturbations which means that 1 1 2( , , )tΔ =f x x 0  and 2 1 2( , , )tΔ =f x x 0  with 

1 2( ) ( ),t t t= ∀x x . 1 1 2( , , )tΔf x x  and 2 1 2( , , )tΔf x x  can be rephrased to be 
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1 1( , , )tΔf x e  and 2 1( , , )tΔf x e , where 12 xxe −= . Then, an extended equation can be 

obtained as 

1 1 1

1 1 2 1

( , ) ,
( , ) ( , ) 2 .

t
t t

= + Δ +Γ
= + − + Δ −Δ + Γ

x f x f e
e f e x f x f f e

 (3.4) 

Theorem 3.2 Assume that 0 , 1, 2i i iK K i∃ > ⇒ Δ < =f e . Then the Eq. (3.4) is 

uniformly asymptotically e-stable if 1 2( ) 2nL K K+ + − ΓI  is negative definite, i.e. the 

system in the form of Eq. (3.3) is synchronized if 1 2( ) 2nL K K+ + − ΓI  is negative 

definite. 

Proof Choose a function 1
1( , )
2

TV =x e e e  which is positive definite function with 

respect to e  and with infinitesimal upper bound. Then its time derivative along the 

solution of Eq. (3.4) is 

[ ]

[ ]

1 1 2 1

1 2

1 2

( , ) ( , ) 2

( ) 2

( ) 2 .

T

T T

T T

T
n

V
t t

L K K

L K K

=

= + − + Δ −Δ − Γ

≤ + + − Γ

= + + − Γ

e e
e f e x f x f f e e

e e e e

e I e

 

Hence, the Eq. (3.4) is uniformly asymptotically e-stable if 1 2( ) 2nL K K+ + − ΓI  is 

negative definite. 

Remark 3.2 1 2( ) 2nL K K+ + − ΓI  is negative definite if and only if all its 

eigenvalues are negative. When 1 2( , , , )ndiag γ γ γΓ =  with 0iγ >  for 1, ,i n= , 

synchronization occurs if 1 2

2min
L K Kγ + +

> , where minγ  is the minimum one in iγ . 

Furthermore, the result is global by Theorem A4 if f  is globally Lipschitzian. 

If 1 1 2( , , )tΔf x x  and 2 1 2( , , )tΔf x x  are not vanishing perturbations, it is 

difficult to design a controller to guarantee the occurrence of asymptotically partial 

stability like Theorem 3.2. The stable under constantly acting perturbation small on 

the average will take it over. 

Theorem 3.3 Assume that the functions f  and ( )Df x  are continuous and 

bounded in Q . The the Eq. (3.4) is uniformly e-stable under constantly acting 

perturbation small on the average if 2nL − ΓI  is negative definite. 
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Proof From theorem 3.1, the partial state e  is uniformly asymptotically to 0  in Eq. 

(3.1) if 2nL − ΓI  is negative definite. By corollary A1, the Eq. (3.4) is uniformly 

e-stable under constantly acting perturbation small on the average if 2nL − ΓI  is 

negative definite with the assumption that f  and ( )Df x  are continuous and 

bounded in Q . This completes the proof. 

Remark 3.3 Theorem 3.3 means that the coupled structure perturbed systems (3.3) 

are practical synchronized [82]. If 1 2( , , , )ndiag γ γ γΓ =  with 0iγ >  for 

1, ,i n= , practical synchronization occurs if min Lγ > , where , 1, ,min i i nγ γ≤ = . 

Moreover, the larger minγ  is, the smaller bounds of the state errors are. This criterion 

is global if f  is globally Lipschitzian. 

3.3 Numerical Illustrated Examples 

In this section, the Lorenz system and the Ueda system are adopted to 

demonstrate the results given in section 3.1 and 3.2. They are simulated for the cases 

with and without system perturbation, respectively. The system equation of the 

Lorenz system is 

1

2

3

( ) ( ),
( ),

( ),

x x y f
y rx y xz f
z xy bz f

σ= − −

= − −

= −

x
x

x
 

where 10, 28rσ = =  and 8 3b =  ensure that there exists chaotic behavior. The 

chaotic attractor is shown in Fig. 3.1. To apply the theorem given in this chapter, 

estimation of the Lipschitz constant is needed. By Cauchy-Schwarz inequality, it can 

be derived for any 2 2 2 2 1 1 1 1[ ] , [ ]T Tx y z x y z= =x x , we have 

[ ]

[ ]

1 2 1 1 1 2 2 1

2 2 2 1 1 2 2 2 1 1

1 2 2 2 2 1 2 1 1 1 2 1

1 2 2 3 1 1 2 1

3 1 2 1

( ) ( ) 0 ,

( ) ( )

1 ,

f f e e

f f re e x z x z

re e x z x z x z x z

re e x e z e

r B B

σ σ σ σ− = − + ≤ − −

− = − − +

= − − + − + −

= − − − −

≤ + − −

x x x x

x x

x x

x x

x x
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[ ]

3 2 3 1 2 2 1 1 3

2 2 1 2 1 2 1 1 3

2 1 1 2 3

2 1 2 1

( ) ( )

,

f f x y x y be

x y x y x y x y be

y e x e be

B B b

− = − −

= − + − −

= + −

≤ − −

x x

x x

 

where 1 2 3 0( ) , ( ) , ( ) , , 1, 2i i ix t B y t B z t B t t i≤ ≤ ≤ ∀ > = . Hence, a Lipschitz constant 

can be obtained as 

[ ] [ ] [ ]2 2 2
3 1 2 10 1L r B B B B bσ σ= − + + − + − . 

From numerical simulation, 1 2 320, 28, 49B B B= = = , then 87.87L = . 

The governing equation of the Ueda system is 

1
3

2

( ),

sin ( ).

x y f

y x by A t f

=

= − − + Ω

x

x
 

The chaotic behavior exists while 0.05, 5b A= =  and 1Ω = . The chaotic attractor is 

shown in Fig. 3.2. Apply the Cauchy-Schwarz inequality to estimate the Lipschitz 

constant. For any 2 2 2 1 1 1[ ] , [ ]T Tx y x y= =x x , it can be derived 

1 2 1 1 2 1

3 3
2 2 2 1 2 1 2

2
1 2 1

( ) ( ) ,

( ) ( )

3 ,

f f

f f x x be

B b

− ≤ −

− = − + −

⎡ ⎤≤ − −⎣ ⎦

x x x x

x x

x x

 

where 1 2 0( ) , ( ) , , 1, 2i ix t B y t B t t i≤ ≤ ∀ > = . Hence, one Lipschitz constant can be 

obtained as 

22
11 3L B b⎡ ⎤= + −⎣ ⎦ . 

From numerical simulation, 1 23.5, 7B B= = , then 36.77L = . 

3.3.1 Mutual Coupled Systems without Perturbation 

Example 3.1 Autonomous case: Consider the following mutual coupled simplest 

quadratic chaotic system without system perturbation as in the form of Eq. (3.1) 

1 1 1 2 1

1 1 1 1 1 2 1

1 1 1 1 2 1

( ) ( ),
( ),

( ),

x x y x x
y rx y x z y y
z x y bz z z

σ γ
γ

γ

= − − + −
= − − + −
= − + −
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2 2 2 1 2

2 2 2 2 2 1 2

2 2 2 2 1 2

( ) ( ),
( ),

( ),

x x y x x
y rx y x z y y
z x y bz z z

σ γ
γ

γ

= − − + −
= − − + −
= − + −

 

where { }, ,diag γ γ γΓ =  and 44 2Lγ = > . The initial value is 

[1, 0.01, 3, 0, 0, 5]T= −0x . The simulated results are shown in Fig. 3.3-3.6. In Fig. 3.3, 

three state errors versus time are shown and the state errors approach zero as time 

evolves. Since 2 1x x→ , 2 1y y→ , 2 1z z→  as t →∞ , the projections of 

synchronized manifold shown in Fig. 3.4 represent diagonal-like. The three Lyapunov 

exponents versus coupling strength γ  are shown in Fig. 3.5. There is a zero-crossing 

of a Lyapunov spectrum while 0.41γ ≈ . This value of γ  is a threshold value which 

synchronization occurs. Fujisaka and Yamada [1] proved that synchronization of 

linear coupled autonomous systems occurs if the coupling strength larger than half of 

the largest Lyapunov exponent. The largest Lyapunov exponent is 0.82  and its half 

is 0.41 . This coincides with the values of zero-crossing of a Lyapunov spectrum. 

Choose 0.6γ = , the simulated result in Fig. 3.6 shows that the state errors still 

converge but the transient time of convergence is long. This agrees with our intuition. 

Example 3.2 Nonautonomous case: The mutual coupled Ueda systems without 

perturbation is 

1 1 2 1
3

1 1 1 2 1

2 2 1 2
3

2 2 2 1 2

( ),

sin ( ),
( ),

sin ( ),

x y x x

y x by A t y y
x y x x

y x by A t y y

γ

γ
γ

γ

= + −

= − − + Ω + −
= + −

= − − + Ω + −

 

where { },diag γ γΓ =  and 18.5γ = . The initial value is [2.5, 0,1,1]T=0x . The 

simulated results are shown in Fig. 3.7 and Fig. 2.8. In Fig. 3.7, the state errors 

approach zero as time evolves. Since 2 1x x→ , 2 1y y→  as t →∞ , the projections 

of synchronized manifold shown in Fig. 3.8 represent diagonal-like. 

3.3.2 Mutual Coupled Systems with Perturbation KΔ <f e  

Example 3.3 Autonomous case: Consider the following mutual coupled Lorenz 

systems with system perturbation as 
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1 1 1 1 2 2 1

1 1 1 1 1 2 1

1 1 1 1 2 1

2 2 2 1 2

2 2 2 2 2 1 2

2 2 2 2 1 2 1 2

( ) cos ( ) ( ),
( ),

( ),
( ) ( ),

( ),
( ) ( ).

x x y t y y x x
y rx y x z y y
z x y bz z z
x x y x x
y rx y x z y y
z x y bz x x z z

σ γ
γ

γ
σ γ

γ
γ

= − − + ⋅ − + −
= − − + −
= − + −
= − − + −
= − − + −
= − + − + −

 

The system perturbations are bounded as 1 1 2cos ( )f t y yΔ = ⋅ − ≤ e  and 

6 1 2f x xΔ = − ≤ e . Choose 45γ =  to satisfy 1 2( ) 2L K Kγ > + +  and the initial 

condition is the same as in example 3.1. In Fig. 3.9, the state errors approach zero as 

time goes to infinite although there is persistent acting perturbation. The projections 

of synchronized manifold shown in Fig. 3.10 represent diagonal-like. 

Example 3.4 Nonautonomous case: The mutual coupled Ueda systems with some 

perturbations is 

1 1 2 1
3

1 1 1 2 1 2 1

( ),

sin cos sin( ) ( ),

x y x x

y x by A t t x x y y

γ

γ

= + −

= − − + Ω + − + −
 

2 2 2 1 1 2
3

2 2 2 1 2

( ) ( ),

sin ( ).

x y y y x x

y x by A t y y

γ

γ

= + − + −

= − − + Ω + −
 

The system perturbations are bounded as 2 2 1cos sin( )f t x xΔ = − ≤ e  and 

3 2 1f y yΔ = − ≤ e . Choose 19.5γ =  to satisfy 1 2( ) 2L K Kγ > + + . The initial 

value is also [0.2, 0.2,1,1]T= −0x . The simulated results are shown in Fig. 3.11 and 

Fig. 3.12. In Fig. 3.11, the state errors approach zero as time evolves. Since 2 1x x→ , 

2 1y y→  as t →∞ , the projections of synchronized manifold shown in Fig. 3.12 

represent diagonal-like. 

3.4.3 Mutual Coupled Systems with Perturbation Small on the Average 

Example 3.5 Autonomous case: Consider the following mutual coupled Lorenz 

systems with nonvanishing perturbation in the form of Eq. (3.3) as 

1 1 1 2 1

1 1 1 1 1 2 1

1 1 1 1 2 1

( ) ( ),
2sin(20 ) ( ),

( ),

x x y x x
y rx y x z t y y
z x y bz z z

σ γ
π γ

γ

= − − + −
= − − + + −
= − + −

 



40 40

2 2 2 1 2

2 2 2 2 2 1 2

2 2 2 2 1 2

( ) ( ) ( ),
( ),

5cos(30 ) ( ),

x x y randn t x x
y rx y x z y y
z x y bz t z z

σ γ
γ

π γ

= − − + + −
= − − + −
= − + + −

 

where ( )randn t  is the unit normal random variable. The second system perturbation 

is 2 2sin(20 )f tπΔ = . It is bounded on the average since { }2sup 2
t T

t
f d Tτ

+
Δ ≤∫ , 

[0, )t∀ ∈ ∞ . Similar, for [0, )t∈ ∞  the fourth system perturbation 4 ( )f randn tΔ =  

and the sixth system perturbation 6 5cos(30 )f tπΔ =  are bounded on the average by 

{ }4sup
t T

t
f d Tτ

+
Δ ≤∫  and { }6sup 5

t T

t
f d Tτ

+
Δ ≤∫ , respectively. The initial condition 

and 44γ =  are the same as in the example 3.1. Three state errors versus time are 

shown in Fig. 3.13 and they are bounded by a constant as time evolves. The 

projections of synchronized manifold are shown in Fig. 3.14. They look like a little 

vague since the state errors are stable but not asymptotically stable. If 130γ = , the 

results are shown in Fig. 3.15 and Fig. 3.16, respectively. As coupling strength γ  

increases, the error bounds decrease and the projections of synchronized manifold 

look clear. 

Example 3.6 Nonautonomous case: The mutual coupled Ueda systems with 

nonvanishing perturbations is 

1 1 2 1
3

1 1 1 2 1

2 2 1 2
3

2 2 2 1 2

( ),

sin cos(25 ) ( ),
5sin(15 ) ( ),

sin ( ).

x y x x

y x by A t t y y
x y t x x

y x by A t y y

γ

π γ
π γ

γ

= + −

= − − + Ω + + −
= + + −

= − − + Ω + −

 

The system perturbations are 2 cos(25 )f tπΔ =  and 3 5sin(15 )f tπ= , then 

{ }2sup
t T

t
f d Tτ

+
Δ ≤∫  and { }3sup 5 , [0, )

t T

t
f d T tτ

+
Δ ≤ ∀ ∈ ∞∫ . The initial condition 

and 18.5γ =  are the same as in the example 3.2. The simulated results are shown in 

Fig. 3.17 and 3.18. The state errors versus time are shown in Fig. 3.17 and they are 

bounded by a constant as time evolves. The projections of synchronized manifold are 

shown in Fig. 3.18. They do not look like exact diagonal lines since the state errors 

are stable but not asymptotically stable. Choose 100γ = , the results are shown in Fig. 

3.19 and Fig. 3.20, respectively. As coupling strength γ  increases, the error bounds 

decrease and the projections of synchronized manifold look clear. 
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Fig. 3.1 Chaotic attractor of the Lorenz system. 
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Fig. 3.2 Chaotic attractor of the Ueda system. 
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Fig. 3.3 State errors versus time of mutual coupled Lorenz system without 

perturbation. 
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Fig. 3.4 Projections of synchronized manifold for mutual coupled Lorenz system 

without perturbation. 
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Fig. 3.5 Lyapunov spectra of mutual coupled Lorenz systems without system 

perturbation. 
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Fig. 3.6 State errors versus time of mutual coupled Lorenz systems without 

perturbation while 0.6γ = . 
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Fig. 3.7 State errors versus time of mutual coupled Ueda system without perturbation. 
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Fig. 3.8 Projections of synchronized manifold of mutual coupled Ueda system without 

perturbation. 
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Fig. 3.9 State errors versus time of mutual coupled Lorenz systems with perturbations 

1 1 2cos ( )f t y yΔ = ⋅ −  and 6 1 2f x xΔ = − . 
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Fig. 3.10 Projections of synchronized manifold of mutual coupled Lorenz systems 

with perturbations 1 1 2cos ( )f t y yΔ = ⋅ −  and 6 1 2f x xΔ = − . 
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Fig. 3.11 State errors versus time of mutual coupled Ueda systems with perturbations 

2 2 1cos sin( )f t x xΔ = −  and 3 2 1f y yΔ = − . 
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Fig. 3.12 Projections of synchronized manifold of mutual coupled Ueda systems with 

perturbations 2 2 1cos sin( )f t x xΔ = −  and 3 2 1f y yΔ = − . 
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Fig. 3.13 State errors versus time of mutual coupled Lorenz systems with 
perturbations 2 2sin(20 )f tπΔ = , 4 ( )f randn tΔ =  and 6 5cos(30 )f tπΔ = . 
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Fig. 3.14 Projections of synchronized manifold of mutual coupled Lorenz systems 

with perturbations 2 2sin(20 )f tπΔ = , 4 ( )f randn tΔ =  and 6 5cos(30 )f tπΔ = . 
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Fig. 3.15 State errors versus time of mutual coupled Lorenz systems with 

2 2sin(20 )f tπΔ = , 4 ( )f randn tΔ = , 6 5cos(30 )f tπΔ =  and 130γ = . 
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Fig. 3.16 Projections of synchronized manifold of mutual coupled Lorenz systems 

with 2 2sin(20 )f tπΔ = , 4 ( )f randn tΔ = , 6 5cos(30 )f tπΔ =  and 130γ = . 
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Fig. 3.17 State errors versus time of mutual coupled Ueda Systems with perturbations 

2 cos(25 )f tπΔ =  and 3 5sin(15 )f tπ= . 
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Fig. 3.18 Projections of synchronized manifold of mutual coupled Ueda Systems with 

perturbations 2 cos(25 )f tπΔ =  and 3 5sin(15 )f tπ= . 
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Fig. 3.19 State errors versus time of mutual coupled Ueda Systems with 

2 cos(25 )f tπΔ = , 3 5sin(15 )f tπ=  and 100γ = . 
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Fig. 3.20 Projections of synchronized manifold of mutual coupled Ueda Systems with 

2 cos(25 )f tπΔ = , 3 5sin(15 )f tπ=  and 100γ = . 
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Chapter 4 
Adaptive Synchronization of Unidirectional and Mutual 

Coupled Systems 

4.1 Introduction 

 In chapter 2, it is proposed a general scheme to achieve chaos synchronization of 

unidirectional coupled nonautonomous systems via partial stability theory due to 

Rumjantsev [78]. Three theorems are derived to achieve synchronization for 

unidirectional coupled systems by linear feedback. This scheme is also applied to 

mutual coupled systems in chapter 3. Three theorems are also derived to achieve 

synchronization for mutual coupled systems by linear feedback. 

To use these theorems a relation about coupling gain matrix must be satisfied in 

advance since these theorems are sufficient. Moreover, the estimate of Lipschitz 

constant is needed and it is often conservative. In this chapter, an adaptive coupling 

gain replaces this coupling gain matrix. To implement this adaptive coupling gain an 

adaptive law is adopted to estimate the Lipschitz constant of the chaotic system. It is 

easier and more convenient to use this adaptive method for synchronization of both 

unidirectional and mutual coupled systems than the theorems in previous two chapters. 

Furthermore, to increase the convergent rate of state errors we only set a larger initial 

condition of the adaptive equation. 

The theoretical analyses are arranged in section 2 and section 3 for both 

unidirectional and mutual coupled systems, respectively. Two theorems for adaptive 

synchronization of unidirectional and mutual coupled nonautonomous chaotic systems 

are derived individually. An adaptive coupling gain is realized by adopting an 

adaptive law to estimate the Lipschitz constant of the chaotic system. In section 4, the 

Lorenz system and the Duffing system are simulated to demonstrate analytical results 

for unidirectional and mutual coupled chaotic systems, respectively. 

4.2 Adaptive Synchronization of Unidirectional Coupled Systems 

Consider the following unidirectional coupled nonautonomous systems 
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( , ),

ˆ ˆ ˆ( , ) ( , , ),

t

t t

=

= +

x f x

x f x u x x
 (4.1) 

where ˆ, n∈x x R  and 1: n nΩ ⊂ × →f R R R  satisfy Lipschitz condition 

1 2 1 2( , ) ( , )− ≤ −t t Lf x f x x x  in x  for all 1( , )t x  and 2( , )t x  in 1Ω  with 

Lipschitz constant L . 2: n n nΩ ⊂ × × →u R R R R  is the coupling function. 21 ,ΩΩ  

are domains containing the origin. Assume that the solution of Eq. (4.1) exists for 

infinite time. That is, for given 0 0 0 1 2ˆ( , , )t ∈Ω ∩Ωx x  the solution 

0 0 0 0 0 0ˆ ˆ ˆ[ ( ; , , ) ( ; , , )]T T Tt t t tx x x x x x  of Eq. (4.1) exists for 0tt ≥ . 

To ensure diagonal-like synchronized manifold, assume ˆ( , , ) =u x x 0t  if 

ˆ( ) ( )t t=x x , ∀ t . Define ˆ= −e x x  to be the state error. Then an extended equation 

can be obtained as 

( , ),
( , ) ( , ) ( , , ).
t
t t t

=
= + − + +

x f x
e f e x f x u x e x

 (4.2) 

Our goal is to choose an appropriate u  so that the partial state =e 0  of equation 

(4.2) is asymptotically stable. This means that x̂  synchronizes to x . 

Theorem 4.1 The partial state =e 0  of Eq. (4.2) is uniformly asymptotically stable 

if ˆ( )L ε= − +u e  with 0ε >  and adaptation 2L̂ = e , i.e. the system in the form of 

Eq. (4.1) is synchronized if ˆ( )L ε= − +u e  with 0ε >  and adaptation 2L̂ = e . 

Proof Choose a positive definite function as 

21 1 ˆ( )
2 2

TV L L= + −e e , 

then its time derivative along the solution of Eq.(4.2) is 

[ ]
2

ˆ ˆ( , ) ( , ) ( , , ) ( )

ˆ ˆ( ) .

T

T

V t t t L L L

L L L L

= + − + + + −

≤ + + −

e f e x f x u x e x

e e u
 

Let the adaptive law be 2L̂ = e  and ˆ( )L ε= − +u e  with 0ε > . We obtain 

2V ε< − e . Hence the equilibrium =e 0  is uniformly asymptotically stable by 

partial stability theory [78-80]. 

4.3 Adaptive Synchronization of Mutual Coupled Systems 
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For the mutual coupled nonautonomous systems, consider the systems in the 

form as follows 

ˆ( , ) ( , , ),

ˆ ˆ ˆ( , ) ( , , ),

t t

t t

= −

= +

x f x u x x

x f x u x x
 (4.3) 

where ˆ, n∈x x R  and 1: n nΩ ⊂ × →f R R R  satisfy Lipschitz condition 

1 2 1 2( , ) ( , )− ≤ −t t Lf x f x x x  in x  for all 1( , )t x  and 2( , )t x  in 1Ω  with 

Lipschitz constant L . 2: n n nΩ ⊂ × × →u R R R R  is the coupling function. 21 ,ΩΩ  

are domains containing the origin. Assume that the solution of Eq. (4.3) exists for 

infinite time. That is, for given 0 0 0 1 2ˆ( , , )t ∈Ω ∩Ωx x  the solution 

0 0 0 0 0 0ˆ ˆ ˆ[ ( ; , , ) ( ; , , )]T T Tt t t tx x x x x x  of Eqs. (4.3) exist for 0tt ≥ . 

To ensure diagonal-like synchronized manifold, assume that ( , , )t =u x x 0  for 

ˆ( ) ( )t t=x x , t∀ . Define ˆ= −e x x  to be the state error. Then an extended equation 

can be obtained as 

( , ) ( , , ),
( , ) ( , ) 2 ( , , ).
t t
t t t

= − +
= + − + +

x f x u x e x
e f e x f x u x e x

 (4.4) 

Theorem 4.2 The partial state =e 0  of Eq. (4.4) is uniformly asymptotically stable 

if ˆ0.5( )L ε= − +u e  with 0ε >  and adaptation 2L̂ = e , i.e. the system in the form 

of Eq. (4.3) is synchronized if ˆ0.5( )L ε= − +u e  with 0ε >  and adaptation 

2L̂ = e . 

Proof Choose a positive definite function as 

21 1 ˆ( )
2 2

TV L L= + −e e , 

then its time derivative along the solution of Eq.(4.4) is 

[ ]
2

ˆ ˆ( , ) ( , ) 2 ( , , ) ( )

ˆ ˆ2 ( ) .

T

T

V t t t L L L

L L L L

= + − + + + −

≤ + + −

e f e x f x u x e x

e e u
 

Let the adaptation be 2L̂ = e  and ˆ0.5( )L ε= − +u e  with 0ε > . We can obtain 

20.5V ε< − e . Hence the partial state =e 0  is uniformly asymptotically stable. 

Remark 4.1 The partial stability theory is used in the proofs of Theorem 4.1 and 4.2. 

On the other hand, as the usual approach the Barbalat lemma can be used to prove the 
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asymptotical stability of the error dynamics. It seems that using partial stability theory 

is convenient. 

Remark 4.2 Since the adaptive law is 2ˆ 0L = ≥e . Therefore, L̂  and L̂ L−  are 

increasing functions of t  and so is L̂ ε+ . If ε  or the initial value 0L̂  of L̂  is 

large, then the feedback gain L̂ ε+  is always large. Hence, the larger 0L̂  or ε  the 

faster convergent rate of e  is. 

4.4 Numerical Illustrated Examples 

Example 4.1 Unidirectional coupled autonomous system: Lorenz systems 

2

( ),
,

,
ˆˆ ˆ ˆ ˆ( ) ( )( ),
ˆˆ ˆ ˆ ˆ ˆˆ ( )( ),

ˆˆˆˆ ˆ ˆ( )( ),

ˆ ,

x x y
y rx y xz
z xy bz

x x y L x x

y rx y xz L y y

z xy bz L z z

L

σ

σ ε

ε

ε

= − −
= − −
= −

= − − − + −

= − − − + −

= − − + −

= e

 

where 10, 28, 8 3, [ ]Tr b x y zσ = = = =x  and ˆ ˆ ˆ ˆ[ ]Tx y z=x . Let the initial value 

be 0 0 0
ˆˆ[ ] [1 1 1 0 0 0 1]T T T TL =x x  and 0.1ε = . The simulated results are shown in 

Fig. 4.1. Fig. 4.2 and Fig. 4.3 show the results for changed values 0
ˆ 25L =  and 

20ε = , respectively. The rates of convergence for the later two conditions are faster 

than the first one. 

Example 4.2 Unidirectional coupled nonautonomous system: Duffing systems 

3

3

2

,
cos ,

ˆˆ ˆ ˆ( )( ),
ˆˆ ˆ ˆ ˆ ˆcos ( )( ),

ˆ ,

x y
y x x y t

x y L x x

y x x y t L y y

L

δ γ ω

ε

δ γ ω ε

=

= − − +

= − + −

= − − + − + −

= e

 

where 1, 0.25, 0.4, [ ]Tx yω δ γ= = = =x  and ˆ ˆ ˆ[ ]Tx y=x . Let the initial value be 

0 0 0
ˆˆ[ ] [1 1 0.1 0.1 1]T T T TL =x x  and 0.1ε = . The simulated results are shown in Fig. 

4.4. Figs. 4.5 shows the results for changed values 0
ˆ 5L = . Set 8ε =  and 0

ˆ 1L = , the 



65 65

simulated results are shown in Fig. 4.6. The rates of convergence for the later two 

conditions are faster than the first one. 

Example 4.3 Mutual coupled autonomous system: Lorenz systems 

2

ˆ ˆ( ) ( )( ),
ˆ ˆ( )( ),

ˆ ˆ( )( ),
ˆˆ ˆ ˆ ˆ( ) ( )( ),
ˆˆ ˆ ˆ ˆ ˆˆ ( )( ),

ˆˆˆˆ ˆ ˆ( )( ),

ˆ ,

x x y L x x

y rx y xz L y y

z xy bz L z z

x x y L x x

y rx y xz L y y

z xy bz L z z

L

σ ε

ε

ε

σ ε

ε

ε

= − − − + −

= − − − + −

= − − + −

= − − − + −

= − − − + −

= − − + −

= e

 

where 10, 28, 8 3, [ ]Tr b x y zσ = = = =x  and ˆ ˆ ˆ ˆ[ ]Tx y z=x . Let the initial value 

be 0 0 0
ˆˆ[ ] [1 1 1 0 0 0 1]T T T TL =x x  and 0.1ε = . The simulated results are shown in 

Fig. 4.7. Fig. 4.8 and Fig. 4.9 show the results for changed values 0
ˆ 20L =  and 

18ε = , respectively. The rates of convergence for the later two conditions are faster 

than the first one. 

Example 4.4 Mutual coupled nonautonomous system: Duffing systems 

3

3

2

ˆ ˆ0.5( )( ),
ˆ ˆcos 0.5( )( ),

ˆˆ ˆ ˆ0.5( )( ),
ˆˆ ˆ ˆ ˆ ˆcos 0.5( )( ),

ˆ ,

x y L x x

y x x y t L y y

x y L x x

y x x y t L y y

L

ε

δ γ ω ε

ε

δ γ ω ε

= − + −

= − − + − + −

= − + −

= − − + − + −

= e

 

where 1, 0.25, 0.4, [ ]Tx yω δ γ= = = =x  and ˆ ˆ ˆ[ ]Tx y=x . Let the initial value be 

0 0 0
ˆˆ[ ] [1 1 0 0 1]T T T TL =x x  and 0.1ε = . The simulated results are shown in Fig. 

4.10. Figs. 4.11 and 4.12 show the results for changed values 0
ˆ 5L =  and 3ε = , 

respectively. The rates of convergence for the later two conditions are faster than the 

first one. 
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Fig. 4.1 State errors and estimated Lipschitz constant versus time for 0
ˆ 1L =  and 

0.1ε =  of unidirectional coupled Lorenz systems.
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Fig. 4.2 State errors and estimated Lipschitz constant versus time for 0
ˆ 25L =  and 

0.1ε =  of unidirectional coupled Lorenz systems.
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Fig. 4.3 State errors and estimated Lipschitz constant versus time for 0
ˆ 1L =  and 

20ε =  of unidirectional coupled Lorenz systems. 
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Fig. 4.4 State errors and estimated Lipschitz constant versus time for 0
ˆ 1L =  and 

0.1ε =  of unidirectional coupled Duffing systems.
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Fig. 4.5 State errors and estimated Lipschitz constant versus time for 0
ˆ 5L =  and 

0.1ε =  of unidirectional coupled Duffing systems.
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Fig. 4.6 State errors and estimated Lipschitz constant versus time for 0
ˆ 1L =  and 

8ε =  of unidirectional coupled Duffing systems. 
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Fig. 4.7 State errors and estimated Lipschitz constant versus time for 0
ˆ 1L =  and 

0.1ε =  of mutual coupled Lorenz systems.
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Fig. 4.8 State errors and estimated Lipschitz constant versus time for 0
ˆ 20L =  and 

0.1ε =  of mutual coupled Lorenz systems.
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Fig. 4.9 State errors and estimated Lipschitz constant versus time for 0
ˆ 1L =  and 

18ε =  of mutual coupled Lorenz systems.
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Fig. 4.10 State errors and estimated Lipschitz constant versus time for 0
ˆ 1L =  and 

0.1ε =  of mutual coupled Duffing systems
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Fig. 4.11 State errors and estimated Lipschitz constant versus time for 0
ˆ 5L =  and 

0.1ε =  of mutual coupled Duffing systems.
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Fig. 4.12 State errors and estimated Lipschitz constant versus time for 0
ˆ 1L =  and 

3ε =  of mutual coupled Duffing systems. 
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Chapter 5 
Generalized Synchronization of Coupled Chaotic Systems 

5.1 Introduction 

In the foregoing three chapters, the synchronization discussed indicates the 

identical synchronization (or complete synchronization). Besides the identical 

synchronization, there are many other types of synchronization, such as phase 

synchronization, lag synchronization, anticipated synchronization and generalized 

synchronization. In this chapter, the effort will be concentrated on generalized 

synchronization which means that there is a functional relation between the states of 

driving and response systems as time goes to infinity. 

Similar as the contents in the chapter 2 to chapter 4, a scheme to achieve chaos 

generalized synchronization via partial stability will be proposed in this chapter. One 

theorem is proven to ensure the occurrence of generalized synchronization for a 

general kind of unidirectional coupled nonautonomous systems by linear feedback. 

The result works for both regular and chaotic systems. Finally, two numerical 

examples are simulated to illustrate the theoretical analysis. 

5.2 Theoretical Analysis 

Consider the following unidirectional coupled nonautonomous systems 

( , ),

ˆ ˆ ˆ( , ) ( , , ),

t

t t

=

= +

x f x

z g z u z x
 (5.1) 

where ˆ, n∈x z R . The vector value functions 1, : n nΩ ⊂ × →f g R R R , 

2
2: n nΩ ⊂ × →u R R R  satisfy Lipschitz condition. 1Ω  and 2Ω  are domains 

containing the origin. Assume that the solutions of Eq. (5.1) have a priori bounds then 

they must exist for infinite time. That is, for given 0 0 0 1 2ˆ( , , )t ∈Ω ∩Ωx z  the solution 

0 0 0 0 0 0ˆ ˆ ˆx ( ; , x , z ) z ( ; , x , z )
TT Tt t t t⎡ ⎤⎣ ⎦ of Eq. (5.1) exists for 0tt ≥ . At the first, we recall 

the definition of generalized synchronization. 

Definition 5.1 The system (5.1) is generalized synchronized if there is a continuous 
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function : n nH →R R  s.t. [ ]0 0 0 0 0 0ˆ ˆ ˆlim ( ; , , ) ( ; , , ) 0
t

H t t t t
→∞

− =x x z z x z  with 

0 0 0 1 2ˆ( , , )t ∈Ω ∩Ωx z . 

In Eq. (5.1) u  is the coupling function or the controlling term. In order to 

investigate the transversal stability of synchronization manifold, define ( )H=z x  

and ˆ= −e z z  to be the state error. Herein, the function 1H C∈  is differentiable and 

can be arbitrary assigned to increase the complication of synchronization. Then the 

error equations can be written as 

ˆ ˆ ˆ( , ) ( , , ) ( )t t H= − = + −e z z g z u z x x , 

where 

( ) ( , )H HH t∂ ∂
= =
∂ ∂

x x f x
x x

. 

So we have 

ˆ ˆ( , ) ( , ) ( , , )Ht t t∂
= − +

∂
e g z f x u z x

x
. (5.2) 

Notice that since the right hand side of Eq. (5.2) is not only a function of t  and 

error e  but also a function of x . As a result, the traditional Lyapunov direct method 

can not be used. On the other hand, the variational equation or Lyapunov exponents 

may be used to clarify transversal stability. As mentioned before, there is a drawback 

that we can only calculate finite evolution time in computer simulation but infinite 

evolution time is needed by definition of Lyapunov exponent. 

Herein, we add the upper half (lower half also works) of Eq. (5.1) with ẑ  

replaced by ˆ = +z e z  to Eq. (5.2), then an extended equation is obtained as following 

( , ),

( , ) ( , ) ( , , ) .

t
Ht t t

=
∂

= + − + +
∂

x f x

e g e z f x u e z x
x

 (5.3) 

If the partial variables e  in Eq. (5.3) are asymptotically stable about 0e = , the 

synchronization manifold is stable in transversal directions. This can be done via 

stability with respect to partial variables. 

In the following, we choose ˆ ˆ( , , ) ( )t = Γ −u z z z z  and ( , ) ( , )Ht t∂
=
∂

g z f x
x

, 

where  n nM ×Γ∈  is a constant matrix whose entries represent the coupling strength 

of the linear feedback term ˆ( )−z z . Then the Eq. (5.3) becomes 
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( , ),
( , ) ( , ) .
t
t t

=
= + − −Γ

x f x
e g e z g z e

 (5.4) 

where 0  is still an equilibrium point of the second equation of Eqs. (5.4) as 

synchronization occurs. 

Theorem 5.1 The partial state e  asymptotically approaches to 0  in Eq. (5.4) if 

nL −ΓI  is negative definite, i.e. the system in Eq. (5.1) is in generalized 

synchronization if nL −ΓI  is negative definite. 

Proof Choose a function 1( , )
2

TV =x e e e  that is positive definite with respect to e  

and with infinitesimal upper bound. Then its time derivative along the solution of Eq. 

(5.3) is 

[ ]( , ) ( , )
[ ] .

T

T

n

V t t
L

= + − −Γ

≤ −Γ

e g e z g z e
e I e

 

If nL −ΓI  is negative definite, V  is negative definite. Then the partial state e  

uniformly asymptotically approaches to 0  in Eq. (5.4) by partial stability theory. 

Hence the system in Eq. (5.1) is in generalized synchronization if nL −ΓI  is 

negative definite. 

Remark 5.1 nL −ΓI  is negative definite if and only if all its eigenvalues are 

negative. For the case 1 2( , , , )ndiag γ γ γΓ =  with 0iγ > , 1, ,i n= , 

synchronization occurs if min Lγ > , where min , 1, ,i i nγ γ≤ = . This is because the 

time derivative of 1( , )V x e  can be written as ( ) 2
1 min( , )V L γ≤ −x e e . The criterion 

is global if f  is globally Lipschitz. 

5.3 Numerical Illustrated Examples 

Example 5.1 Autonomous case: Lorenz systems 

1 1 2 1

2 1 2 1 3 2

3 1 2 3 3

( ) ( ),
( ),

( ),

x x x f
x rx x x x f
x x x bx f

σ= − −

= − −

= −

x
x

x
 

where 1 2 310, 28, 8 3, [ ]Tr b x x xσ = = = =x . To apply the theorem given in this 

chapter, one needs to estimate the Lipschitz constant at the beginning. By 
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Cauchy-Schwarz inequality, it can be derived for any 

21 22 23 1 11 12 13[ ] , [ ]T Tx x x x x x= =2x x , we have 

1 1 1 1

2 2 1 3 1 1

3 3 1 2 1 1

( ) ( ) [ 0] ,

( ) ( ) [ 1 ] ,

( ) ( ) [ ] ,

f f

f f r B B

f f B B b

σ σ− ≤ − −

− ≤ + − −

− ≤ − −

2 2

2 2

2 2

x x x x

x x x x

x x x x

 

where 0( ) , , 1, 2, 1, 2, 3ij jx t B t t i j≤ ∀ > = = . Hence, a Lipschitz constant can be 

obtained as 

2 2 2
3 1 2 1[ 0] [ 1 ] [ ]L r B B B B bσ σ= − + + − + − . 

From numerical simulation, 1 2 320, 28, 49B B B= = = , then 87.87L = . If we choose 

( )= Φ = +z x Ax b  to be an affine mapping, then the response system becomes 

1ˆ ˆ ˆ( ( )) ( ( )),−= Φ −Γ −Φz A f z z x  

where { , , }diag γ γΓ =  and 1 2 3ˆ ˆ ˆ ˆ[ ]Tz z z=z . nL −ΓI  is negative definite if 

88γ = . First, select Φ  be a reflection, that is = −A I  and =b 0 . With the initial 

value 0 0ˆ[ ] [10 10 10 0.5 0.5 0.5]T T T T=x z , the simulated results are shown in 

Fig.5.1-5.4. As expectation, the projections of synchronized manifold in Fig.5.2 are 

diagonal-like and reflected to vertical axis. Compare Fig.5.4 with Fig.5.3, the phase 

portrait of response system in Fig.5.4 is reflected to the phase portrait of driving 

system in Fig.5.3. This case is also called anti-synchronization of chaos. With the 

same initial condition, let 

1 1 0
0.1 2 1
0.3 1 2

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A  and 
0
0
50

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

b , 

the simulated results are shown in Fig. 5.5 and Fig. 5.7, respectively. The projections 

of synchronized manifold are no longer diagonal-like but more complicated. 

Example 5.2 Nonautonomous case: An extended equation of the coupled Duffing 

systems is written as 

1 2 1
3

2 1 1 2 2

1

( ),

cos ( ),

ˆ ˆ ˆ( ( )) ( ( )),

x x f

x x x x t fδ α ω
−

=

= − − +

= Φ −Γ −Φ

x

x

z A f z z x

 

where 1 2 1 2ˆ ˆ ˆ1, 0.25, 0.4, [ ] , [ ]T Tx x z zω δ α= = = = =x z , { , , }diag γ γΓ =  and 
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( )= Φ = +z x Ax b . By Cauchy-Schwarz inequality, it can be derived for any 

21 22 1 11 12[ ] , [ ]T Tx x x x= =2x x  

1 1 1 1

2
2 2 1 1 1

( ) ( ) ,

( ) ( ) 1 3 ,

f f

f f B δ

− ≤ −

⎡ ⎤− ≤ + − −⎣ ⎦

2 2

2 2

x x x x

x x x x
 

where 1 2 0( ) , ( ) , , 1, 2, 1, 2ij ijx t B y t B t t i j≤ ≤ ∀ > = = . Hence, a Lipschitz constant 

can be obtained as 

22
11 1 3L B δ⎡ ⎤= + + −⎣ ⎦ . 

From numerical simulation, 1 21.5, 0.9B B= = , then 7.82L = . Choose 

1 0.5
1.8 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A , 
5
5
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

b , 

and the initial value 0 0ˆ[ ] [1 1 0.1 0.1]T T T T=x z . nL −ΓI  is negative definite if 8γ = . 

The simulated results are shown in Fig. 5.8-5.11. Fig. 5.9 shows that the projections 

of synchronized manifold are complicated. Fig. 5.10 and Fig. 5.11 show that the phase 

portraits of the driving and response systems are different.
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Fig. 5.1 1 2,e e  and 3e  versus time.
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Fig. 5.2 Projections of synchronized manifold.
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Fig. 5.3 Phase portrait of the driving system.
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Fig. 5.4 Phase portrait of the response system.
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Fig. 5.5 1 2,e e  and 3e  versus time.
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Fig. 5.6 Projections of synchronized manifold.
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Fig. 5.7 Phase portrait of the response system. 
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Fig. 5.8 1e  and 2e  versus time.
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Fig. 5.9 Projections of synchronized manifold.
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Fig. 5.10 Phase portrait of the driving system.
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Fig. 5.11 Phase portrait of the response system.
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Chapter 6 

Conclusions 

Chaos synchronization is an important research topic in these years. There are 

several methods to guarantee the emergence of chaos synchronization but there is no 

easy unified criterion in general. Most of them are suitable for a specific kind of 

system or even for a special system. Herein, a general scheme for both unidirectional 

and mutual coupled systems is proposed to achieve chaos synchronization via partial 

stability theory. It can overcome two drawbacks. First, it is difficulty to use the 

traditional Lyapunov method since the state error equation is not a pure function of 

state error in general. Second, zero crossing of Lyapunov exponent whose definition 

needs infinite evolution time is used as a criterion of chaos synchronization widely 

but we can only calculate finite evolution time in computer simulation. The benefit of 

this scheme is that the usage of the partial stability theory is similar to the traditional 

Lyapunov method. Superficially, the order of the error dynamic equation is enlarged 

since it is replaced by an extended equation in this scheme. But only partial variables 

are manipulated in actual. Furthermore, many control techniques can be applied to 

synchronize coupled systems in this scheme. 

Follows the procedure of the proposed scheme, the unidirectional coupled 

systems are discussed first and three sufficient criteria are derived. One of them is 

suitable for systems without perturbation and the other two are suitable for systems 

under two kinds of perturbations, vanishing and nonvanishing, respectively. Second, 

the effort is concentrated on synchronization of mutual coupled systems. Similar to 

the unidirectional case, three theorems are proven to ensure the occurrence of 

synchronization. One of them is suitable for systems without perturbation and the 

other two are suitable for systems under two kinds of perturbations, vanishing and 

nonvanishing, respectively. 

In previous six criteria, to guarantee the emergence of synchronization a matrix 

equation should be satisfied and the estimation of Lipschitz constant is needed. 

Moreover, the estimate of Lipschitz constant is often conservative. To overcome these 

two shortcomings, this matrix equation and the estimation of Lipschitz constant are 

replaced by adopting an adaptive coupling gain and an adaptive estimator, 
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respectively. As a result, a simple and convenient adaptive synchronization of chaotic 

systems is realized for both unidirectional and mutual coupled systems. It is easier and 

more convenient to use this method for synchronization of both unidirectional and 

mutual coupled systems than the six theorems in chapter 2 and 3. Furthermore, to 

increase the convergent rate of state error dynamics we only need to set a larger initial 

condition of the adaptive equation. 

The synchronization discussed indicates the identical synchronization (or 

complete synchronization) in the foregoing results. Another kind of synchronization 

called generalized synchronization which means that there is a functional relation 

between the states of driving and response systems as time goes to infinity are studied 

in the chapter 5. This function can increase the complication of synchronization. 

Similar to the chapter 2, a scheme to achieve chaos generalized synchronization via 

partial stability is proposed. One theorem is proven to ensure generalized 

synchronization for a general kind of unidirectional coupled nonautonomous systems 

by linear feedback. 

Several examples are simulated numerically to illustrate the theoretical analyses. 

All the criteria derived in this dissertation work for regular and chaotic, linear and 

nonlinear systems, autonomous and nonautonomous systems. Hence, the proposed 

scheme to achieve chaos synchronization is successful. 
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Appendix 

The content of this appendix follows [78-80]. Consider a differential system 

( , )t=x f x , (A1) 

where 0:[ , ) nt ∞ ×Ω→f R , 0( , ) [ , )t t I t= ∀ ∈ ∞f 0 0 and nΩ⊂ R  is a region 

containing the origin. Assume that f  is smooth enough to ensure that the solution of 

(A1) exists uniquely. To shorten the notation, write 1 1( , , , , )T
m n my y z z −=x , 

1 2
2

1

m

i
i

y
=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑y , 

1 2
2

1

n m

i
i

z
−

=

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∑z  and ( )

1 2
1 22

1

n

i
i

x
=

⎛ ⎞
= = +⎜ ⎟
⎝ ⎠
∑x y z  with 0 m n< ≤ . 

We assume that the solution of (A1) is z-extendable, i.e. any solution of (A1) exists 

for all 0t t≥  and ( )t H≤y , H is a constant. Write 

{ }0( , ) , , 0Q t t t H= ≥ ≤ ≤ < +∞x y z  and  { }0( , ) ,Q t t t= ≥ < ∞x x . 

Definition A1 The solution of (A1) is stable with respect to y  (y-stable) if 0ε∀ > , 

0 [0, )t∀ ∈ ∞ , 0( , ) 0tδ ε∃ > , { }0 0: || || ( , )B tδ δ ε∀ ∈ = <x x x  such that 

0 0 0( , , )t t t tε< ∀ ≥y x . The solution of (A1) is uniformly y-stable if 0( , )tδ ε  is 

independent of 0t  in the definition of y-stable. 

The solution of (A1) is asymptotically stable with respect to y  (asymptotically 

y-stable) if it is (1) y-stable and (2) y-attractive, i.e. 0 [0, )t∀ ∈ ∞ , 

0( ) 0tδ ′∃ > , 0ε ′∀ > , { }0 0: || || ( )B tδ δ′ ′∀ ∈ = <x z z , 0 0( , , )T t ε ′∃ x  such that 

0 0 0( , , )t t t t Tε ′< ∀ ≥ +y x . The solution of (A1) is uniformly asymptotically 

y-stable if it is (1) uniformly y-stable and (2) uniformly y-attractive, i.e. 0( , )tδ ε′ ′  is 

independent of 0t  and 0 0( , , )T t ε ′x  is independent of 0 0,t x  in the definition of 

y-attractive. 

The solution of (A1) is globally y- attractive if nBδ = R  in the definition of 

y-attractive. Furthermore, if nBδ = R  and 0( ) 0tδ ′∃ >  can be replaced by δ∀  the 

solution of (A1) is globally uniformly y- attractive. The solution of (A1) is globally 

asymptotically y- stable if it is (1) y-stable and (2) globally y-attractive. The solution 
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of (A1) is globally uniformly asymptotically y- stable if it is (1) uniformly y-stable 

and (2) globally uniformly y-attractive. 

The next definition extended the notation of definite functions to partial variables. 

Let ( )0( , ) [ , ) ,nV t C t∈ ∞ ×x R R  with ( , )V t =0 0  and V  is in the domain Q . 

Definition A2 A t  implicit positive (negative) semi-definite function ( )V x  is called 

positive (negative) definite with respect to y if ( )V x  can vanish only when =y 0 . 

A positive (negative) semi-definite function ( , )V t x  is called positive (negative) 

definite with respect to y if there is a positive (negative) definite function ( )W y  such 

that ( , ) ( )V t W≥x y  ( ( , ) ( )V t W≤x y ). 

Definition A3 A function ( , )V t x  is called bounded if 0M∃ >  such that 

( , )V t M≤x . A bounded function ( , )V t x  possesses an infinitesimal upper bound if 

0, ( ) 0ε δ ε∀ > ∃ > , for 0t t≥  and ( )δ ε<x  such that ( , )V t ε≤x . A bounded 

function ( , )V t x  possesses an infinitesimal upper bound with respect to 

1, , ( )kx x m k n≤ ≤  if 0, ( ) 0ε δ ε∀ > ∃ > , for 0t t≥ , 2

1

k

i
i

x δ
=

<∑ , 

2 2
1k nx x+−∞ < + + < ∞  such that ( , )V t ε≤x . 

Theorem A1 Suppose there exists a positive definite function ( , )V t x  with respect 

to 1, , ( )kx x k n≤  such that ( , )V t x  is positive semi-definite or vanishes, then the 

undisturbed motion is stable with respect to 1, , ( )kx x k n≤ . 

Theorem A2 Suppose there exists a positive definite function ( , )V t x  with respect 

to 1, , ( )kx x k n≤  such that ( , )V t x  possesses an infinitesimal upper bound and 

( , )V t x  is positive definite with respect to 1, , kx x , then the undisturbed motion is 

asymptotically stable with respect to 1, , kx x . 

Theorem A3 Suppose there exist a function :[0, ) mV ∞ ×Ω× →R R  such that for 

some functions , ,a b c∈K  and every ( , )t Q∈x : 

  (i)  ( ) ( , ), ( , )a V t V t≤ =y x 0 0 , 
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(ii) 
1 2

2

1

( , ) ,
k

i
i

V t b x m k n
=

⎛ ⎞⎛ ⎞≤ ≤ ≤⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑x , 

(iii) 
1 2

2

1

( , )
k

i
i

V t c x
=

⎛ ⎞⎛ ⎞≤ − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑x , 

then the origin is uniformly asymptotically y-stable. 

Theorem A4 Suppose there exist a function :[0, ) mV ∞ ×Ω× →R R  such that for 

some functions , ,a b c∈K , :a + +→R R  with ( )r a r→+∞⇒ →+∞  and every 

( , )t Q∈x : 

(i)  ( ) ( , ), ( , )a V t V t≤ =y x 0 0 , 

(ii) 
1 2

2

1

( , ) ,
k

i
i

V t b x m k n
=

⎛ ⎞⎛ ⎞≤ ≤ ≤⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑x , 

(iii) 
1 2

2

1

( , )
k

i
i

V t c x
=

⎛ ⎞⎛ ⎞≤ − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑x , 

(iv) 2

1
( , )

n

i
i

x V t
=

→ +∞ ⇒ →+∞∑ x , 

then the origin is globally asymptotically y-stable. 

If there is perturbation in the system, the stability of motion is different. Consider 

differential equation of a system under constantly acting perturbation 

( , ) ( , )t t= +x f x R x , (A2) 

where [ ]( , ) ,t I∈ ×ΩR x R  with ( , )t ≠R 0 0  in general. Assume that the solution 

0 0( ; , )t tx x  exists for infinitely time. 

Definition A4 The motion =x 0  of system (A1) is said to be y-stable under 

constantly acting perturbation small at each instant, if 0ε∀ > , 0 0t > , 

1 0( , ) 0tδ ε∃ > , 2 0( , ) 0tδ ε >  such that whenever 0 1 0( , )tδ ε<x  and 

2 0( , ) ( , )t tδ ε<R x , the partial solution 0 0( ; , )t ty x  satisfy 0 0( ; , )t t ε<y x . The 

motion =x 0  of system (A1) is said to be y-stable under constantly acting 

perturbation small on the average, if 0ε∀ > , 0 0t > , 0T∀ > , 1 0( , , ) 0t Tδ ε∃ > , 

2 0( , , ) 0t Tδ ε >  such that whenever 0 1 0( , , )t Tδ ε<x  and 
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{ } 2 0sup ( , ) ( , , )
t T

t
d t T t Iτ τ δ ε

+
≤ ∀ ∈∫ R x  

, the partial solution 0 0( ; , )t ty x  satisfy 0 0( ; , )t t ε<y x . 

If 1 2,δ δ  do not dependent on 0t , the y-stable under constantly acting perturbation, 

small at each instant, are uniform. This is also called total stability. 

Theorem A5 Suppose there exist a function :[0, ) mV ∞ ×Ω× →R R  such that for 

some functions , ,a b c∈K  and every ( , )t Q∈x : 

(i)  V N∂
≤ =

∂x
constant, 

(ii) ( )
1 2

2

1

( , ) ,
k

i
i

a V t b x m k n
=

⎛ ⎞⎛ ⎞≤ ≤ ≤ ≤⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑y x , 

(iii) 
1 2

2

1

( , )
k

i
i

V t c x
=

⎛ ⎞⎛ ⎞≤ − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑x , 

then the solution of system (A2) is y-stable under constantly acting perturbation  

small at each instant. 

Theorem A6 Suppose there exist a function :[0, ) mV ∞ ×Ω× →R R  such that for 

some functions , ,a b c∈K  and every ( , )t Q∈x : 

(i)  V N∂
≤ =

∂x
constant, 

(ii) ( ) ( )( , )a V t b≤ ≤y x y , 

(iii) ( )( , )V t c≤ −x y , 

then the solution of system (A2) is y-stable under constantly acting perturbation small 

on the average. 

Corollary A1 The functions f  and ( )Df x  are continuous and bounded in Q . If 

the invariant set { }=x y 0  is uniformly asymptotically stable, then it is uniformly 

stable under constantly acting perturbation small on the average. 
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